trap.c revision 1.21
11.21Sthorpej/* $NetBSD: trap.c,v 1.21 2000/05/26 21:20:04 thorpej Exp $ */ 21.7Sdbj 31.7Sdbj/* 41.10Sabs * This file was taken from mvme68k/mvme68k/trap.c 51.7Sdbj * should probably be re-synced when needed. 61.16Sdbj * Darrin B. Jewell <jewell@mit.edu> Tue Aug 3 10:53:12 UTC 1999 71.16Sdbj * original cvs id: NetBSD: trap.c,v 1.32 1999/08/03 10:52:06 dbj Exp 81.7Sdbj */ 91.1Sdbj 101.1Sdbj/* 111.1Sdbj * Copyright (c) 1988 University of Utah. 121.1Sdbj * Copyright (c) 1982, 1986, 1990, 1993 131.1Sdbj * The Regents of the University of California. All rights reserved. 141.1Sdbj * 151.1Sdbj * This code is derived from software contributed to Berkeley by 161.1Sdbj * the Systems Programming Group of the University of Utah Computer 171.1Sdbj * Science Department. 181.1Sdbj * 191.1Sdbj * Redistribution and use in source and binary forms, with or without 201.1Sdbj * modification, are permitted provided that the following conditions 211.1Sdbj * are met: 221.1Sdbj * 1. Redistributions of source code must retain the above copyright 231.1Sdbj * notice, this list of conditions and the following disclaimer. 241.1Sdbj * 2. Redistributions in binary form must reproduce the above copyright 251.1Sdbj * notice, this list of conditions and the following disclaimer in the 261.1Sdbj * documentation and/or other materials provided with the distribution. 271.1Sdbj * 3. All advertising materials mentioning features or use of this software 281.1Sdbj * must display the following acknowledgement: 291.1Sdbj * This product includes software developed by the University of 301.1Sdbj * California, Berkeley and its contributors. 311.1Sdbj * 4. Neither the name of the University nor the names of its contributors 321.1Sdbj * may be used to endorse or promote products derived from this software 331.1Sdbj * without specific prior written permission. 341.1Sdbj * 351.1Sdbj * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 361.1Sdbj * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 371.1Sdbj * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 381.1Sdbj * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 391.1Sdbj * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 401.1Sdbj * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 411.1Sdbj * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 421.1Sdbj * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 431.1Sdbj * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 441.1Sdbj * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 451.1Sdbj * SUCH DAMAGE. 461.1Sdbj * 471.1Sdbj * from: Utah $Hdr: trap.c 1.37 92/12/20$ 481.1Sdbj * 491.1Sdbj * @(#)trap.c 8.5 (Berkeley) 1/4/94 501.1Sdbj */ 511.2Sthorpej 521.5Sjonathan#include "opt_ddb.h" 531.9Sitohy#include "opt_execfmt.h" 541.2Sthorpej#include "opt_ktrace.h" 551.6Sthorpej#include "opt_compat_netbsd.h" 561.3Sthorpej#include "opt_compat_sunos.h" 571.4Sthorpej#include "opt_compat_hpux.h" 581.9Sitohy#include "opt_compat_linux.h" 591.1Sdbj 601.1Sdbj#include <sys/param.h> 611.1Sdbj#include <sys/systm.h> 621.1Sdbj#include <sys/proc.h> 631.1Sdbj#include <sys/acct.h> 641.1Sdbj#include <sys/kernel.h> 651.1Sdbj#include <sys/signalvar.h> 661.1Sdbj#include <sys/resourcevar.h> 671.1Sdbj#include <sys/syscall.h> 681.1Sdbj#include <sys/syslog.h> 691.1Sdbj#include <sys/user.h> 701.1Sdbj#ifdef KTRACE 711.1Sdbj#include <sys/ktrace.h> 721.1Sdbj#endif 731.16Sdbj 741.16Sdbj#ifdef DEBUG 751.16Sdbj#include <dev/cons.h> 761.14Sdbj#endif 771.1Sdbj 781.16Sdbj#include <machine/db_machdep.h> 791.1Sdbj#include <machine/psl.h> 801.1Sdbj#include <machine/trap.h> 811.1Sdbj#include <machine/cpu.h> 821.1Sdbj#include <machine/reg.h> 831.1Sdbj 841.1Sdbj#include <vm/vm.h> 851.1Sdbj#include <vm/pmap.h> 861.1Sdbj 871.16Sdbj#include <m68k/cacheops.h> 881.16Sdbj 891.7Sdbj#include <uvm/uvm_extern.h> 901.1Sdbj 911.1Sdbj#ifdef COMPAT_HPUX 921.1Sdbj#include <compat/hpux/hpux.h> 931.1Sdbj#endif 941.1Sdbj 951.1Sdbj#ifdef COMPAT_SUNOS 961.1Sdbj#include <compat/sunos/sunos_syscall.h> 971.1Sdbjextern struct emul emul_sunos; 981.1Sdbj#endif 991.1Sdbj 1001.9Sitohy#ifdef COMPAT_LINUX 1011.9Sitohy#ifdef EXEC_AOUT 1021.9Sitohyextern struct emul emul_linux_aout; 1031.9Sitohy#endif 1041.9Sitohy#ifdef EXEC_ELF32 1051.9Sitohyextern struct emul emul_linux_elf32; 1061.9Sitohy#endif 1071.9Sitohy#endif 1081.9Sitohy 1091.16Sdbjint writeback __P((struct frame *fp, int docachepush)); 1101.16Sdbjvoid trap __P((int type, u_int code, u_int v, struct frame frame)); 1111.16Sdbjvoid syscall __P((register_t code, struct frame frame)); 1121.16Sdbj 1131.16Sdbj#ifdef DEBUG 1141.16Sdbjvoid dumpssw __P((u_short)); 1151.16Sdbjvoid dumpwb __P((int, u_short, u_int, u_int)); 1161.16Sdbj#endif 1171.16Sdbj 1181.16Sdbjstatic inline void userret __P((struct proc *p, struct frame *fp, 1191.16Sdbj u_quad_t oticks, u_int faultaddr, int fromtrap)); 1201.1Sdbj 1211.7Sdbjint astpending; 1221.1Sdbj 1231.1Sdbjchar *trap_type[] = { 1241.1Sdbj "Bus error", 1251.1Sdbj "Address error", 1261.1Sdbj "Illegal instruction", 1271.1Sdbj "Zero divide", 1281.1Sdbj "CHK instruction", 1291.1Sdbj "TRAPV instruction", 1301.1Sdbj "Privilege violation", 1311.1Sdbj "Trace trap", 1321.1Sdbj "MMU fault", 1331.1Sdbj "SSIR trap", 1341.1Sdbj "Format error", 1351.1Sdbj "68881 exception", 1361.1Sdbj "Coprocessor violation", 1371.1Sdbj "Async system trap" 1381.1Sdbj}; 1391.1Sdbjint trap_types = sizeof trap_type / sizeof trap_type[0]; 1401.1Sdbj 1411.1Sdbj/* 1421.1Sdbj * Size of various exception stack frames (minus the standard 8 bytes) 1431.1Sdbj */ 1441.1Sdbjshort exframesize[] = { 1451.16Sdbj FMT0SIZE, /* type 0 - normal (68020/030/040/060) */ 1461.1Sdbj FMT1SIZE, /* type 1 - throwaway (68020/030/040) */ 1471.16Sdbj FMT2SIZE, /* type 2 - normal 6-word (68020/030/040/060) */ 1481.16Sdbj FMT3SIZE, /* type 3 - FP post-instruction (68040/060) */ 1491.16Sdbj FMT4SIZE, /* type 4 - access error/fp disabled (68060) */ 1501.16Sdbj -1, -1, /* type 5-6 - undefined */ 1511.1Sdbj FMT7SIZE, /* type 7 - access error (68040) */ 1521.1Sdbj 58, /* type 8 - bus fault (68010) */ 1531.1Sdbj FMT9SIZE, /* type 9 - coprocessor mid-instruction (68020/030) */ 1541.1Sdbj FMTASIZE, /* type A - short bus fault (68020/030) */ 1551.1Sdbj FMTBSIZE, /* type B - long bus fault (68020/030) */ 1561.1Sdbj -1, -1, -1, -1 /* type C-F - undefined */ 1571.1Sdbj}; 1581.1Sdbj 1591.16Sdbj#ifdef M68060 1601.16Sdbj#define KDFAULT_060(c) (cputype == CPU_68060 && ((c) & FSLW_TM_SV)) 1611.16Sdbj#define WRFAULT_060(c) (cputype == CPU_68060 && ((c) & FSLW_RW_W)) 1621.16Sdbj#else 1631.16Sdbj#define KDFAULT_060(c) 0 1641.16Sdbj#define WRFAULT_060(c) 0 1651.16Sdbj#endif 1661.16Sdbj 1671.1Sdbj#ifdef M68040 1681.16Sdbj#define KDFAULT_040(c) (cputype == CPU_68040 && \ 1691.16Sdbj ((c) & SSW4_TMMASK) == SSW4_TMKD) 1701.16Sdbj#define WRFAULT_040(c) (cputype == CPU_68040 && \ 1711.16Sdbj ((c) & SSW4_RW) == 0) 1721.16Sdbj#else 1731.16Sdbj#define KDFAULT_040(c) 0 1741.16Sdbj#define WRFAULT_040(c) 0 1751.16Sdbj#endif 1761.16Sdbj 1771.16Sdbj#if defined(M68030) || defined(M68020) 1781.16Sdbj#define KDFAULT_OTH(c) (cputype <= CPU_68030 && \ 1791.16Sdbj ((c) & (SSW_DF|SSW_FCMASK)) == (SSW_DF|FC_SUPERD)) 1801.16Sdbj#define WRFAULT_OTH(c) (cputype <= CPU_68030 && \ 1811.16Sdbj ((c) & (SSW_DF|SSW_RW)) == SSW_DF) 1821.1Sdbj#else 1831.16Sdbj#define KDFAULT_OTH(c) 0 1841.16Sdbj#define WRFAULT_OTH(c) 0 1851.1Sdbj#endif 1861.1Sdbj 1871.16Sdbj#define KDFAULT(c) (KDFAULT_060(c) || KDFAULT_040(c) || KDFAULT_OTH(c)) 1881.16Sdbj#define WRFAULT(c) (WRFAULT_060(c) || WRFAULT_040(c) || WRFAULT_OTH(c)) 1891.16Sdbj 1901.1Sdbj#ifdef DEBUG 1911.1Sdbjint mmudebug = 0; 1921.1Sdbjint mmupid = -1; 1931.1Sdbj#define MDB_FOLLOW 1 1941.1Sdbj#define MDB_WBFOLLOW 2 1951.1Sdbj#define MDB_WBFAILED 4 1961.16Sdbj#define MDB_ISPID(p) ((p) == mmupid) 1971.1Sdbj#endif 1981.1Sdbj 1991.16Sdbj 2001.1Sdbj#define NSIR 32 2011.16Sdbjvoid (*sir_routines[NSIR])(void *); 2021.1Sdbjvoid *sir_args[NSIR]; 2031.1Sdbjint next_sir; 2041.1Sdbj 2051.1Sdbj/* 2061.1Sdbj * trap and syscall both need the following work done before returning 2071.1Sdbj * to user mode. 2081.1Sdbj */ 2091.1Sdbjstatic inline void 2101.1Sdbjuserret(p, fp, oticks, faultaddr, fromtrap) 2111.1Sdbj struct proc *p; 2121.1Sdbj struct frame *fp; 2131.1Sdbj u_quad_t oticks; 2141.1Sdbj u_int faultaddr; 2151.1Sdbj int fromtrap; 2161.1Sdbj{ 2171.20Sthorpej int sig; 2181.1Sdbj#ifdef M68040 2191.1Sdbj int beenhere = 0; 2201.1Sdbj 2211.1Sdbjagain: 2221.1Sdbj#endif 2231.1Sdbj /* take pending signals */ 2241.1Sdbj while ((sig = CURSIG(p)) != 0) 2251.1Sdbj postsig(sig); 2261.1Sdbj p->p_priority = p->p_usrpri; 2271.1Sdbj if (want_resched) { 2281.1Sdbj /* 2291.20Sthorpej * We are being preempted. 2301.1Sdbj */ 2311.20Sthorpej preempt(NULL); 2321.1Sdbj while ((sig = CURSIG(p)) != 0) 2331.1Sdbj postsig(sig); 2341.1Sdbj } 2351.1Sdbj 2361.1Sdbj /* 2371.1Sdbj * If profiling, charge system time to the trapped pc. 2381.1Sdbj */ 2391.1Sdbj if (p->p_flag & P_PROFIL) { 2401.1Sdbj extern int psratio; 2411.1Sdbj 2421.1Sdbj addupc_task(p, fp->f_pc, 2431.1Sdbj (int)(p->p_sticks - oticks) * psratio); 2441.1Sdbj } 2451.1Sdbj#ifdef M68040 2461.1Sdbj /* 2471.1Sdbj * Deal with user mode writebacks (from trap, or from sigreturn). 2481.1Sdbj * If any writeback fails, go back and attempt signal delivery. 2491.1Sdbj * unless we have already been here and attempted the writeback 2501.1Sdbj * (e.g. bad address with user ignoring SIGSEGV). In that case 2511.1Sdbj * we just return to the user without sucessfully completing 2521.1Sdbj * the writebacks. Maybe we should just drop the sucker? 2531.1Sdbj */ 2541.16Sdbj if (cputype == CPU_68040 && fp->f_format == FMT7) { 2551.1Sdbj if (beenhere) { 2561.1Sdbj#ifdef DEBUG 2571.1Sdbj if (mmudebug & MDB_WBFAILED) 2581.1Sdbj printf(fromtrap ? 2591.1Sdbj "pid %d(%s): writeback aborted, pc=%x, fa=%x\n" : 2601.1Sdbj "pid %d(%s): writeback aborted in sigreturn, pc=%x\n", 2611.1Sdbj p->p_pid, p->p_comm, fp->f_pc, faultaddr); 2621.1Sdbj#endif 2631.16Sdbj } else if ((sig = writeback(fp, fromtrap))) { 2641.1Sdbj beenhere = 1; 2651.1Sdbj oticks = p->p_sticks; 2661.1Sdbj trapsignal(p, sig, faultaddr); 2671.1Sdbj goto again; 2681.1Sdbj } 2691.1Sdbj } 2701.1Sdbj#endif 2711.21Sthorpej curcpu()->ci_schedstate.spc_curpriority = p->p_priority; 2721.1Sdbj} 2731.1Sdbj 2741.1Sdbj/* 2751.1Sdbj * Trap is called from locore to handle most types of processor traps, 2761.1Sdbj * including events such as simulated software interrupts/AST's. 2771.1Sdbj * System calls are broken out for efficiency. 