1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program.  This includes:
30 *
31 *    * Symbol table management
32 *    * Type checking
33 *    * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly.  However, this results in frequent changes
37 * to the parser code.  Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system.  In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52#include "glsl_symbol_table.h"
53#include "glsl_parser_extras.h"
54#include "ast.h"
55#include "compiler/glsl_types.h"
56#include "util/hash_table.h"
57#include "main/mtypes.h"
58#include "main/macros.h"
59#include "main/shaderobj.h"
60#include "ir.h"
61#include "ir_builder.h"
62#include "builtin_functions.h"
63
64using namespace ir_builder;
65
66static void
67detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68                               exec_list *instructions);
69static void
70verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71
72static void
73remove_per_vertex_blocks(exec_list *instructions,
74                         _mesa_glsl_parse_state *state, ir_variable_mode mode);
75
76/**
77 * Visitor class that finds the first instance of any write-only variable that
78 * is ever read, if any
79 */
80class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81{
82public:
83   read_from_write_only_variable_visitor() : found(NULL)
84   {
85   }
86
87   virtual ir_visitor_status visit(ir_dereference_variable *ir)
88   {
89      if (this->in_assignee)
90         return visit_continue;
91
92      ir_variable *var = ir->variable_referenced();
93      /* We can have memory_write_only set on both images and buffer variables,
94       * but in the former there is a distinction between reads from
95       * the variable itself (write_only) and from the memory they point to
96       * (memory_write_only), while in the case of buffer variables there is
97       * no such distinction, that is why this check here is limited to
98       * buffer variables alone.
99       */
100      if (!var || var->data.mode != ir_var_shader_storage)
101         return visit_continue;
102
103      if (var->data.memory_write_only) {
104         found = var;
105         return visit_stop;
106      }
107
108      return visit_continue;
109   }
110
111   ir_variable *get_variable() {
112      return found;
113   }
114
115   virtual ir_visitor_status visit_enter(ir_expression *ir)
116   {
117      /* .length() doesn't actually read anything */
118      if (ir->operation == ir_unop_ssbo_unsized_array_length)
119         return visit_continue_with_parent;
120
121      return visit_continue;
122   }
123
124private:
125   ir_variable *found;
126};
127
128void
129_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130{
131   _mesa_glsl_initialize_variables(instructions, state);
132
133   state->symbols->separate_function_namespace = state->language_version == 110;
134
135   state->current_function = NULL;
136
137   state->toplevel_ir = instructions;
138
139   state->gs_input_prim_type_specified = false;
140   state->tcs_output_vertices_specified = false;
141   state->cs_input_local_size_specified = false;
142
143   /* Section 4.2 of the GLSL 1.20 specification states:
144    * "The built-in functions are scoped in a scope outside the global scope
145    *  users declare global variables in.  That is, a shader's global scope,
146    *  available for user-defined functions and global variables, is nested
147    *  inside the scope containing the built-in functions."
148    *
149    * Since built-in functions like ftransform() access built-in variables,
150    * it follows that those must be in the outer scope as well.
151    *
152    * We push scope here to create this nesting effect...but don't pop.
153    * This way, a shader's globals are still in the symbol table for use
154    * by the linker.
155    */
156   state->symbols->push_scope();
157
158   foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159      ast->hir(instructions, state);
160
161   verify_subroutine_associated_funcs(state);
162   detect_recursion_unlinked(state, instructions);
163   detect_conflicting_assignments(state, instructions);
164
165   state->toplevel_ir = NULL;
166
167   /* Move all of the variable declarations to the front of the IR list, and
168    * reverse the order.  This has the (intended!) side effect that vertex
169    * shader inputs and fragment shader outputs will appear in the IR in the
170    * same order that they appeared in the shader code.  This results in the
171    * locations being assigned in the declared order.  Many (arguably buggy)
172    * applications depend on this behavior, and it matches what nearly all
173    * other drivers do.
174    */
175   foreach_in_list_safe(ir_instruction, node, instructions) {
176      ir_variable *const var = node->as_variable();
177
178      if (var == NULL)
179         continue;
180
181      var->remove();
182      instructions->push_head(var);
183   }
184
185   /* Figure out if gl_FragCoord is actually used in fragment shader */
186   ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187   if (var != NULL)
188      state->fs_uses_gl_fragcoord = var->data.used;
189
190   /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191    *
192    *     If multiple shaders using members of a built-in block belonging to
193    *     the same interface are linked together in the same program, they
194    *     must all redeclare the built-in block in the same way, as described
195    *     in section 4.3.7 "Interface Blocks" for interface block matching, or
196    *     a link error will result.
197    *
198    * The phrase "using members of a built-in block" implies that if two
199    * shaders are linked together and one of them *does not use* any members
200    * of the built-in block, then that shader does not need to have a matching
201    * redeclaration of the built-in block.
202    *
203    * This appears to be a clarification to the behaviour established for
204    * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205    * version.
206    *
207    * The definition of "interface" in section 4.3.7 that applies here is as
208    * follows:
209    *
210    *     The boundary between adjacent programmable pipeline stages: This
211    *     spans all the outputs in all compilation units of the first stage
212    *     and all the inputs in all compilation units of the second stage.
213    *
214    * Therefore this rule applies to both inter- and intra-stage linking.
215    *
216    * The easiest way to implement this is to check whether the shader uses
217    * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218    * remove all the relevant variable declaration from the IR, so that the
219    * linker won't see them and complain about mismatches.
220    */
221   remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222   remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223
224   /* Check that we don't have reads from write-only variables */
225   read_from_write_only_variable_visitor v;
226   v.run(instructions);
227   ir_variable *error_var = v.get_variable();
228   if (error_var) {
229      /* It would be nice to have proper location information, but for that
230       * we would need to check this as we process each kind of AST node
231       */
232      YYLTYPE loc;
233      memset(&loc, 0, sizeof(loc));
234      _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235                       error_var->name);
236   }
237}
238
239
240static ir_expression_operation
241get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242                                  struct _mesa_glsl_parse_state *state)
243{
244   switch (to->base_type) {
245   case GLSL_TYPE_FLOAT:
246      switch (from->base_type) {
247      case GLSL_TYPE_INT: return ir_unop_i2f;
248      case GLSL_TYPE_UINT: return ir_unop_u2f;
249      default: return (ir_expression_operation)0;
250      }
251
252   case GLSL_TYPE_UINT:
253      if (!state->has_implicit_uint_to_int_conversion())
254         return (ir_expression_operation)0;
255      switch (from->base_type) {
256         case GLSL_TYPE_INT: return ir_unop_i2u;
257         default: return (ir_expression_operation)0;
258      }
259
260   case GLSL_TYPE_DOUBLE:
261      if (!state->has_double())
262         return (ir_expression_operation)0;
263      switch (from->base_type) {
264      case GLSL_TYPE_INT: return ir_unop_i2d;
265      case GLSL_TYPE_UINT: return ir_unop_u2d;
266      case GLSL_TYPE_FLOAT: return ir_unop_f2d;
267      case GLSL_TYPE_INT64: return ir_unop_i642d;
268      case GLSL_TYPE_UINT64: return ir_unop_u642d;
269      default: return (ir_expression_operation)0;
270      }
271
272   case GLSL_TYPE_UINT64:
273      if (!state->has_int64())
274         return (ir_expression_operation)0;
275      switch (from->base_type) {
276      case GLSL_TYPE_INT: return ir_unop_i2u64;
277      case GLSL_TYPE_UINT: return ir_unop_u2u64;
278      case GLSL_TYPE_INT64: return ir_unop_i642u64;
279      default: return (ir_expression_operation)0;
280      }
281
282   case GLSL_TYPE_INT64:
283      if (!state->has_int64())
284         return (ir_expression_operation)0;
285      switch (from->base_type) {
286      case GLSL_TYPE_INT: return ir_unop_i2i64;
287      default: return (ir_expression_operation)0;
288      }
289
290   default: return (ir_expression_operation)0;
291   }
292}
293
294
295/**
296 * If a conversion is available, convert one operand to a different type
297 *
298 * The \c from \c ir_rvalue is converted "in place".
299 *
300 * \param to     Type that the operand it to be converted to
301 * \param from   Operand that is being converted
302 * \param state  GLSL compiler state
303 *
304 * \return
305 * If a conversion is possible (or unnecessary), \c true is returned.
306 * Otherwise \c false is returned.
307 */
308static bool
309apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
310                          struct _mesa_glsl_parse_state *state)
311{
312   void *ctx = state;
313   if (to->base_type == from->type->base_type)
314      return true;
315
316   /* Prior to GLSL 1.20, there are no implicit conversions */
317   if (!state->has_implicit_conversions())
318      return false;
319
320   /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321    *
322    *    "There are no implicit array or structure conversions. For
323    *    example, an array of int cannot be implicitly converted to an
324    *    array of float.
325    */
326   if (!to->is_numeric() || !from->type->is_numeric())
327      return false;
328
329   /* We don't actually want the specific type `to`, we want a type
330    * with the same base type as `to`, but the same vector width as
331    * `from`.
332    */
333   to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334                                from->type->matrix_columns);
335
336   ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337   if (op) {
338      from = new(ctx) ir_expression(op, to, from, NULL);
339      return true;
340   } else {
341      return false;
342   }
343}
344
345
346static const struct glsl_type *
347arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348                       bool multiply,
349                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350{
351   const glsl_type *type_a = value_a->type;
352   const glsl_type *type_b = value_b->type;
353
354   /* From GLSL 1.50 spec, page 56:
355    *
356    *    "The arithmetic binary operators add (+), subtract (-),
357    *    multiply (*), and divide (/) operate on integer and
358    *    floating-point scalars, vectors, and matrices."
359    */
360   if (!type_a->is_numeric() || !type_b->is_numeric()) {
361      _mesa_glsl_error(loc, state,
362                       "operands to arithmetic operators must be numeric");
363      return glsl_type::error_type;
364   }
365
366
367   /*    "If one operand is floating-point based and the other is
368    *    not, then the conversions from Section 4.1.10 "Implicit
369    *    Conversions" are applied to the non-floating-point-based operand."
370    */
371   if (!apply_implicit_conversion(type_a, value_b, state)
372       && !apply_implicit_conversion(type_b, value_a, state)) {
373      _mesa_glsl_error(loc, state,
374                       "could not implicitly convert operands to "
375                       "arithmetic operator");
376      return glsl_type::error_type;
377   }
378   type_a = value_a->type;
379   type_b = value_b->type;
380
381   /*    "If the operands are integer types, they must both be signed or
382    *    both be unsigned."
383    *
384    * From this rule and the preceeding conversion it can be inferred that
385    * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386    * The is_numeric check above already filtered out the case where either
387    * type is not one of these, so now the base types need only be tested for
388    * equality.
389    */
390   if (type_a->base_type != type_b->base_type) {
391      _mesa_glsl_error(loc, state,
392                       "base type mismatch for arithmetic operator");
393      return glsl_type::error_type;
394   }
395
396   /*    "All arithmetic binary operators result in the same fundamental type
397    *    (signed integer, unsigned integer, or floating-point) as the
398    *    operands they operate on, after operand type conversion. After
399    *    conversion, the following cases are valid
400    *
401    *    * The two operands are scalars. In this case the operation is
402    *      applied, resulting in a scalar."
403    */
404   if (type_a->is_scalar() && type_b->is_scalar())
405      return type_a;
406
407   /*   "* One operand is a scalar, and the other is a vector or matrix.
408    *      In this case, the scalar operation is applied independently to each
409    *      component of the vector or matrix, resulting in the same size
410    *      vector or matrix."
411    */
412   if (type_a->is_scalar()) {
413      if (!type_b->is_scalar())
414         return type_b;
415   } else if (type_b->is_scalar()) {
416      return type_a;
417   }
418
419   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420    * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421    * handled.
422    */
423   assert(!type_a->is_scalar());
424   assert(!type_b->is_scalar());
425
426   /*   "* The two operands are vectors of the same size. In this case, the
427    *      operation is done component-wise resulting in the same size
428    *      vector."
429    */
430   if (type_a->is_vector() && type_b->is_vector()) {
431      if (type_a == type_b) {
432         return type_a;
433      } else {
434         _mesa_glsl_error(loc, state,
435                          "vector size mismatch for arithmetic operator");
436         return glsl_type::error_type;
437      }
438   }
439
440   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441    * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442    * <vector, vector> have been handled.  At least one of the operands must
443    * be matrix.  Further, since there are no integer matrix types, the base
444    * type of both operands must be float.
445    */
446   assert(type_a->is_matrix() || type_b->is_matrix());
447   assert(type_a->is_float() || type_a->is_double());
448   assert(type_b->is_float() || type_b->is_double());
449
450   /*   "* The operator is add (+), subtract (-), or divide (/), and the
451    *      operands are matrices with the same number of rows and the same
452    *      number of columns. In this case, the operation is done component-
453    *      wise resulting in the same size matrix."
454    *    * The operator is multiply (*), where both operands are matrices or
455    *      one operand is a vector and the other a matrix. A right vector
456    *      operand is treated as a column vector and a left vector operand as a
457    *      row vector. In all these cases, it is required that the number of
458    *      columns of the left operand is equal to the number of rows of the
459    *      right operand. Then, the multiply (*) operation does a linear
460    *      algebraic multiply, yielding an object that has the same number of
461    *      rows as the left operand and the same number of columns as the right
462    *      operand. Section 5.10 "Vector and Matrix Operations" explains in
463    *      more detail how vectors and matrices are operated on."
464    */
465   if (! multiply) {
466      if (type_a == type_b)
467         return type_a;
468   } else {
469      const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471      if (type == glsl_type::error_type) {
472         _mesa_glsl_error(loc, state,
473                          "size mismatch for matrix multiplication");
474      }
475
476      return type;
477   }
478
479
480   /*    "All other cases are illegal."
481    */
482   _mesa_glsl_error(loc, state, "type mismatch");
483   return glsl_type::error_type;
484}
485
486
487static const struct glsl_type *
488unary_arithmetic_result_type(const struct glsl_type *type,
489                             struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490{
491   /* From GLSL 1.50 spec, page 57:
492    *
493    *    "The arithmetic unary operators negate (-), post- and pre-increment
494    *     and decrement (-- and ++) operate on integer or floating-point
495    *     values (including vectors and matrices). All unary operators work
496    *     component-wise on their operands. These result with the same type
497    *     they operated on."
498    */
499   if (!type->is_numeric()) {
500      _mesa_glsl_error(loc, state,
501                       "operands to arithmetic operators must be numeric");
502      return glsl_type::error_type;
503   }
504
505   return type;
506}
507
508/**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517static const struct glsl_type *
518bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519                      ast_operators op,
520                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521{
522   const glsl_type *type_a = value_a->type;
523   const glsl_type *type_b = value_b->type;
524
525   if (!state->check_bitwise_operations_allowed(loc)) {
526      return glsl_type::error_type;
527   }
528
529   /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530    *
531    *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532    *     (|). The operands must be of type signed or unsigned integers or
533    *     integer vectors."
534    */
535   if (!type_a->is_integer_32_64()) {
536      _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537                        ast_expression::operator_string(op));
538      return glsl_type::error_type;
539   }
540   if (!type_b->is_integer_32_64()) {
541      _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542                       ast_expression::operator_string(op));
543      return glsl_type::error_type;
544   }
545
546   /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547    * make sense for bitwise operations, as they don't operate on floats.
548    *
549    * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550    * here.  It wasn't clear whether or not we should apply them to bitwise
551    * operations.  However, Khronos has decided that they should in future
552    * language revisions.  Applications also rely on this behavior.  We opt
553    * to apply them in general, but issue a portability warning.
554    *
555    * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556    */
557   if (type_a->base_type != type_b->base_type) {
558      if (!apply_implicit_conversion(type_a, value_b, state)
559          && !apply_implicit_conversion(type_b, value_a, state)) {
560         _mesa_glsl_error(loc, state,
561                          "could not implicitly convert operands to "
562                          "`%s` operator",
563                          ast_expression::operator_string(op));
564         return glsl_type::error_type;
565      } else {
566         _mesa_glsl_warning(loc, state,
567                            "some implementations may not support implicit "
568                            "int -> uint conversions for `%s' operators; "
569                            "consider casting explicitly for portability",
570                            ast_expression::operator_string(op));
571      }
572      type_a = value_a->type;
573      type_b = value_b->type;
574   }
575
576   /*     "The fundamental types of the operands (signed or unsigned) must
577    *     match,"
578    */
579   if (type_a->base_type != type_b->base_type) {
580      _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581                       "base type", ast_expression::operator_string(op));
582      return glsl_type::error_type;
583   }
584
585   /*     "The operands cannot be vectors of differing size." */
586   if (type_a->is_vector() &&
587       type_b->is_vector() &&
588       type_a->vector_elements != type_b->vector_elements) {
589      _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590                       "different sizes", ast_expression::operator_string(op));
591      return glsl_type::error_type;
592   }
593
594   /*     "If one operand is a scalar and the other a vector, the scalar is
595    *     applied component-wise to the vector, resulting in the same type as
596    *     the vector. The fundamental types of the operands [...] will be the
597    *     resulting fundamental type."
598    */
599   if (type_a->is_scalar())
600       return type_b;
601   else
602       return type_a;
603}
604
605static const struct glsl_type *
606modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607                    struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608{
609   const glsl_type *type_a = value_a->type;
610   const glsl_type *type_b = value_b->type;
611
612   if (!state->EXT_gpu_shader4_enable &&
613       !state->check_version(130, 300, loc, "operator '%%' is reserved")) {
614      return glsl_type::error_type;
615   }
616
617   /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
618    *
619    *    "The operator modulus (%) operates on signed or unsigned integers or
620    *    integer vectors."
621    */
622   if (!type_a->is_integer_32_64()) {
623      _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
624      return glsl_type::error_type;
625   }
626   if (!type_b->is_integer_32_64()) {
627      _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
628      return glsl_type::error_type;
629   }
630
631   /*    "If the fundamental types in the operands do not match, then the
632    *    conversions from section 4.1.10 "Implicit Conversions" are applied
633    *    to create matching types."
634    *
635    * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
636    * int -> uint conversion rules.  Prior to that, there were no implicit
637    * conversions.  So it's harmless to apply them universally - no implicit
638    * conversions will exist.  If the types don't match, we'll receive false,
639    * and raise an error, satisfying the GLSL 1.50 spec, page 56:
640    *
641    *    "The operand types must both be signed or unsigned."
642    */
643   if (!apply_implicit_conversion(type_a, value_b, state) &&
644       !apply_implicit_conversion(type_b, value_a, state)) {
645      _mesa_glsl_error(loc, state,
646                       "could not implicitly convert operands to "
647                       "modulus (%%) operator");
648      return glsl_type::error_type;
649   }
650   type_a = value_a->type;
651   type_b = value_b->type;
652
653   /*    "The operands cannot be vectors of differing size. If one operand is
654    *    a scalar and the other vector, then the scalar is applied component-
655    *    wise to the vector, resulting in the same type as the vector. If both
656    *    are vectors of the same size, the result is computed component-wise."
657    */
658   if (type_a->is_vector()) {
659      if (!type_b->is_vector()
660          || (type_a->vector_elements == type_b->vector_elements))
661      return type_a;
662   } else
663      return type_b;
664
665   /*    "The operator modulus (%) is not defined for any other data types
666    *    (non-integer types)."
667    */
668   _mesa_glsl_error(loc, state, "type mismatch");
669   return glsl_type::error_type;
670}
671
672
673static const struct glsl_type *
674relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
675                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
676{
677   const glsl_type *type_a = value_a->type;
678   const glsl_type *type_b = value_b->type;
679
680   /* From GLSL 1.50 spec, page 56:
681    *    "The relational operators greater than (>), less than (<), greater
682    *    than or equal (>=), and less than or equal (<=) operate only on
683    *    scalar integer and scalar floating-point expressions."
684    */
685   if (!type_a->is_numeric()
686       || !type_b->is_numeric()
687       || !type_a->is_scalar()
688       || !type_b->is_scalar()) {
689      _mesa_glsl_error(loc, state,
690                       "operands to relational operators must be scalar and "
691                       "numeric");
692      return glsl_type::error_type;
693   }
694
695   /*    "Either the operands' types must match, or the conversions from
696    *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
697    *    operand, after which the types must match."
698    */
699   if (!apply_implicit_conversion(type_a, value_b, state)
700       && !apply_implicit_conversion(type_b, value_a, state)) {
701      _mesa_glsl_error(loc, state,
702                       "could not implicitly convert operands to "
703                       "relational operator");
704      return glsl_type::error_type;
705   }
706   type_a = value_a->type;
707   type_b = value_b->type;
708
709   if (type_a->base_type != type_b->base_type) {
710      _mesa_glsl_error(loc, state, "base type mismatch");
711      return glsl_type::error_type;
712   }
713
714   /*    "The result is scalar Boolean."
715    */
716   return glsl_type::bool_type;
717}
718
719/**
720 * \brief Return the result type of a bit-shift operation.
721 *
722 * If the given types to the bit-shift operator are invalid, return
723 * glsl_type::error_type.
724 *
725 * \param type_a Type of LHS of bit-shift op
726 * \param type_b Type of RHS of bit-shift op
727 */
728static const struct glsl_type *
729shift_result_type(const struct glsl_type *type_a,
730                  const struct glsl_type *type_b,
731                  ast_operators op,
732                  struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
733{
734   if (!state->check_bitwise_operations_allowed(loc)) {
735      return glsl_type::error_type;
736   }
737
738   /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
739    *
740    *     "The shift operators (<<) and (>>). For both operators, the operands
741    *     must be signed or unsigned integers or integer vectors. One operand
742    *     can be signed while the other is unsigned."
743    */
744   if (!type_a->is_integer_32_64()) {
745      _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
746                       "integer vector", ast_expression::operator_string(op));
747     return glsl_type::error_type;
748
749   }
750   if (!type_b->is_integer()) {
751      _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
752                       "integer vector", ast_expression::operator_string(op));
753     return glsl_type::error_type;
754   }
755
756   /*     "If the first operand is a scalar, the second operand has to be
757    *     a scalar as well."
758    */
759   if (type_a->is_scalar() && !type_b->is_scalar()) {
760      _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
761                       "second must be scalar as well",
762                       ast_expression::operator_string(op));
763     return glsl_type::error_type;
764   }
765
766   /* If both operands are vectors, check that they have same number of
767    * elements.
768    */
769   if (type_a->is_vector() &&
770      type_b->is_vector() &&
771      type_a->vector_elements != type_b->vector_elements) {
772      _mesa_glsl_error(loc, state, "vector operands to operator %s must "
773                       "have same number of elements",
774                       ast_expression::operator_string(op));
775     return glsl_type::error_type;
776   }
777
778   /*     "In all cases, the resulting type will be the same type as the left
779    *     operand."
780    */
781   return type_a;
782}
783
784/**
785 * Returns the innermost array index expression in an rvalue tree.
786 * This is the largest indexing level -- if an array of blocks, then
787 * it is the block index rather than an indexing expression for an
788 * array-typed member of an array of blocks.
789 */
790static ir_rvalue *
791find_innermost_array_index(ir_rvalue *rv)
792{
793   ir_dereference_array *last = NULL;
794   while (rv) {
795      if (rv->as_dereference_array()) {
796         last = rv->as_dereference_array();
797         rv = last->array;
798      } else if (rv->as_dereference_record())
799         rv = rv->as_dereference_record()->record;
800      else if (rv->as_swizzle())
801         rv = rv->as_swizzle()->val;
802      else
803         rv = NULL;
804   }
805
806   if (last)
807      return last->array_index;
808
809   return NULL;
810}
811
812/**
813 * Validates that a value can be assigned to a location with a specified type
814 *
815 * Validates that \c rhs can be assigned to some location.  If the types are
816 * not an exact match but an automatic conversion is possible, \c rhs will be
817 * converted.
818 *
819 * \return
820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
821 * Otherwise the actual RHS to be assigned will be returned.  This may be
822 * \c rhs, or it may be \c rhs after some type conversion.
823 *
824 * \note
825 * In addition to being used for assignments, this function is used to
826 * type-check return values.
827 */
828static ir_rvalue *
829validate_assignment(struct _mesa_glsl_parse_state *state,
830                    YYLTYPE loc, ir_rvalue *lhs,
831                    ir_rvalue *rhs, bool is_initializer)
832{
833   /* If there is already some error in the RHS, just return it.  Anything
834    * else will lead to an avalanche of error message back to the user.
835    */
836   if (rhs->type->is_error())
837      return rhs;
838
839   /* In the Tessellation Control Shader:
840    * If a per-vertex output variable is used as an l-value, it is an error
841    * if the expression indicating the vertex number is not the identifier
842    * `gl_InvocationID`.
843    */
844   if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
845      ir_variable *var = lhs->variable_referenced();
846      if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
847         ir_rvalue *index = find_innermost_array_index(lhs);
848         ir_variable *index_var = index ? index->variable_referenced() : NULL;
849         if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
850            _mesa_glsl_error(&loc, state,
851                             "Tessellation control shader outputs can only "
852                             "be indexed by gl_InvocationID");
853            return NULL;
854         }
855      }
856   }
857
858   /* If the types are identical, the assignment can trivially proceed.
859    */
860   if (rhs->type == lhs->type)
861      return rhs;
862
863   /* If the array element types are the same and the LHS is unsized,
864    * the assignment is okay for initializers embedded in variable
865    * declarations.
866    *
867    * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
868    * is handled by ir_dereference::is_lvalue.
869    */
870   const glsl_type *lhs_t = lhs->type;
871   const glsl_type *rhs_t = rhs->type;
872   bool unsized_array = false;
873   while(lhs_t->is_array()) {
874      if (rhs_t == lhs_t)
875         break; /* the rest of the inner arrays match so break out early */
876      if (!rhs_t->is_array()) {
877         unsized_array = false;
878         break; /* number of dimensions mismatch */
879      }
880      if (lhs_t->length == rhs_t->length) {
881         lhs_t = lhs_t->fields.array;
882         rhs_t = rhs_t->fields.array;
883         continue;
884      } else if (lhs_t->is_unsized_array()) {
885         unsized_array = true;
886      } else {
887         unsized_array = false;
888         break; /* sized array mismatch */
889      }
890      lhs_t = lhs_t->fields.array;
891      rhs_t = rhs_t->fields.array;
892   }
893   if (unsized_array) {
894      if (is_initializer) {
895         if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
896            return rhs;
897      } else {
898         _mesa_glsl_error(&loc, state,
899                          "implicitly sized arrays cannot be assigned");
900         return NULL;
901      }
902   }
903
904   /* Check for implicit conversion in GLSL 1.20 */
905   if (apply_implicit_conversion(lhs->type, rhs, state)) {
906      if (rhs->type == lhs->type)
907         return rhs;
908   }
909
910   _mesa_glsl_error(&loc, state,
911                    "%s of type %s cannot be assigned to "
912                    "variable of type %s",
913                    is_initializer ? "initializer" : "value",
914                    rhs->type->name, lhs->type->name);
915
916   return NULL;
917}
918
919static void
920mark_whole_array_access(ir_rvalue *access)
921{
922   ir_dereference_variable *deref = access->as_dereference_variable();
923
924   if (deref && deref->var) {
925      deref->var->data.max_array_access = deref->type->length - 1;
926   }
927}
928
929static bool
930do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
931              const char *non_lvalue_description,
932              ir_rvalue *lhs, ir_rvalue *rhs,
933              ir_rvalue **out_rvalue, bool needs_rvalue,
934              bool is_initializer,
935              YYLTYPE lhs_loc)
936{
937   void *ctx = state;
938   bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
939
940   ir_variable *lhs_var = lhs->variable_referenced();
941   if (lhs_var)
942      lhs_var->data.assigned = true;
943
944   if (!error_emitted) {
945      if (non_lvalue_description != NULL) {
946         _mesa_glsl_error(&lhs_loc, state,
947                          "assignment to %s",
948                          non_lvalue_description);
949         error_emitted = true;
950      } else if (lhs_var != NULL && (lhs_var->data.read_only ||
951                 (lhs_var->data.mode == ir_var_shader_storage &&
952                  lhs_var->data.memory_read_only))) {
953         /* We can have memory_read_only set on both images and buffer variables,
954          * but in the former there is a distinction between assignments to
955          * the variable itself (read_only) and to the memory they point to
956          * (memory_read_only), while in the case of buffer variables there is
957          * no such distinction, that is why this check here is limited to
958          * buffer variables alone.
959          */
960         _mesa_glsl_error(&lhs_loc, state,
961                          "assignment to read-only variable '%s'",
962                          lhs_var->name);
963         error_emitted = true;
964      } else if (lhs->type->is_array() &&
965                 !state->check_version(120, 300, &lhs_loc,
966                                       "whole array assignment forbidden")) {
967         /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
968          *
969          *    "Other binary or unary expressions, non-dereferenced
970          *     arrays, function names, swizzles with repeated fields,
971          *     and constants cannot be l-values."
972          *
973          * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
974          */
975         error_emitted = true;
976      } else if (!lhs->is_lvalue(state)) {
977         _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
978         error_emitted = true;
979      }
980   }
981
982   ir_rvalue *new_rhs =
983      validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
984   if (new_rhs != NULL) {
985      rhs = new_rhs;
986
987      /* If the LHS array was not declared with a size, it takes it size from
988       * the RHS.  If the LHS is an l-value and a whole array, it must be a
989       * dereference of a variable.  Any other case would require that the LHS
990       * is either not an l-value or not a whole array.
991       */
992      if (lhs->type->is_unsized_array()) {
993         ir_dereference *const d = lhs->as_dereference();
994
995         assert(d != NULL);
996
997         ir_variable *const var = d->variable_referenced();
998
999         assert(var != NULL);
1000
1001         if (var->data.max_array_access >= rhs->type->array_size()) {
1002            /* FINISHME: This should actually log the location of the RHS. */
1003            _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1004                             "previous access",
1005                             var->data.max_array_access);
1006         }
1007
1008         var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1009                                                   rhs->type->array_size());
1010         d->type = var->type;
1011      }
1012      if (lhs->type->is_array()) {
1013         mark_whole_array_access(rhs);
1014         mark_whole_array_access(lhs);
1015      }
1016   } else {
1017     error_emitted = true;
1018   }
1019
1020   /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1021    * but not post_inc) need the converted assigned value as an rvalue
1022    * to handle things like:
1023    *
1024    * i = j += 1;
1025    */
1026   if (needs_rvalue) {
1027      ir_rvalue *rvalue;
1028      if (!error_emitted) {
1029         ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1030                                                 ir_var_temporary);
1031         instructions->push_tail(var);
1032         instructions->push_tail(assign(var, rhs));
1033
1034         ir_dereference_variable *deref_var =
1035            new(ctx) ir_dereference_variable(var);
1036         instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1037         rvalue = new(ctx) ir_dereference_variable(var);
1038      } else {
1039         rvalue = ir_rvalue::error_value(ctx);
1040      }
1041      *out_rvalue = rvalue;
1042   } else {
1043      if (!error_emitted)
1044         instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1045      *out_rvalue = NULL;
1046   }
1047
1048   return error_emitted;
1049}
1050
1051static ir_rvalue *
1052get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1053{
1054   void *ctx = ralloc_parent(lvalue);
1055   ir_variable *var;
1056
1057   var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1058                              ir_var_temporary);
1059   instructions->push_tail(var);
1060
1061   instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1062                                                  lvalue));
1063
1064   return new(ctx) ir_dereference_variable(var);
1065}
1066
1067
1068ir_rvalue *
1069ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1070{
1071   (void) instructions;
1072   (void) state;
1073
1074   return NULL;
1075}
1076
1077bool
1078ast_node::has_sequence_subexpression() const
1079{
1080   return false;
1081}
1082
1083void
1084ast_node::set_is_lhs(bool /* new_value */)
1085{
1086}
1087
1088void
1089ast_function_expression::hir_no_rvalue(exec_list *instructions,
1090                                       struct _mesa_glsl_parse_state *state)
1091{
1092   (void)hir(instructions, state);
1093}
1094
1095void
1096ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1097                                         struct _mesa_glsl_parse_state *state)
1098{
1099   (void)hir(instructions, state);
1100}
1101
1102static ir_rvalue *
1103do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1104{
1105   int join_op;
1106   ir_rvalue *cmp = NULL;
1107
1108   if (operation == ir_binop_all_equal)
1109      join_op = ir_binop_logic_and;
1110   else
1111      join_op = ir_binop_logic_or;
1112
1113   switch (op0->type->base_type) {
1114   case GLSL_TYPE_FLOAT:
1115   case GLSL_TYPE_FLOAT16:
1116   case GLSL_TYPE_UINT:
1117   case GLSL_TYPE_INT:
1118   case GLSL_TYPE_BOOL:
1119   case GLSL_TYPE_DOUBLE:
1120   case GLSL_TYPE_UINT64:
1121   case GLSL_TYPE_INT64:
1122   case GLSL_TYPE_UINT16:
1123   case GLSL_TYPE_INT16:
1124   case GLSL_TYPE_UINT8:
1125   case GLSL_TYPE_INT8:
1126      return new(mem_ctx) ir_expression(operation, op0, op1);
1127
1128   case GLSL_TYPE_ARRAY: {
1129      for (unsigned int i = 0; i < op0->type->length; i++) {
1130         ir_rvalue *e0, *e1, *result;
1131
1132         e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1133                                                new(mem_ctx) ir_constant(i));
1134         e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1135                                                new(mem_ctx) ir_constant(i));
1136         result = do_comparison(mem_ctx, operation, e0, e1);
1137
1138         if (cmp) {
1139            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1140         } else {
1141            cmp = result;
1142         }
1143      }
1144
1145      mark_whole_array_access(op0);
1146      mark_whole_array_access(op1);
1147      break;
1148   }
1149
1150   case GLSL_TYPE_STRUCT: {
1151      for (unsigned int i = 0; i < op0->type->length; i++) {
1152         ir_rvalue *e0, *e1, *result;
1153         const char *field_name = op0->type->fields.structure[i].name;
1154
1155         e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1156                                                 field_name);
1157         e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1158                                                 field_name);
1159         result = do_comparison(mem_ctx, operation, e0, e1);
1160
1161         if (cmp) {
1162            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1163         } else {
1164            cmp = result;
1165         }
1166      }
1167      break;
1168   }
1169
1170   case GLSL_TYPE_ERROR:
1171   case GLSL_TYPE_VOID:
1172   case GLSL_TYPE_SAMPLER:
1173   case GLSL_TYPE_IMAGE:
1174   case GLSL_TYPE_INTERFACE:
1175   case GLSL_TYPE_ATOMIC_UINT:
1176   case GLSL_TYPE_SUBROUTINE:
1177   case GLSL_TYPE_FUNCTION:
1178      /* I assume a comparison of a struct containing a sampler just
1179       * ignores the sampler present in the type.
1180       */
1181      break;
1182   }
1183
1184   if (cmp == NULL)
1185      cmp = new(mem_ctx) ir_constant(true);
1186
1187   return cmp;
1188}
1189
1190/* For logical operations, we want to ensure that the operands are
1191 * scalar booleans.  If it isn't, emit an error and return a constant
1192 * boolean to avoid triggering cascading error messages.
1193 */
1194static ir_rvalue *
1195get_scalar_boolean_operand(exec_list *instructions,
1196                           struct _mesa_glsl_parse_state *state,
1197                           ast_expression *parent_expr,
1198                           int operand,
1199                           const char *operand_name,
1200                           bool *error_emitted)
1201{
1202   ast_expression *expr = parent_expr->subexpressions[operand];
1203   void *ctx = state;
1204   ir_rvalue *val = expr->hir(instructions, state);
1205
1206   if (val->type->is_boolean() && val->type->is_scalar())
1207      return val;
1208
1209   if (!*error_emitted) {
1210      YYLTYPE loc = expr->get_location();
1211      _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1212                       operand_name,
1213                       parent_expr->operator_string(parent_expr->oper));
1214      *error_emitted = true;
1215   }
1216
1217   return new(ctx) ir_constant(true);
1218}
1219
1220/**
1221 * If name refers to a builtin array whose maximum allowed size is less than
1222 * size, report an error and return true.  Otherwise return false.
1223 */
1224void
1225check_builtin_array_max_size(const char *name, unsigned size,
1226                             YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1227{
1228   if ((strcmp("gl_TexCoord", name) == 0)
1229       && (size > state->Const.MaxTextureCoords)) {
1230      /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1231       *
1232       *     "The size [of gl_TexCoord] can be at most
1233       *     gl_MaxTextureCoords."
