Home | History | Annotate | Line # | Download | only in ffs
ffs_bswap.c revision 1.34.6.1
      1  1.34.6.1   jruoho /*	$NetBSD: ffs_bswap.c,v 1.34.6.1 2011/06/06 09:10:15 jruoho Exp $	*/
      2       1.1   bouyer 
      3       1.1   bouyer /*
      4       1.1   bouyer  * Copyright (c) 1998 Manuel Bouyer.
      5       1.1   bouyer  *
      6       1.1   bouyer  * Redistribution and use in source and binary forms, with or without
      7       1.1   bouyer  * modification, are permitted provided that the following conditions
      8       1.1   bouyer  * are met:
      9       1.1   bouyer  * 1. Redistributions of source code must retain the above copyright
     10       1.1   bouyer  *    notice, this list of conditions and the following disclaimer.
     11       1.1   bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     12       1.1   bouyer  *    notice, this list of conditions and the following disclaimer in the
     13       1.1   bouyer  *    documentation and/or other materials provided with the distribution.
     14       1.1   bouyer  *
     15       1.8   bouyer  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16       1.8   bouyer  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17       1.8   bouyer  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18       1.8   bouyer  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19       1.8   bouyer  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20       1.8   bouyer  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21       1.8   bouyer  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22       1.8   bouyer  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23       1.8   bouyer  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24       1.8   bouyer  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25       1.1   bouyer  *
     26       1.1   bouyer  */
     27      1.15    lukem 
     28      1.22    lukem #if HAVE_NBTOOL_CONFIG_H
     29      1.22    lukem #include "nbtool_config.h"
     30      1.17       tv #endif
     31      1.17       tv 
     32      1.22    lukem #include <sys/cdefs.h>
     33  1.34.6.1   jruoho __KERNEL_RCSID(0, "$NetBSD: ffs_bswap.c,v 1.34.6.1 2011/06/06 09:10:15 jruoho Exp $");
     34       1.1   bouyer 
     35       1.2    ragge #include <sys/param.h>
     36      1.11    lukem #if defined(_KERNEL)
     37       1.1   bouyer #include <sys/systm.h>
     38      1.11    lukem #endif
     39       1.9    enami 
     40       1.1   bouyer #include <ufs/ufs/dinode.h>
     41  1.34.6.1   jruoho #include <ufs/ufs/quota.h>
     42       1.1   bouyer #include <ufs/ufs/ufs_bswap.h>
     43       1.1   bouyer #include <ufs/ffs/fs.h>
     44       1.1   bouyer #include <ufs/ffs/ffs_extern.h>
     45       1.6  thorpej 
     46       1.6  thorpej #if !defined(_KERNEL)
     47      1.14    lukem #include <stddef.h>
     48      1.11    lukem #include <stdio.h>
     49      1.11    lukem #include <stdlib.h>
     50       1.6  thorpej #include <string.h>
     51      1.11    lukem #define panic(x)	printf("%s\n", (x)), abort()
     52       1.6  thorpej #endif
     53       1.1   bouyer 
     54       1.1   bouyer void
     55      1.11    lukem ffs_sb_swap(struct fs *o, struct fs *n)
     56       1.1   bouyer {
     57      1.33    lukem 	size_t i;
     58       1.1   bouyer 	u_int32_t *o32, *n32;
     59      1.11    lukem 
     60       1.9    enami 	/*
     61      1.14    lukem 	 * In order to avoid a lot of lines, as the first N fields (52)
     62      1.14    lukem 	 * of the superblock up to fs_fmod are u_int32_t, we just loop
     63      1.14    lukem 	 * here to convert them.
     64       1.1   bouyer 	 */
     65       1.1   bouyer 	o32 = (u_int32_t *)o;
     66       1.1   bouyer 	n32 = (u_int32_t *)n;
     67      1.14    lukem 	for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
     68       1.1   bouyer 		n32[i] = bswap32(o32[i]);
     69       1.9    enami 
     70      1.18     fvdl 	n->fs_swuid = bswap64(o->fs_swuid);
     71      1.23      dbj 	n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */
     72      1.18     fvdl 	n->fs_old_cpc = bswap32(o->fs_old_cpc);
     73      1.25      dbj 
     74      1.25      dbj 	/* These fields overlap with a possible location for the
     75      1.25      dbj 	 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the
     76      1.25      dbj 	 * first half of the historic FS_42POSTBLFMT postbl table.
