1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file ast_to_hir.c 26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR). 27 * 28 * During the conversion to HIR, the majority of the symantic checking is 29 * preformed on the program. This includes: 30 * 31 * * Symbol table management 32 * * Type checking 33 * * Function binding 34 * 35 * The majority of this work could be done during parsing, and the parser could 36 * probably generate HIR directly. However, this results in frequent changes 37 * to the parser code. Since we do not assume that every system this complier 38 * is built on will have Flex and Bison installed, we have to store the code 39 * generated by these tools in our version control system. In other parts of 40 * the system we've seen problems where a parser was changed but the generated 41 * code was not committed, merge conflicts where created because two developers 42 * had slightly different versions of Bison installed, etc. 43 * 44 * I have also noticed that running Bison generated parsers in GDB is very 45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very 46 * well 'print $1' in GDB. 47 * 48 * As a result, my preference is to put as little C code as possible in the 49 * parser (and lexer) sources. 50 */ 51 52#include "glsl_symbol_table.h" 53#include "glsl_parser_extras.h" 54#include "ast.h" 55#include "compiler/glsl_types.h" 56#include "util/hash_table.h" 57#include "main/mtypes.h" 58#include "main/macros.h" 59#include "main/shaderobj.h" 60#include "ir.h" 61#include "ir_builder.h" 62#include "builtin_functions.h" 63 64using namespace ir_builder; 65 66static void 67detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, 68 exec_list *instructions); 69static void 70verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state); 71 72static void 73remove_per_vertex_blocks(exec_list *instructions, 74 _mesa_glsl_parse_state *state, ir_variable_mode mode); 75 76/** 77 * Visitor class that finds the first instance of any write-only variable that 78 * is ever read, if any 79 */ 80class read_from_write_only_variable_visitor : public ir_hierarchical_visitor 81{ 82public: 83 read_from_write_only_variable_visitor() : found(NULL) 84 { 85 } 86 87 virtual ir_visitor_status visit(ir_dereference_variable *ir) 88 { 89 if (this->in_assignee) 90 return visit_continue; 91 92 ir_variable *var = ir->variable_referenced(); 93 /* We can have memory_write_only set on both images and buffer variables, 94 * but in the former there is a distinction between reads from 95 * the variable itself (write_only) and from the memory they point to 96 * (memory_write_only), while in the case of buffer variables there is 97 * no such distinction, that is why this check here is limited to 98 * buffer variables alone. 99 */ 100 if (!var || var->data.mode != ir_var_shader_storage) 101 return visit_continue; 102 103 if (var->data.memory_write_only) { 104 found = var; 105 return visit_stop; 106 } 107 108 return visit_continue; 109 } 110 111 ir_variable *get_variable() { 112 return found; 113 } 114 115 virtual ir_visitor_status visit_enter(ir_expression *ir) 116 { 117 /* .length() doesn't actually read anything */ 118 if (ir->operation == ir_unop_ssbo_unsized_array_length) 119 return visit_continue_with_parent; 120 121 return visit_continue; 122 } 123 124private: 125 ir_variable *found; 126}; 127 128void 129_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) 130{ 131 _mesa_glsl_initialize_variables(instructions, state); 132 133 state->symbols->separate_function_namespace = state->language_version == 110; 134 135 state->current_function = NULL; 136 137 state->toplevel_ir = instructions; 138 139 state->gs_input_prim_type_specified = false; 140 state->tcs_output_vertices_specified = false; 141 state->cs_input_local_size_specified = false; 142 143 /* Section 4.2 of the GLSL 1.20 specification states: 144 * "The built-in functions are scoped in a scope outside the global scope 145 * users declare global variables in. That is, a shader's global scope, 146 * available for user-defined functions and global variables, is nested 147 * inside the scope containing the built-in functions." 148 * 149 * Since built-in functions like ftransform() access built-in variables, 150 * it follows that those must be in the outer scope as well. 151 * 152 * We push scope here to create this nesting effect...but don't pop. 153 * This way, a shader's globals are still in the symbol table for use 154 * by the linker. 155 */ 156 state->symbols->push_scope(); 157 158 foreach_list_typed (ast_node, ast, link, & state->translation_unit) 159 ast->hir(instructions, state); 160 161 verify_subroutine_associated_funcs(state); 162 detect_recursion_unlinked(state, instructions); 163 detect_conflicting_assignments(state, instructions); 164 165 state->toplevel_ir = NULL; 166 167 /* Move all of the variable declarations to the front of the IR list, and 168 * reverse the order. This has the (intended!) side effect that vertex 169 * shader inputs and fragment shader outputs will appear in the IR in the 170 * same order that they appeared in the shader code. This results in the 171 * locations being assigned in the declared order. Many (arguably buggy) 172 * applications depend on this behavior, and it matches what nearly all 173 * other drivers do. 174 */ 175 foreach_in_list_safe(ir_instruction, node, instructions) { 176 ir_variable *const var = node->as_variable(); 177 178 if (var == NULL) 179 continue; 180 181 var->remove(); 182 instructions->push_head(var); 183 } 184 185 /* Figure out if gl_FragCoord is actually used in fragment shader */ 186 ir_variable *const var = state->symbols->get_variable("gl_FragCoord"); 187 if (var != NULL) 188 state->fs_uses_gl_fragcoord = var->data.used; 189 190 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec: 191 * 192 * If multiple shaders using members of a built-in block belonging to 193 * the same interface are linked together in the same program, they 194 * must all redeclare the built-in block in the same way, as described 195 * in section 4.3.7 "Interface Blocks" for interface block matching, or 196 * a link error will result. 197 * 198 * The phrase "using members of a built-in block" implies that if two 199 * shaders are linked together and one of them *does not use* any members 200 * of the built-in block, then that shader does not need to have a matching 201 * redeclaration of the built-in block. 202 * 203 * This appears to be a clarification to the behaviour established for 204 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL 205 * version. 206 * 207 * The definition of "interface" in section 4.3.7 that applies here is as 208 * follows: 209 * 210 * The boundary between adjacent programmable pipeline stages: This 211 * spans all the outputs in all compilation units of the first stage 212 * and all the inputs in all compilation units of the second stage. 213 * 214 * Therefore this rule applies to both inter- and intra-stage linking. 215 * 216 * The easiest way to implement this is to check whether the shader uses 217 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply 218 * remove all the relevant variable declaration from the IR, so that the 219 * linker won't see them and complain about mismatches. 220 */ 221 remove_per_vertex_blocks(instructions, state, ir_var_shader_in); 222 remove_per_vertex_blocks(instructions, state, ir_var_shader_out); 223 224 /* Check that we don't have reads from write-only variables */ 225 read_from_write_only_variable_visitor v; 226 v.run(instructions); 227 ir_variable *error_var = v.get_variable(); 228 if (error_var) { 229 /* It would be nice to have proper location information, but for that 230 * we would need to check this as we process each kind of AST node 231 */ 232 YYLTYPE loc; 233 memset(&loc, 0, sizeof(loc)); 234 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'", 235 error_var->name); 236 } 237} 238 239 240static ir_expression_operation 241get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from, 242 struct _mesa_glsl_parse_state *state) 243{ 244 switch (to->base_type) { 245 case GLSL_TYPE_FLOAT: 246 switch (from->base_type) { 247 case GLSL_TYPE_INT: return ir_unop_i2f; 248 case GLSL_TYPE_UINT: return ir_unop_u2f; 249 default: return (ir_expression_operation)0; 250 } 251 252 case GLSL_TYPE_UINT: 253 if (!state->has_implicit_uint_to_int_conversion()) 254 return (ir_expression_operation)0; 255 switch (from->base_type) { 256 case GLSL_TYPE_INT: return ir_unop_i2u; 257 default: return (ir_expression_operation)0; 258 } 259 260 case GLSL_TYPE_DOUBLE: 261 if (!state->has_double()) 262 return (ir_expression_operation)0; 263 switch (from->base_type) { 264 case GLSL_TYPE_INT: return ir_unop_i2d; 265 case GLSL_TYPE_UINT: return ir_unop_u2d; 266 case GLSL_TYPE_FLOAT: return ir_unop_f2d; 267 case GLSL_TYPE_INT64: return ir_unop_i642d; 268 case GLSL_TYPE_UINT64: return ir_unop_u642d; 269 default: return (ir_expression_operation)0; 270 } 271 272 case GLSL_TYPE_UINT64: 273 if (!state->has_int64()) 274 return (ir_expression_operation)0; 275 switch (from->base_type) { 276 case GLSL_TYPE_INT: return ir_unop_i2u64; 277 case GLSL_TYPE_UINT: return ir_unop_u2u64; 278 case GLSL_TYPE_INT64: return ir_unop_i642u64; 279 default: return (ir_expression_operation)0; 280 } 281 282 case GLSL_TYPE_INT64: 283 if (!state->has_int64()) 284 return (ir_expression_operation)0; 285 switch (from->base_type) { 286 case GLSL_TYPE_INT: return ir_unop_i2i64; 287 default: return (ir_expression_operation)0; 288 } 289 290 default: return (ir_expression_operation)0; 291 } 292} 293 294 295/** 296 * If a conversion is available, convert one operand to a different type 297 * 298 * The \c from \c ir_rvalue is converted "in place". 299 * 300 * \param to Type that the operand it to be converted to 301 * \param from Operand that is being converted 302 * \param state GLSL compiler state 303 * 304 * \return 305 * If a conversion is possible (or unnecessary), \c true is returned. 306 * Otherwise \c false is returned. 307 */ 308static bool 309apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, 310 struct _mesa_glsl_parse_state *state) 311{ 312 void *ctx = state; 313 if (to->base_type == from->type->base_type) 314 return true; 315 316 /* Prior to GLSL 1.20, there are no implicit conversions */ 317 if (!state->has_implicit_conversions()) 318 return false; 319 320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec: 321 * 322 * "There are no implicit array or structure conversions. For 323 * example, an array of int cannot be implicitly converted to an 324 * array of float. 325 */ 326 if (!to->is_numeric() || !from->type->is_numeric()) 327 return false; 328 329 /* We don't actually want the specific type `to`, we want a type 330 * with the same base type as `to`, but the same vector width as 331 * `from`. 332 */ 333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements, 334 from->type->matrix_columns); 335 336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state); 337 if (op) { 338 from = new(ctx) ir_expression(op, to, from, NULL); 339 return true; 340 } else { 341 return false; 342 } 343} 344 345 346static const struct glsl_type * 347arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 348 bool multiply, 349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 350{ 351 const glsl_type *type_a = value_a->type; 352 const glsl_type *type_b = value_b->type; 353 354 /* From GLSL 1.50 spec, page 56: 355 * 356 * "The arithmetic binary operators add (+), subtract (-), 357 * multiply (*), and divide (/) operate on integer and 358 * floating-point scalars, vectors, and matrices." 359 */ 360 if (!type_a->is_numeric() || !type_b->is_numeric()) { 361 _mesa_glsl_error(loc, state, 362 "operands to arithmetic operators must be numeric"); 363 return glsl_type::error_type; 364 } 365 366 367 /* "If one operand is floating-point based and the other is 368 * not, then the conversions from Section 4.1.10 "Implicit 369 * Conversions" are applied to the non-floating-point-based operand." 370 */ 371 if (!apply_implicit_conversion(type_a, value_b, state) 372 && !apply_implicit_conversion(type_b, value_a, state)) { 373 _mesa_glsl_error(loc, state, 374 "could not implicitly convert operands to " 375 "arithmetic operator"); 376 return glsl_type::error_type; 377 } 378 type_a = value_a->type; 379 type_b = value_b->type; 380 381 /* "If the operands are integer types, they must both be signed or 382 * both be unsigned." 383 * 384 * From this rule and the preceeding conversion it can be inferred that 385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT. 386 * The is_numeric check above already filtered out the case where either 387 * type is not one of these, so now the base types need only be tested for 388 * equality. 389 */ 390 if (type_a->base_type != type_b->base_type) { 391 _mesa_glsl_error(loc, state, 392 "base type mismatch for arithmetic operator"); 393 return glsl_type::error_type; 394 } 395 396 /* "All arithmetic binary operators result in the same fundamental type 397 * (signed integer, unsigned integer, or floating-point) as the 398 * operands they operate on, after operand type conversion. After 399 * conversion, the following cases are valid 400 * 401 * * The two operands are scalars. In this case the operation is 402 * applied, resulting in a scalar." 403 */ 404 if (type_a->is_scalar() && type_b->is_scalar()) 405 return type_a; 406 407 /* "* One operand is a scalar, and the other is a vector or matrix. 408 * In this case, the scalar operation is applied independently to each 409 * component of the vector or matrix, resulting in the same size 410 * vector or matrix." 411 */ 412 if (type_a->is_scalar()) { 413 if (!type_b->is_scalar()) 414 return type_b; 415 } else if (type_b->is_scalar()) { 416 return type_a; 417 } 418 419 /* All of the combinations of <scalar, scalar>, <vector, scalar>, 420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been 421 * handled. 422 */ 423 assert(!type_a->is_scalar()); 424 assert(!type_b->is_scalar()); 425 426 /* "* The two operands are vectors of the same size. In this case, the 427 * operation is done component-wise resulting in the same size 428 * vector." 429 */ 430 if (type_a->is_vector() && type_b->is_vector()) { 431 if (type_a == type_b) { 432 return type_a; 433 } else { 434 _mesa_glsl_error(loc, state, 435 "vector size mismatch for arithmetic operator"); 436 return glsl_type::error_type; 437 } 438 } 439 440 /* All of the combinations of <scalar, scalar>, <vector, scalar>, 441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and 442 * <vector, vector> have been handled. At least one of the operands must 443 * be matrix. Further, since there are no integer matrix types, the base 444 * type of both operands must be float. 445 */ 446 assert(type_a->is_matrix() || type_b->is_matrix()); 447 assert(type_a->is_float() || type_a->is_double()); 448 assert(type_b->is_float() || type_b->is_double()); 449 450 /* "* The operator is add (+), subtract (-), or divide (/), and the 451 * operands are matrices with the same number of rows and the same 452 * number of columns. In this case, the operation is done component- 453 * wise resulting in the same size matrix." 454 * * The operator is multiply (*), where both operands are matrices or 455 * one operand is a vector and the other a matrix. A right vector 456 * operand is treated as a column vector and a left vector operand as a 457 * row vector. In all these cases, it is required that the number of 458 * columns of the left operand is equal to the number of rows of the 459 * right operand. Then, the multiply (*) operation does a linear 460 * algebraic multiply, yielding an object that has the same number of 461 * rows as the left operand and the same number of columns as the right 462 * operand. Section 5.10 "Vector and Matrix Operations" explains in 463 * more detail how vectors and matrices are operated on." 464 */ 465 if (! multiply) { 466 if (type_a == type_b) 467 return type_a; 468 } else { 469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b); 470 471 if (type == glsl_type::error_type) { 472 _mesa_glsl_error(loc, state, 473 "size mismatch for matrix multiplication"); 474 } 475 476 return type; 477 } 478 479 480 /* "All other cases are illegal." 481 */ 482 _mesa_glsl_error(loc, state, "type mismatch"); 483 return glsl_type::error_type; 484} 485 486 487static const struct glsl_type * 488unary_arithmetic_result_type(const struct glsl_type *type, 489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 490{ 491 /* From GLSL 1.50 spec, page 57: 492 * 493 * "The arithmetic unary operators negate (-), post- and pre-increment 494 * and decrement (-- and ++) operate on integer or floating-point 495 * values (including vectors and matrices). All unary operators work 496 * component-wise on their operands. These result with the same type 497 * they operated on." 498 */ 499 if (!type->is_numeric()) { 500 _mesa_glsl_error(loc, state, 501 "operands to arithmetic operators must be numeric"); 502 return glsl_type::error_type; 503 } 504 505 return type; 506} 507 508/** 509 * \brief Return the result type of a bit-logic operation. 510 * 511 * If the given types to the bit-logic operator are invalid, return 512 * glsl_type::error_type. 513 * 514 * \param value_a LHS of bit-logic op 515 * \param value_b RHS of bit-logic op 516 */ 517static const struct glsl_type * 518bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 519 ast_operators op, 520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 521{ 522 const glsl_type *type_a = value_a->type; 523 const glsl_type *type_b = value_b->type; 524 525 if (!state->check_bitwise_operations_allowed(loc)) { 526 return glsl_type::error_type; 527 } 528 529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec: 530 * 531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or 532 * (|). The operands must be of type signed or unsigned integers or 533 * integer vectors." 534 */ 535 if (!type_a->is_integer_32_64()) { 536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer", 537 ast_expression::operator_string(op)); 538 return glsl_type::error_type; 539 } 540 if (!type_b->is_integer_32_64()) { 541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer", 542 ast_expression::operator_string(op)); 543 return glsl_type::error_type; 544 } 545 546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't 547 * make sense for bitwise operations, as they don't operate on floats. 548 * 549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant 550 * here. It wasn't clear whether or not we should apply them to bitwise 551 * operations. However, Khronos has decided that they should in future 552 * language revisions. Applications also rely on this behavior. We opt 553 * to apply them in general, but issue a portability warning. 554 * 555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405 556 */ 557 if (type_a->base_type != type_b->base_type) { 558 if (!apply_implicit_conversion(type_a, value_b, state) 559 && !apply_implicit_conversion(type_b, value_a, state)) { 560 _mesa_glsl_error(loc, state, 561 "could not implicitly convert operands to " 562 "`%s` operator", 563 ast_expression::operator_string(op)); 564 return glsl_type::error_type; 565 } else { 566 _mesa_glsl_warning(loc, state, 567 "some implementations may not support implicit " 568 "int -> uint conversions for `%s' operators; " 569 "consider casting explicitly for portability", 570 ast_expression::operator_string(op)); 571 } 572 type_a = value_a->type; 573 type_b = value_b->type; 574 } 575 576 /* "The fundamental types of the operands (signed or unsigned) must 577 * match," 578 */ 579 if (type_a->base_type != type_b->base_type) { 580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same " 581 "base type", ast_expression::operator_string(op)); 582 return glsl_type::error_type; 583 } 584 585 /* "The operands cannot be vectors of differing size." */ 586 if (type_a->is_vector() && 587 type_b->is_vector() && 588 type_a->vector_elements != type_b->vector_elements) { 589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of " 590 "different sizes", ast_expression::operator_string(op)); 591 return glsl_type::error_type; 592 } 593 594 /* "If one operand is a scalar and the other a vector, the scalar is 595 * applied component-wise to the vector, resulting in the same type as 596 * the vector. The fundamental types of the operands [...] will be the 597 * resulting fundamental type." 598 */ 599 if (type_a->is_scalar()) 600 return type_b; 601 else 602 return type_a; 603} 604 605static const struct glsl_type * 606modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 608{ 609 const glsl_type *type_a = value_a->type; 610 const glsl_type *type_b = value_b->type; 611 612 if (!state->EXT_gpu_shader4_enable && 613 !state->check_version(130, 300, loc, "operator '%%' is reserved")) { 614 return glsl_type::error_type; 615 } 616 617 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says: 618 * 619 * "The operator modulus (%) operates on signed or unsigned integers or 620 * integer vectors." 621 */ 622 if (!type_a->is_integer_32_64()) { 623 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer"); 624 return glsl_type::error_type; 625 } 626 if (!type_b->is_integer_32_64()) { 627 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer"); 628 return glsl_type::error_type; 629 } 630 631 /* "If the fundamental types in the operands do not match, then the 632 * conversions from section 4.1.10 "Implicit Conversions" are applied 633 * to create matching types." 634 * 635 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit 636 * int -> uint conversion rules. Prior to that, there were no implicit 637 * conversions. So it's harmless to apply them universally - no implicit 638 * conversions will exist. If the types don't match, we'll receive false, 639 * and raise an error, satisfying the GLSL 1.50 spec, page 56: 640 * 641 * "The operand types must both be signed or unsigned." 642 */ 643 if (!apply_implicit_conversion(type_a, value_b, state) && 644 !apply_implicit_conversion(type_b, value_a, state)) { 645 _mesa_glsl_error(loc, state, 646 "could not implicitly convert operands to " 647 "modulus (%%) operator"); 648 return glsl_type::error_type; 649 } 650 type_a = value_a->type; 651 type_b = value_b->type; 652 653 /* "The operands cannot be vectors of differing size. If one operand is 654 * a scalar and the other vector, then the scalar is applied component- 655 * wise to the vector, resulting in the same type as the vector. If both 656 * are vectors of the same size, the result is computed component-wise." 657 */ 658 if (type_a->is_vector()) { 659 if (!type_b->is_vector() 660 || (type_a->vector_elements == type_b->vector_elements)) 661 return type_a; 662 } else 663 return type_b; 664 665 /* "The operator modulus (%) is not defined for any other data types 666 * (non-integer types)." 667 */ 668 _mesa_glsl_error(loc, state, "type mismatch"); 669 return glsl_type::error_type; 670} 671 672 673static const struct glsl_type * 674relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 675 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 676{ 677 const glsl_type *type_a = value_a->type; 678 const glsl_type *type_b = value_b->type; 679 680 /* From GLSL 1.50 spec, page 56: 681 * "The relational operators greater than (>), less than (<), greater 682 * than or equal (>=), and less than or equal (<=) operate only on 683 * scalar integer and scalar floating-point expressions." 684 */ 685 if (!type_a->is_numeric() 686 || !type_b->is_numeric() 687 || !type_a->is_scalar() 688 || !type_b->is_scalar()) { 689 _mesa_glsl_error(loc, state, 690 "operands to relational operators must be scalar and " 691 "numeric"); 692 return glsl_type::error_type; 693 } 694 695 /* "Either the operands' types must match, or the conversions from 696 * Section 4.1.10 "Implicit Conversions" will be applied to the integer 697 * operand, after which the types must match." 698 */ 699 if (!apply_implicit_conversion(type_a, value_b, state) 700 && !apply_implicit_conversion(type_b, value_a, state)) { 701 _mesa_glsl_error(loc, state, 702 "could not implicitly convert operands to " 703 "relational operator"); 704 return glsl_type::error_type; 705 } 706 type_a = value_a->type; 707 type_b = value_b->type; 708 709 if (type_a->base_type != type_b->base_type) { 710 _mesa_glsl_error(loc, state, "base type mismatch"); 711 return glsl_type::error_type; 712 } 713 714 /* "The result is scalar Boolean." 715 */ 716 return glsl_type::bool_type; 717} 718 719/** 720 * \brief Return the result type of a bit-shift operation. 721 * 722 * If the given types to the bit-shift operator are invalid, return 723 * glsl_type::error_type. 724 * 725 * \param type_a Type of LHS of bit-shift op 726 * \param type_b Type of RHS of bit-shift op 727 */ 728static const struct glsl_type * 729shift_result_type(const struct glsl_type *type_a, 730 const struct glsl_type *type_b, 731 ast_operators op, 732 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 733{ 734 if (!state->check_bitwise_operations_allowed(loc)) { 735 return glsl_type::error_type; 736 } 737 738 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec: 739 * 740 * "The shift operators (<<) and (>>). For both operators, the operands 741 * must be signed or unsigned integers or integer vectors. One operand 742 * can be signed while the other is unsigned." 743 */ 744 if (!type_a->is_integer_32_64()) { 745 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or " 746 "integer vector", ast_expression::operator_string(op)); 747 return glsl_type::error_type; 748 749 } 750 if (!type_b->is_integer()) { 751 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or " 752 "integer vector", ast_expression::operator_string(op)); 753 return glsl_type::error_type; 754 } 755 756 /* "If the first operand is a scalar, the second operand has to be 757 * a scalar as well." 758 */ 759 if (type_a->is_scalar() && !type_b->is_scalar()) { 760 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the " 761 "second must be scalar as well", 762 ast_expression::operator_string(op)); 763 return glsl_type::error_type; 764 } 765 766 /* If both operands are vectors, check that they have same number of 767 * elements. 768 */ 769 if (type_a->is_vector() && 770 type_b->is_vector() && 771 type_a->vector_elements != type_b->vector_elements) { 772 _mesa_glsl_error(loc, state, "vector operands to operator %s must " 773 "have same number of elements", 774 ast_expression::operator_string(op)); 775 return glsl_type::error_type; 776 } 777 778 /* "In all cases, the resulting type will be the same type as the left 779 * operand." 780 */ 781 return type_a; 782} 783 784/** 785 * Returns the innermost array index expression in an rvalue tree. 786 * This is the largest indexing level -- if an array of blocks, then 787 * it is the block index rather than an indexing expression for an 788 * array-typed member of an array of blocks. 789 */ 790static ir_rvalue * 791find_innermost_array_index(ir_rvalue *rv) 792{ 793 ir_dereference_array *last = NULL; 794 while (rv) { 795 if (rv->as_dereference_array()) { 796 last = rv->as_dereference_array(); 797 rv = last->array; 798 } else if (rv->as_dereference_record()) 799 rv = rv->as_dereference_record()->record; 800 else if (rv->as_swizzle()) 801 rv = rv->as_swizzle()->val; 802 else 803 rv = NULL; 804 } 805 806 if (last) 807 return last->array_index; 808 809 return NULL; 810} 811 812/** 813 * Validates that a value can be assigned to a location with a specified type 814 * 815 * Validates that \c rhs can be assigned to some location. If the types are 816 * not an exact match but an automatic conversion is possible, \c rhs will be 817 * converted. 818 * 819 * \return 820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type. 821 * Otherwise the actual RHS to be assigned will be returned. This may be 822 * \c rhs, or it may be \c rhs after some type conversion. 823 * 824 * \note 825 * In addition to being used for assignments, this function is used to 826 * type-check return values. 827 */ 828static ir_rvalue * 829validate_assignment(struct _mesa_glsl_parse_state *state, 830 YYLTYPE loc, ir_rvalue *lhs, 831 ir_rvalue *rhs, bool is_initializer) 832{ 833 /* If there is already some error in the RHS, just return it. Anything 834 * else will lead to an avalanche of error message back to the user. 835 */ 836 if (rhs->type->is_error()) 837 return rhs; 838 839 /* In the Tessellation Control Shader: 840 * If a per-vertex output variable is used as an l-value, it is an error 841 * if the expression indicating the vertex number is not the identifier 842 * `gl_InvocationID`. 843 */ 844 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) { 845 ir_variable *var = lhs->variable_referenced(); 846 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) { 847 ir_rvalue *index = find_innermost_array_index(lhs); 848 ir_variable *index_var = index ? index->variable_referenced() : NULL; 849 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) { 850 _mesa_glsl_error(&loc, state, 851 "Tessellation control shader outputs can only " 852 "be indexed by gl_InvocationID"); 853 return NULL; 854 } 855 } 856 } 857 858 /* If the types are identical, the assignment can trivially proceed. 859 */ 860 if (rhs->type == lhs->type) 861 return rhs; 862 863 /* If the array element types are the same and the LHS is unsized, 864 * the assignment is okay for initializers embedded in variable 865 * declarations. 866 * 867 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this 868 * is handled by ir_dereference::is_lvalue. 869 */ 870 const glsl_type *lhs_t = lhs->type; 871 const glsl_type *rhs_t = rhs->type; 872 bool unsized_array = false; 873 while(lhs_t->is_array()) { 874 if (rhs_t == lhs_t) 875 break; /* the rest of the inner arrays match so break out early */ 876 if (!rhs_t->is_array()) { 877 unsized_array = false; 878 break; /* number of dimensions mismatch */ 879 } 880 if (lhs_t->length == rhs_t->length) { 881 lhs_t = lhs_t->fields.array; 882 rhs_t = rhs_t->fields.array; 883 continue; 884 } else if (lhs_t->is_unsized_array()) { 885 unsized_array = true; 886 } else { 887 unsized_array = false; 888 break; /* sized array mismatch */ 889 } 890 lhs_t = lhs_t->fields.array; 891 rhs_t = rhs_t->fields.array; 892 } 893 if (unsized_array) { 894 if (is_initializer) { 895 if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type()) 896 return rhs; 897 } else { 898 _mesa_glsl_error(&loc, state, 899 "implicitly sized arrays cannot be assigned"); 900 return NULL; 901 } 902 } 903 904 /* Check for implicit conversion in GLSL 1.20 */ 905 if (apply_implicit_conversion(lhs->type, rhs, state)) { 906 if (rhs->type == lhs->type) 907 return rhs; 908 } 909 910 _mesa_glsl_error(&loc, state, 911 "%s of type %s cannot be assigned to " 912 "variable of type %s", 913 is_initializer ? "initializer" : "value", 914 rhs->type->name, lhs->type->name); 915 916 return NULL; 917} 918 919static void 920mark_whole_array_access(ir_rvalue *access) 921{ 922 ir_dereference_variable *deref = access->as_dereference_variable(); 923 924 if (deref && deref->var) { 925 deref->var->data.max_array_access = deref->type->length - 1; 926 } 927} 928 929static bool 930do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state, 931 const char *non_lvalue_description, 932 ir_rvalue *lhs, ir_rvalue *rhs, 933 ir_rvalue **out_rvalue, bool needs_rvalue, 934 bool is_initializer, 935 YYLTYPE lhs_loc) 936{ 937 void *ctx = state; 938 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error()); 939 940 ir_variable *lhs_var = lhs->variable_referenced(); 941 if (lhs_var) 942 lhs_var->data.assigned = true; 943 944 if (!error_emitted) { 945 if (non_lvalue_description != NULL) { 946 _mesa_glsl_error(&lhs_loc, state, 947 "assignment to %s", 948 non_lvalue_description); 949 error_emitted = true; 950 } else if (lhs_var != NULL && (lhs_var->data.read_only || 951 (lhs_var->data.mode == ir_var_shader_storage && 952 lhs_var->data.memory_read_only))) { 953 /* We can have memory_read_only set on both images and buffer variables, 954 * but in the former there is a distinction between assignments to 955 * the variable itself (read_only) and to the memory they point to 956 * (memory_read_only), while in the case of buffer variables there is 957 * no such distinction, that is why this check here is limited to 958 * buffer variables alone. 959 */ 960 _mesa_glsl_error(&lhs_loc, state, 961 "assignment to read-only variable '%s'", 962 lhs_var->name); 963 error_emitted = true; 964 } else if (lhs->type->is_array() && 965 !state->check_version(120, 300, &lhs_loc, 966 "whole array assignment forbidden")) { 967 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: 968 * 969 * "Other binary or unary expressions, non-dereferenced 970 * arrays, function names, swizzles with repeated fields, 971 * and constants cannot be l-values." 972 * 973 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00. 974 */ 975 error_emitted = true; 976 } else if (!lhs->is_lvalue(state)) { 977 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment"); 978 error_emitted = true; 979 } 980 } 981 982 ir_rvalue *new_rhs = 983 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer); 984 if (new_rhs != NULL) { 985 rhs = new_rhs; 986 987 /* If the LHS array was not declared with a size, it takes it size from 988 * the RHS. If the LHS is an l-value and a whole array, it must be a 989 * dereference of a variable. Any other case would require that the LHS 990 * is either not an l-value or not a whole array. 