1234       */
1235      _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1236                       "be larger than gl_MaxTextureCoords (%u)",
1237                       state->Const.MaxTextureCoords);
1238   } else if (strcmp("gl_ClipDistance", name) == 0) {
1239      state->clip_dist_size = size;
1240      if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1241         /* From section 7.1 (Vertex Shader Special Variables) of the
1242          * GLSL 1.30 spec:
1243          *
1244          *   "The gl_ClipDistance array is predeclared as unsized and
1245          *   must be sized by the shader either redeclaring it with a
1246          *   size or indexing it only with integral constant
1247          *   expressions. ... The size can be at most
1248          *   gl_MaxClipDistances."
1249          */
1250         _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1251                          "be larger than gl_MaxClipDistances (%u)",
1252                          state->Const.MaxClipPlanes);
1253      }
1254   } else if (strcmp("gl_CullDistance", name) == 0) {
1255      state->cull_dist_size = size;
1256      if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1257         /* From the ARB_cull_distance spec:
1258          *
1259          *   "The gl_CullDistance array is predeclared as unsized and
1260          *    must be sized by the shader either redeclaring it with
1261          *    a size or indexing it only with integral constant
1262          *    expressions. The size determines the number and set of
1263          *    enabled cull distances and can be at most
1264          *    gl_MaxCullDistances."
1265          */
1266         _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1267                          "be larger than gl_MaxCullDistances (%u)",
1268                          state->Const.MaxClipPlanes);
1269      }
1270   }
1271}
1272
1273/**
1274 * Create the constant 1, of a which is appropriate for incrementing and
1275 * decrementing values of the given GLSL type.  For example, if type is vec4,
1276 * this creates a constant value of 1.0 having type float.
1277 *
1278 * If the given type is invalid for increment and decrement operators, return
1279 * a floating point 1--the error will be detected later.
1280 */
1281static ir_rvalue *
1282constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1283{
1284   switch (type->base_type) {
1285   case GLSL_TYPE_UINT:
1286      return new(ctx) ir_constant((unsigned) 1);
1287   case GLSL_TYPE_INT:
1288      return new(ctx) ir_constant(1);
1289   case GLSL_TYPE_UINT64:
1290      return new(ctx) ir_constant((uint64_t) 1);
1291   case GLSL_TYPE_INT64:
1292      return new(ctx) ir_constant((int64_t) 1);
1293   default:
1294   case GLSL_TYPE_FLOAT:
1295      return new(ctx) ir_constant(1.0f);
1296   }
1297}
1298
1299ir_rvalue *
1300ast_expression::hir(exec_list *instructions,
1301                    struct _mesa_glsl_parse_state *state)
1302{
1303   return do_hir(instructions, state, true);
1304}
1305
1306void
1307ast_expression::hir_no_rvalue(exec_list *instructions,
1308                              struct _mesa_glsl_parse_state *state)
1309{
1310   do_hir(instructions, state, false);
1311}
1312
1313void
1314ast_expression::set_is_lhs(bool new_value)
1315{
1316   /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1317    * if we lack an identifier we can just skip it.
1318    */
1319   if (this->primary_expression.identifier == NULL)
1320      return;
1321
1322   this->is_lhs = new_value;
1323
1324   /* We need to go through the subexpressions tree to cover cases like
1325    * ast_field_selection
1326    */
1327   if (this->subexpressions[0] != NULL)
1328      this->subexpressions[0]->set_is_lhs(new_value);
1329}
1330
1331ir_rvalue *
1332ast_expression::do_hir(exec_list *instructions,
1333                       struct _mesa_glsl_parse_state *state,
1334                       bool needs_rvalue)
1335{
1336   void *ctx = state;
1337   static const int operations[AST_NUM_OPERATORS] = {
1338      -1,               /* ast_assign doesn't convert to ir_expression. */
1339      -1,               /* ast_plus doesn't convert to ir_expression. */
1340      ir_unop_neg,
1341      ir_binop_add,
1342      ir_binop_sub,
1343      ir_binop_mul,
1344      ir_binop_div,
1345      ir_binop_mod,
1346      ir_binop_lshift,
1347      ir_binop_rshift,
1348      ir_binop_less,
1349      ir_binop_less,    /* This is correct.  See the ast_greater case below. */
1350      ir_binop_gequal,  /* This is correct.  See the ast_lequal case below. */
1351      ir_binop_gequal,
1352      ir_binop_all_equal,
1353      ir_binop_any_nequal,
1354      ir_binop_bit_and,
1355      ir_binop_bit_xor,
1356      ir_binop_bit_or,
1357      ir_unop_bit_not,
1358      ir_binop_logic_and,
1359      ir_binop_logic_xor,
1360      ir_binop_logic_or,
1361      ir_unop_logic_not,
1362
1363      /* Note: The following block of expression types actually convert
1364       * to multiple IR instructions.
1365       */
1366      ir_binop_mul,     /* ast_mul_assign */
1367      ir_binop_div,     /* ast_div_assign */
1368      ir_binop_mod,     /* ast_mod_assign */
1369      ir_binop_add,     /* ast_add_assign */
1370      ir_binop_sub,     /* ast_sub_assign */
1371      ir_binop_lshift,  /* ast_ls_assign */
1372      ir_binop_rshift,  /* ast_rs_assign */
1373      ir_binop_bit_and, /* ast_and_assign */
1374      ir_binop_bit_xor, /* ast_xor_assign */
1375      ir_binop_bit_or,  /* ast_or_assign */
1376
1377      -1,               /* ast_conditional doesn't convert to ir_expression. */
1378      ir_binop_add,     /* ast_pre_inc. */
1379      ir_binop_sub,     /* ast_pre_dec. */
1380      ir_binop_add,     /* ast_post_inc. */
1381      ir_binop_sub,     /* ast_post_dec. */
1382      -1,               /* ast_field_selection doesn't conv to ir_expression. */
1383      -1,               /* ast_array_index doesn't convert to ir_expression. */
1384      -1,               /* ast_function_call doesn't conv to ir_expression. */
1385      -1,               /* ast_identifier doesn't convert to ir_expression. */
1386      -1,               /* ast_int_constant doesn't convert to ir_expression. */
1387      -1,               /* ast_uint_constant doesn't conv to ir_expression. */
1388      -1,               /* ast_float_constant doesn't conv to ir_expression. */
1389      -1,               /* ast_bool_constant doesn't conv to ir_expression. */
1390      -1,               /* ast_sequence doesn't convert to ir_expression. */
1391      -1,               /* ast_aggregate shouldn't ever even get here. */
1392   };
1393   ir_rvalue *result = NULL;
1394   ir_rvalue *op[3];
1395   const struct glsl_type *type, *orig_type;
1396   bool error_emitted = false;
1397   YYLTYPE loc;
1398
1399   loc = this->get_location();
1400
1401   switch (this->oper) {
1402   case ast_aggregate:
1403      unreachable("ast_aggregate: Should never get here.");
1404
1405   case ast_assign: {
1406      this->subexpressions[0]->set_is_lhs(true);
1407      op[0] = this->subexpressions[0]->hir(instructions, state);
1408      op[1] = this->subexpressions[1]->hir(instructions, state);
1409
1410      error_emitted =
1411         do_assignment(instructions, state,
1412                       this->subexpressions[0]->non_lvalue_description,
1413                       op[0], op[1], &result, needs_rvalue, false,
1414                       this->subexpressions[0]->get_location());
1415      break;
1416   }
1417
1418   case ast_plus:
1419      op[0] = this->subexpressions[0]->hir(instructions, state);
1420
1421      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1422
1423      error_emitted = type->is_error();
1424
1425      result = op[0];
1426      break;
1427
1428   case ast_neg:
1429      op[0] = this->subexpressions[0]->hir(instructions, state);
1430
1431      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1432
1433      error_emitted = type->is_error();
1434
1435      result = new(ctx) ir_expression(operations[this->oper], type,
1436                                      op[0], NULL);
1437      break;
1438
1439   case ast_add:
1440   case ast_sub:
1441   case ast_mul:
1442   case ast_div:
1443      op[0] = this->subexpressions[0]->hir(instructions, state);
1444      op[1] = this->subexpressions[1]->hir(instructions, state);
1445
1446      type = arithmetic_result_type(op[0], op[1],
1447                                    (this->oper == ast_mul),
1448                                    state, & loc);
1449      error_emitted = type->is_error();
1450
1451      result = new(ctx) ir_expression(operations[this->oper], type,
1452                                      op[0], op[1]);
1453      break;
1454
1455   case ast_mod:
1456      op[0] = this->subexpressions[0]->hir(instructions, state);
1457      op[1] = this->subexpressions[1]->hir(instructions, state);
1458
1459      type = modulus_result_type(op[0], op[1], state, &loc);
1460
1461      assert(operations[this->oper] == ir_binop_mod);
1462
1463      result = new(ctx) ir_expression(operations[this->oper], type,
1464                                      op[0], op[1]);
1465      error_emitted = type->is_error();
1466      break;
1467
1468   case ast_lshift:
1469   case ast_rshift:
1470       if (!state->check_bitwise_operations_allowed(&loc)) {
1471          error_emitted = true;
1472       }
1473
1474       op[0] = this->subexpressions[0]->hir(instructions, state);
1475       op[1] = this->subexpressions[1]->hir(instructions, state);
1476       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1477                                &loc);
1478       result = new(ctx) ir_expression(operations[this->oper], type,
1479                                       op[0], op[1]);
1480       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1481       break;
1482
1483   case ast_less:
1484   case ast_greater:
1485   case ast_lequal:
1486   case ast_gequal:
1487      op[0] = this->subexpressions[0]->hir(instructions, state);
1488      op[1] = this->subexpressions[1]->hir(instructions, state);
1489
1490      type = relational_result_type(op[0], op[1], state, & loc);
1491
1492      /* The relational operators must either generate an error or result
1493       * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1494       */
1495      assert(type->is_error()
1496             || (type->is_boolean() && type->is_scalar()));
1497
1498      /* Like NIR, GLSL IR does not have opcodes for > or <=.  Instead, swap
1499       * the arguments and use < or >=.
1500       */
1501      if (this->oper == ast_greater || this->oper == ast_lequal) {
1502         ir_rvalue *const tmp = op[0];
1503         op[0] = op[1];
1504         op[1] = tmp;
1505      }
1506
1507      result = new(ctx) ir_expression(operations[this->oper], type,
1508                                      op[0], op[1]);
1509      error_emitted = type->is_error();
1510      break;
1511
1512   case ast_nequal:
1513   case ast_equal:
1514      op[0] = this->subexpressions[0]->hir(instructions, state);
1515      op[1] = this->subexpressions[1]->hir(instructions, state);
1516
1517      /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1518       *
1519       *    "The equality operators equal (==), and not equal (!=)
1520       *    operate on all types. They result in a scalar Boolean. If
1521       *    the operand types do not match, then there must be a
1522       *    conversion from Section 4.1.10 "Implicit Conversions"
1523       *    applied to one operand that can make them match, in which
1524       *    case this conversion is done."
1525       */
1526
1527      if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1528         _mesa_glsl_error(& loc, state, "`%s':  wrong operand types: "
1529                         "no operation `%1$s' exists that takes a left-hand "
1530                         "operand of type 'void' or a right operand of type "
1531                         "'void'", (this->oper == ast_equal) ? "==" : "!=");
1532         error_emitted = true;
1533      } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1534           && !apply_implicit_conversion(op[1]->type, op[0], state))
1535          || (op[0]->type != op[1]->type)) {
1536         _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1537                          "type", (this->oper == ast_equal) ? "==" : "!=");
1538         error_emitted = true;
1539      } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1540                 !state->check_version(120, 300, &loc,
1541                                       "array comparisons forbidden")) {
1542         error_emitted = true;
1543      } else if ((op[0]->type->contains_subroutine() ||
1544                  op[1]->type->contains_subroutine())) {
1545         _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1546         error_emitted = true;
1547      } else if ((op[0]->type->contains_opaque() ||
1548                  op[1]->type->contains_opaque())) {
1549         _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1550         error_emitted = true;
1551      }
1552
1553      if (error_emitted) {
1554         result = new(ctx) ir_constant(false);
1555      } else {
1556         result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1557         assert(result->type == glsl_type::bool_type);
1558      }
1559      break;
1560
1561   case ast_bit_and:
1562   case ast_bit_xor:
1563   case ast_bit_or:
1564      op[0] = this->subexpressions[0]->hir(instructions, state);
1565      op[1] = this->subexpressions[1]->hir(instructions, state);
1566      type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1567      result = new(ctx) ir_expression(operations[this->oper], type,
1568                                      op[0], op[1]);
1569      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1570      break;
1571
1572   case ast_bit_not:
1573      op[0] = this->subexpressions[0]->hir(instructions, state);
1574
1575      if (!state->check_bitwise_operations_allowed(&loc)) {
1576         error_emitted = true;
1577      }
1578
1579      if (!op[0]->type->is_integer_32_64()) {
1580         _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1581         error_emitted = true;
1582      }
1583
1584      type = error_emitted ? glsl_type::error_type : op[0]->type;
1585      result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1586      break;
1587
1588   case ast_logic_and: {
1589      exec_list rhs_instructions;
1590      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1591                                         "LHS", &error_emitted);
1592      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1593                                         "RHS", &error_emitted);
1594
1595      if (rhs_instructions.is_empty()) {
1596         result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1597      } else {
1598         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1599                                                       "and_tmp",
1600                                                       ir_var_temporary);
1601         instructions->push_tail(tmp);
1602
1603         ir_if *const stmt = new(ctx) ir_if(op[0]);
1604         instructions->push_tail(stmt);
1605
1606         stmt->then_instructions.append_list(&rhs_instructions);
1607         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1608         ir_assignment *const then_assign =
1609            new(ctx) ir_assignment(then_deref, op[1]);
1610         stmt->then_instructions.push_tail(then_assign);
1611
1612         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1613         ir_assignment *const else_assign =
1614            new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1615         stmt->else_instructions.push_tail(else_assign);
1616
1617         result = new(ctx) ir_dereference_variable(tmp);
1618      }
1619      break;
1620   }
1621
1622   case ast_logic_or: {
1623      exec_list rhs_instructions;
1624      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1625                                         "LHS", &error_emitted);
1626      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1627                                         "RHS", &error_emitted);
1628
1629      if (rhs_instructions.is_empty()) {
1630         result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1631      } else {
1632         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1633                                                       "or_tmp",
1634                                                       ir_var_temporary);
1635         instructions->push_tail(tmp);
1636
1637         ir_if *const stmt = new(ctx) ir_if(op[0]);
1638         instructions->push_tail(stmt);
1639
1640         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1641         ir_assignment *const then_assign =
1642            new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1643         stmt->then_instructions.push_tail(then_assign);
1644
1645         stmt->else_instructions.append_list(&rhs_instructions);
1646         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1647         ir_assignment *const else_assign =
1648            new(ctx) ir_assignment(else_deref, op[1]);
1649         stmt->else_instructions.push_tail(else_assign);
1650
1651         result = new(ctx) ir_dereference_variable(tmp);
1652      }
1653      break;
1654   }
1655
1656   case ast_logic_xor:
1657      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1658       *
1659       *    "The logical binary operators and (&&), or ( | | ), and
1660       *     exclusive or (^^). They operate only on two Boolean
1661       *     expressions and result in a Boolean expression."
1662       */
1663      op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1664                                         &error_emitted);
1665      op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1666                                         &error_emitted);
1667
1668      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1669                                      op[0], op[1]);
1670      break;
1671
1672   case ast_logic_not:
1673      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1674                                         "operand", &error_emitted);
1675
1676      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1677                                      op[0], NULL);
1678      break;
1679
1680   case ast_mul_assign:
1681   case ast_div_assign:
1682   case ast_add_assign:
1683   case ast_sub_assign: {
1684      this->subexpressions[0]->set_is_lhs(true);
1685      op[0] = this->subexpressions[0]->hir(instructions, state);
1686      op[1] = this->subexpressions[1]->hir(instructions, state);
1687
1688      orig_type = op[0]->type;
1689
1690      /* Break out if operand types were not parsed successfully. */
1691      if ((op[0]->type == glsl_type::error_type ||
1692           op[1]->type == glsl_type::error_type))
1693         break;
1694
1695      type = arithmetic_result_type(op[0], op[1],
1696                                    (this->oper == ast_mul_assign),
1697                                    state, & loc);
1698
1699      if (type != orig_type) {
1700         _mesa_glsl_error(& loc, state,
1701                          "could not implicitly convert "
1702                          "%s to %s", type->name, orig_type->name);
1703         type = glsl_type::error_type;
1704      }
1705
1706      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1707                                                   op[0], op[1]);
1708
1709      error_emitted =
1710         do_assignment(instructions, state,
1711                       this->subexpressions[0]->non_lvalue_description,
1712                       op[0]->clone(ctx, NULL), temp_rhs,
1713                       &result, needs_rvalue, false,
1714                       this->subexpressions[0]->get_location());
1715
1716      /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1717       * explicitly test for this because none of the binary expression
1718       * operators allow array operands either.
1719       */
1720
1721      break;
1722   }
1723
1724   case ast_mod_assign: {
1725      this->subexpressions[0]->set_is_lhs(true);
1726      op[0] = this->subexpressions[0]->hir(instructions, state);
1727      op[1] = this->subexpressions[1]->hir(instructions, state);
1728
1729      orig_type = op[0]->type;
1730      type = modulus_result_type(op[0], op[1], state, &loc);
1731
1732      if (type != orig_type) {
1733         _mesa_glsl_error(& loc, state,
1734                          "could not implicitly convert "
1735                          "%s to %s", type->name, orig_type->name);
1736         type = glsl_type::error_type;
1737      }
1738
1739      assert(operations[this->oper] == ir_binop_mod);
1740
1741      ir_rvalue *temp_rhs;
1742      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1743                                        op[0], op[1]);
1744
1745      error_emitted =
1746         do_assignment(instructions, state,
1747                       this->subexpressions[0]->non_lvalue_description,
1748                       op[0]->clone(ctx, NULL), temp_rhs,
1749                       &result, needs_rvalue, false,
1750                       this->subexpressions[0]->get_location());
1751      break;
1752   }
1753
1754   case ast_ls_assign:
1755   case ast_rs_assign: {
1756      this->subexpressions[0]->set_is_lhs(true);
1757      op[0] = this->subexpressions[0]->hir(instructions, state);
1758      op[1] = this->subexpressions[1]->hir(instructions, state);
1759      type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1760                               &loc);
1761      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1762                                                   type, op[0], op[1]);
1763      error_emitted =
1764         do_assignment(instructions, state,
1765                       this->subexpressions[0]->non_lvalue_description,
1766                       op[0]->clone(ctx, NULL), temp_rhs,
1767                       &result, needs_rvalue, false,
1768                       this->subexpressions[0]->get_location());
1769      break;
1770   }
1771
1772   case ast_and_assign:
1773   case ast_xor_assign:
1774   case ast_or_assign: {
1775      this->subexpressions[0]->set_is_lhs(true);
1776      op[0] = this->subexpressions[0]->hir(instructions, state);
1777      op[1] = this->subexpressions[1]->hir(instructions, state);
1778
1779      orig_type = op[0]->type;
1780      type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1781
1782      if (type != orig_type) {
1783         _mesa_glsl_error(& loc, state,
1784                          "could not implicitly convert "
1785                          "%s to %s", type->name, orig_type->name);
1786         type = glsl_type::error_type;
1787      }
1788
1789      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1790                                                   type, op[0], op[1]);
1791      error_emitted =
1792         do_assignment(instructions, state,
1793                       this->subexpressions[0]->non_lvalue_description,
1794                       op[0]->clone(ctx, NULL), temp_rhs,
1795                       &result, needs_rvalue, false,
1796                       this->subexpressions[0]->get_location());
1797      break;
1798   }
1799
1800   case ast_conditional: {
1801      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1802       *
1803       *    "The ternary selection operator (?:). It operates on three
1804       *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1805       *    first expression, which must result in a scalar Boolean."
1806       */
1807      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1808                                         "condition", &error_emitted);
1809
1810      /* The :? operator is implemented by generating an anonymous temporary
1811       * followed by an if-statement.  The last instruction in each branch of
1812       * the if-statement assigns a value to the anonymous temporary.  This
1813       * temporary is the r-value of the expression.
1814       */
1815      exec_list then_instructions;
1816      exec_list else_instructions;
1817
1818      op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1819      op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1820
1821      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1822       *
1823       *     "The second and third expressions can be any type, as
1824       *     long their types match, or there is a conversion in
1825       *     Section 4.1.10 "Implicit Conversions" that can be applied
1826       *     to one of the expressions to make their types match. This
1827       *     resulting matching type is the type of the entire
1828       *     expression."
1829       */
1830      if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1831          && !apply_implicit_conversion(op[2]->type, op[1], state))
1832          || (op[1]->type != op[2]->type)) {
1833         YYLTYPE loc = this->subexpressions[1]->get_location();
1834
1835         _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1836                          "operator must have matching types");
1837         error_emitted = true;
1838         type = glsl_type::error_type;
1839      } else {
1840         type = op[1]->type;
1841      }
1842
1843      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1844       *
1845       *    "The second and third expressions must be the same type, but can
1846       *    be of any type other than an array."
1847       */
1848      if (type->is_array() &&
1849          !state->check_version(120, 300, &loc,
1850                                "second and third operands of ?: operator "
1851                                "cannot be arrays")) {
1852         error_emitted = true;
1853      }
1854
1855      /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1856       *
1857       *  "Except for array indexing, structure member selection, and
1858       *   parentheses, opaque variables are not allowed to be operands in
1859       *   expressions; such use results in a compile-time error."
1860       */
1861      if (type->contains_opaque()) {
1862         if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1863            _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1864                             "operands of the ?: operator", type->name);
1865            error_emitted = true;
1866         }
1867      }
1868
1869      ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1870
1871      if (then_instructions.is_empty()
1872          && else_instructions.is_empty()
1873          && cond_val != NULL) {
1874         result = cond_val->value.b[0] ? op[1] : op[2];
1875      } else {
1876         /* The copy to conditional_tmp reads the whole array. */
1877         if (type->is_array()) {
1878            mark_whole_array_access(op[1]);
1879            mark_whole_array_access(op[2]);
1880         }
1881
1882         ir_variable *const tmp =
1883            new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1884         instructions->push_tail(tmp);
1885
1886         ir_if *const stmt = new(ctx) ir_if(op[0]);
1887         instructions->push_tail(stmt);
1888
1889         then_instructions.move_nodes_to(& stmt->then_instructions);
1890         ir_dereference *const then_deref =
1891            new(ctx) ir_dereference_variable(tmp);
1892         ir_assignment *const then_assign =
1893            new(ctx) ir_assignment(then_deref, op[1]);
1894         stmt->then_instructions.push_tail(then_assign);
1895
1896         else_instructions.move_nodes_to(& stmt->else_instructions);
1897         ir_dereference *const else_deref =
1898            new(ctx) ir_dereference_variable(tmp);
1899         ir_assignment *const else_assign =
1900            new(ctx) ir_assignment(else_deref, op[2]);
1901         stmt->else_instructions.push_tail(else_assign);
1902
1903         result = new(ctx) ir_dereference_variable(tmp);
1904      }
1905      break;
1906   }
1907
1908   case ast_pre_inc:
1909   case ast_pre_dec: {
1910      this->non_lvalue_description = (this->oper == ast_pre_inc)
1911         ? "pre-increment operation" : "pre-decrement operation";
1912
1913      op[0] = this->subexpressions[0]->hir(instructions, state);
1914      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1915
1916      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1917
1918      ir_rvalue *temp_rhs;
1919      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1920                                        op[0], op[1]);
1921
1922      error_emitted =
1923         do_assignment(instructions, state,
1924                       this->subexpressions[0]->non_lvalue_description,
1925                       op[0]->clone(ctx, NULL), temp_rhs,
1926                       &result, needs_rvalue, false,
1927                       this->subexpressions[0]->get_location());
1928      break;
1929   }
1930
1931   case ast_post_inc:
1932   case ast_post_dec: {
1933      this->non_lvalue_description = (this->oper == ast_post_inc)
1934         ? "post-increment operation" : "post-decrement operation";
1935      op[0] = this->subexpressions[0]->hir(instructions, state);
1936      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1937
1938      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1939
1940      if (error_emitted) {
1941         result = ir_rvalue::error_value(ctx);
1942         break;
1943      }
1944
1945      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1946
1947      ir_rvalue *temp_rhs;
1948      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1949                                        op[0], op[1]);
1950
1951      /* Get a temporary of a copy of the lvalue before it's modified.
1952       * This may get thrown away later.
1953       */
1954      result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1955
1956      ir_rvalue *junk_rvalue;
1957      error_emitted =
1958         do_assignment(instructions, state,
1959                       this->subexpressions[0]->non_lvalue_description,
1960                       op[0]->clone(ctx, NULL), temp_rhs,
1961                       &junk_rvalue, false, false,
1962                       this->subexpressions[0]->get_location());
1963
1964      break;
1965   }
1966
1967   case ast_field_selection:
1968      result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1969      break;
1970
1971   case ast_array_index: {
1972      YYLTYPE index_loc = subexpressions[1]->get_location();
1973
1974      /* Getting if an array is being used uninitialized is beyond what we get
1975       * from ir_value.data.assigned. Setting is_lhs as true would force to
1976       * not raise a uninitialized warning when using an array
1977       */
1978      subexpressions[0]->set_is_lhs(true);
1979      op[0] = subexpressions[0]->hir(instructions, state);
1980      op[1] = subexpressions[1]->hir(instructions, state);
1981
1982      result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1983                                            loc, index_loc);
1984
1985      if (result->type->is_error())
1986         error_emitted = true;
1987
1988      break;
1989   }
1990
1991   case ast_unsized_array_dim:
1992      unreachable("ast_unsized_array_dim: Should never get here.");
1993
1994   case ast_function_call:
1995      /* Should *NEVER* get here.  ast_function_call should always be handled
1996       * by ast_function_expression::hir.
1997       */
1998      unreachable("ast_function_call: handled elsewhere ");
1999
2000   case ast_identifier: {
2001      /* ast_identifier can appear several places in a full abstract syntax
2002       * tree.  This particular use must be at location specified in the grammar
2003       * as 'variable_identifier'.
2004       */
2005      ir_variable *var =
2006         state->symbols->get_variable(this->primary_expression.identifier);
2007
2008      if (var == NULL) {
2009         /* the identifier might be a subroutine name */
2010         char *sub_name;
2011         sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2012         var = state->symbols->get_variable(sub_name);
2013         ralloc_free(sub_name);
2014      }
2015
2016      if (var != NULL) {
2017         var->data.used = true;
2018         result = new(ctx) ir_dereference_variable(var);
2019
2020         if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2021             && !this->is_lhs
2022             && result->variable_referenced()->data.assigned != true
2023             && !is_gl_identifier(var->name)) {
2024            _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2025                               this->primary_expression.identifier);
2026         }
2027
2028         /* From the EXT_shader_framebuffer_fetch spec:
2029          *
2030          *   "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2031          *    enabled in addition, it's an error to use gl_LastFragData if it
2032          *    hasn't been explicitly redeclared with layout(noncoherent)."
2033          */
2034         if (var->data.fb_fetch_output && var->data.memory_coherent &&
2035             !state->EXT_shader_framebuffer_fetch_enable) {
2036            _mesa_glsl_error(&loc, state,
2037                             "invalid use of framebuffer fetch output not "
2038                             "qualified with layout(noncoherent)");
2039         }
2040
2041      } else {
2042         _mesa_glsl_error(& loc, state, "`%s' undeclared",
2043                          this->primary_expression.identifier);
2044
2045         result = ir_rvalue::error_value(ctx);
2046         error_emitted = true;
2047      }
2048      break;
2049   }
2050
2051   case ast_int_constant:
2052      result = new(ctx) ir_constant(this->primary_expression.int_constant);
2053      break;
2054
2055   case ast_uint_constant:
2056      result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2057      break;
2058
2059   case ast_float_constant:
2060      result = new(ctx) ir_constant(this->primary_expression.float_constant);
2061      break;
2062
2063   case ast_bool_constant:
2064      result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2065      break;
2066
2067   case ast_double_constant:
2068      result = new(ctx) ir_constant(this->primary_expression.double_constant);
2069      break;
2070
2071   case ast_uint64_constant:
2072      result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2073      break;
2074
2075   case ast_int64_constant:
2076      result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2077      break;
2078
2079   case ast_sequence: {
2080      /* It should not be possible to generate a sequence in the AST without
2081       * any expressions in it.
2082       */
2083      assert(!this->expressions.is_empty());
2084
2085      /* The r-value of a sequence is the last expression in the sequence.  If
2086       * the other expressions in the sequence do not have side-effects (and
2087       * therefore add instructions to the instruction list), they get dropped
2088       * on the floor.
2089       */
2090      exec_node *previous_tail = NULL;
2091      YYLTYPE previous_operand_loc = loc;
2092
2093      foreach_list_typed (ast_node, ast, link, &this->expressions) {
2094         /* If one of the operands of comma operator does not generate any
2095          * code, we want to emit a warning.  At each pass through the loop
2096          * previous_tail will point to the last instruction in the stream
2097          * *before* processing the previous operand.  Naturally,
2098          * instructions->get_tail_raw() will point to the last instruction in
2099          * the stream *after* processing the previous operand.  If the two
2100          * pointers match, then the previous operand had no effect.
2101          *
2102          * The warning behavior here differs slightly from GCC.  GCC will
2103          * only emit a warning if none of the left-hand operands have an
2104          * effect.  However, it will emit a warning for each.  I believe that
2105          * there are some cases in C (especially with GCC extensions) where
2106          * it is useful to have an intermediate step in a sequence have no
2107          * effect, but I don't think these cases exist in GLSL.  Either way,
2108          * it would be a giant hassle to replicate that behavior.
2109          */
2110         if (previous_tail == instructions->get_tail_raw()) {
2111            _mesa_glsl_warning(&previous_operand_loc, state,
2112                               "left-hand operand of comma expression has "
2113                               "no effect");
2114         }
2115
2116         /* The tail is directly accessed instead of using the get_tail()
2117          * method for performance reasons.  get_tail() has extra code to
2118          * return NULL when the list is empty.  We don't care about that
2119          * here, so using get_tail_raw() is fine.
2120          */
2121         previous_tail = instructions->get_tail_raw();
2122         previous_operand_loc = ast->get_location();
2123
2124         result = ast->hir(instructions, state);
2125      }
2126
2127      /* Any errors should have already been emitted in the loop above.
2128       */
2129      error_emitted = true;
2130      break;
2131   }
2132   }
2133   type = NULL; /* use result->type, not type. */
2134   assert(result != NULL || !needs_rvalue);
2135
2136   if (result && result->type->is_error() && !error_emitted)
2137      _mesa_glsl_error(& loc, state, "type mismatch");
2138
2139   return result;
2140}
2141
2142bool
2143ast_expression::has_sequence_subexpression() const
2144{
2145   switch (this->oper) {
2146   case ast_plus:
2147   case ast_neg:
2148   case ast_bit_not:
2149   case ast_logic_not:
2150   case ast_pre_inc:
2151   case ast_pre_dec:
2152   case ast_post_inc:
2153   case ast_post_dec:
2154      return this->subexpressions[0]->has_sequence_subexpression();
2155
2156   case ast_assign:
2157   case ast_add:
2158   case ast_sub:
2159   case ast_mul:
2160   case ast_div:
2161   case ast_mod:
2162   case ast_lshift:
2163   case ast_rshift:
2164   case ast_less:
2165   case ast_greater:
2166   case ast_lequal:
2167   case ast_gequal:
2168   case ast_nequal:
2169   case ast_equal:
2170   case ast_bit_and:
2171   case ast_bit_xor:
2172   case ast_bit_or:
2173   case ast_logic_and:
2174   case ast_logic_or:
2175   case ast_logic_xor:
2176   case ast_array_index:
2177   case ast_mul_assign:
2178   case ast_div_assign:
2179   case ast_add_assign:
2180   case ast_sub_assign:
2181   case ast_mod_assign:
2182   case ast_ls_assign:
2183   case ast_rs_assign:
2184   case ast_and_assign:
2185   case ast_xor_assign:
2186   case ast_or_assign:
2187      return this->subexpressions[0]->has_sequence_subexpression() ||
2188             this->subexpressions[1]->has_sequence_subexpression();
2189
2190   case ast_conditional:
2191      return this->subexpressions[0]->has_sequence_subexpression() ||
2192             this->subexpressions[1]->has_sequence_subexpression() ||
2193             this->subexpressions[2]->has_sequence_subexpression();
2194
2195   case ast_sequence:
2196      return true;
2197
2198   case ast_field_selection:
2199   case ast_identifier:
2200   case ast_int_constant:
2201   case ast_uint_constant:
2202   case ast_float_constant:
2203   case ast_bool_constant:
2204   case ast_double_constant:
2205   case ast_int64_constant:
2206   case ast_uint64_constant:
2207      return false;
2208
2209   case ast_aggregate:
2210      return false;
2211
2212   case ast_function_call:
2213      unreachable("should be handled by ast_function_expression::hir");
2214
2215   case ast_unsized_array_dim:
2216      unreachable("ast_unsized_array_dim: Should never get here.");
2217   }
2218
2219   return false;
2220}
2221
2222ir_rvalue *
2223ast_expression_statement::hir(exec_list *instructions,
2224                              struct _mesa_glsl_parse_state *state)
2225{
2226   /* It is possible to have expression statements that don't have an
2227    * expression.  This is the solitary semicolon:
2228    *
2229    * for (i = 0; i < 5; i++)
2230    *     ;
2231    *
2232    * In this case the expression will be NULL.  Test for NULL and don't do
2233    * anything in that case.
2234    */
2235   if (expression != NULL)
2236      expression->hir_no_rvalue(instructions, state);
2237
2238   /* Statements do not have r-values.
2239    */
2240   return NULL;
2241}
2242
2243
2244ir_rvalue *
2245ast_compound_statement::hir(exec_list *instructions,
2246                            struct _mesa_glsl_parse_state *state)
2247{
2248   if (new_scope)
2249      state->symbols->push_scope();
2250
2251   foreach_list_typed (ast_node, ast, link, &this->statements)
2252      ast->hir(instructions, state);
2253
2254   if (new_scope)
2255      state->symbols->pop_scope();
2256
2257   /* Compound statements do not have r-values.
2258    */
2259   return NULL;
2260}
2261
2262/**
2263 * Evaluate the given exec_node (which should be an ast_node representing
2264 * a single array dimension) and return its integer value.
2265 */
2266static unsigned
2267process_array_size(exec_node *node,
2268                   struct _mesa_glsl_parse_state *state)
2269{
2270   void *mem_ctx = state;
2271
2272   exec_list dummy_instructions;
2273
2274   ast_node *array_size = exec_node_data(ast_node, node, link);
2275
2276   /**
2277    * Dimensions other than the outermost dimension can by unsized if they
2278    * are immediately sized by a constructor or initializer.
2279    */
2280   if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2281      return 0;
2282
2283   ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2284   YYLTYPE loc = array_size->get_location();
2285
2286   if (ir == NULL) {
2287      _mesa_glsl_error(& loc, state,
2288                       "array size could not be resolved");
2289      return 0;
2290   }
2291
2292   if (!ir->type->is_integer()) {
2293      _mesa_glsl_error(& loc, state,
2294                       "array size must be integer type");
2295      return 0;
2296   }
2297
2298   if (!ir->type->is_scalar()) {
2299      _mesa_glsl_error(& loc, state,
2300                       "array size must be scalar type");
2301      return 0;
2302   }
2303
2304   ir_constant *const size = ir->constant_expression_value(mem_ctx);
2305   if (size == NULL ||
2306       (state->is_version(120, 300) &&
2307        array_size->has_sequence_subexpression())) {
2308      _mesa_glsl_error(& loc, state, "array size must be a "
2309                       "constant valued expression");
2310      return 0;
2311   }
2312
2313   if (size->value.i[0] <= 0) {
2314      _mesa_glsl_error(& loc, state, "array size must be > 0");
2315      return 0;
2316   }
2317
2318   assert(size->type == ir->type);
2319
2320   /* If the array size is const (and we've verified that
2321    * it is) then no instructions should have been emitted
2322    * when we converted it to HIR. If they were emitted,
2323    * then either the array size isn't const after all, or
2324    * we are emitting unnecessary instructions.
2325    */
2326   assert(dummy_instructions.is_empty());
2327
2328   return size->value.u[0];
2329}
2330
2331static const glsl_type *
2332process_array_type(YYLTYPE *loc, const glsl_type *base,
2333                   ast_array_specifier *array_specifier,
2334                   struct _mesa_glsl_parse_state *state)
2335{
2336   const glsl_type *array_type = base;
2337
2338   if (array_specifier != NULL) {
2339      if (base->is_array()) {
2340
2341         /* From page 19 (page 25) of the GLSL 1.20 spec:
2342          *
2343          * "Only one-dimensional arrays may be declared."