2781.1Sdbj */ 2791.1Sdbj/*ARGSUSED*/ 2801.16Sdbjvoid 2811.1Sdbjtrap(type, code, v, frame) 2821.1Sdbj int type; 2831.1Sdbj unsigned code; 2841.1Sdbj unsigned v; 2851.1Sdbj struct frame frame; 2861.1Sdbj{ 2871.1Sdbj extern char fubail[], subail[]; 2881.1Sdbj struct proc *p; 2891.16Sdbj int i, s; 2901.1Sdbj u_int ucode; 2911.16Sdbj u_quad_t sticks = 0 /* XXX initialiser works around compiler bug */; 2921.7Sdbj int bit; 2931.1Sdbj 2941.7Sdbj uvmexp.traps++; 2951.1Sdbj p = curproc; 2961.1Sdbj ucode = 0; 2971.16Sdbj 2981.16Sdbj /* I have verified that this DOES happen! -gwr */ 2991.16Sdbj if (p == NULL) 3001.16Sdbj p = &proc0; 3011.16Sdbj#ifdef DIAGNOSTIC 3021.16Sdbj if (p->p_addr == NULL) 3031.16Sdbj panic("trap: no pcb"); 3041.16Sdbj#endif 3051.16Sdbj 3061.1Sdbj if (USERMODE(frame.f_sr)) { 3071.1Sdbj type |= T_USER; 3081.1Sdbj sticks = p->p_sticks; 3091.1Sdbj p->p_md.md_regs = frame.f_regs; 3101.1Sdbj } 3111.1Sdbj switch (type) { 3121.1Sdbj 3131.1Sdbj default: 3141.14Sdbj dopanic: 3151.16Sdbj printf("trap type %d, code = 0x%x, v = 0x%x\n", type, code, v); 3161.16Sdbj printf("%s program counter = 0x%x\n", 3171.16Sdbj (type & T_USER) ? "user" : "kernel", frame.f_pc); 3181.14Sdbj /* 3191.14Sdbj * Let the kernel debugger see the trap frame that 3201.14Sdbj * caused us to panic. This is a convenience so 3211.14Sdbj * one can see registers at the point of failure. 3221.14Sdbj */ 3231.16Sdbj s = splhigh(); 3241.14Sdbj#ifdef KGDB 3251.14Sdbj /* If connected, step or cont returns 1 */ 3261.16Sdbj if (kgdb_trap(type, &frame)) 3271.14Sdbj goto kgdb_cont; 3281.14Sdbj#endif 3291.16Sdbj#ifdef DDB 3301.16Sdbj (void)kdb_trap(type, (db_regs_t *)&frame); 3311.1Sdbj#endif 3321.14Sdbj#ifdef KGDB 3331.14Sdbj kgdb_cont: 3341.14Sdbj#endif 3351.16Sdbj splx(s); 3361.14Sdbj if (panicstr) { 3371.16Sdbj printf("trap during panic!\n"); 3381.16Sdbj#ifdef DEBUG 3391.16Sdbj /* XXX should be a machine-dependent hook */ 3401.16Sdbj printf("(press a key)\n"); (void)cngetc(); 3411.16Sdbj#endif 3421.14Sdbj } 3431.1Sdbj regdump((struct trapframe *)&frame, 128); 3441.1Sdbj type &= ~T_USER; 3451.16Sdbj if ((u_int)type < trap_types) 3461.1Sdbj panic(trap_type[type]); 3471.1Sdbj panic("trap"); 3481.1Sdbj 3491.1Sdbj case T_BUSERR: /* kernel bus error */ 3501.16Sdbj if (p->p_addr->u_pcb.pcb_onfault == 0) 3511.1Sdbj goto dopanic; 3521.16Sdbj /* FALLTHROUGH */ 3531.16Sdbj 3541.16Sdbj copyfault: 3551.1Sdbj /* 3561.1Sdbj * If we have arranged to catch this fault in any of the 3571.1Sdbj * copy to/from user space routines, set PC to return to 3581.1Sdbj * indicated location and set flag informing buserror code 3591.1Sdbj * that it may need to clean up stack frame. 3601.1Sdbj */ 3611.1Sdbj frame.f_stackadj = exframesize[frame.f_format]; 3621.1Sdbj frame.f_format = frame.f_vector = 0; 3631.1Sdbj frame.f_pc = (int) p->p_addr->u_pcb.pcb_onfault; 3641.1Sdbj return; 3651.1Sdbj 3661.1Sdbj case T_BUSERR|T_USER: /* bus error */ 3671.1Sdbj case T_ADDRERR|T_USER: /* address error */ 3681.1Sdbj ucode = v; 3691.1Sdbj i = SIGBUS; 3701.1Sdbj break; 3711.1Sdbj 3721.1Sdbj case T_COPERR: /* kernel coprocessor violation */ 3731.1Sdbj case T_FMTERR|T_USER: /* do all RTE errors come in as T_USER? */ 3741.1Sdbj case T_FMTERR: /* ...just in case... */ 3751.1Sdbj /* 3761.1Sdbj * The user has most likely trashed the RTE or FP state info 3771.1Sdbj * in the stack frame of a signal handler. 3781.1Sdbj */ 3791.1Sdbj printf("pid %d: kernel %s exception\n", p->p_pid, 3801.1Sdbj type==T_COPERR ? "coprocessor" : "format"); 3811.1Sdbj type |= T_USER; 3821.6Sthorpej p->p_sigacts->ps_sigact[SIGILL].sa_handler = SIG_DFL; 3831.6Sthorpej sigdelset(&p->p_sigignore, SIGILL); 3841.6Sthorpej sigdelset(&p->p_sigcatch, SIGILL); 3851.6Sthorpej sigdelset(&p->p_sigmask, SIGILL); 3861.1Sdbj i = SIGILL; 3871.1Sdbj ucode = frame.f_format; /* XXX was ILL_RESAD_FAULT */ 3881.1Sdbj break; 3891.1Sdbj 3901.1Sdbj case T_COPERR|T_USER: /* user coprocessor violation */ 3911.1Sdbj /* What is a proper response here? */ 3921.1Sdbj ucode = 0; 3931.1Sdbj i = SIGFPE; 3941.1Sdbj break; 3951.1Sdbj 3961.1Sdbj case T_FPERR|T_USER: /* 68881 exceptions */ 3971.1Sdbj /* 3981.7Sdbj * We pass along the 68881 status register which locore stashed 3991.1Sdbj * in code for us. Note that there is a possibility that the 4001.7Sdbj * bit pattern of this register will conflict with one of the 4011.1Sdbj * FPE_* codes defined in signal.h. Fortunately for us, the 4021.1Sdbj * only such codes we use are all in the range 1-7 and the low 4031.7Sdbj * 3 bits of the status register are defined as 0 so there is 4041.1Sdbj * no clash. 