operator.c revision 1.1.1.2 1 1.1 cgd /*-
2 1.1.1.2 jtc * Copyright (c) 1990, 1993
3 1.1.1.2 jtc * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * This code is derived from software contributed to Berkeley by
6 1.1 cgd * Cimarron D. Taylor of the University of California, Berkeley.
7 1.1 cgd *
8 1.1 cgd * Redistribution and use in source and binary forms, with or without
9 1.1 cgd * modification, are permitted provided that the following conditions
10 1.1 cgd * are met:
11 1.1 cgd * 1. Redistributions of source code must retain the above copyright
12 1.1 cgd * notice, this list of conditions and the following disclaimer.
13 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer in the
15 1.1 cgd * documentation and/or other materials provided with the distribution.
16 1.1 cgd * 3. All advertising materials mentioning features or use of this software
17 1.1 cgd * must display the following acknowledgement:
18 1.1 cgd * This product includes software developed by the University of
19 1.1 cgd * California, Berkeley and its contributors.
20 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
21 1.1 cgd * may be used to endorse or promote products derived from this software
22 1.1 cgd * without specific prior written permission.
23 1.1 cgd *
24 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cgd * SUCH DAMAGE.
35 1.1 cgd */
36 1.1 cgd
37 1.1 cgd #ifndef lint
38 1.1.1.2 jtc static char sccsid[] = "@(#)operator.c 8.1 (Berkeley) 6/6/93";
39 1.1 cgd #endif /* not lint */
40 1.1 cgd
41 1.1 cgd #include <sys/types.h>
42 1.1.1.2 jtc
43 1.1.1.2 jtc #include <err.h>
44 1.1.1.2 jtc #include <fts.h>
45 1.1 cgd #include <stdio.h>
46 1.1.1.2 jtc
47 1.1 cgd #include "find.h"
48 1.1 cgd
49 1.1 cgd /*
50 1.1 cgd * yanknode --
51 1.1 cgd * destructively removes the top from the plan
52 1.1 cgd */
53 1.1 cgd static PLAN *
54 1.1 cgd yanknode(planp)
55 1.1 cgd PLAN **planp; /* pointer to top of plan (modified) */
56 1.1 cgd {
57 1.1 cgd PLAN *node; /* top node removed from the plan */
58 1.1 cgd
59 1.1 cgd if ((node = (*planp)) == NULL)
60 1.1.1.2 jtc return (NULL);
61 1.1 cgd (*planp) = (*planp)->next;
62 1.1 cgd node->next = NULL;
63 1.1.1.2 jtc return (node);
64 1.1 cgd }
65 1.1 cgd
66 1.1 cgd /*
67 1.1 cgd * yankexpr --
68 1.1 cgd * Removes one expression from the plan. This is used mainly by
69 1.1 cgd * paren_squish. In comments below, an expression is either a
70 1.1 cgd * simple node or a N_EXPR node containing a list of simple nodes.
71 1.1 cgd */
72 1.1 cgd static PLAN *
73 1.1 cgd yankexpr(planp)
74 1.1 cgd PLAN **planp; /* pointer to top of plan (modified) */
75 1.1 cgd {
76 1.1 cgd register PLAN *next; /* temp node holding subexpression results */
77 1.1 cgd PLAN *node; /* pointer to returned node or expression */
78 1.1 cgd PLAN *tail; /* pointer to tail of subplan */
79 1.1 cgd PLAN *subplan; /* pointer to head of ( ) expression */
80 1.1 cgd int f_expr();
81 1.1 cgd
82 1.1 cgd /* first pull the top node from the plan */
83 1.1 cgd if ((node = yanknode(planp)) == NULL)
84 1.1.1.2 jtc return (NULL);
85 1.1 cgd
86 1.1 cgd /*
87 1.1 cgd * If the node is an '(' then we recursively slurp up expressions
88 1.1 cgd * until we find its associated ')'. If it's a closing paren we
89 1.1 cgd * just return it and unwind our recursion; all other nodes are
90 1.1 cgd * complete expressions, so just return them.