991 */ 992 if (lhs->type->is_unsized_array()) { 993 ir_dereference *const d = lhs->as_dereference(); 994 995 assert(d != NULL); 996 997 ir_variable *const var = d->variable_referenced(); 998 999 assert(var != NULL); 1000 1001 if (var->data.max_array_access >= rhs->type->array_size()) { 1002 /* FINISHME: This should actually log the location of the RHS. */ 1003 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to " 1004 "previous access", 1005 var->data.max_array_access); 1006 } 1007 1008 var->type = glsl_type::get_array_instance(lhs->type->fields.array, 1009 rhs->type->array_size()); 1010 d->type = var->type; 1011 } 1012 if (lhs->type->is_array()) { 1013 mark_whole_array_access(rhs); 1014 mark_whole_array_access(lhs); 1015 } 1016 } else { 1017 error_emitted = true; 1018 } 1019 1020 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec, 1021 * but not post_inc) need the converted assigned value as an rvalue 1022 * to handle things like: 1023 * 1024 * i = j += 1; 1025 */ 1026 if (needs_rvalue) { 1027 ir_rvalue *rvalue; 1028 if (!error_emitted) { 1029 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp", 1030 ir_var_temporary); 1031 instructions->push_tail(var); 1032 instructions->push_tail(assign(var, rhs)); 1033 1034 ir_dereference_variable *deref_var = 1035 new(ctx) ir_dereference_variable(var); 1036 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var)); 1037 rvalue = new(ctx) ir_dereference_variable(var); 1038 } else { 1039 rvalue = ir_rvalue::error_value(ctx); 1040 } 1041 *out_rvalue = rvalue; 1042 } else { 1043 if (!error_emitted) 1044 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs)); 1045 *out_rvalue = NULL; 1046 } 1047 1048 return error_emitted; 1049} 1050 1051static ir_rvalue * 1052get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue) 1053{ 1054 void *ctx = ralloc_parent(lvalue); 1055 ir_variable *var; 1056 1057 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp", 1058 ir_var_temporary); 1059 instructions->push_tail(var); 1060 1061 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), 1062 lvalue)); 1063 1064 return new(ctx) ir_dereference_variable(var); 1065} 1066 1067 1068ir_rvalue * 1069ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) 1070{ 1071 (void) instructions; 1072 (void) state; 1073 1074 return NULL; 1075} 1076 1077bool 1078ast_node::has_sequence_subexpression() const 1079{ 1080 return false; 1081} 1082 1083void 1084ast_node::set_is_lhs(bool /* new_value */) 1085{ 1086} 1087 1088void 1089ast_function_expression::hir_no_rvalue(exec_list *instructions, 1090 struct _mesa_glsl_parse_state *state) 1091{ 1092 (void)hir(instructions, state); 1093} 1094 1095void 1096ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions, 1097 struct _mesa_glsl_parse_state *state) 1098{ 1099 (void)hir(instructions, state); 1100} 1101 1102static ir_rvalue * 1103do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1) 1104{ 1105 int join_op; 1106 ir_rvalue *cmp = NULL; 1107 1108 if (operation == ir_binop_all_equal) 1109 join_op = ir_binop_logic_and; 1110 else 1111 join_op = ir_binop_logic_or; 1112 1113 switch (op0->type->base_type) { 1114 case GLSL_TYPE_FLOAT: 1115 case GLSL_TYPE_FLOAT16: 1116 case GLSL_TYPE_UINT: 1117 case GLSL_TYPE_INT: 1118 case GLSL_TYPE_BOOL: 1119 case GLSL_TYPE_DOUBLE: 1120 case GLSL_TYPE_UINT64: 1121 case GLSL_TYPE_INT64: 1122 case GLSL_TYPE_UINT16: 1123 case GLSL_TYPE_INT16: 1124 case GLSL_TYPE_UINT8: 1125 case GLSL_TYPE_INT8: 1126 return new(mem_ctx) ir_expression(operation, op0, op1); 1127 1128 case GLSL_TYPE_ARRAY: { 1129 for (unsigned int i = 0; i < op0->type->length; i++) { 1130 ir_rvalue *e0, *e1, *result; 1131 1132 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL), 1133 new(mem_ctx) ir_constant(i)); 1134 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL), 1135 new(mem_ctx) ir_constant(i)); 1136 result = do_comparison(mem_ctx, operation, e0, e1); 1137 1138 if (cmp) { 1139 cmp = new(mem_ctx) ir_expression(join_op, cmp, result); 1140 } else { 1141 cmp = result; 1142 } 1143 } 1144 1145 mark_whole_array_access(op0); 1146 mark_whole_array_access(op1); 1147 break; 1148 } 1149 1150 case GLSL_TYPE_STRUCT: { 1151 for (unsigned int i = 0; i < op0->type->length; i++) { 1152 ir_rvalue *e0, *e1, *result; 1153 const char *field_name = op0->type->fields.structure[i].name; 1154 1155 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL), 1156 field_name); 1157 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL), 1158 field_name); 1159 result = do_comparison(mem_ctx, operation, e0, e1); 1160 1161 if (cmp) { 1162 cmp = new(mem_ctx) ir_expression(join_op, cmp, result); 1163 } else { 1164 cmp = result; 1165 } 1166 } 1167 break; 1168 } 1169 1170 case GLSL_TYPE_ERROR: 1171 case GLSL_TYPE_VOID: 1172 case GLSL_TYPE_SAMPLER: 1173 case GLSL_TYPE_IMAGE: 1174 case GLSL_TYPE_INTERFACE: 1175 case GLSL_TYPE_ATOMIC_UINT: 1176 case GLSL_TYPE_SUBROUTINE: 1177 case GLSL_TYPE_FUNCTION: 1178 /* I assume a comparison of a struct containing a sampler just 1179 * ignores the sampler present in the type. 1180 */ 1181 break; 1182 } 1183 1184 if (cmp == NULL) 1185 cmp = new(mem_ctx) ir_constant(true); 1186 1187 return cmp; 1188} 1189 1190/* For logical operations, we want to ensure that the operands are 1191 * scalar booleans. If it isn't, emit an error and return a constant 1192 * boolean to avoid triggering cascading error messages. 1193 */ 1194static ir_rvalue * 1195get_scalar_boolean_operand(exec_list *instructions, 1196 struct _mesa_glsl_parse_state *state, 1197 ast_expression *parent_expr, 1198 int operand, 1199 const char *operand_name, 1200 bool *error_emitted) 1201{ 1202 ast_expression *expr = parent_expr->subexpressions[operand]; 1203 void *ctx = state; 1204 ir_rvalue *val = expr->hir(instructions, state); 1205 1206 if (val->type->is_boolean() && val->type->is_scalar()) 1207 return val; 1208 1209 if (!*error_emitted) { 1210 YYLTYPE loc = expr->get_location(); 1211 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean", 1212 operand_name, 1213 parent_expr->operator_string(parent_expr->oper)); 1214 *error_emitted = true; 1215 } 1216 1217 return new(ctx) ir_constant(true); 1218} 1219 1220/** 1221 * If name refers to a builtin array whose maximum allowed size is less than 1222 * size, report an error and return true. Otherwise return false. 1223 */ 1224void 1225check_builtin_array_max_size(const char *name, unsigned size, 1226 YYLTYPE loc, struct _mesa_glsl_parse_state *state) 1227{ 1228 if ((strcmp("gl_TexCoord", name) == 0) 1229 && (size > state->Const.MaxTextureCoords)) { 1230 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec: 1231 * 1232 * "The size [of gl_TexCoord] can be at most 1233 * gl_MaxTextureCoords." 1234 */ 1235 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot " 1236 "be larger than gl_MaxTextureCoords (%u)", 1237 state->Const.MaxTextureCoords); 1238 } else if (strcmp("gl_ClipDistance", name) == 0) { 1239 state->clip_dist_size = size; 1240 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) { 1241 /* From section 7.1 (Vertex Shader Special Variables) of the 1242 * GLSL 1.30 spec: 1243 * 1244 * "The gl_ClipDistance array is predeclared as unsized and 1245 * must be sized by the shader either redeclaring it with a 1246 * size or indexing it only with integral constant 1247 * expressions. ... The size can be at most 1248 * gl_MaxClipDistances." 1249 */ 1250 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot " 1251 "be larger than gl_MaxClipDistances (%u)", 1252 state->Const.MaxClipPlanes); 1253 } 1254 } else if (strcmp("gl_CullDistance", name) == 0) { 1255 state->cull_dist_size = size; 1256 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) { 1257 /* From the ARB_cull_distance spec: 1258 * 1259 * "The gl_CullDistance array is predeclared as unsized and 1260 * must be sized by the shader either redeclaring it with 1261 * a size or indexing it only with integral constant 1262 * expressions. The size determines the number and set of 1263 * enabled cull distances and can be at most 1264 * gl_MaxCullDistances." 1265 */ 1266 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot " 1267 "be larger than gl_MaxCullDistances (%u)", 1268 state->Const.MaxClipPlanes); 1269 } 1270 } 1271} 1272 1273/** 1274 * Create the constant 1, of a which is appropriate for incrementing and 1275 * decrementing values of the given GLSL type. For example, if type is vec4, 1276 * this creates a constant value of 1.0 having type float. 1277 * 1278 * If the given type is invalid for increment and decrement operators, return 1279 * a floating point 1--the error will be detected later. 1280 */ 1281static ir_rvalue * 1282constant_one_for_inc_dec(void *ctx, const glsl_type *type) 1283{ 1284 switch (type->base_type) { 1285 case GLSL_TYPE_UINT: 1286 return new(ctx) ir_constant((unsigned) 1); 1287 case GLSL_TYPE_INT: 1288 return new(ctx) ir_constant(1); 1289 case GLSL_TYPE_UINT64: 1290 return new(ctx) ir_constant((uint64_t) 1); 1291 case GLSL_TYPE_INT64: 1292 return new(ctx) ir_constant((int64_t) 1); 1293 default: 1294 case GLSL_TYPE_FLOAT: 1295 return new(ctx) ir_constant(1.0f); 1296 } 1297} 1298 1299ir_rvalue * 1300ast_expression::hir(exec_list *instructions, 1301 struct _mesa_glsl_parse_state *state) 1302{ 1303 return do_hir(instructions, state, true); 1304} 1305 1306void 1307ast_expression::hir_no_rvalue(exec_list *instructions, 1308 struct _mesa_glsl_parse_state *state) 1309{ 1310 do_hir(instructions, state, false); 1311} 1312 1313void 1314ast_expression::set_is_lhs(bool new_value) 1315{ 1316 /* is_lhs is tracked only to print "variable used uninitialized" warnings, 1317 * if we lack an identifier we can just skip it. 1318 */ 1319 if (this->primary_expression.identifier == NULL) 1320 return; 1321 1322 this->is_lhs = new_value; 1323 1324 /* We need to go through the subexpressions tree to cover cases like 1325 * ast_field_selection 1326 */ 1327 if (this->subexpressions[0] != NULL) 1328 this->subexpressions[0]->set_is_lhs(new_value); 1329} 1330 1331ir_rvalue * 1332ast_expression::do_hir(exec_list *instructions, 1333 struct _mesa_glsl_parse_state *state, 1334 bool needs_rvalue) 1335{ 1336 void *ctx = state; 1337 static const int operations[AST_NUM_OPERATORS] = { 1338 -1, /* ast_assign doesn't convert to ir_expression. */ 1339 -1, /* ast_plus doesn't convert to ir_expression. */ 1340 ir_unop_neg, 1341 ir_binop_add, 1342 ir_binop_sub, 1343 ir_binop_mul, 1344 ir_binop_div, 1345 ir_binop_mod, 1346 ir_binop_lshift, 1347 ir_binop_rshift, 1348 ir_binop_less, 1349 ir_binop_less, /* This is correct. See the ast_greater case below. */ 1350 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */ 1351 ir_binop_gequal, 1352 ir_binop_all_equal, 1353 ir_binop_any_nequal, 1354 ir_binop_bit_and, 1355 ir_binop_bit_xor, 1356 ir_binop_bit_or, 1357 ir_unop_bit_not, 1358 ir_binop_logic_and, 1359 ir_binop_logic_xor, 1360 ir_binop_logic_or, 1361 ir_unop_logic_not, 1362 1363 /* Note: The following block of expression types actually convert 1364 * to multiple IR instructions. 1365 */ 1366 ir_binop_mul, /* ast_mul_assign */ 1367 ir_binop_div, /* ast_div_assign */ 1368 ir_binop_mod, /* ast_mod_assign */ 1369 ir_binop_add, /* ast_add_assign */ 1370 ir_binop_sub, /* ast_sub_assign */ 1371 ir_binop_lshift, /* ast_ls_assign */ 1372 ir_binop_rshift, /* ast_rs_assign */ 1373 ir_binop_bit_and, /* ast_and_assign */ 1374 ir_binop_bit_xor, /* ast_xor_assign */ 1375 ir_binop_bit_or, /* ast_or_assign */ 1376 1377 -1, /* ast_conditional doesn't convert to ir_expression. */ 1378 ir_binop_add, /* ast_pre_inc. */ 1379 ir_binop_sub, /* ast_pre_dec. */ 1380 ir_binop_add, /* ast_post_inc. */ 1381 ir_binop_sub, /* ast_post_dec. */ 1382 -1, /* ast_field_selection doesn't conv to ir_expression. */ 1383 -1, /* ast_array_index doesn't convert to ir_expression. */ 1384 -1, /* ast_function_call doesn't conv to ir_expression. */ 1385 -1, /* ast_identifier doesn't convert to ir_expression. */ 1386 -1, /* ast_int_constant doesn't convert to ir_expression. */ 1387 -1, /* ast_uint_constant doesn't conv to ir_expression. */ 1388 -1, /* ast_float_constant doesn't conv to ir_expression. */ 1389 -1, /* ast_bool_constant doesn't conv to ir_expression. */ 1390 -1, /* ast_sequence doesn't convert to ir_expression. */ 1391 -1, /* ast_aggregate shouldn't ever even get here. */ 1392 }; 1393 ir_rvalue *result = NULL; 1394 ir_rvalue *op[3]; 1395 const struct glsl_type *type, *orig_type; 1396 bool error_emitted = false; 1397 YYLTYPE loc; 1398 1399 loc = this->get_location(); 1400 1401 switch (this->oper) { 1402 case ast_aggregate: 1403 unreachable("ast_aggregate: Should never get here."); 1404 1405 case ast_assign: { 1406 this->subexpressions[0]->set_is_lhs(true); 1407 op[0] = this->subexpressions[0]->hir(instructions, state); 1408 op[1] = this->subexpressions[1]->hir(instructions, state); 1409 1410 error_emitted = 1411 do_assignment(instructions, state, 1412 this->subexpressions[0]->non_lvalue_description, 1413 op[0], op[1], &result, needs_rvalue, false, 1414 this->subexpressions[0]->get_location()); 1415 break; 1416 } 1417 1418 case ast_plus: 1419 op[0] = this->subexpressions[0]->hir(instructions, state); 1420 1421 type = unary_arithmetic_result_type(op[0]->type, state, & loc); 1422 1423 error_emitted = type->is_error(); 1424 1425 result = op[0]; 1426 break; 1427 1428 case ast_neg: 1429 op[0] = this->subexpressions[0]->hir(instructions, state); 1430 1431 type = unary_arithmetic_result_type(op[0]->type, state, & loc); 1432 1433 error_emitted = type->is_error(); 1434 1435 result = new(ctx) ir_expression(operations[this->oper], type, 1436 op[0], NULL); 1437 break; 1438 1439 case ast_add: 1440 case ast_sub: 1441 case ast_mul: 1442 case ast_div: 1443 op[0] = this->subexpressions[0]->hir(instructions, state); 1444 op[1] = this->subexpressions[1]->hir(instructions, state); 1445 1446 type = arithmetic_result_type(op[0], op[1], 1447 (this->oper == ast_mul), 1448 state, & loc); 1449 error_emitted = type->is_error(); 1450 1451 result = new(ctx) ir_expression(operations[this->oper], type, 1452 op[0], op[1]); 1453 break; 1454 1455 case ast_mod: 1456 op[0] = this->subexpressions[0]->hir(instructions, state); 1457 op[1] = this->subexpressions[1]->hir(instructions, state); 1458 1459 type = modulus_result_type(op[0], op[1], state, &loc); 1460 1461 assert(operations[this->oper] == ir_binop_mod); 1462 1463 result = new(ctx) ir_expression(operations[this->oper], type, 1464 op[0], op[1]); 1465 error_emitted = type->is_error(); 1466 break; 1467 1468 case ast_lshift: 1469 case ast_rshift: 1470 if (!state->check_bitwise_operations_allowed(&loc)) { 1471 error_emitted = true; 1472 } 1473 1474 op[0] = this->subexpressions[0]->hir(instructions, state); 1475 op[1] = this->subexpressions[1]->hir(instructions, state); 1476 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, 1477 &loc); 1478 result = new(ctx) ir_expression(operations[this->oper], type, 1479 op[0], op[1]); 1480 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1481 break; 1482 1483 case ast_less: 1484 case ast_greater: 1485 case ast_lequal: 1486 case ast_gequal: 1487 op[0] = this->subexpressions[0]->hir(instructions, state); 1488 op[1] = this->subexpressions[1]->hir(instructions, state); 1489 1490 type = relational_result_type(op[0], op[1], state, & loc); 1491 1492 /* The relational operators must either generate an error or result 1493 * in a scalar boolean. See page 57 of the GLSL 1.50 spec. 1494 */ 1495 assert(type->is_error() 1496 || (type->is_boolean() && type->is_scalar())); 1497 1498 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap 1499 * the arguments and use < or >=. 1500 */ 1501 if (this->oper == ast_greater || this->oper == ast_lequal) { 1502 ir_rvalue *const tmp = op[0]; 1503 op[0] = op[1]; 1504 op[1] = tmp; 1505 } 1506 1507 result = new(ctx) ir_expression(operations[this->oper], type, 1508 op[0], op[1]); 1509 error_emitted = type->is_error(); 1510 break; 1511 1512 case ast_nequal: 1513 case ast_equal: 1514 op[0] = this->subexpressions[0]->hir(instructions, state); 1515 op[1] = this->subexpressions[1]->hir(instructions, state); 1516 1517 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec: 1518 * 1519 * "The equality operators equal (==), and not equal (!=) 1520 * operate on all types. They result in a scalar Boolean. If 1521 * the operand types do not match, then there must be a 1522 * conversion from Section 4.1.10 "Implicit Conversions" 1523 * applied to one operand that can make them match, in which 1524 * case this conversion is done." 1525 */ 1526 1527 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) { 1528 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: " 1529 "no operation `%1$s' exists that takes a left-hand " 1530 "operand of type 'void' or a right operand of type " 1531 "'void'", (this->oper == ast_equal) ? "==" : "!="); 1532 error_emitted = true; 1533 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state) 1534 && !apply_implicit_conversion(op[1]->type, op[0], state)) 1535 || (op[0]->type != op[1]->type)) { 1536 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same " 1537 "type", (this->oper == ast_equal) ? "==" : "!="); 1538 error_emitted = true; 1539 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) && 1540 !state->check_version(120, 300, &loc, 1541 "array comparisons forbidden")) { 1542 error_emitted = true; 1543 } else if ((op[0]->type->contains_subroutine() || 1544 op[1]->type->contains_subroutine())) { 1545 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden"); 1546 error_emitted = true; 1547 } else if ((op[0]->type->contains_opaque() || 1548 op[1]->type->contains_opaque())) { 1549 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden"); 1550 error_emitted = true; 1551 } 1552 1553 if (error_emitted) { 1554 result = new(ctx) ir_constant(false); 1555 } else { 1556 result = do_comparison(ctx, operations[this->oper], op[0], op[1]); 1557 assert(result->type == glsl_type::bool_type); 1558 } 1559 break; 1560 1561 case ast_bit_and: 1562 case ast_bit_xor: 1563 case ast_bit_or: 1564 op[0] = this->subexpressions[0]->hir(instructions, state); 1565 op[1] = this->subexpressions[1]->hir(instructions, state); 1566 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); 1567 result = new(ctx) ir_expression(operations[this->oper], type, 1568 op[0], op[1]); 1569 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1570 break; 1571 1572 case ast_bit_not: 1573 op[0] = this->subexpressions[0]->hir(instructions, state); 1574 1575 if (!state->check_bitwise_operations_allowed(&loc)) { 1576 error_emitted = true; 1577 } 1578 1579 if (!op[0]->type->is_integer_32_64()) { 1580 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer"); 1581 error_emitted = true; 1582 } 1583 1584 type = error_emitted ? glsl_type::error_type : op[0]->type; 1585 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL); 1586 break; 1587 1588 case ast_logic_and: { 1589 exec_list rhs_instructions; 1590 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1591 "LHS", &error_emitted); 1592 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, 1593 "RHS", &error_emitted); 1594 1595 if (rhs_instructions.is_empty()) { 1596 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]); 1597 } else { 1598 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, 1599 "and_tmp", 1600 ir_var_temporary); 1601 instructions->push_tail(tmp); 1602 1603 ir_if *const stmt = new(ctx) ir_if(op[0]); 1604 instructions->push_tail(stmt); 1605 1606 stmt->then_instructions.append_list(&rhs_instructions); 1607 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); 1608 ir_assignment *const then_assign = 1609 new(ctx) ir_assignment(then_deref, op[1]); 1610 stmt->then_instructions.push_tail(then_assign); 1611 1612 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); 1613 ir_assignment *const else_assign = 1614 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false)); 1615 stmt->else_instructions.push_tail(else_assign); 1616 1617 result = new(ctx) ir_dereference_variable(tmp); 1618 } 1619 break; 1620 } 1621 1622 case ast_logic_or: { 1623 exec_list rhs_instructions; 1624 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1625 "LHS", &error_emitted); 1626 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, 1627 "RHS", &error_emitted); 1628 1629 if (rhs_instructions.is_empty()) { 1630 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]); 1631 } else { 1632 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, 1633 "or_tmp", 1634 ir_var_temporary); 1635 instructions->push_tail(tmp); 1636 1637 ir_if *const stmt = new(ctx) ir_if(op[0]); 1638 instructions->push_tail(stmt); 1639 1640 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); 1641 ir_assignment *const then_assign = 1642 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true)); 1643 stmt->then_instructions.push_tail(then_assign); 1644 1645 stmt->else_instructions.append_list(&rhs_instructions); 1646 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); 1647 ir_assignment *const else_assign = 1648 new(ctx) ir_assignment(else_deref, op[1]); 1649 stmt->else_instructions.push_tail(else_assign); 1650 1651 result = new(ctx) ir_dereference_variable(tmp); 1652 } 1653 break; 1654 } 1655 1656 case ast_logic_xor: 1657 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: 1658 * 1659 * "The logical binary operators and (&&), or ( | | ), and 1660 * exclusive or (^^). They operate only on two Boolean 1661 * expressions and result in a Boolean expression." 1662 */ 1663 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS", 1664 &error_emitted); 1665 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS", 1666 &error_emitted); 1667 1668 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, 1669 op[0], op[1]); 1670 break; 1671 1672 case ast_logic_not: 1673 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1674 "operand", &error_emitted); 1675 1676 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, 1677 op[0], NULL); 1678 break; 1679 1680 case ast_mul_assign: 1681 case ast_div_assign: 1682 case ast_add_assign: 1683 case ast_sub_assign: { 1684 this->subexpressions[0]->set_is_lhs(true); 1685 op[0] = this->subexpressions[0]->hir(instructions, state); 1686 op[1] = this->subexpressions[1]->hir(instructions, state); 1687 1688 orig_type = op[0]->type; 1689 1690 /* Break out if operand types were not parsed successfully. */ 1691 if ((op[0]->type == glsl_type::error_type || 1692 op[1]->type == glsl_type::error_type)) 1693 break; 1694 1695 type = arithmetic_result_type(op[0], op[1], 1696 (this->oper == ast_mul_assign), 1697 state, & loc); 1698 1699 if (type != orig_type) { 1700 _mesa_glsl_error(& loc, state, 1701 "could not implicitly convert " 1702 "%s to %s", type->name, orig_type->name); 1703 type = glsl_type::error_type; 1704 } 1705 1706 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1707 op[0], op[1]); 1708 1709 error_emitted = 1710 do_assignment(instructions, state, 1711 this->subexpressions[0]->non_lvalue_description, 1712 op[0]->clone(ctx, NULL), temp_rhs, 1713 &result, needs_rvalue, false, 1714 this->subexpressions[0]->get_location()); 1715 1716 /* GLSL 1.10 does not allow array assignment. However, we don't have to 1717 * explicitly test for this because none of the binary expression 1718 * operators allow array operands either. 1719 */ 1720 1721 break; 1722 } 1723 1724 case ast_mod_assign: { 1725 this->subexpressions[0]->set_is_lhs(true); 1726 op[0] = this->subexpressions[0]->hir(instructions, state); 1727 op[1] = this->subexpressions[1]->hir(instructions, state); 1728 1729 orig_type = op[0]->type; 1730 type = modulus_result_type(op[0], op[1], state, &loc); 1731 1732 if (type != orig_type) { 1733 _mesa_glsl_error(& loc, state, 1734 "could not implicitly convert " 1735 "%s to %s", type->name, orig_type->name); 1736 type = glsl_type::error_type; 1737 } 1738 1739 assert(operations[this->oper] == ir_binop_mod); 1740 1741 ir_rvalue *temp_rhs; 1742 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1743 op[0], op[1]); 1744 1745 error_emitted = 1746 do_assignment(instructions, state, 1747 this->subexpressions[0]->non_lvalue_description, 1748 op[0]->clone(ctx, NULL), temp_rhs, 1749 &result, needs_rvalue, false, 1750 this->subexpressions[0]->get_location()); 1751 break; 1752 } 1753 1754 case ast_ls_assign: 1755 case ast_rs_assign: { 1756 this->subexpressions[0]->set_is_lhs(true); 1757 op[0] = this->subexpressions[0]->hir(instructions, state); 1758 op[1] = this->subexpressions[1]->hir(instructions, state); 1759 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, 1760 &loc); 1761 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], 1762 type, op[0], op[1]); 1763 error_emitted = 1764 do_assignment(instructions, state, 1765 this->subexpressions[0]->non_lvalue_description, 1766 op[0]->clone(ctx, NULL), temp_rhs, 1767 &result, needs_rvalue, false, 1768 this->subexpressions[0]->get_location()); 1769 break; 1770 } 1771 1772 case ast_and_assign: 1773 case ast_xor_assign: 1774 case ast_or_assign: { 1775 this->subexpressions[0]->set_is_lhs(true); 1776 op[0] = this->subexpressions[0]->hir(instructions, state); 1777 op[1] = this->subexpressions[1]->hir(instructions, state); 1778 1779 orig_type = op[0]->type; 1780 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); 1781 1782 if (type != orig_type) { 1783 _mesa_glsl_error(& loc, state, 1784 "could not implicitly convert " 1785 "%s to %s", type->name, orig_type->name); 1786 type = glsl_type::error_type; 1787 } 1788 1789 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], 1790 type, op[0], op[1]); 1791 error_emitted = 1792 do_assignment(instructions, state, 1793 this->subexpressions[0]->non_lvalue_description, 1794 op[0]->clone(ctx, NULL), temp_rhs, 1795 &result, needs_rvalue, false, 1796 this->subexpressions[0]->get_location()); 1797 break; 1798 } 1799 1800 case ast_conditional: { 1801 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: 1802 * 1803 * "The ternary selection operator (?:). It operates on three 1804 * expressions (exp1 ? exp2 : exp3). This operator evaluates the 1805 * first expression, which must result in a scalar Boolean." 1806 */ 1807 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1808 "condition", &error_emitted); 1809 1810 /* The :? operator is implemented by generating an anonymous temporary 1811 * followed by an if-statement. The last instruction in each branch of 1812 * the if-statement assigns a value to the anonymous temporary. This 1813 * temporary is the r-value of the expression. 1814 */ 1815 exec_list then_instructions; 1816 exec_list else_instructions; 1817 1818 op[1] = this->subexpressions[1]->hir(&then_instructions, state); 1819 op[2] = this->subexpressions[2]->hir(&else_instructions, state); 1820 1821 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: 1822 * 1823 * "The second and third expressions can be any type, as 1824 * long their types match, or there is a conversion in 1825 * Section 4.1.10 "Implicit Conversions" that can be applied 1826 * to one of the expressions to make their types match. This 1827 * resulting matching type is the type of the entire 1828 * expression." 1829 */ 1830 if ((!apply_implicit_conversion(op[1]->type, op[2], state) 1831 && !apply_implicit_conversion(op[2]->type, op[1], state)) 1832 || (op[1]->type != op[2]->type)) { 1833 YYLTYPE loc = this->subexpressions[1]->get_location(); 1834 1835 _mesa_glsl_error(& loc, state, "second and third operands of ?: " 1836 "operator must have matching types"); 1837 error_emitted = true; 1838 type = glsl_type::error_type; 1839 } else { 1840 type = op[1]->type; 1841 } 1842 1843 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: 1844 * 1845 * "The second and third expressions must be the same type, but can 1846 * be of any type other than an array." 1847 */ 1848 if (type->is_array() && 1849 !state->check_version(120, 300, &loc, 1850 "second and third operands of ?: operator " 1851 "cannot be arrays")) { 1852 error_emitted = true; 1853 } 1854 1855 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types): 1856 * 1857 * "Except for array indexing, structure member selection, and 1858 * parentheses, opaque variables are not allowed to be operands in 1859 * expressions; such use results in a compile-time error." 1860 */ 1861 if (type->contains_opaque()) { 1862 if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) { 1863 _mesa_glsl_error(&loc, state, "variables of type %s cannot be " 1864 "operands of the ?: operator", type->name); 1865 error_emitted = true; 1866 } 1867 } 1868 1869 ir_constant *cond_val = op[0]->constant_expression_value(ctx); 1870 1871 if (then_instructions.is_empty() 1872 && else_instructions.is_empty() 1873 && cond_val != NULL) { 1874 result = cond_val->value.b[0] ? op[1] : op[2]; 1875 } else { 1876 /* The copy to conditional_tmp reads the whole array. */ 1877 if (type->is_array()) { 1878 mark_whole_array_access(op[1]); 1879 mark_whole_array_access(op[2]); 1880 } 1881 1882 ir_variable *const tmp = 1883 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary); 1884 instructions->push_tail(tmp); 1885 1886 ir_if *const stmt = new(ctx) ir_if(op[0]); 1887 instructions->push_tail(stmt); 1888 1889 then_instructions.move_nodes_to(& stmt->then_instructions); 1890 ir_dereference *const then_deref = 1891 new(ctx) ir_dereference_variable(tmp); 1892 ir_assignment *const then_assign = 1893 new(ctx) ir_assignment(then_deref, op[1]); 1894 stmt->then_instructions.push_tail(then_assign); 1895 1896 else_instructions.move_nodes_to(& stmt->else_instructions); 1897 ir_dereference *const else_deref = 1898 new(ctx) ir_dereference_variable(tmp); 1899 ir_assignment *const else_assign = 1900 new(ctx) ir_assignment(else_deref, op[2]); 1901 stmt->else_instructions.push_tail(else_assign); 1902 1903 result = new(ctx) ir_dereference_variable(tmp); 1904 } 1905 break; 1906 } 1907 1908 case ast_pre_inc: 1909 case ast_pre_dec: { 1910 this->non_lvalue_description = (this->oper == ast_pre_inc) 1911 ? "pre-increment operation" : "pre-decrement operation"; 1912 1913 op[0] = this->subexpressions[0]->hir(instructions, state); 1914 op[1] = constant_one_for_inc_dec(ctx, op[0]->type); 1915 1916 type = arithmetic_result_type(op[0], op[1], false, state, & loc); 1917 1918 ir_rvalue *temp_rhs; 1919 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1920 op[0], op[1]); 1921 1922 error_emitted = 1923 do_assignment(instructions, state, 1924 this->subexpressions[0]->non_lvalue_description, 1925 op[0]->clone(ctx, NULL), temp_rhs, 1926 &result, needs_rvalue, false, 1927 this->subexpressions[0]->get_location()); 1928 break; 1929 } 1930 1931 case ast_post_inc: 1932 case ast_post_dec: { 1933 this->non_lvalue_description = (this->oper == ast_post_inc) 1934 ? "post-increment operation" : "post-decrement operation"; 1935 op[0] = this->subexpressions[0]->hir(instructions, state); 1936 op[1] = constant_one_for_inc_dec(ctx, op[0]->type); 1937 1938 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1939 1940 if (error_emitted) { 1941 result = ir_rvalue::error_value(ctx); 1942 break; 1943 } 1944 1945 type = arithmetic_result_type(op[0], op[1], false, state, & loc); 1946 1947 ir_rvalue *temp_rhs; 1948 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1949 op[0], op[1]); 1950 1951 /* Get a temporary of a copy of the lvalue before it's modified. 1952 * This may get thrown away later. 1953 */ 1954 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL)); 1955 1956 ir_rvalue *junk_rvalue; 1957 error_emitted = 1958 do_assignment(instructions, state, 1959 this->subexpressions[0]->non_lvalue_description, 1960 op[0]->clone(ctx, NULL), temp_rhs, 1961 &junk_rvalue, false, false, 1962 this->subexpressions[0]->get_location()); 1963 1964 break; 1965 } 1966 1967 case ast_field_selection: 1968 result = _mesa_ast_field_selection_to_hir(this, instructions, state); 1969 break; 1970 1971 case ast_array_index: { 1972 YYLTYPE index_loc = subexpressions[1]->get_location(); 1973 1974 /* Getting if an array is being used uninitialized is beyond what we get 1975 * from ir_value.data.assigned. Setting is_lhs as true would force to 1976 * not raise a uninitialized warning when using an array 1977 */ 1978 subexpressions[0]->set_is_lhs(true); 1979 op[0] = subexpressions[0]->hir(instructions, state); 1980 op[1] = subexpressions[1]->hir(instructions, state); 1981 1982 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1], 1983 loc, index_loc); 1984 1985 if (result->type->is_error()) 1986 error_emitted = true; 1987 1988 break; 1989 } 1990 1991 case ast_unsized_array_dim: 1992 unreachable("ast_unsized_array_dim: Should never get here."); 1993 1994 case ast_function_call: 1995 /* Should *NEVER* get here. ast_function_call should always be handled 1996 * by ast_function_expression::hir. 1997 */ 1998 unreachable("ast_function_call: handled elsewhere "); 1999 2000 case ast_identifier: { 2001 /* ast_identifier can appear several places in a full abstract syntax 2002 * tree. This particular use must be at location specified in the grammar 2003 * as 'variable_identifier'. 2004 */ 2005 ir_variable *var = 2006 state->symbols->get_variable(this->primary_expression.identifier); 2007 2008 if (var == NULL) { 2009 /* the identifier might be a subroutine name */ 2010 char *sub_name; 2011 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier); 2012 var = state->symbols->get_variable(sub_name); 2013 ralloc_free(sub_name); 2014 } 2015 2016 if (var != NULL) { 2017 var->data.used = true; 2018 result = new(ctx) ir_dereference_variable(var); 2019 2020 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out) 2021 && !this->is_lhs 2022 && result->variable_referenced()->data.assigned != true 2023 && !is_gl_identifier(var->name)) { 2024 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", 2025 this->primary_expression.identifier); 2026 } 2027 2028 /* From the EXT_shader_framebuffer_fetch spec: 2029 * 2030 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been 2031 * enabled in addition, it's an error to use gl_LastFragData if it 2032 * hasn't been explicitly redeclared with layout(noncoherent)." 