2344          */
2345         if (!state->check_arrays_of_arrays_allowed(loc)) {
2346            return glsl_type::error_type;
2347         }
2348      }
2349
2350      for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2351           !node->is_head_sentinel(); node = node->prev) {
2352         unsigned array_size = process_array_size(node, state);
2353         array_type = glsl_type::get_array_instance(array_type, array_size);
2354      }
2355   }
2356
2357   return array_type;
2358}
2359
2360static bool
2361precision_qualifier_allowed(const glsl_type *type)
2362{
2363   /* Precision qualifiers apply to floating point, integer and opaque
2364    * types.
2365    *
2366    * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2367    *    "Any floating point or any integer declaration can have the type
2368    *    preceded by one of these precision qualifiers [...] Literal
2369    *    constants do not have precision qualifiers. Neither do Boolean
2370    *    variables.
2371    *
2372    * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2373    * spec also says:
2374    *
2375    *     "Precision qualifiers are added for code portability with OpenGL
2376    *     ES, not for functionality. They have the same syntax as in OpenGL
2377    *     ES."
2378    *
2379    * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2380    *
2381    *     "uniform lowp sampler2D sampler;
2382    *     highp vec2 coord;
2383    *     ...
2384    *     lowp vec4 col = texture2D (sampler, coord);
2385    *                                            // texture2D returns lowp"
2386    *
2387    * From this, we infer that GLSL 1.30 (and later) should allow precision
2388    * qualifiers on sampler types just like float and integer types.
2389    */
2390   const glsl_type *const t = type->without_array();
2391
2392   return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2393          !t->is_struct();
2394}
2395
2396const glsl_type *
2397ast_type_specifier::glsl_type(const char **name,
2398                              struct _mesa_glsl_parse_state *state) const
2399{
2400   const struct glsl_type *type;
2401
2402   if (this->type != NULL)
2403      type = this->type;
2404   else if (structure)
2405      type = structure->type;
2406   else
2407      type = state->symbols->get_type(this->type_name);
2408   *name = this->type_name;
2409
2410   YYLTYPE loc = this->get_location();
2411   type = process_array_type(&loc, type, this->array_specifier, state);
2412
2413   return type;
2414}
2415
2416/**
2417 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2418 *
2419 * "The precision statement
2420 *
2421 *    precision precision-qualifier type;
2422 *
2423 *  can be used to establish a default precision qualifier. The type field can
2424 *  be either int or float or any of the sampler types, (...) If type is float,
2425 *  the directive applies to non-precision-qualified floating point type
2426 *  (scalar, vector, and matrix) declarations. If type is int, the directive
2427 *  applies to all non-precision-qualified integer type (scalar, vector, signed,
2428 *  and unsigned) declarations."
2429 *
2430 * We use the symbol table to keep the values of the default precisions for
2431 * each 'type' in each scope and we use the 'type' string from the precision
2432 * statement as key in the symbol table. When we want to retrieve the default
2433 * precision associated with a given glsl_type we need to know the type string
2434 * associated with it. This is what this function returns.
2435 */
2436static const char *
2437get_type_name_for_precision_qualifier(const glsl_type *type)
2438{
2439   switch (type->base_type) {
2440   case GLSL_TYPE_FLOAT:
2441      return "float";
2442   case GLSL_TYPE_UINT:
2443   case GLSL_TYPE_INT:
2444      return "int";
2445   case GLSL_TYPE_ATOMIC_UINT:
2446      return "atomic_uint";
2447   case GLSL_TYPE_IMAGE:
2448   /* fallthrough */
2449   case GLSL_TYPE_SAMPLER: {
2450      const unsigned type_idx =
2451         type->sampler_array + 2 * type->sampler_shadow;
2452      const unsigned offset = type->is_sampler() ? 0 : 4;
2453      assert(type_idx < 4);
2454      switch (type->sampled_type) {
2455      case GLSL_TYPE_FLOAT:
2456         switch (type->sampler_dimensionality) {
2457         case GLSL_SAMPLER_DIM_1D: {
2458            assert(type->is_sampler());
2459            static const char *const names[4] = {
2460              "sampler1D", "sampler1DArray",
2461              "sampler1DShadow", "sampler1DArrayShadow"
2462            };
2463            return names[type_idx];
2464         }
2465         case GLSL_SAMPLER_DIM_2D: {
2466            static const char *const names[8] = {
2467              "sampler2D", "sampler2DArray",
2468              "sampler2DShadow", "sampler2DArrayShadow",
2469              "image2D", "image2DArray", NULL, NULL
2470            };
2471            return names[offset + type_idx];
2472         }
2473         case GLSL_SAMPLER_DIM_3D: {
2474            static const char *const names[8] = {
2475              "sampler3D", NULL, NULL, NULL,
2476              "image3D", NULL, NULL, NULL
2477            };
2478            return names[offset + type_idx];
2479         }
2480         case GLSL_SAMPLER_DIM_CUBE: {
2481            static const char *const names[8] = {
2482              "samplerCube", "samplerCubeArray",
2483              "samplerCubeShadow", "samplerCubeArrayShadow",
2484              "imageCube", NULL, NULL, NULL
2485            };
2486            return names[offset + type_idx];
2487         }
2488         case GLSL_SAMPLER_DIM_MS: {
2489            assert(type->is_sampler());
2490            static const char *const names[4] = {
2491              "sampler2DMS", "sampler2DMSArray", NULL, NULL
2492            };
2493            return names[type_idx];
2494         }
2495         case GLSL_SAMPLER_DIM_RECT: {
2496            assert(type->is_sampler());
2497            static const char *const names[4] = {
2498              "samplerRect", NULL, "samplerRectShadow", NULL
2499            };
2500            return names[type_idx];
2501         }
2502         case GLSL_SAMPLER_DIM_BUF: {
2503            static const char *const names[8] = {
2504              "samplerBuffer", NULL, NULL, NULL,
2505              "imageBuffer", NULL, NULL, NULL
2506            };
2507            return names[offset + type_idx];
2508         }
2509         case GLSL_SAMPLER_DIM_EXTERNAL: {
2510            assert(type->is_sampler());
2511            static const char *const names[4] = {
2512              "samplerExternalOES", NULL, NULL, NULL
2513            };
2514            return names[type_idx];
2515         }
2516         default:
2517            unreachable("Unsupported sampler/image dimensionality");
2518         } /* sampler/image float dimensionality */
2519         break;
2520      case GLSL_TYPE_INT:
2521         switch (type->sampler_dimensionality) {
2522         case GLSL_SAMPLER_DIM_1D: {
2523            assert(type->is_sampler());
2524            static const char *const names[4] = {
2525              "isampler1D", "isampler1DArray", NULL, NULL
2526            };
2527            return names[type_idx];
2528         }
2529         case GLSL_SAMPLER_DIM_2D: {
2530            static const char *const names[8] = {
2531              "isampler2D", "isampler2DArray", NULL, NULL,
2532              "iimage2D", "iimage2DArray", NULL, NULL
2533            };
2534            return names[offset + type_idx];
2535         }
2536         case GLSL_SAMPLER_DIM_3D: {
2537            static const char *const names[8] = {
2538              "isampler3D", NULL, NULL, NULL,
2539              "iimage3D", NULL, NULL, NULL
2540            };
2541            return names[offset + type_idx];
2542         }
2543         case GLSL_SAMPLER_DIM_CUBE: {
2544            static const char *const names[8] = {
2545              "isamplerCube", "isamplerCubeArray", NULL, NULL,
2546              "iimageCube", NULL, NULL, NULL
2547            };
2548            return names[offset + type_idx];
2549         }
2550         case GLSL_SAMPLER_DIM_MS: {
2551            assert(type->is_sampler());
2552            static const char *const names[4] = {
2553              "isampler2DMS", "isampler2DMSArray", NULL, NULL
2554            };
2555            return names[type_idx];
2556         }
2557         case GLSL_SAMPLER_DIM_RECT: {
2558            assert(type->is_sampler());
2559            static const char *const names[4] = {
2560              "isamplerRect", NULL, "isamplerRectShadow", NULL
2561            };
2562            return names[type_idx];
2563         }
2564         case GLSL_SAMPLER_DIM_BUF: {
2565            static const char *const names[8] = {
2566              "isamplerBuffer", NULL, NULL, NULL,
2567              "iimageBuffer", NULL, NULL, NULL
2568            };
2569            return names[offset + type_idx];
2570         }
2571         default:
2572            unreachable("Unsupported isampler/iimage dimensionality");
2573         } /* sampler/image int dimensionality */
2574         break;
2575      case GLSL_TYPE_UINT:
2576         switch (type->sampler_dimensionality) {
2577         case GLSL_SAMPLER_DIM_1D: {
2578            assert(type->is_sampler());
2579            static const char *const names[4] = {
2580              "usampler1D", "usampler1DArray", NULL, NULL
2581            };
2582            return names[type_idx];
2583         }
2584         case GLSL_SAMPLER_DIM_2D: {
2585            static const char *const names[8] = {
2586              "usampler2D", "usampler2DArray", NULL, NULL,
2587              "uimage2D", "uimage2DArray", NULL, NULL
2588            };
2589            return names[offset + type_idx];
2590         }
2591         case GLSL_SAMPLER_DIM_3D: {
2592            static const char *const names[8] = {
2593              "usampler3D", NULL, NULL, NULL,
2594              "uimage3D", NULL, NULL, NULL
2595            };
2596            return names[offset + type_idx];
2597         }
2598         case GLSL_SAMPLER_DIM_CUBE: {
2599            static const char *const names[8] = {
2600              "usamplerCube", "usamplerCubeArray", NULL, NULL,
2601              "uimageCube", NULL, NULL, NULL
2602            };
2603            return names[offset + type_idx];
2604         }
2605         case GLSL_SAMPLER_DIM_MS: {
2606            assert(type->is_sampler());
2607            static const char *const names[4] = {
2608              "usampler2DMS", "usampler2DMSArray", NULL, NULL
2609            };
2610            return names[type_idx];
2611         }
2612         case GLSL_SAMPLER_DIM_RECT: {
2613            assert(type->is_sampler());
2614            static const char *const names[4] = {
2615              "usamplerRect", NULL, "usamplerRectShadow", NULL
2616            };
2617            return names[type_idx];
2618         }
2619         case GLSL_SAMPLER_DIM_BUF: {
2620            static const char *const names[8] = {
2621              "usamplerBuffer", NULL, NULL, NULL,
2622              "uimageBuffer", NULL, NULL, NULL
2623            };
2624            return names[offset + type_idx];
2625         }
2626         default:
2627            unreachable("Unsupported usampler/uimage dimensionality");
2628         } /* sampler/image uint dimensionality */
2629         break;
2630      default:
2631         unreachable("Unsupported sampler/image type");
2632      } /* sampler/image type */
2633      break;
2634   } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2635   break;
2636   default:
2637      unreachable("Unsupported type");
2638   } /* base type */
2639}
2640
2641static unsigned
2642select_gles_precision(unsigned qual_precision,
2643                      const glsl_type *type,
2644                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2645{
2646   /* Precision qualifiers do not have any meaning in Desktop GLSL.
2647    * In GLES we take the precision from the type qualifier if present,
2648    * otherwise, if the type of the variable allows precision qualifiers at
2649    * all, we look for the default precision qualifier for that type in the
2650    * current scope.
2651    */
2652   assert(state->es_shader);
2653
2654   unsigned precision = GLSL_PRECISION_NONE;
2655   if (qual_precision) {
2656      precision = qual_precision;
2657   } else if (precision_qualifier_allowed(type)) {
2658      const char *type_name =
2659         get_type_name_for_precision_qualifier(type->without_array());
2660      assert(type_name != NULL);
2661
2662      precision =
2663         state->symbols->get_default_precision_qualifier(type_name);
2664      if (precision == ast_precision_none) {
2665         _mesa_glsl_error(loc, state,
2666                          "No precision specified in this scope for type `%s'",
2667                          type->name);
2668      }
2669   }
2670
2671
2672   /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2673    *
2674    *    "The default precision of all atomic types is highp. It is an error to
2675    *    declare an atomic type with a different precision or to specify the
2676    *    default precision for an atomic type to be lowp or mediump."
2677    */
2678   if (type->is_atomic_uint() && precision != ast_precision_high) {
2679      _mesa_glsl_error(loc, state,
2680                       "atomic_uint can only have highp precision qualifier");
2681   }
2682
2683   return precision;
2684}
2685
2686const glsl_type *
2687ast_fully_specified_type::glsl_type(const char **name,
2688                                    struct _mesa_glsl_parse_state *state) const
2689{
2690   return this->specifier->glsl_type(name, state);
2691}
2692
2693/**
2694 * Determine whether a toplevel variable declaration declares a varying.  This
2695 * function operates by examining the variable's mode and the shader target,
2696 * so it correctly identifies linkage variables regardless of whether they are
2697 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2698 *
2699 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2700 * this function will produce undefined results.
2701 */
2702static bool
2703is_varying_var(ir_variable *var, gl_shader_stage target)
2704{
2705   switch (target) {
2706   case MESA_SHADER_VERTEX:
2707      return var->data.mode == ir_var_shader_out;
2708   case MESA_SHADER_FRAGMENT:
2709      return var->data.mode == ir_var_shader_in;
2710   default:
2711      return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2712   }
2713}
2714
2715static bool
2716is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2717{
2718   if (is_varying_var(var, state->stage))
2719      return true;
2720
2721   /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2722    * "Only variables output from a vertex shader can be candidates
2723    * for invariance".
2724    */
2725   if (!state->is_version(130, 100))
2726      return false;
2727
2728   /*
2729    * Later specs remove this language - so allowed invariant
2730    * on fragment shader outputs as well.
2731    */
2732   if (state->stage == MESA_SHADER_FRAGMENT &&
2733       var->data.mode == ir_var_shader_out)
2734      return true;
2735   return false;
2736}
2737
2738/**
2739 * Matrix layout qualifiers are only allowed on certain types
2740 */
2741static void
2742validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2743                                YYLTYPE *loc,
2744                                const glsl_type *type,
2745                                ir_variable *var)
2746{
2747   if (var && !var->is_in_buffer_block()) {
2748      /* Layout qualifiers may only apply to interface blocks and fields in
2749       * them.
2750       */
2751      _mesa_glsl_error(loc, state,
2752                       "uniform block layout qualifiers row_major and "
2753                       "column_major may not be applied to variables "
2754                       "outside of uniform blocks");
2755   } else if (!type->without_array()->is_matrix()) {
2756      /* The OpenGL ES 3.0 conformance tests did not originally allow
2757       * matrix layout qualifiers on non-matrices.  However, the OpenGL
2758       * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2759       * amended to specifically allow these layouts on all types.  Emit
2760       * a warning so that people know their code may not be portable.
2761       */
2762      _mesa_glsl_warning(loc, state,
2763                         "uniform block layout qualifiers row_major and "
2764                         "column_major applied to non-matrix types may "
2765                         "be rejected by older compilers");
2766   }
2767}
2768
2769static bool
2770validate_xfb_buffer_qualifier(YYLTYPE *loc,
2771                              struct _mesa_glsl_parse_state *state,
2772                              unsigned xfb_buffer) {
2773   if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2774      _mesa_glsl_error(loc, state,
2775                       "invalid xfb_buffer specified %d is larger than "
2776                       "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2777                       xfb_buffer,
2778                       state->Const.MaxTransformFeedbackBuffers - 1);
2779      return false;
2780   }
2781
2782   return true;
2783}
2784
2785/* From the ARB_enhanced_layouts spec:
2786 *
2787 *    "Variables and block members qualified with *xfb_offset* can be
2788 *    scalars, vectors, matrices, structures, and (sized) arrays of these.
2789 *    The offset must be a multiple of the size of the first component of
2790 *    the first qualified variable or block member, or a compile-time error
2791 *    results.  Further, if applied to an aggregate containing a double,
2792 *    the offset must also be a multiple of 8, and the space taken in the
2793 *    buffer will be a multiple of 8.
2794 */
2795static bool
2796validate_xfb_offset_qualifier(YYLTYPE *loc,
2797                              struct _mesa_glsl_parse_state *state,
2798                              int xfb_offset, const glsl_type *type,
2799                              unsigned component_size) {
2800  const glsl_type *t_without_array = type->without_array();
2801
2802   if (xfb_offset != -1 && type->is_unsized_array()) {
2803      _mesa_glsl_error(loc, state,
2804                       "xfb_offset can't be used with unsized arrays.");
2805      return false;
2806   }
2807
2808   /* Make sure nested structs don't contain unsized arrays, and validate
2809    * any xfb_offsets on interface members.
2810    */
2811   if (t_without_array->is_struct() || t_without_array->is_interface())
2812      for (unsigned int i = 0; i < t_without_array->length; i++) {
2813         const glsl_type *member_t = t_without_array->fields.structure[i].type;
2814
2815         /* When the interface block doesn't have an xfb_offset qualifier then
2816          * we apply the component size rules at the member level.
2817          */
2818         if (xfb_offset == -1)
2819            component_size = member_t->contains_double() ? 8 : 4;
2820
2821         int xfb_offset = t_without_array->fields.structure[i].offset;
2822         validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2823                                       component_size);
2824      }
2825
2826  /* Nested structs or interface block without offset may not have had an
2827   * offset applied yet so return.
2828   */
2829   if (xfb_offset == -1) {
2830     return true;
2831   }
2832
2833   if (xfb_offset % component_size) {
2834      _mesa_glsl_error(loc, state,
2835                       "invalid qualifier xfb_offset=%d must be a multiple "
2836                       "of the first component size of the first qualified "
2837                       "variable or block member. Or double if an aggregate "
2838                       "that contains a double (%d).",
2839                       xfb_offset, component_size);
2840      return false;
2841   }
2842
2843   return true;
2844}
2845
2846static bool
2847validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2848                          unsigned stream)
2849{
2850   if (stream >= state->ctx->Const.MaxVertexStreams) {
2851      _mesa_glsl_error(loc, state,
2852                       "invalid stream specified %d is larger than "
2853                       "MAX_VERTEX_STREAMS - 1 (%d).",
2854                       stream, state->ctx->Const.MaxVertexStreams - 1);
2855      return false;
2856   }
2857
2858   return true;
2859}
2860
2861static void
2862apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2863                       YYLTYPE *loc,
2864                       ir_variable *var,
2865                       const glsl_type *type,
2866                       const ast_type_qualifier *qual)
2867{
2868   if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2869      _mesa_glsl_error(loc, state,
2870                       "the \"binding\" qualifier only applies to uniforms and "
2871                       "shader storage buffer objects");
2872      return;
2873   }
2874
2875   unsigned qual_binding;
2876   if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2877                                   &qual_binding)) {
2878      return;
2879   }
2880
2881   const struct gl_context *const ctx = state->ctx;
2882   unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2883   unsigned max_index = qual_binding + elements - 1;
2884   const glsl_type *base_type = type->without_array();
2885
2886   if (base_type->is_interface()) {
2887      /* UBOs.  From page 60 of the GLSL 4.20 specification:
2888       * "If the binding point for any uniform block instance is less than zero,
2889       *  or greater than or equal to the implementation-dependent maximum
2890       *  number of uniform buffer bindings, a compilation error will occur.
2891       *  When the binding identifier is used with a uniform block instanced as
2892       *  an array of size N, all elements of the array from binding through
2893       *  binding + N – 1 must be within this range."
2894       *
2895       * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2896       */
2897      if (qual->flags.q.uniform &&
2898         max_index >= ctx->Const.MaxUniformBufferBindings) {
2899         _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2900                          "the maximum number of UBO binding points (%d)",
2901                          qual_binding, elements,
2902                          ctx->Const.MaxUniformBufferBindings);
2903         return;
2904      }
2905
2906      /* SSBOs. From page 67 of the GLSL 4.30 specification:
2907       * "If the binding point for any uniform or shader storage block instance
2908       *  is less than zero, or greater than or equal to the
2909       *  implementation-dependent maximum number of uniform buffer bindings, a
2910       *  compile-time error will occur. When the binding identifier is used
2911       *  with a uniform or shader storage block instanced as an array of size
2912       *  N, all elements of the array from binding through binding + N – 1 must
2913       *  be within this range."
2914       */
2915      if (qual->flags.q.buffer &&
2916         max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2917         _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2918                          "the maximum number of SSBO binding points (%d)",
2919                          qual_binding, elements,
2920                          ctx->Const.MaxShaderStorageBufferBindings);
2921         return;
2922      }
2923   } else if (base_type->is_sampler()) {
2924      /* Samplers.  From page 63 of the GLSL 4.20 specification:
2925       * "If the binding is less than zero, or greater than or equal to the
2926       *  implementation-dependent maximum supported number of units, a
2927       *  compilation error will occur. When the binding identifier is used
2928       *  with an array of size N, all elements of the array from binding
2929       *  through binding + N - 1 must be within this range."
2930       */
2931      unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2932
2933      if (max_index >= limit) {
2934         _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2935                          "exceeds the maximum number of texture image units "
2936                          "(%u)", qual_binding, elements, limit);
2937
2938         return;
2939      }
2940   } else if (base_type->contains_atomic()) {
2941      assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2942      if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2943         _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2944                          "maximum number of atomic counter buffer bindings "
2945                          "(%u)", qual_binding,
2946                          ctx->Const.MaxAtomicBufferBindings);
2947
2948         return;
2949      }
2950   } else if ((state->is_version(420, 310) ||
2951               state->ARB_shading_language_420pack_enable) &&
2952              base_type->is_image()) {
2953      assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2954      if (max_index >= ctx->Const.MaxImageUnits) {
2955         _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2956                          "maximum number of image units (%d)", max_index,
2957                          ctx->Const.MaxImageUnits);
2958         return;
2959      }
2960
2961   } else {
2962      _mesa_glsl_error(loc, state,
2963                       "the \"binding\" qualifier only applies to uniform "
2964                       "blocks, storage blocks, opaque variables, or arrays "
2965                       "thereof");
2966      return;
2967   }
2968
2969   var->data.explicit_binding = true;
2970   var->data.binding = qual_binding;
2971
2972   return;
2973}
2974
2975static void
2976validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2977                                           YYLTYPE *loc,
2978                                           const glsl_interp_mode interpolation,
2979                                           const struct glsl_type *var_type,
2980                                           ir_variable_mode mode)
2981{
2982   if (state->stage != MESA_SHADER_FRAGMENT ||
2983       interpolation == INTERP_MODE_FLAT ||
2984       mode != ir_var_shader_in)
2985      return;
2986
2987   /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
2988    * so must integer vertex outputs.
2989    *
2990    * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2991    *    "Fragment shader inputs that are signed or unsigned integers or
2992    *    integer vectors must be qualified with the interpolation qualifier
2993    *    flat."
2994    *
2995    * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2996    *    "Fragment shader inputs that are, or contain, signed or unsigned
2997    *    integers or integer vectors must be qualified with the
2998    *    interpolation qualifier flat."
2999    *
3000    * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3001    *    "Vertex shader outputs that are, or contain, signed or unsigned
3002    *    integers or integer vectors must be qualified with the
3003    *    interpolation qualifier flat."
3004    *
3005    * Note that prior to GLSL 1.50, this requirement applied to vertex
3006    * outputs rather than fragment inputs.  That creates problems in the
3007    * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3008    * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
3009    * apply the restriction to both vertex outputs and fragment inputs.
3010    *
3011    * Note also that the desktop GLSL specs are missing the text "or
3012    * contain"; this is presumably an oversight, since there is no
3013    * reasonable way to interpolate a fragment shader input that contains
3014    * an integer. See Khronos bug #15671.
3015    */
3016   if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3017       && var_type->contains_integer()) {
3018      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3019                       "an integer, then it must be qualified with 'flat'");
3020   }
3021
3022   /* Double fragment inputs must be qualified with 'flat'.
3023    *
3024    * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3025    *    "This extension does not support interpolation of double-precision
3026    *    values; doubles used as fragment shader inputs must be qualified as
3027    *    "flat"."
3028    *
3029    * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3030    *    "Fragment shader inputs that are signed or unsigned integers, integer
3031    *    vectors, or any double-precision floating-point type must be
3032    *    qualified with the interpolation qualifier flat."
3033    *
3034    * Note that the GLSL specs are missing the text "or contain"; this is
3035    * presumably an oversight. See Khronos bug #15671.
3036    *
3037    * The 'double' type does not exist in GLSL ES so far.
3038    */
3039   if (state->has_double()
3040       && var_type->contains_double()) {
3041      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3042                       "a double, then it must be qualified with 'flat'");
3043   }
3044
3045   /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3046    *
3047    * From section 4.3.4 of the ARB_bindless_texture spec:
3048    *
3049    *    "(modify last paragraph, p. 35, allowing samplers and images as
3050    *     fragment shader inputs) ... Fragment inputs can only be signed and
3051    *     unsigned integers and integer vectors, floating point scalars,
3052    *     floating-point vectors, matrices, sampler and image types, or arrays
3053    *     or structures of these.  Fragment shader inputs that are signed or
3054    *     unsigned integers, integer vectors, or any double-precision floating-
3055    *     point type, or any sampler or image type must be qualified with the
3056    *     interpolation qualifier "flat"."
3057    */
3058   if (state->has_bindless()
3059       && (var_type->contains_sampler() || var_type->contains_image())) {
3060      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3061                       "a bindless sampler (or image), then it must be "
3062                       "qualified with 'flat'");
3063   }
3064}
3065
3066static void
3067validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3068                                 YYLTYPE *loc,
3069                                 const glsl_interp_mode interpolation,
3070                                 const struct ast_type_qualifier *qual,
3071                                 const struct glsl_type *var_type,
3072                                 ir_variable_mode mode)
3073{
3074   /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3075    * not to vertex shader inputs nor fragment shader outputs.
3076    *
3077    * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3078    *    "Outputs from a vertex shader (out) and inputs to a fragment
3079    *    shader (in) can be further qualified with one or more of these
3080    *    interpolation qualifiers"
3081    *    ...
3082    *    "These interpolation qualifiers may only precede the qualifiers in,
3083    *    centroid in, out, or centroid out in a declaration. They do not apply
3084    *    to the deprecated storage qualifiers varying or centroid
3085    *    varying. They also do not apply to inputs into a vertex shader or
3086    *    outputs from a fragment shader."
3087    *
3088    * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3089    *    "Outputs from a shader (out) and inputs to a shader (in) can be
3090    *    further qualified with one of these interpolation qualifiers."
3091    *    ...
3092    *    "These interpolation qualifiers may only precede the qualifiers
3093    *    in, centroid in, out, or centroid out in a declaration. They do
3094    *    not apply to inputs into a vertex shader or outputs from a
3095    *    fragment shader."
3096    */
3097   if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3098       && interpolation != INTERP_MODE_NONE) {
3099      const char *i = interpolation_string(interpolation);
3100      if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3101         _mesa_glsl_error(loc, state,
3102                          "interpolation qualifier `%s' can only be applied to "
3103                          "shader inputs or outputs.", i);
3104
3105      switch (state->stage) {
3106      case MESA_SHADER_VERTEX:
3107         if (mode == ir_var_shader_in) {
3108            _mesa_glsl_error(loc, state,
3109                             "interpolation qualifier '%s' cannot be applied to "
3110                             "vertex shader inputs", i);
3111         }
3112         break;
3113      case MESA_SHADER_FRAGMENT:
3114         if (mode == ir_var_shader_out) {
3115            _mesa_glsl_error(loc, state,
3116                             "interpolation qualifier '%s' cannot be applied to "
3117                             "fragment shader outputs", i);
3118         }
3119         break;
3120      default:
3121         break;
3122      }
3123   }
3124
3125   /* Interpolation qualifiers cannot be applied to 'centroid' and
3126    * 'centroid varying'.
3127    *
3128    * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3129    *    "interpolation qualifiers may only precede the qualifiers in,
3130    *    centroid in, out, or centroid out in a declaration. They do not apply
3131    *    to the deprecated storage qualifiers varying or centroid varying."
3132    *
3133    * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3134    *
3135    * GL_EXT_gpu_shader4 allows this.
3136    */
3137   if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable
3138       && interpolation != INTERP_MODE_NONE
3139       && qual->flags.q.varying) {
3140
3141      const char *i = interpolation_string(interpolation);
3142      const char *s;
3143      if (qual->flags.q.centroid)
3144         s = "centroid varying";
3145      else
3146         s = "varying";
3147
3148      _mesa_glsl_error(loc, state,
3149                       "qualifier '%s' cannot be applied to the "
3150                       "deprecated storage qualifier '%s'", i, s);
3151   }
3152
3153   validate_fragment_flat_interpolation_input(state, loc, interpolation,
3154                                              var_type, mode);
3155}
3156
3157static glsl_interp_mode
3158interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3159                                  const struct glsl_type *var_type,
3160                                  ir_variable_mode mode,
3161                                  struct _mesa_glsl_parse_state *state,
3162                                  YYLTYPE *loc)
3163{
3164   glsl_interp_mode interpolation;
3165   if (qual->flags.q.flat)
3166      interpolation = INTERP_MODE_FLAT;
3167   else if (qual->flags.q.noperspective)
3168      interpolation = INTERP_MODE_NOPERSPECTIVE;
3169   else if (qual->flags.q.smooth)
3170      interpolation = INTERP_MODE_SMOOTH;
3171   else
3172      interpolation = INTERP_MODE_NONE;
3173
3174   validate_interpolation_qualifier(state, loc,
3175                                    interpolation,
3176                                    qual, var_type, mode);
3177
3178   return interpolation;
3179}
3180
3181
3182static void
3183apply_explicit_location(const struct ast_type_qualifier *qual,
3184                        ir_variable *var,
3185                        struct _mesa_glsl_parse_state *state,
3186                        YYLTYPE *loc)
3187{
3188   bool fail = false;
3189
3190   unsigned qual_location;
3191   if (!process_qualifier_constant(state, loc, "location", qual->location,
3192                                   &qual_location)) {
3193      return;
3194   }
3195
3196   /* Checks for GL_ARB_explicit_uniform_location. */
3197   if (qual->flags.q.uniform) {
3198      if (!state->check_explicit_uniform_location_allowed(loc, var))
3199         return;
3200
3201      const struct gl_context *const ctx = state->ctx;
3202      unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3203
3204      if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3205         _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3206                          ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3207                          ctx->Const.MaxUserAssignableUniformLocations);
3208         return;
3209      }
3210
3211      var->data.explicit_location = true;
3212      var->data.location = qual_location;
3213      return;
3214   }
3215
3216   /* Between GL_ARB_explicit_attrib_location an
3217    * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3218    * stage can be assigned explicit locations.  The checking here associates
3219    * the correct extension with the correct stage's input / output:
3220    *
3221    *                     input            output
3222    *                     -----            ------
3223    * vertex              explicit_loc     sso
3224    * tess control        sso              sso
3225    * tess eval           sso              sso
3226    * geometry            sso              sso
3227    * fragment            sso              explicit_loc
3228    */
3229   switch (state->stage) {
3230   case MESA_SHADER_VERTEX:
3231      if (var->data.mode == ir_var_shader_in) {
3232         if (!state->check_explicit_attrib_location_allowed(loc, var))
3233            return;
3234
3235         break;
3236      }
3237
3238      if (var->data.mode == ir_var_shader_out) {
3239         if (!state->check_separate_shader_objects_allowed(loc, var))
3240            return;
3241
3242         break;
3243      }
3244
3245      fail = true;
3246      break;
3247
3248   case MESA_SHADER_TESS_CTRL:
3249   case MESA_SHADER_TESS_EVAL:
3250   case MESA_SHADER_GEOMETRY:
3251      if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3252         if (!state->check_separate_shader_objects_allowed(loc, var))
3253            return;
3254
3255         break;
3256      }
3257
3258      fail = true;
3259      break;
3260
3261   case MESA_SHADER_FRAGMENT:
3262      if (var->data.mode == ir_var_shader_in) {
3263         if (!state->check_separate_shader_objects_allowed(loc, var))
3264            return;
3265
3266         break;
3267      }
3268
3269      if (var->data.mode == ir_var_shader_out) {
3270         if (!state->check_explicit_attrib_location_allowed(loc, var))
3271            return;
3272
3273         break;
3274      }
3275
3276      fail = true;
3277      break;
3278
3279   case MESA_SHADER_COMPUTE:
3280      _mesa_glsl_error(loc, state,
3281                       "compute shader variables cannot be given "
3282                       "explicit locations");
3283      return;
3284   default:
3285      fail = true;
3286      break;
3287   };
3288
3289   if (fail) {
3290      _mesa_glsl_error(loc, state,
3291                       "%s cannot be given an explicit location in %s shader",
3292                       mode_string(var),
3293      _mesa_shader_stage_to_string(state->stage));
3294   } else {
3295      var->data.explicit_location = true;
3296
3297      switch (state->stage) {
3298      case MESA_SHADER_VERTEX:
3299         var->data.location = (var->data.mode == ir_var_shader_in)
3300            ? (qual_location + VERT_ATTRIB_GENERIC0)
3301            : (qual_location + VARYING_SLOT_VAR0);
3302         break;
3303
3304      case MESA_SHADER_TESS_CTRL:
3305      case MESA_SHADER_TESS_EVAL:
3306      case MESA_SHADER_GEOMETRY:
3307         if (var->data.patch)
3308            var->data.location = qual_location + VARYING_SLOT_PATCH0;
3309         else
3310            var->data.location = qual_location + VARYING_SLOT_VAR0;
3311         break;
3312
3313      case MESA_SHADER_FRAGMENT:
3314         var->data.location = (var->data.mode == ir_var_shader_out)
3315            ? (qual_location + FRAG_RESULT_DATA0)
3316            : (qual_location + VARYING_SLOT_VAR0);
3317         break;
3318      default:
3319         assert(!"Unexpected shader type");
3320         break;
3321      }
3322
3323      /* Check if index was set for the uniform instead of the function */
3324      if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3325         _mesa_glsl_error(loc, state, "an index qualifier can only be "
3326                          "used with subroutine functions");
3327         return;
3328      }
3329
3330      unsigned qual_index;
3331      if (qual->flags.q.explicit_index &&
3332          process_qualifier_constant(state, loc, "index", qual->index,
3333                                     &qual_index)) {
3334         /* From the GLSL 4.30 specification, section 4.4.2 (Output
3335          * Layout Qualifiers):
3336          *
3337          * "It is also a compile-time error if a fragment shader
3338          *  sets a layout index to less than 0 or greater than 1."
3339          *
3340          * Older specifications don't mandate a behavior; we take
3341          * this as a clarification and always generate the error.
3342          */
3343         if (qual_index > 1) {
3344            _mesa_glsl_error(loc, state,
3345                             "explicit index may only be 0 or 1");
3346         } else {
3347            var->data.explicit_index = true;
3348            var->data.index = qual_index;
3349         }
3350      }
3351   }
3352}
3353
3354static bool
3355validate_storage_for_sampler_image_types(ir_variable *var,
3356                                         struct _mesa_glsl_parse_state *state,
3357                                         YYLTYPE *loc)
3358{
3359   /* From section 4.1.7 of the GLSL 4.40 spec:
3360    *
3361    *    "[Opaque types] can only be declared as function
3362    *     parameters or uniform-qualified variables."
3363    *
3364    * From section 4.1.7 of the ARB_bindless_texture spec:
3365    *
3366    *    "Samplers may be declared as shader inputs and outputs, as uniform
3367    *     variables, as temporary variables, and as function parameters."
3368    *
3369    * From section 4.1.X of the ARB_bindless_texture spec:
3370    *
3371    *    "Images may be declared as shader inputs and outputs, as uniform
3372    *     variables, as temporary variables, and as function parameters."
3373    */
3374   if (state->has_bindless()) {
3375      if (var->data.mode != ir_var_auto &&
3376          var->data.mode != ir_var_uniform &&
3377          var->data.mode != ir_var_shader_in &&
3378          var->data.mode != ir_var_shader_out &&
3379          var->data.mode != ir_var_function_in &&
3380          var->data.mode != ir_var_function_out &&
3381          var->data.mode != ir_var_function_inout) {
3382         _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3383                         "only be declared as shader inputs and outputs, as "
3384                         "uniform variables, as temporary variables and as "
3385                         "function parameters");
3386         return false;
3387      }
3388   } else {
3389      if (var->data.mode != ir_var_uniform &&
3390          var->data.mode != ir_var_function_in) {
3391         _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3392                          "declared as function parameters or "
3393                          "uniform-qualified global variables");
3394         return false;
3395      }
3396   }
3397   return true;
3398}
3399
3400static bool
3401validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3402                                   YYLTYPE *loc,
3403                                   const struct ast_type_qualifier *qual,
3404                                   const glsl_type *type)
3405{
3406   /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3407    *
3408    * "Memory qualifiers are only supported in the declarations of image
3409    *  variables, buffer variables, and shader storage blocks; it is an error
3410    *  to use such qualifiers in any other declarations.