91 1.1 cgd */
92 1.1 cgd if (node->type == N_OPENPAREN)
93 1.1 cgd for (tail = subplan = NULL;;) {
94 1.1 cgd if ((next = yankexpr(planp)) == NULL)
95 1.1.1.2 jtc err(1, "(: missing closing ')'");
96 1.1 cgd /*
97 1.1 cgd * If we find a closing ')' we store the collected
98 1.1 cgd * subplan in our '(' node and convert the node to
99 1.1 cgd * a N_EXPR. The ')' we found is ignored. Otherwise,
100 1.1 cgd * we just continue to add whatever we get to our
101 1.1 cgd * subplan.
102 1.1 cgd */
103 1.1 cgd if (next->type == N_CLOSEPAREN) {
104 1.1 cgd if (subplan == NULL)
105 1.1.1.2 jtc errx(1, "(): empty inner expression");
106 1.1 cgd node->p_data[0] = subplan;
107 1.1 cgd node->type = N_EXPR;
108 1.1 cgd node->eval = f_expr;
109 1.1 cgd break;
110 1.1 cgd } else {
111 1.1 cgd if (subplan == NULL)
112 1.1 cgd tail = subplan = next;
113 1.1 cgd else {
114 1.1 cgd tail->next = next;
115 1.1 cgd tail = next;
116 1.1 cgd }
117 1.1 cgd tail->next = NULL;
118 1.1 cgd }
119 1.1 cgd }
120 1.1.1.2 jtc return (node);
121 1.1 cgd }
122 1.1 cgd
123 1.1 cgd /*
124 1.1 cgd * paren_squish --
125 1.1 cgd * replaces "parentheisized" plans in our search plan with "expr" nodes.
126 1.1 cgd */
127 1.1 cgd PLAN *
128 1.1 cgd paren_squish(plan)
129 1.1 cgd PLAN *plan; /* plan with ( ) nodes */
130 1.1 cgd {
131 1.1 cgd register PLAN *expr; /* pointer to next expression */
132 1.1 cgd register PLAN *tail; /* pointer to tail of result plan */
133 1.1 cgd PLAN *result; /* pointer to head of result plan */
134 1.1 cgd
135 1.1 cgd result = tail = NULL;
136 1.1 cgd
137 1.1 cgd /*
138 1.1 cgd * the basic idea is to have yankexpr do all our work and just
139 1.1 cgd * collect it's results together.
140 1.1 cgd */
141 1.1 cgd while ((expr = yankexpr(&plan)) != NULL) {
142 1.1 cgd /*
143 1.1 cgd * if we find an unclaimed ')' it means there is a missing
144 1.1 cgd * '(' someplace.
145 1.1 cgd */
146 1.1 cgd if (expr->type == N_CLOSEPAREN)
147 1.1.1.2 jtc errx(1, "): no beginning '('");
148 1.1 cgd
149 1.1 cgd /* add the expression to our result plan */
150 1.1 cgd if (result == NULL)
151 1.1 cgd tail = result = expr;
152 1.1 cgd else {
153 1.1 cgd tail->next = expr;
154 1.1 cgd tail = expr;
155 1.1 cgd }
156 1.1 cgd tail->next = NULL;
157 1.1 cgd }
158 1.1.1.2 jtc return (result);
159 1.1 cgd }
160 1.1 cgd
161 1.1 cgd /*
162 1.1 cgd * not_squish --
163 1.1 cgd * compresses "!" expressions in our search plan.
164 1.1 cgd */
165 1.1 cgd PLAN *
166 1.1 cgd not_squish(plan)
167 1.1 cgd PLAN *plan; /* plan to process */
168 1.1 cgd {
169 1.1 cgd register PLAN *next; /* next node being processed */
170 1.1 cgd register PLAN *node; /* temporary node used in N_NOT processing */
171 1.1 cgd register PLAN *tail; /* pointer to tail of result plan */
172 1.1 cgd PLAN *result; /* pointer to head of result plan */
173 1.1 cgd
174 1.1 cgd tail = result = next = NULL;
175 1.1 cgd
176 1.1 cgd while ((next = yanknode(&plan)) != NULL) {
177 1.1 cgd /*
178 1.1 cgd * if we encounter a ( expression ) then look for nots in
179 1.1 cgd * the expr subplan.