4051.1Sdbj */ 4061.1Sdbj ucode = code; 4071.1Sdbj i = SIGFPE; 4081.1Sdbj break; 4091.1Sdbj 4101.1Sdbj#ifdef M68040 4111.1Sdbj case T_FPEMULI|T_USER: /* unimplemented FP instuction */ 4121.1Sdbj case T_FPEMULD|T_USER: /* unimplemented FP data type */ 4131.1Sdbj /* XXX need to FSAVE */ 4141.1Sdbj printf("pid %d(%s): unimplemented FP %s at %x (EA %x)\n", 4151.1Sdbj p->p_pid, p->p_comm, 4161.1Sdbj frame.f_format == 2 ? "instruction" : "data type", 4171.1Sdbj frame.f_pc, frame.f_fmt2.f_iaddr); 4181.1Sdbj /* XXX need to FRESTORE */ 4191.1Sdbj i = SIGFPE; 4201.1Sdbj break; 4211.1Sdbj#endif 4221.1Sdbj 4231.1Sdbj case T_ILLINST|T_USER: /* illegal instruction fault */ 4241.1Sdbj#ifdef COMPAT_HPUX 4251.1Sdbj if (p->p_emul == &emul_hpux) { 4261.1Sdbj ucode = HPUX_ILL_ILLINST_TRAP; 4271.1Sdbj i = SIGILL; 4281.1Sdbj break; 4291.1Sdbj } 4301.1Sdbj /* fall through */ 4311.1Sdbj#endif 4321.1Sdbj case T_PRIVINST|T_USER: /* privileged instruction fault */ 4331.1Sdbj#ifdef COMPAT_HPUX 4341.1Sdbj if (p->p_emul == &emul_hpux) 4351.1Sdbj ucode = HPUX_ILL_PRIV_TRAP; 4361.1Sdbj else 4371.1Sdbj#endif 4381.1Sdbj ucode = frame.f_format; /* XXX was ILL_PRIVIN_FAULT */ 4391.1Sdbj i = SIGILL; 4401.1Sdbj break; 4411.1Sdbj 4421.1Sdbj case T_ZERODIV|T_USER: /* Divide by zero */ 4431.1Sdbj#ifdef COMPAT_HPUX 4441.1Sdbj if (p->p_emul == &emul_hpux) 4451.1Sdbj ucode = HPUX_FPE_INTDIV_TRAP; 4461.1Sdbj else 4471.1Sdbj#endif 4481.1Sdbj ucode = frame.f_format; /* XXX was FPE_INTDIV_TRAP */ 4491.1Sdbj i = SIGFPE; 4501.1Sdbj break; 4511.1Sdbj 4521.1Sdbj case T_CHKINST|T_USER: /* CHK instruction trap */ 4531.1Sdbj#ifdef COMPAT_HPUX 4541.1Sdbj if (p->p_emul == &emul_hpux) { 4551.1Sdbj /* handled differently under hp-ux */ 4561.1Sdbj i = SIGILL; 4571.1Sdbj ucode = HPUX_ILL_CHK_TRAP; 4581.1Sdbj break; 4591.1Sdbj } 4601.1Sdbj#endif 4611.1Sdbj ucode = frame.f_format; /* XXX was FPE_SUBRNG_TRAP */ 4621.1Sdbj i = SIGFPE; 4631.1Sdbj break; 4641.1Sdbj 4651.1Sdbj case T_TRAPVINST|T_USER: /* TRAPV instruction trap */ 4661.1Sdbj#ifdef COMPAT_HPUX 4671.1Sdbj if (p->p_emul == &emul_hpux) { 4681.1Sdbj /* handled differently under hp-ux */ 4691.1Sdbj i = SIGILL; 4701.1Sdbj ucode = HPUX_ILL_TRAPV_TRAP; 4711.1Sdbj break; 4721.1Sdbj } 4731.1Sdbj#endif 4741.1Sdbj ucode = frame.f_format; /* XXX was FPE_INTOVF_TRAP */ 4751.1Sdbj i = SIGFPE; 4761.1Sdbj break; 4771.1Sdbj 4781.1Sdbj /* 4791.1Sdbj * XXX: Trace traps are a nightmare. 4801.1Sdbj * 4811.1Sdbj * HP-UX uses trap #1 for breakpoints, 4821.16Sdbj * NetBSD/m68k uses trap #2, 4831.1Sdbj * SUN 3.x uses trap #15, 4841.16Sdbj * DDB and KGDB uses trap #15 (for kernel breakpoints; 4851.16Sdbj * handled elsewhere). 4861.1Sdbj * 4871.16Sdbj * NetBSD and HP-UX traps both get mapped by locore.s into T_TRACE. 4881.1Sdbj * SUN 3.x traps get passed through as T_TRAP15 and are not really 4891.1Sdbj * supported yet. 4901.16Sdbj * 4911.17Sitohy * XXX: We should never get kernel-mode T_TRAP15 4921.16Sdbj * XXX: because locore.s now gives them special treatment. 4931.1Sdbj */ 4941.16Sdbj case T_TRAP15: /* kernel breakpoint */ 4951.16Sdbj#ifdef DEBUG 4961.16Sdbj printf("unexpected kernel trace trap, type = %d\n", type); 4971.16Sdbj printf("program counter = 0x%x\n", frame.f_pc); 4981.1Sdbj#endif 4991.1Sdbj frame.f_sr &= ~PSL_T; 5001.16Sdbj return; 5011.1Sdbj 5021.1Sdbj case T_TRACE|T_USER: /* user trace trap */ 5031.1Sdbj#ifdef COMPAT_SUNOS 5041.1Sdbj /* 5051.1Sdbj * SunOS uses Trap #2 for a "CPU cache flush". 5061.1Sdbj * Just flush the on-chip caches and return. 5071.1Sdbj */ 5081.1Sdbj if (p->p_emul == &emul_sunos) { 5091.1Sdbj ICIA(); 5101.1Sdbj DCIU(); 5111.1Sdbj return; 5121.1Sdbj } 5131.16Sdbj#endif 5141.17Sitohy /* FALLTHROUGH */ 5151.17Sitohy case T_TRACE: /* tracing a trap instruction */ 5161.17Sitohy case T_TRAP15|T_USER: /* SUN user trace trap */ 5171.1Sdbj frame.f_sr &= ~PSL_T; 5181.1Sdbj i = SIGTRAP; 5191.1Sdbj break; 5201.1Sdbj 5211.1Sdbj case T_ASTFLT: /* system async trap, cannot happen */ 5221.1Sdbj goto dopanic; 5231.1Sdbj 5241.1Sdbj case T_ASTFLT|T_USER: /* user async trap */ 5251.1Sdbj astpending = 0; 5261.1Sdbj /* 5271.1Sdbj * We check for software interrupts first. This is because 5281.1Sdbj * they are at a higher level than ASTs, and on a VAX would 5291.1Sdbj * interrupt the AST. We assume that if we are processing 5301.1Sdbj * an AST that we must be at IPL0 so we don't bother to 5311.1Sdbj * check. Note that we ensure that we are at least at SIR 5321.1Sdbj * IPL while processing the SIR. 5331.1Sdbj */ 5341.1Sdbj spl1(); 5351.1Sdbj /* fall into... */ 5361.1Sdbj 5371.1Sdbj case T_SSIR: /* software interrupt */ 5381.1Sdbj case T_SSIR|T_USER: 5391.16Sdbj while ((bit = ffs(ssir))) { 5401.1Sdbj --bit; 5411.1Sdbj ssir &= ~(1 << bit); 5421.7Sdbj uvmexp.softs++; 5431.1Sdbj if (sir_routines[bit]) 5441.1Sdbj sir_routines[bit](sir_args[bit]); 5451.1Sdbj } 5461.1Sdbj /* 5471.1Sdbj * If this was not an AST trap, we are all done. 5481.1Sdbj */ 5491.1Sdbj if (type != (T_ASTFLT|T_USER)) { 5501.16Sdbj uvmexp.traps--; 5511.1Sdbj return; 5521.1Sdbj } 5531.1Sdbj spl0(); 5541.1Sdbj if (p->p_flag & P_OWEUPC) { 5551.1Sdbj p->p_flag &= ~P_OWEUPC; 5561.1Sdbj ADDUPROF(p); 5571.1Sdbj } 5581.1Sdbj goto out; 5591.1Sdbj 5601.1Sdbj case T_MMUFLT: /* kernel mode page fault */ 5611.1Sdbj /* 5621.1Sdbj * If we were doing profiling ticks or other user mode 5631.1Sdbj * stuff from interrupt code, Just Say No. 5641.1Sdbj */ 5651.1Sdbj if (p->p_addr->u_pcb.pcb_onfault == fubail || 5661.1Sdbj p->p_addr->u_pcb.pcb_onfault == subail) 5671.1Sdbj goto copyfault; 5681.1Sdbj /* fall into ... */ 5691.1Sdbj 5701.1Sdbj case T_MMUFLT|T_USER: /* page fault */ 5711.1Sdbj { 5721.7Sdbj vaddr_t va; 5731.1Sdbj struct vmspace *vm = p->p_vmspace; 5741.1Sdbj vm_map_t map; 5751.1Sdbj int rv; 5761.1Sdbj vm_prot_t ftype; 5771.1Sdbj extern vm_map_t kernel_map; 5781.1Sdbj 5791.1Sdbj#ifdef DEBUG 5801.1Sdbj if ((mmudebug & MDB_WBFOLLOW) || MDB_ISPID(p->p_pid)) 5811.1Sdbj printf("trap: T_MMUFLT pid=%d, code=%x, v=%x, pc=%x, sr=%x\n", 5821.1Sdbj p->p_pid, code, v, frame.f_pc, frame.f_sr); 5831.1Sdbj#endif 5841.1Sdbj /* 5851.1Sdbj * It is only a kernel address space fault iff: 5861.1Sdbj * 1. (type & T_USER) == 0 and 5871.1Sdbj * 2. pcb_onfault not set or 5881.1Sdbj * 3. pcb_onfault set but supervisor space data fault 5891.1Sdbj * The last can occur during an exec() copyin where the 5901.1Sdbj * argument space is lazy-allocated. 