     77      1.25      dbj 	 */
     78      1.18     fvdl 	n->fs_maxbsize = bswap32(o->fs_maxbsize);
     79  1.34.6.1   jruoho 	/* XXX journal */
     80  1.34.6.1   jruoho 	n->fs_quota_magic = bswap32(o->fs_quota_magic);
     81  1.34.6.1   jruoho 	for (i = 0; i < MAXQUOTAS; i++)
     82  1.34.6.1   jruoho 		n->fs_quotafile[i] = bswap64(o->fs_quotafile[i]);
     83      1.18     fvdl 	n->fs_sblockloc = bswap64(o->fs_sblockloc);
     84      1.18     fvdl 	ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
     85      1.18     fvdl 	n->fs_time = bswap64(o->fs_time);
     86      1.18     fvdl 	n->fs_size = bswap64(o->fs_size);
     87      1.18     fvdl 	n->fs_dsize = bswap64(o->fs_dsize);
     88      1.18     fvdl 	n->fs_csaddr = bswap64(o->fs_csaddr);
     89      1.25      dbj 	n->fs_pendingblocks = bswap64(o->fs_pendingblocks);
     90      1.25      dbj 	n->fs_pendinginodes = bswap32(o->fs_pendinginodes);
     91      1.29    perry 
     92      1.25      dbj 	/* These fields overlap with the second half of the
     93      1.25      dbj 	 * historic FS_42POSTBLFMT postbl table
     94      1.25      dbj 	 */
     95      1.28  hannken 	for (i = 0; i < FSMAXSNAP; i++)
     96      1.28  hannken 		n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]);
     97      1.13    lukem 	n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
     98      1.13    lukem 	n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
     99      1.25      dbj 	/* fs_sparecon[28] - ignore for now */
    100      1.24      dbj 	n->fs_flags = bswap32(o->fs_flags);
    101       1.1   bouyer 	n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
    102       1.1   bouyer 	n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
    103      1.18     fvdl 	n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
    104       1.1   bouyer 	n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
    105       1.1   bouyer 	n->fs_qbmask = bswap64(o->fs_qbmask);
    106       1.1   bouyer 	n->fs_qfmask = bswap64(o->fs_qfmask);
    107       1.1   bouyer 	n->fs_state = bswap32(o->fs_state);
    108      1.18     fvdl 	n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
    109      1.18     fvdl 	n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
    110      1.18     fvdl 	n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
    111      1.18     fvdl 	n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
    112      1.25      dbj 
    113       1.1   bouyer 	n->fs_magic = bswap32(o->fs_magic);
    114       1.1   bouyer }
    115       1.1   bouyer 
    116       1.1   bouyer void
    117      1.18     fvdl ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
    118       1.1   bouyer {
    119       1.9    enami 
    120       1.1   bouyer 	n->di_mode = bswap16(o->di_mode);
    121       1.1   bouyer 	n->di_nlink = bswap16(o->di_nlink);
    122       1.1   bouyer 	n->di_u.oldids[0] = bswap16(o->di_u.oldids[0]);
    123       1.1   bouyer 	n->di_u.oldids[1] = bswap16(o->di_u.oldids[1]);
    124       1.1   bouyer 	n->di_size = bswap64(o->di_size);
    125       1.1   bouyer 	n->di_atime = bswap32(o->di_atime);
    126       1.1   bouyer 	n->di_atimensec = bswap32(o->di_atimensec);
    127       1.1   bouyer 	n->di_mtime = bswap32(o->di_mtime);