3411    */
3412   if (!type->is_image() && !qual->flags.q.buffer) {
3413      if (qual->flags.q.read_only ||
3414          qual->flags.q.write_only ||
3415          qual->flags.q.coherent ||
3416          qual->flags.q._volatile ||
3417          qual->flags.q.restrict_flag) {
3418         _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3419                          "in the declarations of image variables, buffer "
3420                          "variables, and shader storage blocks");
3421         return false;
3422      }
3423   }
3424   return true;
3425}
3426
3427static bool
3428validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3429                                         YYLTYPE *loc,
3430                                         const struct ast_type_qualifier *qual,
3431                                         const glsl_type *type)
3432{
3433   /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3434    *
3435    * "Format layout qualifiers can be used on image variable declarations
3436    *  (those declared with a basic type  having “image ” in its keyword)."
3437    */
3438   if (!type->is_image() && qual->flags.q.explicit_image_format) {
3439      _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3440                       "applied to images");
3441      return false;
3442   }
3443   return true;
3444}
3445
3446static void
3447apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3448                                  ir_variable *var,
3449                                  struct _mesa_glsl_parse_state *state,
3450                                  YYLTYPE *loc)
3451{
3452   const glsl_type *base_type = var->type->without_array();
3453
3454   if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3455       !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3456      return;
3457
3458   if (!base_type->is_image())
3459      return;
3460
3461   if (!validate_storage_for_sampler_image_types(var, state, loc))
3462      return;
3463
3464   var->data.memory_read_only |= qual->flags.q.read_only;
3465   var->data.memory_write_only |= qual->flags.q.write_only;
3466   var->data.memory_coherent |= qual->flags.q.coherent;
3467   var->data.memory_volatile |= qual->flags.q._volatile;
3468   var->data.memory_restrict |= qual->flags.q.restrict_flag;
3469
3470   if (qual->flags.q.explicit_image_format) {
3471      if (var->data.mode == ir_var_function_in) {
3472         _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3473                          "image function parameters");
3474      }
3475
3476      if (qual->image_base_type != base_type->sampled_type) {
3477         _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3478                          "data type of the image");
3479      }
3480
3481      var->data.image_format = qual->image_format;
3482   } else if (state->has_image_load_formatted()) {
3483      if (var->data.mode == ir_var_uniform &&
3484          state->EXT_shader_image_load_formatted_warn) {
3485         _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used");
3486      }
3487   } else {
3488      if (var->data.mode == ir_var_uniform) {
3489         if (state->es_shader) {
3490            _mesa_glsl_error(loc, state, "all image uniforms must have a "
3491                             "format layout qualifier");
3492         } else if (!qual->flags.q.write_only) {
3493            _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3494                             "`writeonly' must have a format layout qualifier");
3495         }
3496      }
3497      var->data.image_format = GL_NONE;
3498   }
3499
3500   /* From page 70 of the GLSL ES 3.1 specification:
3501    *
3502    * "Except for image variables qualified with the format qualifiers r32f,
3503    *  r32i, and r32ui, image variables must specify either memory qualifier
3504    *  readonly or the memory qualifier writeonly."
3505    */
3506   if (state->es_shader &&
3507       var->data.image_format != GL_R32F &&
3508       var->data.image_format != GL_R32I &&
3509       var->data.image_format != GL_R32UI &&
3510       !var->data.memory_read_only &&
3511       !var->data.memory_write_only) {
3512      _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3513                       "r32i or r32ui must be qualified `readonly' or "
3514                       "`writeonly'");
3515   }
3516}
3517
3518static inline const char*
3519get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3520{
3521   if (origin_upper_left && pixel_center_integer)
3522      return "origin_upper_left, pixel_center_integer";
3523   else if (origin_upper_left)
3524      return "origin_upper_left";
3525   else if (pixel_center_integer)
3526      return "pixel_center_integer";
3527   else
3528      return " ";
3529}
3530
3531static inline bool
3532is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3533                                       const struct ast_type_qualifier *qual)
3534{
3535   /* If gl_FragCoord was previously declared, and the qualifiers were
3536    * different in any way, return true.
3537    */
3538   if (state->fs_redeclares_gl_fragcoord) {
3539      return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3540         || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3541   }
3542
3543   return false;
3544}
3545
3546static inline void
3547validate_array_dimensions(const glsl_type *t,
3548                          struct _mesa_glsl_parse_state *state,
3549                          YYLTYPE *loc) {
3550   if (t->is_array()) {
3551      t = t->fields.array;
3552      while (t->is_array()) {
3553         if (t->is_unsized_array()) {
3554            _mesa_glsl_error(loc, state,
3555                             "only the outermost array dimension can "
3556                             "be unsized",
3557                             t->name);
3558            break;
3559         }
3560         t = t->fields.array;
3561      }
3562   }
3563}
3564
3565static void
3566apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3567                                     ir_variable *var,
3568                                     struct _mesa_glsl_parse_state *state,
3569                                     YYLTYPE *loc)
3570{
3571   bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3572                               qual->flags.q.bindless_image ||
3573                               qual->flags.q.bound_sampler ||
3574                               qual->flags.q.bound_image;
3575
3576   /* The ARB_bindless_texture spec says:
3577    *
3578    * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3579    *  spec"
3580    *
3581    * "If these layout qualifiers are applied to other types of default block
3582    *  uniforms, or variables with non-uniform storage, a compile-time error
3583    *  will be generated."
3584    */
3585   if (has_local_qualifiers && !qual->flags.q.uniform) {
3586      _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3587                       "can only be applied to default block uniforms or "
3588                       "variables with uniform storage");
3589      return;
3590   }
3591
3592   /* The ARB_bindless_texture spec doesn't state anything in this situation,
3593    * but it makes sense to only allow bindless_sampler/bound_sampler for
3594    * sampler types, and respectively bindless_image/bound_image for image
3595    * types.
3596    */
3597   if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3598       !var->type->contains_sampler()) {
3599      _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3600                       "be applied to sampler types");
3601      return;
3602   }
3603
3604   if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3605       !var->type->contains_image()) {
3606      _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3607                       "applied to image types");
3608      return;
3609   }
3610
3611   /* The bindless_sampler/bindless_image (and respectively
3612    * bound_sampler/bound_image) layout qualifiers can be set at global and at
3613    * local scope.
3614    */
3615   if (var->type->contains_sampler() || var->type->contains_image()) {
3616      var->data.bindless = qual->flags.q.bindless_sampler ||
3617                           qual->flags.q.bindless_image ||
3618                           state->bindless_sampler_specified ||
3619                           state->bindless_image_specified;
3620
3621      var->data.bound = qual->flags.q.bound_sampler ||
3622                        qual->flags.q.bound_image ||
3623                        state->bound_sampler_specified ||
3624                        state->bound_image_specified;
3625   }
3626}
3627
3628static void
3629apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3630                                   ir_variable *var,
3631                                   struct _mesa_glsl_parse_state *state,
3632                                   YYLTYPE *loc)
3633{
3634   if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3635
3636      /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3637       *
3638       *    "Within any shader, the first redeclarations of gl_FragCoord
3639       *     must appear before any use of gl_FragCoord."
3640       *
3641       * Generate a compiler error if above condition is not met by the
3642       * fragment shader.
3643       */
3644      ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3645      if (earlier != NULL &&
3646          earlier->data.used &&
3647          !state->fs_redeclares_gl_fragcoord) {
3648         _mesa_glsl_error(loc, state,
3649                          "gl_FragCoord used before its first redeclaration "
3650                          "in fragment shader");
3651      }
3652
3653      /* Make sure all gl_FragCoord redeclarations specify the same layout
3654       * qualifiers.
3655       */
3656      if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3657         const char *const qual_string =
3658            get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3659                                        qual->flags.q.pixel_center_integer);
3660
3661         const char *const state_string =
3662            get_layout_qualifier_string(state->fs_origin_upper_left,
3663                                        state->fs_pixel_center_integer);
3664
3665         _mesa_glsl_error(loc, state,
3666                          "gl_FragCoord redeclared with different layout "
3667                          "qualifiers (%s) and (%s) ",
3668                          state_string,
3669                          qual_string);
3670      }
3671      state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3672      state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3673      state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3674         !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3675      state->fs_redeclares_gl_fragcoord =
3676         state->fs_origin_upper_left ||
3677         state->fs_pixel_center_integer ||
3678         state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3679   }
3680
3681   if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3682       && (strcmp(var->name, "gl_FragCoord") != 0)) {
3683      const char *const qual_string = (qual->flags.q.origin_upper_left)
3684         ? "origin_upper_left" : "pixel_center_integer";
3685
3686      _mesa_glsl_error(loc, state,
3687                       "layout qualifier `%s' can only be applied to "
3688                       "fragment shader input `gl_FragCoord'",
3689                       qual_string);
3690   }
3691
3692   if (qual->flags.q.explicit_location) {
3693      apply_explicit_location(qual, var, state, loc);
3694
3695      if (qual->flags.q.explicit_component) {
3696         unsigned qual_component;
3697         if (process_qualifier_constant(state, loc, "component",
3698                                        qual->component, &qual_component)) {
3699            const glsl_type *type = var->type->without_array();
3700            unsigned components = type->component_slots();
3701
3702            if (type->is_matrix() || type->is_struct()) {
3703               _mesa_glsl_error(loc, state, "component layout qualifier "
3704                                "cannot be applied to a matrix, a structure, "
3705                                "a block, or an array containing any of "
3706                                "these.");
3707            } else if (components > 4 && type->is_64bit()) {
3708               _mesa_glsl_error(loc, state, "component layout qualifier "
3709                                "cannot be applied to dvec%u.",
3710                                components / 2);
3711            } else if (qual_component != 0 &&
3712                (qual_component + components - 1) > 3) {
3713               _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3714                                (qual_component + components - 1));
3715            } else if (qual_component == 1 && type->is_64bit()) {
3716               /* We don't bother checking for 3 as it should be caught by the
3717                * overflow check above.
3718                */
3719               _mesa_glsl_error(loc, state, "doubles cannot begin at "
3720                                "component 1 or 3");
3721            } else {
3722               var->data.explicit_component = true;
3723               var->data.location_frac = qual_component;
3724            }
3725         }
3726      }
3727   } else if (qual->flags.q.explicit_index) {
3728      if (!qual->subroutine_list)
3729         _mesa_glsl_error(loc, state,
3730                          "explicit index requires explicit location");
3731   } else if (qual->flags.q.explicit_component) {
3732      _mesa_glsl_error(loc, state,
3733                       "explicit component requires explicit location");
3734   }
3735
3736   if (qual->flags.q.explicit_binding) {
3737      apply_explicit_binding(state, loc, var, var->type, qual);
3738   }
3739
3740   if (state->stage == MESA_SHADER_GEOMETRY &&
3741       qual->flags.q.out && qual->flags.q.stream) {
3742      unsigned qual_stream;
3743      if (process_qualifier_constant(state, loc, "stream", qual->stream,
3744                                     &qual_stream) &&
3745          validate_stream_qualifier(loc, state, qual_stream)) {
3746         var->data.stream = qual_stream;
3747      }
3748   }
3749
3750   if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3751      unsigned qual_xfb_buffer;
3752      if (process_qualifier_constant(state, loc, "xfb_buffer",
3753                                     qual->xfb_buffer, &qual_xfb_buffer) &&
3754          validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3755         var->data.xfb_buffer = qual_xfb_buffer;
3756         if (qual->flags.q.explicit_xfb_buffer)
3757            var->data.explicit_xfb_buffer = true;
3758      }
3759   }
3760
3761   if (qual->flags.q.explicit_xfb_offset) {
3762      unsigned qual_xfb_offset;
3763      unsigned component_size = var->type->contains_double() ? 8 : 4;
3764
3765      if (process_qualifier_constant(state, loc, "xfb_offset",
3766                                     qual->offset, &qual_xfb_offset) &&
3767          validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3768                                        var->type, component_size)) {
3769         var->data.offset = qual_xfb_offset;
3770         var->data.explicit_xfb_offset = true;
3771      }
3772   }
3773
3774   if (qual->flags.q.explicit_xfb_stride) {
3775      unsigned qual_xfb_stride;
3776      if (process_qualifier_constant(state, loc, "xfb_stride",
3777                                     qual->xfb_stride, &qual_xfb_stride)) {
3778         var->data.xfb_stride = qual_xfb_stride;
3779         var->data.explicit_xfb_stride = true;
3780      }
3781   }
3782
3783   if (var->type->contains_atomic()) {
3784      if (var->data.mode == ir_var_uniform) {
3785         if (var->data.explicit_binding) {
3786            unsigned *offset =
3787               &state->atomic_counter_offsets[var->data.binding];
3788
3789            if (*offset % ATOMIC_COUNTER_SIZE)
3790               _mesa_glsl_error(loc, state,
3791                                "misaligned atomic counter offset");
3792
3793            var->data.offset = *offset;
3794            *offset += var->type->atomic_size();
3795
3796         } else {
3797            _mesa_glsl_error(loc, state,
3798                             "atomic counters require explicit binding point");
3799         }
3800      } else if (var->data.mode != ir_var_function_in) {
3801         _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3802                          "function parameters or uniform-qualified "
3803                          "global variables");
3804      }
3805   }
3806
3807   if (var->type->contains_sampler() &&
3808       !validate_storage_for_sampler_image_types(var, state, loc))
3809      return;
3810
3811   /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3812    * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3813    * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3814    * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3815    * These extensions and all following extensions that add the 'layout'
3816    * keyword have been modified to require the use of 'in' or 'out'.
3817    *
3818    * The following extension do not allow the deprecated keywords:
3819    *
3820    *    GL_AMD_conservative_depth
3821    *    GL_ARB_conservative_depth
3822    *    GL_ARB_gpu_shader5
3823    *    GL_ARB_separate_shader_objects
3824    *    GL_ARB_tessellation_shader
3825    *    GL_ARB_transform_feedback3
3826    *    GL_ARB_uniform_buffer_object
3827    *
3828    * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3829    * allow layout with the deprecated keywords.
3830    */
3831   const bool relaxed_layout_qualifier_checking =
3832      state->ARB_fragment_coord_conventions_enable;
3833
3834   const bool uses_deprecated_qualifier = qual->flags.q.attribute
3835      || qual->flags.q.varying;
3836   if (qual->has_layout() && uses_deprecated_qualifier) {
3837      if (relaxed_layout_qualifier_checking) {
3838         _mesa_glsl_warning(loc, state,
3839                            "`layout' qualifier may not be used with "
3840                            "`attribute' or `varying'");
3841      } else {
3842         _mesa_glsl_error(loc, state,
3843                          "`layout' qualifier may not be used with "
3844                          "`attribute' or `varying'");
3845      }
3846   }
3847
3848   /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3849    * AMD_conservative_depth.
3850    */
3851   if (qual->flags.q.depth_type
3852       && !state->is_version(420, 0)
3853       && !state->AMD_conservative_depth_enable
3854       && !state->ARB_conservative_depth_enable) {
3855       _mesa_glsl_error(loc, state,
3856                        "extension GL_AMD_conservative_depth or "
3857                        "GL_ARB_conservative_depth must be enabled "
3858                        "to use depth layout qualifiers");
3859   } else if (qual->flags.q.depth_type
3860              && strcmp(var->name, "gl_FragDepth") != 0) {
3861       _mesa_glsl_error(loc, state,
3862                        "depth layout qualifiers can be applied only to "
3863                        "gl_FragDepth");
3864   }
3865
3866   switch (qual->depth_type) {
3867   case ast_depth_any:
3868      var->data.depth_layout = ir_depth_layout_any;
3869      break;
3870   case ast_depth_greater:
3871      var->data.depth_layout = ir_depth_layout_greater;
3872      break;
3873   case ast_depth_less:
3874      var->data.depth_layout = ir_depth_layout_less;
3875      break;
3876   case ast_depth_unchanged:
3877      var->data.depth_layout = ir_depth_layout_unchanged;
3878      break;
3879   default:
3880      var->data.depth_layout = ir_depth_layout_none;
3881      break;
3882   }
3883
3884   if (qual->flags.q.std140 ||
3885       qual->flags.q.std430 ||
3886       qual->flags.q.packed ||
3887       qual->flags.q.shared) {
3888      _mesa_glsl_error(loc, state,
3889                       "uniform and shader storage block layout qualifiers "
3890                       "std140, std430, packed, and shared can only be "
3891                       "applied to uniform or shader storage blocks, not "
3892                       "members");
3893   }
3894
3895   if (qual->flags.q.row_major || qual->flags.q.column_major) {
3896      validate_matrix_layout_for_type(state, loc, var->type, var);
3897   }
3898
3899   /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3900    * Inputs):
3901    *
3902    *  "Fragment shaders also allow the following layout qualifier on in only
3903    *   (not with variable declarations)
3904    *     layout-qualifier-id
3905    *        early_fragment_tests
3906    *   [...]"
3907    */
3908   if (qual->flags.q.early_fragment_tests) {
3909      _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3910                       "valid in fragment shader input layout declaration.");
3911   }
3912
3913   if (qual->flags.q.inner_coverage) {
3914      _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3915                       "valid in fragment shader input layout declaration.");
3916   }
3917
3918   if (qual->flags.q.post_depth_coverage) {
3919      _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3920                       "valid in fragment shader input layout declaration.");
3921   }
3922
3923   if (state->has_bindless())
3924      apply_bindless_qualifier_to_variable(qual, var, state, loc);
3925
3926   if (qual->flags.q.pixel_interlock_ordered ||
3927       qual->flags.q.pixel_interlock_unordered ||
3928       qual->flags.q.sample_interlock_ordered ||
3929       qual->flags.q.sample_interlock_unordered) {
3930      _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
3931                       "pixel_interlock_ordered, pixel_interlock_unordered, "
3932                       "sample_interlock_ordered and sample_interlock_unordered, "
3933                       "only valid in fragment shader input layout declaration.");
3934   }
3935}
3936
3937static void
3938apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3939                                 ir_variable *var,
3940                                 struct _mesa_glsl_parse_state *state,
3941                                 YYLTYPE *loc,
3942                                 bool is_parameter)
3943{
3944   STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3945
3946   if (qual->flags.q.invariant) {
3947      if (var->data.used) {
3948         _mesa_glsl_error(loc, state,
3949                          "variable `%s' may not be redeclared "
3950                          "`invariant' after being used",
3951                          var->name);
3952      } else {
3953         var->data.explicit_invariant = true;
3954         var->data.invariant = true;
3955      }
3956   }
3957
3958   if (qual->flags.q.precise) {
3959      if (var->data.used) {
3960         _mesa_glsl_error(loc, state,
3961                          "variable `%s' may not be redeclared "
3962                          "`precise' after being used",
3963                          var->name);
3964      } else {
3965         var->data.precise = 1;
3966      }
3967   }
3968
3969   if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3970      _mesa_glsl_error(loc, state,
3971                       "`subroutine' may only be applied to uniforms, "
3972                       "subroutine type declarations, or function definitions");
3973   }
3974
3975   if (qual->flags.q.constant || qual->flags.q.attribute
3976       || qual->flags.q.uniform
3977       || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3978      var->data.read_only = 1;
3979
3980   if (qual->flags.q.centroid)
3981      var->data.centroid = 1;
3982
3983   if (qual->flags.q.sample)
3984      var->data.sample = 1;
3985
3986   /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3987   if (state->es_shader) {
3988      var->data.precision =
3989         select_gles_precision(qual->precision, var->type, state, loc);
3990   }
3991
3992   if (qual->flags.q.patch)
3993      var->data.patch = 1;
3994
3995   if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3996      var->type = glsl_type::error_type;
3997      _mesa_glsl_error(loc, state,
3998                       "`attribute' variables may not be declared in the "
3999                       "%s shader",
4000                       _mesa_shader_stage_to_string(state->stage));
4001   }
4002
4003   /* Disallow layout qualifiers which may only appear on layout declarations. */
4004   if (qual->flags.q.prim_type) {
4005      _mesa_glsl_error(loc, state,
4006                       "Primitive type may only be specified on GS input or output "
4007                       "layout declaration, not on variables.");
4008   }
4009
4010   /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4011    *
4012    *     "However, the const qualifier cannot be used with out or inout."
4013    *
4014    * The same section of the GLSL 4.40 spec further clarifies this saying:
4015    *
4016    *     "The const qualifier cannot be used with out or inout, or a
4017    *     compile-time error results."
4018    */
4019   if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4020      _mesa_glsl_error(loc, state,
4021                       "`const' may not be applied to `out' or `inout' "
4022                       "function parameters");
4023   }
4024
4025   /* If there is no qualifier that changes the mode of the variable, leave
4026    * the setting alone.
4027    */
4028   assert(var->data.mode != ir_var_temporary);
4029   if (qual->flags.q.in && qual->flags.q.out)
4030      var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4031   else if (qual->flags.q.in)
4032      var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4033   else if (qual->flags.q.attribute
4034            || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4035      var->data.mode = ir_var_shader_in;
4036   else if (qual->flags.q.out)
4037      var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4038   else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4039      var->data.mode = ir_var_shader_out;
4040   else if (qual->flags.q.uniform)
4041      var->data.mode = ir_var_uniform;
4042   else if (qual->flags.q.buffer)
4043      var->data.mode = ir_var_shader_storage;
4044   else if (qual->flags.q.shared_storage)
4045      var->data.mode = ir_var_shader_shared;
4046
4047   if (!is_parameter && state->has_framebuffer_fetch() &&
4048       state->stage == MESA_SHADER_FRAGMENT) {
4049      if (state->is_version(130, 300))
4050         var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4051      else
4052         var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4053   }
4054
4055   if (var->data.fb_fetch_output) {
4056      var->data.assigned = true;
4057      var->data.memory_coherent = !qual->flags.q.non_coherent;
4058
4059      /* From the EXT_shader_framebuffer_fetch spec:
4060       *
4061       *   "It is an error to declare an inout fragment output not qualified
4062       *    with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4063       *    extension hasn't been enabled."
4064       */
4065      if (var->data.memory_coherent &&
4066          !state->EXT_shader_framebuffer_fetch_enable)
4067         _mesa_glsl_error(loc, state,
4068                          "invalid declaration of framebuffer fetch output not "
4069                          "qualified with layout(noncoherent)");
4070
4071   } else {
4072      /* From the EXT_shader_framebuffer_fetch spec:
4073       *
4074       *   "Fragment outputs declared inout may specify the following layout
4075       *    qualifier: [...] noncoherent"
4076       */
4077      if (qual->flags.q.non_coherent)
4078         _mesa_glsl_error(loc, state,
4079                          "invalid layout(noncoherent) qualifier not part of "
4080                          "framebuffer fetch output declaration");
4081   }
4082
4083   if (!is_parameter && is_varying_var(var, state->stage)) {
4084      /* User-defined ins/outs are not permitted in compute shaders. */
4085      if (state->stage == MESA_SHADER_COMPUTE) {
4086         _mesa_glsl_error(loc, state,
4087                          "user-defined input and output variables are not "
4088                          "permitted in compute shaders");
4089      }
4090
4091      /* This variable is being used to link data between shader stages (in
4092       * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
4093       * that is allowed for such purposes.
4094       *
4095       * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4096       *
4097       *     "The varying qualifier can be used only with the data types
4098       *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4099       *     these."
4100       *
4101       * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
4102       * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4103       *
4104       *     "Fragment inputs can only be signed and unsigned integers and
4105       *     integer vectors, float, floating-point vectors, matrices, or
4106       *     arrays of these. Structures cannot be input.
4107       *
4108       * Similar text exists in the section on vertex shader outputs.
4109       *
4110       * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4111       * 3.00 spec allows structs as well.  Varying structs are also allowed
4112       * in GLSL 1.50.
4113       *
4114       * From section 4.3.4 of the ARB_bindless_texture spec:
4115       *
4116       *     "(modify third paragraph of the section to allow sampler and image
4117       *     types) ...  Vertex shader inputs can only be float,
4118       *     single-precision floating-point scalars, single-precision
4119       *     floating-point vectors, matrices, signed and unsigned integers
4120       *     and integer vectors, sampler and image types."
4121       *
4122       * From section 4.3.6 of the ARB_bindless_texture spec:
4123       *
4124       *     "Output variables can only be floating-point scalars,
4125       *     floating-point vectors, matrices, signed or unsigned integers or
4126       *     integer vectors, sampler or image types, or arrays or structures
4127       *     of any these."
4128       */
4129      switch (var->type->without_array()->base_type) {
4130      case GLSL_TYPE_FLOAT:
4131         /* Ok in all GLSL versions */
4132         break;
4133      case GLSL_TYPE_UINT:
4134      case GLSL_TYPE_INT:
4135         if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
4136            break;
4137         _mesa_glsl_error(loc, state,
4138                          "varying variables must be of base type float in %s",
4139                          state->get_version_string());
4140         break;
4141      case GLSL_TYPE_STRUCT:
4142         if (state->is_version(150, 300))
4143            break;
4144         _mesa_glsl_error(loc, state,
4145                          "varying variables may not be of type struct");
4146         break;
4147      case GLSL_TYPE_DOUBLE:
4148      case GLSL_TYPE_UINT64:
4149      case GLSL_TYPE_INT64:
4150         break;
4151      case GLSL_TYPE_SAMPLER:
4152      case GLSL_TYPE_IMAGE:
4153         if (state->has_bindless())
4154            break;
4155         /* fallthrough */
4156      default:
4157         _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4158         break;
4159      }
4160   }
4161
4162   if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4163      var->data.explicit_invariant = true;
4164      var->data.invariant = true;
4165   }
4166
4167   var->data.interpolation =
4168      interpret_interpolation_qualifier(qual, var->type,
4169                                        (ir_variable_mode) var->data.mode,
4170                                        state, loc);
4171
4172   /* Does the declaration use the deprecated 'attribute' or 'varying'
4173    * keywords?
4174    */
4175   const bool uses_deprecated_qualifier = qual->flags.q.attribute
4176      || qual->flags.q.varying;
4177
4178
4179   /* Validate auxiliary storage qualifiers */
4180
4181   /* From section 4.3.4 of the GLSL 1.30 spec:
4182    *    "It is an error to use centroid in in a vertex shader."
4183    *
4184    * From section 4.3.4 of the GLSL ES 3.00 spec:
4185    *    "It is an error to use centroid in or interpolation qualifiers in
4186    *    a vertex shader input."
4187    */
4188
4189   /* Section 4.3.6 of the GLSL 1.30 specification states:
4190    * "It is an error to use centroid out in a fragment shader."
4191    *
4192    * The GL_ARB_shading_language_420pack extension specification states:
4193    * "It is an error to use auxiliary storage qualifiers or interpolation
4194    *  qualifiers on an output in a fragment shader."
4195    */
4196   if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4197      _mesa_glsl_error(loc, state,
4198                       "sample qualifier may only be used on `in` or `out` "
4199                       "variables between shader stages");
4200   }
4201   if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4202      _mesa_glsl_error(loc, state,
4203                       "centroid qualifier may only be used with `in', "
4204                       "`out' or `varying' variables between shader stages");
4205   }
4206
4207   if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4208      _mesa_glsl_error(loc, state,
4209                       "the shared storage qualifiers can only be used with "
4210                       "compute shaders");
4211   }
4212
4213   apply_image_qualifier_to_variable(qual, var, state, loc);
4214}
4215
4216/**
4217 * Get the variable that is being redeclared by this declaration or if it
4218 * does not exist, the current declared variable.
4219 *
4220 * Semantic checks to verify the validity of the redeclaration are also
4221 * performed.  If semantic checks fail, compilation error will be emitted via
4222 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4223 *
4224 * \returns
4225 * A pointer to an existing variable in the current scope if the declaration
4226 * is a redeclaration, current variable otherwise. \c is_declared boolean
4227 * will return \c true if the declaration is a redeclaration, \c false
4228 * otherwise.
4229 */
4230static ir_variable *
4231get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4232                              struct _mesa_glsl_parse_state *state,
4233                              bool allow_all_redeclarations,
4234                              bool *is_redeclaration)
4235{
4236   ir_variable *var = *var_ptr;
4237
4238   /* Check if this declaration is actually a re-declaration, either to
4239    * resize an array or add qualifiers to an existing variable.
4240    *
4241    * This is allowed for variables in the current scope, or when at
4242    * global scope (for built-ins in the implicit outer scope).
4243    */
4244   ir_variable *earlier = state->symbols->get_variable(var->name);
4245   if (earlier == NULL ||
4246       (state->current_function != NULL &&
4247       !state->symbols->name_declared_this_scope(var->name))) {
4248      *is_redeclaration = false;
4249      return var;
4250   }
4251
4252   *is_redeclaration = true;
4253
4254   if (earlier->data.how_declared == ir_var_declared_implicitly) {
4255      /* Verify that the redeclaration of a built-in does not change the
4256       * storage qualifier.  There are a couple special cases.
4257       *
4258       * 1. Some built-in variables that are defined as 'in' in the
4259       *    specification are implemented as system values.  Allow
4260       *    ir_var_system_value -> ir_var_shader_in.
4261       *
4262       * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4263       *    specification requires that redeclarations omit any qualifier.
4264       *    Allow ir_var_shader_out -> ir_var_auto for this one variable.
4265       */
4266      if (earlier->data.mode != var->data.mode &&
4267          !(earlier->data.mode == ir_var_system_value &&
4268            var->data.mode == ir_var_shader_in) &&
4269          !(strcmp(var->name, "gl_LastFragData") == 0 &&
4270            var->data.mode == ir_var_auto)) {
4271         _mesa_glsl_error(&loc, state,
4272                          "redeclaration cannot change qualification of `%s'",
4273                          var->name);
4274      }
4275   }
4276
4277   /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4278    *
4279    * "It is legal to declare an array without a size and then
4280    *  later re-declare the same name as an array of the same
4281    *  type and specify a size."
4282    */
4283   if (earlier->type->is_unsized_array() && var->type->is_array()
4284       && (var->type->fields.array == earlier->type->fields.array)) {
4285      const int size = var->type->array_size();
4286      check_builtin_array_max_size(var->name, size, loc, state);
4287      if ((size > 0) && (size <= earlier->data.max_array_access)) {
4288         _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4289                          "previous access",
4290                          earlier->data.max_array_access);
4291      }
4292
4293      earlier->type = var->type;
4294      delete var;
4295      var = NULL;
4296      *var_ptr = NULL;
4297   } else if (earlier->type != var->type) {
4298      _mesa_glsl_error(&loc, state,
4299                       "redeclaration of `%s' has incorrect type",
4300                       var->name);
4301   } else if ((state->ARB_fragment_coord_conventions_enable ||
4302              state->is_version(150, 0))
4303              && strcmp(var->name, "gl_FragCoord") == 0) {
4304      /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4305       * qualifiers.
4306       *
4307       * We don't really need to do anything here, just allow the
4308       * redeclaration. Any error on the gl_FragCoord is handled on the ast
4309       * level at apply_layout_qualifier_to_variable using the
4310       * ast_type_qualifier and _mesa_glsl_parse_state, or later at
4311       * linker.cpp.
4312       */
4313      /* According to section 4.3.7 of the GLSL 1.30 spec,
4314       * the following built-in varaibles can be redeclared with an
4315       * interpolation qualifier:
4316       *    * gl_FrontColor
4317       *    * gl_BackColor
4318       *    * gl_FrontSecondaryColor
4319       *    * gl_BackSecondaryColor
4320       *    * gl_Color
4321       *    * gl_SecondaryColor
4322       */
4323   } else if (state->is_version(130, 0)
4324              && (strcmp(var->name, "gl_FrontColor") == 0
4325                  || strcmp(var->name, "gl_BackColor") == 0
4326                  || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4327                  || strcmp(var->name, "gl_BackSecondaryColor") == 0
4328                  || strcmp(var->name, "gl_Color") == 0
4329                  || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4330      earlier->data.interpolation = var->data.interpolation;
4331
4332      /* Layout qualifiers for gl_FragDepth. */
4333   } else if ((state->is_version(420, 0) ||
4334               state->AMD_conservative_depth_enable ||
4335               state->ARB_conservative_depth_enable)
4336              && strcmp(var->name, "gl_FragDepth") == 0) {
4337
4338      /** From the AMD_conservative_depth spec:
4339       *     Within any shader, the first redeclarations of gl_FragDepth
4340       *     must appear before any use of gl_FragDepth.
4341       */
4342      if (earlier->data.used) {
4343         _mesa_glsl_error(&loc, state,
4344                          "the first redeclaration of gl_FragDepth "
4345                          "must appear before any use of gl_FragDepth");
4346      }
4347
4348      /* Prevent inconsistent redeclaration of depth layout qualifier. */
4349      if (earlier->data.depth_layout != ir_depth_layout_none
4350          && earlier->data.depth_layout != var->data.depth_layout) {
4351            _mesa_glsl_error(&loc, state,
4352                             "gl_FragDepth: depth layout is declared here "
4353                             "as '%s, but it was previously declared as "
4354                             "'%s'",
4355                             depth_layout_string(var->data.depth_layout),
4356                             depth_layout_string(earlier->data.depth_layout));
4357      }
4358
4359      earlier->data.depth_layout = var->data.depth_layout;
4360
4361   } else if (state->has_framebuffer_fetch() &&
4362              strcmp(var->name, "gl_LastFragData") == 0 &&
4363              var->data.mode == ir_var_auto) {
4364      /* According to the EXT_shader_framebuffer_fetch spec:
4365       *
4366       *   "By default, gl_LastFragData is declared with the mediump precision
4367       *    qualifier. This can be changed by redeclaring the corresponding
4368       *    variables with the desired precision qualifier."
4369       *
4370       *   "Fragment shaders may specify the following layout qualifier only for
4371       *    redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4372       */
4373      earlier->data.precision = var->data.precision;
4374      earlier->data.memory_coherent = var->data.memory_coherent;
4375
4376   } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4377               state->allow_builtin_variable_redeclaration) ||
4378              allow_all_redeclarations) {
4379      /* Allow verbatim redeclarations of built-in variables. Not explicitly
4380       * valid, but some applications do it.
4381       */
4382   } else {
4383      _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4384   }
4385
4386   return earlier;
4387}
4388
4389/**
4390 * Generate the IR for an initializer in a variable declaration
4391 */
4392static ir_rvalue *
4393process_initializer(ir_variable *var, ast_declaration *decl,
4394                    ast_fully_specified_type *type,
4395                    exec_list *initializer_instructions,
4396                    struct _mesa_glsl_parse_state *state)
4397{
4398   void *mem_ctx = state;
4399   ir_rvalue *result = NULL;
4400
4401   YYLTYPE initializer_loc = decl->initializer->get_location();
4402
4403   /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4404    *
4405    *    "All uniform variables are read-only and are initialized either
4406    *    directly by an application via API commands, or indirectly by
4407    *    OpenGL."
4408    */
4409   if (var->data.mode == ir_var_uniform) {
4410      state->check_version(120, 0, &initializer_loc,
4411                           "cannot initialize uniform %s",
4412                           var->name);
4413   }
4414
4415   /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4416    *
4417    *    "Buffer variables cannot have initializers."
4418    */
4419   if (var->data.mode == ir_var_shader_storage) {
4420      _mesa_glsl_error(&initializer_loc, state,
4421                       "cannot initialize buffer variable %s",
4422                       var->name);
4423   }
4424
4425   /* From section 4.1.7 of the GLSL 4.40 spec:
4426    *
4427    *    "Opaque variables [...] are initialized only through the
4428    *     OpenGL API; they cannot be declared with an initializer in a
4429    *     shader."
4430    *
4431    * From section 4.1.7 of the ARB_bindless_texture spec:
4432    *
4433    *    "Samplers may be declared as shader inputs and outputs, as uniform
4434    *     variables, as temporary variables, and as function parameters."
4435    *
4436    * From section 4.1.X of the ARB_bindless_texture spec:
4437    *
4438    *    "Images may be declared as shader inputs and outputs, as uniform
4439    *     variables, as temporary variables, and as function parameters."
4440    */
4441   if (var->type->contains_atomic() ||
4442       (!state->has_bindless() && var->type->contains_opaque())) {
4443      _mesa_glsl_error(&initializer_loc, state,
4444                       "cannot initialize %s variable %s",
4445                       var->name, state->has_bindless() ? "atomic" : "opaque");
4446   }
4447
4448   if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4449      _mesa_glsl_error(&initializer_loc, state,
4450                       "cannot initialize %s shader input / %s %s",
4451                       _mesa_shader_stage_to_string(state->stage),
4452                       (state->stage == MESA_SHADER_VERTEX)
4453                       ? "attribute" : "varying",
4454                       var->name);
4455   }
4456
4457   if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4458      _mesa_glsl_error(&initializer_loc, state,
4459                       "cannot initialize %s shader output %s",
4460                       _mesa_shader_stage_to_string(state->stage),
4461                       var->name);
4462   }
4463
4464   /* If the initializer is an ast_aggregate_initializer, recursively store
4465    * type information from the LHS into it, so that its hir() function can do
4466    * type checking.
