strlen.S revision 1.1
11.1Schristos/*
21.1Schristos * Written by J.T. Conklin <jtc@acorntoolworks.com>
31.1Schristos * Public domain.
41.1Schristos */
51.1Schristos
61.1Schristos#include <machine/asm.h>
71.1Schristos
81.1Schristos#if defined(LIBC_SCCS)
91.1Schristos	RCSID("$NetBSD: strlen.S,v 1.1 2005/12/20 19:28:49 christos Exp $")
101.1Schristos#endif
111.1Schristos
121.1SchristosENTRY(strlen)
131.1Schristos	movl	4(%esp),%eax
141.1Schristos
151.1Schristos.Lalign:
161.1Schristos	/* Consider unrolling loop? */
171.1Schristos	testb	$3,%al
181.1Schristos	je	.Lword_aligned
191.1Schristos	cmpb	$0,(%eax)
201.1Schristos	je	.Ldone
211.1Schristos	incl	%eax
221.1Schristos	jmp	.Lalign
231.1Schristos
241.1Schristos	/*
251.1Schristos	 * There are many well known branch-free sequences which are used
261.1Schristos	 * for determining whether a zero-byte is contained within a word.
271.1Schristos	 * These sequences are generally much more efficent than loading
281.1Schristos	 * and comparing each byte individually.
291.1Schristos	 *
301.1Schristos	 * The expression [1,2]:
311.1Schristos	 *
321.1Schristos	 * (1)  ~(((x & 0x7f7f7f7f) + 0x7f7f7f7f) | (x | 0x7f7f7f7f))
331.1Schristos	 *
341.1Schristos	 * evaluates to a non-zero value if any of the bytes in the
351.1Schristos	 * original word is zero.
361.1Schristos	 *
371.1Schristos	 * It also has the useful property that bytes in the result word
381.1Schristos	 * that correspond to non-zero bytes in the original word have
391.1Schristos	 * the value 0x00, while bytes corresponding to zero bytes have
401.1Schristos	 * the value 0x80. This allows calculation of the first (and
411.1Schristos	 * last) occurrence of a zero byte within the word (useful for C's
421.1Schristos	 * str* primitives) by counting the number of leading (or
431.1Schristos	 * trailing) zeros and dividing the result by 8.  On machines
441.1Schristos	 * without (or with slow) clz() / ctz() instructions, testing
451.1Schristos	 * each byte in the result word for zero is necessary.
461.1Schristos	 *
471.1Schristos	 * This typically takes 4 instructions (5 on machines without
481.1Schristos	 * "not-or") not including those needed to load the constant.
491.1Schristos	 *
501.1Schristos	 *
511.1Schristos	 * The expression:
521.1Schristos	 *
531.1Schristos	 * (2)  ((x - 0x01010101) & ~x & 0x80808080)
541.1Schristos	 *
551.1Schristos	 * evaluates to a non-zero value if any of the bytes in the
561.1Schristos	 * original word is zero.
571.1Schristos	 *
581.1Schristos	 * On little endian machines, the first byte in the result word
591.1Schristos	 * that corresponds to a zero byte in the original byte is 0x80,
601.1Schristos	 * so clz() can be used as above.  On big endian machines, and
611.1Schristos	 * little endian machines without (or with a slow) clz() insn,
621.1Schristos	 * testing each byte in the original for zero is necessary.
631.1Schristos	 *
641.1Schristos	 * This typically takes 3 instructions (4 on machines without
651.1Schristos	 * "and with complement") not including those needed to load
661.1Schristos	 * constants.
671.1Schristos	 *
681.1Schristos	 *
691.1Schristos	 * The expression:
701.1Schristos	 *
711.1Schristos	 * (3)  ((x - 0x01010101) & 0x80808080)
721.1Schristos	 *
731.1Schristos	 * always evaluates to a non-zero value if any of the bytes in
741.1Schristos	 * the original word is zero.  However, in rare cases, it also
751.1Schristos	 * evaluates to a non-zero value when none of the bytes in the
761.1Schristos	 * original word is zero.
771.1Schristos	 *
781.1Schristos	 * To account for possible false positives, each byte of the
791.1Schristos	 * original word must be checked when the expression evaluates to
801.1Schristos	 * a non-zero value.  However, because it is simpler than those
811.1Schristos	 * presented above, code that uses it will be faster as long as
821.1Schristos	 * the rate of false positives is low.
831.1Schristos	 *
841.1Schristos	 * This is likely, because the the false positive can only occur
851.1Schristos	 * if the most siginificant bit of a byte within the word is set.
861.1Schristos	 * The expression will never fail for typical 7-bit ASCII strings.
871.1Schristos	 *
881.1Schristos	 * This typically takes 2 instructions not including those needed
891.1Schristos	 * to load constants.
901.1Schristos	 *
911.1Schristos	 *
921.1Schristos	 * [1] Henry S. Warren Jr., "Hacker's Delight", Addison-Westley 2003
931.1Schristos	 *
941.1Schristos	 * [2] International Business Machines, "The PowerPC Compiler Writer's
951.1Schristos	 *     Guide", Warthman Associates, 1996
961.1Schristos	 */
971.1Schristos
981.1Schristos	_ALIGN_TEXT
991.1Schristos.Lword_aligned:
1001.1Schristos.Lloop:
1011.1Schristos	movl	(%eax),%ecx
1021.1Schristos	addl	$4,%eax
1031.1Schristos	leal	-0x01010101(%ecx),%edx
1041.1Schristos	testl	$0x80808080,%edx
1051.1Schristos	je	.Lloop
1061.1Schristos
1071.1Schristos	/*
1081.1Schristos	 * In rare cases, the above loop may exit prematurely. We must
1091.1Schristos	 * return to the loop if none of the bytes in the word equal 0.
1101.1Schristos	 */
1111.1Schristos
1121.1Schristos	/*
1131.1Schristos	 * The optimal code for determining whether each byte is zero
1141.1Schristos	 * differs by processor.  This space-optimized code should be
1151.1Schristos	 * acceptable on all, especially since we don't expect it to
1161.1Schristos	 * be run frequently,
1171.1Schristos	 */
1181.1Schristos
1191.1Schristos	testb	%cl,%cl		/* 1st byte == 0? */
1201.1Schristos	jne	1f
1211.1Schristos	subl	$4,%eax
1221.1Schristos	jmp	.Ldone
1231.1Schristos
1241.1Schristos1:	testb	%ch,%ch		/* 2nd byte == 0? */
1251.1Schristos	jne	1f
1261.1Schristos	subl	$3,%eax
1271.1Schristos	jmp	.Ldone
1281.1Schristos
1291.1Schristos1:	shrl	$16,%ecx
1301.1Schristos	testb	%cl,%cl		/* 3rd byte == 0? */
1311.1Schristos	jne	1f
1321.1Schristos	subl	$2,%eax
1331.1Schristos	jmp	.Ldone
1341.1Schristos
1351.1Schristos1:	testb	%ch,%ch		/* 4th byte == 0? */
1361.1Schristos	jne	.Lloop
1371.1Schristos	decl	%eax
1381.1Schristos
1391.1Schristos.Ldone:
1401.1Schristos	subl	4(%esp),%eax
1411.1Schristos	ret
142