2033 */ 2034 if (var->data.fb_fetch_output && var->data.memory_coherent && 2035 !state->EXT_shader_framebuffer_fetch_enable) { 2036 _mesa_glsl_error(&loc, state, 2037 "invalid use of framebuffer fetch output not " 2038 "qualified with layout(noncoherent)"); 2039 } 2040 2041 } else { 2042 _mesa_glsl_error(& loc, state, "`%s' undeclared", 2043 this->primary_expression.identifier); 2044 2045 result = ir_rvalue::error_value(ctx); 2046 error_emitted = true; 2047 } 2048 break; 2049 } 2050 2051 case ast_int_constant: 2052 result = new(ctx) ir_constant(this->primary_expression.int_constant); 2053 break; 2054 2055 case ast_uint_constant: 2056 result = new(ctx) ir_constant(this->primary_expression.uint_constant); 2057 break; 2058 2059 case ast_float_constant: 2060 result = new(ctx) ir_constant(this->primary_expression.float_constant); 2061 break; 2062 2063 case ast_bool_constant: 2064 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant)); 2065 break; 2066 2067 case ast_double_constant: 2068 result = new(ctx) ir_constant(this->primary_expression.double_constant); 2069 break; 2070 2071 case ast_uint64_constant: 2072 result = new(ctx) ir_constant(this->primary_expression.uint64_constant); 2073 break; 2074 2075 case ast_int64_constant: 2076 result = new(ctx) ir_constant(this->primary_expression.int64_constant); 2077 break; 2078 2079 case ast_sequence: { 2080 /* It should not be possible to generate a sequence in the AST without 2081 * any expressions in it. 2082 */ 2083 assert(!this->expressions.is_empty()); 2084 2085 /* The r-value of a sequence is the last expression in the sequence. If 2086 * the other expressions in the sequence do not have side-effects (and 2087 * therefore add instructions to the instruction list), they get dropped 2088 * on the floor. 2089 */ 2090 exec_node *previous_tail = NULL; 2091 YYLTYPE previous_operand_loc = loc; 2092 2093 foreach_list_typed (ast_node, ast, link, &this->expressions) { 2094 /* If one of the operands of comma operator does not generate any 2095 * code, we want to emit a warning. At each pass through the loop 2096 * previous_tail will point to the last instruction in the stream 2097 * *before* processing the previous operand. Naturally, 2098 * instructions->get_tail_raw() will point to the last instruction in 2099 * the stream *after* processing the previous operand. If the two 2100 * pointers match, then the previous operand had no effect. 2101 * 2102 * The warning behavior here differs slightly from GCC. GCC will 2103 * only emit a warning if none of the left-hand operands have an 2104 * effect. However, it will emit a warning for each. I believe that 2105 * there are some cases in C (especially with GCC extensions) where 2106 * it is useful to have an intermediate step in a sequence have no 2107 * effect, but I don't think these cases exist in GLSL. Either way, 2108 * it would be a giant hassle to replicate that behavior. 2109 */ 2110 if (previous_tail == instructions->get_tail_raw()) { 2111 _mesa_glsl_warning(&previous_operand_loc, state, 2112 "left-hand operand of comma expression has " 2113 "no effect"); 2114 } 2115 2116 /* The tail is directly accessed instead of using the get_tail() 2117 * method for performance reasons. get_tail() has extra code to 2118 * return NULL when the list is empty. We don't care about that 2119 * here, so using get_tail_raw() is fine. 2120 */ 2121 previous_tail = instructions->get_tail_raw(); 2122 previous_operand_loc = ast->get_location(); 2123 2124 result = ast->hir(instructions, state); 2125 } 2126 2127 /* Any errors should have already been emitted in the loop above. 2128 */ 2129 error_emitted = true; 2130 break; 2131 } 2132 } 2133 type = NULL; /* use result->type, not type. */ 2134 assert(result != NULL || !needs_rvalue); 2135 2136 if (result && result->type->is_error() && !error_emitted) 2137 _mesa_glsl_error(& loc, state, "type mismatch"); 2138 2139 return result; 2140} 2141 2142bool 2143ast_expression::has_sequence_subexpression() const 2144{ 2145 switch (this->oper) { 2146 case ast_plus: 2147 case ast_neg: 2148 case ast_bit_not: 2149 case ast_logic_not: 2150 case ast_pre_inc: 2151 case ast_pre_dec: 2152 case ast_post_inc: 2153 case ast_post_dec: 2154 return this->subexpressions[0]->has_sequence_subexpression(); 2155 2156 case ast_assign: 2157 case ast_add: 2158 case ast_sub: 2159 case ast_mul: 2160 case ast_div: 2161 case ast_mod: 2162 case ast_lshift: 2163 case ast_rshift: 2164 case ast_less: 2165 case ast_greater: 2166 case ast_lequal: 2167 case ast_gequal: 2168 case ast_nequal: 2169 case ast_equal: 2170 case ast_bit_and: 2171 case ast_bit_xor: 2172 case ast_bit_or: 2173 case ast_logic_and: 2174 case ast_logic_or: 2175 case ast_logic_xor: 2176 case ast_array_index: 2177 case ast_mul_assign: 2178 case ast_div_assign: 2179 case ast_add_assign: 2180 case ast_sub_assign: 2181 case ast_mod_assign: 2182 case ast_ls_assign: 2183 case ast_rs_assign: 2184 case ast_and_assign: 2185 case ast_xor_assign: 2186 case ast_or_assign: 2187 return this->subexpressions[0]->has_sequence_subexpression() || 2188 this->subexpressions[1]->has_sequence_subexpression(); 2189 2190 case ast_conditional: 2191 return this->subexpressions[0]->has_sequence_subexpression() || 2192 this->subexpressions[1]->has_sequence_subexpression() || 2193 this->subexpressions[2]->has_sequence_subexpression(); 2194 2195 case ast_sequence: 2196 return true; 2197 2198 case ast_field_selection: 2199 case ast_identifier: 2200 case ast_int_constant: 2201 case ast_uint_constant: 2202 case ast_float_constant: 2203 case ast_bool_constant: 2204 case ast_double_constant: 2205 case ast_int64_constant: 2206 case ast_uint64_constant: 2207 return false; 2208 2209 case ast_aggregate: 2210 return false; 2211 2212 case ast_function_call: 2213 unreachable("should be handled by ast_function_expression::hir"); 2214 2215 case ast_unsized_array_dim: 2216 unreachable("ast_unsized_array_dim: Should never get here."); 2217 } 2218 2219 return false; 2220} 2221 2222ir_rvalue * 2223ast_expression_statement::hir(exec_list *instructions, 2224 struct _mesa_glsl_parse_state *state) 2225{ 2226 /* It is possible to have expression statements that don't have an 2227 * expression. This is the solitary semicolon: 2228 * 2229 * for (i = 0; i < 5; i++) 2230 * ; 2231 * 2232 * In this case the expression will be NULL. Test for NULL and don't do 2233 * anything in that case. 2234 */ 2235 if (expression != NULL) 2236 expression->hir_no_rvalue(instructions, state); 2237 2238 /* Statements do not have r-values. 2239 */ 2240 return NULL; 2241} 2242 2243 2244ir_rvalue * 2245ast_compound_statement::hir(exec_list *instructions, 2246 struct _mesa_glsl_parse_state *state) 2247{ 2248 if (new_scope) 2249 state->symbols->push_scope(); 2250 2251 foreach_list_typed (ast_node, ast, link, &this->statements) 2252 ast->hir(instructions, state); 2253 2254 if (new_scope) 2255 state->symbols->pop_scope(); 2256 2257 /* Compound statements do not have r-values. 2258 */ 2259 return NULL; 2260} 2261 2262/** 2263 * Evaluate the given exec_node (which should be an ast_node representing 2264 * a single array dimension) and return its integer value. 2265 */ 2266static unsigned 2267process_array_size(exec_node *node, 2268 struct _mesa_glsl_parse_state *state) 2269{ 2270 void *mem_ctx = state; 2271 2272 exec_list dummy_instructions; 2273 2274 ast_node *array_size = exec_node_data(ast_node, node, link); 2275 2276 /** 2277 * Dimensions other than the outermost dimension can by unsized if they 2278 * are immediately sized by a constructor or initializer. 2279 */ 2280 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim) 2281 return 0; 2282 2283 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state); 2284 YYLTYPE loc = array_size->get_location(); 2285 2286 if (ir == NULL) { 2287 _mesa_glsl_error(& loc, state, 2288 "array size could not be resolved"); 2289 return 0; 2290 } 2291 2292 if (!ir->type->is_integer()) { 2293 _mesa_glsl_error(& loc, state, 2294 "array size must be integer type"); 2295 return 0; 2296 } 2297 2298 if (!ir->type->is_scalar()) { 2299 _mesa_glsl_error(& loc, state, 2300 "array size must be scalar type"); 2301 return 0; 2302 } 2303 2304 ir_constant *const size = ir->constant_expression_value(mem_ctx); 2305 if (size == NULL || 2306 (state->is_version(120, 300) && 2307 array_size->has_sequence_subexpression())) { 2308 _mesa_glsl_error(& loc, state, "array size must be a " 2309 "constant valued expression"); 2310 return 0; 2311 } 2312 2313 if (size->value.i[0] <= 0) { 2314 _mesa_glsl_error(& loc, state, "array size must be > 0"); 2315 return 0; 2316 } 2317 2318 assert(size->type == ir->type); 2319 2320 /* If the array size is const (and we've verified that 2321 * it is) then no instructions should have been emitted 2322 * when we converted it to HIR. If they were emitted, 2323 * then either the array size isn't const after all, or 2324 * we are emitting unnecessary instructions. 2325 */ 2326 assert(dummy_instructions.is_empty()); 2327 2328 return size->value.u[0]; 2329} 2330 2331static const glsl_type * 2332process_array_type(YYLTYPE *loc, const glsl_type *base, 2333 ast_array_specifier *array_specifier, 2334 struct _mesa_glsl_parse_state *state) 2335{ 2336 const glsl_type *array_type = base; 2337 2338 if (array_specifier != NULL) { 2339 if (base->is_array()) { 2340 2341 /* From page 19 (page 25) of the GLSL 1.20 spec: 2342 * 2343 * "Only one-dimensional arrays may be declared." 2344 */ 2345 if (!state->check_arrays_of_arrays_allowed(loc)) { 2346 return glsl_type::error_type; 2347 } 2348 } 2349 2350 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw(); 2351 !node->is_head_sentinel(); node = node->prev) { 2352 unsigned array_size = process_array_size(node, state); 2353 array_type = glsl_type::get_array_instance(array_type, array_size); 2354 } 2355 } 2356 2357 return array_type; 2358} 2359 2360static bool 2361precision_qualifier_allowed(const glsl_type *type) 2362{ 2363 /* Precision qualifiers apply to floating point, integer and opaque 2364 * types. 2365 * 2366 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says: 2367 * "Any floating point or any integer declaration can have the type 2368 * preceded by one of these precision qualifiers [...] Literal 2369 * constants do not have precision qualifiers. Neither do Boolean 2370 * variables. 2371 * 2372 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30 2373 * spec also says: 2374 * 2375 * "Precision qualifiers are added for code portability with OpenGL 2376 * ES, not for functionality. They have the same syntax as in OpenGL 2377 * ES." 2378 * 2379 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says: 2380 * 2381 * "uniform lowp sampler2D sampler; 2382 * highp vec2 coord; 2383 * ... 2384 * lowp vec4 col = texture2D (sampler, coord); 2385 * // texture2D returns lowp" 2386 * 2387 * From this, we infer that GLSL 1.30 (and later) should allow precision 2388 * qualifiers on sampler types just like float and integer types. 2389 */ 2390 const glsl_type *const t = type->without_array(); 2391 2392 return (t->is_float() || t->is_integer() || t->contains_opaque()) && 2393 !t->is_struct(); 2394} 2395 2396const glsl_type * 2397ast_type_specifier::glsl_type(const char **name, 2398 struct _mesa_glsl_parse_state *state) const 2399{ 2400 const struct glsl_type *type; 2401 2402 if (this->type != NULL) 2403 type = this->type; 2404 else if (structure) 2405 type = structure->type; 2406 else 2407 type = state->symbols->get_type(this->type_name); 2408 *name = this->type_name; 2409 2410 YYLTYPE loc = this->get_location(); 2411 type = process_array_type(&loc, type, this->array_specifier, state); 2412 2413 return type; 2414} 2415 2416/** 2417 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers: 2418 * 2419 * "The precision statement 2420 * 2421 * precision precision-qualifier type; 2422 * 2423 * can be used to establish a default precision qualifier. The type field can 2424 * be either int or float or any of the sampler types, (...) If type is float, 2425 * the directive applies to non-precision-qualified floating point type 2426 * (scalar, vector, and matrix) declarations. If type is int, the directive 2427 * applies to all non-precision-qualified integer type (scalar, vector, signed, 2428 * and unsigned) declarations." 2429 * 2430 * We use the symbol table to keep the values of the default precisions for 2431 * each 'type' in each scope and we use the 'type' string from the precision 2432 * statement as key in the symbol table. When we want to retrieve the default 2433 * precision associated with a given glsl_type we need to know the type string 2434 * associated with it. This is what this function returns. 2435 */ 2436static const char * 2437get_type_name_for_precision_qualifier(const glsl_type *type) 2438{ 2439 switch (type->base_type) { 2440 case GLSL_TYPE_FLOAT: 2441 return "float"; 2442 case GLSL_TYPE_UINT: 2443 case GLSL_TYPE_INT: 2444 return "int"; 2445 case GLSL_TYPE_ATOMIC_UINT: 2446 return "atomic_uint"; 2447 case GLSL_TYPE_IMAGE: 2448 /* fallthrough */ 2449 case GLSL_TYPE_SAMPLER: { 2450 const unsigned type_idx = 2451 type->sampler_array + 2 * type->sampler_shadow; 2452 const unsigned offset = type->is_sampler() ? 0 : 4; 2453 assert(type_idx < 4); 2454 switch (type->sampled_type) { 2455 case GLSL_TYPE_FLOAT: 2456 switch (type->sampler_dimensionality) { 2457 case GLSL_SAMPLER_DIM_1D: { 2458 assert(type->is_sampler()); 2459 static const char *const names[4] = { 2460 "sampler1D", "sampler1DArray", 2461 "sampler1DShadow", "sampler1DArrayShadow" 2462 }; 2463 return names[type_idx]; 2464 } 2465 case GLSL_SAMPLER_DIM_2D: { 2466 static const char *const names[8] = { 2467 "sampler2D", "sampler2DArray", 2468 "sampler2DShadow", "sampler2DArrayShadow", 2469 "image2D", "image2DArray", NULL, NULL 2470 }; 2471 return names[offset + type_idx]; 2472 } 2473 case GLSL_SAMPLER_DIM_3D: { 2474 static const char *const names[8] = { 2475 "sampler3D", NULL, NULL, NULL, 2476 "image3D", NULL, NULL, NULL 2477 }; 2478 return names[offset + type_idx]; 2479 } 2480 case GLSL_SAMPLER_DIM_CUBE: { 2481 static const char *const names[8] = { 2482 "samplerCube", "samplerCubeArray", 2483 "samplerCubeShadow", "samplerCubeArrayShadow", 2484 "imageCube", NULL, NULL, NULL 2485 }; 2486 return names[offset + type_idx]; 2487 } 2488 case GLSL_SAMPLER_DIM_MS: { 2489 assert(type->is_sampler()); 2490 static const char *const names[4] = { 2491 "sampler2DMS", "sampler2DMSArray", NULL, NULL 2492 }; 2493 return names[type_idx]; 2494 } 2495 case GLSL_SAMPLER_DIM_RECT: { 2496 assert(type->is_sampler()); 2497 static const char *const names[4] = { 2498 "samplerRect", NULL, "samplerRectShadow", NULL 2499 }; 2500 return names[type_idx]; 2501 } 2502 case GLSL_SAMPLER_DIM_BUF: { 2503 static const char *const names[8] = { 2504 "samplerBuffer", NULL, NULL, NULL, 2505 "imageBuffer", NULL, NULL, NULL 2506 }; 2507 return names[offset + type_idx]; 2508 } 2509 case GLSL_SAMPLER_DIM_EXTERNAL: { 2510 assert(type->is_sampler()); 2511 static const char *const names[4] = { 2512 "samplerExternalOES", NULL, NULL, NULL 2513 }; 2514 return names[type_idx]; 2515 } 2516 default: 2517 unreachable("Unsupported sampler/image dimensionality"); 2518 } /* sampler/image float dimensionality */ 2519 break; 2520 case GLSL_TYPE_INT: 2521 switch (type->sampler_dimensionality) { 2522 case GLSL_SAMPLER_DIM_1D: { 2523 assert(type->is_sampler()); 2524 static const char *const names[4] = { 2525 "isampler1D", "isampler1DArray", NULL, NULL 2526 }; 2527 return names[type_idx]; 2528 } 2529 case GLSL_SAMPLER_DIM_2D: { 2530 static const char *const names[8] = { 2531 "isampler2D", "isampler2DArray", NULL, NULL, 2532 "iimage2D", "iimage2DArray", NULL, NULL 2533 }; 2534 return names[offset + type_idx]; 2535 } 2536 case GLSL_SAMPLER_DIM_3D: { 2537 static const char *const names[8] = { 2538 "isampler3D", NULL, NULL, NULL, 2539 "iimage3D", NULL, NULL, NULL 2540 }; 2541 return names[offset + type_idx]; 2542 } 2543 case GLSL_SAMPLER_DIM_CUBE: { 2544 static const char *const names[8] = { 2545 "isamplerCube", "isamplerCubeArray", NULL, NULL, 2546 "iimageCube", NULL, NULL, NULL 2547 }; 2548 return names[offset + type_idx]; 2549 } 2550 case GLSL_SAMPLER_DIM_MS: { 2551 assert(type->is_sampler()); 2552 static const char *const names[4] = { 2553 "isampler2DMS", "isampler2DMSArray", NULL, NULL 2554 }; 2555 return names[type_idx]; 2556 } 2557 case GLSL_SAMPLER_DIM_RECT: { 2558 assert(type->is_sampler()); 2559 static const char *const names[4] = { 2560 "isamplerRect", NULL, "isamplerRectShadow", NULL 2561 }; 2562 return names[type_idx]; 2563 } 2564 case GLSL_SAMPLER_DIM_BUF: { 2565 static const char *const names[8] = { 2566 "isamplerBuffer", NULL, NULL, NULL, 2567 "iimageBuffer", NULL, NULL, NULL 2568 }; 2569 return names[offset + type_idx]; 2570 } 2571 default: 2572 unreachable("Unsupported isampler/iimage dimensionality"); 2573 } /* sampler/image int dimensionality */ 2574 break; 2575 case GLSL_TYPE_UINT: 2576 switch (type->sampler_dimensionality) { 2577 case GLSL_SAMPLER_DIM_1D: { 2578 assert(type->is_sampler()); 2579 static const char *const names[4] = { 2580 "usampler1D", "usampler1DArray", NULL, NULL 2581 }; 2582 return names[type_idx]; 2583 } 2584 case GLSL_SAMPLER_DIM_2D: { 2585 static const char *const names[8] = { 2586 "usampler2D", "usampler2DArray", NULL, NULL, 2587 "uimage2D", "uimage2DArray", NULL, NULL 2588 }; 2589 return names[offset + type_idx]; 2590 } 2591 case GLSL_SAMPLER_DIM_3D: { 2592 static const char *const names[8] = { 2593 "usampler3D", NULL, NULL, NULL, 2594 "uimage3D", NULL, NULL, NULL 2595 }; 2596 return names[offset + type_idx]; 2597 } 2598 case GLSL_SAMPLER_DIM_CUBE: { 2599 static const char *const names[8] = { 2600 "usamplerCube", "usamplerCubeArray", NULL, NULL, 2601 "uimageCube", NULL, NULL, NULL 2602 }; 2603 return names[offset + type_idx]; 2604 } 2605 case GLSL_SAMPLER_DIM_MS: { 2606 assert(type->is_sampler()); 2607 static const char *const names[4] = { 2608 "usampler2DMS", "usampler2DMSArray", NULL, NULL 2609 }; 2610 return names[type_idx]; 2611 } 2612 case GLSL_SAMPLER_DIM_RECT: { 2613 assert(type->is_sampler()); 2614 static const char *const names[4] = { 2615 "usamplerRect", NULL, "usamplerRectShadow", NULL 2616 }; 2617 return names[type_idx]; 2618 } 2619 case GLSL_SAMPLER_DIM_BUF: { 2620 static const char *const names[8] = { 2621 "usamplerBuffer", NULL, NULL, NULL, 2622 "uimageBuffer", NULL, NULL, NULL 2623 }; 2624 return names[offset + type_idx]; 2625 } 2626 default: 2627 unreachable("Unsupported usampler/uimage dimensionality"); 2628 } /* sampler/image uint dimensionality */ 2629 break; 2630 default: 2631 unreachable("Unsupported sampler/image type"); 2632 } /* sampler/image type */ 2633 break; 2634 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */ 2635 break; 2636 default: 2637 unreachable("Unsupported type"); 2638 } /* base type */ 2639} 2640 2641static unsigned 2642select_gles_precision(unsigned qual_precision, 2643 const glsl_type *type, 2644 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 2645{ 2646 /* Precision qualifiers do not have any meaning in Desktop GLSL. 2647 * In GLES we take the precision from the type qualifier if present, 2648 * otherwise, if the type of the variable allows precision qualifiers at 2649 * all, we look for the default precision qualifier for that type in the 2650 * current scope. 2651 */ 2652 assert(state->es_shader); 2653 2654 unsigned precision = GLSL_PRECISION_NONE; 2655 if (qual_precision) { 2656 precision = qual_precision; 2657 } else if (precision_qualifier_allowed(type)) { 2658 const char *type_name = 2659 get_type_name_for_precision_qualifier(type->without_array()); 2660 assert(type_name != NULL); 2661 2662 precision = 2663 state->symbols->get_default_precision_qualifier(type_name); 2664 if (precision == ast_precision_none) { 2665 _mesa_glsl_error(loc, state, 2666 "No precision specified in this scope for type `%s'", 2667 type->name); 2668 } 2669 } 2670 2671 2672 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says: 2673 * 2674 * "The default precision of all atomic types is highp. It is an error to 2675 * declare an atomic type with a different precision or to specify the 2676 * default precision for an atomic type to be lowp or mediump." 2677 */ 2678 if (type->is_atomic_uint() && precision != ast_precision_high) { 2679 _mesa_glsl_error(loc, state, 2680 "atomic_uint can only have highp precision qualifier"); 2681 } 2682 2683 return precision; 2684} 2685 2686const glsl_type * 2687ast_fully_specified_type::glsl_type(const char **name, 2688 struct _mesa_glsl_parse_state *state) const 2689{ 2690 return this->specifier->glsl_type(name, state); 2691} 2692 2693/** 2694 * Determine whether a toplevel variable declaration declares a varying. This 2695 * function operates by examining the variable's mode and the shader target, 2696 * so it correctly identifies linkage variables regardless of whether they are 2697 * declared using the deprecated "varying" syntax or the new "in/out" syntax. 2698 * 2699 * Passing a non-toplevel variable declaration (e.g. a function parameter) to 2700 * this function will produce undefined results. 2701 */ 2702static bool 2703is_varying_var(ir_variable *var, gl_shader_stage target) 2704{ 2705 switch (target) { 2706 case MESA_SHADER_VERTEX: 2707 return var->data.mode == ir_var_shader_out; 2708 case MESA_SHADER_FRAGMENT: 2709 return var->data.mode == ir_var_shader_in; 2710 default: 2711 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in; 2712 } 2713} 2714 2715static bool 2716is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state) 2717{ 2718 if (is_varying_var(var, state->stage)) 2719 return true; 2720 2721 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec: 2722 * "Only variables output from a vertex shader can be candidates 2723 * for invariance". 2724 */ 2725 if (!state->is_version(130, 100)) 2726 return false; 2727 2728 /* 2729 * Later specs remove this language - so allowed invariant 2730 * on fragment shader outputs as well. 2731 */ 2732 if (state->stage == MESA_SHADER_FRAGMENT && 2733 var->data.mode == ir_var_shader_out) 2734 return true; 2735 return false; 2736} 2737 2738/** 2739 * Matrix layout qualifiers are only allowed on certain types 2740 */ 2741static void 2742validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state, 2743 YYLTYPE *loc, 2744 const glsl_type *type, 2745 ir_variable *var) 2746{ 2747 if (var && !var->is_in_buffer_block()) { 2748 /* Layout qualifiers may only apply to interface blocks and fields in 2749 * them. 2750 */ 2751 _mesa_glsl_error(loc, state, 2752 "uniform block layout qualifiers row_major and " 2753 "column_major may not be applied to variables " 2754 "outside of uniform blocks"); 2755 } else if (!type->without_array()->is_matrix()) { 2756 /* The OpenGL ES 3.0 conformance tests did not originally allow 2757 * matrix layout qualifiers on non-matrices. However, the OpenGL 2758 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were 2759 * amended to specifically allow these layouts on all types. Emit 2760 * a warning so that people know their code may not be portable. 2761 */ 2762 _mesa_glsl_warning(loc, state, 2763 "uniform block layout qualifiers row_major and " 2764 "column_major applied to non-matrix types may " 2765 "be rejected by older compilers"); 2766 } 2767} 2768 2769static bool 2770validate_xfb_buffer_qualifier(YYLTYPE *loc, 2771 struct _mesa_glsl_parse_state *state, 2772 unsigned xfb_buffer) { 2773 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) { 2774 _mesa_glsl_error(loc, state, 2775 "invalid xfb_buffer specified %d is larger than " 2776 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).", 2777 xfb_buffer, 2778 state->Const.MaxTransformFeedbackBuffers - 1); 2779 return false; 2780 } 2781 2782 return true; 2783} 2784 2785/* From the ARB_enhanced_layouts spec: 2786 * 2787 * "Variables and block members qualified with *xfb_offset* can be 2788 * scalars, vectors, matrices, structures, and (sized) arrays of these. 2789 * The offset must be a multiple of the size of the first component of 2790 * the first qualified variable or block member, or a compile-time error 2791 * results. Further, if applied to an aggregate containing a double, 2792 * the offset must also be a multiple of 8, and the space taken in the 2793 * buffer will be a multiple of 8. 2794 */ 2795static bool 2796validate_xfb_offset_qualifier(YYLTYPE *loc, 2797 struct _mesa_glsl_parse_state *state, 2798 int xfb_offset, const glsl_type *type, 2799 unsigned component_size) { 2800 const glsl_type *t_without_array = type->without_array(); 2801 2802 if (xfb_offset != -1 && type->is_unsized_array()) { 2803 _mesa_glsl_error(loc, state, 2804 "xfb_offset can't be used with unsized arrays."); 2805 return false; 2806 } 2807 2808 /* Make sure nested structs don't contain unsized arrays, and validate 2809 * any xfb_offsets on interface members. 2810 */ 2811 if (t_without_array->is_struct() || t_without_array->is_interface()) 2812 for (unsigned int i = 0; i < t_without_array->length; i++) { 2813 const glsl_type *member_t = t_without_array->fields.structure[i].type; 2814 2815 /* When the interface block doesn't have an xfb_offset qualifier then 2816 * we apply the component size rules at the member level. 2817 */ 2818 if (xfb_offset == -1) 2819 component_size = member_t->contains_double() ? 8 : 4; 2820 2821 int xfb_offset = t_without_array->fields.structure[i].offset; 2822 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t, 2823 component_size); 2824 } 2825 2826 /* Nested structs or interface block without offset may not have had an 2827 * offset applied yet so return. 2828 */ 2829 if (xfb_offset == -1) { 2830 return true; 2831 } 2832 2833 if (xfb_offset % component_size) { 2834 _mesa_glsl_error(loc, state, 2835 "invalid qualifier xfb_offset=%d must be a multiple " 2836 "of the first component size of the first qualified " 2837 "variable or block member. Or double if an aggregate " 2838 "that contains a double (%d).", 2839 xfb_offset, component_size); 2840 return false; 2841 } 2842 2843 return true; 2844} 2845 2846static bool 2847validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state, 2848 unsigned stream) 2849{ 2850 if (stream >= state->ctx->Const.MaxVertexStreams) { 2851 _mesa_glsl_error(loc, state, 2852 "invalid stream specified %d is larger than " 2853 "MAX_VERTEX_STREAMS - 1 (%d).", 2854 stream, state->ctx->Const.MaxVertexStreams - 1); 2855 return false; 2856 } 2857 2858 return true; 2859} 2860 2861static void 2862apply_explicit_binding(struct _mesa_glsl_parse_state *state, 2863 YYLTYPE *loc, 2864 ir_variable *var, 2865 const glsl_type *type, 2866 const ast_type_qualifier *qual) 2867{ 2868 if (!qual->flags.q.uniform && !qual->flags.q.buffer) { 2869 _mesa_glsl_error(loc, state, 2870 "the \"binding\" qualifier only applies to uniforms and " 2871 "shader storage buffer objects"); 2872 return; 2873 } 2874 2875 unsigned qual_binding; 2876 if (!process_qualifier_constant(state, loc, "binding", qual->binding, 2877 &qual_binding)) { 2878 return; 2879 } 2880 2881 const struct gl_context *const ctx = state->ctx; 2882 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1; 2883 unsigned max_index = qual_binding + elements - 1; 2884 const glsl_type *base_type = type->without_array(); 2885 2886 if (base_type->is_interface()) { 2887 /* UBOs. From page 60 of the GLSL 4.20 specification: 2888 * "If the binding point for any uniform block instance is less than zero, 2889 * or greater than or equal to the implementation-dependent maximum 2890 * number of uniform buffer bindings, a compilation error will occur. 2891 * When the binding identifier is used with a uniform block instanced as 2892 * an array of size N, all elements of the array from binding through 2893 * binding + N – 1 must be within this range." 2894 * 2895 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS. 2896 */ 2897 if (qual->flags.q.uniform && 2898 max_index >= ctx->Const.MaxUniformBufferBindings) { 2899 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds " 2900 "the maximum number of UBO binding points (%d)", 2901 qual_binding, elements, 2902 ctx->Const.MaxUniformBufferBindings); 2903 return; 2904 } 2905 2906 /* SSBOs. From page 67 of the GLSL 4.30 specification: 2907 * "If the binding point for any uniform or shader storage block instance 2908 * is less than zero, or greater than or equal to the 2909 * implementation-dependent maximum number of uniform buffer bindings, a 2910 * compile-time error will occur. When the binding identifier is used 2911 * with a uniform or shader storage block instanced as an array of size 2912 * N, all elements of the array from binding through binding + N – 1 must 2913 * be within this range." 2914 */ 2915 if (qual->flags.q.buffer && 2916 max_index >= ctx->Const.MaxShaderStorageBufferBindings) { 2917 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds " 2918 "the maximum number of SSBO binding points (%d)", 2919 qual_binding, elements, 2920 ctx->Const.MaxShaderStorageBufferBindings); 2921 return; 2922 } 2923 } else if (base_type->is_sampler()) { 2924 /* Samplers. From page 63 of the GLSL 4.20 specification: 2925 * "If the binding is less than zero, or greater than or equal to the 2926 * implementation-dependent maximum supported number of units, a 2927 * compilation error will occur. When the binding identifier is used 2928 * with an array of size N, all elements of the array from binding 2929 * through binding + N - 1 must be within this range." 2930 */ 2931 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits; 2932 2933 if (max_index >= limit) { 2934 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers " 2935 "exceeds the maximum number of texture image units " 2936 "(%u)", qual_binding, elements, limit); 2937 2938 return; 2939 } 2940 } else if (base_type->contains_atomic()) { 2941 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS); 2942 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) { 2943 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the " 2944 "maximum number of atomic counter buffer bindings " 2945 "(%u)", qual_binding, 2946 ctx->Const.MaxAtomicBufferBindings); 2947 2948 return; 2949 } 2950 } else if ((state->is_version(420, 310) || 2951 state->ARB_shading_language_420pack_enable) && 2952 base_type->is_image()) { 2953 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS); 2954 if (max_index >= ctx->Const.MaxImageUnits) { 2955 _mesa_glsl_error(loc, state, "Image binding %d exceeds the " 2956 "maximum number of image units (%d)", max_index, 2957 ctx->Const.MaxImageUnits); 2958 return; 2959 } 2960 2961 } else { 2962 _mesa_glsl_error(loc, state, 2963 "the \"binding\" qualifier only applies to uniform " 2964 "blocks, storage blocks, opaque variables, or arrays " 2965 "thereof"); 2966 return; 2967 } 2968 2969 var->data.explicit_binding = true; 2970 var->data.binding = qual_binding; 2971 2972 return; 2973} 2974 2975static void 2976validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state, 2977 YYLTYPE *loc, 2978 const glsl_interp_mode interpolation, 2979 const struct glsl_type *var_type, 2980 ir_variable_mode mode) 2981{ 2982 if (state->stage != MESA_SHADER_FRAGMENT || 2983 interpolation == INTERP_MODE_FLAT || 2984 mode != ir_var_shader_in) 2985 return; 2986 2987 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES, 2988 * so must integer vertex outputs. 2989 * 2990 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec: 2991 * "Fragment shader inputs that are signed or unsigned integers or 2992 * integer vectors must be qualified with the interpolation qualifier 2993 * flat." 2994 * 2995 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec: 2996 * "Fragment shader inputs that are, or contain, signed or unsigned 2997 * integers or integer vectors must be qualified with the 2998 * interpolation qualifier flat." 2999 * 3000 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec: 3001 * "Vertex shader outputs that are, or contain, signed or unsigned 3002 * integers or integer vectors must be qualified with the 3003 * interpolation qualifier flat." 3004 * 3005 * Note that prior to GLSL 1.50, this requirement applied to vertex 3006 * outputs rather than fragment inputs. That creates problems in the 3007 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all 3008 * desktop GL shaders. For GLSL ES shaders, we follow the spec and 3009 * apply the restriction to both vertex outputs and fragment inputs. 3010 * 3011 * Note also that the desktop GLSL specs are missing the text "or 3012 * contain"; this is presumably an oversight, since there is no 3013 * reasonable way to interpolate a fragment shader input that contains 3014 * an integer. See Khronos bug #15671. 3015 */ 3016 if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable) 3017 && var_type->contains_integer()) { 3018 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3019 "an integer, then it must be qualified with 'flat'"); 3020 } 3021 3022 /* Double fragment inputs must be qualified with 'flat'. 3023 * 3024 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec: 3025 * "This extension does not support interpolation of double-precision 3026 * values; doubles used as fragment shader inputs must be qualified as 3027 * "flat"." 3028 * 3029 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec: 3030 * "Fragment shader inputs that are signed or unsigned integers, integer 3031 * vectors, or any double-precision floating-point type must be 3032 * qualified with the interpolation qualifier flat." 3033 * 3034 * Note that the GLSL specs are missing the text "or contain"; this is 3035 * presumably an oversight. See Khronos bug #15671. 3036 * 3037 * The 'double' type does not exist in GLSL ES so far. 3038 */ 3039 if (state->has_double() 3040 && var_type->contains_double()) { 3041 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3042 "a double, then it must be qualified with 'flat'"); 3043 } 3044 3045 /* Bindless sampler/image fragment inputs must be qualified with 'flat'. 3046 * 3047 * From section 4.3.4 of the ARB_bindless_texture spec: 3048 * 3049 * "(modify last paragraph, p. 35, allowing samplers and images as 3050 * fragment shader inputs) ... Fragment inputs can only be signed and 3051 * unsigned integers and integer vectors, floating point scalars, 3052 * floating-point vectors, matrices, sampler and image types, or arrays 3053 * or structures of these. Fragment shader inputs that are signed or 3054 * unsigned integers, integer vectors, or any double-precision floating- 3055 * point type, or any sampler or image type must be qualified with the 3056 * interpolation qualifier "flat"." 