    128       1.1   bouyer 	n->di_mtimensec = bswap32(o->di_mtimensec);
    129       1.1   bouyer 	n->di_ctime = bswap32(o->di_ctime);
    130       1.1   bouyer 	n->di_ctimensec = bswap32(o->di_ctimensec);
    131       1.5    perry 	memcpy(n->di_db, o->di_db, (NDADDR + NIADDR) * sizeof(u_int32_t));
    132       1.1   bouyer 	n->di_flags = bswap32(o->di_flags);
    133       1.1   bouyer 	n->di_blocks = bswap32(o->di_blocks);
    134       1.1   bouyer 	n->di_gen = bswap32(o->di_gen);
    135       1.1   bouyer 	n->di_uid = bswap32(o->di_uid);
    136       1.1   bouyer 	n->di_gid = bswap32(o->di_gid);
    137       1.1   bouyer }
    138       1.1   bouyer 
    139       1.1   bouyer void
    140      1.18     fvdl ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
    141      1.18     fvdl {
    142      1.18     fvdl 	n->di_mode = bswap16(o->di_mode);
    143      1.18     fvdl 	n->di_nlink = bswap16(o->di_nlink);
    144      1.18     fvdl 	n->di_uid = bswap32(o->di_uid);
    145      1.18     fvdl 	n->di_gid = bswap32(o->di_gid);
    146      1.18     fvdl 	n->di_blksize = bswap32(o->di_blksize);
    147      1.18     fvdl 	n->di_size = bswap64(o->di_size);
    148      1.18     fvdl 	n->di_blocks = bswap64(o->di_blocks);
    149      1.18     fvdl 	n->di_atime = bswap64(o->di_atime);
    150      1.18     fvdl 	n->di_atimensec = bswap32(o->di_atimensec);
    151      1.18     fvdl 	n->di_mtime = bswap64(o->di_mtime);
    152      1.18     fvdl 	n->di_mtimensec = bswap32(o->di_mtimensec);
    153      1.18     fvdl 	n->di_ctime = bswap64(o->di_ctime);
    154      1.18     fvdl 	n->di_ctimensec = bswap32(o->di_ctimensec);
    155      1.30       is 	n->di_birthtime = bswap64(o->di_birthtime);
    156      1.30       is 	n->di_birthnsec = bswap32(o->di_birthnsec);
    157      1.18     fvdl 	n->di_gen = bswap32(o->di_gen);
    158      1.18     fvdl 	n->di_kernflags = bswap32(o->di_kernflags);
    159      1.18     fvdl 	n->di_flags = bswap32(o->di_flags);
    160      1.18     fvdl 	n->di_extsize = bswap32(o->di_extsize);
    161      1.18     fvdl 	memcpy(n->di_extb, o->di_extb, (NXADDR + NDADDR + NIADDR) * 8);
    162      1.18     fvdl }
    163      1.18     fvdl 
    164      1.18     fvdl void
    165      1.11    lukem ffs_csum_swap(struct csum *o, struct csum *n, int size)
    166       1.1   bouyer {
    167      1.33    lukem 	size_t i;
    168       1.1   bouyer 	u_int32_t *oint, *nint;
    169      1.29    perry 
    170       1.1   bouyer 	oint = (u_int32_t*)o;
    171       1.1   bouyer 	nint = (u_int32_t*)n;
    172       1.1   bouyer 
    173       1.1   bouyer 	for (i = 0; i < size / sizeof(u_int32_t); i++)
    174       1.1   bouyer 		nint[i] = bswap32(oint[i]);
    175      1.18     fvdl }
    176      1.18     fvdl 
    177      1.18     fvdl void
    178      1.18     fvdl ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n)
    179      1.18     fvdl {
    180      1.18     fvdl 	n->cs_ndir = bswap64(o->cs_ndir);
    181      1.18     fvdl 	n->cs_nbfree = bswap64(o->cs_nbfree);
    182      1.18     fvdl 	n->cs_nifree = bswap64(o->cs_nifree);
    183      1.18     fvdl 	n->cs_nffree = bswap64(o->cs_nffree);
    184      1.18     fvdl }
    185      1.18     fvdl 
    186      1.19    enami /*
    187      1.19    enami  * Note that ffs_cg_swap may be called with o == n.