5911.1Sdbj */ 5921.16Sdbj if ((type & T_USER) == 0 && 5931.16Sdbj ((p->p_addr->u_pcb.pcb_onfault == 0) || KDFAULT(code))) 5941.1Sdbj map = kernel_map; 5951.1Sdbj else 5961.16Sdbj map = vm ? &vm->vm_map : kernel_map; 5971.16Sdbj 5981.1Sdbj if (WRFAULT(code)) 5991.1Sdbj ftype = VM_PROT_READ | VM_PROT_WRITE; 6001.1Sdbj else 6011.1Sdbj ftype = VM_PROT_READ; 6021.16Sdbj 6031.7Sdbj va = trunc_page((vaddr_t)v); 6041.16Sdbj 6051.1Sdbj if (map == kernel_map && va == 0) { 6061.16Sdbj printf("trap: bad kernel %s access at 0x%x\n", 6071.16Sdbj (ftype & VM_PROT_WRITE) ? "read/write" : 6081.16Sdbj "read", v); 6091.1Sdbj goto dopanic; 6101.1Sdbj } 6111.16Sdbj 6121.1Sdbj#ifdef COMPAT_HPUX 6131.1Sdbj if (ISHPMMADDR(va)) { 6141.16Sdbj int pmap_mapmulti __P((pmap_t, vaddr_t)); 6151.7Sdbj vaddr_t bva; 6161.1Sdbj 6171.1Sdbj rv = pmap_mapmulti(map->pmap, va); 6181.1Sdbj if (rv != KERN_SUCCESS) { 6191.1Sdbj bva = HPMMBASEADDR(va); 6201.7Sdbj rv = uvm_fault(map, bva, 0, ftype); 6211.1Sdbj if (rv == KERN_SUCCESS) 6221.1Sdbj (void) pmap_mapmulti(map->pmap, va); 6231.1Sdbj } 6241.1Sdbj } else 6251.1Sdbj#endif 6261.7Sdbj rv = uvm_fault(map, va, 0, ftype); 6271.7Sdbj#ifdef DEBUG 6281.7Sdbj if (rv && MDB_ISPID(p->p_pid)) 6291.7Sdbj printf("uvm_fault(%p, 0x%lx, 0, 0x%x) -> 0x%x\n", 6301.16Sdbj map, va, ftype, rv); 6311.7Sdbj#endif 6321.1Sdbj /* 6331.1Sdbj * If this was a stack access we keep track of the maximum 6341.1Sdbj * accessed stack size. Also, if vm_fault gets a protection 6351.1Sdbj * failure it is due to accessing the stack region outside 6361.1Sdbj * the current limit and we need to reflect that as an access 6371.1Sdbj * error. 6381.1Sdbj */ 6391.16Sdbj if ((vm != NULL && (caddr_t)va >= vm->vm_maxsaddr) 6401.16Sdbj && map != kernel_map) { 6411.1Sdbj if (rv == KERN_SUCCESS) { 6421.1Sdbj unsigned nss; 6431.1Sdbj 6441.19Sragge nss = btoc(USRSTACK-(unsigned)va); 6451.1Sdbj if (nss > vm->vm_ssize) 6461.1Sdbj vm->vm_ssize = nss; 6471.1Sdbj } else if (rv == KERN_PROTECTION_FAILURE) 6481.1Sdbj rv = KERN_INVALID_ADDRESS; 6491.1Sdbj } 6501.1Sdbj if (rv == KERN_SUCCESS) { 6511.1Sdbj if (type == T_MMUFLT) { 6521.16Sdbj#ifdef M68040 6531.16Sdbj if (cputype == CPU_68040) 6541.1Sdbj (void) writeback(&frame, 1); 6551.1Sdbj#endif 6561.1Sdbj return; 6571.1Sdbj } 6581.1Sdbj goto out; 6591.1Sdbj } 6601.1Sdbj if (type == T_MMUFLT) { 6611.1Sdbj if (p->p_addr->u_pcb.pcb_onfault) 6621.1Sdbj goto copyfault; 6631.7Sdbj printf("uvm_fault(%p, 0x%lx, 0, 0x%x) -> 0x%x\n", 6641.16Sdbj map, va, ftype, rv); 6651.1Sdbj printf(" type %x, code [mmu,,ssw]: %x\n", 6661.1Sdbj type, code); 6671.1Sdbj goto dopanic; 6681.1Sdbj } 6691.1Sdbj ucode = v; 6701.11Schs if (rv == KERN_RESOURCE_SHORTAGE) { 6711.11Schs printf("UVM: pid %d (%s), uid %d killed: out of swap\n", 6721.11Schs p->p_pid, p->p_comm, 6731.11Schs p->p_cred && p->p_ucred ? 6741.11Schs p->p_ucred->cr_uid : -1); 6751.11Schs i = SIGKILL; 6761.11Schs } else { 6771.11Schs i = SIGSEGV; 6781.11Schs } 6791.1Sdbj break; 6801.1Sdbj } 6811.1Sdbj } 6821.1Sdbj trapsignal(p, i, ucode); 6831.1Sdbj if ((type & T_USER) == 0) 6841.1Sdbj return; 6851.1Sdbjout: 6861.1Sdbj userret(p, &frame, sticks, v, 1); 6871.1Sdbj} 6881.1Sdbj 6891.1Sdbj#ifdef M68040 6901.1Sdbj#ifdef DEBUG 6911.1Sdbjstruct writebackstats { 6921.1Sdbj int calls; 6931.1Sdbj int cpushes; 6941.1Sdbj int move16s; 6951.1Sdbj int wb1s, wb2s, wb3s; 6961.1Sdbj int wbsize[4]; 6971.1Sdbj} wbstats; 6981.1Sdbj 6991.1Sdbjchar *f7sz[] = { "longword", "byte", "word", "line" }; 7001.1Sdbjchar *f7tt[] = { "normal", "MOVE16", "AFC", "ACK" }; 7011.1Sdbjchar *f7tm[] = { "d-push", "u-data", "u-code", "M-data", 7021.1Sdbj "M-code", "k-data", "k-code", "RES" }; 7031.1Sdbjchar wberrstr[] = 7041.16Sdbj "WARNING: pid %d(%s) writeback [%s] failed, pc=%x fa=%x wba=%x wbd=%x\n"; 7051.1Sdbj#endif 7061.1Sdbj 7071.16Sdbjint 7081.1Sdbjwriteback(fp, docachepush) 7091.1Sdbj struct frame *fp; 7101.1Sdbj int docachepush; 7111.1Sdbj{ 7121.1Sdbj struct fmt7 *f = &fp->f_fmt7; 7131.1Sdbj struct proc *p = curproc; 7141.1Sdbj int err = 0; 7151.1Sdbj u_int fa; 7161.1Sdbj caddr_t oonfault = p->p_addr->u_pcb.pcb_onfault; 7171.15Sthorpej paddr_t pa; 7181.1Sdbj 7191.1Sdbj#ifdef DEBUG 7201.1Sdbj if ((mmudebug & MDB_WBFOLLOW) || MDB_ISPID(p->p_pid)) { 7211.1Sdbj printf(" pid=%d, fa=%x,", p->p_pid, f->f_fa); 7221.1Sdbj dumpssw(f->f_ssw); 7231.1Sdbj } 7241.1Sdbj wbstats.calls++; 7251.1Sdbj#endif 7261.1Sdbj /* 7271.1Sdbj * Deal with special cases first. 7281.1Sdbj */ 7291.1Sdbj if ((f->f_ssw & SSW4_TMMASK) == SSW4_TMDCP) { 7301.1Sdbj /* 7311.1Sdbj * Dcache push fault. 7321.1Sdbj * Line-align the address and write out the push data to 7331.1Sdbj * the indicated physical address. 