3057 */ 3058 if (state->has_bindless() 3059 && (var_type->contains_sampler() || var_type->contains_image())) { 3060 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3061 "a bindless sampler (or image), then it must be " 3062 "qualified with 'flat'"); 3063 } 3064} 3065 3066static void 3067validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state, 3068 YYLTYPE *loc, 3069 const glsl_interp_mode interpolation, 3070 const struct ast_type_qualifier *qual, 3071 const struct glsl_type *var_type, 3072 ir_variable_mode mode) 3073{ 3074 /* Interpolation qualifiers can only apply to shader inputs or outputs, but 3075 * not to vertex shader inputs nor fragment shader outputs. 3076 * 3077 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: 3078 * "Outputs from a vertex shader (out) and inputs to a fragment 3079 * shader (in) can be further qualified with one or more of these 3080 * interpolation qualifiers" 3081 * ... 3082 * "These interpolation qualifiers may only precede the qualifiers in, 3083 * centroid in, out, or centroid out in a declaration. They do not apply 3084 * to the deprecated storage qualifiers varying or centroid 3085 * varying. They also do not apply to inputs into a vertex shader or 3086 * outputs from a fragment shader." 3087 * 3088 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec: 3089 * "Outputs from a shader (out) and inputs to a shader (in) can be 3090 * further qualified with one of these interpolation qualifiers." 3091 * ... 3092 * "These interpolation qualifiers may only precede the qualifiers 3093 * in, centroid in, out, or centroid out in a declaration. They do 3094 * not apply to inputs into a vertex shader or outputs from a 3095 * fragment shader." 3096 */ 3097 if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable) 3098 && interpolation != INTERP_MODE_NONE) { 3099 const char *i = interpolation_string(interpolation); 3100 if (mode != ir_var_shader_in && mode != ir_var_shader_out) 3101 _mesa_glsl_error(loc, state, 3102 "interpolation qualifier `%s' can only be applied to " 3103 "shader inputs or outputs.", i); 3104 3105 switch (state->stage) { 3106 case MESA_SHADER_VERTEX: 3107 if (mode == ir_var_shader_in) { 3108 _mesa_glsl_error(loc, state, 3109 "interpolation qualifier '%s' cannot be applied to " 3110 "vertex shader inputs", i); 3111 } 3112 break; 3113 case MESA_SHADER_FRAGMENT: 3114 if (mode == ir_var_shader_out) { 3115 _mesa_glsl_error(loc, state, 3116 "interpolation qualifier '%s' cannot be applied to " 3117 "fragment shader outputs", i); 3118 } 3119 break; 3120 default: 3121 break; 3122 } 3123 } 3124 3125 /* Interpolation qualifiers cannot be applied to 'centroid' and 3126 * 'centroid varying'. 3127 * 3128 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: 3129 * "interpolation qualifiers may only precede the qualifiers in, 3130 * centroid in, out, or centroid out in a declaration. They do not apply 3131 * to the deprecated storage qualifiers varying or centroid varying." 3132 * 3133 * These deprecated storage qualifiers do not exist in GLSL ES 3.00. 3134 * 3135 * GL_EXT_gpu_shader4 allows this. 3136 */ 3137 if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable 3138 && interpolation != INTERP_MODE_NONE 3139 && qual->flags.q.varying) { 3140 3141 const char *i = interpolation_string(interpolation); 3142 const char *s; 3143 if (qual->flags.q.centroid) 3144 s = "centroid varying"; 3145 else 3146 s = "varying"; 3147 3148 _mesa_glsl_error(loc, state, 3149 "qualifier '%s' cannot be applied to the " 3150 "deprecated storage qualifier '%s'", i, s); 3151 } 3152 3153 validate_fragment_flat_interpolation_input(state, loc, interpolation, 3154 var_type, mode); 3155} 3156 3157static glsl_interp_mode 3158interpret_interpolation_qualifier(const struct ast_type_qualifier *qual, 3159 const struct glsl_type *var_type, 3160 ir_variable_mode mode, 3161 struct _mesa_glsl_parse_state *state, 3162 YYLTYPE *loc) 3163{ 3164 glsl_interp_mode interpolation; 3165 if (qual->flags.q.flat) 3166 interpolation = INTERP_MODE_FLAT; 3167 else if (qual->flags.q.noperspective) 3168 interpolation = INTERP_MODE_NOPERSPECTIVE; 3169 else if (qual->flags.q.smooth) 3170 interpolation = INTERP_MODE_SMOOTH; 3171 else 3172 interpolation = INTERP_MODE_NONE; 3173 3174 validate_interpolation_qualifier(state, loc, 3175 interpolation, 3176 qual, var_type, mode); 3177 3178 return interpolation; 3179} 3180 3181 3182static void 3183apply_explicit_location(const struct ast_type_qualifier *qual, 3184 ir_variable *var, 3185 struct _mesa_glsl_parse_state *state, 3186 YYLTYPE *loc) 3187{ 3188 bool fail = false; 3189 3190 unsigned qual_location; 3191 if (!process_qualifier_constant(state, loc, "location", qual->location, 3192 &qual_location)) { 3193 return; 3194 } 3195 3196 /* Checks for GL_ARB_explicit_uniform_location. */ 3197 if (qual->flags.q.uniform) { 3198 if (!state->check_explicit_uniform_location_allowed(loc, var)) 3199 return; 3200 3201 const struct gl_context *const ctx = state->ctx; 3202 unsigned max_loc = qual_location + var->type->uniform_locations() - 1; 3203 3204 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) { 3205 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s " 3206 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name, 3207 ctx->Const.MaxUserAssignableUniformLocations); 3208 return; 3209 } 3210 3211 var->data.explicit_location = true; 3212 var->data.location = qual_location; 3213 return; 3214 } 3215 3216 /* Between GL_ARB_explicit_attrib_location an 3217 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader 3218 * stage can be assigned explicit locations. The checking here associates 3219 * the correct extension with the correct stage's input / output: 3220 * 3221 * input output 3222 * ----- ------ 3223 * vertex explicit_loc sso 3224 * tess control sso sso 3225 * tess eval sso sso 3226 * geometry sso sso 3227 * fragment sso explicit_loc 3228 */ 3229 switch (state->stage) { 3230 case MESA_SHADER_VERTEX: 3231 if (var->data.mode == ir_var_shader_in) { 3232 if (!state->check_explicit_attrib_location_allowed(loc, var)) 3233 return; 3234 3235 break; 3236 } 3237 3238 if (var->data.mode == ir_var_shader_out) { 3239 if (!state->check_separate_shader_objects_allowed(loc, var)) 3240 return; 3241 3242 break; 3243 } 3244 3245 fail = true; 3246 break; 3247 3248 case MESA_SHADER_TESS_CTRL: 3249 case MESA_SHADER_TESS_EVAL: 3250 case MESA_SHADER_GEOMETRY: 3251 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) { 3252 if (!state->check_separate_shader_objects_allowed(loc, var)) 3253 return; 3254 3255 break; 3256 } 3257 3258 fail = true; 3259 break; 3260 3261 case MESA_SHADER_FRAGMENT: 3262 if (var->data.mode == ir_var_shader_in) { 3263 if (!state->check_separate_shader_objects_allowed(loc, var)) 3264 return; 3265 3266 break; 3267 } 3268 3269 if (var->data.mode == ir_var_shader_out) { 3270 if (!state->check_explicit_attrib_location_allowed(loc, var)) 3271 return; 3272 3273 break; 3274 } 3275 3276 fail = true; 3277 break; 3278 3279 case MESA_SHADER_COMPUTE: 3280 _mesa_glsl_error(loc, state, 3281 "compute shader variables cannot be given " 3282 "explicit locations"); 3283 return; 3284 default: 3285 fail = true; 3286 break; 3287 }; 3288 3289 if (fail) { 3290 _mesa_glsl_error(loc, state, 3291 "%s cannot be given an explicit location in %s shader", 3292 mode_string(var), 3293 _mesa_shader_stage_to_string(state->stage)); 3294 } else { 3295 var->data.explicit_location = true; 3296 3297 switch (state->stage) { 3298 case MESA_SHADER_VERTEX: 3299 var->data.location = (var->data.mode == ir_var_shader_in) 3300 ? (qual_location + VERT_ATTRIB_GENERIC0) 3301 : (qual_location + VARYING_SLOT_VAR0); 3302 break; 3303 3304 case MESA_SHADER_TESS_CTRL: 3305 case MESA_SHADER_TESS_EVAL: 3306 case MESA_SHADER_GEOMETRY: 3307 if (var->data.patch) 3308 var->data.location = qual_location + VARYING_SLOT_PATCH0; 3309 else 3310 var->data.location = qual_location + VARYING_SLOT_VAR0; 3311 break; 3312 3313 case MESA_SHADER_FRAGMENT: 3314 var->data.location = (var->data.mode == ir_var_shader_out) 3315 ? (qual_location + FRAG_RESULT_DATA0) 3316 : (qual_location + VARYING_SLOT_VAR0); 3317 break; 3318 default: 3319 assert(!"Unexpected shader type"); 3320 break; 3321 } 3322 3323 /* Check if index was set for the uniform instead of the function */ 3324 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) { 3325 _mesa_glsl_error(loc, state, "an index qualifier can only be " 3326 "used with subroutine functions"); 3327 return; 3328 } 3329 3330 unsigned qual_index; 3331 if (qual->flags.q.explicit_index && 3332 process_qualifier_constant(state, loc, "index", qual->index, 3333 &qual_index)) { 3334 /* From the GLSL 4.30 specification, section 4.4.2 (Output 3335 * Layout Qualifiers): 3336 * 3337 * "It is also a compile-time error if a fragment shader 3338 * sets a layout index to less than 0 or greater than 1." 3339 * 3340 * Older specifications don't mandate a behavior; we take 3341 * this as a clarification and always generate the error. 3342 */ 3343 if (qual_index > 1) { 3344 _mesa_glsl_error(loc, state, 3345 "explicit index may only be 0 or 1"); 3346 } else { 3347 var->data.explicit_index = true; 3348 var->data.index = qual_index; 3349 } 3350 } 3351 } 3352} 3353 3354static bool 3355validate_storage_for_sampler_image_types(ir_variable *var, 3356 struct _mesa_glsl_parse_state *state, 3357 YYLTYPE *loc) 3358{ 3359 /* From section 4.1.7 of the GLSL 4.40 spec: 3360 * 3361 * "[Opaque types] can only be declared as function 3362 * parameters or uniform-qualified variables." 3363 * 3364 * From section 4.1.7 of the ARB_bindless_texture spec: 3365 * 3366 * "Samplers may be declared as shader inputs and outputs, as uniform 3367 * variables, as temporary variables, and as function parameters." 3368 * 3369 * From section 4.1.X of the ARB_bindless_texture spec: 3370 * 3371 * "Images may be declared as shader inputs and outputs, as uniform 3372 * variables, as temporary variables, and as function parameters." 3373 */ 3374 if (state->has_bindless()) { 3375 if (var->data.mode != ir_var_auto && 3376 var->data.mode != ir_var_uniform && 3377 var->data.mode != ir_var_shader_in && 3378 var->data.mode != ir_var_shader_out && 3379 var->data.mode != ir_var_function_in && 3380 var->data.mode != ir_var_function_out && 3381 var->data.mode != ir_var_function_inout) { 3382 _mesa_glsl_error(loc, state, "bindless image/sampler variables may " 3383 "only be declared as shader inputs and outputs, as " 3384 "uniform variables, as temporary variables and as " 3385 "function parameters"); 3386 return false; 3387 } 3388 } else { 3389 if (var->data.mode != ir_var_uniform && 3390 var->data.mode != ir_var_function_in) { 3391 _mesa_glsl_error(loc, state, "image/sampler variables may only be " 3392 "declared as function parameters or " 3393 "uniform-qualified global variables"); 3394 return false; 3395 } 3396 } 3397 return true; 3398} 3399 3400static bool 3401validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state, 3402 YYLTYPE *loc, 3403 const struct ast_type_qualifier *qual, 3404 const glsl_type *type) 3405{ 3406 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec: 3407 * 3408 * "Memory qualifiers are only supported in the declarations of image 3409 * variables, buffer variables, and shader storage blocks; it is an error 3410 * to use such qualifiers in any other declarations. 3411 */ 3412 if (!type->is_image() && !qual->flags.q.buffer) { 3413 if (qual->flags.q.read_only || 3414 qual->flags.q.write_only || 3415 qual->flags.q.coherent || 3416 qual->flags.q._volatile || 3417 qual->flags.q.restrict_flag) { 3418 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied " 3419 "in the declarations of image variables, buffer " 3420 "variables, and shader storage blocks"); 3421 return false; 3422 } 3423 } 3424 return true; 3425} 3426 3427static bool 3428validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state, 3429 YYLTYPE *loc, 3430 const struct ast_type_qualifier *qual, 3431 const glsl_type *type) 3432{ 3433 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec: 3434 * 3435 * "Format layout qualifiers can be used on image variable declarations 3436 * (those declared with a basic type having “image ” in its keyword)." 3437 */ 3438 if (!type->is_image() && qual->flags.q.explicit_image_format) { 3439 _mesa_glsl_error(loc, state, "format layout qualifiers may only be " 3440 "applied to images"); 3441 return false; 3442 } 3443 return true; 3444} 3445 3446static void 3447apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual, 3448 ir_variable *var, 3449 struct _mesa_glsl_parse_state *state, 3450 YYLTYPE *loc) 3451{ 3452 const glsl_type *base_type = var->type->without_array(); 3453 3454 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) || 3455 !validate_memory_qualifier_for_type(state, loc, qual, base_type)) 3456 return; 3457 3458 if (!base_type->is_image()) 3459 return; 3460 3461 if (!validate_storage_for_sampler_image_types(var, state, loc)) 3462 return; 3463 3464 var->data.memory_read_only |= qual->flags.q.read_only; 3465 var->data.memory_write_only |= qual->flags.q.write_only; 3466 var->data.memory_coherent |= qual->flags.q.coherent; 3467 var->data.memory_volatile |= qual->flags.q._volatile; 3468 var->data.memory_restrict |= qual->flags.q.restrict_flag; 3469 3470 if (qual->flags.q.explicit_image_format) { 3471 if (var->data.mode == ir_var_function_in) { 3472 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on " 3473 "image function parameters"); 3474 } 3475 3476 if (qual->image_base_type != base_type->sampled_type) { 3477 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base " 3478 "data type of the image"); 3479 } 3480 3481 var->data.image_format = qual->image_format; 3482 } else if (state->has_image_load_formatted()) { 3483 if (var->data.mode == ir_var_uniform && 3484 state->EXT_shader_image_load_formatted_warn) { 3485 _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used"); 3486 } 3487 } else { 3488 if (var->data.mode == ir_var_uniform) { 3489 if (state->es_shader) { 3490 _mesa_glsl_error(loc, state, "all image uniforms must have a " 3491 "format layout qualifier"); 3492 } else if (!qual->flags.q.write_only) { 3493 _mesa_glsl_error(loc, state, "image uniforms not qualified with " 3494 "`writeonly' must have a format layout qualifier"); 3495 } 3496 } 3497 var->data.image_format = GL_NONE; 3498 } 3499 3500 /* From page 70 of the GLSL ES 3.1 specification: 3501 * 3502 * "Except for image variables qualified with the format qualifiers r32f, 3503 * r32i, and r32ui, image variables must specify either memory qualifier 3504 * readonly or the memory qualifier writeonly." 3505 */ 3506 if (state->es_shader && 3507 var->data.image_format != GL_R32F && 3508 var->data.image_format != GL_R32I && 3509 var->data.image_format != GL_R32UI && 3510 !var->data.memory_read_only && 3511 !var->data.memory_write_only) { 3512 _mesa_glsl_error(loc, state, "image variables of format other than r32f, " 3513 "r32i or r32ui must be qualified `readonly' or " 3514 "`writeonly'"); 3515 } 3516} 3517 3518static inline const char* 3519get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer) 3520{ 3521 if (origin_upper_left && pixel_center_integer) 3522 return "origin_upper_left, pixel_center_integer"; 3523 else if (origin_upper_left) 3524 return "origin_upper_left"; 3525 else if (pixel_center_integer) 3526 return "pixel_center_integer"; 3527 else 3528 return " "; 3529} 3530 3531static inline bool 3532is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state, 3533 const struct ast_type_qualifier *qual) 3534{ 3535 /* If gl_FragCoord was previously declared, and the qualifiers were 3536 * different in any way, return true. 3537 */ 3538 if (state->fs_redeclares_gl_fragcoord) { 3539 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer 3540 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left); 3541 } 3542 3543 return false; 3544} 3545 3546static inline void 3547validate_array_dimensions(const glsl_type *t, 3548 struct _mesa_glsl_parse_state *state, 3549 YYLTYPE *loc) { 3550 if (t->is_array()) { 3551 t = t->fields.array; 3552 while (t->is_array()) { 3553 if (t->is_unsized_array()) { 3554 _mesa_glsl_error(loc, state, 3555 "only the outermost array dimension can " 3556 "be unsized", 3557 t->name); 3558 break; 3559 } 3560 t = t->fields.array; 3561 } 3562 } 3563} 3564 3565static void 3566apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual, 3567 ir_variable *var, 3568 struct _mesa_glsl_parse_state *state, 3569 YYLTYPE *loc) 3570{ 3571 bool has_local_qualifiers = qual->flags.q.bindless_sampler || 3572 qual->flags.q.bindless_image || 3573 qual->flags.q.bound_sampler || 3574 qual->flags.q.bound_image; 3575 3576 /* The ARB_bindless_texture spec says: 3577 * 3578 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30 3579 * spec" 3580 * 3581 * "If these layout qualifiers are applied to other types of default block 3582 * uniforms, or variables with non-uniform storage, a compile-time error 3583 * will be generated." 3584 */ 3585 if (has_local_qualifiers && !qual->flags.q.uniform) { 3586 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers " 3587 "can only be applied to default block uniforms or " 3588 "variables with uniform storage"); 3589 return; 3590 } 3591 3592 /* The ARB_bindless_texture spec doesn't state anything in this situation, 3593 * but it makes sense to only allow bindless_sampler/bound_sampler for 3594 * sampler types, and respectively bindless_image/bound_image for image 3595 * types. 3596 */ 3597 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) && 3598 !var->type->contains_sampler()) { 3599 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only " 3600 "be applied to sampler types"); 3601 return; 3602 } 3603 3604 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) && 3605 !var->type->contains_image()) { 3606 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be " 3607 "applied to image types"); 3608 return; 3609 } 3610 3611 /* The bindless_sampler/bindless_image (and respectively 3612 * bound_sampler/bound_image) layout qualifiers can be set at global and at 3613 * local scope. 3614 */ 3615 if (var->type->contains_sampler() || var->type->contains_image()) { 3616 var->data.bindless = qual->flags.q.bindless_sampler || 3617 qual->flags.q.bindless_image || 3618 state->bindless_sampler_specified || 3619 state->bindless_image_specified; 3620 3621 var->data.bound = qual->flags.q.bound_sampler || 3622 qual->flags.q.bound_image || 3623 state->bound_sampler_specified || 3624 state->bound_image_specified; 3625 } 3626} 3627 3628static void 3629apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual, 3630 ir_variable *var, 3631 struct _mesa_glsl_parse_state *state, 3632 YYLTYPE *loc) 3633{ 3634 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) { 3635 3636 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says: 3637 * 3638 * "Within any shader, the first redeclarations of gl_FragCoord 3639 * must appear before any use of gl_FragCoord." 3640 * 3641 * Generate a compiler error if above condition is not met by the 3642 * fragment shader. 3643 */ 3644 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord"); 3645 if (earlier != NULL && 3646 earlier->data.used && 3647 !state->fs_redeclares_gl_fragcoord) { 3648 _mesa_glsl_error(loc, state, 3649 "gl_FragCoord used before its first redeclaration " 3650 "in fragment shader"); 3651 } 3652 3653 /* Make sure all gl_FragCoord redeclarations specify the same layout 3654 * qualifiers. 3655 */ 3656 if (is_conflicting_fragcoord_redeclaration(state, qual)) { 3657 const char *const qual_string = 3658 get_layout_qualifier_string(qual->flags.q.origin_upper_left, 3659 qual->flags.q.pixel_center_integer); 3660 3661 const char *const state_string = 3662 get_layout_qualifier_string(state->fs_origin_upper_left, 3663 state->fs_pixel_center_integer); 3664 3665 _mesa_glsl_error(loc, state, 3666 "gl_FragCoord redeclared with different layout " 3667 "qualifiers (%s) and (%s) ", 3668 state_string, 3669 qual_string); 3670 } 3671 state->fs_origin_upper_left = qual->flags.q.origin_upper_left; 3672 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer; 3673 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers = 3674 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer; 3675 state->fs_redeclares_gl_fragcoord = 3676 state->fs_origin_upper_left || 3677 state->fs_pixel_center_integer || 3678 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers; 3679 } 3680 3681 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer) 3682 && (strcmp(var->name, "gl_FragCoord") != 0)) { 3683 const char *const qual_string = (qual->flags.q.origin_upper_left) 3684 ? "origin_upper_left" : "pixel_center_integer"; 3685 3686 _mesa_glsl_error(loc, state, 3687 "layout qualifier `%s' can only be applied to " 3688 "fragment shader input `gl_FragCoord'", 3689 qual_string); 3690 } 3691 3692 if (qual->flags.q.explicit_location) { 3693 apply_explicit_location(qual, var, state, loc); 3694 3695 if (qual->flags.q.explicit_component) { 3696 unsigned qual_component; 3697 if (process_qualifier_constant(state, loc, "component", 3698 qual->component, &qual_component)) { 3699 const glsl_type *type = var->type->without_array(); 3700 unsigned components = type->component_slots(); 3701 3702 if (type->is_matrix() || type->is_struct()) { 3703 _mesa_glsl_error(loc, state, "component layout qualifier " 3704 "cannot be applied to a matrix, a structure, " 3705 "a block, or an array containing any of " 3706 "these."); 3707 } else if (components > 4 && type->is_64bit()) { 3708 _mesa_glsl_error(loc, state, "component layout qualifier " 3709 "cannot be applied to dvec%u.", 3710 components / 2); 3711 } else if (qual_component != 0 && 3712 (qual_component + components - 1) > 3) { 3713 _mesa_glsl_error(loc, state, "component overflow (%u > 3)", 3714 (qual_component + components - 1)); 3715 } else if (qual_component == 1 && type->is_64bit()) { 3716 /* We don't bother checking for 3 as it should be caught by the 3717 * overflow check above. 3718 */ 3719 _mesa_glsl_error(loc, state, "doubles cannot begin at " 3720 "component 1 or 3"); 3721 } else { 3722 var->data.explicit_component = true; 3723 var->data.location_frac = qual_component; 3724 } 3725 } 3726 } 3727 } else if (qual->flags.q.explicit_index) { 3728 if (!qual->subroutine_list) 3729 _mesa_glsl_error(loc, state, 3730 "explicit index requires explicit location"); 3731 } else if (qual->flags.q.explicit_component) { 3732 _mesa_glsl_error(loc, state, 3733 "explicit component requires explicit location"); 3734 } 3735 3736 if (qual->flags.q.explicit_binding) { 3737 apply_explicit_binding(state, loc, var, var->type, qual); 3738 } 3739 3740 if (state->stage == MESA_SHADER_GEOMETRY && 3741 qual->flags.q.out && qual->flags.q.stream) { 3742 unsigned qual_stream; 3743 if (process_qualifier_constant(state, loc, "stream", qual->stream, 3744 &qual_stream) && 3745 validate_stream_qualifier(loc, state, qual_stream)) { 3746 var->data.stream = qual_stream; 3747 } 3748 } 3749 3750 if (qual->flags.q.out && qual->flags.q.xfb_buffer) { 3751 unsigned qual_xfb_buffer; 3752 if (process_qualifier_constant(state, loc, "xfb_buffer", 3753 qual->xfb_buffer, &qual_xfb_buffer) && 3754 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) { 3755 var->data.xfb_buffer = qual_xfb_buffer; 3756 if (qual->flags.q.explicit_xfb_buffer) 3757 var->data.explicit_xfb_buffer = true; 3758 } 3759 } 3760 3761 if (qual->flags.q.explicit_xfb_offset) { 3762 unsigned qual_xfb_offset; 3763 unsigned component_size = var->type->contains_double() ? 8 : 4; 3764 3765 if (process_qualifier_constant(state, loc, "xfb_offset", 3766 qual->offset, &qual_xfb_offset) && 3767 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset, 3768 var->type, component_size)) { 3769 var->data.offset = qual_xfb_offset; 3770 var->data.explicit_xfb_offset = true; 3771 } 3772 } 3773 3774 if (qual->flags.q.explicit_xfb_stride) { 3775 unsigned qual_xfb_stride; 3776 if (process_qualifier_constant(state, loc, "xfb_stride", 3777 qual->xfb_stride, &qual_xfb_stride)) { 3778 var->data.xfb_stride = qual_xfb_stride; 3779 var->data.explicit_xfb_stride = true; 3780 } 3781 } 3782 3783 if (var->type->contains_atomic()) { 3784 if (var->data.mode == ir_var_uniform) { 3785 if (var->data.explicit_binding) { 3786 unsigned *offset = 3787 &state->atomic_counter_offsets[var->data.binding]; 3788 3789 if (*offset % ATOMIC_COUNTER_SIZE) 3790 _mesa_glsl_error(loc, state, 3791 "misaligned atomic counter offset"); 3792 3793 var->data.offset = *offset; 3794 *offset += var->type->atomic_size(); 3795 3796 } else { 3797 _mesa_glsl_error(loc, state, 3798 "atomic counters require explicit binding point"); 3799 } 3800 } else if (var->data.mode != ir_var_function_in) { 3801 _mesa_glsl_error(loc, state, "atomic counters may only be declared as " 3802 "function parameters or uniform-qualified " 3803 "global variables"); 3804 } 3805 } 3806 3807 if (var->type->contains_sampler() && 3808 !validate_storage_for_sampler_image_types(var, state, loc)) 3809 return; 3810 3811 /* Is the 'layout' keyword used with parameters that allow relaxed checking. 3812 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some 3813 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable 3814 * allowed the layout qualifier to be used with 'varying' and 'attribute'. 3815 * These extensions and all following extensions that add the 'layout' 3816 * keyword have been modified to require the use of 'in' or 'out'. 3817 * 3818 * The following extension do not allow the deprecated keywords: 3819 * 3820 * GL_AMD_conservative_depth 3821 * GL_ARB_conservative_depth 3822 * GL_ARB_gpu_shader5 3823 * GL_ARB_separate_shader_objects 3824 * GL_ARB_tessellation_shader 3825 * GL_ARB_transform_feedback3 3826 * GL_ARB_uniform_buffer_object 3827 * 3828 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5 3829 * allow layout with the deprecated keywords. 3830 */ 3831 const bool relaxed_layout_qualifier_checking = 3832 state->ARB_fragment_coord_conventions_enable; 3833 3834 const bool uses_deprecated_qualifier = qual->flags.q.attribute 3835 || qual->flags.q.varying; 3836 if (qual->has_layout() && uses_deprecated_qualifier) { 3837 if (relaxed_layout_qualifier_checking) { 3838 _mesa_glsl_warning(loc, state, 3839 "`layout' qualifier may not be used with " 3840 "`attribute' or `varying'"); 3841 } else { 3842 _mesa_glsl_error(loc, state, 3843 "`layout' qualifier may not be used with " 3844 "`attribute' or `varying'"); 3845 } 3846 } 3847 3848 /* Layout qualifiers for gl_FragDepth, which are enabled by extension 3849 * AMD_conservative_depth. 3850 */ 3851 if (qual->flags.q.depth_type 3852 && !state->is_version(420, 0) 3853 && !state->AMD_conservative_depth_enable 3854 && !state->ARB_conservative_depth_enable) { 3855 _mesa_glsl_error(loc, state, 3856 "extension GL_AMD_conservative_depth or " 3857 "GL_ARB_conservative_depth must be enabled " 3858 "to use depth layout qualifiers"); 3859 } else if (qual->flags.q.depth_type 3860 && strcmp(var->name, "gl_FragDepth") != 0) { 3861 _mesa_glsl_error(loc, state, 3862 "depth layout qualifiers can be applied only to " 3863 "gl_FragDepth"); 3864 } 3865 3866 switch (qual->depth_type) { 3867 case ast_depth_any: 3868 var->data.depth_layout = ir_depth_layout_any; 3869 break; 3870 case ast_depth_greater: 3871 var->data.depth_layout = ir_depth_layout_greater; 3872 break; 3873 case ast_depth_less: 3874 var->data.depth_layout = ir_depth_layout_less; 3875 break; 3876 case ast_depth_unchanged: 3877 var->data.depth_layout = ir_depth_layout_unchanged; 3878 break; 3879 default: 3880 var->data.depth_layout = ir_depth_layout_none; 3881 break; 3882 } 3883 3884 if (qual->flags.q.std140 || 3885 qual->flags.q.std430 || 3886 qual->flags.q.packed || 3887 qual->flags.q.shared) { 3888 _mesa_glsl_error(loc, state, 3889 "uniform and shader storage block layout qualifiers " 3890 "std140, std430, packed, and shared can only be " 3891 "applied to uniform or shader storage blocks, not " 3892 "members"); 3893 } 3894 3895 if (qual->flags.q.row_major || qual->flags.q.column_major) { 3896 validate_matrix_layout_for_type(state, loc, var->type, var); 3897 } 3898 3899 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader 3900 * Inputs): 3901 * 3902 * "Fragment shaders also allow the following layout qualifier on in only 3903 * (not with variable declarations) 3904 * layout-qualifier-id 3905 * early_fragment_tests 3906 * [...]" 3907 */ 3908 if (qual->flags.q.early_fragment_tests) { 3909 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only " 3910 "valid in fragment shader input layout declaration."); 3911 } 3912 3913 if (qual->flags.q.inner_coverage) { 3914 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only " 3915 "valid in fragment shader input layout declaration."); 3916 } 3917 3918 if (qual->flags.q.post_depth_coverage) { 3919 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only " 3920 "valid in fragment shader input layout declaration."); 3921 } 3922 3923 if (state->has_bindless()) 3924 apply_bindless_qualifier_to_variable(qual, var, state, loc); 3925 3926 if (qual->flags.q.pixel_interlock_ordered || 3927 qual->flags.q.pixel_interlock_unordered || 3928 qual->flags.q.sample_interlock_ordered || 3929 qual->flags.q.sample_interlock_unordered) { 3930 _mesa_glsl_error(loc, state, "interlock layout qualifiers: " 3931 "pixel_interlock_ordered, pixel_interlock_unordered, " 3932 "sample_interlock_ordered and sample_interlock_unordered, " 3933 "only valid in fragment shader input layout declaration."); 3934 } 3935} 3936 3937static void 3938apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual, 3939 ir_variable *var, 3940 struct _mesa_glsl_parse_state *state, 3941 YYLTYPE *loc, 3942 bool is_parameter) 3943{ 3944 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i)); 3945 3946 if (qual->flags.q.invariant) { 3947 if (var->data.used) { 3948 _mesa_glsl_error(loc, state, 3949 "variable `%s' may not be redeclared " 3950 "`invariant' after being used", 3951 var->name); 3952 } else { 3953 var->data.explicit_invariant = true; 3954 var->data.invariant = true; 3955 } 3956 } 3957 3958 if (qual->flags.q.precise) { 3959 if (var->data.used) { 3960 _mesa_glsl_error(loc, state, 3961 "variable `%s' may not be redeclared " 3962 "`precise' after being used", 3963 var->name); 3964 } else { 3965 var->data.precise = 1; 3966 } 3967 } 3968 3969 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) { 3970 _mesa_glsl_error(loc, state, 3971 "`subroutine' may only be applied to uniforms, " 3972 "subroutine type declarations, or function definitions"); 3973 } 3974 3975 if (qual->flags.q.constant || qual->flags.q.attribute 3976 || qual->flags.q.uniform 3977 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) 3978 var->data.read_only = 1; 3979 3980 if (qual->flags.q.centroid) 3981 var->data.centroid = 1; 3982 3983 if (qual->flags.q.sample) 3984 var->data.sample = 1; 3985 3986 /* Precision qualifiers do not hold any meaning in Desktop GLSL */ 3987 if (state->es_shader) { 3988 var->data.precision = 3989 select_gles_precision(qual->precision, var->type, state, loc); 3990 } 3991 3992 if (qual->flags.q.patch) 3993 var->data.patch = 1; 3994 3995 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) { 3996 var->type = glsl_type::error_type; 3997 _mesa_glsl_error(loc, state, 3998 "`attribute' variables may not be declared in the " 3999 "%s shader", 4000 _mesa_shader_stage_to_string(state->stage)); 4001 } 4002 4003 /* Disallow layout qualifiers which may only appear on layout declarations. */ 4004 if (qual->flags.q.prim_type) { 4005 _mesa_glsl_error(loc, state, 4006 "Primitive type may only be specified on GS input or output " 4007 "layout declaration, not on variables."); 4008 } 4009 4010 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says: 4011 * 4012 * "However, the const qualifier cannot be used with out or inout." 4013 * 4014 * The same section of the GLSL 4.40 spec further clarifies this saying: 4015 * 4016 * "The const qualifier cannot be used with out or inout, or a 4017 * compile-time error results." 4018 */ 4019 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) { 4020 _mesa_glsl_error(loc, state, 4021 "`const' may not be applied to `out' or `inout' " 4022 "function parameters"); 4023 } 4024 4025 /* If there is no qualifier that changes the mode of the variable, leave 4026 * the setting alone. 4027 */ 4028 assert(var->data.mode != ir_var_temporary); 4029 if (qual->flags.q.in && qual->flags.q.out) 4030 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out; 4031 else if (qual->flags.q.in) 4032 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in; 4033 else if (qual->flags.q.attribute 4034 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) 4035 var->data.mode = ir_var_shader_in; 4036 else if (qual->flags.q.out) 4037 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out; 4038 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX)) 4039 var->data.mode = ir_var_shader_out; 4040 else if (qual->flags.q.uniform) 4041 var->data.mode = ir_var_uniform; 4042 else if (qual->flags.q.buffer) 4043 var->data.mode = ir_var_shader_storage; 4044 else if (qual->flags.q.shared_storage) 4045 var->data.mode = ir_var_shader_shared; 4046 4047 if (!is_parameter && state->has_framebuffer_fetch() && 4048 state->stage == MESA_SHADER_FRAGMENT) { 4049 if (state->is_version(130, 300)) 4050 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out; 4051 else 4052 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0); 4053 } 4054 4055 if (var->data.fb_fetch_output) { 4056 var->data.assigned = true; 4057 var->data.memory_coherent = !qual->flags.q.non_coherent; 4058 4059 /* From the EXT_shader_framebuffer_fetch spec: 4060 * 4061 * "It is an error to declare an inout fragment output not qualified 4062 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch 4063 * extension hasn't been enabled." 