    188      1.19    enami  */
    189      1.18     fvdl void
    190      1.18     fvdl ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
    191      1.18     fvdl {
    192      1.18     fvdl 	int i;
    193      1.18     fvdl 	u_int32_t *n32, *o32;
    194      1.18     fvdl 	u_int16_t *n16, *o16;
    195      1.19    enami 	int32_t btotoff, boff, clustersumoff;
    196      1.18     fvdl 
    197      1.18     fvdl 	n->cg_firstfield = bswap32(o->cg_firstfield);
    198      1.18     fvdl 	n->cg_magic = bswap32(o->cg_magic);
    199      1.18     fvdl 	n->cg_old_time = bswap32(o->cg_old_time);
    200      1.18     fvdl 	n->cg_cgx = bswap32(o->cg_cgx);
    201      1.18     fvdl 	n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
    202      1.18     fvdl 	n->cg_old_niblk = bswap16(o->cg_old_niblk);
    203      1.18     fvdl 	n->cg_ndblk = bswap32(o->cg_ndblk);
    204      1.18     fvdl 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
    205      1.18     fvdl 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
    206      1.18     fvdl 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
    207      1.18     fvdl 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
    208      1.18     fvdl 	n->cg_rotor = bswap32(o->cg_rotor);
    209      1.18     fvdl 	n->cg_frotor = bswap32(o->cg_frotor);
    210      1.18     fvdl 	n->cg_irotor = bswap32(o->cg_irotor);
    211      1.19    enami 	for (i = 0; i < MAXFRAG; i++)
    212      1.18     fvdl 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
    213      1.29    perry 
    214      1.23      dbj 	if ((fs->fs_magic != FS_UFS2_MAGIC) &&
    215      1.23      dbj 			(fs->fs_old_postblformat == FS_42POSTBLFMT)) { /* old format */
    216      1.18     fvdl 		struct ocg *on, *oo;
    217      1.18     fvdl 		int j;
    218      1.18     fvdl 		on = (struct ocg *)n;
    219      1.18     fvdl 		oo = (struct ocg *)o;
    220      1.23      dbj 
    221      1.23      dbj 		for (i = 0; i < 32; i++) {
    222      1.18     fvdl 			on->cg_btot[i] = bswap32(oo->cg_btot[i]);
    223      1.18     fvdl 			for (j = 0; j < 8; j++)
    224      1.18     fvdl 				on->cg_b[i][j] = bswap16(oo->cg_b[i][j]);
    225      1.18     fvdl 		}
    226      1.18     fvdl 		memmove(on->cg_iused, oo->cg_iused, 256);
    227      1.18     fvdl 		on->cg_magic = bswap32(oo->cg_magic);
    228      1.18     fvdl 	} else {  /* new format */
    229      1.23      dbj 
    230      1.23      dbj 		n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
    231      1.23      dbj 		n->cg_old_boff = bswap32(o->cg_old_boff);
    232      1.23      dbj 		n->cg_iusedoff = bswap32(o->cg_iusedoff);
    233      1.23      dbj 		n->cg_freeoff = bswap32(o->cg_freeoff);
    234      1.23      dbj 		n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
    235      1.23      dbj 		n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
    236      1.23      dbj 		n->cg_clusteroff = bswap32(o->cg_clusteroff);
    237      1.23      dbj 		n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
    238      1.23      dbj 		n->cg_niblk = bswap32(o->cg_niblk);
    239      1.23      dbj 		n->cg_initediblk = bswap32(o->cg_initediblk);
    240      1.23      dbj 		n->cg_time = bswap64(o->cg_time);
    241      1.23      dbj 
    242      1.18     fvdl 		if (n->cg_magic == CG_MAGIC) {
    243      1.19    enami 			btotoff = n->cg_old_btotoff;
    244      1.19    enami 			boff = n->cg_old_boff;
    245      1.19    enami 			clustersumoff = n->cg_clustersumoff;
    246      1.18     fvdl 		} else {
    247      1.19    enami 			btotoff = bswap32(n->cg_old_btotoff);
    248      1.19    enami 			boff = bswap32(n->cg_old_boff);
    249      1.19    enami 			clustersumoff = bswap32(n->cg_clustersumoff);
    250      1.18     fvdl 		}
    251      1.31      dbj 
    252      1.31      dbj 		n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
    253      1.31      dbj 		o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
    254      1.31      dbj 		for (i = 1; i < fs->fs_contigsumsize + 1; i++)
    255      1.31      dbj 			n32[i] = bswap32(o32[i]);
    256      1.31      dbj 
    257      1.31      dbj 		if (fs->fs_magic == FS_UFS2_MAGIC)
    258      1.31      dbj 			return;
    259      1.31      dbj 
    260      1.19    enami 		n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
    261      1.19    enami 		o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
    262      1.19    enami 		n16 = (u_int16_t *)((u_int8_t *)n + boff);
    263      1.19    enami 		o16 = (u_int16_t *)((u_int8_t *)o + boff);
    264      1.19    enami 
    265      1.19    enami 		for (i = 0; i < fs->fs_old_cpg; i++)
    266      1.18     fvdl 			n32[i] = bswap32(o32[i]);
    267      1.29    perry 
    268      1.19    enami 		for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
    269      1.18     fvdl 			n16[i] = bswap16(o16[i]);
    270      1.18     fvdl 	}
    271       1.1   bouyer }
    272