4467    */
4468   if (decl->initializer->oper == ast_aggregate)
4469      _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4470
4471   ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4472   ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4473
4474   /* Calculate the constant value if this is a const or uniform
4475    * declaration.
4476    *
4477    * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4478    *
4479    *     "Declarations of globals without a storage qualifier, or with
4480    *     just the const qualifier, may include initializers, in which case
4481    *     they will be initialized before the first line of main() is
4482    *     executed.  Such initializers must be a constant expression."
4483    *
4484    * The same section of the GLSL ES 3.00.4 spec has similar language.
4485    */
4486   if (type->qualifier.flags.q.constant
4487       || type->qualifier.flags.q.uniform
4488       || (state->es_shader && state->current_function == NULL)) {
4489      ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4490                                               lhs, rhs, true);
4491      if (new_rhs != NULL) {
4492         rhs = new_rhs;
4493
4494         /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4495          * says:
4496          *
4497          *     "A constant expression is one of
4498          *
4499          *        ...
4500          *
4501          *        - an expression formed by an operator on operands that are
4502          *          all constant expressions, including getting an element of
4503          *          a constant array, or a field of a constant structure, or
4504          *          components of a constant vector.  However, the sequence
4505          *          operator ( , ) and the assignment operators ( =, +=, ...)
4506          *          are not included in the operators that can create a
4507          *          constant expression."
4508          *
4509          * Section 12.43 (Sequence operator and constant expressions) says:
4510          *
4511          *     "Should the following construct be allowed?
4512          *
4513          *         float a[2,3];
4514          *
4515          *     The expression within the brackets uses the sequence operator
4516          *     (',') and returns the integer 3 so the construct is declaring
4517          *     a single-dimensional array of size 3.  In some languages, the
4518          *     construct declares a two-dimensional array.  It would be
4519          *     preferable to make this construct illegal to avoid confusion.
4520          *
4521          *     One possibility is to change the definition of the sequence
4522          *     operator so that it does not return a constant-expression and
4523          *     hence cannot be used to declare an array size.
4524          *
4525          *     RESOLUTION: The result of a sequence operator is not a
4526          *     constant-expression."
4527          *
4528          * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4529          * contains language almost identical to the section 4.3.3 in the
4530          * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
4531          * versions.
4532          */
4533         ir_constant *constant_value =
4534            rhs->constant_expression_value(mem_ctx);
4535
4536         if (!constant_value ||
4537             (state->is_version(430, 300) &&
4538              decl->initializer->has_sequence_subexpression())) {
4539            const char *const variable_mode =
4540               (type->qualifier.flags.q.constant)
4541               ? "const"
4542               : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4543
4544            /* If ARB_shading_language_420pack is enabled, initializers of
4545             * const-qualified local variables do not have to be constant
4546             * expressions. Const-qualified global variables must still be
4547             * initialized with constant expressions.
4548             */
4549            if (!state->has_420pack()
4550                || state->current_function == NULL) {
4551               _mesa_glsl_error(& initializer_loc, state,
4552                                "initializer of %s variable `%s' must be a "
4553                                "constant expression",
4554                                variable_mode,
4555                                decl->identifier);
4556               if (var->type->is_numeric()) {
4557                  /* Reduce cascading errors. */
4558                  var->constant_value = type->qualifier.flags.q.constant
4559                     ? ir_constant::zero(state, var->type) : NULL;
4560               }
4561            }
4562         } else {
4563            rhs = constant_value;
4564            var->constant_value = type->qualifier.flags.q.constant
4565               ? constant_value : NULL;
4566         }
4567      } else {
4568         if (var->type->is_numeric()) {
4569            /* Reduce cascading errors. */
4570            rhs = var->constant_value = type->qualifier.flags.q.constant
4571               ? ir_constant::zero(state, var->type) : NULL;
4572         }
4573      }
4574   }
4575
4576   if (rhs && !rhs->type->is_error()) {
4577      bool temp = var->data.read_only;
4578      if (type->qualifier.flags.q.constant)
4579         var->data.read_only = false;
4580
4581      /* Never emit code to initialize a uniform.
4582       */
4583      const glsl_type *initializer_type;
4584      bool error_emitted = false;
4585      if (!type->qualifier.flags.q.uniform) {
4586         error_emitted =
4587            do_assignment(initializer_instructions, state,
4588                          NULL, lhs, rhs,
4589                          &result, true, true,
4590                          type->get_location());
4591         initializer_type = result->type;
4592      } else
4593         initializer_type = rhs->type;
4594
4595      if (!error_emitted) {
4596         var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4597         var->data.has_initializer = true;
4598
4599         /* If the declared variable is an unsized array, it must inherrit
4600         * its full type from the initializer.  A declaration such as
4601         *
4602         *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4603         *
4604         * becomes
4605         *
4606         *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4607         *
4608         * The assignment generated in the if-statement (below) will also
4609         * automatically handle this case for non-uniforms.
4610         *
4611         * If the declared variable is not an array, the types must
4612         * already match exactly.  As a result, the type assignment
4613         * here can be done unconditionally.  For non-uniforms the call
4614         * to do_assignment can change the type of the initializer (via
4615         * the implicit conversion rules).  For uniforms the initializer
4616         * must be a constant expression, and the type of that expression
4617         * was validated above.
4618         */
4619         var->type = initializer_type;
4620      }
4621
4622      var->data.read_only = temp;
4623   }
4624
4625   return result;
4626}
4627
4628static void
4629validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4630                                       YYLTYPE loc, ir_variable *var,
4631                                       unsigned num_vertices,
4632                                       unsigned *size,
4633                                       const char *var_category)
4634{
4635   if (var->type->is_unsized_array()) {
4636      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4637       *
4638       *   All geometry shader input unsized array declarations will be
4639       *   sized by an earlier input layout qualifier, when present, as per
4640       *   the following table.
4641       *
4642       * Followed by a table mapping each allowed input layout qualifier to
4643       * the corresponding input length.
4644       *
4645       * Similarly for tessellation control shader outputs.
4646       */
4647      if (num_vertices != 0)
4648         var->type = glsl_type::get_array_instance(var->type->fields.array,
4649                                                   num_vertices);
4650   } else {
4651      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4652       * includes the following examples of compile-time errors:
4653       *
4654       *   // code sequence within one shader...
4655       *   in vec4 Color1[];    // size unknown
4656       *   ...Color1.length()...// illegal, length() unknown
4657       *   in vec4 Color2[2];   // size is 2
4658       *   ...Color1.length()...// illegal, Color1 still has no size
4659       *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
4660       *   layout(lines) in;    // legal, input size is 2, matching
4661       *   in vec4 Color4[3];   // illegal, contradicts layout
4662       *   ...
4663       *
4664       * To detect the case illustrated by Color3, we verify that the size of
4665       * an explicitly-sized array matches the size of any previously declared
4666       * explicitly-sized array.  To detect the case illustrated by Color4, we
4667       * verify that the size of an explicitly-sized array is consistent with
4668       * any previously declared input layout.
4669       */
4670      if (num_vertices != 0 && var->type->length != num_vertices) {
4671         _mesa_glsl_error(&loc, state,
4672                          "%s size contradicts previously declared layout "
4673                          "(size is %u, but layout requires a size of %u)",
4674                          var_category, var->type->length, num_vertices);
4675      } else if (*size != 0 && var->type->length != *size) {
4676         _mesa_glsl_error(&loc, state,
4677                          "%s sizes are inconsistent (size is %u, but a "
4678                          "previous declaration has size %u)",
4679                          var_category, var->type->length, *size);
4680      } else {
4681         *size = var->type->length;
4682      }
4683   }
4684}
4685
4686static void
4687handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4688                                    YYLTYPE loc, ir_variable *var)
4689{
4690   unsigned num_vertices = 0;
4691
4692   if (state->tcs_output_vertices_specified) {
4693      if (!state->out_qualifier->vertices->
4694             process_qualifier_constant(state, "vertices",
4695                                        &num_vertices, false)) {
4696         return;
4697      }
4698
4699      if (num_vertices > state->Const.MaxPatchVertices) {
4700         _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4701                          "GL_MAX_PATCH_VERTICES", num_vertices);
4702         return;
4703      }
4704   }
4705
4706   if (!var->type->is_array() && !var->data.patch) {
4707      _mesa_glsl_error(&loc, state,
4708                       "tessellation control shader outputs must be arrays");
4709
4710      /* To avoid cascading failures, short circuit the checks below. */
4711      return;
4712   }
4713
4714   if (var->data.patch)
4715      return;
4716
4717   validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4718                                          &state->tcs_output_size,
4719                                          "tessellation control shader output");
4720}
4721
4722/**
4723 * Do additional processing necessary for tessellation control/evaluation shader
4724 * input declarations. This covers both interface block arrays and bare input
4725 * variables.
4726 */
4727static void
4728handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4729                              YYLTYPE loc, ir_variable *var)
4730{
4731   if (!var->type->is_array() && !var->data.patch) {
4732      _mesa_glsl_error(&loc, state,
4733                       "per-vertex tessellation shader inputs must be arrays");
4734      /* Avoid cascading failures. */
4735      return;
4736   }
4737
4738   if (var->data.patch)
4739      return;
4740
4741   /* The ARB_tessellation_shader spec says:
4742    *
4743    *    "Declaring an array size is optional.  If no size is specified, it
4744    *     will be taken from the implementation-dependent maximum patch size
4745    *     (gl_MaxPatchVertices).  If a size is specified, it must match the
4746    *     maximum patch size; otherwise, a compile or link error will occur."
4747    *
4748    * This text appears twice, once for TCS inputs, and again for TES inputs.
4749    */
4750   if (var->type->is_unsized_array()) {
4751      var->type = glsl_type::get_array_instance(var->type->fields.array,
4752            state->Const.MaxPatchVertices);
4753   } else if (var->type->length != state->Const.MaxPatchVertices) {
4754      _mesa_glsl_error(&loc, state,
4755                       "per-vertex tessellation shader input arrays must be "
4756                       "sized to gl_MaxPatchVertices (%d).",
4757                       state->Const.MaxPatchVertices);
4758   }
4759}
4760
4761
4762/**
4763 * Do additional processing necessary for geometry shader input declarations
4764 * (this covers both interface blocks arrays and bare input variables).
4765 */
4766static void
4767handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4768                                  YYLTYPE loc, ir_variable *var)
4769{
4770   unsigned num_vertices = 0;
4771
4772   if (state->gs_input_prim_type_specified) {
4773      num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4774   }
4775
4776   /* Geometry shader input variables must be arrays.  Caller should have
4777    * reported an error for this.
4778    */
4779   if (!var->type->is_array()) {
4780      assert(state->error);
4781
4782      /* To avoid cascading failures, short circuit the checks below. */
4783      return;
4784   }
4785
4786   validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4787                                          &state->gs_input_size,
4788                                          "geometry shader input");
4789}
4790
4791static void
4792validate_identifier(const char *identifier, YYLTYPE loc,
4793                    struct _mesa_glsl_parse_state *state)
4794{
4795   /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4796    *
4797    *   "Identifiers starting with "gl_" are reserved for use by
4798    *   OpenGL, and may not be declared in a shader as either a
4799    *   variable or a function."
4800    */
4801   if (is_gl_identifier(identifier)) {
4802      _mesa_glsl_error(&loc, state,
4803                       "identifier `%s' uses reserved `gl_' prefix",
4804                       identifier);
4805   } else if (strstr(identifier, "__")) {
4806      /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4807       * spec:
4808       *
4809       *     "In addition, all identifiers containing two
4810       *      consecutive underscores (__) are reserved as
4811       *      possible future keywords."
4812       *
4813       * The intention is that names containing __ are reserved for internal
4814       * use by the implementation, and names prefixed with GL_ are reserved
4815       * for use by Khronos.  Names simply containing __ are dangerous to use,
4816       * but should be allowed.
4817       *
4818       * A future version of the GLSL specification will clarify this.
4819       */
4820      _mesa_glsl_warning(&loc, state,
4821                         "identifier `%s' uses reserved `__' string",
4822                         identifier);
4823   }
4824}
4825
4826ir_rvalue *
4827ast_declarator_list::hir(exec_list *instructions,
4828                         struct _mesa_glsl_parse_state *state)
4829{
4830   void *ctx = state;
4831   const struct glsl_type *decl_type;
4832   const char *type_name = NULL;
4833   ir_rvalue *result = NULL;
4834   YYLTYPE loc = this->get_location();
4835
4836   /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4837    *
4838    *     "To ensure that a particular output variable is invariant, it is
4839    *     necessary to use the invariant qualifier. It can either be used to
4840    *     qualify a previously declared variable as being invariant
4841    *
4842    *         invariant gl_Position; // make existing gl_Position be invariant"
4843    *
4844    * In these cases the parser will set the 'invariant' flag in the declarator
4845    * list, and the type will be NULL.
4846    */
4847   if (this->invariant) {
4848      assert(this->type == NULL);
4849
4850      if (state->current_function != NULL) {
4851         _mesa_glsl_error(& loc, state,
4852                          "all uses of `invariant' keyword must be at global "
4853                          "scope");
4854      }
4855
4856      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4857         assert(decl->array_specifier == NULL);
4858         assert(decl->initializer == NULL);
4859
4860         ir_variable *const earlier =
4861            state->symbols->get_variable(decl->identifier);
4862         if (earlier == NULL) {
4863            _mesa_glsl_error(& loc, state,
4864                             "undeclared variable `%s' cannot be marked "
4865                             "invariant", decl->identifier);
4866         } else if (!is_allowed_invariant(earlier, state)) {
4867            _mesa_glsl_error(&loc, state,
4868                             "`%s' cannot be marked invariant; interfaces between "
4869                             "shader stages only.", decl->identifier);
4870         } else if (earlier->data.used) {
4871            _mesa_glsl_error(& loc, state,
4872                            "variable `%s' may not be redeclared "
4873                            "`invariant' after being used",
4874                            earlier->name);
4875         } else {
4876            earlier->data.explicit_invariant = true;
4877            earlier->data.invariant = true;
4878         }
4879      }
4880
4881      /* Invariant redeclarations do not have r-values.
4882       */
4883      return NULL;
4884   }
4885
4886   if (this->precise) {
4887      assert(this->type == NULL);
4888
4889      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4890         assert(decl->array_specifier == NULL);
4891         assert(decl->initializer == NULL);
4892
4893         ir_variable *const earlier =
4894            state->symbols->get_variable(decl->identifier);
4895         if (earlier == NULL) {
4896            _mesa_glsl_error(& loc, state,
4897                             "undeclared variable `%s' cannot be marked "
4898                             "precise", decl->identifier);
4899         } else if (state->current_function != NULL &&
4900                    !state->symbols->name_declared_this_scope(decl->identifier)) {
4901            /* Note: we have to check if we're in a function, since
4902             * builtins are treated as having come from another scope.
4903             */
4904            _mesa_glsl_error(& loc, state,
4905                             "variable `%s' from an outer scope may not be "
4906                             "redeclared `precise' in this scope",
4907                             earlier->name);
4908         } else if (earlier->data.used) {
4909            _mesa_glsl_error(& loc, state,
4910                             "variable `%s' may not be redeclared "
4911                             "`precise' after being used",
4912                             earlier->name);
4913         } else {
4914            earlier->data.precise = true;
4915         }
4916      }
4917
4918      /* Precise redeclarations do not have r-values either. */
4919      return NULL;
4920   }
4921
4922   assert(this->type != NULL);
4923   assert(!this->invariant);
4924   assert(!this->precise);
4925
4926   /* The type specifier may contain a structure definition.  Process that
4927    * before any of the variable declarations.
4928    */
4929   (void) this->type->specifier->hir(instructions, state);
4930
4931   decl_type = this->type->glsl_type(& type_name, state);
4932
4933   /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4934    *    "Buffer variables may only be declared inside interface blocks
4935    *    (section 4.3.9 “Interface Blocks”), which are then referred to as
4936    *    shader storage blocks. It is a compile-time error to declare buffer
4937    *    variables at global scope (outside a block)."
4938    */
4939   if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4940      _mesa_glsl_error(&loc, state,
4941                       "buffer variables cannot be declared outside "
4942                       "interface blocks");
4943   }
4944
4945   /* An offset-qualified atomic counter declaration sets the default
4946    * offset for the next declaration within the same atomic counter
4947    * buffer.
4948    */
4949   if (decl_type && decl_type->contains_atomic()) {
4950      if (type->qualifier.flags.q.explicit_binding &&
4951          type->qualifier.flags.q.explicit_offset) {
4952         unsigned qual_binding;
4953         unsigned qual_offset;
4954         if (process_qualifier_constant(state, &loc, "binding",
4955                                        type->qualifier.binding,
4956                                        &qual_binding)
4957             && process_qualifier_constant(state, &loc, "offset",
4958                                        type->qualifier.offset,
4959                                        &qual_offset)) {
4960            if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
4961               state->atomic_counter_offsets[qual_binding] = qual_offset;
4962         }
4963      }
4964
4965      ast_type_qualifier allowed_atomic_qual_mask;
4966      allowed_atomic_qual_mask.flags.i = 0;
4967      allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4968      allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4969      allowed_atomic_qual_mask.flags.q.uniform = 1;
4970
4971      type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4972                                     "invalid layout qualifier for",
4973                                     "atomic_uint");
4974   }
4975
4976   if (this->declarations.is_empty()) {
4977      /* If there is no structure involved in the program text, there are two
4978       * possible scenarios:
4979       *
4980       * - The program text contained something like 'vec4;'.  This is an
4981       *   empty declaration.  It is valid but weird.  Emit a warning.
4982       *
4983       * - The program text contained something like 'S;' and 'S' is not the
4984       *   name of a known structure type.  This is both invalid and weird.
4985       *   Emit an error.
4986       *
4987       * - The program text contained something like 'mediump float;'
4988       *   when the programmer probably meant 'precision mediump
4989       *   float;' Emit a warning with a description of what they
4990       *   probably meant to do.
4991       *
4992       * Note that if decl_type is NULL and there is a structure involved,
4993       * there must have been some sort of error with the structure.  In this
4994       * case we assume that an error was already generated on this line of
4995       * code for the structure.  There is no need to generate an additional,
4996       * confusing error.
4997       */
4998      assert(this->type->specifier->structure == NULL || decl_type != NULL
4999             || state->error);
5000
5001      if (decl_type == NULL) {
5002         _mesa_glsl_error(&loc, state,
5003                          "invalid type `%s' in empty declaration",
5004                          type_name);
5005      } else {
5006         if (decl_type->is_array()) {
5007            /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5008             * spec:
5009             *
5010             *    "... any declaration that leaves the size undefined is
5011             *    disallowed as this would add complexity and there are no
5012             *    use-cases."
5013             */
5014            if (state->es_shader && decl_type->is_unsized_array()) {
5015               _mesa_glsl_error(&loc, state, "array size must be explicitly "
5016                                "or implicitly defined");
5017            }
5018
5019            /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5020             *
5021             *    "The combinations of types and qualifiers that cause
5022             *    compile-time or link-time errors are the same whether or not
5023             *    the declaration is empty."
5024             */
5025            validate_array_dimensions(decl_type, state, &loc);
5026         }
5027
5028         if (decl_type->is_atomic_uint()) {
5029            /* Empty atomic counter declarations are allowed and useful
5030             * to set the default offset qualifier.
5031             */
5032            return NULL;
5033         } else if (this->type->qualifier.precision != ast_precision_none) {
5034            if (this->type->specifier->structure != NULL) {
5035               _mesa_glsl_error(&loc, state,
5036                                "precision qualifiers can't be applied "
5037                                "to structures");
5038            } else {
5039               static const char *const precision_names[] = {
5040                  "highp",
5041                  "highp",
5042                  "mediump",
5043                  "lowp"
5044               };
5045
5046               _mesa_glsl_warning(&loc, state,
5047                                  "empty declaration with precision "
5048                                  "qualifier, to set the default precision, "
5049                                  "use `precision %s %s;'",
5050                                  precision_names[this->type->
5051                                     qualifier.precision],
5052                                  type_name);
5053            }
5054         } else if (this->type->specifier->structure == NULL) {
5055            _mesa_glsl_warning(&loc, state, "empty declaration");
5056         }
5057      }
5058   }
5059
5060   foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5061      const struct glsl_type *var_type;
5062      ir_variable *var;
5063      const char *identifier = decl->identifier;
5064      /* FINISHME: Emit a warning if a variable declaration shadows a
5065       * FINISHME: declaration at a higher scope.
5066       */
5067
5068      if ((decl_type == NULL) || decl_type->is_void()) {
5069         if (type_name != NULL) {
5070            _mesa_glsl_error(& loc, state,
5071                             "invalid type `%s' in declaration of `%s'",
5072                             type_name, decl->identifier);
5073         } else {
5074            _mesa_glsl_error(& loc, state,
5075                             "invalid type in declaration of `%s'",
5076                             decl->identifier);
5077         }
5078         continue;
5079      }
5080
5081      if (this->type->qualifier.is_subroutine_decl()) {
5082         const glsl_type *t;
5083         const char *name;
5084
5085         t = state->symbols->get_type(this->type->specifier->type_name);
5086         if (!t)
5087            _mesa_glsl_error(& loc, state,
5088                             "invalid type in declaration of `%s'",
5089                             decl->identifier);
5090         name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5091
5092         identifier = name;
5093
5094      }
5095      var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5096                                    state);
5097
5098      var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5099
5100      /* The 'varying in' and 'varying out' qualifiers can only be used with
5101       * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5102       * yet.
5103       */
5104      if (this->type->qualifier.flags.q.varying) {
5105         if (this->type->qualifier.flags.q.in) {
5106            _mesa_glsl_error(& loc, state,
5107                             "`varying in' qualifier in declaration of "
5108                             "`%s' only valid for geometry shaders using "
5109                             "ARB_geometry_shader4 or EXT_geometry_shader4",
5110                             decl->identifier);
5111         } else if (this->type->qualifier.flags.q.out) {
5112            _mesa_glsl_error(& loc, state,
5113                             "`varying out' qualifier in declaration of "
5114                             "`%s' only valid for geometry shaders using "
5115                             "ARB_geometry_shader4 or EXT_geometry_shader4",
5116                             decl->identifier);
5117         }
5118      }
5119
5120      /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5121       *
5122       *     "Global variables can only use the qualifiers const,
5123       *     attribute, uniform, or varying. Only one may be
5124       *     specified.
5125       *
5126       *     Local variables can only use the qualifier const."
5127       *
5128       * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
5129       * any extension that adds the 'layout' keyword.
5130       */
5131      if (!state->is_version(130, 300)
5132          && !state->has_explicit_attrib_location()
5133          && !state->has_separate_shader_objects()
5134          && !state->ARB_fragment_coord_conventions_enable) {
5135         /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader
5136          * outputs. (the varying flag is not set by the parser)
5137          */
5138         if (this->type->qualifier.flags.q.out &&
5139             (!state->EXT_gpu_shader4_enable ||
5140              state->stage != MESA_SHADER_FRAGMENT)) {
5141            _mesa_glsl_error(& loc, state,
5142                             "`out' qualifier in declaration of `%s' "
5143                             "only valid for function parameters in %s",
5144                             decl->identifier, state->get_version_string());
5145         }
5146         if (this->type->qualifier.flags.q.in) {
5147            _mesa_glsl_error(& loc, state,
5148                             "`in' qualifier in declaration of `%s' "
5149                             "only valid for function parameters in %s",
5150                             decl->identifier, state->get_version_string());
5151         }
5152         /* FINISHME: Test for other invalid qualifiers. */
5153      }
5154
5155      apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5156                                       & loc, false);
5157      apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5158                                         &loc);
5159
5160      if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5161          && (var->type->is_numeric() || var->type->is_boolean())
5162          && state->zero_init) {
5163         const ir_constant_data data = { { 0 } };
5164         var->data.has_initializer = true;
5165         var->constant_initializer = new(var) ir_constant(var->type, &data);
5166      }
5167
5168      if (this->type->qualifier.flags.q.invariant) {
5169         if (!is_allowed_invariant(var, state)) {
5170            _mesa_glsl_error(&loc, state,
5171                             "`%s' cannot be marked invariant; interfaces between "
5172                             "shader stages only", var->name);
5173         }
5174      }
5175
5176      if (state->current_function != NULL) {
5177         const char *mode = NULL;
5178         const char *extra = "";
5179
5180         /* There is no need to check for 'inout' here because the parser will
5181          * only allow that in function parameter lists.
5182          */
5183         if (this->type->qualifier.flags.q.attribute) {
5184            mode = "attribute";
5185         } else if (this->type->qualifier.is_subroutine_decl()) {
5186            mode = "subroutine uniform";
5187         } else if (this->type->qualifier.flags.q.uniform) {
5188            mode = "uniform";
5189         } else if (this->type->qualifier.flags.q.varying) {
5190            mode = "varying";
5191         } else if (this->type->qualifier.flags.q.in) {
5192            mode = "in";
5193            extra = " or in function parameter list";
5194         } else if (this->type->qualifier.flags.q.out) {
5195            mode = "out";
5196            extra = " or in function parameter list";
5197         }
5198
5199         if (mode) {
5200            _mesa_glsl_error(& loc, state,
5201                             "%s variable `%s' must be declared at "
5202                             "global scope%s",
5203                             mode, var->name, extra);
5204         }
5205      } else if (var->data.mode == ir_var_shader_in) {
5206         var->data.read_only = true;
5207
5208         if (state->stage == MESA_SHADER_VERTEX) {
5209            bool error_emitted = false;
5210
5211            /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5212             *
5213             *    "Vertex shader inputs can only be float, floating-point
5214             *    vectors, matrices, signed and unsigned integers and integer
5215             *    vectors. Vertex shader inputs can also form arrays of these
5216             *    types, but not structures."
5217             *
5218             * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5219             *
5220             *    "Vertex shader inputs can only be float, floating-point
5221             *    vectors, matrices, signed and unsigned integers and integer
5222             *    vectors. They cannot be arrays or structures."
5223             *
5224             * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5225             *
5226             *    "The attribute qualifier can be used only with float,
5227             *    floating-point vectors, and matrices. Attribute variables
5228             *    cannot be declared as arrays or structures."
5229             *
5230             * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5231             *
5232             *    "Vertex shader inputs can only be float, floating-point
5233             *    vectors, matrices, signed and unsigned integers and integer
5234             *    vectors. Vertex shader inputs cannot be arrays or
5235             *    structures."
5236             *
5237             * From section 4.3.4 of the ARB_bindless_texture spec:
5238             *
5239             *    "(modify third paragraph of the section to allow sampler and
5240             *    image types) ...  Vertex shader inputs can only be float,
5241             *    single-precision floating-point scalars, single-precision
5242             *    floating-point vectors, matrices, signed and unsigned
5243             *    integers and integer vectors, sampler and image types."
5244             */
5245            const glsl_type *check_type = var->type->without_array();
5246
5247            switch (check_type->base_type) {
5248            case GLSL_TYPE_FLOAT:
5249            break;
5250            case GLSL_TYPE_UINT64:
5251            case GLSL_TYPE_INT64:
5252               break;
5253            case GLSL_TYPE_UINT:
5254            case GLSL_TYPE_INT:
5255               if (state->is_version(120, 300) || state->EXT_gpu_shader4_enable)
5256                  break;
5257            case GLSL_TYPE_DOUBLE:
5258               if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5259                  break;
5260            case GLSL_TYPE_SAMPLER:
5261               if (check_type->is_sampler() && state->has_bindless())
5262                  break;
5263            case GLSL_TYPE_IMAGE:
5264               if (check_type->is_image() && state->has_bindless())
5265                  break;
5266            /* FALLTHROUGH */
5267            default:
5268               _mesa_glsl_error(& loc, state,
5269                                "vertex shader input / attribute cannot have "
5270                                "type %s`%s'",
5271                                var->type->is_array() ? "array of " : "",
5272                                check_type->name);
5273               error_emitted = true;
5274            }
5275
5276            if (!error_emitted && var->type->is_array() &&
5277                !state->check_version(150, 0, &loc,
5278                                      "vertex shader input / attribute "
5279                                      "cannot have array type")) {
5280               error_emitted = true;
5281            }
5282         } else if (state->stage == MESA_SHADER_GEOMETRY) {
5283            /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5284             *
5285             *     Geometry shader input variables get the per-vertex values
5286             *     written out by vertex shader output variables of the same
5287             *     names. Since a geometry shader operates on a set of
5288             *     vertices, each input varying variable (or input block, see
5289             *     interface blocks below) needs to be declared as an array.
5290             */
5291            if (!var->type->is_array()) {
5292               _mesa_glsl_error(&loc, state,
5293                                "geometry shader inputs must be arrays");
5294            }
5295
5296            handle_geometry_shader_input_decl(state, loc, var);
5297         } else if (state->stage == MESA_SHADER_FRAGMENT) {
5298            /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5299             *
5300             *     It is a compile-time error to declare a fragment shader
5301             *     input with, or that contains, any of the following types:
5302             *
5303             *     * A boolean type
5304             *     * An opaque type
5305             *     * An array of arrays
5306             *     * An array of structures
5307             *     * A structure containing an array
5308             *     * A structure containing a structure
5309             */
5310            if (state->es_shader) {
5311               const glsl_type *check_type = var->type->without_array();
5312               if (check_type->is_boolean() ||
5313                   check_type->contains_opaque()) {
5314                  _mesa_glsl_error(&loc, state,
5315                                   "fragment shader input cannot have type %s",
5316                                   check_type->name);
5317               }
5318               if (var->type->is_array() &&
5319                   var->type->fields.array->is_array()) {
5320                  _mesa_glsl_error(&loc, state,
5321                                   "%s shader output "
5322                                   "cannot have an array of arrays",
5323                                   _mesa_shader_stage_to_string(state->stage));
5324               }
5325               if (var->type->is_array() &&
5326                   var->type->fields.array->is_struct()) {
5327                  _mesa_glsl_error(&loc, state,
5328                                   "fragment shader input "
5329                                   "cannot have an array of structs");
5330               }
5331               if (var->type->is_struct()) {
5332                  for (unsigned i = 0; i < var->type->length; i++) {
5333                     if (var->type->fields.structure[i].type->is_array() ||
5334                         var->type->fields.structure[i].type->is_struct())
5335                        _mesa_glsl_error(&loc, state,
5336                                         "fragment shader input cannot have "
5337                                         "a struct that contains an "
5338                                         "array or struct");
5339                  }
5340               }
5341            }
5342         } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5343                    state->stage == MESA_SHADER_TESS_EVAL) {
5344            handle_tess_shader_input_decl(state, loc, var);
5345         }
5346      } else if (var->data.mode == ir_var_shader_out) {
5347         const glsl_type *check_type = var->type->without_array();
5348
5349         /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5350          *
5351          *     It is a compile-time error to declare a fragment shader output
5352          *     that contains any of the following:
5353          *
5354          *     * A Boolean type (bool, bvec2 ...)
5355          *     * A double-precision scalar or vector (double, dvec2 ...)
5356          *     * An opaque type
5357          *     * Any matrix type
5358          *     * A structure
5359          */
5360         if (state->stage == MESA_SHADER_FRAGMENT) {
5361            if (check_type->is_struct() || check_type->is_matrix())
5362               _mesa_glsl_error(&loc, state,
5363                                "fragment shader output "
5364                                "cannot have struct or matrix type");
5365            switch (check_type->base_type) {
5366            case GLSL_TYPE_UINT:
5367            case GLSL_TYPE_INT:
5368            case GLSL_TYPE_FLOAT:
5369               break;
5370            default:
5371               _mesa_glsl_error(&loc, state,
5372                                "fragment shader output cannot have "
5373                                "type %s", check_type->name);
5374            }
5375         }
5376
5377         /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5378          *
5379          *     It is a compile-time error to declare a vertex shader output
5380          *     with, or that contains, any of the following types:
5381          *
5382          *     * A boolean type
5383          *     * An opaque type
5384          *     * An array of arrays
5385          *     * An array of structures
5386          *     * A structure containing an array
5387          *     * A structure containing a structure
5388          *
5389          *     It is a compile-time error to declare a fragment shader output
5390          *     with, or that contains, any of the following types:
5391          *
5392          *     * A boolean type
5393          *     * An opaque type
5394          *     * A matrix
5395          *     * A structure
5396          *     * An array of array
5397          *
5398          * ES 3.20 updates this to apply to tessellation and geometry shaders
5399          * as well.  Because there are per-vertex arrays in the new stages,
5400          * it strikes the "array of..." rules and replaces them with these:
5401          *
5402          *     * For per-vertex-arrayed variables (applies to tessellation
5403          *       control, tessellation evaluation and geometry shaders):
5404          *
5405          *       * Per-vertex-arrayed arrays of arrays
5406          *       * Per-vertex-arrayed arrays of structures
5407          *
5408          *     * For non-per-vertex-arrayed variables:
5409          *
5410          *       * An array of arrays
5411          *       * An array of structures
5412          *
5413          * which basically says to unwrap the per-vertex aspect and apply
5414          * the old rules.
5415          */
5416         if (state->es_shader) {
5417            if (var->type->is_array() &&
5418                var->type->fields.array->is_array()) {
5419               _mesa_glsl_error(&loc, state,
5420                                "%s shader output "
5421                                "cannot have an array of arrays",
5422                                _mesa_shader_stage_to_string(state->stage));
5423            }
5424            if (state->stage <= MESA_SHADER_GEOMETRY) {
5425               const glsl_type *type = var->type;
5426
5427               if (state->stage == MESA_SHADER_TESS_CTRL &&
5428                   !var->data.patch && var->type->is_array()) {
5429                  type = var->type->fields.array;
5430               }
5431
5432               if (type->is_array() && type->fields.array->is_struct()) {
5433                  _mesa_glsl_error(&loc, state,
5434                                   "%s shader output cannot have "
5435                                   "an array of structs",
5436                                   _mesa_shader_stage_to_string(state->stage));
5437               }
5438               if (type->is_struct()) {
5439                  for (unsigned i = 0; i < type->length; i++) {
5440                     if (type->fields.structure[i].type->is_array() ||
5441                         type->fields.structure[i].type->is_struct())
5442                        _mesa_glsl_error(&loc, state,
5443                                         "%s shader output cannot have a "
5444                                         "struct that contains an "
5445                                         "array or struct",
5446                                         _mesa_shader_stage_to_string(state->stage));
5447                  }
5448               }
5449            }
5450         }
5451
5452         if (state->stage == MESA_SHADER_TESS_CTRL) {
5453            handle_tess_ctrl_shader_output_decl(state, loc, var);
5454         }
5455      } else if (var->type->contains_subroutine()) {
5456         /* declare subroutine uniforms as hidden */
5457         var->data.how_declared = ir_var_hidden;
5458      }
5459
5460      /* From section 4.3.4 of the GLSL 4.00 spec:
5461       *    "Input variables may not be declared using the patch in qualifier
5462       *    in tessellation control or geometry shaders."
5463       *
5464       * From section 4.3.6 of the GLSL 4.00 spec:
5465       *    "It is an error to use patch out in a vertex, tessellation
5466       *    evaluation, or geometry shader."
5467       *
5468       * This doesn't explicitly forbid using them in a fragment shader, but
5469       * that's probably just an oversight.
5470       */
5471      if (state->stage != MESA_SHADER_TESS_EVAL
5472          && this->type->qualifier.flags.q.patch
5473          && this->type->qualifier.flags.q.in) {
5474
5475         _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5476                          "tessellation evaluation shader");
5477      }
5478
5479      if (state->stage != MESA_SHADER_TESS_CTRL
5480          && this->type->qualifier.flags.q.patch
5481          && this->type->qualifier.flags.q.out) {
5482
5483         _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5484                          "tessellation control shader");
5485      }
5486
5487      /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5488       */
5489      if (this->type->qualifier.precision != ast_precision_none) {
5490         state->check_precision_qualifiers_allowed(&loc);
5491      }
5492
5493      if (this->type->qualifier.precision != ast_precision_none &&
5494          !precision_qualifier_allowed(var->type)) {
5495         _mesa_glsl_error(&loc, state,
5496                          "precision qualifiers apply only to floating point"
5497                          ", integer and opaque types");
5498      }
5499
5500      /* From section 4.1.7 of the GLSL 4.40 spec:
5501       *
5502       *    "[Opaque types] can only be declared as function
5503       *     parameters or uniform-qualified variables."
5504       *
5505       * From section 4.1.7 of the ARB_bindless_texture spec:
5506       *
5507       *    "Samplers may be declared as shader inputs and outputs, as uniform
5508       *     variables, as temporary variables, and as function parameters."
5509       *
5510       * From section 4.1.X of the ARB_bindless_texture spec:
5511       *
5512       *    "Images may be declared as shader inputs and outputs, as uniform
5513       *     variables, as temporary variables, and as function parameters."