4064 */ 4065 if (var->data.memory_coherent && 4066 !state->EXT_shader_framebuffer_fetch_enable) 4067 _mesa_glsl_error(loc, state, 4068 "invalid declaration of framebuffer fetch output not " 4069 "qualified with layout(noncoherent)"); 4070 4071 } else { 4072 /* From the EXT_shader_framebuffer_fetch spec: 4073 * 4074 * "Fragment outputs declared inout may specify the following layout 4075 * qualifier: [...] noncoherent" 4076 */ 4077 if (qual->flags.q.non_coherent) 4078 _mesa_glsl_error(loc, state, 4079 "invalid layout(noncoherent) qualifier not part of " 4080 "framebuffer fetch output declaration"); 4081 } 4082 4083 if (!is_parameter && is_varying_var(var, state->stage)) { 4084 /* User-defined ins/outs are not permitted in compute shaders. */ 4085 if (state->stage == MESA_SHADER_COMPUTE) { 4086 _mesa_glsl_error(loc, state, 4087 "user-defined input and output variables are not " 4088 "permitted in compute shaders"); 4089 } 4090 4091 /* This variable is being used to link data between shader stages (in 4092 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type 4093 * that is allowed for such purposes. 4094 * 4095 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec: 4096 * 4097 * "The varying qualifier can be used only with the data types 4098 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of 4099 * these." 4100 * 4101 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From 4102 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec: 4103 * 4104 * "Fragment inputs can only be signed and unsigned integers and 4105 * integer vectors, float, floating-point vectors, matrices, or 4106 * arrays of these. Structures cannot be input. 4107 * 4108 * Similar text exists in the section on vertex shader outputs. 4109 * 4110 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES 4111 * 3.00 spec allows structs as well. Varying structs are also allowed 4112 * in GLSL 1.50. 4113 * 4114 * From section 4.3.4 of the ARB_bindless_texture spec: 4115 * 4116 * "(modify third paragraph of the section to allow sampler and image 4117 * types) ... Vertex shader inputs can only be float, 4118 * single-precision floating-point scalars, single-precision 4119 * floating-point vectors, matrices, signed and unsigned integers 4120 * and integer vectors, sampler and image types." 4121 * 4122 * From section 4.3.6 of the ARB_bindless_texture spec: 4123 * 4124 * "Output variables can only be floating-point scalars, 4125 * floating-point vectors, matrices, signed or unsigned integers or 4126 * integer vectors, sampler or image types, or arrays or structures 4127 * of any these." 4128 */ 4129 switch (var->type->without_array()->base_type) { 4130 case GLSL_TYPE_FLOAT: 4131 /* Ok in all GLSL versions */ 4132 break; 4133 case GLSL_TYPE_UINT: 4134 case GLSL_TYPE_INT: 4135 if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable) 4136 break; 4137 _mesa_glsl_error(loc, state, 4138 "varying variables must be of base type float in %s", 4139 state->get_version_string()); 4140 break; 4141 case GLSL_TYPE_STRUCT: 4142 if (state->is_version(150, 300)) 4143 break; 4144 _mesa_glsl_error(loc, state, 4145 "varying variables may not be of type struct"); 4146 break; 4147 case GLSL_TYPE_DOUBLE: 4148 case GLSL_TYPE_UINT64: 4149 case GLSL_TYPE_INT64: 4150 break; 4151 case GLSL_TYPE_SAMPLER: 4152 case GLSL_TYPE_IMAGE: 4153 if (state->has_bindless()) 4154 break; 4155 /* fallthrough */ 4156 default: 4157 _mesa_glsl_error(loc, state, "illegal type for a varying variable"); 4158 break; 4159 } 4160 } 4161 4162 if (state->all_invariant && var->data.mode == ir_var_shader_out) { 4163 var->data.explicit_invariant = true; 4164 var->data.invariant = true; 4165 } 4166 4167 var->data.interpolation = 4168 interpret_interpolation_qualifier(qual, var->type, 4169 (ir_variable_mode) var->data.mode, 4170 state, loc); 4171 4172 /* Does the declaration use the deprecated 'attribute' or 'varying' 4173 * keywords? 4174 */ 4175 const bool uses_deprecated_qualifier = qual->flags.q.attribute 4176 || qual->flags.q.varying; 4177 4178 4179 /* Validate auxiliary storage qualifiers */ 4180 4181 /* From section 4.3.4 of the GLSL 1.30 spec: 4182 * "It is an error to use centroid in in a vertex shader." 4183 * 4184 * From section 4.3.4 of the GLSL ES 3.00 spec: 4185 * "It is an error to use centroid in or interpolation qualifiers in 4186 * a vertex shader input." 4187 */ 4188 4189 /* Section 4.3.6 of the GLSL 1.30 specification states: 4190 * "It is an error to use centroid out in a fragment shader." 4191 * 4192 * The GL_ARB_shading_language_420pack extension specification states: 4193 * "It is an error to use auxiliary storage qualifiers or interpolation 4194 * qualifiers on an output in a fragment shader." 4195 */ 4196 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) { 4197 _mesa_glsl_error(loc, state, 4198 "sample qualifier may only be used on `in` or `out` " 4199 "variables between shader stages"); 4200 } 4201 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) { 4202 _mesa_glsl_error(loc, state, 4203 "centroid qualifier may only be used with `in', " 4204 "`out' or `varying' variables between shader stages"); 4205 } 4206 4207 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) { 4208 _mesa_glsl_error(loc, state, 4209 "the shared storage qualifiers can only be used with " 4210 "compute shaders"); 4211 } 4212 4213 apply_image_qualifier_to_variable(qual, var, state, loc); 4214} 4215 4216/** 4217 * Get the variable that is being redeclared by this declaration or if it 4218 * does not exist, the current declared variable. 4219 * 4220 * Semantic checks to verify the validity of the redeclaration are also 4221 * performed. If semantic checks fail, compilation error will be emitted via 4222 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned. 4223 * 4224 * \returns 4225 * A pointer to an existing variable in the current scope if the declaration 4226 * is a redeclaration, current variable otherwise. \c is_declared boolean 4227 * will return \c true if the declaration is a redeclaration, \c false 4228 * otherwise. 4229 */ 4230static ir_variable * 4231get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc, 4232 struct _mesa_glsl_parse_state *state, 4233 bool allow_all_redeclarations, 4234 bool *is_redeclaration) 4235{ 4236 ir_variable *var = *var_ptr; 4237 4238 /* Check if this declaration is actually a re-declaration, either to 4239 * resize an array or add qualifiers to an existing variable. 4240 * 4241 * This is allowed for variables in the current scope, or when at 4242 * global scope (for built-ins in the implicit outer scope). 4243 */ 4244 ir_variable *earlier = state->symbols->get_variable(var->name); 4245 if (earlier == NULL || 4246 (state->current_function != NULL && 4247 !state->symbols->name_declared_this_scope(var->name))) { 4248 *is_redeclaration = false; 4249 return var; 4250 } 4251 4252 *is_redeclaration = true; 4253 4254 if (earlier->data.how_declared == ir_var_declared_implicitly) { 4255 /* Verify that the redeclaration of a built-in does not change the 4256 * storage qualifier. There are a couple special cases. 4257 * 4258 * 1. Some built-in variables that are defined as 'in' in the 4259 * specification are implemented as system values. Allow 4260 * ir_var_system_value -> ir_var_shader_in. 4261 * 4262 * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the 4263 * specification requires that redeclarations omit any qualifier. 4264 * Allow ir_var_shader_out -> ir_var_auto for this one variable. 4265 */ 4266 if (earlier->data.mode != var->data.mode && 4267 !(earlier->data.mode == ir_var_system_value && 4268 var->data.mode == ir_var_shader_in) && 4269 !(strcmp(var->name, "gl_LastFragData") == 0 && 4270 var->data.mode == ir_var_auto)) { 4271 _mesa_glsl_error(&loc, state, 4272 "redeclaration cannot change qualification of `%s'", 4273 var->name); 4274 } 4275 } 4276 4277 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec, 4278 * 4279 * "It is legal to declare an array without a size and then 4280 * later re-declare the same name as an array of the same 4281 * type and specify a size." 4282 */ 4283 if (earlier->type->is_unsized_array() && var->type->is_array() 4284 && (var->type->fields.array == earlier->type->fields.array)) { 4285 const int size = var->type->array_size(); 4286 check_builtin_array_max_size(var->name, size, loc, state); 4287 if ((size > 0) && (size <= earlier->data.max_array_access)) { 4288 _mesa_glsl_error(& loc, state, "array size must be > %u due to " 4289 "previous access", 4290 earlier->data.max_array_access); 4291 } 4292 4293 earlier->type = var->type; 4294 delete var; 4295 var = NULL; 4296 *var_ptr = NULL; 4297 } else if (earlier->type != var->type) { 4298 _mesa_glsl_error(&loc, state, 4299 "redeclaration of `%s' has incorrect type", 4300 var->name); 4301 } else if ((state->ARB_fragment_coord_conventions_enable || 4302 state->is_version(150, 0)) 4303 && strcmp(var->name, "gl_FragCoord") == 0) { 4304 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout 4305 * qualifiers. 4306 * 4307 * We don't really need to do anything here, just allow the 4308 * redeclaration. Any error on the gl_FragCoord is handled on the ast 4309 * level at apply_layout_qualifier_to_variable using the 4310 * ast_type_qualifier and _mesa_glsl_parse_state, or later at 4311 * linker.cpp. 4312 */ 4313 /* According to section 4.3.7 of the GLSL 1.30 spec, 4314 * the following built-in varaibles can be redeclared with an 4315 * interpolation qualifier: 4316 * * gl_FrontColor 4317 * * gl_BackColor 4318 * * gl_FrontSecondaryColor 4319 * * gl_BackSecondaryColor 4320 * * gl_Color 4321 * * gl_SecondaryColor 4322 */ 4323 } else if (state->is_version(130, 0) 4324 && (strcmp(var->name, "gl_FrontColor") == 0 4325 || strcmp(var->name, "gl_BackColor") == 0 4326 || strcmp(var->name, "gl_FrontSecondaryColor") == 0 4327 || strcmp(var->name, "gl_BackSecondaryColor") == 0 4328 || strcmp(var->name, "gl_Color") == 0 4329 || strcmp(var->name, "gl_SecondaryColor") == 0)) { 4330 earlier->data.interpolation = var->data.interpolation; 4331 4332 /* Layout qualifiers for gl_FragDepth. */ 4333 } else if ((state->is_version(420, 0) || 4334 state->AMD_conservative_depth_enable || 4335 state->ARB_conservative_depth_enable) 4336 && strcmp(var->name, "gl_FragDepth") == 0) { 4337 4338 /** From the AMD_conservative_depth spec: 4339 * Within any shader, the first redeclarations of gl_FragDepth 4340 * must appear before any use of gl_FragDepth. 4341 */ 4342 if (earlier->data.used) { 4343 _mesa_glsl_error(&loc, state, 4344 "the first redeclaration of gl_FragDepth " 4345 "must appear before any use of gl_FragDepth"); 4346 } 4347 4348 /* Prevent inconsistent redeclaration of depth layout qualifier. */ 4349 if (earlier->data.depth_layout != ir_depth_layout_none 4350 && earlier->data.depth_layout != var->data.depth_layout) { 4351 _mesa_glsl_error(&loc, state, 4352 "gl_FragDepth: depth layout is declared here " 4353 "as '%s, but it was previously declared as " 4354 "'%s'", 4355 depth_layout_string(var->data.depth_layout), 4356 depth_layout_string(earlier->data.depth_layout)); 4357 } 4358 4359 earlier->data.depth_layout = var->data.depth_layout; 4360 4361 } else if (state->has_framebuffer_fetch() && 4362 strcmp(var->name, "gl_LastFragData") == 0 && 4363 var->data.mode == ir_var_auto) { 4364 /* According to the EXT_shader_framebuffer_fetch spec: 4365 * 4366 * "By default, gl_LastFragData is declared with the mediump precision 4367 * qualifier. This can be changed by redeclaring the corresponding 4368 * variables with the desired precision qualifier." 4369 * 4370 * "Fragment shaders may specify the following layout qualifier only for 4371 * redeclaring the built-in gl_LastFragData array [...]: noncoherent" 4372 */ 4373 earlier->data.precision = var->data.precision; 4374 earlier->data.memory_coherent = var->data.memory_coherent; 4375 4376 } else if ((earlier->data.how_declared == ir_var_declared_implicitly && 4377 state->allow_builtin_variable_redeclaration) || 4378 allow_all_redeclarations) { 4379 /* Allow verbatim redeclarations of built-in variables. Not explicitly 4380 * valid, but some applications do it. 4381 */ 4382 } else { 4383 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); 4384 } 4385 4386 return earlier; 4387} 4388 4389/** 4390 * Generate the IR for an initializer in a variable declaration 4391 */ 4392static ir_rvalue * 4393process_initializer(ir_variable *var, ast_declaration *decl, 4394 ast_fully_specified_type *type, 4395 exec_list *initializer_instructions, 4396 struct _mesa_glsl_parse_state *state) 4397{ 4398 void *mem_ctx = state; 4399 ir_rvalue *result = NULL; 4400 4401 YYLTYPE initializer_loc = decl->initializer->get_location(); 4402 4403 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec: 4404 * 4405 * "All uniform variables are read-only and are initialized either 4406 * directly by an application via API commands, or indirectly by 4407 * OpenGL." 4408 */ 4409 if (var->data.mode == ir_var_uniform) { 4410 state->check_version(120, 0, &initializer_loc, 4411 "cannot initialize uniform %s", 4412 var->name); 4413 } 4414 4415 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: 4416 * 4417 * "Buffer variables cannot have initializers." 4418 */ 4419 if (var->data.mode == ir_var_shader_storage) { 4420 _mesa_glsl_error(&initializer_loc, state, 4421 "cannot initialize buffer variable %s", 4422 var->name); 4423 } 4424 4425 /* From section 4.1.7 of the GLSL 4.40 spec: 4426 * 4427 * "Opaque variables [...] are initialized only through the 4428 * OpenGL API; they cannot be declared with an initializer in a 4429 * shader." 4430 * 4431 * From section 4.1.7 of the ARB_bindless_texture spec: 4432 * 4433 * "Samplers may be declared as shader inputs and outputs, as uniform 4434 * variables, as temporary variables, and as function parameters." 4435 * 4436 * From section 4.1.X of the ARB_bindless_texture spec: 4437 * 4438 * "Images may be declared as shader inputs and outputs, as uniform 4439 * variables, as temporary variables, and as function parameters." 4440 */ 4441 if (var->type->contains_atomic() || 4442 (!state->has_bindless() && var->type->contains_opaque())) { 4443 _mesa_glsl_error(&initializer_loc, state, 4444 "cannot initialize %s variable %s", 4445 var->name, state->has_bindless() ? "atomic" : "opaque"); 4446 } 4447 4448 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) { 4449 _mesa_glsl_error(&initializer_loc, state, 4450 "cannot initialize %s shader input / %s %s", 4451 _mesa_shader_stage_to_string(state->stage), 4452 (state->stage == MESA_SHADER_VERTEX) 4453 ? "attribute" : "varying", 4454 var->name); 4455 } 4456 4457 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) { 4458 _mesa_glsl_error(&initializer_loc, state, 4459 "cannot initialize %s shader output %s", 4460 _mesa_shader_stage_to_string(state->stage), 4461 var->name); 4462 } 4463 4464 /* If the initializer is an ast_aggregate_initializer, recursively store 4465 * type information from the LHS into it, so that its hir() function can do 4466 * type checking. 4467 */ 4468 if (decl->initializer->oper == ast_aggregate) 4469 _mesa_ast_set_aggregate_type(var->type, decl->initializer); 4470 4471 ir_dereference *const lhs = new(state) ir_dereference_variable(var); 4472 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state); 4473 4474 /* Calculate the constant value if this is a const or uniform 4475 * declaration. 4476 * 4477 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says: 4478 * 4479 * "Declarations of globals without a storage qualifier, or with 4480 * just the const qualifier, may include initializers, in which case 4481 * they will be initialized before the first line of main() is 4482 * executed. Such initializers must be a constant expression." 4483 * 4484 * The same section of the GLSL ES 3.00.4 spec has similar language. 4485 */ 4486 if (type->qualifier.flags.q.constant 4487 || type->qualifier.flags.q.uniform 4488 || (state->es_shader && state->current_function == NULL)) { 4489 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc, 4490 lhs, rhs, true); 4491 if (new_rhs != NULL) { 4492 rhs = new_rhs; 4493 4494 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec 4495 * says: 4496 * 4497 * "A constant expression is one of 4498 * 4499 * ... 4500 * 4501 * - an expression formed by an operator on operands that are 4502 * all constant expressions, including getting an element of 4503 * a constant array, or a field of a constant structure, or 4504 * components of a constant vector. However, the sequence 4505 * operator ( , ) and the assignment operators ( =, +=, ...) 4506 * are not included in the operators that can create a 4507 * constant expression." 4508 * 4509 * Section 12.43 (Sequence operator and constant expressions) says: 4510 * 4511 * "Should the following construct be allowed? 4512 * 4513 * float a[2,3]; 4514 * 4515 * The expression within the brackets uses the sequence operator 4516 * (',') and returns the integer 3 so the construct is declaring 4517 * a single-dimensional array of size 3. In some languages, the 4518 * construct declares a two-dimensional array. It would be 4519 * preferable to make this construct illegal to avoid confusion. 4520 * 4521 * One possibility is to change the definition of the sequence 4522 * operator so that it does not return a constant-expression and 4523 * hence cannot be used to declare an array size. 4524 * 4525 * RESOLUTION: The result of a sequence operator is not a 4526 * constant-expression." 4527 * 4528 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec 4529 * contains language almost identical to the section 4.3.3 in the 4530 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL 4531 * versions. 4532 */ 4533 ir_constant *constant_value = 4534 rhs->constant_expression_value(mem_ctx); 4535 4536 if (!constant_value || 4537 (state->is_version(430, 300) && 4538 decl->initializer->has_sequence_subexpression())) { 4539 const char *const variable_mode = 4540 (type->qualifier.flags.q.constant) 4541 ? "const" 4542 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global"); 4543 4544 /* If ARB_shading_language_420pack is enabled, initializers of 4545 * const-qualified local variables do not have to be constant 4546 * expressions. Const-qualified global variables must still be 4547 * initialized with constant expressions. 4548 */ 4549 if (!state->has_420pack() 4550 || state->current_function == NULL) { 4551 _mesa_glsl_error(& initializer_loc, state, 4552 "initializer of %s variable `%s' must be a " 4553 "constant expression", 4554 variable_mode, 4555 decl->identifier); 4556 if (var->type->is_numeric()) { 4557 /* Reduce cascading errors. */ 4558 var->constant_value = type->qualifier.flags.q.constant 4559 ? ir_constant::zero(state, var->type) : NULL; 4560 } 4561 } 4562 } else { 4563 rhs = constant_value; 4564 var->constant_value = type->qualifier.flags.q.constant 4565 ? constant_value : NULL; 4566 } 4567 } else { 4568 if (var->type->is_numeric()) { 4569 /* Reduce cascading errors. */ 4570 rhs = var->constant_value = type->qualifier.flags.q.constant 4571 ? ir_constant::zero(state, var->type) : NULL; 4572 } 4573 } 4574 } 4575 4576 if (rhs && !rhs->type->is_error()) { 4577 bool temp = var->data.read_only; 4578 if (type->qualifier.flags.q.constant) 4579 var->data.read_only = false; 4580 4581 /* Never emit code to initialize a uniform. 4582 */ 4583 const glsl_type *initializer_type; 4584 bool error_emitted = false; 4585 if (!type->qualifier.flags.q.uniform) { 4586 error_emitted = 4587 do_assignment(initializer_instructions, state, 4588 NULL, lhs, rhs, 4589 &result, true, true, 4590 type->get_location()); 4591 initializer_type = result->type; 4592 } else 4593 initializer_type = rhs->type; 4594 4595 if (!error_emitted) { 4596 var->constant_initializer = rhs->constant_expression_value(mem_ctx); 4597 var->data.has_initializer = true; 4598 4599 /* If the declared variable is an unsized array, it must inherrit 4600 * its full type from the initializer. A declaration such as 4601 * 4602 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0); 4603 * 4604 * becomes 4605 * 4606 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0); 4607 * 4608 * The assignment generated in the if-statement (below) will also 4609 * automatically handle this case for non-uniforms. 4610 * 4611 * If the declared variable is not an array, the types must 4612 * already match exactly. As a result, the type assignment 4613 * here can be done unconditionally. For non-uniforms the call 4614 * to do_assignment can change the type of the initializer (via 4615 * the implicit conversion rules). For uniforms the initializer 4616 * must be a constant expression, and the type of that expression 4617 * was validated above. 4618 */ 4619 var->type = initializer_type; 4620 } 4621 4622 var->data.read_only = temp; 4623 } 4624 4625 return result; 4626} 4627 4628static void 4629validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state, 4630 YYLTYPE loc, ir_variable *var, 4631 unsigned num_vertices, 4632 unsigned *size, 4633 const char *var_category) 4634{ 4635 if (var->type->is_unsized_array()) { 4636 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says: 4637 * 4638 * All geometry shader input unsized array declarations will be 4639 * sized by an earlier input layout qualifier, when present, as per 4640 * the following table. 4641 * 4642 * Followed by a table mapping each allowed input layout qualifier to 4643 * the corresponding input length. 4644 * 4645 * Similarly for tessellation control shader outputs. 4646 */ 4647 if (num_vertices != 0) 4648 var->type = glsl_type::get_array_instance(var->type->fields.array, 4649 num_vertices); 4650 } else { 4651 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec 4652 * includes the following examples of compile-time errors: 4653 * 4654 * // code sequence within one shader... 4655 * in vec4 Color1[]; // size unknown 4656 * ...Color1.length()...// illegal, length() unknown 4657 * in vec4 Color2[2]; // size is 2 4658 * ...Color1.length()...// illegal, Color1 still has no size 4659 * in vec4 Color3[3]; // illegal, input sizes are inconsistent 4660 * layout(lines) in; // legal, input size is 2, matching 4661 * in vec4 Color4[3]; // illegal, contradicts layout 4662 * ... 4663 * 4664 * To detect the case illustrated by Color3, we verify that the size of 4665 * an explicitly-sized array matches the size of any previously declared 4666 * explicitly-sized array. To detect the case illustrated by Color4, we 4667 * verify that the size of an explicitly-sized array is consistent with 4668 * any previously declared input layout. 4669 */ 4670 if (num_vertices != 0 && var->type->length != num_vertices) { 4671 _mesa_glsl_error(&loc, state, 4672 "%s size contradicts previously declared layout " 4673 "(size is %u, but layout requires a size of %u)", 4674 var_category, var->type->length, num_vertices); 4675 } else if (*size != 0 && var->type->length != *size) { 4676 _mesa_glsl_error(&loc, state, 4677 "%s sizes are inconsistent (size is %u, but a " 4678 "previous declaration has size %u)", 4679 var_category, var->type->length, *size); 4680 } else { 4681 *size = var->type->length; 4682 } 4683 } 4684} 4685 4686static void 4687handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state, 4688 YYLTYPE loc, ir_variable *var) 4689{ 4690 unsigned num_vertices = 0; 4691 4692 if (state->tcs_output_vertices_specified) { 4693 if (!state->out_qualifier->vertices-> 4694 process_qualifier_constant(state, "vertices", 4695 &num_vertices, false)) { 4696 return; 4697 } 4698 4699 if (num_vertices > state->Const.MaxPatchVertices) { 4700 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds " 4701 "GL_MAX_PATCH_VERTICES", num_vertices); 4702 return; 4703 } 4704 } 4705 4706 if (!var->type->is_array() && !var->data.patch) { 4707 _mesa_glsl_error(&loc, state, 4708 "tessellation control shader outputs must be arrays"); 4709 4710 /* To avoid cascading failures, short circuit the checks below. */ 4711 return; 4712 } 4713 4714 if (var->data.patch) 4715 return; 4716 4717 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, 4718 &state->tcs_output_size, 4719 "tessellation control shader output"); 4720} 4721 4722/** 4723 * Do additional processing necessary for tessellation control/evaluation shader 4724 * input declarations. This covers both interface block arrays and bare input 4725 * variables. 4726 */ 4727static void 4728handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state, 4729 YYLTYPE loc, ir_variable *var) 4730{ 4731 if (!var->type->is_array() && !var->data.patch) { 4732 _mesa_glsl_error(&loc, state, 4733 "per-vertex tessellation shader inputs must be arrays"); 4734 /* Avoid cascading failures. */ 4735 return; 4736 } 4737 4738 if (var->data.patch) 4739 return; 4740 4741 /* The ARB_tessellation_shader spec says: 4742 * 4743 * "Declaring an array size is optional. If no size is specified, it 4744 * will be taken from the implementation-dependent maximum patch size 4745 * (gl_MaxPatchVertices). If a size is specified, it must match the 4746 * maximum patch size; otherwise, a compile or link error will occur." 4747 * 4748 * This text appears twice, once for TCS inputs, and again for TES inputs. 4749 */ 4750 if (var->type->is_unsized_array()) { 4751 var->type = glsl_type::get_array_instance(var->type->fields.array, 4752 state->Const.MaxPatchVertices); 4753 } else if (var->type->length != state->Const.MaxPatchVertices) { 4754 _mesa_glsl_error(&loc, state, 4755 "per-vertex tessellation shader input arrays must be " 4756 "sized to gl_MaxPatchVertices (%d).", 4757 state->Const.MaxPatchVertices); 4758 } 4759} 4760 4761 4762/** 4763 * Do additional processing necessary for geometry shader input declarations 4764 * (this covers both interface blocks arrays and bare input variables). 4765 */ 4766static void 4767handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state, 4768 YYLTYPE loc, ir_variable *var) 4769{ 4770 unsigned num_vertices = 0; 4771 4772 if (state->gs_input_prim_type_specified) { 4773 num_vertices = vertices_per_prim(state->in_qualifier->prim_type); 4774 } 4775 4776 /* Geometry shader input variables must be arrays. Caller should have 4777 * reported an error for this. 4778 */ 4779 if (!var->type->is_array()) { 4780 assert(state->error); 4781 4782 /* To avoid cascading failures, short circuit the checks below. */ 4783 return; 4784 } 4785 4786 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, 4787 &state->gs_input_size, 4788 "geometry shader input"); 4789} 4790 4791static void 4792validate_identifier(const char *identifier, YYLTYPE loc, 4793 struct _mesa_glsl_parse_state *state) 4794{ 4795 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec, 4796 * 4797 * "Identifiers starting with "gl_" are reserved for use by 4798 * OpenGL, and may not be declared in a shader as either a 4799 * variable or a function." 4800 */ 4801 if (is_gl_identifier(identifier)) { 4802 _mesa_glsl_error(&loc, state, 4803 "identifier `%s' uses reserved `gl_' prefix", 4804 identifier); 4805 } else if (strstr(identifier, "__")) { 4806 /* From page 14 (page 20 of the PDF) of the GLSL 1.10 4807 * spec: 4808 * 4809 * "In addition, all identifiers containing two 4810 * consecutive underscores (__) are reserved as 4811 * possible future keywords." 4812 * 4813 * The intention is that names containing __ are reserved for internal 4814 * use by the implementation, and names prefixed with GL_ are reserved 4815 * for use by Khronos. Names simply containing __ are dangerous to use, 4816 * but should be allowed. 4817 * 4818 * A future version of the GLSL specification will clarify this. 4819 */ 4820 _mesa_glsl_warning(&loc, state, 4821 "identifier `%s' uses reserved `__' string", 4822 identifier); 4823 } 4824} 4825 4826ir_rvalue * 4827ast_declarator_list::hir(exec_list *instructions, 4828 struct _mesa_glsl_parse_state *state) 4829{ 4830 void *ctx = state; 4831 const struct glsl_type *decl_type; 4832 const char *type_name = NULL; 4833 ir_rvalue *result = NULL; 4834 YYLTYPE loc = this->get_location(); 4835 4836 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec: 4837 * 4838 * "To ensure that a particular output variable is invariant, it is 4839 * necessary to use the invariant qualifier. It can either be used to 4840 * qualify a previously declared variable as being invariant 4841 * 4842 * invariant gl_Position; // make existing gl_Position be invariant" 4843 * 4844 * In these cases the parser will set the 'invariant' flag in the declarator 4845 * list, and the type will be NULL. 4846 */ 4847 if (this->invariant) { 4848 assert(this->type == NULL); 4849 4850 if (state->current_function != NULL) { 4851 _mesa_glsl_error(& loc, state, 4852 "all uses of `invariant' keyword must be at global " 4853 "scope"); 4854 } 4855 4856 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 4857 assert(decl->array_specifier == NULL); 4858 assert(decl->initializer == NULL); 4859 4860 ir_variable *const earlier = 4861 state->symbols->get_variable(decl->identifier); 4862 if (earlier == NULL) { 4863 _mesa_glsl_error(& loc, state, 4864 "undeclared variable `%s' cannot be marked " 4865 "invariant", decl->identifier); 4866 } else if (!is_allowed_invariant(earlier, state)) { 4867 _mesa_glsl_error(&loc, state, 4868 "`%s' cannot be marked invariant; interfaces between " 4869 "shader stages only.", decl->identifier); 4870 } else if (earlier->data.used) { 4871 _mesa_glsl_error(& loc, state, 4872 "variable `%s' may not be redeclared " 4873 "`invariant' after being used", 4874 earlier->name); 4875 } else { 4876 earlier->data.explicit_invariant = true; 4877 earlier->data.invariant = true; 4878 } 4879 } 4880 4881 /* Invariant redeclarations do not have r-values. 4882 */ 4883 return NULL; 4884 } 4885 4886 if (this->precise) { 4887 assert(this->type == NULL); 4888 4889 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 4890 assert(decl->array_specifier == NULL); 4891 assert(decl->initializer == NULL); 4892 4893 ir_variable *const earlier = 4894 state->symbols->get_variable(decl->identifier); 4895 if (earlier == NULL) { 4896 _mesa_glsl_error(& loc, state, 4897 "undeclared variable `%s' cannot be marked " 4898 "precise", decl->identifier); 4899 } else if (state->current_function != NULL && 4900 !state->symbols->name_declared_this_scope(decl->identifier)) { 4901 /* Note: we have to check if we're in a function, since 4902 * builtins are treated as having come from another scope. 4903 */ 4904 _mesa_glsl_error(& loc, state, 4905 "variable `%s' from an outer scope may not be " 4906 "redeclared `precise' in this scope", 4907 earlier->name); 4908 } else if (earlier->data.used) { 4909 _mesa_glsl_error(& loc, state, 4910 "variable `%s' may not be redeclared " 4911 "`precise' after being used", 4912 earlier->name); 4913 } else { 4914 earlier->data.precise = true; 4915 } 4916 } 4917 4918 /* Precise redeclarations do not have r-values either. */ 4919 return NULL; 4920 } 4921 4922 assert(this->type != NULL); 4923 assert(!this->invariant); 4924 assert(!this->precise); 4925 4926 /* The type specifier may contain a structure definition. Process that 4927 * before any of the variable declarations. 4928 */ 4929 (void) this->type->specifier->hir(instructions, state); 4930 4931 decl_type = this->type->glsl_type(& type_name, state); 4932 4933 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: 4934 * "Buffer variables may only be declared inside interface blocks 4935 * (section 4.3.9 “Interface Blocks”), which are then referred to as 4936 * shader storage blocks. It is a compile-time error to declare buffer 4937 * variables at global scope (outside a block)." 4938 */ 4939 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) { 4940 _mesa_glsl_error(&loc, state, 4941 "buffer variables cannot be declared outside " 4942 "interface blocks"); 4943 } 4944 4945 /* An offset-qualified atomic counter declaration sets the default 4946 * offset for the next declaration within the same atomic counter 4947 * buffer. 4948 */ 4949 if (decl_type && decl_type->contains_atomic()) { 4950 if (type->qualifier.flags.q.explicit_binding && 4951 type->qualifier.flags.q.explicit_offset) { 4952 unsigned qual_binding; 4953 unsigned qual_offset; 4954 if (process_qualifier_constant(state, &loc, "binding", 4955 type->qualifier.binding, 4956 &qual_binding) 4957 && process_qualifier_constant(state, &loc, "offset", 4958 type->qualifier.offset, 4959 &qual_offset)) { 4960 if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets)) 4961 state->atomic_counter_offsets[qual_binding] = qual_offset; 4962 } 4963 } 4964 4965 ast_type_qualifier allowed_atomic_qual_mask; 4966 allowed_atomic_qual_mask.flags.i = 0; 4967 allowed_atomic_qual_mask.flags.q.explicit_binding = 1; 4968 allowed_atomic_qual_mask.flags.q.explicit_offset = 1; 4969 allowed_atomic_qual_mask.flags.q.uniform = 1; 4970 4971 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask, 4972 "invalid layout qualifier for", 4973 "atomic_uint"); 4974 } 4975 4976 if (this->declarations.is_empty()) { 4977 /* If there is no structure involved in the program text, there are two 4978 * possible scenarios: 4979 * 4980 * - The program text contained something like 'vec4;'. This is an 4981 * empty declaration. It is valid but weird. Emit a warning. 4982 * 4983 * - The program text contained something like 'S;' and 'S' is not the 4984 * name of a known structure type. This is both invalid and weird. 4985 * Emit an error. 4986 * 4987 * - The program text contained something like 'mediump float;' 4988 * when the programmer probably meant 'precision mediump 4989 * float;' Emit a warning with a description of what they 4990 * probably meant to do. 4991 * 4992 * Note that if decl_type is NULL and there is a structure involved, 4993 * there must have been some sort of error with the structure. In this 4994 * case we assume that an error was already generated on this line of 4995 * code for the structure. There is no need to generate an additional, 4996 * confusing error. 