7341.1Sdbj */ 7351.1Sdbj#ifdef DEBUG 7361.1Sdbj if ((mmudebug & MDB_WBFOLLOW) || MDB_ISPID(p->p_pid)) { 7371.1Sdbj printf(" pushing %s to PA %x, data %x", 7381.1Sdbj f7sz[(f->f_ssw & SSW4_SZMASK) >> 5], 7391.1Sdbj f->f_fa, f->f_pd0); 7401.1Sdbj if ((f->f_ssw & SSW4_SZMASK) == SSW4_SZLN) 7411.1Sdbj printf("/%x/%x/%x", 7421.1Sdbj f->f_pd1, f->f_pd2, f->f_pd3); 7431.1Sdbj printf("\n"); 7441.1Sdbj } 7451.1Sdbj if (f->f_wb1s & SSW4_WBSV) 7461.1Sdbj panic("writeback: cache push with WB1S valid"); 7471.1Sdbj wbstats.cpushes++; 7481.1Sdbj#endif 7491.1Sdbj /* 7501.1Sdbj * XXX there are security problems if we attempt to do a 7511.1Sdbj * cache push after a signal handler has been called. 7521.1Sdbj */ 7531.1Sdbj if (docachepush) { 7541.7Sdbj pmap_enter(pmap_kernel(), (vaddr_t)vmmap, 7551.18Sthorpej trunc_page(f->f_fa), VM_PROT_WRITE, 7561.18Sthorpej VM_PROT_WRITE|PMAP_WIRED); 7571.1Sdbj fa = (u_int)&vmmap[(f->f_fa & PGOFSET) & ~0xF]; 7581.1Sdbj bcopy((caddr_t)&f->f_pd0, (caddr_t)fa, 16); 7591.15Sthorpej (void) pmap_extract(pmap_kernel(), (vaddr_t)fa, &pa); 7601.15Sthorpej DCFL(pa); 7611.7Sdbj pmap_remove(pmap_kernel(), (vaddr_t)vmmap, 7621.7Sdbj (vaddr_t)&vmmap[NBPG]); 7631.1Sdbj } else 7641.1Sdbj printf("WARNING: pid %d(%s) uid %d: CPUSH not done\n", 7651.1Sdbj p->p_pid, p->p_comm, p->p_ucred->cr_uid); 7661.1Sdbj } else if ((f->f_ssw & (SSW4_RW|SSW4_TTMASK)) == SSW4_TTM16) { 7671.1Sdbj /* 7681.1Sdbj * MOVE16 fault. 7691.1Sdbj * Line-align the address and write out the push data to 7701.1Sdbj * the indicated virtual address. 7711.1Sdbj */ 7721.1Sdbj#ifdef DEBUG 7731.1Sdbj if ((mmudebug & MDB_WBFOLLOW) || MDB_ISPID(p->p_pid)) 7741.1Sdbj printf(" MOVE16 to VA %x(%x), data %x/%x/%x/%x\n", 7751.1Sdbj f->f_fa, f->f_fa & ~0xF, f->f_pd0, f->f_pd1, 7761.1Sdbj f->f_pd2, f->f_pd3); 7771.1Sdbj if (f->f_wb1s & SSW4_WBSV) 7781.1Sdbj panic("writeback: MOVE16 with WB1S valid"); 7791.1Sdbj wbstats.move16s++; 7801.1Sdbj#endif 7811.1Sdbj if (KDFAULT(f->f_wb1s)) 7821.1Sdbj bcopy((caddr_t)&f->f_pd0, (caddr_t)(f->f_fa & ~0xF), 16); 7831.1Sdbj else 7841.1Sdbj err = suline((caddr_t)(f->f_fa & ~0xF), (caddr_t)&f->f_pd0); 7851.1Sdbj if (err) { 7861.1Sdbj fa = f->f_fa & ~0xF; 7871.1Sdbj#ifdef DEBUG 7881.1Sdbj if (mmudebug & MDB_WBFAILED) 7891.1Sdbj printf(wberrstr, p->p_pid, p->p_comm, 7901.1Sdbj "MOVE16", fp->f_pc, f->f_fa, 7911.1Sdbj f->f_fa & ~0xF, f->f_pd0); 7921.1Sdbj#endif 7931.1Sdbj } 7941.1Sdbj } else if (f->f_wb1s & SSW4_WBSV) { 7951.1Sdbj /* 7961.1Sdbj * Writeback #1. 7971.1Sdbj * Position the "memory-aligned" data and write it out. 7981.1Sdbj */ 7991.1Sdbj u_int wb1d = f->f_wb1d; 8001.1Sdbj int off; 8011.1Sdbj 8021.1Sdbj#ifdef DEBUG 8031.1Sdbj if ((mmudebug & MDB_WBFOLLOW) || MDB_ISPID(p->p_pid)) 8041.1Sdbj dumpwb(1, f->f_wb1s, f->f_wb1a, f->f_wb1d); 8051.1Sdbj wbstats.wb1s++; 8061.1Sdbj wbstats.wbsize[(f->f_wb2s&SSW4_SZMASK)>>5]++; 8071.1Sdbj#endif 8081.1Sdbj off = (f->f_wb1a & 3) * 8; 8091.1Sdbj switch (f->f_wb1s & SSW4_SZMASK) { 8101.1Sdbj case SSW4_SZLW: 8111.1Sdbj if (off) 8121.1Sdbj wb1d = (wb1d >> (32 - off)) | (wb1d << off); 8131.1Sdbj if (KDFAULT(f->f_wb1s)) 8141.1Sdbj *(long *)f->f_wb1a = wb1d; 8151.1Sdbj else 8161.1Sdbj err = suword((caddr_t)f->f_wb1a, wb1d); 8171.1Sdbj break; 8181.1Sdbj case SSW4_SZB: 8191.1Sdbj off = 24 - off; 8201.1Sdbj if (off) 8211.1Sdbj wb1d >>= off; 8221.1Sdbj if (KDFAULT(f->f_wb1s)) 8231.1Sdbj *(char *)f->f_wb1a = wb1d; 8241.1Sdbj else 8251.1Sdbj err = subyte((caddr_t)f->f_wb1a, wb1d); 8261.1Sdbj break; 8271.1Sdbj case SSW4_SZW: 8281.1Sdbj off = (off + 16) % 32; 8291.1Sdbj if (off) 8301.1Sdbj wb1d = (wb1d >> (32 - off)) | (wb1d << off); 8311.1Sdbj if (KDFAULT(f->f_wb1s)) 8321.1Sdbj *(short *)f->f_wb1a = wb1d; 8331.1Sdbj else 8341.1Sdbj err = susword((caddr_t)f->f_wb1a, wb1d); 8351.1Sdbj break; 8361.1Sdbj } 8371.1Sdbj if (err) { 8381.1Sdbj fa = f->f_wb1a; 8391.1Sdbj#ifdef DEBUG 8401.1Sdbj if (mmudebug & MDB_WBFAILED) 8411.1Sdbj printf(wberrstr, p->p_pid, p->p_comm, 8421.1Sdbj "#1", fp->f_pc, f->f_fa, 8431.1Sdbj f->f_wb1a, f->f_wb1d); 8441.1Sdbj#endif 8451.1Sdbj } 8461.1Sdbj } 8471.1Sdbj /* 8481.1Sdbj * Deal with the "normal" writebacks. 8491.1Sdbj * 8501.1Sdbj * XXX writeback2 is known to reflect a LINE size writeback after 8511.1Sdbj * a MOVE16 was already dealt with above. Ignore it. 8521.1Sdbj */ 8531.1Sdbj if (err == 0 && (f->f_wb2s & SSW4_WBSV) && 8541.1Sdbj (f->f_wb2s & SSW4_SZMASK) != SSW4_SZLN) { 8551.1Sdbj#ifdef DEBUG 8561.1Sdbj if ((mmudebug & MDB_WBFOLLOW) || MDB_ISPID(p->p_pid)) 8571.1Sdbj dumpwb(2, f->f_wb2s, f->f_wb2a, f->f_wb2d); 8581.1Sdbj wbstats.wb2s++; 8591.1Sdbj wbstats.wbsize[(f->f_wb2s&SSW4_SZMASK)>>5]++; 8601.1Sdbj#endif 8611.1Sdbj switch (f->f_wb2s & SSW4_SZMASK) { 8621.1Sdbj case SSW4_SZLW: 8631.1Sdbj if (KDFAULT(f->f_wb2s)) 8641.1Sdbj *(long *)f->f_wb2a = f->f_wb2d; 8651.1Sdbj else 8661.1Sdbj err = suword((caddr_t)f->f_wb2a, f->f_wb2d); 8671.1Sdbj break; 8681.1Sdbj case SSW4_SZB: 8691.1Sdbj if (KDFAULT(f->f_wb2s)) 8701.1Sdbj *(char *)f->f_wb2a = f->f_wb2d; 8711.1Sdbj else 8721.1Sdbj err = subyte((caddr_t)f->f_wb2a, f->f_wb2d); 8731.1Sdbj break; 8741.1Sdbj case SSW4_SZW: 8751.1Sdbj if (KDFAULT(f->f_wb2s)) 8761.1Sdbj *(short *)f->f_wb2a = f->f_wb2d; 8771.1Sdbj else 8781.1Sdbj err = susword((caddr_t)f->f_wb2a, f->f_wb2d); 8791.1Sdbj break; 8801.1Sdbj } 8811.1Sdbj if (err) { 8821.1Sdbj fa = f->f_wb2a; 8831.1Sdbj#ifdef DEBUG 8841.1Sdbj if (mmudebug & MDB_WBFAILED) { 8851.1Sdbj printf(wberrstr, p->p_pid, p->p_comm, 8861.1Sdbj "#2", fp->f_pc, f->f_fa, 8871.1Sdbj f->f_wb2a, f->f_wb2d); 8881.1Sdbj