Home | History | Annotate | Line # | Download | only in find
operator.c revision 1.1.1.2
      1      1.1  cgd /*-
      2  1.1.1.2  jtc  * Copyright (c) 1990, 1993
      3  1.1.1.2  jtc  *	The Regents of the University of California.  All rights reserved.
      4      1.1  cgd  *
      5      1.1  cgd  * This code is derived from software contributed to Berkeley by
      6      1.1  cgd  * Cimarron D. Taylor of the University of California, Berkeley.
      7      1.1  cgd  *
      8      1.1  cgd  * Redistribution and use in source and binary forms, with or without
      9      1.1  cgd  * modification, are permitted provided that the following conditions
     10      1.1  cgd  * are met:
     11      1.1  cgd  * 1. Redistributions of source code must retain the above copyright
     12      1.1  cgd  *    notice, this list of conditions and the following disclaimer.
     13      1.1  cgd  * 2. Redistributions in binary form must reproduce the above copyright
     14      1.1  cgd  *    notice, this list of conditions and the following disclaimer in the
     15      1.1  cgd  *    documentation and/or other materials provided with the distribution.
     16      1.1  cgd  * 3. All advertising materials mentioning features or use of this software
     17      1.1  cgd  *    must display the following acknowledgement:
     18      1.1  cgd  *	This product includes software developed by the University of
     19      1.1  cgd  *	California, Berkeley and its contributors.
     20      1.1  cgd  * 4. Neither the name of the University nor the names of its contributors
     21      1.1  cgd  *    may be used to endorse or promote products derived from this software
     22      1.1  cgd  *    without specific prior written permission.
     23      1.1  cgd  *
     24      1.1  cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25      1.1  cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26      1.1  cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27      1.1  cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28      1.1  cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29      1.1  cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30      1.1  cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31      1.1  cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32      1.1  cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33      1.1  cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34      1.1  cgd  * SUCH DAMAGE.
     35      1.1  cgd  */
     36      1.1  cgd 
     37      1.1  cgd #ifndef lint
     38  1.1.1.2  jtc static char sccsid[] = "@(#)operator.c	8.1 (Berkeley) 6/6/93";
     39      1.1  cgd #endif /* not lint */
     40      1.1  cgd 
     41      1.1  cgd #include <sys/types.h>
     42  1.1.1.2  jtc 
     43  1.1.1.2  jtc #include <err.h>
     44  1.1.1.2  jtc #include <fts.h>
     45      1.1  cgd #include <stdio.h>
     46  1.1.1.2  jtc 
     47      1.1  cgd #include "find.h"
     48      1.1  cgd 
     49      1.1  cgd /*
     50      1.1  cgd  * yanknode --
     51      1.1  cgd  *	destructively removes the top from the plan
     52      1.1  cgd  */
     53      1.1  cgd static PLAN *
     54      1.1  cgd yanknode(planp)
     55      1.1  cgd 	PLAN **planp;		/* pointer to top of plan (modified) */
     56      1.1  cgd {
     57      1.1  cgd 	PLAN *node;		/* top node removed from the plan */
     58      1.1  cgd 
     59      1.1  cgd 	if ((node = (*planp)) == NULL)
     60  1.1.1.2  jtc 		return (NULL);
     61      1.1  cgd 	(*planp) = (*planp)->next;
     62      1.1  cgd 	node->next = NULL;
     63  1.1.1.2  jtc 	return (node);
     64      1.1  cgd }
     65      1.1  cgd 
     66      1.1  cgd /*
     67      1.1  cgd  * yankexpr --
     68      1.1  cgd  *	Removes one expression from the plan.  This is used mainly by
     69      1.1  cgd  *	paren_squish.  In comments below, an expression is either a
     70      1.1  cgd  *	simple node or a N_EXPR node containing a list of simple nodes.
     71      1.1  cgd  */
     72      1.1  cgd static PLAN *
     73      1.1  cgd yankexpr(planp)
     74      1.1  cgd 	PLAN **planp;		/* pointer to top of plan (modified) */
     75      1.1  cgd {
     76      1.1  cgd 	register PLAN *next;	/* temp node holding subexpression results */
     77      1.1  cgd 	PLAN *node;		/* pointer to returned node or expression */
     78      1.1  cgd 	PLAN *tail;		/* pointer to tail of subplan */
     79      1.1  cgd 	PLAN *subplan;		/* pointer to head of ( ) expression */
     80      1.1  cgd 	int f_expr();
     81      1.1  cgd 
     82      1.1  cgd 	/* first pull the top node from the plan */
     83      1.1  cgd 	if ((node = yanknode(planp)) == NULL)
     84  1.1.1.2  jtc 		return (NULL);
     85      1.1  cgd 
     86      1.1  cgd 	/*
     87      1.1  cgd 	 * If the node is an '(' then we recursively slurp up expressions
     88      1.1  cgd 	 * until we find its associated ')'.  If it's a closing paren we
     89      1.1  cgd 	 * just return it and unwind our recursion; all other nodes are
     90      1.1  cgd 	 * complete expressions, so just return them.