4997 */ 4998 assert(this->type->specifier->structure == NULL || decl_type != NULL 4999 || state->error); 5000 5001 if (decl_type == NULL) { 5002 _mesa_glsl_error(&loc, state, 5003 "invalid type `%s' in empty declaration", 5004 type_name); 5005 } else { 5006 if (decl_type->is_array()) { 5007 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2 5008 * spec: 5009 * 5010 * "... any declaration that leaves the size undefined is 5011 * disallowed as this would add complexity and there are no 5012 * use-cases." 5013 */ 5014 if (state->es_shader && decl_type->is_unsized_array()) { 5015 _mesa_glsl_error(&loc, state, "array size must be explicitly " 5016 "or implicitly defined"); 5017 } 5018 5019 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec: 5020 * 5021 * "The combinations of types and qualifiers that cause 5022 * compile-time or link-time errors are the same whether or not 5023 * the declaration is empty." 5024 */ 5025 validate_array_dimensions(decl_type, state, &loc); 5026 } 5027 5028 if (decl_type->is_atomic_uint()) { 5029 /* Empty atomic counter declarations are allowed and useful 5030 * to set the default offset qualifier. 5031 */ 5032 return NULL; 5033 } else if (this->type->qualifier.precision != ast_precision_none) { 5034 if (this->type->specifier->structure != NULL) { 5035 _mesa_glsl_error(&loc, state, 5036 "precision qualifiers can't be applied " 5037 "to structures"); 5038 } else { 5039 static const char *const precision_names[] = { 5040 "highp", 5041 "highp", 5042 "mediump", 5043 "lowp" 5044 }; 5045 5046 _mesa_glsl_warning(&loc, state, 5047 "empty declaration with precision " 5048 "qualifier, to set the default precision, " 5049 "use `precision %s %s;'", 5050 precision_names[this->type-> 5051 qualifier.precision], 5052 type_name); 5053 } 5054 } else if (this->type->specifier->structure == NULL) { 5055 _mesa_glsl_warning(&loc, state, "empty declaration"); 5056 } 5057 } 5058 } 5059 5060 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 5061 const struct glsl_type *var_type; 5062 ir_variable *var; 5063 const char *identifier = decl->identifier; 5064 /* FINISHME: Emit a warning if a variable declaration shadows a 5065 * FINISHME: declaration at a higher scope. 5066 */ 5067 5068 if ((decl_type == NULL) || decl_type->is_void()) { 5069 if (type_name != NULL) { 5070 _mesa_glsl_error(& loc, state, 5071 "invalid type `%s' in declaration of `%s'", 5072 type_name, decl->identifier); 5073 } else { 5074 _mesa_glsl_error(& loc, state, 5075 "invalid type in declaration of `%s'", 5076 decl->identifier); 5077 } 5078 continue; 5079 } 5080 5081 if (this->type->qualifier.is_subroutine_decl()) { 5082 const glsl_type *t; 5083 const char *name; 5084 5085 t = state->symbols->get_type(this->type->specifier->type_name); 5086 if (!t) 5087 _mesa_glsl_error(& loc, state, 5088 "invalid type in declaration of `%s'", 5089 decl->identifier); 5090 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier); 5091 5092 identifier = name; 5093 5094 } 5095 var_type = process_array_type(&loc, decl_type, decl->array_specifier, 5096 state); 5097 5098 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto); 5099 5100 /* The 'varying in' and 'varying out' qualifiers can only be used with 5101 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support 5102 * yet. 5103 */ 5104 if (this->type->qualifier.flags.q.varying) { 5105 if (this->type->qualifier.flags.q.in) { 5106 _mesa_glsl_error(& loc, state, 5107 "`varying in' qualifier in declaration of " 5108 "`%s' only valid for geometry shaders using " 5109 "ARB_geometry_shader4 or EXT_geometry_shader4", 5110 decl->identifier); 5111 } else if (this->type->qualifier.flags.q.out) { 5112 _mesa_glsl_error(& loc, state, 5113 "`varying out' qualifier in declaration of " 5114 "`%s' only valid for geometry shaders using " 5115 "ARB_geometry_shader4 or EXT_geometry_shader4", 5116 decl->identifier); 5117 } 5118 } 5119 5120 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification; 5121 * 5122 * "Global variables can only use the qualifiers const, 5123 * attribute, uniform, or varying. Only one may be 5124 * specified. 5125 * 5126 * Local variables can only use the qualifier const." 5127 * 5128 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by 5129 * any extension that adds the 'layout' keyword. 5130 */ 5131 if (!state->is_version(130, 300) 5132 && !state->has_explicit_attrib_location() 5133 && !state->has_separate_shader_objects() 5134 && !state->ARB_fragment_coord_conventions_enable) { 5135 /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader 5136 * outputs. (the varying flag is not set by the parser) 5137 */ 5138 if (this->type->qualifier.flags.q.out && 5139 (!state->EXT_gpu_shader4_enable || 5140 state->stage != MESA_SHADER_FRAGMENT)) { 5141 _mesa_glsl_error(& loc, state, 5142 "`out' qualifier in declaration of `%s' " 5143 "only valid for function parameters in %s", 5144 decl->identifier, state->get_version_string()); 5145 } 5146 if (this->type->qualifier.flags.q.in) { 5147 _mesa_glsl_error(& loc, state, 5148 "`in' qualifier in declaration of `%s' " 5149 "only valid for function parameters in %s", 5150 decl->identifier, state->get_version_string()); 5151 } 5152 /* FINISHME: Test for other invalid qualifiers. */ 5153 } 5154 5155 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, 5156 & loc, false); 5157 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state, 5158 &loc); 5159 5160 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary) 5161 && (var->type->is_numeric() || var->type->is_boolean()) 5162 && state->zero_init) { 5163 const ir_constant_data data = { { 0 } }; 5164 var->data.has_initializer = true; 5165 var->constant_initializer = new(var) ir_constant(var->type, &data); 5166 } 5167 5168 if (this->type->qualifier.flags.q.invariant) { 5169 if (!is_allowed_invariant(var, state)) { 5170 _mesa_glsl_error(&loc, state, 5171 "`%s' cannot be marked invariant; interfaces between " 5172 "shader stages only", var->name); 5173 } 5174 } 5175 5176 if (state->current_function != NULL) { 5177 const char *mode = NULL; 5178 const char *extra = ""; 5179 5180 /* There is no need to check for 'inout' here because the parser will 5181 * only allow that in function parameter lists. 5182 */ 5183 if (this->type->qualifier.flags.q.attribute) { 5184 mode = "attribute"; 5185 } else if (this->type->qualifier.is_subroutine_decl()) { 5186 mode = "subroutine uniform"; 5187 } else if (this->type->qualifier.flags.q.uniform) { 5188 mode = "uniform"; 5189 } else if (this->type->qualifier.flags.q.varying) { 5190 mode = "varying"; 5191 } else if (this->type->qualifier.flags.q.in) { 5192 mode = "in"; 5193 extra = " or in function parameter list"; 5194 } else if (this->type->qualifier.flags.q.out) { 5195 mode = "out"; 5196 extra = " or in function parameter list"; 5197 } 5198 5199 if (mode) { 5200 _mesa_glsl_error(& loc, state, 5201 "%s variable `%s' must be declared at " 5202 "global scope%s", 5203 mode, var->name, extra); 5204 } 5205 } else if (var->data.mode == ir_var_shader_in) { 5206 var->data.read_only = true; 5207 5208 if (state->stage == MESA_SHADER_VERTEX) { 5209 bool error_emitted = false; 5210 5211 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec: 5212 * 5213 * "Vertex shader inputs can only be float, floating-point 5214 * vectors, matrices, signed and unsigned integers and integer 5215 * vectors. Vertex shader inputs can also form arrays of these 5216 * types, but not structures." 5217 * 5218 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec: 5219 * 5220 * "Vertex shader inputs can only be float, floating-point 5221 * vectors, matrices, signed and unsigned integers and integer 5222 * vectors. They cannot be arrays or structures." 5223 * 5224 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec: 5225 * 5226 * "The attribute qualifier can be used only with float, 5227 * floating-point vectors, and matrices. Attribute variables 5228 * cannot be declared as arrays or structures." 5229 * 5230 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec: 5231 * 5232 * "Vertex shader inputs can only be float, floating-point 5233 * vectors, matrices, signed and unsigned integers and integer 5234 * vectors. Vertex shader inputs cannot be arrays or 5235 * structures." 5236 * 5237 * From section 4.3.4 of the ARB_bindless_texture spec: 5238 * 5239 * "(modify third paragraph of the section to allow sampler and 5240 * image types) ... Vertex shader inputs can only be float, 5241 * single-precision floating-point scalars, single-precision 5242 * floating-point vectors, matrices, signed and unsigned 5243 * integers and integer vectors, sampler and image types." 5244 */ 5245 const glsl_type *check_type = var->type->without_array(); 5246 5247 switch (check_type->base_type) { 5248 case GLSL_TYPE_FLOAT: 5249 break; 5250 case GLSL_TYPE_UINT64: 5251 case GLSL_TYPE_INT64: 5252 break; 5253 case GLSL_TYPE_UINT: 5254 case GLSL_TYPE_INT: 5255 if (state->is_version(120, 300) || state->EXT_gpu_shader4_enable) 5256 break; 5257 case GLSL_TYPE_DOUBLE: 5258 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable)) 5259 break; 5260 case GLSL_TYPE_SAMPLER: 5261 if (check_type->is_sampler() && state->has_bindless()) 5262 break; 5263 case GLSL_TYPE_IMAGE: 5264 if (check_type->is_image() && state->has_bindless()) 5265 break; 5266 /* FALLTHROUGH */ 5267 default: 5268 _mesa_glsl_error(& loc, state, 5269 "vertex shader input / attribute cannot have " 5270 "type %s`%s'", 5271 var->type->is_array() ? "array of " : "", 5272 check_type->name); 5273 error_emitted = true; 5274 } 5275 5276 if (!error_emitted && var->type->is_array() && 5277 !state->check_version(150, 0, &loc, 5278 "vertex shader input / attribute " 5279 "cannot have array type")) { 5280 error_emitted = true; 5281 } 5282 } else if (state->stage == MESA_SHADER_GEOMETRY) { 5283 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: 5284 * 5285 * Geometry shader input variables get the per-vertex values 5286 * written out by vertex shader output variables of the same 5287 * names. Since a geometry shader operates on a set of 5288 * vertices, each input varying variable (or input block, see 5289 * interface blocks below) needs to be declared as an array. 5290 */ 5291 if (!var->type->is_array()) { 5292 _mesa_glsl_error(&loc, state, 5293 "geometry shader inputs must be arrays"); 5294 } 5295 5296 handle_geometry_shader_input_decl(state, loc, var); 5297 } else if (state->stage == MESA_SHADER_FRAGMENT) { 5298 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec: 5299 * 5300 * It is a compile-time error to declare a fragment shader 5301 * input with, or that contains, any of the following types: 5302 * 5303 * * A boolean type 5304 * * An opaque type 5305 * * An array of arrays 5306 * * An array of structures 5307 * * A structure containing an array 5308 * * A structure containing a structure 5309 */ 5310 if (state->es_shader) { 5311 const glsl_type *check_type = var->type->without_array(); 5312 if (check_type->is_boolean() || 5313 check_type->contains_opaque()) { 5314 _mesa_glsl_error(&loc, state, 5315 "fragment shader input cannot have type %s", 5316 check_type->name); 5317 } 5318 if (var->type->is_array() && 5319 var->type->fields.array->is_array()) { 5320 _mesa_glsl_error(&loc, state, 5321 "%s shader output " 5322 "cannot have an array of arrays", 5323 _mesa_shader_stage_to_string(state->stage)); 5324 } 5325 if (var->type->is_array() && 5326 var->type->fields.array->is_struct()) { 5327 _mesa_glsl_error(&loc, state, 5328 "fragment shader input " 5329 "cannot have an array of structs"); 5330 } 5331 if (var->type->is_struct()) { 5332 for (unsigned i = 0; i < var->type->length; i++) { 5333 if (var->type->fields.structure[i].type->is_array() || 5334 var->type->fields.structure[i].type->is_struct()) 5335 _mesa_glsl_error(&loc, state, 5336 "fragment shader input cannot have " 5337 "a struct that contains an " 5338 "array or struct"); 5339 } 5340 } 5341 } 5342 } else if (state->stage == MESA_SHADER_TESS_CTRL || 5343 state->stage == MESA_SHADER_TESS_EVAL) { 5344 handle_tess_shader_input_decl(state, loc, var); 5345 } 5346 } else if (var->data.mode == ir_var_shader_out) { 5347 const glsl_type *check_type = var->type->without_array(); 5348 5349 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec: 5350 * 5351 * It is a compile-time error to declare a fragment shader output 5352 * that contains any of the following: 5353 * 5354 * * A Boolean type (bool, bvec2 ...) 5355 * * A double-precision scalar or vector (double, dvec2 ...) 5356 * * An opaque type 5357 * * Any matrix type 5358 * * A structure 5359 */ 5360 if (state->stage == MESA_SHADER_FRAGMENT) { 5361 if (check_type->is_struct() || check_type->is_matrix()) 5362 _mesa_glsl_error(&loc, state, 5363 "fragment shader output " 5364 "cannot have struct or matrix type"); 5365 switch (check_type->base_type) { 5366 case GLSL_TYPE_UINT: 5367 case GLSL_TYPE_INT: 5368 case GLSL_TYPE_FLOAT: 5369 break; 5370 default: 5371 _mesa_glsl_error(&loc, state, 5372 "fragment shader output cannot have " 5373 "type %s", check_type->name); 5374 } 5375 } 5376 5377 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec: 5378 * 5379 * It is a compile-time error to declare a vertex shader output 5380 * with, or that contains, any of the following types: 5381 * 5382 * * A boolean type 5383 * * An opaque type 5384 * * An array of arrays 5385 * * An array of structures 5386 * * A structure containing an array 5387 * * A structure containing a structure 5388 * 5389 * It is a compile-time error to declare a fragment shader output 5390 * with, or that contains, any of the following types: 5391 * 5392 * * A boolean type 5393 * * An opaque type 5394 * * A matrix 5395 * * A structure 5396 * * An array of array 5397 * 5398 * ES 3.20 updates this to apply to tessellation and geometry shaders 5399 * as well. Because there are per-vertex arrays in the new stages, 5400 * it strikes the "array of..." rules and replaces them with these: 5401 * 5402 * * For per-vertex-arrayed variables (applies to tessellation 5403 * control, tessellation evaluation and geometry shaders): 5404 * 5405 * * Per-vertex-arrayed arrays of arrays 5406 * * Per-vertex-arrayed arrays of structures 5407 * 5408 * * For non-per-vertex-arrayed variables: 5409 * 5410 * * An array of arrays 5411 * * An array of structures 5412 * 5413 * which basically says to unwrap the per-vertex aspect and apply 5414 * the old rules. 5415 */ 5416 if (state->es_shader) { 5417 if (var->type->is_array() && 5418 var->type->fields.array->is_array()) { 5419 _mesa_glsl_error(&loc, state, 5420 "%s shader output " 5421 "cannot have an array of arrays", 5422 _mesa_shader_stage_to_string(state->stage)); 5423 } 5424 if (state->stage <= MESA_SHADER_GEOMETRY) { 5425 const glsl_type *type = var->type; 5426 5427 if (state->stage == MESA_SHADER_TESS_CTRL && 5428 !var->data.patch && var->type->is_array()) { 5429 type = var->type->fields.array; 5430 } 5431 5432 if (type->is_array() && type->fields.array->is_struct()) { 5433 _mesa_glsl_error(&loc, state, 5434 "%s shader output cannot have " 5435 "an array of structs", 5436 _mesa_shader_stage_to_string(state->stage)); 5437 } 5438 if (type->is_struct()) { 5439 for (unsigned i = 0; i < type->length; i++) { 5440 if (type->fields.structure[i].type->is_array() || 5441 type->fields.structure[i].type->is_struct()) 5442 _mesa_glsl_error(&loc, state, 5443 "%s shader output cannot have a " 5444 "struct that contains an " 5445 "array or struct", 5446 _mesa_shader_stage_to_string(state->stage)); 5447 } 5448 } 5449 } 5450 } 5451 5452 if (state->stage == MESA_SHADER_TESS_CTRL) { 5453 handle_tess_ctrl_shader_output_decl(state, loc, var); 5454 } 5455 } else if (var->type->contains_subroutine()) { 5456 /* declare subroutine uniforms as hidden */ 5457 var->data.how_declared = ir_var_hidden; 5458 } 5459 5460 /* From section 4.3.4 of the GLSL 4.00 spec: 5461 * "Input variables may not be declared using the patch in qualifier 5462 * in tessellation control or geometry shaders." 5463 * 5464 * From section 4.3.6 of the GLSL 4.00 spec: 5465 * "It is an error to use patch out in a vertex, tessellation 5466 * evaluation, or geometry shader." 5467 * 5468 * This doesn't explicitly forbid using them in a fragment shader, but 5469 * that's probably just an oversight. 5470 */ 5471 if (state->stage != MESA_SHADER_TESS_EVAL 5472 && this->type->qualifier.flags.q.patch 5473 && this->type->qualifier.flags.q.in) { 5474 5475 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a " 5476 "tessellation evaluation shader"); 5477 } 5478 5479 if (state->stage != MESA_SHADER_TESS_CTRL 5480 && this->type->qualifier.flags.q.patch 5481 && this->type->qualifier.flags.q.out) { 5482 5483 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a " 5484 "tessellation control shader"); 5485 } 5486 5487 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30. 5488 */ 5489 if (this->type->qualifier.precision != ast_precision_none) { 5490 state->check_precision_qualifiers_allowed(&loc); 5491 } 5492 5493 if (this->type->qualifier.precision != ast_precision_none && 5494 !precision_qualifier_allowed(var->type)) { 5495 _mesa_glsl_error(&loc, state, 5496 "precision qualifiers apply only to floating point" 5497 ", integer and opaque types"); 5498 } 5499 5500 /* From section 4.1.7 of the GLSL 4.40 spec: 5501 * 5502 * "[Opaque types] can only be declared as function 5503 * parameters or uniform-qualified variables." 5504 * 5505 * From section 4.1.7 of the ARB_bindless_texture spec: 5506 * 5507 * "Samplers may be declared as shader inputs and outputs, as uniform 5508 * variables, as temporary variables, and as function parameters." 5509 * 5510 * From section 4.1.X of the ARB_bindless_texture spec: 5511 * 5512 * "Images may be declared as shader inputs and outputs, as uniform 5513 * variables, as temporary variables, and as function parameters." 5514 */ 5515 if (!this->type->qualifier.flags.q.uniform && 5516 (var_type->contains_atomic() || 5517 (!state->has_bindless() && var_type->contains_opaque()))) { 5518 _mesa_glsl_error(&loc, state, 5519 "%s variables must be declared uniform", 5520 state->has_bindless() ? "atomic" : "opaque"); 5521 } 5522 5523 /* Process the initializer and add its instructions to a temporary 5524 * list. This list will be added to the instruction stream (below) after 5525 * the declaration is added. This is done because in some cases (such as 5526 * redeclarations) the declaration may not actually be added to the 5527 * instruction stream. 5528 */ 5529 exec_list initializer_instructions; 5530 5531 /* Examine var name here since var may get deleted in the next call */ 5532 bool var_is_gl_id = is_gl_identifier(var->name); 5533 5534 bool is_redeclaration; 5535 var = get_variable_being_redeclared(&var, decl->get_location(), state, 5536 false /* allow_all_redeclarations */, 5537 &is_redeclaration); 5538 if (is_redeclaration) { 5539 if (var_is_gl_id && 5540 var->data.how_declared == ir_var_declared_in_block) { 5541 _mesa_glsl_error(&loc, state, 5542 "`%s' has already been redeclared using " 5543 "gl_PerVertex", var->name); 5544 } 5545 var->data.how_declared = ir_var_declared_normally; 5546 } 5547 5548 if (decl->initializer != NULL) { 5549 result = process_initializer(var, 5550 decl, this->type, 5551 &initializer_instructions, state); 5552 } else { 5553 validate_array_dimensions(var_type, state, &loc); 5554 } 5555 5556 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec: 5557 * 5558 * "It is an error to write to a const variable outside of 5559 * its declaration, so they must be initialized when 5560 * declared." 5561 */ 5562 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) { 5563 _mesa_glsl_error(& loc, state, 5564 "const declaration of `%s' must be initialized", 5565 decl->identifier); 5566 } 5567 5568 if (state->es_shader) { 5569 const glsl_type *const t = var->type; 5570 5571 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs. 5572 * 5573 * The GL_OES_tessellation_shader spec says about inputs: 5574 * 5575 * "Declaring an array size is optional. If no size is specified, 5576 * it will be taken from the implementation-dependent maximum 5577 * patch size (gl_MaxPatchVertices)." 5578 * 5579 * and about TCS outputs: 5580 * 5581 * "If no size is specified, it will be taken from output patch 5582 * size declared in the shader." 5583 * 5584 * The GL_OES_geometry_shader spec says: 5585 * 5586 * "All geometry shader input unsized array declarations will be 5587 * sized by an earlier input primitive layout qualifier, when 5588 * present, as per the following table." 5589 */ 5590 const bool implicitly_sized = 5591 (var->data.mode == ir_var_shader_in && 5592 state->stage >= MESA_SHADER_TESS_CTRL && 5593 state->stage <= MESA_SHADER_GEOMETRY) || 5594 (var->data.mode == ir_var_shader_out && 5595 state->stage == MESA_SHADER_TESS_CTRL); 5596 5597 if (t->is_unsized_array() && !implicitly_sized) 5598 /* Section 10.17 of the GLSL ES 1.00 specification states that 5599 * unsized array declarations have been removed from the language. 5600 * Arrays that are sized using an initializer are still explicitly 5601 * sized. However, GLSL ES 1.00 does not allow array 5602 * initializers. That is only allowed in GLSL ES 3.00. 5603 * 5604 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says: 5605 * 5606 * "An array type can also be formed without specifying a size 5607 * if the definition includes an initializer: 5608 * 5609 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2 5610 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3 5611 * 5612 * float a[5]; 5613 * float b[] = a;" 5614 */ 5615 _mesa_glsl_error(& loc, state, 5616 "unsized array declarations are not allowed in " 5617 "GLSL ES"); 5618 } 5619 5620 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec: 5621 * 5622 * "It is a compile-time error to declare an unsized array of 5623 * atomic_uint" 5624 */ 5625 if (var->type->is_unsized_array() && 5626 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) { 5627 _mesa_glsl_error(& loc, state, 5628 "Unsized array of atomic_uint is not allowed"); 5629 } 5630 5631 /* If the declaration is not a redeclaration, there are a few additional 5632 * semantic checks that must be applied. In addition, variable that was 5633 * created for the declaration should be added to the IR stream. 5634 */ 5635 if (!is_redeclaration) { 5636 validate_identifier(decl->identifier, loc, state); 5637 5638 /* Add the variable to the symbol table. Note that the initializer's 5639 * IR was already processed earlier (though it hasn't been emitted 5640 * yet), without the variable in scope. 5641 * 5642 * This differs from most C-like languages, but it follows the GLSL 5643 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50 5644 * spec: 5645 * 5646 * "Within a declaration, the scope of a name starts immediately 5647 * after the initializer if present or immediately after the name 5648 * being declared if not." 5649 */ 5650 if (!state->symbols->add_variable(var)) { 5651 YYLTYPE loc = this->get_location(); 5652 _mesa_glsl_error(&loc, state, "name `%s' already taken in the " 5653 "current scope", decl->identifier); 5654 continue; 5655 } 5656 5657 /* Push the variable declaration to the top. It means that all the 5658 * variable declarations will appear in a funny last-to-first order, 5659 * but otherwise we run into trouble if a function is prototyped, a 5660 * global var is decled, then the function is defined with usage of 5661 * the global var. See glslparsertest's CorrectModule.frag. 5662 */ 5663 instructions->push_head(var); 5664 } 5665 5666 instructions->append_list(&initializer_instructions); 5667 } 5668 5669 5670 /* Generally, variable declarations do not have r-values. However, 5671 * one is used for the declaration in 5672 * 5673 * while (bool b = some_condition()) { 5674 * ... 5675 * } 5676 * 5677 * so we return the rvalue from the last seen declaration here. 5678 */ 5679 return result; 5680} 5681 5682 5683ir_rvalue * 5684ast_parameter_declarator::hir(exec_list *instructions, 5685 struct _mesa_glsl_parse_state *state) 5686{ 5687 void *ctx = state; 5688 const struct glsl_type *type; 5689 const char *name = NULL; 5690 YYLTYPE loc = this->get_location(); 5691 5692 type = this->type->glsl_type(& name, state); 5693 5694 if (type == NULL) { 5695 if (name != NULL) { 5696 _mesa_glsl_error(& loc, state, 5697 "invalid type `%s' in declaration of `%s'", 5698 name, this->identifier); 5699 } else { 5700 _mesa_glsl_error(& loc, state, 5701 "invalid type in declaration of `%s'", 5702 this->identifier); 5703 } 5704 5705 type = glsl_type::error_type; 5706 } 5707 5708 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec: 5709 * 5710 * "Functions that accept no input arguments need not use void in the 5711 * argument list because prototypes (or definitions) are required and 5712 * therefore there is no ambiguity when an empty argument list "( )" is 5713 * declared. The idiom "(void)" as a parameter list is provided for 5714 * convenience." 5715 * 5716 * Placing this check here prevents a void parameter being set up 5717 * for a function, which avoids tripping up checks for main taking 5718 * parameters and lookups of an unnamed symbol. 5719 */ 5720 if (type->is_void()) { 5721 if (this->identifier != NULL) 5722 _mesa_glsl_error(& loc, state, 5723 "named parameter cannot have type `void'"); 5724 5725 is_void = true; 5726 return NULL; 5727 } 5728 5729 if (formal_parameter && (this->identifier == NULL)) { 5730 _mesa_glsl_error(& loc, state, "formal parameter lacks a name"); 5731 return NULL; 5732 } 5733 5734 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...) 5735 * call already handled the "vec4[..] foo" case. 5736 */ 5737 type = process_array_type(&loc, type, this->array_specifier, state); 5738 5739 if (!type->is_error() && type->is_unsized_array()) { 5740 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have " 5741 "a declared size"); 5742 type = glsl_type::error_type; 5743 } 5744 5745 is_void = false; 5746 ir_variable *var = new(ctx) 5747 ir_variable(type, this->identifier, ir_var_function_in); 5748 5749 /* Apply any specified qualifiers to the parameter declaration. Note that 5750 * for function parameters the default mode is 'in'. 5751 */ 5752 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc, 5753 true); 5754 5755 /* From section 4.1.7 of the GLSL 4.40 spec: 5756 * 5757 * "Opaque variables cannot be treated as l-values; hence cannot 5758 * be used as out or inout function parameters, nor can they be 5759 * assigned into." 5760 * 5761 * From section 4.1.7 of the ARB_bindless_texture spec: 5762 * 5763 * "Samplers can be used as l-values, so can be assigned into and used 5764 * as "out" and "inout" function parameters." 5765 * 5766 * From section 4.1.X of the ARB_bindless_texture spec: 5767 * 5768 * "Images can be used as l-values, so can be assigned into and used as 5769 * "out" and "inout" function parameters." 5770 */ 5771 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) 5772 && (type->contains_atomic() || 5773 (!state->has_bindless() && type->contains_opaque()))) { 5774 _mesa_glsl_error(&loc, state, "out and inout parameters cannot " 5775 "contain %s variables", 5776 state->has_bindless() ? "atomic" : "opaque"); 5777 type = glsl_type::error_type; 5778 } 5779 5780 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec: 5781 * 5782 * "When calling a function, expressions that do not evaluate to 5783 * l-values cannot be passed to parameters declared as out or inout." 5784 * 5785 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: 5786 * 5787 * "Other binary or unary expressions, non-dereferenced arrays, 5788 * function names, swizzles with repeated fields, and constants 5789 * cannot be l-values." 5790 * 5791 * So for GLSL 1.10, passing an array as an out or inout parameter is not 5792 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES. 5793 */ 5794 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) 5795 && type->is_array() 5796 && !state->check_version(120, 100, &loc, 5797 "arrays cannot be out or inout parameters")) { 5798 type = glsl_type::error_type; 5799 } 5800 5801 instructions->push_tail(var); 5802 5803 /* Parameter declarations do not have r-values. 5804 */ 5805 return NULL; 5806} 5807 5808 5809void 5810ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters, 5811 bool formal, 5812 exec_list *ir_parameters, 5813 _mesa_glsl_parse_state *state) 5814{ 5815 ast_parameter_declarator *void_param = NULL; 5816 unsigned count = 0; 5817 5818 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) { 5819 param->formal_parameter = formal; 5820 param->hir(ir_parameters, state); 5821 5822 if (param->is_void) 5823 void_param = param; 5824 5825 count++; 5826 } 5827 5828 if ((void_param != NULL) && (count > 1)) { 5829 YYLTYPE loc = void_param->get_location(); 5830 5831 _mesa_glsl_error(& loc, state, 5832 "`void' parameter must be only parameter"); 5833 } 5834} 5835 5836 5837void 5838emit_function(_mesa_glsl_parse_state *state, ir_function *f) 5839{ 5840 /* IR invariants disallow function declarations or definitions 5841 * nested within other function definitions. But there is no 5842 * requirement about the relative order of function declarations 5843 * and definitions with respect to one another. So simply insert 5844 * the new ir_function block at the end of the toplevel instruction 5845 * list. 5846 */ 5847 state->toplevel_ir->push_tail(f); 5848} 5849 5850 5851ir_rvalue * 5852ast_function::hir(exec_list *instructions, 5853 struct _mesa_glsl_parse_state *state) 5854{ 5855 void *ctx = state; 5856 ir_function *f = NULL; 5857 ir_function_signature *sig = NULL; 5858 exec_list hir_parameters; 5859 YYLTYPE loc = this->get_location(); 5860 5861 const char *const name = identifier; 5862 5863 /* New functions are always added to the top-level IR instruction stream, 5864 * so this instruction list pointer is ignored. See also emit_function 5865 * (called below). 5866 */ 5867 (void) instructions; 5868 5869 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec, 5870 * 5871 * "Function declarations (prototypes) cannot occur inside of functions; 5872 * they must be at global scope, or for the built-in functions, outside 5873 * the global scope." 5874 * 5875 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec, 5876 * 5877 * "User defined functions may only be defined within the global scope." 5878 * 5879 * Note that this language does not appear in GLSL 1.10. 5880 */ 5881 if ((state->current_function != NULL) && 5882 state->is_version(120, 100)) { 5883 YYLTYPE loc = this->get_location(); 5884 _mesa_glsl_error(&loc, state, 5885 "declaration of function `%s' not allowed within " 5886 "function body", name); 5887 } 5888 5889 validate_identifier(name, this->get_location(), state); 5890 5891 /* Convert the list of function parameters to HIR now so that they can be 5892 * used below to compare this function's signature with previously seen 5893 * signatures for functions with the same name. 5894 */ 5895 ast_parameter_declarator::parameters_to_hir(& this->parameters, 5896 is_definition, 5897 & hir_parameters, state); 5898 5899 const char *return_type_name; 5900 const glsl_type *return_type = 5901 this->return_type->glsl_type(& return_type_name, state); 5902 5903 if (!return_type) { 5904 YYLTYPE loc = this->get_location(); 5905 _mesa_glsl_error(&loc, state, 5906 "function `%s' has undeclared return type `%s'", 5907 name, return_type_name); 5908 return_type = glsl_type::error_type; 5909 } 5910 5911 /* ARB_shader_subroutine states: 5912 * "Subroutine declarations cannot be prototyped. It is an error to prepend 5913 * subroutine(...) to a function declaration." 5914 */ 5915 if (this->return_type->qualifier.subroutine_list && !is_definition) { 5916 YYLTYPE loc = this->get_location(); 5917 _mesa_glsl_error(&loc, state, 5918 "function declaration `%s' cannot have subroutine prepended", 5919 name); 5920 } 5921 5922 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec: 5923 * "No qualifier is allowed on the return type of a function." 5924 */ 5925 if (this->return_type->has_qualifiers(state)) { 5926 YYLTYPE loc = this->get_location(); 5927 _mesa_glsl_error(& loc, state, 5928 "function `%s' return type has qualifiers", name); 5929 } 5930 5931 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says: 5932 * 5933 * "Arrays are allowed as arguments and as the return type. In both 5934 * cases, the array must be explicitly sized." 5935 */ 5936 if (return_type->is_unsized_array()) { 5937 YYLTYPE loc = this->get_location(); 5938 _mesa_glsl_error(& loc, state, 5939 "function `%s' return type array must be explicitly " 5940 "sized", name); 5941 } 5942 5943 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec: 5944 * 5945 * "Arrays are allowed as arguments, but not as the return type. [...] 5946 * The return type can also be a structure if the structure does not 5947 * contain an array." 5948 */ 5949 if (state->language_version == 100 && return_type->contains_array()) { 5950 YYLTYPE loc = this->get_location(); 5951 _mesa_glsl_error(& loc, state, 5952 "function `%s' return type contains an array", name); 5953 } 5954 5955 /* From section 4.1.7 of the GLSL 4.40 spec: 5956 * 5957 * "[Opaque types] can only be declared as function parameters 5958 * or uniform-qualified variables." 5959 * 5960 * The ARB_bindless_texture spec doesn't clearly state this, but as it says 5961 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X, 5962 * (Images)", this should be allowed. 5963 */ 5964 if (return_type->contains_atomic() || 5965 (!state->has_bindless() && return_type->contains_opaque())) { 5966 YYLTYPE loc = this->get_location(); 5967 _mesa_glsl_error(&loc, state, 5968 "function `%s' return type can't contain an %s type", 5969 name, state->has_bindless() ? "atomic" : "opaque"); 5970 } 5971 5972 /**/ 5973 if (return_type->is_subroutine()) { 5974 YYLTYPE loc = this->get_location(); 5975 _mesa_glsl_error(&loc, state, 5976 "function `%s' return type can't be a subroutine type", 5977 name); 5978 } 5979 5980 5981 /* Create an ir_function if one doesn't already exist. */ 5982 f = state->symbols->get_function(name); 5983 if (f == NULL) { 5984 f = new(ctx) ir_function(name); 5985 if (!this->return_type->qualifier.is_subroutine_decl()) { 5986 if (!state->symbols->add_function(f)) { 5987 /* This function name shadows a non-function use of the same name. */ 5988 YYLTYPE loc = this->get_location(); 5989 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with " 5990 "non-function", name); 5991 return NULL; 5992 } 5993 } 5994 emit_function(state, f); 5995 } 5996 5997 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71: 5998 * 5999 * "A shader cannot redefine or overload built-in functions." 