180 1.1 cgd */
181 1.1 cgd if (next->type == N_EXPR)
182 1.1 cgd next->p_data[0] = not_squish(next->p_data[0]);
183 1.1 cgd
184 1.1 cgd /*
185 1.1 cgd * if we encounter a not, then snag the next node and place
186 1.1 cgd * it in the not's subplan. As an optimization we compress
187 1.1 cgd * several not's to zero or one not.
188 1.1 cgd */
189 1.1 cgd if (next->type == N_NOT) {
190 1.1 cgd int notlevel = 1;
191 1.1 cgd
192 1.1 cgd node = yanknode(&plan);
193 1.1 cgd while (node->type == N_NOT) {
194 1.1 cgd ++notlevel;
195 1.1 cgd node = yanknode(&plan);
196 1.1 cgd }
197 1.1 cgd if (node == NULL)
198 1.1.1.2 jtc errx(1, "!: no following expression");
199 1.1 cgd if (node->type == N_OR)
200 1.1.1.2 jtc errx(1, "!: nothing between ! and -o");
201 1.1 cgd if (notlevel % 2 != 1)
202 1.1 cgd next = node;
203 1.1 cgd else
204 1.1 cgd next->p_data[0] = node;
205 1.1 cgd }
206 1.1 cgd
207 1.1 cgd /* add the node to our result plan */
208 1.1 cgd if (result == NULL)
209 1.1 cgd tail = result = next;
210 1.1 cgd else {
211 1.1 cgd tail->next = next;
212 1.1 cgd tail = next;
213 1.1 cgd }
214 1.1 cgd tail->next = NULL;
215 1.1 cgd }
216 1.1.1.2 jtc return (result);
217 1.1 cgd }
218 1.1 cgd
219 1.1 cgd /*
220 1.1 cgd * or_squish --
221 1.1 cgd * compresses -o expressions in our search plan.
222 1.1 cgd */
223 1.1 cgd PLAN *
224 1.1 cgd or_squish(plan)
225 1.1 cgd PLAN *plan; /* plan with ors to be squished */
226 1.1 cgd {
227 1.1 cgd register PLAN *next; /* next node being processed */
228 1.1 cgd register PLAN *tail; /* pointer to tail of result plan */
229 1.1 cgd PLAN *result; /* pointer to head of result plan */
230 1.1 cgd
231 1.1 cgd tail = result = next = NULL;
232 1.1 cgd
233 1.1 cgd while ((next = yanknode(&plan)) != NULL) {
234 1.1 cgd /*
235 1.1 cgd * if we encounter a ( expression ) then look for or's in
236 1.1 cgd * the expr subplan.
237 1.1 cgd */
238 1.1 cgd if (next->type == N_EXPR)
239 1.1 cgd next->p_data[0] = or_squish(next->p_data[0]);
240 1.1 cgd
241 1.1 cgd /* if we encounter a not then look for not's in the subplan */
242 1.1 cgd if (next->type == N_NOT)
243 1.1 cgd next->p_data[0] = or_squish(next->p_data[0]);
244 1.1 cgd
245 1.1 cgd /*
246 1.1 cgd * if we encounter an or, then place our collected plan in the
247 1.1 cgd * or's first subplan and then recursively collect the
248 1.1 cgd * remaining stuff into the second subplan and return the or.
249 1.1 cgd */
250 1.1 cgd if (next->type == N_OR) {
251 1.1 cgd if (result == NULL)
252 1.1.1.2 jtc errx(1, "-o: no expression before -o");
253 1.1 cgd next->p_data[0] = result;
254 1.1 cgd next->p_data[1] = or_squish(plan);
255 1.1 cgd if (next->p_data[1] == NULL)
256 1.1.1.2 jtc errx(1, "-o: no expression after -o");
257 1.1.1.2 jtc return (next);
258 1.1 cgd }
259 1.1 cgd
260 1.1 cgd /* add the node to our result plan */
261 1.1 cgd if (result == NULL)
262 1.1 cgd tail = result = next;
263 1.1 cgd else {
264 1.1 cgd tail->next = next;
265 1.1 cgd tail = next;
266 1.1 cgd }
267 1.1 cgd tail->next = NULL;
268 1.1 cgd }
269 1.1.1.2 jtc return (result);
270 1.1 cgd }
271