     91      1.1  cgd 	 */
     92      1.1  cgd 	if (node->type == N_OPENPAREN)
     93      1.1  cgd 		for (tail = subplan = NULL;;) {
     94      1.1  cgd 			if ((next = yankexpr(planp)) == NULL)
     95  1.1.1.2  jtc 				err(1, "(: missing closing ')'");
     96      1.1  cgd 			/*
     97      1.1  cgd 			 * If we find a closing ')' we store the collected
     98      1.1  cgd 			 * subplan in our '(' node and convert the node to
     99      1.1  cgd 			 * a N_EXPR.  The ')' we found is ignored.  Otherwise,
    100      1.1  cgd 			 * we just continue to add whatever we get to our
    101      1.1  cgd 			 * subplan.
    102      1.1  cgd 			 */
    103      1.1  cgd 			if (next->type == N_CLOSEPAREN) {
    104      1.1  cgd 				if (subplan == NULL)
    105  1.1.1.2  jtc 					errx(1, "(): empty inner expression");
    106      1.1  cgd 				node->p_data[0] = subplan;
    107      1.1  cgd 				node->type = N_EXPR;
    108      1.1  cgd 				node->eval = f_expr;
    109      1.1  cgd 				break;
    110      1.1  cgd 			} else {
    111      1.1  cgd 				if (subplan == NULL)
    112      1.1  cgd 					tail = subplan = next;
    113      1.1  cgd 				else {
    114      1.1  cgd 					tail->next = next;
    115      1.1  cgd 					tail = next;
    116      1.1  cgd 				}
    117      1.1  cgd 				tail->next = NULL;
    118      1.1  cgd 			}
    119      1.1  cgd 		}
    120  1.1.1.2  jtc 	return (node);
    121      1.1  cgd }
    122      1.1  cgd 
    123      1.1  cgd /*
    124      1.1  cgd  * paren_squish --
    125      1.1  cgd  *	replaces "parentheisized" plans in our search plan with "expr" nodes.
    126      1.1  cgd  */
    127      1.1  cgd PLAN *
    128      1.1  cgd paren_squish(plan)
    129      1.1  cgd 	PLAN *plan;		/* plan with ( ) nodes */
    130      1.1  cgd {
    131      1.1  cgd 	register PLAN *expr;	/* pointer to next expression */
    132      1.1  cgd 	register PLAN *tail;	/* pointer to tail of result plan */
    133      1.1  cgd 	PLAN *result;		/* pointer to head of result plan */
    134      1.1  cgd 
    135      1.1  cgd 	result = tail = NULL;
    136      1.1  cgd 
    137      1.1  cgd 	/*
    138      1.1  cgd 	 * the basic idea is to have yankexpr do all our work and just
    139      1.1  cgd 	 * collect it's results together.
    140      1.1  cgd 	 */
    141      1.1  cgd 	while ((expr = yankexpr(&plan)) != NULL) {
    142      1.1  cgd 		/*
    143      1.1  cgd 		 * if we find an unclaimed ')' it means there is a missing
    144      1.1  cgd 		 * '(' someplace.
    145      1.1  cgd 		 */
    146      1.1  cgd 		if (expr->type == N_CLOSEPAREN)
    147  1.1.1.2  jtc 			errx(1, "): no beginning '('");
    148      1.1  cgd 
    149      1.1  cgd 		/* add the expression to our result plan */
    150      1.1  cgd 		if (result == NULL)
    151      1.1  cgd 			tail = result = expr;
    152      1.1  cgd 		else {
    153      1.1  cgd 			tail->next = expr;
    154      1.1  cgd 			tail = expr;
    155      1.1  cgd 		}
    156      1.1  cgd 		tail->next = NULL;
    157      1.1  cgd 	}
    158  1.1.1.2  jtc 	return (result);
    159      1.1  cgd }
    160      1.1  cgd 
    161      1.1  cgd /*
    162      1.1  cgd  * not_squish --
    163      1.1  cgd  *	compresses "!" expressions in our search plan.
    164      1.1  cgd  */
    165      1.1  cgd PLAN *
    166      1.1  cgd not_squish(plan)
    167      1.1  cgd 	PLAN *plan;		/* plan to process */
    168      1.1  cgd {
    169      1.1  cgd 	register PLAN *next;	/* next node being processed */
    170      1.1  cgd 	register PLAN *node;	/* temporary node used in N_NOT processing */
    171      1.1  cgd 	register PLAN *tail;	/* pointer to tail of result plan */
    172      1.1  cgd 	PLAN *result;		/* pointer to head of result plan */
    173      1.1  cgd 
    174      1.1  cgd 	tail = result = next = NULL;
    175      1.1  cgd 
    176      1.1  cgd 	while ((next = yanknode(&plan)) != NULL) {
    177      1.1  cgd 		/*
    178      1.1  cgd 		 * if we encounter a ( expression ) then look for nots in
    179      1.1  cgd 		 * the expr subplan.