6000 * 6001 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions": 6002 * 6003 * "User code can overload the built-in functions but cannot redefine 6004 * them." 6005 */ 6006 if (state->es_shader) { 6007 /* Local shader has no exact candidates; check the built-ins. */ 6008 _mesa_glsl_initialize_builtin_functions(); 6009 if (state->language_version >= 300 && 6010 _mesa_glsl_has_builtin_function(state, name)) { 6011 YYLTYPE loc = this->get_location(); 6012 _mesa_glsl_error(& loc, state, 6013 "A shader cannot redefine or overload built-in " 6014 "function `%s' in GLSL ES 3.00", name); 6015 return NULL; 6016 } 6017 6018 if (state->language_version == 100) { 6019 ir_function_signature *sig = 6020 _mesa_glsl_find_builtin_function(state, name, &hir_parameters); 6021 if (sig && sig->is_builtin()) { 6022 _mesa_glsl_error(& loc, state, 6023 "A shader cannot redefine built-in " 6024 "function `%s' in GLSL ES 1.00", name); 6025 } 6026 } 6027 } 6028 6029 /* Verify that this function's signature either doesn't match a previously 6030 * seen signature for a function with the same name, or, if a match is found, 6031 * that the previously seen signature does not have an associated definition. 6032 */ 6033 if (state->es_shader || f->has_user_signature()) { 6034 sig = f->exact_matching_signature(state, &hir_parameters); 6035 if (sig != NULL) { 6036 const char *badvar = sig->qualifiers_match(&hir_parameters); 6037 if (badvar != NULL) { 6038 YYLTYPE loc = this->get_location(); 6039 6040 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' " 6041 "qualifiers don't match prototype", name, badvar); 6042 } 6043 6044 if (sig->return_type != return_type) { 6045 YYLTYPE loc = this->get_location(); 6046 6047 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't " 6048 "match prototype", name); 6049 } 6050 6051 if (sig->is_defined) { 6052 if (is_definition) { 6053 YYLTYPE loc = this->get_location(); 6054 _mesa_glsl_error(& loc, state, "function `%s' redefined", name); 6055 } else { 6056 /* We just encountered a prototype that exactly matches a 6057 * function that's already been defined. This is redundant, 6058 * and we should ignore it. 6059 */ 6060 return NULL; 6061 } 6062 } else if (state->language_version == 100 && !is_definition) { 6063 /* From the GLSL 1.00 spec, section 4.2.7: 6064 * 6065 * "A particular variable, structure or function declaration 6066 * may occur at most once within a scope with the exception 6067 * that a single function prototype plus the corresponding 6068 * function definition are allowed." 6069 */ 6070 YYLTYPE loc = this->get_location(); 6071 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name); 6072 } 6073 } 6074 } 6075 6076 /* Verify the return type of main() */ 6077 if (strcmp(name, "main") == 0) { 6078 if (! return_type->is_void()) { 6079 YYLTYPE loc = this->get_location(); 6080 6081 _mesa_glsl_error(& loc, state, "main() must return void"); 6082 } 6083 6084 if (!hir_parameters.is_empty()) { 6085 YYLTYPE loc = this->get_location(); 6086 6087 _mesa_glsl_error(& loc, state, "main() must not take any parameters"); 6088 } 6089 } 6090 6091 /* Finish storing the information about this new function in its signature. 6092 */ 6093 if (sig == NULL) { 6094 sig = new(ctx) ir_function_signature(return_type); 6095 f->add_signature(sig); 6096 } 6097 6098 sig->replace_parameters(&hir_parameters); 6099 signature = sig; 6100 6101 if (this->return_type->qualifier.subroutine_list) { 6102 int idx; 6103 6104 if (this->return_type->qualifier.flags.q.explicit_index) { 6105 unsigned qual_index; 6106 if (process_qualifier_constant(state, &loc, "index", 6107 this->return_type->qualifier.index, 6108 &qual_index)) { 6109 if (!state->has_explicit_uniform_location()) { 6110 _mesa_glsl_error(&loc, state, "subroutine index requires " 6111 "GL_ARB_explicit_uniform_location or " 6112 "GLSL 4.30"); 6113 } else if (qual_index >= MAX_SUBROUTINES) { 6114 _mesa_glsl_error(&loc, state, 6115 "invalid subroutine index (%d) index must " 6116 "be a number between 0 and " 6117 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index, 6118 MAX_SUBROUTINES - 1); 6119 } else { 6120 f->subroutine_index = qual_index; 6121 } 6122 } 6123 } 6124 6125 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length(); 6126 f->subroutine_types = ralloc_array(state, const struct glsl_type *, 6127 f->num_subroutine_types); 6128 idx = 0; 6129 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) { 6130 const struct glsl_type *type; 6131 /* the subroutine type must be already declared */ 6132 type = state->symbols->get_type(decl->identifier); 6133 if (!type) { 6134 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier); 6135 } 6136 6137 for (int i = 0; i < state->num_subroutine_types; i++) { 6138 ir_function *fn = state->subroutine_types[i]; 6139 ir_function_signature *tsig = NULL; 6140 6141 if (strcmp(fn->name, decl->identifier)) 6142 continue; 6143 6144 tsig = fn->matching_signature(state, &sig->parameters, 6145 false); 6146 if (!tsig) { 6147 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier); 6148 } else { 6149 if (tsig->return_type != sig->return_type) { 6150 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier); 6151 } 6152 } 6153 } 6154 f->subroutine_types[idx++] = type; 6155 } 6156 state->subroutines = (ir_function **)reralloc(state, state->subroutines, 6157 ir_function *, 6158 state->num_subroutines + 1); 6159 state->subroutines[state->num_subroutines] = f; 6160 state->num_subroutines++; 6161 6162 } 6163 6164 if (this->return_type->qualifier.is_subroutine_decl()) { 6165 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) { 6166 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier); 6167 return NULL; 6168 } 6169 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types, 6170 ir_function *, 6171 state->num_subroutine_types + 1); 6172 state->subroutine_types[state->num_subroutine_types] = f; 6173 state->num_subroutine_types++; 6174 6175 f->is_subroutine = true; 6176 } 6177 6178 /* Function declarations (prototypes) do not have r-values. 6179 */ 6180 return NULL; 6181} 6182 6183 6184ir_rvalue * 6185ast_function_definition::hir(exec_list *instructions, 6186 struct _mesa_glsl_parse_state *state) 6187{ 6188 prototype->is_definition = true; 6189 prototype->hir(instructions, state); 6190 6191 ir_function_signature *signature = prototype->signature; 6192 if (signature == NULL) 6193 return NULL; 6194 6195 assert(state->current_function == NULL); 6196 state->current_function = signature; 6197 state->found_return = false; 6198 6199 /* Duplicate parameters declared in the prototype as concrete variables. 6200 * Add these to the symbol table. 6201 */ 6202 state->symbols->push_scope(); 6203 foreach_in_list(ir_variable, var, &signature->parameters) { 6204 assert(var->as_variable() != NULL); 6205 6206 /* The only way a parameter would "exist" is if two parameters have 6207 * the same name. 6208 */ 6209 if (state->symbols->name_declared_this_scope(var->name)) { 6210 YYLTYPE loc = this->get_location(); 6211 6212 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name); 6213 } else { 6214 state->symbols->add_variable(var); 6215 } 6216 } 6217 6218 /* Convert the body of the function to HIR. */ 6219 this->body->hir(&signature->body, state); 6220 signature->is_defined = true; 6221 6222 state->symbols->pop_scope(); 6223 6224 assert(state->current_function == signature); 6225 state->current_function = NULL; 6226 6227 if (!signature->return_type->is_void() && !state->found_return) { 6228 YYLTYPE loc = this->get_location(); 6229 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type " 6230 "%s, but no return statement", 6231 signature->function_name(), 6232 signature->return_type->name); 6233 } 6234 6235 /* Function definitions do not have r-values. 6236 */ 6237 return NULL; 6238} 6239 6240 6241ir_rvalue * 6242ast_jump_statement::hir(exec_list *instructions, 6243 struct _mesa_glsl_parse_state *state) 6244{ 6245 void *ctx = state; 6246 6247 switch (mode) { 6248 case ast_return: { 6249 ir_return *inst; 6250 assert(state->current_function); 6251 6252 if (opt_return_value) { 6253 ir_rvalue *ret = opt_return_value->hir(instructions, state); 6254 6255 /* The value of the return type can be NULL if the shader says 6256 * 'return foo();' and foo() is a function that returns void. 6257 * 6258 * NOTE: The GLSL spec doesn't say that this is an error. The type 6259 * of the return value is void. If the return type of the function is 6260 * also void, then this should compile without error. Seriously. 6261 */ 6262 const glsl_type *const ret_type = 6263 (ret == NULL) ? glsl_type::void_type : ret->type; 6264 6265 /* Implicit conversions are not allowed for return values prior to 6266 * ARB_shading_language_420pack. 6267 */ 6268 if (state->current_function->return_type != ret_type) { 6269 YYLTYPE loc = this->get_location(); 6270 6271 if (state->has_420pack()) { 6272 if (!apply_implicit_conversion(state->current_function->return_type, 6273 ret, state) 6274 || (ret->type != state->current_function->return_type)) { 6275 _mesa_glsl_error(& loc, state, 6276 "could not implicitly convert return value " 6277 "to %s, in function `%s'", 6278 state->current_function->return_type->name, 6279 state->current_function->function_name()); 6280 } 6281 } else { 6282 _mesa_glsl_error(& loc, state, 6283 "`return' with wrong type %s, in function `%s' " 6284 "returning %s", 6285 ret_type->name, 6286 state->current_function->function_name(), 6287 state->current_function->return_type->name); 6288 } 6289 } else if (state->current_function->return_type->base_type == 6290 GLSL_TYPE_VOID) { 6291 YYLTYPE loc = this->get_location(); 6292 6293 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20 6294 * specs add a clarification: 6295 * 6296 * "A void function can only use return without a return argument, even if 6297 * the return argument has void type. Return statements only accept values: 6298 * 6299 * void func1() { } 6300 * void func2() { return func1(); } // illegal return statement" 6301 */ 6302 _mesa_glsl_error(& loc, state, 6303 "void functions can only use `return' without a " 6304 "return argument"); 6305 } 6306 6307 inst = new(ctx) ir_return(ret); 6308 } else { 6309 if (state->current_function->return_type->base_type != 6310 GLSL_TYPE_VOID) { 6311 YYLTYPE loc = this->get_location(); 6312 6313 _mesa_glsl_error(& loc, state, 6314 "`return' with no value, in function %s returning " 6315 "non-void", 6316 state->current_function->function_name()); 6317 } 6318 inst = new(ctx) ir_return; 6319 } 6320 6321 state->found_return = true; 6322 instructions->push_tail(inst); 6323 break; 6324 } 6325 6326 case ast_discard: 6327 if (state->stage != MESA_SHADER_FRAGMENT) { 6328 YYLTYPE loc = this->get_location(); 6329 6330 _mesa_glsl_error(& loc, state, 6331 "`discard' may only appear in a fragment shader"); 6332 } 6333 instructions->push_tail(new(ctx) ir_discard); 6334 break; 6335 6336 case ast_break: 6337 case ast_continue: 6338 if (mode == ast_continue && 6339 state->loop_nesting_ast == NULL) { 6340 YYLTYPE loc = this->get_location(); 6341 6342 _mesa_glsl_error(& loc, state, "continue may only appear in a loop"); 6343 } else if (mode == ast_break && 6344 state->loop_nesting_ast == NULL && 6345 state->switch_state.switch_nesting_ast == NULL) { 6346 YYLTYPE loc = this->get_location(); 6347 6348 _mesa_glsl_error(& loc, state, 6349 "break may only appear in a loop or a switch"); 6350 } else { 6351 /* For a loop, inline the for loop expression again, since we don't 6352 * know where near the end of the loop body the normal copy of it is 6353 * going to be placed. Same goes for the condition for a do-while 6354 * loop. 6355 */ 6356 if (state->loop_nesting_ast != NULL && 6357 mode == ast_continue && !state->switch_state.is_switch_innermost) { 6358 if (state->loop_nesting_ast->rest_expression) { 6359 state->loop_nesting_ast->rest_expression->hir(instructions, 6360 state); 6361 } 6362 if (state->loop_nesting_ast->mode == 6363 ast_iteration_statement::ast_do_while) { 6364 state->loop_nesting_ast->condition_to_hir(instructions, state); 6365 } 6366 } 6367 6368 if (state->switch_state.is_switch_innermost && 6369 mode == ast_continue) { 6370 /* Set 'continue_inside' to true. */ 6371 ir_rvalue *const true_val = new (ctx) ir_constant(true); 6372 ir_dereference_variable *deref_continue_inside_var = 6373 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6374 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var, 6375 true_val)); 6376 6377 /* Break out from the switch, continue for the loop will 6378 * be called right after switch. */ 6379 ir_loop_jump *const jump = 6380 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6381 instructions->push_tail(jump); 6382 6383 } else if (state->switch_state.is_switch_innermost && 6384 mode == ast_break) { 6385 /* Force break out of switch by inserting a break. */ 6386 ir_loop_jump *const jump = 6387 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6388 instructions->push_tail(jump); 6389 } else { 6390 ir_loop_jump *const jump = 6391 new(ctx) ir_loop_jump((mode == ast_break) 6392 ? ir_loop_jump::jump_break 6393 : ir_loop_jump::jump_continue); 6394 instructions->push_tail(jump); 6395 } 6396 } 6397 6398 break; 6399 } 6400 6401 /* Jump instructions do not have r-values. 6402 */ 6403 return NULL; 6404} 6405 6406 6407ir_rvalue * 6408ast_selection_statement::hir(exec_list *instructions, 6409 struct _mesa_glsl_parse_state *state) 6410{ 6411 void *ctx = state; 6412 6413 ir_rvalue *const condition = this->condition->hir(instructions, state); 6414 6415 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec: 6416 * 6417 * "Any expression whose type evaluates to a Boolean can be used as the 6418 * conditional expression bool-expression. Vector types are not accepted 6419 * as the expression to if." 6420 * 6421 * The checks are separated so that higher quality diagnostics can be 6422 * generated for cases where both rules are violated. 6423 */ 6424 if (!condition->type->is_boolean() || !condition->type->is_scalar()) { 6425 YYLTYPE loc = this->condition->get_location(); 6426 6427 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar " 6428 "boolean"); 6429 } 6430 6431 ir_if *const stmt = new(ctx) ir_if(condition); 6432 6433 if (then_statement != NULL) { 6434 state->symbols->push_scope(); 6435 then_statement->hir(& stmt->then_instructions, state); 6436 state->symbols->pop_scope(); 6437 } 6438 6439 if (else_statement != NULL) { 6440 state->symbols->push_scope(); 6441 else_statement->hir(& stmt->else_instructions, state); 6442 state->symbols->pop_scope(); 6443 } 6444 6445 instructions->push_tail(stmt); 6446 6447 /* if-statements do not have r-values. 6448 */ 6449 return NULL; 6450} 6451 6452 6453struct case_label { 6454 /** Value of the case label. */ 6455 unsigned value; 6456 6457 /** Does this label occur after the default? */ 6458 bool after_default; 6459 6460 /** 6461 * AST for the case label. 6462 * 6463 * This is only used to generate error messages for duplicate labels. 6464 */ 6465 ast_expression *ast; 6466}; 6467 6468/* Used for detection of duplicate case values, compare 6469 * given contents directly. 6470 */ 6471static bool 6472compare_case_value(const void *a, const void *b) 6473{ 6474 return ((struct case_label *) a)->value == ((struct case_label *) b)->value; 6475} 6476 6477 6478/* Used for detection of duplicate case values, just 6479 * returns key contents as is. 6480 */ 6481static unsigned 6482key_contents(const void *key) 6483{ 6484 return ((struct case_label *) key)->value; 6485} 6486 6487 6488ir_rvalue * 6489ast_switch_statement::hir(exec_list *instructions, 6490 struct _mesa_glsl_parse_state *state) 6491{ 6492 void *ctx = state; 6493 6494 ir_rvalue *const test_expression = 6495 this->test_expression->hir(instructions, state); 6496 6497 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec: 6498 * 6499 * "The type of init-expression in a switch statement must be a 6500 * scalar integer." 6501 */ 6502 if (!test_expression->type->is_scalar() || 6503 !test_expression->type->is_integer()) { 6504 YYLTYPE loc = this->test_expression->get_location(); 6505 6506 _mesa_glsl_error(& loc, 6507 state, 6508 "switch-statement expression must be scalar " 6509 "integer"); 6510 return NULL; 6511 } 6512 6513 /* Track the switch-statement nesting in a stack-like manner. 6514 */ 6515 struct glsl_switch_state saved = state->switch_state; 6516 6517 state->switch_state.is_switch_innermost = true; 6518 state->switch_state.switch_nesting_ast = this; 6519 state->switch_state.labels_ht = 6520 _mesa_hash_table_create(NULL, key_contents, 6521 compare_case_value); 6522 state->switch_state.previous_default = NULL; 6523 6524 /* Initalize is_fallthru state to false. 6525 */ 6526 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false); 6527 state->switch_state.is_fallthru_var = 6528 new(ctx) ir_variable(glsl_type::bool_type, 6529 "switch_is_fallthru_tmp", 6530 ir_var_temporary); 6531 instructions->push_tail(state->switch_state.is_fallthru_var); 6532 6533 ir_dereference_variable *deref_is_fallthru_var = 6534 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var); 6535 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var, 6536 is_fallthru_val)); 6537 6538 /* Initialize continue_inside state to false. 6539 */ 6540 state->switch_state.continue_inside = 6541 new(ctx) ir_variable(glsl_type::bool_type, 6542 "continue_inside_tmp", 6543 ir_var_temporary); 6544 instructions->push_tail(state->switch_state.continue_inside); 6545 6546 ir_rvalue *const false_val = new (ctx) ir_constant(false); 6547 ir_dereference_variable *deref_continue_inside_var = 6548 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6549 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var, 6550 false_val)); 6551 6552 state->switch_state.run_default = 6553 new(ctx) ir_variable(glsl_type::bool_type, 6554 "run_default_tmp", 6555 ir_var_temporary); 6556 instructions->push_tail(state->switch_state.run_default); 6557 6558 /* Loop around the switch is used for flow control. */ 6559 ir_loop * loop = new(ctx) ir_loop(); 6560 instructions->push_tail(loop); 6561 6562 /* Cache test expression. 6563 */ 6564 test_to_hir(&loop->body_instructions, state); 6565 6566 /* Emit code for body of switch stmt. 6567 */ 6568 body->hir(&loop->body_instructions, state); 6569 6570 /* Insert a break at the end to exit loop. */ 6571 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6572 loop->body_instructions.push_tail(jump); 6573 6574 /* If we are inside loop, check if continue got called inside switch. */ 6575 if (state->loop_nesting_ast != NULL) { 6576 ir_dereference_variable *deref_continue_inside = 6577 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6578 ir_if *irif = new(ctx) ir_if(deref_continue_inside); 6579 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue); 6580 6581 if (state->loop_nesting_ast != NULL) { 6582 if (state->loop_nesting_ast->rest_expression) { 6583 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions, 6584 state); 6585 } 6586 if (state->loop_nesting_ast->mode == 6587 ast_iteration_statement::ast_do_while) { 6588 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state); 6589 } 6590 } 6591 irif->then_instructions.push_tail(jump); 6592 instructions->push_tail(irif); 6593 } 6594 6595 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL); 6596 6597 state->switch_state = saved; 6598 6599 /* Switch statements do not have r-values. */ 6600 return NULL; 6601} 6602 6603 6604void 6605ast_switch_statement::test_to_hir(exec_list *instructions, 6606 struct _mesa_glsl_parse_state *state) 6607{ 6608 void *ctx = state; 6609 6610 /* set to true to avoid a duplicate "use of uninitialized variable" warning 6611 * on the switch test case. The first one would be already raised when 6612 * getting the test_expression at ast_switch_statement::hir 6613 */ 6614 test_expression->set_is_lhs(true); 6615 /* Cache value of test expression. */ 6616 ir_rvalue *const test_val = test_expression->hir(instructions, state); 6617 6618 state->switch_state.test_var = new(ctx) ir_variable(test_val->type, 6619 "switch_test_tmp", 6620 ir_var_temporary); 6621 ir_dereference_variable *deref_test_var = 6622 new(ctx) ir_dereference_variable(state->switch_state.test_var); 6623 6624 instructions->push_tail(state->switch_state.test_var); 6625 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val)); 6626} 6627 6628 6629ir_rvalue * 6630ast_switch_body::hir(exec_list *instructions, 6631 struct _mesa_glsl_parse_state *state) 6632{ 6633 if (stmts != NULL) 6634 stmts->hir(instructions, state); 6635 6636 /* Switch bodies do not have r-values. */ 6637 return NULL; 6638} 6639 6640ir_rvalue * 6641ast_case_statement_list::hir(exec_list *instructions, 6642 struct _mesa_glsl_parse_state *state) 6643{ 6644 exec_list default_case, after_default, tmp; 6645 6646 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) { 6647 case_stmt->hir(&tmp, state); 6648 6649 /* Default case. */ 6650 if (state->switch_state.previous_default && default_case.is_empty()) { 6651 default_case.append_list(&tmp); 6652 continue; 6653 } 6654 6655 /* If default case found, append 'after_default' list. */ 6656 if (!default_case.is_empty()) 6657 after_default.append_list(&tmp); 6658 else 6659 instructions->append_list(&tmp); 6660 } 6661 6662 /* Handle the default case. This is done here because default might not be 6663 * the last case. We need to add checks against following cases first to see 6664 * if default should be chosen or not. 6665 */ 6666 if (!default_case.is_empty()) { 6667 ir_factory body(instructions, state); 6668 6669 ir_expression *cmp = NULL; 6670 6671 hash_table_foreach(state->switch_state.labels_ht, entry) { 6672 const struct case_label *const l = (struct case_label *) entry->data; 6673 6674 /* If the switch init-value is the value of one of the labels that 6675 * occurs after the default case, disable execution of the default 6676 * case. 6677 */ 6678 if (l->after_default) { 6679 ir_constant *const cnst = 6680 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT 6681 ? body.constant(unsigned(l->value)) 6682 : body.constant(int(l->value)); 6683 6684 cmp = cmp == NULL 6685 ? equal(cnst, state->switch_state.test_var) 6686 : logic_or(cmp, equal(cnst, state->switch_state.test_var)); 6687 } 6688 } 6689 6690 if (cmp != NULL) 6691 body.emit(assign(state->switch_state.run_default, logic_not(cmp))); 6692 else 6693 body.emit(assign(state->switch_state.run_default, body.constant(true))); 6694 6695 /* Append default case and all cases after it. */ 6696 instructions->append_list(&default_case); 6697 instructions->append_list(&after_default); 6698 } 6699 6700 /* Case statements do not have r-values. */ 6701 return NULL; 6702} 6703 6704ir_rvalue * 6705ast_case_statement::hir(exec_list *instructions, 6706 struct _mesa_glsl_parse_state *state) 6707{ 6708 labels->hir(instructions, state); 6709 6710 /* Guard case statements depending on fallthru state. */ 6711 ir_dereference_variable *const deref_fallthru_guard = 6712 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var); 6713 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard); 6714 6715 foreach_list_typed (ast_node, stmt, link, & this->stmts) 6716 stmt->hir(& test_fallthru->then_instructions, state); 6717 6718 instructions->push_tail(test_fallthru); 6719 6720 /* Case statements do not have r-values. */ 6721 return NULL; 6722} 6723 6724 6725ir_rvalue * 6726ast_case_label_list::hir(exec_list *instructions, 6727 struct _mesa_glsl_parse_state *state) 6728{ 6729 foreach_list_typed (ast_case_label, label, link, & this->labels) 6730 label->hir(instructions, state); 6731 6732 /* Case labels do not have r-values. */ 6733 return NULL; 6734} 6735 6736ir_rvalue * 6737ast_case_label::hir(exec_list *instructions, 6738 struct _mesa_glsl_parse_state *state) 6739{ 6740 ir_factory body(instructions, state); 6741 6742 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var; 6743 6744 /* If not default case, ... */ 6745 if (this->test_value != NULL) { 6746 /* Conditionally set fallthru state based on 6747 * comparison of cached test expression value to case label. 6748 */ 6749 ir_rvalue *const label_rval = this->test_value->hir(instructions, state); 6750 ir_constant *label_const = 6751 label_rval->constant_expression_value(body.mem_ctx); 6752 6753 if (!label_const) { 6754 YYLTYPE loc = this->test_value->get_location(); 6755 6756 _mesa_glsl_error(& loc, state, 6757 "switch statement case label must be a " 6758 "constant expression"); 6759 6760 /* Stuff a dummy value in to allow processing to continue. */ 6761 label_const = body.constant(0); 6762 } else { 6763 hash_entry *entry = 6764 _mesa_hash_table_search(state->switch_state.labels_ht, 6765 &label_const->value.u[0]); 6766 6767 if (entry) { 6768 const struct case_label *const l = 6769 (struct case_label *) entry->data; 6770 const ast_expression *const previous_label = l->ast; 6771 YYLTYPE loc = this->test_value->get_location(); 6772 6773 _mesa_glsl_error(& loc, state, "duplicate case value"); 6774 6775 loc = previous_label->get_location(); 6776 _mesa_glsl_error(& loc, state, "this is the previous case label"); 6777 } else { 6778 struct case_label *l = ralloc(state->switch_state.labels_ht, 6779 struct case_label); 6780 6781 l->value = label_const->value.u[0]; 6782 l->after_default = state->switch_state.previous_default != NULL; 6783 l->ast = this->test_value; 6784 6785 _mesa_hash_table_insert(state->switch_state.labels_ht, 6786 &label_const->value.u[0], 6787 l); 6788 } 6789 } 6790 6791 /* Create an r-value version of the ir_constant label here (after we may 6792 * have created a fake one in error cases) that can be passed to 6793 * apply_implicit_conversion below. 6794 */ 6795 ir_rvalue *label = label_const; 6796 6797 ir_rvalue *deref_test_var = 6798 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var); 6799 6800 /* 6801 * From GLSL 4.40 specification section 6.2 ("Selection"): 6802 * 6803 * "The type of the init-expression value in a switch statement must 6804 * be a scalar int or uint. The type of the constant-expression value 6805 * in a case label also must be a scalar int or uint. When any pair 6806 * of these values is tested for "equal value" and the types do not 6807 * match, an implicit conversion will be done to convert the int to a 6808 * uint (see section 4.1.10 “Implicit Conversions”) before the compare 6809 * is done." 6810 */ 6811 if (label->type != state->switch_state.test_var->type) { 6812 YYLTYPE loc = this->test_value->get_location(); 6813 6814 const glsl_type *type_a = label->type; 6815 const glsl_type *type_b = state->switch_state.test_var->type; 6816 6817 /* Check if int->uint implicit conversion is supported. */ 6818 bool integer_conversion_supported = 6819 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type, 6820 state); 6821 6822 if ((!type_a->is_integer() || !type_b->is_integer()) || 6823 !integer_conversion_supported) { 6824 _mesa_glsl_error(&loc, state, "type mismatch with switch " 6825 "init-expression and case label (%s != %s)", 6826 type_a->name, type_b->name); 6827 } else { 6828 /* Conversion of the case label. */ 6829 if (type_a->base_type == GLSL_TYPE_INT) { 6830 if (!apply_implicit_conversion(glsl_type::uint_type, 6831 label, state)) 6832 _mesa_glsl_error(&loc, state, "implicit type conversion error"); 6833 } else { 6834 /* Conversion of the init-expression value. */ 6835 if (!apply_implicit_conversion(glsl_type::uint_type, 6836 deref_test_var, state)) 6837 _mesa_glsl_error(&loc, state, "implicit type conversion error"); 6838 } 6839 } 6840 6841 /* If the implicit conversion was allowed, the types will already be 6842 * the same. If the implicit conversion wasn't allowed, smash the 6843 * type of the label anyway. This will prevent the expression 6844 * constructor (below) from failing an assertion. 6845 */ 6846 label->type = deref_test_var->type; 6847 } 6848 6849 body.emit(assign(fallthru_var, 6850 logic_or(fallthru_var, equal(label, deref_test_var)))); 6851 } else { /* default case */ 6852 if (state->switch_state.previous_default) { 6853 YYLTYPE loc = this->get_location(); 6854 _mesa_glsl_error(& loc, state, 6855 "multiple default labels in one switch"); 6856 6857 loc = state->switch_state.previous_default->get_location(); 6858 _mesa_glsl_error(& loc, state, "this is the first default label"); 6859 } 6860 state->switch_state.previous_default = this; 6861 6862 /* Set fallthru condition on 'run_default' bool. */ 6863 body.emit(assign(fallthru_var, 6864 logic_or(fallthru_var, 6865 state->switch_state.run_default))); 6866 } 6867 6868 /* Case statements do not have r-values. */ 6869 return NULL; 6870} 6871 6872void 6873ast_iteration_statement::condition_to_hir(exec_list *instructions, 6874 struct _mesa_glsl_parse_state *state) 6875{ 6876 void *ctx = state; 6877 6878 if (condition != NULL) { 6879 ir_rvalue *const cond = 6880 condition->hir(instructions, state); 6881 6882 if ((cond == NULL) 6883 || !cond->type->is_boolean() || !cond->type->is_scalar()) { 6884 YYLTYPE loc = condition->get_location(); 6885 6886 _mesa_glsl_error(& loc, state, 6887 "loop condition must be scalar boolean"); 6888 } else { 6889 /* As the first code in the loop body, generate a block that looks 6890 * like 'if (!condition) break;' as the loop termination condition. 6891 */ 6892 ir_rvalue *const not_cond = 6893 new(ctx) ir_expression(ir_unop_logic_not, cond); 6894 6895 ir_if *const if_stmt = new(ctx) ir_if(not_cond); 6896 6897 ir_jump *const break_stmt = 6898 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6899 6900 if_stmt->then_instructions.push_tail(break_stmt); 6901 instructions->push_tail(if_stmt); 6902 } 6903 } 6904} 6905 6906 6907ir_rvalue * 6908ast_iteration_statement::hir(exec_list *instructions, 6909 struct _mesa_glsl_parse_state *state) 6910{ 6911 void *ctx = state; 6912 6913 /* For-loops and while-loops start a new scope, but do-while loops do not. 6914 */ 6915 if (mode != ast_do_while) 6916 state->symbols->push_scope(); 6917 6918 if (init_statement != NULL) 6919 init_statement->hir(instructions, state); 6920 6921 ir_loop *const stmt = new(ctx) ir_loop(); 6922 instructions->push_tail(stmt); 6923 6924 /* Track the current loop nesting. */ 6925 ast_iteration_statement *nesting_ast = state->loop_nesting_ast; 6926 6927 state->loop_nesting_ast = this; 6928 6929 /* Likewise, indicate that following code is closest to a loop, 6930 * NOT closest to a switch. 6931 */ 6932 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost; 6933 state->switch_state.is_switch_innermost = false; 6934 6935 if (mode != ast_do_while) 6936 condition_to_hir(&stmt->body_instructions, state); 6937 6938 if (body != NULL) 6939 body->hir(& stmt->body_instructions, state); 6940 6941 if (rest_expression != NULL) 6942 rest_expression->hir(& stmt->body_instructions, state); 6943 6944 if (mode == ast_do_while) 6945 condition_to_hir(&stmt->body_instructions, state); 6946 6947 if (mode != ast_do_while) 6948 state->symbols->pop_scope(); 6949 6950 /* Restore previous nesting before returning. */ 6951 state->loop_nesting_ast = nesting_ast; 6952 state->switch_state.is_switch_innermost = saved_is_switch_innermost; 6953 6954 /* Loops do not have r-values. 6955 */ 6956 return NULL; 6957} 6958 6959 6960/** 6961 * Determine if the given type is valid for establishing a default precision 6962 * qualifier. 6963 * 6964 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"): 6965 * 6966 * "The precision statement 6967 * 6968 * precision precision-qualifier type; 6969 * 6970 * can be used to establish a default precision qualifier. The type field 6971 * can be either int or float or any of the sampler types, and the 6972 * precision-qualifier can be lowp, mediump, or highp." 6973 * 6974 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision 6975 * qualifiers on sampler types, but this seems like an oversight (since the 6976 * intention of including these in GLSL 1.30 is to allow compatibility with ES 6977 * shaders). So we allow int, float, and all sampler types regardless of GLSL 6978 * version. 6979 */ 6980static bool 6981is_valid_default_precision_type(const struct glsl_type *const type) 6982{ 6983 if (type == NULL) 6984 return false; 6985 6986 switch (type->base_type) { 6987 case GLSL_TYPE_INT: 6988 case GLSL_TYPE_FLOAT: 6989 /* "int" and "float" are valid, but vectors and matrices are not. */ 6990 return type->vector_elements == 1 && type->matrix_columns == 1; 6991 case GLSL_TYPE_SAMPLER: 6992 case GLSL_TYPE_IMAGE: 6993 case GLSL_TYPE_ATOMIC_UINT: 6994 return true; 6995 default: 6996 return false; 6997 } 6998} 6999 7000 7001ir_rvalue * 7002ast_type_specifier::hir(exec_list *instructions, 7003 struct _mesa_glsl_parse_state *state) 7004{ 7005 if (this->default_precision == ast_precision_none && this->structure == NULL) 7006 return NULL; 7007 7008 YYLTYPE loc = this->get_location(); 7009 7010 /* If this is a precision statement, check that the type to which it is 7011 * applied is either float or int. 7012 * 7013 * From section 4.5.3 of the GLSL 1.30 spec: 7014 * "The precision statement 7015 * precision precision-qualifier type; 7016 * can be used to establish a default precision qualifier. The type 7017 * field can be either int or float [...]. Any other types or 7018 * qualifiers will result in an error. 