dumpssw(f->f_ssw); 8891.1Sdbj dumpwb(2, f->f_wb2s, f->f_wb2a, f->f_wb2d); 8901.1Sdbj } 8911.1Sdbj#endif 8921.1Sdbj } 8931.1Sdbj } 8941.1Sdbj if (err == 0 && (f->f_wb3s & SSW4_WBSV)) { 8951.1Sdbj#ifdef DEBUG 8961.1Sdbj if ((mmudebug & MDB_WBFOLLOW) || MDB_ISPID(p->p_pid)) 8971.1Sdbj dumpwb(3, f->f_wb3s, f->f_wb3a, f->f_wb3d); 8981.1Sdbj wbstats.wb3s++; 8991.1Sdbj wbstats.wbsize[(f->f_wb3s&SSW4_SZMASK)>>5]++; 9001.1Sdbj#endif 9011.1Sdbj switch (f->f_wb3s & SSW4_SZMASK) { 9021.1Sdbj case SSW4_SZLW: 9031.1Sdbj if (KDFAULT(f->f_wb3s)) 9041.1Sdbj *(long *)f->f_wb3a = f->f_wb3d; 9051.1Sdbj else 9061.1Sdbj err = suword((caddr_t)f->f_wb3a, f->f_wb3d); 9071.1Sdbj break; 9081.1Sdbj case SSW4_SZB: 9091.1Sdbj if (KDFAULT(f->f_wb3s)) 9101.1Sdbj *(char *)f->f_wb3a = f->f_wb3d; 9111.1Sdbj else 9121.1Sdbj err = subyte((caddr_t)f->f_wb3a, f->f_wb3d); 9131.1Sdbj break; 9141.1Sdbj case SSW4_SZW: 9151.1Sdbj if (KDFAULT(f->f_wb3s)) 9161.1Sdbj *(short *)f->f_wb3a = f->f_wb3d; 9171.1Sdbj else 9181.1Sdbj err = susword((caddr_t)f->f_wb3a, f->f_wb3d); 9191.1Sdbj break; 9201.1Sdbj#ifdef DEBUG 9211.1Sdbj case SSW4_SZLN: 9221.1Sdbj panic("writeback: wb3s indicates LINE write"); 9231.1Sdbj#endif 9241.1Sdbj } 9251.1Sdbj if (err) { 9261.1Sdbj fa = f->f_wb3a; 9271.1Sdbj#ifdef DEBUG 9281.1Sdbj if (mmudebug & MDB_WBFAILED) 9291.1Sdbj printf(wberrstr, p->p_pid, p->p_comm, 9301.1Sdbj "#3", fp->f_pc, f->f_fa, 9311.1Sdbj f->f_wb3a, f->f_wb3d); 9321.1Sdbj#endif 9331.1Sdbj } 9341.1Sdbj } 9351.1Sdbj p->p_addr->u_pcb.pcb_onfault = oonfault; 9361.1Sdbj if (err) 9371.1Sdbj err = SIGSEGV; 9381.16Sdbj return (err); 9391.1Sdbj} 9401.1Sdbj 9411.1Sdbj#ifdef DEBUG 9421.16Sdbjvoid 9431.1Sdbjdumpssw(ssw) 9441.1Sdbj u_short ssw; 9451.1Sdbj{ 9461.1Sdbj printf(" SSW: %x: ", ssw); 9471.1Sdbj if (ssw & SSW4_CP) 9481.1Sdbj printf("CP,"); 9491.1Sdbj if (ssw & SSW4_CU) 9501.1Sdbj printf("CU,"); 9511.1Sdbj if (ssw & SSW4_CT) 9521.1Sdbj printf("CT,"); 9531.1Sdbj if (ssw & SSW4_CM) 9541.1Sdbj printf("CM,"); 9551.1Sdbj if (ssw & SSW4_MA) 9561.1Sdbj printf("MA,"); 9571.1Sdbj if (ssw & SSW4_ATC) 9581.1Sdbj printf("ATC,"); 9591.1Sdbj if (ssw & SSW4_LK) 9601.1Sdbj printf("LK,"); 9611.1Sdbj if (ssw & SSW4_RW) 9621.1Sdbj printf("RW,"); 9631.1Sdbj printf(" SZ=%s, TT=%s, TM=%s\n", 9641.1Sdbj f7sz[(ssw & SSW4_SZMASK) >> 5], 9651.1Sdbj f7tt[(ssw & SSW4_TTMASK) >> 3], 9661.1Sdbj f7tm[ssw & SSW4_TMMASK]); 9671.1Sdbj} 9681.1Sdbj 9691.16Sdbjvoid 9701.1Sdbjdumpwb(num, s, a, d) 9711.1Sdbj int num; 9721.1Sdbj u_short s; 9731.1Sdbj u_int a, d; 9741.1Sdbj{ 9751.1Sdbj struct proc *p = curproc; 9761.7Sdbj paddr_t pa; 9771.1Sdbj 9781.1Sdbj printf(" writeback #%d: VA %x, data %x, SZ=%s, TT=%s, TM=%s\n", 9791.1Sdbj num, a, d, f7sz[(s & SSW4_SZMASK) >> 5], 9801.1Sdbj f7tt[(s & SSW4_TTMASK) >> 3], f7tm[s & SSW4_TMMASK]); 9811.16Sdbj printf(" PA "); 9821.15Sthorpej if (pmap_extract(p->p_vmspace->vm_map.pmap, (vaddr_t)a, &pa) == FALSE) 9831.1Sdbj printf("<invalid address>"); 9841.1Sdbj else 9851.16Sdbj printf("%lx, current value %lx", pa, fuword((caddr_t)a)); 9861.1Sdbj printf("\n"); 9871.1Sdbj} 9881.1Sdbj#endif 9891.1Sdbj#endif 9901.1Sdbj 9911.1Sdbj/* 9921.1Sdbj * Process a system call. 9931.1Sdbj */ 9941.16Sdbjvoid 9951.1Sdbjsyscall(code, frame) 9961.16Sdbj register_t code; 9971.1Sdbj struct frame frame; 9981.1Sdbj{ 9991.1Sdbj caddr_t params; 10001.1Sdbj struct sysent *callp; 10011.1Sdbj struct proc *p; 10021.1Sdbj int error, opc, nsys; 10031.1Sdbj size_t argsize; 10041.16Sdbj register_t args[8], rval[2]; 10051.1Sdbj u_quad_t sticks; 10061.1Sdbj 10071.7Sdbj uvmexp.syscalls++; 10081.1Sdbj if (!USERMODE(frame.f_sr)) 10091.1Sdbj panic("syscall"); 10101.1Sdbj p = curproc; 10111.1Sdbj sticks = p->p_sticks; 10121.1Sdbj p->p_md.md_regs = frame.f_regs; 10131.1Sdbj opc = frame.f_pc; 10141.1Sdbj 10151.1Sdbj nsys = p->p_emul->e_nsysent; 10161.1Sdbj callp = p->p_emul->e_sysent; 10171.1Sdbj 10181.1Sdbj#ifdef COMPAT_SUNOS 10191.1Sdbj if (p->p_emul == &emul_sunos) { 10201.1Sdbj /* 10211.1Sdbj * SunOS passes the syscall-number on the stack, whereas 10221.1Sdbj * BSD passes it in D0. So, we have to get the real "code" 10231.1Sdbj * from the stack, and clean up the stack, as SunOS glue 10241.1Sdbj * code assumes the kernel pops the syscall argument the 10251.1Sdbj * glue pushed on the stack. Sigh... 10261.1Sdbj */ 10271.1Sdbj code = fuword((caddr_t)frame.f_regs[SP]); 10281.1Sdbj 10291.1Sdbj /* 10301.1Sdbj * XXX 10311.1Sdbj * Don't do this for sunos_sigreturn, as there's no stored pc 10321.1Sdbj * on the stack to skip, the argument follows the syscall 10331.1Sdbj * number without a gap. 10341.1Sdbj */ 10351.1Sdbj if (code != SUNOS_SYS_sigreturn) { 10361.1Sdbj frame.f_regs[SP] += sizeof (int); 10371.1Sdbj /* 10381.16Sdbj * remember that we adjusted the SP, 10391.1Sdbj * might have to undo this if the system call 10401.1Sdbj * returns ERESTART. 