5514       */
5515      if (!this->type->qualifier.flags.q.uniform &&
5516          (var_type->contains_atomic() ||
5517           (!state->has_bindless() && var_type->contains_opaque()))) {
5518         _mesa_glsl_error(&loc, state,
5519                          "%s variables must be declared uniform",
5520                          state->has_bindless() ? "atomic" : "opaque");
5521      }
5522
5523      /* Process the initializer and add its instructions to a temporary
5524       * list.  This list will be added to the instruction stream (below) after
5525       * the declaration is added.  This is done because in some cases (such as
5526       * redeclarations) the declaration may not actually be added to the
5527       * instruction stream.
5528       */
5529      exec_list initializer_instructions;
5530
5531      /* Examine var name here since var may get deleted in the next call */
5532      bool var_is_gl_id = is_gl_identifier(var->name);
5533
5534      bool is_redeclaration;
5535      var = get_variable_being_redeclared(&var, decl->get_location(), state,
5536                                          false /* allow_all_redeclarations */,
5537                                          &is_redeclaration);
5538      if (is_redeclaration) {
5539         if (var_is_gl_id &&
5540             var->data.how_declared == ir_var_declared_in_block) {
5541            _mesa_glsl_error(&loc, state,
5542                             "`%s' has already been redeclared using "
5543                             "gl_PerVertex", var->name);
5544         }
5545         var->data.how_declared = ir_var_declared_normally;
5546      }
5547
5548      if (decl->initializer != NULL) {
5549         result = process_initializer(var,
5550                                      decl, this->type,
5551                                      &initializer_instructions, state);
5552      } else {
5553         validate_array_dimensions(var_type, state, &loc);
5554      }
5555
5556      /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5557       *
5558       *     "It is an error to write to a const variable outside of
5559       *      its declaration, so they must be initialized when
5560       *      declared."
5561       */
5562      if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5563         _mesa_glsl_error(& loc, state,
5564                          "const declaration of `%s' must be initialized",
5565                          decl->identifier);
5566      }
5567
5568      if (state->es_shader) {
5569         const glsl_type *const t = var->type;
5570
5571         /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5572          *
5573          * The GL_OES_tessellation_shader spec says about inputs:
5574          *
5575          *    "Declaring an array size is optional. If no size is specified,
5576          *     it will be taken from the implementation-dependent maximum
5577          *     patch size (gl_MaxPatchVertices)."
5578          *
5579          * and about TCS outputs:
5580          *
5581          *    "If no size is specified, it will be taken from output patch
5582          *     size declared in the shader."
5583          *
5584          * The GL_OES_geometry_shader spec says:
5585          *
5586          *    "All geometry shader input unsized array declarations will be
5587          *     sized by an earlier input primitive layout qualifier, when
5588          *     present, as per the following table."
5589          */
5590         const bool implicitly_sized =
5591            (var->data.mode == ir_var_shader_in &&
5592             state->stage >= MESA_SHADER_TESS_CTRL &&
5593             state->stage <= MESA_SHADER_GEOMETRY) ||
5594            (var->data.mode == ir_var_shader_out &&
5595             state->stage == MESA_SHADER_TESS_CTRL);
5596
5597         if (t->is_unsized_array() && !implicitly_sized)
5598            /* Section 10.17 of the GLSL ES 1.00 specification states that
5599             * unsized array declarations have been removed from the language.
5600             * Arrays that are sized using an initializer are still explicitly
5601             * sized.  However, GLSL ES 1.00 does not allow array
5602             * initializers.  That is only allowed in GLSL ES 3.00.
5603             *
5604             * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5605             *
5606             *     "An array type can also be formed without specifying a size
5607             *     if the definition includes an initializer:
5608             *
5609             *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
5610             *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5611             *
5612             *         float a[5];
5613             *         float b[] = a;"
5614             */
5615            _mesa_glsl_error(& loc, state,
5616                             "unsized array declarations are not allowed in "
5617                             "GLSL ES");
5618      }
5619
5620      /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5621       *
5622       *    "It is a compile-time error to declare an unsized array of
5623       *     atomic_uint"
5624       */
5625      if (var->type->is_unsized_array() &&
5626          var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5627         _mesa_glsl_error(& loc, state,
5628                          "Unsized array of atomic_uint is not allowed");
5629      }
5630
5631      /* If the declaration is not a redeclaration, there are a few additional
5632       * semantic checks that must be applied.  In addition, variable that was
5633       * created for the declaration should be added to the IR stream.
5634       */
5635      if (!is_redeclaration) {
5636         validate_identifier(decl->identifier, loc, state);
5637
5638         /* Add the variable to the symbol table.  Note that the initializer's
5639          * IR was already processed earlier (though it hasn't been emitted
5640          * yet), without the variable in scope.
5641          *
5642          * This differs from most C-like languages, but it follows the GLSL
5643          * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
5644          * spec:
5645          *
5646          *     "Within a declaration, the scope of a name starts immediately
5647          *     after the initializer if present or immediately after the name
5648          *     being declared if not."
5649          */
5650         if (!state->symbols->add_variable(var)) {
5651            YYLTYPE loc = this->get_location();
5652            _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5653                             "current scope", decl->identifier);
5654            continue;
5655         }
5656
5657         /* Push the variable declaration to the top.  It means that all the
5658          * variable declarations will appear in a funny last-to-first order,
5659          * but otherwise we run into trouble if a function is prototyped, a
5660          * global var is decled, then the function is defined with usage of
5661          * the global var.  See glslparsertest's CorrectModule.frag.
5662          */
5663         instructions->push_head(var);
5664      }
5665
5666      instructions->append_list(&initializer_instructions);
5667   }
5668
5669
5670   /* Generally, variable declarations do not have r-values.  However,
5671    * one is used for the declaration in
5672    *
5673    * while (bool b = some_condition()) {
5674    *   ...
5675    * }
5676    *
5677    * so we return the rvalue from the last seen declaration here.
5678    */
5679   return result;
5680}
5681
5682
5683ir_rvalue *
5684ast_parameter_declarator::hir(exec_list *instructions,
5685                              struct _mesa_glsl_parse_state *state)
5686{
5687   void *ctx = state;
5688   const struct glsl_type *type;
5689   const char *name = NULL;
5690   YYLTYPE loc = this->get_location();
5691
5692   type = this->type->glsl_type(& name, state);
5693
5694   if (type == NULL) {
5695      if (name != NULL) {
5696         _mesa_glsl_error(& loc, state,
5697                          "invalid type `%s' in declaration of `%s'",
5698                          name, this->identifier);
5699      } else {
5700         _mesa_glsl_error(& loc, state,
5701                          "invalid type in declaration of `%s'",
5702                          this->identifier);
5703      }
5704
5705      type = glsl_type::error_type;
5706   }
5707
5708   /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5709    *
5710    *    "Functions that accept no input arguments need not use void in the
5711    *    argument list because prototypes (or definitions) are required and
5712    *    therefore there is no ambiguity when an empty argument list "( )" is
5713    *    declared. The idiom "(void)" as a parameter list is provided for
5714    *    convenience."
5715    *
5716    * Placing this check here prevents a void parameter being set up
5717    * for a function, which avoids tripping up checks for main taking
5718    * parameters and lookups of an unnamed symbol.
5719    */
5720   if (type->is_void()) {
5721      if (this->identifier != NULL)
5722         _mesa_glsl_error(& loc, state,
5723                          "named parameter cannot have type `void'");
5724
5725      is_void = true;
5726      return NULL;
5727   }
5728
5729   if (formal_parameter && (this->identifier == NULL)) {
5730      _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5731      return NULL;
5732   }
5733
5734   /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
5735    * call already handled the "vec4[..] foo" case.
5736    */
5737   type = process_array_type(&loc, type, this->array_specifier, state);
5738
5739   if (!type->is_error() && type->is_unsized_array()) {
5740      _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5741                       "a declared size");
5742      type = glsl_type::error_type;
5743   }
5744
5745   is_void = false;
5746   ir_variable *var = new(ctx)
5747      ir_variable(type, this->identifier, ir_var_function_in);
5748
5749   /* Apply any specified qualifiers to the parameter declaration.  Note that
5750    * for function parameters the default mode is 'in'.
5751    */
5752   apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5753                                    true);
5754
5755   /* From section 4.1.7 of the GLSL 4.40 spec:
5756    *
5757    *   "Opaque variables cannot be treated as l-values; hence cannot
5758    *    be used as out or inout function parameters, nor can they be
5759    *    assigned into."
5760    *
5761    * From section 4.1.7 of the ARB_bindless_texture spec:
5762    *
5763    *   "Samplers can be used as l-values, so can be assigned into and used
5764    *    as "out" and "inout" function parameters."
5765    *
5766    * From section 4.1.X of the ARB_bindless_texture spec:
5767    *
5768    *   "Images can be used as l-values, so can be assigned into and used as
5769    *    "out" and "inout" function parameters."
5770    */
5771   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5772       && (type->contains_atomic() ||
5773           (!state->has_bindless() && type->contains_opaque()))) {
5774      _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5775                       "contain %s variables",
5776                       state->has_bindless() ? "atomic" : "opaque");
5777      type = glsl_type::error_type;
5778   }
5779
5780   /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5781    *
5782    *    "When calling a function, expressions that do not evaluate to
5783    *     l-values cannot be passed to parameters declared as out or inout."
5784    *
5785    * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5786    *
5787    *    "Other binary or unary expressions, non-dereferenced arrays,
5788    *     function names, swizzles with repeated fields, and constants
5789    *     cannot be l-values."
5790    *
5791    * So for GLSL 1.10, passing an array as an out or inout parameter is not
5792    * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
5793    */
5794   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5795       && type->is_array()
5796       && !state->check_version(120, 100, &loc,
5797                                "arrays cannot be out or inout parameters")) {
5798      type = glsl_type::error_type;
5799   }
5800
5801   instructions->push_tail(var);
5802
5803   /* Parameter declarations do not have r-values.
5804    */
5805   return NULL;
5806}
5807
5808
5809void
5810ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5811                                            bool formal,
5812                                            exec_list *ir_parameters,
5813                                            _mesa_glsl_parse_state *state)
5814{
5815   ast_parameter_declarator *void_param = NULL;
5816   unsigned count = 0;
5817
5818   foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5819      param->formal_parameter = formal;
5820      param->hir(ir_parameters, state);
5821
5822      if (param->is_void)
5823         void_param = param;
5824
5825      count++;
5826   }
5827
5828   if ((void_param != NULL) && (count > 1)) {
5829      YYLTYPE loc = void_param->get_location();
5830
5831      _mesa_glsl_error(& loc, state,
5832                       "`void' parameter must be only parameter");
5833   }
5834}
5835
5836
5837void
5838emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5839{
5840   /* IR invariants disallow function declarations or definitions
5841    * nested within other function definitions.  But there is no
5842    * requirement about the relative order of function declarations
5843    * and definitions with respect to one another.  So simply insert
5844    * the new ir_function block at the end of the toplevel instruction
5845    * list.
5846    */
5847   state->toplevel_ir->push_tail(f);
5848}
5849
5850
5851ir_rvalue *
5852ast_function::hir(exec_list *instructions,
5853                  struct _mesa_glsl_parse_state *state)
5854{
5855   void *ctx = state;
5856   ir_function *f = NULL;
5857   ir_function_signature *sig = NULL;
5858   exec_list hir_parameters;
5859   YYLTYPE loc = this->get_location();
5860
5861   const char *const name = identifier;
5862
5863   /* New functions are always added to the top-level IR instruction stream,
5864    * so this instruction list pointer is ignored.  See also emit_function
5865    * (called below).
5866    */
5867   (void) instructions;
5868
5869   /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5870    *
5871    *   "Function declarations (prototypes) cannot occur inside of functions;
5872    *   they must be at global scope, or for the built-in functions, outside
5873    *   the global scope."
5874    *
5875    * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5876    *
5877    *   "User defined functions may only be defined within the global scope."
5878    *
5879    * Note that this language does not appear in GLSL 1.10.
5880    */
5881   if ((state->current_function != NULL) &&
5882       state->is_version(120, 100)) {
5883      YYLTYPE loc = this->get_location();
5884      _mesa_glsl_error(&loc, state,
5885                       "declaration of function `%s' not allowed within "
5886                       "function body", name);
5887   }
5888
5889   validate_identifier(name, this->get_location(), state);
5890
5891   /* Convert the list of function parameters to HIR now so that they can be
5892    * used below to compare this function's signature with previously seen
5893    * signatures for functions with the same name.
5894    */
5895   ast_parameter_declarator::parameters_to_hir(& this->parameters,
5896                                               is_definition,
5897                                               & hir_parameters, state);
5898
5899   const char *return_type_name;
5900   const glsl_type *return_type =
5901      this->return_type->glsl_type(& return_type_name, state);
5902
5903   if (!return_type) {
5904      YYLTYPE loc = this->get_location();
5905      _mesa_glsl_error(&loc, state,
5906                       "function `%s' has undeclared return type `%s'",
5907                       name, return_type_name);
5908      return_type = glsl_type::error_type;
5909   }
5910
5911   /* ARB_shader_subroutine states:
5912    *  "Subroutine declarations cannot be prototyped. It is an error to prepend
5913    *   subroutine(...) to a function declaration."
5914    */
5915   if (this->return_type->qualifier.subroutine_list && !is_definition) {
5916      YYLTYPE loc = this->get_location();
5917      _mesa_glsl_error(&loc, state,
5918                       "function declaration `%s' cannot have subroutine prepended",
5919                       name);
5920   }
5921
5922   /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5923    * "No qualifier is allowed on the return type of a function."
5924    */
5925   if (this->return_type->has_qualifiers(state)) {
5926      YYLTYPE loc = this->get_location();
5927      _mesa_glsl_error(& loc, state,
5928                       "function `%s' return type has qualifiers", name);
5929   }
5930
5931   /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5932    *
5933    *     "Arrays are allowed as arguments and as the return type. In both
5934    *     cases, the array must be explicitly sized."
5935    */
5936   if (return_type->is_unsized_array()) {
5937      YYLTYPE loc = this->get_location();
5938      _mesa_glsl_error(& loc, state,
5939                       "function `%s' return type array must be explicitly "
5940                       "sized", name);
5941   }
5942
5943   /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5944    *
5945    *     "Arrays are allowed as arguments, but not as the return type. [...]
5946    *      The return type can also be a structure if the structure does not
5947    *      contain an array."
5948    */
5949   if (state->language_version == 100 && return_type->contains_array()) {
5950      YYLTYPE loc = this->get_location();
5951      _mesa_glsl_error(& loc, state,
5952                       "function `%s' return type contains an array", name);
5953   }
5954
5955   /* From section 4.1.7 of the GLSL 4.40 spec:
5956    *
5957    *    "[Opaque types] can only be declared as function parameters
5958    *     or uniform-qualified variables."
5959    *
5960    * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5961    * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5962    * (Images)", this should be allowed.
5963    */
5964   if (return_type->contains_atomic() ||
5965       (!state->has_bindless() && return_type->contains_opaque())) {
5966      YYLTYPE loc = this->get_location();
5967      _mesa_glsl_error(&loc, state,
5968                       "function `%s' return type can't contain an %s type",
5969                       name, state->has_bindless() ? "atomic" : "opaque");
5970   }
5971
5972   /**/
5973   if (return_type->is_subroutine()) {
5974      YYLTYPE loc = this->get_location();
5975      _mesa_glsl_error(&loc, state,
5976                       "function `%s' return type can't be a subroutine type",
5977                       name);
5978   }
5979
5980
5981   /* Create an ir_function if one doesn't already exist. */
5982   f = state->symbols->get_function(name);
5983   if (f == NULL) {
5984      f = new(ctx) ir_function(name);
5985      if (!this->return_type->qualifier.is_subroutine_decl()) {
5986         if (!state->symbols->add_function(f)) {
5987            /* This function name shadows a non-function use of the same name. */
5988            YYLTYPE loc = this->get_location();
5989            _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5990                             "non-function", name);
5991            return NULL;
5992         }
5993      }
5994      emit_function(state, f);
5995   }
5996
5997   /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5998    *
5999    * "A shader cannot redefine or overload built-in functions."
6000    *
6001    * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
6002    *
6003    * "User code can overload the built-in functions but cannot redefine
6004    * them."
6005    */
6006   if (state->es_shader) {
6007      /* Local shader has no exact candidates; check the built-ins. */
6008      _mesa_glsl_initialize_builtin_functions();
6009      if (state->language_version >= 300 &&
6010          _mesa_glsl_has_builtin_function(state, name)) {
6011         YYLTYPE loc = this->get_location();
6012         _mesa_glsl_error(& loc, state,
6013                          "A shader cannot redefine or overload built-in "
6014                          "function `%s' in GLSL ES 3.00", name);
6015         return NULL;
6016      }
6017
6018      if (state->language_version == 100) {
6019         ir_function_signature *sig =
6020            _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6021         if (sig && sig->is_builtin()) {
6022            _mesa_glsl_error(& loc, state,
6023                             "A shader cannot redefine built-in "
6024                             "function `%s' in GLSL ES 1.00", name);
6025         }
6026      }
6027   }
6028
6029   /* Verify that this function's signature either doesn't match a previously
6030    * seen signature for a function with the same name, or, if a match is found,
6031    * that the previously seen signature does not have an associated definition.
6032    */
6033   if (state->es_shader || f->has_user_signature()) {
6034      sig = f->exact_matching_signature(state, &hir_parameters);
6035      if (sig != NULL) {
6036         const char *badvar = sig->qualifiers_match(&hir_parameters);
6037         if (badvar != NULL) {
6038            YYLTYPE loc = this->get_location();
6039
6040            _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6041                             "qualifiers don't match prototype", name, badvar);
6042         }
6043
6044         if (sig->return_type != return_type) {
6045            YYLTYPE loc = this->get_location();
6046
6047            _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6048                             "match prototype", name);
6049         }
6050
6051         if (sig->is_defined) {
6052            if (is_definition) {
6053               YYLTYPE loc = this->get_location();
6054               _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6055            } else {
6056               /* We just encountered a prototype that exactly matches a
6057                * function that's already been defined.  This is redundant,
6058                * and we should ignore it.
6059                */
6060               return NULL;
6061            }
6062         } else if (state->language_version == 100 && !is_definition) {
6063            /* From the GLSL 1.00 spec, section 4.2.7:
6064             *
6065             *     "A particular variable, structure or function declaration
6066             *      may occur at most once within a scope with the exception
6067             *      that a single function prototype plus the corresponding
6068             *      function definition are allowed."
6069             */
6070            YYLTYPE loc = this->get_location();
6071            _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6072         }
6073      }
6074   }
6075
6076   /* Verify the return type of main() */
6077   if (strcmp(name, "main") == 0) {
6078      if (! return_type->is_void()) {
6079         YYLTYPE loc = this->get_location();
6080
6081         _mesa_glsl_error(& loc, state, "main() must return void");
6082      }
6083
6084      if (!hir_parameters.is_empty()) {
6085         YYLTYPE loc = this->get_location();
6086
6087         _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6088      }
6089   }
6090
6091   /* Finish storing the information about this new function in its signature.
6092    */
6093   if (sig == NULL) {
6094      sig = new(ctx) ir_function_signature(return_type);
6095      f->add_signature(sig);
6096   }
6097
6098   sig->replace_parameters(&hir_parameters);
6099   signature = sig;
6100
6101   if (this->return_type->qualifier.subroutine_list) {
6102      int idx;
6103
6104      if (this->return_type->qualifier.flags.q.explicit_index) {
6105         unsigned qual_index;
6106         if (process_qualifier_constant(state, &loc, "index",
6107                                        this->return_type->qualifier.index,
6108                                        &qual_index)) {
6109            if (!state->has_explicit_uniform_location()) {
6110               _mesa_glsl_error(&loc, state, "subroutine index requires "
6111                                "GL_ARB_explicit_uniform_location or "
6112                                "GLSL 4.30");
6113            } else if (qual_index >= MAX_SUBROUTINES) {
6114               _mesa_glsl_error(&loc, state,
6115                                "invalid subroutine index (%d) index must "
6116                                "be a number between 0 and "
6117                                "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6118                                MAX_SUBROUTINES - 1);
6119            } else {
6120               f->subroutine_index = qual_index;
6121            }
6122         }
6123      }
6124
6125      f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6126      f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6127                                         f->num_subroutine_types);
6128      idx = 0;
6129      foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6130         const struct glsl_type *type;
6131         /* the subroutine type must be already declared */
6132         type = state->symbols->get_type(decl->identifier);
6133         if (!type) {
6134            _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6135         }
6136
6137         for (int i = 0; i < state->num_subroutine_types; i++) {
6138            ir_function *fn = state->subroutine_types[i];
6139            ir_function_signature *tsig = NULL;
6140
6141            if (strcmp(fn->name, decl->identifier))
6142               continue;
6143
6144            tsig = fn->matching_signature(state, &sig->parameters,
6145                                          false);
6146            if (!tsig) {
6147               _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6148            } else {
6149               if (tsig->return_type != sig->return_type) {
6150                  _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6151               }
6152            }
6153         }
6154         f->subroutine_types[idx++] = type;
6155      }
6156      state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6157                                                    ir_function *,
6158                                                    state->num_subroutines + 1);
6159      state->subroutines[state->num_subroutines] = f;
6160      state->num_subroutines++;
6161
6162   }
6163
6164   if (this->return_type->qualifier.is_subroutine_decl()) {
6165      if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6166         _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6167         return NULL;
6168      }
6169      state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6170                                                         ir_function *,
6171                                                         state->num_subroutine_types + 1);
6172      state->subroutine_types[state->num_subroutine_types] = f;
6173      state->num_subroutine_types++;
6174
6175      f->is_subroutine = true;
6176   }
6177
6178   /* Function declarations (prototypes) do not have r-values.
6179    */
6180   return NULL;
6181}
6182
6183
6184ir_rvalue *
6185ast_function_definition::hir(exec_list *instructions,
6186                             struct _mesa_glsl_parse_state *state)
6187{
6188   prototype->is_definition = true;
6189   prototype->hir(instructions, state);
6190
6191   ir_function_signature *signature = prototype->signature;
6192   if (signature == NULL)
6193      return NULL;
6194
6195   assert(state->current_function == NULL);
6196   state->current_function = signature;
6197   state->found_return = false;
6198
6199   /* Duplicate parameters declared in the prototype as concrete variables.
6200    * Add these to the symbol table.
6201    */
6202   state->symbols->push_scope();
6203   foreach_in_list(ir_variable, var, &signature->parameters) {
6204      assert(var->as_variable() != NULL);
6205
6206      /* The only way a parameter would "exist" is if two parameters have
6207       * the same name.
6208       */
6209      if (state->symbols->name_declared_this_scope(var->name)) {
6210         YYLTYPE loc = this->get_location();
6211
6212         _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6213      } else {
6214         state->symbols->add_variable(var);
6215      }
6216   }
6217
6218   /* Convert the body of the function to HIR. */
6219   this->body->hir(&signature->body, state);
6220   signature->is_defined = true;
6221
6222   state->symbols->pop_scope();
6223
6224   assert(state->current_function == signature);
6225   state->current_function = NULL;
6226
6227   if (!signature->return_type->is_void() && !state->found_return) {
6228      YYLTYPE loc = this->get_location();
6229      _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6230                       "%s, but no return statement",
6231                       signature->function_name(),
6232                       signature->return_type->name);
6233   }
6234
6235   /* Function definitions do not have r-values.
6236    */
6237   return NULL;
6238}
6239
6240
6241ir_rvalue *
6242ast_jump_statement::hir(exec_list *instructions,
6243                        struct _mesa_glsl_parse_state *state)
6244{
6245   void *ctx = state;
6246
6247   switch (mode) {
6248   case ast_return: {
6249      ir_return *inst;
6250      assert(state->current_function);
6251
6252      if (opt_return_value) {
6253         ir_rvalue *ret = opt_return_value->hir(instructions, state);
6254
6255         /* The value of the return type can be NULL if the shader says
6256          * 'return foo();' and foo() is a function that returns void.
6257          *
6258          * NOTE: The GLSL spec doesn't say that this is an error.  The type
6259          * of the return value is void.  If the return type of the function is
6260          * also void, then this should compile without error.  Seriously.
6261          */
6262         const glsl_type *const ret_type =
6263            (ret == NULL) ? glsl_type::void_type : ret->type;
6264
6265         /* Implicit conversions are not allowed for return values prior to
6266          * ARB_shading_language_420pack.
6267          */
6268         if (state->current_function->return_type != ret_type) {
6269            YYLTYPE loc = this->get_location();
6270
6271            if (state->has_420pack()) {
6272               if (!apply_implicit_conversion(state->current_function->return_type,
6273                                              ret, state)
6274                   || (ret->type != state->current_function->return_type)) {
6275                  _mesa_glsl_error(& loc, state,
6276                                   "could not implicitly convert return value "
6277                                   "to %s, in function `%s'",
6278                                   state->current_function->return_type->name,
6279                                   state->current_function->function_name());
6280               }
6281            } else {
6282               _mesa_glsl_error(& loc, state,
6283                                "`return' with wrong type %s, in function `%s' "
6284                                "returning %s",
6285                                ret_type->name,
6286                                state->current_function->function_name(),
6287                                state->current_function->return_type->name);
6288            }
6289         } else if (state->current_function->return_type->base_type ==
6290                    GLSL_TYPE_VOID) {
6291            YYLTYPE loc = this->get_location();
6292
6293            /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6294             * specs add a clarification:
6295             *
6296             *    "A void function can only use return without a return argument, even if
6297             *     the return argument has void type. Return statements only accept values:
6298             *
6299             *         void func1() { }
6300             *         void func2() { return func1(); } // illegal return statement"
6301             */
6302            _mesa_glsl_error(& loc, state,
6303                             "void functions can only use `return' without a "
6304                             "return argument");
6305         }
6306
6307         inst = new(ctx) ir_return(ret);
6308      } else {
6309         if (state->current_function->return_type->base_type !=
6310             GLSL_TYPE_VOID) {
6311            YYLTYPE loc = this->get_location();
6312
6313            _mesa_glsl_error(& loc, state,
6314                             "`return' with no value, in function %s returning "
6315                             "non-void",
6316            state->current_function->function_name());
6317         }
6318         inst = new(ctx) ir_return;
6319      }
6320
6321      state->found_return = true;
6322      instructions->push_tail(inst);
6323      break;
6324   }
6325
6326   case ast_discard:
6327      if (state->stage != MESA_SHADER_FRAGMENT) {
6328         YYLTYPE loc = this->get_location();
6329
6330         _mesa_glsl_error(& loc, state,
6331                          "`discard' may only appear in a fragment shader");
6332      }
6333      instructions->push_tail(new(ctx) ir_discard);
6334      break;
6335
6336   case ast_break:
6337   case ast_continue:
6338      if (mode == ast_continue &&
6339          state->loop_nesting_ast == NULL) {
6340         YYLTYPE loc = this->get_location();
6341
6342         _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6343      } else if (mode == ast_break &&
6344         state->loop_nesting_ast == NULL &&
6345         state->switch_state.switch_nesting_ast == NULL) {
6346         YYLTYPE loc = this->get_location();
6347
6348         _mesa_glsl_error(& loc, state,
6349                          "break may only appear in a loop or a switch");
6350      } else {
6351         /* For a loop, inline the for loop expression again, since we don't
6352          * know where near the end of the loop body the normal copy of it is
6353          * going to be placed.  Same goes for the condition for a do-while
6354          * loop.
6355          */
6356         if (state->loop_nesting_ast != NULL &&
6357             mode == ast_continue && !state->switch_state.is_switch_innermost) {
6358            if (state->loop_nesting_ast->rest_expression) {
6359               state->loop_nesting_ast->rest_expression->hir(instructions,
6360                                                             state);
6361            }
6362            if (state->loop_nesting_ast->mode ==
6363                ast_iteration_statement::ast_do_while) {
6364               state->loop_nesting_ast->condition_to_hir(instructions, state);
6365            }
6366         }
6367
6368         if (state->switch_state.is_switch_innermost &&
6369             mode == ast_continue) {
6370            /* Set 'continue_inside' to true. */
6371            ir_rvalue *const true_val = new (ctx) ir_constant(true);
6372            ir_dereference_variable *deref_continue_inside_var =
6373               new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6374            instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6375                                                           true_val));
6376
6377            /* Break out from the switch, continue for the loop will
6378             * be called right after switch. */
6379            ir_loop_jump *const jump =
6380               new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6381            instructions->push_tail(jump);
6382
6383         } else if (state->switch_state.is_switch_innermost &&
6384             mode == ast_break) {
6385            /* Force break out of switch by inserting a break. */
6386            ir_loop_jump *const jump =
6387               new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6388            instructions->push_tail(jump);
6389         } else {
6390            ir_loop_jump *const jump =
6391               new(ctx) ir_loop_jump((mode == ast_break)
6392                  ? ir_loop_jump::jump_break
6393                  : ir_loop_jump::jump_continue);
6394            instructions->push_tail(jump);
6395         }
6396      }
6397
6398      break;
6399   }
6400
6401   /* Jump instructions do not have r-values.
6402    */
6403   return NULL;
6404}
6405
6406
6407ir_rvalue *
6408ast_selection_statement::hir(exec_list *instructions,
6409                             struct _mesa_glsl_parse_state *state)
6410{
6411   void *ctx = state;
6412
6413   ir_rvalue *const condition = this->condition->hir(instructions, state);
6414
6415   /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6416    *
6417    *    "Any expression whose type evaluates to a Boolean can be used as the
6418    *    conditional expression bool-expression. Vector types are not accepted
6419    *    as the expression to if."
6420    *
6421    * The checks are separated so that higher quality diagnostics can be
6422    * generated for cases where both rules are violated.
6423    */
6424   if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6425      YYLTYPE loc = this->condition->get_location();
6426
6427      _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6428                       "boolean");
6429   }
6430
6431   ir_if *const stmt = new(ctx) ir_if(condition);
6432
6433   if (then_statement != NULL) {
6434      state->symbols->push_scope();
6435      then_statement->hir(& stmt->then_instructions, state);
6436      state->symbols->pop_scope();
6437   }
6438
6439   if (else_statement != NULL) {
6440      state->symbols->push_scope();
6441      else_statement->hir(& stmt->else_instructions, state);
6442      state->symbols->pop_scope();
6443   }
6444
6445   instructions->push_tail(stmt);
6446
6447   /* if-statements do not have r-values.
6448    */
6449   return NULL;
6450}
6451
6452
6453struct case_label {
6454   /** Value of the case label. */
6455   unsigned value;
6456
6457   /** Does this label occur after the default? */
6458   bool after_default;
6459
6460   /**
6461    * AST for the case label.
6462    *
6463    * This is only used to generate error messages for duplicate labels.
6464    */
6465   ast_expression *ast;
6466};
6467
6468/* Used for detection of duplicate case values, compare
6469 * given contents directly.
6470 */
6471static bool
6472compare_case_value(const void *a, const void *b)
6473{
6474   return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6475}
6476
6477
6478/* Used for detection of duplicate case values, just
6479 * returns key contents as is.
6480 */
6481static unsigned
6482key_contents(const void *key)
6483{
6484   return ((struct case_label *) key)->value;
6485}
6486
6487
6488ir_rvalue *
6489ast_switch_statement::hir(exec_list *instructions,
6490                          struct _mesa_glsl_parse_state *state)
6491{
6492   void *ctx = state;
6493
6494   ir_rvalue *const test_expression =
6495      this->test_expression->hir(instructions, state);
6496
6497   /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6498    *
6499    *    "The type of init-expression in a switch statement must be a
6500    *     scalar integer."
6501    */
6502   if (!test_expression->type->is_scalar() ||
6503       !test_expression->type->is_integer()) {
6504      YYLTYPE loc = this->test_expression->get_location();
6505
6506      _mesa_glsl_error(& loc,
6507                       state,
6508                       "switch-statement expression must be scalar "
6509                       "integer");
6510      return NULL;
6511   }
6512
6513   /* Track the switch-statement nesting in a stack-like manner.
6514    */
6515   struct glsl_switch_state saved = state->switch_state;
6516
6517   state->switch_state.is_switch_innermost = true;
6518   state->switch_state.switch_nesting_ast = this;
6519   state->switch_state.labels_ht =
6520         _mesa_hash_table_create(NULL, key_contents,
6521                                 compare_case_value);
6522   state->switch_state.previous_default = NULL;
6523
6524   /* Initalize is_fallthru state to false.
6525    */
6526   ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6527   state->switch_state.is_fallthru_var =
6528      new(ctx) ir_variable(glsl_type::bool_type,
6529                           "switch_is_fallthru_tmp",
6530                           ir_var_temporary);
6531   instructions->push_tail(state->switch_state.is_fallthru_var);
6532
6533   ir_dereference_variable *deref_is_fallthru_var =
6534      new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6535   instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6536                                                  is_fallthru_val));
6537
6538   /* Initialize continue_inside state to false.
6539    */
6540   state->switch_state.continue_inside =
6541      new(ctx) ir_variable(glsl_type::bool_type,
6542                           "continue_inside_tmp",
6543                           ir_var_temporary);
6544   instructions->push_tail(state->switch_state.continue_inside);
6545
6546   ir_rvalue *const false_val = new (ctx) ir_constant(false);
6547   ir_dereference_variable *deref_continue_inside_var =
6548      new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6549   instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6550                                                  false_val));
6551
6552   state->switch_state.run_default =
6553      new(ctx) ir_variable(glsl_type::bool_type,
6554                             "run_default_tmp",
6555                             ir_var_temporary);
6556   instructions->push_tail(state->switch_state.run_default);
6557
6558   /* Loop around the switch is used for flow control. */
6559   ir_loop * loop = new(ctx) ir_loop();
6560   instructions->push_tail(loop);
6561
6562   /* Cache test expression.
6563    */
6564   test_to_hir(&loop->body_instructions, state);
6565
6566   /* Emit code for body of switch stmt.
6567    */
6568   body->hir(&loop->body_instructions, state);
6569
6570   /* Insert a break at the end to exit loop. */
6571   ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6572   loop->body_instructions.push_tail(jump);
6573
6574   /* If we are inside loop, check if continue got called inside switch. */
6575   if (state->loop_nesting_ast != NULL) {
6576      ir_dereference_variable *deref_continue_inside =
6577         new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6578      ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6579      ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6580
6581      if (state->loop_nesting_ast != NULL) {
6582         if (state->loop_nesting_ast->rest_expression) {
6583            state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6584                                                          state);
6585         }
6586         if (state->loop_nesting_ast->mode ==
6587             ast_iteration_statement::ast_do_while) {
6588            state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6589         }
6590      }
6591      irif->then_instructions.push_tail(jump);
6592      instructions->push_tail(irif);
6593   }
6594
6595   _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6596
6597   state->switch_state = saved;
6598
6599   /* Switch statements do not have r-values. */
6600   return NULL;
6601}
6602
6603
6604void
6605ast_switch_statement::test_to_hir(exec_list *instructions,
6606                                  struct _mesa_glsl_parse_state *state)
6607{
6608   void *ctx = state;
6609
6610   /* set to true to avoid a duplicate "use of uninitialized variable" warning
6611    * on the switch test case. The first one would be already raised when
6612    * getting the test_expression at ast_switch_statement::hir
6613    */
6614   test_expression->set_is_lhs(true);
6615   /* Cache value of test expression. */
6616   ir_rvalue *const test_val = test_expression->hir(instructions, state);
6617
6618   state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6619                                                       "switch_test_tmp",
6620                                                       ir_var_temporary);
6621   ir_dereference_variable *deref_test_var =
6622      new(ctx) ir_dereference_variable(state->switch_state.test_var);
6623
6624   instructions->push_tail(state->switch_state.test_var);
6625   instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6626}
6627
6628
6629ir_rvalue *
6630ast_switch_body::hir(exec_list *instructions,
6631                     struct _mesa_glsl_parse_state *state)
6632{
6633   if (stmts != NULL)
6634      stmts->hir(instructions, state);
6635
6636   /* Switch bodies do not have r-values. */
6637   return NULL;
6638}
6639
6640ir_rvalue *
6641ast_case_statement_list::hir(exec_list *instructions,
6642                             struct _mesa_glsl_parse_state *state)
6643{
6644   exec_list default_case, after_default, tmp;
6645
6646   foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6647      case_stmt->hir(&tmp, state);
6648
6649      /* Default case. */
6650      if (state->switch_state.previous_default && default_case.is_empty()) {
6651         default_case.append_list(&tmp);
6652         continue;
6653      }
6654
6655      /* If default case found, append 'after_default' list. */
6656      if (!default_case.is_empty())
6657         after_default.append_list(&tmp);
6658      else
6659         instructions->append_list(&tmp);
6660   }
6661
6662   /* Handle the default case. This is done here because default might not be
6663    * the last case. We need to add checks against following cases first to see
6664    * if default should be chosen or not.