    180      1.1  cgd 		 */
    181      1.1  cgd 		if (next->type == N_EXPR)
    182      1.1  cgd 			next->p_data[0] = not_squish(next->p_data[0]);
    183      1.1  cgd 
    184      1.1  cgd 		/*
    185      1.1  cgd 		 * if we encounter a not, then snag the next node and place
    186      1.1  cgd 		 * it in the not's subplan.  As an optimization we compress
    187      1.1  cgd 		 * several not's to zero or one not.
    188      1.1  cgd 		 */
    189      1.1  cgd 		if (next->type == N_NOT) {
    190      1.1  cgd 			int notlevel = 1;
    191      1.1  cgd 
    192      1.1  cgd 			node = yanknode(&plan);
    193      1.1  cgd 			while (node->type == N_NOT) {
    194      1.1  cgd 				++notlevel;
    195      1.1  cgd 				node = yanknode(&plan);
    196      1.1  cgd 			}
    197      1.1  cgd 			if (node == NULL)
    198  1.1.1.2  jtc 				errx(1, "!: no following expression");
    199      1.1  cgd 			if (node->type == N_OR)
    200  1.1.1.2  jtc 				errx(1, "!: nothing between ! and -o");
    201      1.1  cgd 			if (notlevel % 2 != 1)
    202      1.1  cgd 				next = node;
    203      1.1  cgd 			else
    204      1.1  cgd 				next->p_data[0] = node;
    205      1.1  cgd 		}
    206      1.1  cgd 
    207      1.1  cgd 		/* add the node to our result plan */
    208      1.1  cgd 		if (result == NULL)
    209      1.1  cgd 			tail = result = next;
    210      1.1  cgd 		else {
    211      1.1  cgd 			tail->next = next;
    212      1.1  cgd 			tail = next;
    213      1.1  cgd 		}
    214      1.1  cgd 		tail->next = NULL;
    215      1.1  cgd 	}
    216  1.1.1.2  jtc 	return (result);
    217      1.1  cgd }
    218      1.1  cgd 
    219      1.1  cgd /*
    220      1.1  cgd  * or_squish --
    221      1.1  cgd  *	compresses -o expressions in our search plan.
    222      1.1  cgd  */
    223      1.1  cgd PLAN *
    224      1.1  cgd or_squish(plan)
    225      1.1  cgd 	PLAN *plan;		/* plan with ors to be squished */
    226      1.1  cgd {
    227      1.1  cgd 	register PLAN *next;	/* next node being processed */
    228      1.1  cgd 	register PLAN *tail;	/* pointer to tail of result plan */
    229      1.1  cgd 	PLAN *result;		/* pointer to head of result plan */
    230      1.1  cgd 
    231      1.1  cgd 	tail = result = next = NULL;
    232      1.1  cgd 
    233      1.1  cgd 	while ((next = yanknode(&plan)) != NULL) {
    234      1.1  cgd 		/*
    235      1.1  cgd 		 * if we encounter a ( expression ) then look for or's in
    236      1.1  cgd 		 * the expr subplan.
    237      1.1  cgd 		 */
    238      1.1  cgd 		if (next->type == N_EXPR)
    239      1.1  cgd 			next->p_data[0] = or_squish(next->p_data[0]);
    240      1.1  cgd 
    241      1.1  cgd 		/* if we encounter a not then look for not's in the subplan */
    242      1.1  cgd 		if (next->type == N_NOT)
    243      1.1  cgd 			next->p_data[0] = or_squish(next->p_data[0]);
    244      1.1  cgd 
    245      1.1  cgd 		/*
    246      1.1  cgd 		 * if we encounter an or, then place our collected plan in the
    247      1.1  cgd 		 * or's first subplan and then recursively collect the
    248      1.1  cgd 		 * remaining stuff into the second subplan and return the or.
    249      1.1  cgd 		 */
    250      1.1  cgd 		if (next->type == N_OR) {
    251      1.1  cgd 			if (result == NULL)
    252  1.1.1.2  jtc 				errx(1, "-o: no expression before -o");
    253      1.1  cgd 			next->p_data[0] = result;
    254      1.1  cgd 			next->p_data[1] = or_squish(plan);
    255      1.1  cgd 			if (next->p_data[1] == NULL)
    256  1.1.1.2  jtc 				errx(1, "-o: no expression after -o");
    257  1.1.1.2  jtc 			return (next);
    258      1.1  cgd 		}
    259      1.1  cgd 
    260      1.1  cgd 		/* add the node to our result plan */
    261      1.1  cgd 		if (result == NULL)
    262      1.1  cgd 			tail = result = next;
    263      1.1  cgd 		else {
    264      1.1  cgd 			tail->next = next;
    265      1.1  cgd 			tail = next;
    266      1.1  cgd 		}
    267      1.1  cgd 		tail->next = NULL;
    268      1.1  cgd 	}
    269  1.1.1.2  jtc 	return (result);
    270      1.1  cgd }
    271