10411.1Sdbj */ 10421.1Sdbj p->p_md.md_flags |= MDP_STACKADJ; 10431.1Sdbj } else 10441.1Sdbj p->p_md.md_flags &= ~MDP_STACKADJ; 10451.1Sdbj } 10461.1Sdbj#endif 10471.1Sdbj 10481.1Sdbj params = (caddr_t)frame.f_regs[SP] + sizeof(int); 10491.1Sdbj 10501.1Sdbj switch (code) { 10511.1Sdbj case SYS_syscall: 10521.1Sdbj /* 10531.1Sdbj * Code is first argument, followed by actual args. 10541.1Sdbj */ 10551.1Sdbj code = fuword(params); 10561.1Sdbj params += sizeof(int); 10571.1Sdbj /* 10581.1Sdbj * XXX sigreturn requires special stack manipulation 10591.1Sdbj * that is only done if entered via the sigreturn 10601.1Sdbj * trap. Cannot allow it here so make sure we fail. 10611.1Sdbj */ 10621.6Sthorpej switch (code) { 10631.6Sthorpej#ifdef COMPAT_13 10641.6Sthorpej case SYS_compat_13_sigreturn13: 10651.6Sthorpej#endif 10661.6Sthorpej case SYS___sigreturn14: 10671.1Sdbj code = nsys; 10681.6Sthorpej break; 10691.6Sthorpej } 10701.1Sdbj break; 10711.1Sdbj case SYS___syscall: 10721.1Sdbj /* 10731.1Sdbj * Like syscall, but code is a quad, so as to maintain 10741.1Sdbj * quad alignment for the rest of the arguments. 10751.1Sdbj */ 10761.1Sdbj if (callp != sysent) 10771.1Sdbj break; 10781.1Sdbj code = fuword(params + _QUAD_LOWWORD * sizeof(int)); 10791.1Sdbj params += sizeof(quad_t); 10801.1Sdbj break; 10811.1Sdbj default: 10821.1Sdbj break; 10831.1Sdbj } 10841.1Sdbj if (code < 0 || code >= nsys) 10851.1Sdbj callp += p->p_emul->e_nosys; /* illegal */ 10861.1Sdbj else 10871.1Sdbj callp += code; 10881.1Sdbj argsize = callp->sy_argsize; 10891.9Sitohy#ifdef COMPAT_LINUX 10901.9Sitohy if (0 10911.9Sitohy# ifdef EXEC_AOUT 10921.9Sitohy || p->p_emul == &emul_linux_aout 10931.9Sitohy# endif 10941.9Sitohy# ifdef EXEC_ELF32 10951.9Sitohy || p->p_emul == &emul_linux_elf32 10961.9Sitohy# endif 10971.9Sitohy ) { 10981.9Sitohy /* 10991.9Sitohy * Linux passes the args in d1-d5 11001.9Sitohy */ 11011.9Sitohy switch (argsize) { 11021.9Sitohy case 20: 11031.9Sitohy args[4] = frame.f_regs[D5]; 11041.9Sitohy case 16: 11051.9Sitohy args[3] = frame.f_regs[D4]; 11061.9Sitohy case 12: 11071.9Sitohy args[2] = frame.f_regs[D3]; 11081.9Sitohy case 8: 11091.9Sitohy args[1] = frame.f_regs[D2]; 11101.9Sitohy case 4: 11111.9Sitohy args[0] = frame.f_regs[D1]; 11121.9Sitohy case 0: 11131.9Sitohy error = 0; 11141.9Sitohy break; 11151.9Sitohy default: 11161.9Sitohy#ifdef DEBUG 11171.9Sitohy panic("linux syscall %d weird argsize %d", 11181.9Sitohy code, argsize); 11191.9Sitohy#else 11201.9Sitohy error = EINVAL; 11211.9Sitohy#endif 11221.9Sitohy break; 11231.9Sitohy } 11241.9Sitohy } else 11251.9Sitohy#endif 11261.1Sdbj if (argsize) 11271.1Sdbj error = copyin(params, (caddr_t)args, argsize); 11281.1Sdbj else 11291.1Sdbj error = 0; 11301.1Sdbj#ifdef SYSCALL_DEBUG 11311.1Sdbj scdebug_call(p, code, args); 11321.1Sdbj#endif 11331.1Sdbj#ifdef KTRACE 11341.1Sdbj if (KTRPOINT(p, KTR_SYSCALL)) 11351.1Sdbj ktrsyscall(p->p_tracep, code, argsize, args); 11361.1Sdbj#endif 11371.1Sdbj if (error) 11381.1Sdbj goto bad; 11391.1Sdbj rval[0] = 0; 11401.1Sdbj rval[1] = frame.f_regs[D1]; 11411.1Sdbj error = (*callp->sy_call)(p, args, rval); 11421.1Sdbj switch (error) { 11431.1Sdbj case 0: 11441.1Sdbj frame.f_regs[D0] = rval[0]; 11451.1Sdbj frame.f_regs[D1] = rval[1]; 11461.1Sdbj frame.f_sr &= ~PSL_C; /* carry bit */ 11471.1Sdbj break; 11481.1Sdbj case ERESTART: 11491.1Sdbj /* 11501.1Sdbj * We always enter through a `trap' instruction, which is 2 11511.1Sdbj * bytes, so adjust the pc by that amount. 11521.1Sdbj */ 11531.1Sdbj frame.f_pc = opc - 2; 11541.1Sdbj break; 11551.1Sdbj case EJUSTRETURN: 11561.1Sdbj /* nothing to do */ 11571.1Sdbj break; 11581.1Sdbj default: 11591.1Sdbj bad: 11601.1Sdbj if (p->p_emul->e_errno) 11611.1Sdbj error = p->p_emul->e_errno[error]; 11621.1Sdbj frame.f_regs[D0] = error; 11631.1Sdbj frame.f_sr |= PSL_C; /* carry bit */ 11641.1Sdbj break; 11651.1Sdbj } 11661.1Sdbj 11671.1Sdbj#ifdef SYSCALL_DEBUG 11681.1Sdbj scdebug_ret(p, code, error, rval); 11691.1Sdbj#endif 11701.1Sdbj#ifdef COMPAT_SUNOS 11711.1Sdbj /* need new p-value for this */ 11721.1Sdbj if (error == ERESTART && (p->p_md.md_flags & MDP_STACKADJ)) 11731.1Sdbj frame.f_regs[SP] -= sizeof (int); 11741.1Sdbj#endif 11751.1Sdbj userret(p, &frame, sticks, (u_int)0, 0); 11761.1Sdbj#ifdef KTRACE 11771.1Sdbj if (KTRPOINT(p, KTR_SYSRET)) 11781.1Sdbj ktrsysret(p->p_tracep, code, error, rval[0]); 11791.1Sdbj#endif 11801.1Sdbj} 11811.1Sdbj 11821.1Sdbjvoid 11831.8Sthorpejchild_return(arg) 11841.8Sthorpej void *arg; 11851.1Sdbj{ 11861.8Sthorpej struct proc *p = arg; 11871.8Sthorpej /* See cpu_fork() */ 11881.8Sthorpej struct frame *f = (struct frame *)p->p_md.md_regs; 11891.8Sthorpej 11901.8Sthorpej f->f_regs[D0] = 0; 11911.8Sthorpej f->f_sr &= ~PSL_C; 11921.8Sthorpej f->f_format = FMT0; 11931.1Sdbj 11941.16Sdbj userret(p, f, 0, (u_int)0, 0); 11951.1Sdbj#ifdef KTRACE 11961.1Sdbj if (KTRPOINT(p, KTR_SYSRET)) 11971.1Sdbj ktrsysret(p->p_tracep, SYS_fork, 0, 0); 11981.1Sdbj#endif 11991.1Sdbj} 12001.1Sdbj 12011.1Sdbj/* 12021.1Sdbj * Allocation routines for software interrupts. 12031.1Sdbj */ 12041.1Sdbju_long 12051.1Sdbjallocate_sir(proc, arg) 12061.16Sdbj void (*proc)(void *); 12071.1Sdbj void *arg; 12081.1Sdbj{ 12091.1Sdbj int bit; 12101.1Sdbj 12111.1Sdbj if( next_sir >= NSIR ) 12121.1Sdbj panic("allocate_sir: none left"); 12131.1Sdbj bit = next_sir++; 12141.1Sdbj sir_routines[bit] = proc; 12151.1Sdbj sir_args[bit] = arg; 12161.1Sdbj return (1 << bit); 12171.1Sdbj} 12181.1Sdbj 12191.1Sdbjvoid 12201.1Sdbjinit_sir() 12211.1Sdbj{ 12221.16Sdbj extern void netintr(void); 12231.1Sdbj 12241.16Sdbj sir_routines[0] = (void (*)(void *))netintr; 12251.16Sdbj sir_routines[1] = (void (*)(void *))softclock; 12261.1Sdbj next_sir = 2; 12271.1Sdbj} 1228