6665    */
6666   if (!default_case.is_empty()) {
6667      ir_factory body(instructions, state);
6668
6669      ir_expression *cmp = NULL;
6670
6671      hash_table_foreach(state->switch_state.labels_ht, entry) {
6672         const struct case_label *const l = (struct case_label *) entry->data;
6673
6674         /* If the switch init-value is the value of one of the labels that
6675          * occurs after the default case, disable execution of the default
6676          * case.
6677          */
6678         if (l->after_default) {
6679            ir_constant *const cnst =
6680               state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6681               ? body.constant(unsigned(l->value))
6682               : body.constant(int(l->value));
6683
6684            cmp = cmp == NULL
6685               ? equal(cnst, state->switch_state.test_var)
6686               : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6687         }
6688      }
6689
6690      if (cmp != NULL)
6691         body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6692      else
6693         body.emit(assign(state->switch_state.run_default, body.constant(true)));
6694
6695      /* Append default case and all cases after it. */
6696      instructions->append_list(&default_case);
6697      instructions->append_list(&after_default);
6698   }
6699
6700   /* Case statements do not have r-values. */
6701   return NULL;
6702}
6703
6704ir_rvalue *
6705ast_case_statement::hir(exec_list *instructions,
6706                        struct _mesa_glsl_parse_state *state)
6707{
6708   labels->hir(instructions, state);
6709
6710   /* Guard case statements depending on fallthru state. */
6711   ir_dereference_variable *const deref_fallthru_guard =
6712      new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6713   ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6714
6715   foreach_list_typed (ast_node, stmt, link, & this->stmts)
6716      stmt->hir(& test_fallthru->then_instructions, state);
6717
6718   instructions->push_tail(test_fallthru);
6719
6720   /* Case statements do not have r-values. */
6721   return NULL;
6722}
6723
6724
6725ir_rvalue *
6726ast_case_label_list::hir(exec_list *instructions,
6727                         struct _mesa_glsl_parse_state *state)
6728{
6729   foreach_list_typed (ast_case_label, label, link, & this->labels)
6730      label->hir(instructions, state);
6731
6732   /* Case labels do not have r-values. */
6733   return NULL;
6734}
6735
6736ir_rvalue *
6737ast_case_label::hir(exec_list *instructions,
6738                    struct _mesa_glsl_parse_state *state)
6739{
6740   ir_factory body(instructions, state);
6741
6742   ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6743
6744   /* If not default case, ... */
6745   if (this->test_value != NULL) {
6746      /* Conditionally set fallthru state based on
6747       * comparison of cached test expression value to case label.
6748       */
6749      ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6750      ir_constant *label_const =
6751         label_rval->constant_expression_value(body.mem_ctx);
6752
6753      if (!label_const) {
6754         YYLTYPE loc = this->test_value->get_location();
6755
6756         _mesa_glsl_error(& loc, state,
6757                          "switch statement case label must be a "
6758                          "constant expression");
6759
6760         /* Stuff a dummy value in to allow processing to continue. */
6761         label_const = body.constant(0);
6762      } else {
6763         hash_entry *entry =
6764               _mesa_hash_table_search(state->switch_state.labels_ht,
6765                                       &label_const->value.u[0]);
6766
6767         if (entry) {
6768            const struct case_label *const l =
6769               (struct case_label *) entry->data;
6770            const ast_expression *const previous_label = l->ast;
6771            YYLTYPE loc = this->test_value->get_location();
6772
6773            _mesa_glsl_error(& loc, state, "duplicate case value");
6774
6775            loc = previous_label->get_location();
6776            _mesa_glsl_error(& loc, state, "this is the previous case label");
6777         } else {
6778            struct case_label *l = ralloc(state->switch_state.labels_ht,
6779                                          struct case_label);
6780
6781            l->value = label_const->value.u[0];
6782            l->after_default = state->switch_state.previous_default != NULL;
6783            l->ast = this->test_value;
6784
6785            _mesa_hash_table_insert(state->switch_state.labels_ht,
6786                                    &label_const->value.u[0],
6787                                    l);
6788         }
6789      }
6790
6791      /* Create an r-value version of the ir_constant label here (after we may
6792       * have created a fake one in error cases) that can be passed to
6793       * apply_implicit_conversion below.
6794       */
6795      ir_rvalue *label = label_const;
6796
6797      ir_rvalue *deref_test_var =
6798         new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6799
6800      /*
6801       * From GLSL 4.40 specification section 6.2 ("Selection"):
6802       *
6803       *     "The type of the init-expression value in a switch statement must
6804       *     be a scalar int or uint. The type of the constant-expression value
6805       *     in a case label also must be a scalar int or uint. When any pair
6806       *     of these values is tested for "equal value" and the types do not
6807       *     match, an implicit conversion will be done to convert the int to a
6808       *     uint (see section 4.1.10 “Implicit Conversions”) before the compare
6809       *     is done."
6810       */
6811      if (label->type != state->switch_state.test_var->type) {
6812         YYLTYPE loc = this->test_value->get_location();
6813
6814         const glsl_type *type_a = label->type;
6815         const glsl_type *type_b = state->switch_state.test_var->type;
6816
6817         /* Check if int->uint implicit conversion is supported. */
6818         bool integer_conversion_supported =
6819            glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6820                                                           state);
6821
6822         if ((!type_a->is_integer() || !type_b->is_integer()) ||
6823              !integer_conversion_supported) {
6824            _mesa_glsl_error(&loc, state, "type mismatch with switch "
6825                             "init-expression and case label (%s != %s)",
6826                             type_a->name, type_b->name);
6827         } else {
6828            /* Conversion of the case label. */
6829            if (type_a->base_type == GLSL_TYPE_INT) {
6830               if (!apply_implicit_conversion(glsl_type::uint_type,
6831                                              label, state))
6832                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
6833            } else {
6834               /* Conversion of the init-expression value. */
6835               if (!apply_implicit_conversion(glsl_type::uint_type,
6836                                              deref_test_var, state))
6837                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
6838            }
6839         }
6840
6841         /* If the implicit conversion was allowed, the types will already be
6842          * the same.  If the implicit conversion wasn't allowed, smash the
6843          * type of the label anyway.  This will prevent the expression
6844          * constructor (below) from failing an assertion.
6845          */
6846         label->type = deref_test_var->type;
6847      }
6848
6849      body.emit(assign(fallthru_var,
6850                       logic_or(fallthru_var, equal(label, deref_test_var))));
6851   } else { /* default case */
6852      if (state->switch_state.previous_default) {
6853         YYLTYPE loc = this->get_location();
6854         _mesa_glsl_error(& loc, state,
6855                          "multiple default labels in one switch");
6856
6857         loc = state->switch_state.previous_default->get_location();
6858         _mesa_glsl_error(& loc, state, "this is the first default label");
6859      }
6860      state->switch_state.previous_default = this;
6861
6862      /* Set fallthru condition on 'run_default' bool. */
6863      body.emit(assign(fallthru_var,
6864                       logic_or(fallthru_var,
6865                                state->switch_state.run_default)));
6866   }
6867
6868   /* Case statements do not have r-values. */
6869   return NULL;
6870}
6871
6872void
6873ast_iteration_statement::condition_to_hir(exec_list *instructions,
6874                                          struct _mesa_glsl_parse_state *state)
6875{
6876   void *ctx = state;
6877
6878   if (condition != NULL) {
6879      ir_rvalue *const cond =
6880         condition->hir(instructions, state);
6881
6882      if ((cond == NULL)
6883          || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6884         YYLTYPE loc = condition->get_location();
6885
6886         _mesa_glsl_error(& loc, state,
6887                          "loop condition must be scalar boolean");
6888      } else {
6889         /* As the first code in the loop body, generate a block that looks
6890          * like 'if (!condition) break;' as the loop termination condition.
6891          */
6892         ir_rvalue *const not_cond =
6893            new(ctx) ir_expression(ir_unop_logic_not, cond);
6894
6895         ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6896
6897         ir_jump *const break_stmt =
6898            new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6899
6900         if_stmt->then_instructions.push_tail(break_stmt);
6901         instructions->push_tail(if_stmt);
6902      }
6903   }
6904}
6905
6906
6907ir_rvalue *
6908ast_iteration_statement::hir(exec_list *instructions,
6909                             struct _mesa_glsl_parse_state *state)
6910{
6911   void *ctx = state;
6912
6913   /* For-loops and while-loops start a new scope, but do-while loops do not.
6914    */
6915   if (mode != ast_do_while)
6916      state->symbols->push_scope();
6917
6918   if (init_statement != NULL)
6919      init_statement->hir(instructions, state);
6920
6921   ir_loop *const stmt = new(ctx) ir_loop();
6922   instructions->push_tail(stmt);
6923
6924   /* Track the current loop nesting. */
6925   ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6926
6927   state->loop_nesting_ast = this;
6928
6929   /* Likewise, indicate that following code is closest to a loop,
6930    * NOT closest to a switch.
6931    */
6932   bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6933   state->switch_state.is_switch_innermost = false;
6934
6935   if (mode != ast_do_while)
6936      condition_to_hir(&stmt->body_instructions, state);
6937
6938   if (body != NULL)
6939      body->hir(& stmt->body_instructions, state);
6940
6941   if (rest_expression != NULL)
6942      rest_expression->hir(& stmt->body_instructions, state);
6943
6944   if (mode == ast_do_while)
6945      condition_to_hir(&stmt->body_instructions, state);
6946
6947   if (mode != ast_do_while)
6948      state->symbols->pop_scope();
6949
6950   /* Restore previous nesting before returning. */
6951   state->loop_nesting_ast = nesting_ast;
6952   state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6953
6954   /* Loops do not have r-values.
6955    */
6956   return NULL;
6957}
6958
6959
6960/**
6961 * Determine if the given type is valid for establishing a default precision
6962 * qualifier.
6963 *
6964 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6965 *
6966 *     "The precision statement
6967 *
6968 *         precision precision-qualifier type;
6969 *
6970 *     can be used to establish a default precision qualifier. The type field
6971 *     can be either int or float or any of the sampler types, and the
6972 *     precision-qualifier can be lowp, mediump, or highp."
6973 *
6974 * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
6975 * qualifiers on sampler types, but this seems like an oversight (since the
6976 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6977 * shaders).  So we allow int, float, and all sampler types regardless of GLSL
6978 * version.
6979 */
6980static bool
6981is_valid_default_precision_type(const struct glsl_type *const type)
6982{
6983   if (type == NULL)
6984      return false;
6985
6986   switch (type->base_type) {
6987   case GLSL_TYPE_INT:
6988   case GLSL_TYPE_FLOAT:
6989      /* "int" and "float" are valid, but vectors and matrices are not. */
6990      return type->vector_elements == 1 && type->matrix_columns == 1;
6991   case GLSL_TYPE_SAMPLER:
6992   case GLSL_TYPE_IMAGE:
6993   case GLSL_TYPE_ATOMIC_UINT:
6994      return true;
6995   default:
6996      return false;
6997   }
6998}
6999
7000
7001ir_rvalue *
7002ast_type_specifier::hir(exec_list *instructions,
7003                        struct _mesa_glsl_parse_state *state)
7004{
7005   if (this->default_precision == ast_precision_none && this->structure == NULL)
7006      return NULL;
7007
7008   YYLTYPE loc = this->get_location();
7009
7010   /* If this is a precision statement, check that the type to which it is
7011    * applied is either float or int.
7012    *
7013    * From section 4.5.3 of the GLSL 1.30 spec:
7014    *    "The precision statement
7015    *       precision precision-qualifier type;
7016    *    can be used to establish a default precision qualifier. The type
7017    *    field can be either int or float [...].  Any other types or
7018    *    qualifiers will result in an error.
7019    */
7020   if (this->default_precision != ast_precision_none) {
7021      if (!state->check_precision_qualifiers_allowed(&loc))
7022         return NULL;
7023
7024      if (this->structure != NULL) {
7025         _mesa_glsl_error(&loc, state,
7026                          "precision qualifiers do not apply to structures");
7027         return NULL;
7028      }
7029
7030      if (this->array_specifier != NULL) {
7031         _mesa_glsl_error(&loc, state,
7032                          "default precision statements do not apply to "
7033                          "arrays");
7034         return NULL;
7035      }
7036
7037      const struct glsl_type *const type =
7038         state->symbols->get_type(this->type_name);
7039      if (!is_valid_default_precision_type(type)) {
7040         _mesa_glsl_error(&loc, state,
7041                          "default precision statements apply only to "
7042                          "float, int, and opaque types");
7043         return NULL;
7044      }
7045
7046      if (state->es_shader) {
7047         /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7048          * spec says:
7049          *
7050          *     "Non-precision qualified declarations will use the precision
7051          *     qualifier specified in the most recent precision statement
7052          *     that is still in scope. The precision statement has the same
7053          *     scoping rules as variable declarations. If it is declared
7054          *     inside a compound statement, its effect stops at the end of
7055          *     the innermost statement it was declared in. Precision
7056          *     statements in nested scopes override precision statements in
7057          *     outer scopes. Multiple precision statements for the same basic
7058          *     type can appear inside the same scope, with later statements
7059          *     overriding earlier statements within that scope."
7060          *
7061          * Default precision specifications follow the same scope rules as
7062          * variables.  So, we can track the state of the default precision
7063          * qualifiers in the symbol table, and the rules will just work.  This
7064          * is a slight abuse of the symbol table, but it has the semantics
7065          * that we want.
7066          */
7067         state->symbols->add_default_precision_qualifier(this->type_name,
7068                                                         this->default_precision);
7069      }
7070
7071      /* FINISHME: Translate precision statements into IR. */
7072      return NULL;
7073   }
7074
7075   /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7076    * process_record_constructor() can do type-checking on C-style initializer
7077    * expressions of structs, but ast_struct_specifier should only be translated
7078    * to HIR if it is declaring the type of a structure.
7079    *
7080    * The ->is_declaration field is false for initializers of variables
7081    * declared separately from the struct's type definition.
7082    *
7083    *    struct S { ... };              (is_declaration = true)
7084    *    struct T { ... } t = { ... };  (is_declaration = true)
7085    *    S s = { ... };                 (is_declaration = false)
7086    */
7087   if (this->structure != NULL && this->structure->is_declaration)
7088      return this->structure->hir(instructions, state);
7089
7090   return NULL;
7091}
7092
7093
7094/**
7095 * Process a structure or interface block tree into an array of structure fields
7096 *
7097 * After parsing, where there are some syntax differnces, structures and
7098 * interface blocks are almost identical.  They are similar enough that the
7099 * AST for each can be processed the same way into a set of
7100 * \c glsl_struct_field to describe the members.
7101 *
7102 * If we're processing an interface block, var_mode should be the type of the
7103 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7104 * ir_var_shader_storage).  If we're processing a structure, var_mode should be
7105 * ir_var_auto.
7106 *
7107 * \return
7108 * The number of fields processed.  A pointer to the array structure fields is
7109 * stored in \c *fields_ret.
7110 */
7111static unsigned
7112ast_process_struct_or_iface_block_members(exec_list *instructions,
7113                                          struct _mesa_glsl_parse_state *state,
7114                                          exec_list *declarations,
7115                                          glsl_struct_field **fields_ret,
7116                                          bool is_interface,
7117                                          enum glsl_matrix_layout matrix_layout,
7118                                          bool allow_reserved_names,
7119                                          ir_variable_mode var_mode,
7120                                          ast_type_qualifier *layout,
7121                                          unsigned block_stream,
7122                                          unsigned block_xfb_buffer,
7123                                          unsigned block_xfb_offset,
7124                                          unsigned expl_location,
7125                                          unsigned expl_align)
7126{
7127   unsigned decl_count = 0;
7128   unsigned next_offset = 0;
7129
7130   /* Make an initial pass over the list of fields to determine how
7131    * many there are.  Each element in this list is an ast_declarator_list.
7132    * This means that we actually need to count the number of elements in the
7133    * 'declarations' list in each of the elements.
7134    */
7135   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7136      decl_count += decl_list->declarations.length();
7137   }
7138
7139   /* Allocate storage for the fields and process the field
7140    * declarations.  As the declarations are processed, try to also convert
7141    * the types to HIR.  This ensures that structure definitions embedded in
7142    * other structure definitions or in interface blocks are processed.
7143    */
7144   glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7145                                                   decl_count);
7146
7147   bool first_member = true;
7148   bool first_member_has_explicit_location = false;
7149
7150   unsigned i = 0;
7151   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7152      const char *type_name;
7153      YYLTYPE loc = decl_list->get_location();
7154
7155      decl_list->type->specifier->hir(instructions, state);
7156
7157      /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7158       *
7159       *    "Anonymous structures are not supported; so embedded structures
7160       *    must have a declarator. A name given to an embedded struct is
7161       *    scoped at the same level as the struct it is embedded in."
7162       *
7163       * The same section of the  GLSL 1.20 spec says:
7164       *
7165       *    "Anonymous structures are not supported. Embedded structures are
7166       *    not supported."
7167       *
7168       * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7169       * embedded structures in 1.10 only.
7170       */
7171      if (state->language_version != 110 &&
7172          decl_list->type->specifier->structure != NULL)
7173         _mesa_glsl_error(&loc, state,
7174                          "embedded structure declarations are not allowed");
7175
7176      const glsl_type *decl_type =
7177         decl_list->type->glsl_type(& type_name, state);
7178
7179      const struct ast_type_qualifier *const qual =
7180         &decl_list->type->qualifier;
7181
7182      /* From section 4.3.9 of the GLSL 4.40 spec:
7183       *
7184       *    "[In interface blocks] opaque types are not allowed."
7185       *
7186       * It should be impossible for decl_type to be NULL here.  Cases that
7187       * might naturally lead to decl_type being NULL, especially for the
7188       * is_interface case, will have resulted in compilation having
7189       * already halted due to a syntax error.
7190       */
7191      assert(decl_type);
7192
7193      if (is_interface) {
7194         /* From section 4.3.7 of the ARB_bindless_texture spec:
7195          *
7196          *    "(remove the following bullet from the last list on p. 39,
7197          *     thereby permitting sampler types in interface blocks; image
7198          *     types are also permitted in blocks by this extension)"
7199          *
7200          *     * sampler types are not allowed
7201          */
7202         if (decl_type->contains_atomic() ||
7203             (!state->has_bindless() && decl_type->contains_opaque())) {
7204            _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7205                             "interface block contains %s variable",
7206                             state->has_bindless() ? "atomic" : "opaque");
7207         }
7208      } else {
7209         if (decl_type->contains_atomic()) {
7210            /* From section 4.1.7.3 of the GLSL 4.40 spec:
7211             *
7212             *    "Members of structures cannot be declared as atomic counter
7213             *     types."
7214             */
7215            _mesa_glsl_error(&loc, state, "atomic counter in structure");
7216         }
7217
7218         if (!state->has_bindless() && decl_type->contains_image()) {
7219            /* FINISHME: Same problem as with atomic counters.
7220             * FINISHME: Request clarification from Khronos and add
7221             * FINISHME: spec quotation here.
7222             */
7223            _mesa_glsl_error(&loc, state, "image in structure");
7224         }
7225      }
7226
7227      if (qual->flags.q.explicit_binding) {
7228         _mesa_glsl_error(&loc, state,
7229                          "binding layout qualifier cannot be applied "
7230                          "to struct or interface block members");
7231      }
7232
7233      if (is_interface) {
7234         if (!first_member) {
7235            if (!layout->flags.q.explicit_location &&
7236                ((first_member_has_explicit_location &&
7237                  !qual->flags.q.explicit_location) ||
7238                 (!first_member_has_explicit_location &&
7239                  qual->flags.q.explicit_location))) {
7240               _mesa_glsl_error(&loc, state,
7241                                "when block-level location layout qualifier "
7242                                "is not supplied either all members must "
7243                                "have a location layout qualifier or all "
7244                                "members must not have a location layout "
7245                                "qualifier");
7246            }
7247         } else {
7248            first_member = false;
7249            first_member_has_explicit_location =
7250               qual->flags.q.explicit_location;
7251         }
7252      }
7253
7254      if (qual->flags.q.std140 ||
7255          qual->flags.q.std430 ||
7256          qual->flags.q.packed ||
7257          qual->flags.q.shared) {
7258         _mesa_glsl_error(&loc, state,
7259                          "uniform/shader storage block layout qualifiers "
7260                          "std140, std430, packed, and shared can only be "
7261                          "applied to uniform/shader storage blocks, not "
7262                          "members");
7263      }
7264
7265      if (qual->flags.q.constant) {
7266         _mesa_glsl_error(&loc, state,
7267                          "const storage qualifier cannot be applied "
7268                          "to struct or interface block members");
7269      }
7270
7271      validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7272      validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7273
7274      /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7275       *
7276       *   "A block member may be declared with a stream identifier, but
7277       *   the specified stream must match the stream associated with the
7278       *   containing block."
7279       */
7280      if (qual->flags.q.explicit_stream) {
7281         unsigned qual_stream;
7282         if (process_qualifier_constant(state, &loc, "stream",
7283                                        qual->stream, &qual_stream) &&
7284             qual_stream != block_stream) {
7285            _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7286                             "interface block member does not match "
7287                             "the interface block (%u vs %u)", qual_stream,
7288                             block_stream);
7289         }
7290      }
7291
7292      int xfb_buffer;
7293      unsigned explicit_xfb_buffer = 0;
7294      if (qual->flags.q.explicit_xfb_buffer) {
7295         unsigned qual_xfb_buffer;
7296         if (process_qualifier_constant(state, &loc, "xfb_buffer",
7297                                        qual->xfb_buffer, &qual_xfb_buffer)) {
7298            explicit_xfb_buffer = 1;
7299            if (qual_xfb_buffer != block_xfb_buffer)
7300               _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7301                                "interface block member does not match "
7302                                "the interface block (%u vs %u)",
7303                                qual_xfb_buffer, block_xfb_buffer);
7304         }
7305         xfb_buffer = (int) qual_xfb_buffer;
7306      } else {
7307         if (layout)
7308            explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7309         xfb_buffer = (int) block_xfb_buffer;
7310      }
7311
7312      int xfb_stride = -1;
7313      if (qual->flags.q.explicit_xfb_stride) {
7314         unsigned qual_xfb_stride;
7315         if (process_qualifier_constant(state, &loc, "xfb_stride",
7316                                        qual->xfb_stride, &qual_xfb_stride)) {
7317            xfb_stride = (int) qual_xfb_stride;
7318         }
7319      }
7320
7321      if (qual->flags.q.uniform && qual->has_interpolation()) {
7322         _mesa_glsl_error(&loc, state,
7323                          "interpolation qualifiers cannot be used "
7324                          "with uniform interface blocks");
7325      }
7326
7327      if ((qual->flags.q.uniform || !is_interface) &&
7328          qual->has_auxiliary_storage()) {
7329         _mesa_glsl_error(&loc, state,
7330                          "auxiliary storage qualifiers cannot be used "
7331                          "in uniform blocks or structures.");
7332      }
7333
7334      if (qual->flags.q.row_major || qual->flags.q.column_major) {
7335         if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7336            _mesa_glsl_error(&loc, state,
7337                             "row_major and column_major can only be "
7338                             "applied to interface blocks");
7339         } else
7340            validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7341      }
7342
7343      foreach_list_typed (ast_declaration, decl, link,
7344                          &decl_list->declarations) {
7345         YYLTYPE loc = decl->get_location();
7346
7347         if (!allow_reserved_names)
7348            validate_identifier(decl->identifier, loc, state);
7349
7350         const struct glsl_type *field_type =
7351            process_array_type(&loc, decl_type, decl->array_specifier, state);
7352         validate_array_dimensions(field_type, state, &loc);
7353         fields[i].type = field_type;
7354         fields[i].name = decl->identifier;
7355         fields[i].interpolation =
7356            interpret_interpolation_qualifier(qual, field_type,
7357                                              var_mode, state, &loc);
7358         fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7359         fields[i].sample = qual->flags.q.sample ? 1 : 0;
7360         fields[i].patch = qual->flags.q.patch ? 1 : 0;
7361         fields[i].precision = qual->precision;
7362         fields[i].offset = -1;
7363         fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7364         fields[i].xfb_buffer = xfb_buffer;
7365         fields[i].xfb_stride = xfb_stride;
7366
7367         if (qual->flags.q.explicit_location) {
7368            unsigned qual_location;
7369            if (process_qualifier_constant(state, &loc, "location",
7370                                           qual->location, &qual_location)) {
7371               fields[i].location = qual_location +
7372                  (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7373               expl_location = fields[i].location +
7374                  fields[i].type->count_attribute_slots(false);
7375            }
7376         } else {
7377            if (layout && layout->flags.q.explicit_location) {
7378               fields[i].location = expl_location;
7379               expl_location += fields[i].type->count_attribute_slots(false);
7380            } else {
7381               fields[i].location = -1;
7382            }
7383         }
7384
7385         /* Offset can only be used with std430 and std140 layouts an initial
7386          * value of 0 is used for error detection.
7387          */
7388         unsigned align = 0;
7389         unsigned size = 0;
7390         if (layout) {
7391            bool row_major;
7392            if (qual->flags.q.row_major ||
7393                matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7394               row_major = true;
7395            } else {
7396               row_major = false;
7397            }
7398
7399            if(layout->flags.q.std140) {
7400               align = field_type->std140_base_alignment(row_major);
7401               size = field_type->std140_size(row_major);
7402            } else if (layout->flags.q.std430) {
7403               align = field_type->std430_base_alignment(row_major);
7404               size = field_type->std430_size(row_major);
7405            }
7406         }
7407
7408         if (qual->flags.q.explicit_offset) {
7409            unsigned qual_offset;
7410            if (process_qualifier_constant(state, &loc, "offset",
7411                                           qual->offset, &qual_offset)) {
7412               if (align != 0 && size != 0) {
7413                   if (next_offset > qual_offset)
7414                      _mesa_glsl_error(&loc, state, "layout qualifier "
7415                                       "offset overlaps previous member");
7416
7417                  if (qual_offset % align) {
7418                     _mesa_glsl_error(&loc, state, "layout qualifier offset "
7419                                      "must be a multiple of the base "
7420                                      "alignment of %s", field_type->name);
7421                  }
7422                  fields[i].offset = qual_offset;
7423                  next_offset = qual_offset + size;
7424               } else {
7425                  _mesa_glsl_error(&loc, state, "offset can only be used "
7426                                   "with std430 and std140 layouts");
7427               }
7428            }
7429         }
7430
7431         if (qual->flags.q.explicit_align || expl_align != 0) {
7432            unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7433               next_offset;
7434            if (align == 0 || size == 0) {
7435               _mesa_glsl_error(&loc, state, "align can only be used with "
7436                                "std430 and std140 layouts");
7437            } else if (qual->flags.q.explicit_align) {
7438               unsigned member_align;
7439               if (process_qualifier_constant(state, &loc, "align",
7440                                              qual->align, &member_align)) {
7441                  if (member_align == 0 ||
7442                      member_align & (member_align - 1)) {
7443                     _mesa_glsl_error(&loc, state, "align layout qualifier "
7444                                      "is not a power of 2");
7445                  } else {
7446                     fields[i].offset = glsl_align(offset, member_align);
7447                     next_offset = fields[i].offset + size;
7448                  }
7449               }
7450            } else {
7451               fields[i].offset = glsl_align(offset, expl_align);
7452               next_offset = fields[i].offset + size;
7453            }
7454         } else if (!qual->flags.q.explicit_offset) {
7455            if (align != 0 && size != 0)
7456               next_offset = glsl_align(next_offset, align) + size;
7457         }
7458
7459         /* From the ARB_enhanced_layouts spec:
7460          *
7461          *    "The given offset applies to the first component of the first
7462          *    member of the qualified entity.  Then, within the qualified
7463          *    entity, subsequent components are each assigned, in order, to
7464          *    the next available offset aligned to a multiple of that
7465          *    component's size.  Aggregate types are flattened down to the
7466          *    component level to get this sequence of components."
7467          */
7468         if (qual->flags.q.explicit_xfb_offset) {
7469            unsigned xfb_offset;
7470            if (process_qualifier_constant(state, &loc, "xfb_offset",
7471                                           qual->offset, &xfb_offset)) {
7472               fields[i].offset = xfb_offset;
7473               block_xfb_offset = fields[i].offset +
7474                  4 * field_type->component_slots();
7475            }
7476         } else {
7477            if (layout && layout->flags.q.explicit_xfb_offset) {
7478               unsigned align = field_type->is_64bit() ? 8 : 4;
7479               fields[i].offset = glsl_align(block_xfb_offset, align);
7480               block_xfb_offset += 4 * field_type->component_slots();
7481            }
7482         }
7483
7484         /* Propogate row- / column-major information down the fields of the
7485          * structure or interface block.  Structures need this data because
7486          * the structure may contain a structure that contains ... a matrix
7487          * that need the proper layout.
7488          */
7489         if (is_interface && layout &&
7490             (layout->flags.q.uniform || layout->flags.q.buffer) &&
7491             (field_type->without_array()->is_matrix()
7492              || field_type->without_array()->is_struct())) {
7493            /* If no layout is specified for the field, inherit the layout
7494             * from the block.
7495             */
7496            fields[i].matrix_layout = matrix_layout;
7497
7498            if (qual->flags.q.row_major)
7499               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7500            else if (qual->flags.q.column_major)
7501               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7502
7503            /* If we're processing an uniform or buffer block, the matrix
7504             * layout must be decided by this point.
7505             */
7506            assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7507                   || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7508         }
7509
7510         /* Memory qualifiers are allowed on buffer and image variables, while
7511          * the format qualifier is only accepted for images.
7512          */
7513         if (var_mode == ir_var_shader_storage ||
7514             field_type->without_array()->is_image()) {
7515            /* For readonly and writeonly qualifiers the field definition,
7516             * if set, overwrites the layout qualifier.
7517             */
7518            if (qual->flags.q.read_only || qual->flags.q.write_only) {
7519               fields[i].memory_read_only = qual->flags.q.read_only;
7520               fields[i].memory_write_only = qual->flags.q.write_only;
7521            } else {
7522               fields[i].memory_read_only =
7523                  layout ? layout->flags.q.read_only : 0;
7524               fields[i].memory_write_only =
7525                  layout ? layout->flags.q.write_only : 0;
7526            }
7527
7528            /* For other qualifiers, we set the flag if either the layout
7529             * qualifier or the field qualifier are set
7530             */
7531            fields[i].memory_coherent = qual->flags.q.coherent ||
7532                                        (layout && layout->flags.q.coherent);
7533            fields[i].memory_volatile = qual->flags.q._volatile ||
7534                                        (layout && layout->flags.q._volatile);
7535            fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7536                                        (layout && layout->flags.q.restrict_flag);
7537
7538            if (field_type->without_array()->is_image()) {
7539               if (qual->flags.q.explicit_image_format) {
7540                  if (qual->image_base_type !=
7541                      field_type->without_array()->sampled_type) {
7542                     _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7543                                      "match the base data type of the image");
7544                  }
7545
7546                  fields[i].image_format = qual->image_format;
7547               } else {
7548                  if (!qual->flags.q.write_only) {
7549                     _mesa_glsl_error(&loc, state, "image not qualified with "
7550                                      "`writeonly' must have a format layout "
7551                                      "qualifier");
7552                  }
7553
7554                  fields[i].image_format = GL_NONE;
7555               }
7556            }
7557         }
7558
7559         i++;
7560      }
7561   }
7562
7563   assert(i == decl_count);
7564
7565   *fields_ret = fields;
7566   return decl_count;
7567}
7568
7569
7570ir_rvalue *
7571ast_struct_specifier::hir(exec_list *instructions,
7572                          struct _mesa_glsl_parse_state *state)
7573{
7574   YYLTYPE loc = this->get_location();
7575
7576   unsigned expl_location = 0;
7577   if (layout && layout->flags.q.explicit_location) {
7578      if (!process_qualifier_constant(state, &loc, "location",
7579                                      layout->location, &expl_location)) {
7580         return NULL;
7581      } else {
7582         expl_location = VARYING_SLOT_VAR0 + expl_location;
7583      }
7584   }
7585
7586   glsl_struct_field *fields;
7587   unsigned decl_count =
7588      ast_process_struct_or_iface_block_members(instructions,
7589                                                state,
7590                                                &this->declarations,
7591                                                &fields,
7592                                                false,
7593                                                GLSL_MATRIX_LAYOUT_INHERITED,
7594                                                false /* allow_reserved_names */,
7595                                                ir_var_auto,
7596                                                layout,
7597                                                0, /* for interface only */
7598                                                0, /* for interface only */
7599                                                0, /* for interface only */
7600                                                expl_location,
7601                                                0 /* for interface only */);
7602
7603   validate_identifier(this->name, loc, state);
7604
7605   type = glsl_type::get_struct_instance(fields, decl_count, this->name);
7606
7607   if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7608      const glsl_type *match = state->symbols->get_type(name);
7609      /* allow struct matching for desktop GL - older UE4 does this */
7610      if (match != NULL && state->is_version(130, 0) && match->record_compare(type, true, false))
7611         _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7612      else
7613         _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7614   } else {
7615      const glsl_type **s = reralloc(state, state->user_structures,
7616                                     const glsl_type *,
7617                                     state->num_user_structures + 1);
7618      if (s != NULL) {
7619         s[state->num_user_structures] = type;
7620         state->user_structures = s;
7621         state->num_user_structures++;
7622      }
7623   }
7624
7625   /* Structure type definitions do not have r-values.
7626    */
7627   return NULL;
7628}
7629
7630
7631/**
7632 * Visitor class which detects whether a given interface block has been used.
7633 */
7634class interface_block_usage_visitor : public ir_hierarchical_visitor
7635{
7636public:
7637   interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7638      : mode(mode), block(block), found(false)
7639   {
7640   }
7641
7642   virtual ir_visitor_status visit(ir_dereference_variable *ir)
7643   {
7644      if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7645         found = true;
7646         return visit_stop;
7647      }
7648      return visit_continue;
7649   }
7650
7651   bool usage_found() const
7652   {
7653      return this->found;
7654   }
7655
7656private:
7657   ir_variable_mode mode;
7658   const glsl_type *block;
7659   bool found;
7660};
7661
7662static bool
7663is_unsized_array_last_element(ir_variable *v)
7664{
7665   const glsl_type *interface_type = v->get_interface_type();
7666   int length = interface_type->length;
7667
7668   assert(v->type->is_unsized_array());
7669
7670   /* Check if it is the last element of the interface */
7671   if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7672      return true;
7673   return false;
7674}
7675
7676static void
7677apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7678{
7679   var->data.memory_read_only = field.memory_read_only;
7680   var->data.memory_write_only = field.memory_write_only;
7681   var->data.memory_coherent = field.memory_coherent;
7682   var->data.memory_volatile = field.memory_volatile;
7683   var->data.memory_restrict = field.memory_restrict;
7684}
7685
7686ir_rvalue *
7687ast_interface_block::hir(exec_list *instructions,
7688                         struct _mesa_glsl_parse_state *state)
7689{
7690   YYLTYPE loc = this->get_location();
7691
7692   /* Interface blocks must be declared at global scope */
7693   if (state->current_function != NULL) {
7694      _mesa_glsl_error(&loc, state,
7695                       "Interface block `%s' must be declared "
7696                       "at global scope",
7697                       this->block_name);
7698   }
7699
7700   /* Validate qualifiers:
7701    *
7702    * - Layout Qualifiers as per the table in Section 4.4
7703    *   ("Layout Qualifiers") of the GLSL 4.50 spec.
7704    *
7705    * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7706    *   GLSL 4.50 spec:
7707    *
7708    *     "Additionally, memory qualifiers may also be used in the declaration
7709    *      of shader storage blocks"
7710    *
7711    * Note the table in Section 4.4 says std430 is allowed on both uniform and
7712    * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7713    * Layout Qualifiers) of the GLSL 4.50 spec says:
7714    *
7715    *    "The std430 qualifier is supported only for shader storage blocks;
7716    *    using std430 on a uniform block will result in a compile-time error."
7717    */
7718   ast_type_qualifier allowed_blk_qualifiers;
7719   allowed_blk_qualifiers.flags.i = 0;
7720   if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7721      allowed_blk_qualifiers.flags.q.shared = 1;
7722      allowed_blk_qualifiers.flags.q.packed = 1;
7723      allowed_blk_qualifiers.flags.q.std140 = 1;
7724      allowed_blk_qualifiers.flags.q.row_major = 1;
7725      allowed_blk_qualifiers.flags.q.column_major = 1;
7726      allowed_blk_qualifiers.flags.q.explicit_align = 1;
7727      allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7728      if (this->layout.flags.q.buffer) {
7729         allowed_blk_qualifiers.flags.q.buffer = 1;
7730         allowed_blk_qualifiers.flags.q.std430 = 1;
7731         allowed_blk_qualifiers.flags.q.coherent = 1;
7732         allowed_blk_qualifiers.flags.q._volatile = 1;
7733         allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7734         allowed_blk_qualifiers.flags.q.read_only = 1;
7735         allowed_blk_qualifiers.flags.q.write_only = 1;
7736      } else {
7737         allowed_blk_qualifiers.flags.q.uniform = 1;
7738      }
7739   } else {
7740      /* Interface block */
7741      assert(this->layout.flags.q.in || this->layout.flags.q.out);
7742
7743      allowed_blk_qualifiers.flags.q.explicit_location = 1;
7744      if (this->layout.flags.q.out) {
7745         allowed_blk_qualifiers.flags.q.out = 1;
7746         if (state->stage == MESA_SHADER_GEOMETRY ||
7747          state->stage == MESA_SHADER_TESS_CTRL ||
7748          state->stage == MESA_SHADER_TESS_EVAL ||
7749          state->stage == MESA_SHADER_VERTEX ) {
7750            allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7751            allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7752            allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7753            allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7754            allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7755            if (state->stage == MESA_SHADER_GEOMETRY) {
7756               allowed_blk_qualifiers.flags.q.stream = 1;
7757               allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7758            }
7759            if (state->stage == MESA_SHADER_TESS_CTRL) {
7760               allowed_blk_qualifiers.flags.q.patch = 1;
7761            }
7762         }
7763      } else {
7764         allowed_blk_qualifiers.flags.q.in = 1;
7765         if (state->stage == MESA_SHADER_TESS_EVAL) {
7766            allowed_blk_qualifiers.flags.q.patch = 1;
7767         }
7768      }
7769   }
7770
7771   this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7772                               "invalid qualifier for block",
7773                               this->block_name);
7774
7775   enum glsl_interface_packing packing;
7776   if (this->layout.flags.q.std140) {
7777      packing = GLSL_INTERFACE_PACKING_STD140;
7778   } else if (this->layout.flags.q.packed) {
7779      packing = GLSL_INTERFACE_PACKING_PACKED;
7780   } else if (this->layout.flags.q.std430) {
7781      packing = GLSL_INTERFACE_PACKING_STD430;
7782   } else {
7783      /* The default layout is shared.
7784       */
7785      packing = GLSL_INTERFACE_PACKING_SHARED;
7786   }
7787
7788   ir_variable_mode var_mode;
7789   const char *iface_type_name;
7790   if (this->layout.flags.q.in) {
7791      var_mode = ir_var_shader_in;
7792      iface_type_name = "in";
7793   } else if (this->layout.flags.q.out) {
7794      var_mode = ir_var_shader_out;
7795      iface_type_name = "out";
7796   } else if (this->layout.flags.q.uniform) {
7797      var_mode = ir_var_uniform;
7798      iface_type_name = "uniform";
7799   } else if (this->layout.flags.q.buffer) {
7800      var_mode = ir_var_shader_storage;
7801      iface_type_name = "buffer";
7802   } else {
7803      var_mode = ir_var_auto;
7804      iface_type_name = "UNKNOWN";
7805      assert(!"interface block layout qualifier not found!");
7806   }
7807
7808   enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7809   if (this->layout.flags.q.row_major)
7810      matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7811   else if (this->layout.flags.q.column_major)
7812      matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7813
7814   bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7815   exec_list declared_variables;
7816   glsl_struct_field *fields;
7817
7818   /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7819    * that we don't have incompatible qualifiers
7820    */
7821   if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7822      _mesa_glsl_error(&loc, state,
7823                       "Interface block sets both readonly and writeonly");
7824   }
7825
7826   unsigned qual_stream;
7827   if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7828                                   &qual_stream) ||
7829       !validate_stream_qualifier(&loc, state, qual_stream)) {
7830      /* If the stream qualifier is invalid it doesn't make sense to continue
7831       * on and try to compare stream layouts on member variables against it
7832       * so just return early.
7833       */
7834      return NULL;
7835   }
7836
7837   unsigned qual_xfb_buffer;
7838   if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7839                                   layout.xfb_buffer, &qual_xfb_buffer) ||
7840       !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7841      return NULL;
7842   }
7843
7844   unsigned qual_xfb_offset;
7845   if (layout.flags.q.explicit_xfb_offset) {
7846      if (!process_qualifier_constant(state, &loc, "xfb_offset",
7847                                      layout.offset, &qual_xfb_offset)) {
7848         return NULL;
7849      }
7850   }
7851
7852   unsigned qual_xfb_stride;
7853   if (layout.flags.q.explicit_xfb_stride) {
7854      if (!process_qualifier_constant(state, &loc, "xfb_stride",
7855                                      layout.xfb_stride, &qual_xfb_stride)) {
7856         return NULL;
7857      }
7858   }
7859
7860   unsigned expl_location = 0;
7861   if (layout.flags.q.explicit_location) {
7862      if (!process_qualifier_constant(state, &loc, "location",
7863                                      layout.location, &expl_location)) {
7864         return NULL;
7865      } else {
7866         expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7867                                                     : VARYING_SLOT_VAR0;
7868      }
7869   }
7870
7871   unsigned expl_align = 0;
7872   if (layout.flags.q.explicit_align) {
7873      if (!process_qualifier_constant(state, &loc, "align",
7874                                      layout.align, &expl_align)) {
7875         return NULL;
7876      } else {
7877         if (expl_align == 0 || expl_align & (expl_align - 1)) {
7878            _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7879                             "power of 2.");
7880            return NULL;
7881         }
7882      }
7883   }
7884
7885   unsigned int num_variables =
7886      ast_process_struct_or_iface_block_members(&declared_variables,
7887                                                state,
7888                                                &this->declarations,
7889                                                &fields,
7890                                                true,
7891                                                matrix_layout,
7892                                                redeclaring_per_vertex,
7893                                                var_mode,
7894                                                &this->layout,
7895                                                qual_stream,
7896                                                qual_xfb_buffer,
7897                                                qual_xfb_offset,
7898                                                expl_location,
7899                                                expl_align);
7900
7901   if (!redeclaring_per_vertex) {
7902      validate_identifier(this->block_name, loc, state);
7903
7904      /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7905       *
7906       *     "Block names have no other use within a shader beyond interface
7907       *     matching; it is a compile-time error to use a block name at global
7908       *     scope for anything other than as a block name."
7909       */
7910      ir_variable *var = state->symbols->get_variable(this->block_name);
7911      if (var && !var->type->is_interface()) {
7912         _mesa_glsl_error(&loc, state, "Block name `%s' is "
7913                          "already used in the scope.",
7914                          this->block_name);
7915      }
7916   }
7917
7918   const glsl_type *earlier_per_vertex = NULL;
7919   if (redeclaring_per_vertex) {
7920      /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
7921       * the named interface block gl_in, we can find it by looking at the
7922       * previous declaration of gl_in.  Otherwise we can find it by looking
7923       * at the previous decalartion of any of the built-in outputs,
7924       * e.g. gl_Position.
7925       *
7926       * Also check that the instance name and array-ness of the redeclaration
7927       * are correct.
7928       */
7929      switch (var_mode) {
7930      case ir_var_shader_in:
7931         if (ir_variable *earlier_gl_in =
7932             state->symbols->get_variable("gl_in")) {
7933            earlier_per_vertex = earlier_gl_in->get_interface_type();
7934         } else {
7935            _mesa_glsl_error(&loc, state,
7936                             "redeclaration of gl_PerVertex input not allowed "
7937                             "in the %s shader",
7938                             _mesa_shader_stage_to_string(state->stage));
7939         }
7940         if (this->instance_name == NULL ||
7941             strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7942             !this->array_specifier->is_single_dimension()) {
7943            _mesa_glsl_error(&loc, state,
7944                             "gl_PerVertex input must be redeclared as "
7945                             "gl_in[]");
7946         }
7947         break;
7948      case ir_var_shader_out:
7949         if (ir_variable *earlier_gl_Position =
7950             state->symbols->get_variable("gl_Position")) {
7951            earlier_per_vertex = earlier_gl_Position->get_interface_type();
7952         } else if (ir_variable *earlier_gl_out =
7953               state->symbols->get_variable("gl_out")) {
7954            earlier_per_vertex = earlier_gl_out->get_interface_type();
7955         } else {
7956            _mesa_glsl_error(&loc, state,
7957                             "redeclaration of gl_PerVertex output not "
7958                             "allowed in the %s shader",
7959                             _mesa_shader_stage_to_string(state->stage));
7960         }
7961         if (state->stage == MESA_SHADER_TESS_CTRL) {
7962            if (this->instance_name == NULL ||
7963                strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7964               _mesa_glsl_error(&loc, state,
7965                                "gl_PerVertex output must be redeclared as "
7966                                "gl_out[]");
7967            }
7968         } else {
7969            if (this->instance_name != NULL) {
7970               _mesa_glsl_error(&loc, state,
7971                                "gl_PerVertex output may not be redeclared with "
7972                                "an instance name");
7973            }
7974         }
7975         break;
7976      default:
7977         _mesa_glsl_error(&loc, state,
7978                          "gl_PerVertex must be declared as an input or an "
7979                          "output");
7980         break;
7981      }
7982
7983      if (earlier_per_vertex == NULL) {
7984         /* An error has already been reported.  Bail out to avoid null
7985          * dereferences later in this function.
7986          */
7987         return NULL;
7988      }
7989
7990      /* Copy locations from the old gl_PerVertex interface block. */
7991      for (unsigned i = 0; i < num_variables; i++) {
7992         int j = earlier_per_vertex->field_index(fields[i].name);
7993         if (j == -1) {
7994            _mesa_glsl_error(&loc, state,
7995                             "redeclaration of gl_PerVertex must be a subset "
7996                             "of the built-in members of gl_PerVertex");
7997         } else {
7998            fields[i].location =
7999               earlier_per_vertex->fields.structure[j].location;
8000            fields[i].offset =
8001               earlier_per_vertex->fields.structure[j].offset;
8002            fields[i].interpolation =
8003               earlier_per_vertex->fields.structure[j].interpolation;
8004            fields[i].centroid =
8005               earlier_per_vertex->fields.structure[j].centroid;
8006            fields[i].sample =
8007               earlier_per_vertex->fields.structure[j].sample;
8008            fields[i].patch =
8009               earlier_per_vertex->fields.structure[j].patch;
8010            fields[i].precision =
8011               earlier_per_vertex->fields.structure[j].precision;
8012            fields[i].explicit_xfb_buffer =
8013               earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8014            fields[i].xfb_buffer =
8015               earlier_per_vertex->fields.structure[j].xfb_buffer;
8016            fields[i].xfb_stride =
8017               earlier_per_vertex->fields.structure[j].xfb_stride;
8018         }
8019      }
8020
8021      /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8022       * spec:
8023       *
8024       *     If a built-in interface block is redeclared, it must appear in
8025       *     the shader before any use of any member included in the built-in
8026       *     declaration, or a compilation error will result.
8027       *
8028       * This appears to be a clarification to the behaviour established for
8029       * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8030       * regardless of GLSL version.
8031       */
8032      interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8033      v.run(instructions);
8034      if (v.usage_found()) {
8035         _mesa_glsl_error(&loc, state,
8036                          "redeclaration of a built-in interface block must "
8037                          "appear before any use of any member of the "
8038                          "interface block");
8039      }
8040   }
8041
8042   const glsl_type *block_type =
8043      glsl_type::get_interface_instance(fields,
8044                                        num_variables,
8045                                        packing,
8046                                        matrix_layout ==
8047                                           GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8048                                        this->block_name);
8049
8050   unsigned component_size = block_type->contains_double() ? 8 : 4;
8051   int xfb_offset =
8052      layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8053   validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8054                                 component_size);
8055
8056   if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8057      YYLTYPE loc = this->get_location();
8058      _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8059                       "already taken in the current scope",
8060                       this->block_name, iface_type_name);
8061   }
8062
8063   /* Since interface blocks cannot contain statements, it should be
8064    * impossible for the block to generate any instructions.
8065    */
8066   assert(declared_variables.is_empty());
8067
8068   /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8069    *
8070    *     Geometry shader input variables get the per-vertex values written
8071    *     out by vertex shader output variables of the same names. Since a
8072    *     geometry shader operates on a set of vertices, each input varying
8073    *     variable (or input block, see interface blocks below) needs to be
8074    *     declared as an array.
8075    */
8076   if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8077       var_mode == ir_var_shader_in) {
8078      _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8079   } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8080               state->stage == MESA_SHADER_TESS_EVAL) &&
8081              !this->layout.flags.q.patch &&
8082              this->array_specifier == NULL &&
8083              var_mode == ir_var_shader_in) {
8084      _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8085   } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8086              !this->layout.flags.q.patch &&
8087              this->array_specifier == NULL &&
8088              var_mode == ir_var_shader_out) {
8089      _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8090   }
8091
8092
8093   /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8094    * says:
8095    *
8096    *     "If an instance name (instance-name) is used, then it puts all the
8097    *     members inside a scope within its own name space, accessed with the
8098    *     field selector ( . ) operator (analogously to structures)."
8099    */
8100   if (this->instance_name) {
8101      if (redeclaring_per_vertex) {
8102         /* When a built-in in an unnamed interface block is redeclared,
8103          * get_variable_being_redeclared() calls
8104          * check_builtin_array_max_size() to make sure that built-in array
8105          * variables aren't redeclared to illegal sizes.  But we're looking
8106          * at a redeclaration of a named built-in interface block.  So we
8107          * have to manually call check_builtin_array_max_size() for all parts
8108          * of the interface that are arrays.
8109          */
8110         for (unsigned i = 0; i < num_variables; i++) {
8111            if (fields[i].type->is_array()) {
8112               const unsigned size = fields[i].type->array_size();
8113               check_builtin_array_max_size(fields[i].name, size, loc, state);
8114            }
8115         }
8116      } else {
8117         validate_identifier(this->instance_name, loc, state);
8118      }
8119
8120      ir_variable *var;
8121
8122      if (this->array_specifier != NULL) {
8123         const glsl_type *block_array_type =
8124            process_array_type(&loc, block_type, this->array_specifier, state);
8125
8126         /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8127          *
8128          *     For uniform blocks declared an array, each individual array
8129          *     element corresponds to a separate buffer object backing one
8130          *     instance of the block. As the array size indicates the number
8131          *     of buffer objects needed, uniform block array declarations
8132          *     must specify an array size.
8133          *
8134          * And a few paragraphs later:
8135          *
8136          *     Geometry shader input blocks must be declared as arrays and
8137          *     follow the array declaration and linking rules for all
8138          *     geometry shader inputs. All other input and output block
8139          *     arrays must specify an array size.
8140          *
8141          * The same applies to tessellation shaders.
8142          *
8143          * The upshot of this is that the only circumstance where an
8144          * interface array size *doesn't* need to be specified is on a
8145          * geometry shader input, tessellation control shader input,
8146          * tessellation control shader output, and tessellation evaluation
8147          * shader input.
8148          */
8149         if (block_array_type->is_unsized_array()) {
8150            bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8151                                state->stage == MESA_SHADER_TESS_CTRL ||
8152                                state->stage == MESA_SHADER_TESS_EVAL;
8153            bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8154
8155            if (this->layout.flags.q.in) {
8156               if (!allow_inputs)
8157                  _mesa_glsl_error(&loc, state,
8158                                   "unsized input block arrays not allowed in "
8159                                   "%s shader",
8160                                   _mesa_shader_stage_to_string(state->stage));
8161            } else if (this->layout.flags.q.out) {
8162               if (!allow_outputs)
8163                  _mesa_glsl_error(&loc, state,
8164                                   "unsized output block arrays not allowed in "
8165                                   "%s shader",
8166                                   _mesa_shader_stage_to_string(state->stage));
8167            } else {
8168               /* by elimination, this is a uniform block array */
8169               _mesa_glsl_error(&loc, state,
8170                                "unsized uniform block arrays not allowed in "
8171                                "%s shader",
8172                                _mesa_shader_stage_to_string(state->stage));
8173            }
8174         }
8175
8176         /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8177          *
8178          *     * Arrays of arrays of blocks are not allowed
8179          */
8180         if (state->es_shader && block_array_type->is_array() &&
8181             block_array_type->fields.array->is_array()) {
8182            _mesa_glsl_error(&loc, state,
8183                             "arrays of arrays interface blocks are "
8184                             "not allowed");
8185         }
8186
8187         var = new(state) ir_variable(block_array_type,
8188                                      this->instance_name,
8189                                      var_mode);
8190      } else {
8191         var = new(state) ir_variable(block_type,
8192                                      this->instance_name,
8193                                      var_mode);
8194      }
8195
8196      var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8197         ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8198
8199      if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8200         var->data.read_only = true;
8201
8202      var->data.patch = this->layout.flags.q.patch;
8203
8204      if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8205         handle_geometry_shader_input_decl(state, loc, var);
8206      else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8207           state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8208         handle_tess_shader_input_decl(state, loc, var);
8209      else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8210         handle_tess_ctrl_shader_output_decl(state, loc, var);
8211
8212      for (unsigned i = 0; i < num_variables; i++) {
8213         if (var->data.mode == ir_var_shader_storage)
8214            apply_memory_qualifiers(var, fields[i]);
8215      }
8216
8217      if (ir_variable *earlier =
8218          state->symbols->get_variable(this->instance_name)) {
8219         if (!redeclaring_per_vertex) {
8220            _mesa_glsl_error(&loc, state, "`%s' redeclared",
8221                             this->instance_name);
8222         }
8223         earlier->data.how_declared = ir_var_declared_normally;
8224         earlier->type = var->type;
8225         earlier->reinit_interface_type(block_type);
8226         delete var;
8227      } else {
8228         if (this->layout.flags.q.explicit_binding) {
8229            apply_explicit_binding(state, &loc, var, var->type,
8230                                   &this->layout);
8231         }
8232
8233         var->data.stream = qual_stream;
8234         if (layout.flags.q.explicit_location) {
8235            var->data.location = expl_location;
8236            var->data.explicit_location = true;
8237         }
8238
8239         state->symbols->add_variable(var);
8240         instructions->push_tail(var);
8241      }
8242   } else {
8243      /* In order to have an array size, the block must also be declared with
8244       * an instance name.
8245       */
8246      assert(this->array_specifier == NULL);
8247
8248      for (unsigned i = 0; i < num_variables; i++) {
8249         ir_variable *var =
8250            new(state) ir_variable(fields[i].type,
8251                                   ralloc_strdup(state, fields[i].name),
8252                                   var_mode);
8253         var->data.interpolation = fields[i].interpolation;
8254         var->data.centroid = fields[i].centroid;
8255         var->data.sample = fields[i].sample;
8256         var->data.patch = fields[i].patch;
8257         var->data.stream = qual_stream;
8258         var->data.location = fields[i].location;
8259
8260         if (fields[i].location != -1)
8261            var->data.explicit_location = true;
8262
8263         var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8264         var->data.xfb_buffer = fields[i].xfb_buffer;
8265
8266         if (fields[i].offset != -1)
8267            var->data.explicit_xfb_offset = true;
8268         var->data.offset = fields[i].offset;
8269
8270         var->init_interface_type(block_type);
8271
8272         if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8273            var->data.read_only = true;
8274
8275         /* Precision qualifiers do not have any meaning in Desktop GLSL */
8276         if (state->es_shader) {
8277            var->data.precision =
8278               select_gles_precision(fields[i].precision, fields[i].type,
8279                                     state, &loc);
8280         }
8281
8282         if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8283            var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8284               ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8285         } else {
8286            var->data.matrix_layout = fields[i].matrix_layout;
8287         }
8288
8289         if (var->data.mode == ir_var_shader_storage)
8290            apply_memory_qualifiers(var, fields[i]);
8291
8292         /* Examine var name here since var may get deleted in the next call */
8293         bool var_is_gl_id = is_gl_identifier(var->name);
8294
8295         if (redeclaring_per_vertex) {
8296            bool is_redeclaration;
8297            var =
8298               get_variable_being_redeclared(&var, loc, state,
8299                                             true /* allow_all_redeclarations */,
8300                                             &is_redeclaration);
8301            if (!var_is_gl_id || !is_redeclaration) {
8302               _mesa_glsl_error(&loc, state,
8303                                "redeclaration of gl_PerVertex can only "
8304                                "include built-in variables");
8305            } else if (var->data.how_declared == ir_var_declared_normally) {
8306               _mesa_glsl_error(&loc, state,
8307                                "`%s' has already been redeclared",
8308                                var->name);
8309            } else {
8310               var->data.how_declared = ir_var_declared_in_block;
8311               var->reinit_interface_type(block_type);
8312            }
8313            continue;
8314         }
8315
8316         if (state->symbols->get_variable(var->name) != NULL)
8317            _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8318
8319         /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8320          * The UBO declaration itself doesn't get an ir_variable unless it
8321          * has an instance name.  This is ugly.
8322          */
8323         if (this->layout.flags.q.explicit_binding) {
8324            apply_explicit_binding(state, &loc, var,
8325                                   var->get_interface_type(), &this->layout);
8326         }
8327
8328         if (var->type->is_unsized_array()) {
8329            if (var->is_in_shader_storage_block() &&
8330                is_unsized_array_last_element(var)) {
8331               var->data.from_ssbo_unsized_array = true;
8332            } else {
8333               /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8334                *
8335                * "If an array is declared as the last member of a shader storage
8336                * block and the size is not specified at compile-time, it is
8337                * sized at run-time. In all other cases, arrays are sized only
8338                * at compile-time."
8339                *
8340                * In desktop GLSL it is allowed to have unsized-arrays that are
8341                * not last, as long as we can determine that they are implicitly
8342                * sized.
8343                */
8344               if (state->es_shader) {
8345                  _mesa_glsl_error(&loc, state, "unsized array `%s' "
8346                                   "definition: only last member of a shader "
8347                                   "storage block can be defined as unsized "
8348                                   "array", fields[i].name);
8349               }
8350            }
8351         }
8352
8353         state->symbols->add_variable(var);
8354         instructions->push_tail(var);
8355      }
8356
8357      if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8358         /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8359          *
8360          *     It is also a compilation error ... to redeclare a built-in
8361          *     block and then use a member from that built-in block that was
8362          *     not included in the redeclaration.
8363          *
8364          * This appears to be a clarification to the behaviour established
8365          * for gl_PerVertex by GLSL 1.50, therefore we implement this
8366          * behaviour regardless of GLSL version.
8367          *
8368          * To prevent the shader from using a member that was not included in
8369          * the redeclaration, we disable any ir_variables that are still
8370          * associated with the old declaration of gl_PerVertex (since we've
8371          * already updated all of the variables contained in the new
8372          * gl_PerVertex to point to it).
8373          *
8374          * As a side effect this will prevent
8375          * validate_intrastage_interface_blocks() from getting confused and
8376          * thinking there are conflicting definitions of gl_PerVertex in the
8377          * shader.
8378          */
8379         foreach_in_list_safe(ir_instruction, node, instructions) {
8380            ir_variable *const var = node->as_variable();
8381            if (var != NULL &&
8382                var->get_interface_type() == earlier_per_vertex &&
8383                var->data.mode == var_mode) {
8384               if (var->data.how_declared == ir_var_declared_normally) {
8385                  _mesa_glsl_error(&loc, state,
8386                                   "redeclaration of gl_PerVertex cannot "
8387                                   "follow a redeclaration of `%s'",
8388                                   var->name);
8389               }
8390               state->symbols->disable_variable(var->name);
8391               var->remove();
8392            }
8393         }
8394      }
8395   }
8396
8397   return NULL;
8398}
8399
8400
8401ir_rvalue *
8402ast_tcs_output_layout::hir(exec_list *instructions,
8403                           struct _mesa_glsl_parse_state *state)
8404{
8405   YYLTYPE loc = this->get_location();
8406
8407   unsigned num_vertices;
8408   if (!state->out_qualifier->vertices->
8409          process_qualifier_constant(state, "vertices", &num_vertices,
8410                                     false)) {
8411      /* return here to stop cascading incorrect error messages */
8412     return NULL;
8413   }
8414
8415   /* If any shader outputs occurred before this declaration and specified an
8416    * array size, make sure the size they specified is consistent with the
8417    * primitive type.
8418    */
8419   if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8420      _mesa_glsl_error(&loc, state,
8421                       "this tessellation control shader output layout "
8422                       "specifies %u vertices, but a previous output "
8423                       "is declared with size %u",
8424                       num_vertices, state->tcs_output_size);
8425      return NULL;
8426   }
8427
8428   state->tcs_output_vertices_specified = true;
8429
8430   /* If any shader outputs occurred before this declaration and did not
8431    * specify an array size, their size is determined now.
8432    */
8433   foreach_in_list (ir_instruction, node, instructions) {
8434      ir_variable *var = node->as_variable();
8435      if (var == NULL || var->data.mode != ir_var_shader_out)
8436         continue;
8437
8438      /* Note: Not all tessellation control shader output are arrays. */
8439      if (!var->type->is_unsized_array() || var->data.patch)
8440         continue;
8441
8442      if (var->data.max_array_access >= (int)num_vertices) {
8443         _mesa_glsl_error(&loc, state,
8444                          "this tessellation control shader output layout "
8445                          "specifies %u vertices, but an access to element "
8446                          "%u of output `%s' already exists", num_vertices,
8447                          var->data.max_array_access, var->name);
8448      } else {
8449         var->type = glsl_type::get_array_instance(var->type->fields.array,
8450                                                   num_vertices);
8451      }
8452   }
8453
8454   return NULL;
8455}
8456
8457
8458ir_rvalue *
8459ast_gs_input_layout::hir(exec_list *instructions,
8460                         struct _mesa_glsl_parse_state *state)
8461{
8462   YYLTYPE loc = this->get_location();
8463
8464   /* Should have been prevented by the parser. */
8465   assert(!state->gs_input_prim_type_specified
8466          || state->in_qualifier->prim_type == this->prim_type);
8467
8468   /* If any shader inputs occurred before this declaration and specified an
8469    * array size, make sure the size they specified is consistent with the
8470    * primitive type.
8471    */
8472   unsigned num_vertices = vertices_per_prim(this->prim_type);
8473   if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8474      _mesa_glsl_error(&loc, state,
8475                       "this geometry shader input layout implies %u vertices"
8476                       " per primitive, but a previous input is declared"
8477                       " with size %u", num_vertices, state->gs_input_size);
8478      return NULL;
8479   }
8480
8481   state->gs_input_prim_type_specified = true;
8482
8483   /* If any shader inputs occurred before this declaration and did not
8484    * specify an array size, their size is determined now.
8485    */
8486   foreach_in_list(ir_instruction, node, instructions) {
8487      ir_variable *var = node->as_variable();
8488      if (var == NULL || var->data.mode != ir_var_shader_in)
8489         continue;
8490
8491      /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8492       * array; skip it.
8493       */
8494
8495      if (var->type->is_unsized_array()) {
8496         if (var->data.max_array_access >= (int)num_vertices) {
8497            _mesa_glsl_error(&loc, state,
8498                             "this geometry shader input layout implies %u"
8499                             " vertices, but an access to element %u of input"
8500                             " `%s' already exists", num_vertices,
8501                             var->data.max_array_access, var->name);
8502         } else {
8503            var->type = glsl_type::get_array_instance(var->type->fields.array,
8504                                                      num_vertices);
8505         }
8506      }
8507   }
8508
8509   return NULL;
8510}
8511
8512
8513ir_rvalue *
8514ast_cs_input_layout::hir(exec_list *instructions,
8515                         struct _mesa_glsl_parse_state *state)
8516{
8517   YYLTYPE loc = this->get_location();
8518
8519   /* From the ARB_compute_shader specification:
8520    *
8521    *     If the local size of the shader in any dimension is greater
8522    *     than the maximum size supported by the implementation for that
8523    *     dimension, a compile-time error results.
8524    *
8525    * It is not clear from the spec how the error should be reported if
8526    * the total size of the work group exceeds
8527    * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8528    * report it at compile time as well.
8529    */
8530   GLuint64 total_invocations = 1;
8531   unsigned qual_local_size[3];
8532   for (int i = 0; i < 3; i++) {
8533
8534      char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8535                                             'x' + i);
8536      /* Infer a local_size of 1 for unspecified dimensions */
8537      if (this->local_size[i] == NULL) {
8538         qual_local_size[i] = 1;
8539      } else if (!this->local_size[i]->
8540             process_qualifier_constant(state, local_size_str,
8541                                        &qual_local_size[i], false)) {
8542         ralloc_free(local_size_str);
8543         return NULL;
8544      }
8545      ralloc_free(local_size_str);
8546
8547      if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8548         _mesa_glsl_error(&loc, state,
8549                          "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8550                          " (%d)", 'x' + i,
8551                          state->ctx->Const.MaxComputeWorkGroupSize[i]);
8552         break;
8553      }
8554      total_invocations *= qual_local_size[i];
8555      if (total_invocations >
8556          state->ctx->Const.MaxComputeWorkGroupInvocations) {
8557         _mesa_glsl_error(&loc, state,
8558                          "product of local_sizes exceeds "
8559                          "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8560                          state->ctx->Const.MaxComputeWorkGroupInvocations);
8561         break;
8562      }
8563   }
8564
8565   /* If any compute input layout declaration preceded this one, make sure it
8566    * was consistent with this one.
8567    */
8568   if (state->cs_input_local_size_specified) {
8569      for (int i = 0; i < 3; i++) {
8570         if (state->cs_input_local_size[i] != qual_local_size[i]) {
8571            _mesa_glsl_error(&loc, state,
8572                             "compute shader input layout does not match"
8573                             " previous declaration");
8574            return NULL;
8575         }
8576      }
8577   }
8578
8579   /* The ARB_compute_variable_group_size spec says:
8580    *
8581    *     If a compute shader including a *local_size_variable* qualifier also
8582    *     declares a fixed local group size using the *local_size_x*,
8583    *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8584    *     results
8585    */
8586   if (state->cs_input_local_size_variable_specified) {
8587      _mesa_glsl_error(&loc, state,
8588                       "compute shader can't include both a variable and a "
8589                       "fixed local group size");
8590      return NULL;
8591   }
8592
8593   state->cs_input_local_size_specified = true;
8594   for (int i = 0; i < 3; i++)
8595      state->cs_input_local_size[i] = qual_local_size[i];
8596
8597   /* We may now declare the built-in constant gl_WorkGroupSize (see
8598    * builtin_variable_generator::generate_constants() for why we didn't
8599    * declare it earlier).
8600    */
8601   ir_variable *var = new(state->symbols)
8602      ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8603   var->data.how_declared = ir_var_declared_implicitly;
8604   var->data.read_only = true;
8605   instructions->push_tail(var);
8606   state->symbols->add_variable(var);
8607   ir_constant_data data;
8608   memset(&data, 0, sizeof(data));
8609   for (int i = 0; i < 3; i++)
8610      data.u[i] = qual_local_size[i];
8611   var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8612   var->constant_initializer =
8613      new(var) ir_constant(glsl_type::uvec3_type, &data);
8614   var->data.has_initializer = true;
8615
8616   return NULL;
8617}
8618
8619
8620static void
8621detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8622                               exec_list *instructions)
8623{
8624   bool gl_FragColor_assigned = false;
8625   bool gl_FragData_assigned = false;
8626   bool gl_FragSecondaryColor_assigned = false;
8627   bool gl_FragSecondaryData_assigned = false;
8628   bool user_defined_fs_output_assigned = false;
8629   ir_variable *user_defined_fs_output = NULL;
8630
8631   /* It would be nice to have proper location information. */
8632   YYLTYPE loc;
8633   memset(&loc, 0, sizeof(loc));
8634
8635   foreach_in_list(ir_instruction, node, instructions) {
8636      ir_variable *var = node->as_variable();
8637
8638      if (!var || !var->data.assigned)
8639         continue;
8640
8641      if (strcmp(var->name, "gl_FragColor") == 0)
8642         gl_FragColor_assigned = true;
8643      else if (strcmp(var->name, "gl_FragData") == 0)
8644         gl_FragData_assigned = true;
8645        else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8646         gl_FragSecondaryColor_assigned = true;
8647        else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8648         gl_FragSecondaryData_assigned = true;
8649      else if (!is_gl_identifier(var->name)) {
8650         if (state->stage == MESA_SHADER_FRAGMENT &&
8651             var->data.mode == ir_var_shader_out) {
8652            user_defined_fs_output_assigned = true;
8653            user_defined_fs_output = var;
8654         }
8655      }
8656   }
8657
8658   /* From the GLSL 1.30 spec:
8659    *
8660    *     "If a shader statically assigns a value to gl_FragColor, it
8661    *      may not assign a value to any element of gl_FragData. If a
8662    *      shader statically writes a value to any element of
8663    *      gl_FragData, it may not assign a value to
8664    *      gl_FragColor. That is, a shader may assign values to either
8665    *      gl_FragColor or gl_FragData, but not both. Multiple shaders
8666    *      linked together must also consistently write just one of
8667    *      these variables.  Similarly, if user declared output
8668    *      variables are in use (statically assigned to), then the
8669    *      built-in variables gl_FragColor and gl_FragData may not be
8670    *      assigned to. These incorrect usages all generate compile
8671    *      time errors."
8672    */
8673   if (gl_FragColor_assigned && gl_FragData_assigned) {
8674      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8675                       "`gl_FragColor' and `gl_FragData'");
8676   } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8677      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8678                       "`gl_FragColor' and `%s'",
8679                       user_defined_fs_output->name);
8680   } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8681      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8682                       "`gl_FragSecondaryColorEXT' and"
8683                       " `gl_FragSecondaryDataEXT'");
8684   } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8685      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8686                       "`gl_FragColor' and"
8687                       " `gl_FragSecondaryDataEXT'");
8688   } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8689      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8690                       "`gl_FragData' and"
8691                       " `gl_FragSecondaryColorEXT'");
8692   } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8693      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8694                       "`gl_FragData' and `%s'",
8695                       user_defined_fs_output->name);
8696   }
8697
8698   if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8699       !state->EXT_blend_func_extended_enable) {
8700      _mesa_glsl_error(&loc, state,
8701                       "Dual source blending requires EXT_blend_func_extended");
8702   }
8703}
8704
8705static void
8706verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
8707{
8708   YYLTYPE loc;
8709   memset(&loc, 0, sizeof(loc));
8710
8711   /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
8712    *
8713    *   "A program will fail to compile or link if any shader
8714    *    or stage contains two or more functions with the same
8715    *    name if the name is associated with a subroutine type."
8716    */
8717
8718   for (int i = 0; i < state->num_subroutines; i++) {
8719      unsigned definitions = 0;
8720      ir_function *fn = state->subroutines[i];
8721      /* Calculate number of function definitions with the same name */
8722      foreach_in_list(ir_function_signature, sig, &fn->signatures) {
8723         if (sig->is_defined) {
8724            if (++definitions > 1) {
8725               _mesa_glsl_error(&loc, state,
8726                     "%s shader contains two or more function "
8727                     "definitions with name `%s', which is "
8728                     "associated with a subroutine type.\n",
8729                     _mesa_shader_stage_to_string(state->stage),
8730                     fn->name);
8731               return;
8732            }
8733         }
8734      }
8735   }
8736}
8737
8738static void
8739remove_per_vertex_blocks(exec_list *instructions,
8740                         _mesa_glsl_parse_state *state, ir_variable_mode mode)
8741{
8742   /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8743    * if it exists in this shader type.
8744    */
8745   const glsl_type *per_vertex = NULL;
8746   switch (mode) {
8747   case ir_var_shader_in:
8748      if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8749         per_vertex = gl_in->get_interface_type();
8750      break;
8751   case ir_var_shader_out:
8752      if (ir_variable *gl_Position =
8753          state->symbols->get_variable("gl_Position")) {
8754         per_vertex = gl_Position->get_interface_type();
8755      }
8756      break;
8757   default:
8758      assert(!"Unexpected mode");
8759      break;
8760   }
8761
8762   /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8763    * need to do anything.
8764    */
8765   if (per_vertex == NULL)
8766      return;
8767
8768   /* If the interface block is used by the shader, then we don't need to do
8769    * anything.
8770    */
8771   interface_block_usage_visitor v(mode, per_vertex);
8772   v.run(instructions);
8773   if (v.usage_found())
8774      return;
8775
8776   /* Remove any ir_variable declarations that refer to the interface block
8777    * we're removing.
8778    */
8779   foreach_in_list_safe(ir_instruction, node, instructions) {
8780      ir_variable *const var = node->as_variable();
8781      if (var != NULL && var->get_interface_type() == per_vertex &&
8782          var->data.mode == mode) {
8783         state->symbols->disable_variable(var->name);
8784         var->remove();
8785      }
8786   }
8787}
8788
8789ir_rvalue *
8790ast_warnings_toggle::hir(exec_list *,
8791                         struct _mesa_glsl_parse_state *state)
8792{
8793   state->warnings_enabled = enable;
8794   return NULL;
8795}
8796