7019 */ 7020 if (this->default_precision != ast_precision_none) { 7021 if (!state->check_precision_qualifiers_allowed(&loc)) 7022 return NULL; 7023 7024 if (this->structure != NULL) { 7025 _mesa_glsl_error(&loc, state, 7026 "precision qualifiers do not apply to structures"); 7027 return NULL; 7028 } 7029 7030 if (this->array_specifier != NULL) { 7031 _mesa_glsl_error(&loc, state, 7032 "default precision statements do not apply to " 7033 "arrays"); 7034 return NULL; 7035 } 7036 7037 const struct glsl_type *const type = 7038 state->symbols->get_type(this->type_name); 7039 if (!is_valid_default_precision_type(type)) { 7040 _mesa_glsl_error(&loc, state, 7041 "default precision statements apply only to " 7042 "float, int, and opaque types"); 7043 return NULL; 7044 } 7045 7046 if (state->es_shader) { 7047 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00 7048 * spec says: 7049 * 7050 * "Non-precision qualified declarations will use the precision 7051 * qualifier specified in the most recent precision statement 7052 * that is still in scope. The precision statement has the same 7053 * scoping rules as variable declarations. If it is declared 7054 * inside a compound statement, its effect stops at the end of 7055 * the innermost statement it was declared in. Precision 7056 * statements in nested scopes override precision statements in 7057 * outer scopes. Multiple precision statements for the same basic 7058 * type can appear inside the same scope, with later statements 7059 * overriding earlier statements within that scope." 7060 * 7061 * Default precision specifications follow the same scope rules as 7062 * variables. So, we can track the state of the default precision 7063 * qualifiers in the symbol table, and the rules will just work. This 7064 * is a slight abuse of the symbol table, but it has the semantics 7065 * that we want. 7066 */ 7067 state->symbols->add_default_precision_qualifier(this->type_name, 7068 this->default_precision); 7069 } 7070 7071 /* FINISHME: Translate precision statements into IR. */ 7072 return NULL; 7073 } 7074 7075 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that 7076 * process_record_constructor() can do type-checking on C-style initializer 7077 * expressions of structs, but ast_struct_specifier should only be translated 7078 * to HIR if it is declaring the type of a structure. 7079 * 7080 * The ->is_declaration field is false for initializers of variables 7081 * declared separately from the struct's type definition. 7082 * 7083 * struct S { ... }; (is_declaration = true) 7084 * struct T { ... } t = { ... }; (is_declaration = true) 7085 * S s = { ... }; (is_declaration = false) 7086 */ 7087 if (this->structure != NULL && this->structure->is_declaration) 7088 return this->structure->hir(instructions, state); 7089 7090 return NULL; 7091} 7092 7093 7094/** 7095 * Process a structure or interface block tree into an array of structure fields 7096 * 7097 * After parsing, where there are some syntax differnces, structures and 7098 * interface blocks are almost identical. They are similar enough that the 7099 * AST for each can be processed the same way into a set of 7100 * \c glsl_struct_field to describe the members. 7101 * 7102 * If we're processing an interface block, var_mode should be the type of the 7103 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or 7104 * ir_var_shader_storage). If we're processing a structure, var_mode should be 7105 * ir_var_auto. 7106 * 7107 * \return 7108 * The number of fields processed. A pointer to the array structure fields is 7109 * stored in \c *fields_ret. 7110 */ 7111static unsigned 7112ast_process_struct_or_iface_block_members(exec_list *instructions, 7113 struct _mesa_glsl_parse_state *state, 7114 exec_list *declarations, 7115 glsl_struct_field **fields_ret, 7116 bool is_interface, 7117 enum glsl_matrix_layout matrix_layout, 7118 bool allow_reserved_names, 7119 ir_variable_mode var_mode, 7120 ast_type_qualifier *layout, 7121 unsigned block_stream, 7122 unsigned block_xfb_buffer, 7123 unsigned block_xfb_offset, 7124 unsigned expl_location, 7125 unsigned expl_align) 7126{ 7127 unsigned decl_count = 0; 7128 unsigned next_offset = 0; 7129 7130 /* Make an initial pass over the list of fields to determine how 7131 * many there are. Each element in this list is an ast_declarator_list. 7132 * This means that we actually need to count the number of elements in the 7133 * 'declarations' list in each of the elements. 7134 */ 7135 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) { 7136 decl_count += decl_list->declarations.length(); 7137 } 7138 7139 /* Allocate storage for the fields and process the field 7140 * declarations. As the declarations are processed, try to also convert 7141 * the types to HIR. This ensures that structure definitions embedded in 7142 * other structure definitions or in interface blocks are processed. 7143 */ 7144 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field, 7145 decl_count); 7146 7147 bool first_member = true; 7148 bool first_member_has_explicit_location = false; 7149 7150 unsigned i = 0; 7151 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) { 7152 const char *type_name; 7153 YYLTYPE loc = decl_list->get_location(); 7154 7155 decl_list->type->specifier->hir(instructions, state); 7156 7157 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says: 7158 * 7159 * "Anonymous structures are not supported; so embedded structures 7160 * must have a declarator. A name given to an embedded struct is 7161 * scoped at the same level as the struct it is embedded in." 7162 * 7163 * The same section of the GLSL 1.20 spec says: 7164 * 7165 * "Anonymous structures are not supported. Embedded structures are 7166 * not supported." 7167 * 7168 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow 7169 * embedded structures in 1.10 only. 7170 */ 7171 if (state->language_version != 110 && 7172 decl_list->type->specifier->structure != NULL) 7173 _mesa_glsl_error(&loc, state, 7174 "embedded structure declarations are not allowed"); 7175 7176 const glsl_type *decl_type = 7177 decl_list->type->glsl_type(& type_name, state); 7178 7179 const struct ast_type_qualifier *const qual = 7180 &decl_list->type->qualifier; 7181 7182 /* From section 4.3.9 of the GLSL 4.40 spec: 7183 * 7184 * "[In interface blocks] opaque types are not allowed." 7185 * 7186 * It should be impossible for decl_type to be NULL here. Cases that 7187 * might naturally lead to decl_type being NULL, especially for the 7188 * is_interface case, will have resulted in compilation having 7189 * already halted due to a syntax error. 7190 */ 7191 assert(decl_type); 7192 7193 if (is_interface) { 7194 /* From section 4.3.7 of the ARB_bindless_texture spec: 7195 * 7196 * "(remove the following bullet from the last list on p. 39, 7197 * thereby permitting sampler types in interface blocks; image 7198 * types are also permitted in blocks by this extension)" 7199 * 7200 * * sampler types are not allowed 7201 */ 7202 if (decl_type->contains_atomic() || 7203 (!state->has_bindless() && decl_type->contains_opaque())) { 7204 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default " 7205 "interface block contains %s variable", 7206 state->has_bindless() ? "atomic" : "opaque"); 7207 } 7208 } else { 7209 if (decl_type->contains_atomic()) { 7210 /* From section 4.1.7.3 of the GLSL 4.40 spec: 7211 * 7212 * "Members of structures cannot be declared as atomic counter 7213 * types." 7214 */ 7215 _mesa_glsl_error(&loc, state, "atomic counter in structure"); 7216 } 7217 7218 if (!state->has_bindless() && decl_type->contains_image()) { 7219 /* FINISHME: Same problem as with atomic counters. 7220 * FINISHME: Request clarification from Khronos and add 7221 * FINISHME: spec quotation here. 7222 */ 7223 _mesa_glsl_error(&loc, state, "image in structure"); 7224 } 7225 } 7226 7227 if (qual->flags.q.explicit_binding) { 7228 _mesa_glsl_error(&loc, state, 7229 "binding layout qualifier cannot be applied " 7230 "to struct or interface block members"); 7231 } 7232 7233 if (is_interface) { 7234 if (!first_member) { 7235 if (!layout->flags.q.explicit_location && 7236 ((first_member_has_explicit_location && 7237 !qual->flags.q.explicit_location) || 7238 (!first_member_has_explicit_location && 7239 qual->flags.q.explicit_location))) { 7240 _mesa_glsl_error(&loc, state, 7241 "when block-level location layout qualifier " 7242 "is not supplied either all members must " 7243 "have a location layout qualifier or all " 7244 "members must not have a location layout " 7245 "qualifier"); 7246 } 7247 } else { 7248 first_member = false; 7249 first_member_has_explicit_location = 7250 qual->flags.q.explicit_location; 7251 } 7252 } 7253 7254 if (qual->flags.q.std140 || 7255 qual->flags.q.std430 || 7256 qual->flags.q.packed || 7257 qual->flags.q.shared) { 7258 _mesa_glsl_error(&loc, state, 7259 "uniform/shader storage block layout qualifiers " 7260 "std140, std430, packed, and shared can only be " 7261 "applied to uniform/shader storage blocks, not " 7262 "members"); 7263 } 7264 7265 if (qual->flags.q.constant) { 7266 _mesa_glsl_error(&loc, state, 7267 "const storage qualifier cannot be applied " 7268 "to struct or interface block members"); 7269 } 7270 7271 validate_memory_qualifier_for_type(state, &loc, qual, decl_type); 7272 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type); 7273 7274 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec: 7275 * 7276 * "A block member may be declared with a stream identifier, but 7277 * the specified stream must match the stream associated with the 7278 * containing block." 7279 */ 7280 if (qual->flags.q.explicit_stream) { 7281 unsigned qual_stream; 7282 if (process_qualifier_constant(state, &loc, "stream", 7283 qual->stream, &qual_stream) && 7284 qual_stream != block_stream) { 7285 _mesa_glsl_error(&loc, state, "stream layout qualifier on " 7286 "interface block member does not match " 7287 "the interface block (%u vs %u)", qual_stream, 7288 block_stream); 7289 } 7290 } 7291 7292 int xfb_buffer; 7293 unsigned explicit_xfb_buffer = 0; 7294 if (qual->flags.q.explicit_xfb_buffer) { 7295 unsigned qual_xfb_buffer; 7296 if (process_qualifier_constant(state, &loc, "xfb_buffer", 7297 qual->xfb_buffer, &qual_xfb_buffer)) { 7298 explicit_xfb_buffer = 1; 7299 if (qual_xfb_buffer != block_xfb_buffer) 7300 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on " 7301 "interface block member does not match " 7302 "the interface block (%u vs %u)", 7303 qual_xfb_buffer, block_xfb_buffer); 7304 } 7305 xfb_buffer = (int) qual_xfb_buffer; 7306 } else { 7307 if (layout) 7308 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer; 7309 xfb_buffer = (int) block_xfb_buffer; 7310 } 7311 7312 int xfb_stride = -1; 7313 if (qual->flags.q.explicit_xfb_stride) { 7314 unsigned qual_xfb_stride; 7315 if (process_qualifier_constant(state, &loc, "xfb_stride", 7316 qual->xfb_stride, &qual_xfb_stride)) { 7317 xfb_stride = (int) qual_xfb_stride; 7318 } 7319 } 7320 7321 if (qual->flags.q.uniform && qual->has_interpolation()) { 7322 _mesa_glsl_error(&loc, state, 7323 "interpolation qualifiers cannot be used " 7324 "with uniform interface blocks"); 7325 } 7326 7327 if ((qual->flags.q.uniform || !is_interface) && 7328 qual->has_auxiliary_storage()) { 7329 _mesa_glsl_error(&loc, state, 7330 "auxiliary storage qualifiers cannot be used " 7331 "in uniform blocks or structures."); 7332 } 7333 7334 if (qual->flags.q.row_major || qual->flags.q.column_major) { 7335 if (!qual->flags.q.uniform && !qual->flags.q.buffer) { 7336 _mesa_glsl_error(&loc, state, 7337 "row_major and column_major can only be " 7338 "applied to interface blocks"); 7339 } else 7340 validate_matrix_layout_for_type(state, &loc, decl_type, NULL); 7341 } 7342 7343 foreach_list_typed (ast_declaration, decl, link, 7344 &decl_list->declarations) { 7345 YYLTYPE loc = decl->get_location(); 7346 7347 if (!allow_reserved_names) 7348 validate_identifier(decl->identifier, loc, state); 7349 7350 const struct glsl_type *field_type = 7351 process_array_type(&loc, decl_type, decl->array_specifier, state); 7352 validate_array_dimensions(field_type, state, &loc); 7353 fields[i].type = field_type; 7354 fields[i].name = decl->identifier; 7355 fields[i].interpolation = 7356 interpret_interpolation_qualifier(qual, field_type, 7357 var_mode, state, &loc); 7358 fields[i].centroid = qual->flags.q.centroid ? 1 : 0; 7359 fields[i].sample = qual->flags.q.sample ? 1 : 0; 7360 fields[i].patch = qual->flags.q.patch ? 1 : 0; 7361 fields[i].precision = qual->precision; 7362 fields[i].offset = -1; 7363 fields[i].explicit_xfb_buffer = explicit_xfb_buffer; 7364 fields[i].xfb_buffer = xfb_buffer; 7365 fields[i].xfb_stride = xfb_stride; 7366 7367 if (qual->flags.q.explicit_location) { 7368 unsigned qual_location; 7369 if (process_qualifier_constant(state, &loc, "location", 7370 qual->location, &qual_location)) { 7371 fields[i].location = qual_location + 7372 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0); 7373 expl_location = fields[i].location + 7374 fields[i].type->count_attribute_slots(false); 7375 } 7376 } else { 7377 if (layout && layout->flags.q.explicit_location) { 7378 fields[i].location = expl_location; 7379 expl_location += fields[i].type->count_attribute_slots(false); 7380 } else { 7381 fields[i].location = -1; 7382 } 7383 } 7384 7385 /* Offset can only be used with std430 and std140 layouts an initial 7386 * value of 0 is used for error detection. 7387 */ 7388 unsigned align = 0; 7389 unsigned size = 0; 7390 if (layout) { 7391 bool row_major; 7392 if (qual->flags.q.row_major || 7393 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) { 7394 row_major = true; 7395 } else { 7396 row_major = false; 7397 } 7398 7399 if(layout->flags.q.std140) { 7400 align = field_type->std140_base_alignment(row_major); 7401 size = field_type->std140_size(row_major); 7402 } else if (layout->flags.q.std430) { 7403 align = field_type->std430_base_alignment(row_major); 7404 size = field_type->std430_size(row_major); 7405 } 7406 } 7407 7408 if (qual->flags.q.explicit_offset) { 7409 unsigned qual_offset; 7410 if (process_qualifier_constant(state, &loc, "offset", 7411 qual->offset, &qual_offset)) { 7412 if (align != 0 && size != 0) { 7413 if (next_offset > qual_offset) 7414 _mesa_glsl_error(&loc, state, "layout qualifier " 7415 "offset overlaps previous member"); 7416 7417 if (qual_offset % align) { 7418 _mesa_glsl_error(&loc, state, "layout qualifier offset " 7419 "must be a multiple of the base " 7420 "alignment of %s", field_type->name); 7421 } 7422 fields[i].offset = qual_offset; 7423 next_offset = qual_offset + size; 7424 } else { 7425 _mesa_glsl_error(&loc, state, "offset can only be used " 7426 "with std430 and std140 layouts"); 7427 } 7428 } 7429 } 7430 7431 if (qual->flags.q.explicit_align || expl_align != 0) { 7432 unsigned offset = fields[i].offset != -1 ? fields[i].offset : 7433 next_offset; 7434 if (align == 0 || size == 0) { 7435 _mesa_glsl_error(&loc, state, "align can only be used with " 7436 "std430 and std140 layouts"); 7437 } else if (qual->flags.q.explicit_align) { 7438 unsigned member_align; 7439 if (process_qualifier_constant(state, &loc, "align", 7440 qual->align, &member_align)) { 7441 if (member_align == 0 || 7442 member_align & (member_align - 1)) { 7443 _mesa_glsl_error(&loc, state, "align layout qualifier " 7444 "is not a power of 2"); 7445 } else { 7446 fields[i].offset = glsl_align(offset, member_align); 7447 next_offset = fields[i].offset + size; 7448 } 7449 } 7450 } else { 7451 fields[i].offset = glsl_align(offset, expl_align); 7452 next_offset = fields[i].offset + size; 7453 } 7454 } else if (!qual->flags.q.explicit_offset) { 7455 if (align != 0 && size != 0) 7456 next_offset = glsl_align(next_offset, align) + size; 7457 } 7458 7459 /* From the ARB_enhanced_layouts spec: 7460 * 7461 * "The given offset applies to the first component of the first 7462 * member of the qualified entity. Then, within the qualified 7463 * entity, subsequent components are each assigned, in order, to 7464 * the next available offset aligned to a multiple of that 7465 * component's size. Aggregate types are flattened down to the 7466 * component level to get this sequence of components." 7467 */ 7468 if (qual->flags.q.explicit_xfb_offset) { 7469 unsigned xfb_offset; 7470 if (process_qualifier_constant(state, &loc, "xfb_offset", 7471 qual->offset, &xfb_offset)) { 7472 fields[i].offset = xfb_offset; 7473 block_xfb_offset = fields[i].offset + 7474 4 * field_type->component_slots(); 7475 } 7476 } else { 7477 if (layout && layout->flags.q.explicit_xfb_offset) { 7478 unsigned align = field_type->is_64bit() ? 8 : 4; 7479 fields[i].offset = glsl_align(block_xfb_offset, align); 7480 block_xfb_offset += 4 * field_type->component_slots(); 7481 } 7482 } 7483 7484 /* Propogate row- / column-major information down the fields of the 7485 * structure or interface block. Structures need this data because 7486 * the structure may contain a structure that contains ... a matrix 7487 * that need the proper layout. 7488 */ 7489 if (is_interface && layout && 7490 (layout->flags.q.uniform || layout->flags.q.buffer) && 7491 (field_type->without_array()->is_matrix() 7492 || field_type->without_array()->is_struct())) { 7493 /* If no layout is specified for the field, inherit the layout 7494 * from the block. 7495 */ 7496 fields[i].matrix_layout = matrix_layout; 7497 7498 if (qual->flags.q.row_major) 7499 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; 7500 else if (qual->flags.q.column_major) 7501 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; 7502 7503 /* If we're processing an uniform or buffer block, the matrix 7504 * layout must be decided by this point. 7505 */ 7506 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR 7507 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR); 7508 } 7509 7510 /* Memory qualifiers are allowed on buffer and image variables, while 7511 * the format qualifier is only accepted for images. 7512 */ 7513 if (var_mode == ir_var_shader_storage || 7514 field_type->without_array()->is_image()) { 7515 /* For readonly and writeonly qualifiers the field definition, 7516 * if set, overwrites the layout qualifier. 7517 */ 7518 if (qual->flags.q.read_only || qual->flags.q.write_only) { 7519 fields[i].memory_read_only = qual->flags.q.read_only; 7520 fields[i].memory_write_only = qual->flags.q.write_only; 7521 } else { 7522 fields[i].memory_read_only = 7523 layout ? layout->flags.q.read_only : 0; 7524 fields[i].memory_write_only = 7525 layout ? layout->flags.q.write_only : 0; 7526 } 7527 7528 /* For other qualifiers, we set the flag if either the layout 7529 * qualifier or the field qualifier are set 7530 */ 7531 fields[i].memory_coherent = qual->flags.q.coherent || 7532 (layout && layout->flags.q.coherent); 7533 fields[i].memory_volatile = qual->flags.q._volatile || 7534 (layout && layout->flags.q._volatile); 7535 fields[i].memory_restrict = qual->flags.q.restrict_flag || 7536 (layout && layout->flags.q.restrict_flag); 7537 7538 if (field_type->without_array()->is_image()) { 7539 if (qual->flags.q.explicit_image_format) { 7540 if (qual->image_base_type != 7541 field_type->without_array()->sampled_type) { 7542 _mesa_glsl_error(&loc, state, "format qualifier doesn't " 7543 "match the base data type of the image"); 7544 } 7545 7546 fields[i].image_format = qual->image_format; 7547 } else { 7548 if (!qual->flags.q.write_only) { 7549 _mesa_glsl_error(&loc, state, "image not qualified with " 7550 "`writeonly' must have a format layout " 7551 "qualifier"); 7552 } 7553 7554 fields[i].image_format = GL_NONE; 7555 } 7556 } 7557 } 7558 7559 i++; 7560 } 7561 } 7562 7563 assert(i == decl_count); 7564 7565 *fields_ret = fields; 7566 return decl_count; 7567} 7568 7569 7570ir_rvalue * 7571ast_struct_specifier::hir(exec_list *instructions, 7572 struct _mesa_glsl_parse_state *state) 7573{ 7574 YYLTYPE loc = this->get_location(); 7575 7576 unsigned expl_location = 0; 7577 if (layout && layout->flags.q.explicit_location) { 7578 if (!process_qualifier_constant(state, &loc, "location", 7579 layout->location, &expl_location)) { 7580 return NULL; 7581 } else { 7582 expl_location = VARYING_SLOT_VAR0 + expl_location; 7583 } 7584 } 7585 7586 glsl_struct_field *fields; 7587 unsigned decl_count = 7588 ast_process_struct_or_iface_block_members(instructions, 7589 state, 7590 &this->declarations, 7591 &fields, 7592 false, 7593 GLSL_MATRIX_LAYOUT_INHERITED, 7594 false /* allow_reserved_names */, 7595 ir_var_auto, 7596 layout, 7597 0, /* for interface only */ 7598 0, /* for interface only */ 7599 0, /* for interface only */ 7600 expl_location, 7601 0 /* for interface only */); 7602 7603 validate_identifier(this->name, loc, state); 7604 7605 type = glsl_type::get_struct_instance(fields, decl_count, this->name); 7606 7607 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) { 7608 const glsl_type *match = state->symbols->get_type(name); 7609 /* allow struct matching for desktop GL - older UE4 does this */ 7610 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, true, false)) 7611 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name); 7612 else 7613 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name); 7614 } else { 7615 const glsl_type **s = reralloc(state, state->user_structures, 7616 const glsl_type *, 7617 state->num_user_structures + 1); 7618 if (s != NULL) { 7619 s[state->num_user_structures] = type; 7620 state->user_structures = s; 7621 state->num_user_structures++; 7622 } 7623 } 7624 7625 /* Structure type definitions do not have r-values. 7626 */ 7627 return NULL; 7628} 7629 7630 7631/** 7632 * Visitor class which detects whether a given interface block has been used. 7633 */ 7634class interface_block_usage_visitor : public ir_hierarchical_visitor 7635{ 7636public: 7637 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block) 7638 : mode(mode), block(block), found(false) 7639 { 7640 } 7641 7642 virtual ir_visitor_status visit(ir_dereference_variable *ir) 7643 { 7644 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) { 7645 found = true; 7646 return visit_stop; 7647 } 7648 return visit_continue; 7649 } 7650 7651 bool usage_found() const 7652 { 7653 return this->found; 7654 } 7655 7656private: 7657 ir_variable_mode mode; 7658 const glsl_type *block; 7659 bool found; 7660}; 7661 7662static bool 7663is_unsized_array_last_element(ir_variable *v) 7664{ 7665 const glsl_type *interface_type = v->get_interface_type(); 7666 int length = interface_type->length; 7667 7668 assert(v->type->is_unsized_array()); 7669 7670 /* Check if it is the last element of the interface */ 7671 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0) 7672 return true; 7673 return false; 7674} 7675 7676static void 7677apply_memory_qualifiers(ir_variable *var, glsl_struct_field field) 7678{ 7679 var->data.memory_read_only = field.memory_read_only; 7680 var->data.memory_write_only = field.memory_write_only; 7681 var->data.memory_coherent = field.memory_coherent; 7682 var->data.memory_volatile = field.memory_volatile; 7683 var->data.memory_restrict = field.memory_restrict; 7684} 7685 7686ir_rvalue * 7687ast_interface_block::hir(exec_list *instructions, 7688 struct _mesa_glsl_parse_state *state) 7689{ 7690 YYLTYPE loc = this->get_location(); 7691 7692 /* Interface blocks must be declared at global scope */ 7693 if (state->current_function != NULL) { 7694 _mesa_glsl_error(&loc, state, 7695 "Interface block `%s' must be declared " 7696 "at global scope", 7697 this->block_name); 7698 } 7699 7700 /* Validate qualifiers: 7701 * 7702 * - Layout Qualifiers as per the table in Section 4.4 7703 * ("Layout Qualifiers") of the GLSL 4.50 spec. 7704 * 7705 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the 7706 * GLSL 4.50 spec: 7707 * 7708 * "Additionally, memory qualifiers may also be used in the declaration 7709 * of shader storage blocks" 7710 * 7711 * Note the table in Section 4.4 says std430 is allowed on both uniform and 7712 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block 7713 * Layout Qualifiers) of the GLSL 4.50 spec says: 7714 * 7715 * "The std430 qualifier is supported only for shader storage blocks; 7716 * using std430 on a uniform block will result in a compile-time error." 7717 */ 7718 ast_type_qualifier allowed_blk_qualifiers; 7719 allowed_blk_qualifiers.flags.i = 0; 7720 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) { 7721 allowed_blk_qualifiers.flags.q.shared = 1; 7722 allowed_blk_qualifiers.flags.q.packed = 1; 7723 allowed_blk_qualifiers.flags.q.std140 = 1; 7724 allowed_blk_qualifiers.flags.q.row_major = 1; 7725 allowed_blk_qualifiers.flags.q.column_major = 1; 7726 allowed_blk_qualifiers.flags.q.explicit_align = 1; 7727 allowed_blk_qualifiers.flags.q.explicit_binding = 1; 7728 if (this->layout.flags.q.buffer) { 7729 allowed_blk_qualifiers.flags.q.buffer = 1; 7730 allowed_blk_qualifiers.flags.q.std430 = 1; 7731 allowed_blk_qualifiers.flags.q.coherent = 1; 7732 allowed_blk_qualifiers.flags.q._volatile = 1; 7733 allowed_blk_qualifiers.flags.q.restrict_flag = 1; 7734 allowed_blk_qualifiers.flags.q.read_only = 1; 7735 allowed_blk_qualifiers.flags.q.write_only = 1; 7736 } else { 7737 allowed_blk_qualifiers.flags.q.uniform = 1; 7738 } 7739 } else { 7740 /* Interface block */ 7741 assert(this->layout.flags.q.in || this->layout.flags.q.out); 7742 7743 allowed_blk_qualifiers.flags.q.explicit_location = 1; 7744 if (this->layout.flags.q.out) { 7745 allowed_blk_qualifiers.flags.q.out = 1; 7746 if (state->stage == MESA_SHADER_GEOMETRY || 7747 state->stage == MESA_SHADER_TESS_CTRL || 7748 state->stage == MESA_SHADER_TESS_EVAL || 7749 state->stage == MESA_SHADER_VERTEX ) { 7750 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1; 7751 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1; 7752 allowed_blk_qualifiers.flags.q.xfb_buffer = 1; 7753 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1; 7754 allowed_blk_qualifiers.flags.q.xfb_stride = 1; 7755 if (state->stage == MESA_SHADER_GEOMETRY) { 7756 allowed_blk_qualifiers.flags.q.stream = 1; 7757 allowed_blk_qualifiers.flags.q.explicit_stream = 1; 7758 } 7759 if (state->stage == MESA_SHADER_TESS_CTRL) { 7760 allowed_blk_qualifiers.flags.q.patch = 1; 7761 } 7762 } 7763 } else { 7764 allowed_blk_qualifiers.flags.q.in = 1; 7765 if (state->stage == MESA_SHADER_TESS_EVAL) { 7766 allowed_blk_qualifiers.flags.q.patch = 1; 7767 } 7768 } 7769 } 7770 7771 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers, 7772 "invalid qualifier for block", 7773 this->block_name); 7774 7775 enum glsl_interface_packing packing; 7776 if (this->layout.flags.q.std140) { 7777 packing = GLSL_INTERFACE_PACKING_STD140; 7778 } else if (this->layout.flags.q.packed) { 7779 packing = GLSL_INTERFACE_PACKING_PACKED; 7780 } else if (this->layout.flags.q.std430) { 7781 packing = GLSL_INTERFACE_PACKING_STD430; 7782 } else { 7783 /* The default layout is shared. 7784 */ 7785 packing = GLSL_INTERFACE_PACKING_SHARED; 7786 } 7787 7788 ir_variable_mode var_mode; 7789 const char *iface_type_name; 7790 if (this->layout.flags.q.in) { 7791 var_mode = ir_var_shader_in; 7792 iface_type_name = "in"; 7793 } else if (this->layout.flags.q.out) { 7794 var_mode = ir_var_shader_out; 7795 iface_type_name = "out"; 7796 } else if (this->layout.flags.q.uniform) { 7797 var_mode = ir_var_uniform; 7798 iface_type_name = "uniform"; 7799 } else if (this->layout.flags.q.buffer) { 7800 var_mode = ir_var_shader_storage; 7801 iface_type_name = "buffer"; 7802 } else { 7803 var_mode = ir_var_auto; 7804 iface_type_name = "UNKNOWN"; 7805 assert(!"interface block layout qualifier not found!"); 7806 } 7807 7808 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED; 7809 if (this->layout.flags.q.row_major) 7810 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; 7811 else if (this->layout.flags.q.column_major) 7812 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; 7813 7814 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0; 7815 exec_list declared_variables; 7816 glsl_struct_field *fields; 7817 7818 /* For blocks that accept memory qualifiers (i.e. shader storage), verify 7819 * that we don't have incompatible qualifiers 7820 */ 7821 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) { 7822 _mesa_glsl_error(&loc, state, 7823 "Interface block sets both readonly and writeonly"); 7824 } 7825 7826 unsigned qual_stream; 7827 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream, 7828 &qual_stream) || 7829 !validate_stream_qualifier(&loc, state, qual_stream)) { 7830 /* If the stream qualifier is invalid it doesn't make sense to continue 7831 * on and try to compare stream layouts on member variables against it 7832 * so just return early. 7833 */ 7834 return NULL; 7835 } 7836 7837 unsigned qual_xfb_buffer; 7838 if (!process_qualifier_constant(state, &loc, "xfb_buffer", 7839 layout.xfb_buffer, &qual_xfb_buffer) || 7840 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) { 7841 return NULL; 7842 } 7843 7844 unsigned qual_xfb_offset; 7845 if (layout.flags.q.explicit_xfb_offset) { 7846 if (!process_qualifier_constant(state, &loc, "xfb_offset", 7847 layout.offset, &qual_xfb_offset)) { 7848 return NULL; 7849 } 7850 } 7851 7852 unsigned qual_xfb_stride; 7853 if (layout.flags.q.explicit_xfb_stride) { 7854 if (!process_qualifier_constant(state, &loc, "xfb_stride", 7855 layout.xfb_stride, &qual_xfb_stride)) { 7856 return NULL; 7857 } 7858 } 7859 7860 unsigned expl_location = 0; 7861 if (layout.flags.q.explicit_location) { 7862 if (!process_qualifier_constant(state, &loc, "location", 7863 layout.location, &expl_location)) { 7864 return NULL; 7865 } else { 7866 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0 7867 : VARYING_SLOT_VAR0; 7868 } 7869 } 7870 7871 unsigned expl_align = 0; 7872 if (layout.flags.q.explicit_align) { 7873 if (!process_qualifier_constant(state, &loc, "align", 7874 layout.align, &expl_align)) { 7875 return NULL; 7876 } else { 7877 if (expl_align == 0 || expl_align & (expl_align - 1)) { 7878 _mesa_glsl_error(&loc, state, "align layout qualifier is not a " 7879 "power of 2."); 7880 return NULL; 7881 } 7882 } 7883 } 7884 7885 unsigned int num_variables = 7886 ast_process_struct_or_iface_block_members(&declared_variables, 7887 state, 7888 &this->declarations, 7889 &fields, 7890 true, 7891 matrix_layout, 7892 redeclaring_per_vertex, 7893 var_mode, 7894 &this->layout, 7895 qual_stream, 7896 qual_xfb_buffer, 7897 qual_xfb_offset, 7898 expl_location, 7899 expl_align); 7900 7901 if (!redeclaring_per_vertex) { 7902 validate_identifier(this->block_name, loc, state); 7903 7904 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec: 7905 * 7906 * "Block names have no other use within a shader beyond interface 7907 * matching; it is a compile-time error to use a block name at global 7908 * scope for anything other than as a block name." 7909 */ 7910 ir_variable *var = state->symbols->get_variable(this->block_name); 7911 if (var && !var->type->is_interface()) { 7912 _mesa_glsl_error(&loc, state, "Block name `%s' is " 7913 "already used in the scope.", 7914 this->block_name); 7915 } 7916 } 7917 7918 const glsl_type *earlier_per_vertex = NULL; 7919 if (redeclaring_per_vertex) { 7920 /* Find the previous declaration of gl_PerVertex. If we're redeclaring 7921 * the named interface block gl_in, we can find it by looking at the 7922 * previous declaration of gl_in. Otherwise we can find it by looking 7923 * at the previous decalartion of any of the built-in outputs, 7924 * e.g. gl_Position. 7925 * 7926 * Also check that the instance name and array-ness of the redeclaration 7927 * are correct. 7928 */ 7929 switch (var_mode) { 7930 case ir_var_shader_in: 7931 if (ir_variable *earlier_gl_in = 7932 state->symbols->get_variable("gl_in")) { 7933 earlier_per_vertex = earlier_gl_in->get_interface_type(); 7934 } else { 7935 _mesa_glsl_error(&loc, state, 7936 "redeclaration of gl_PerVertex input not allowed " 7937 "in the %s shader", 7938 _mesa_shader_stage_to_string(state->stage)); 7939 } 7940 if (this->instance_name == NULL || 7941 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL || 7942 !this->array_specifier->is_single_dimension()) { 7943 _mesa_glsl_error(&loc, state, 7944 "gl_PerVertex input must be redeclared as " 7945 "gl_in[]"); 7946 } 7947 break; 7948 case ir_var_shader_out: 7949 if (ir_variable *earlier_gl_Position = 7950 state->symbols->get_variable("gl_Position")) { 7951 earlier_per_vertex = earlier_gl_Position->get_interface_type(); 7952 } else if (ir_variable *earlier_gl_out = 7953 state->symbols->get_variable("gl_out")) { 7954 earlier_per_vertex = earlier_gl_out->get_interface_type(); 7955 } else { 7956 _mesa_glsl_error(&loc, state, 7957 "redeclaration of gl_PerVertex output not " 7958 "allowed in the %s shader", 7959 _mesa_shader_stage_to_string(state->stage)); 7960 } 7961 if (state->stage == MESA_SHADER_TESS_CTRL) { 7962 if (this->instance_name == NULL || 7963 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) { 7964 _mesa_glsl_error(&loc, state, 7965 "gl_PerVertex output must be redeclared as " 7966 "gl_out[]"); 7967 } 7968 } else { 7969 if (this->instance_name != NULL) { 7970 _mesa_glsl_error(&loc, state, 7971 "gl_PerVertex output may not be redeclared with " 7972 "an instance name"); 7973 } 7974 } 7975 break; 7976 default: 7977 _mesa_glsl_error(&loc, state, 7978 "gl_PerVertex must be declared as an input or an " 7979 "output"); 7980 break; 7981 } 7982 7983 if (earlier_per_vertex == NULL) { 7984 /* An error has already been reported. Bail out to avoid null 7985 * dereferences later in this function. 7986 */ 7987 return NULL; 7988 } 7989 7990 /* Copy locations from the old gl_PerVertex interface block. */ 7991 for (unsigned i = 0; i < num_variables; i++) { 7992 int j = earlier_per_vertex->field_index(fields[i].name); 7993 if (j == -1) { 7994 _mesa_glsl_error(&loc, state, 7995 "redeclaration of gl_PerVertex must be a subset " 7996 "of the built-in members of gl_PerVertex"); 7997 } else { 7998 fields[i].location = 7999 earlier_per_vertex->fields.structure[j].location; 8000 fields[i].offset = 8001 earlier_per_vertex->fields.structure[j].offset; 8002 fields[i].interpolation = 8003 earlier_per_vertex->fields.structure[j].interpolation; 8004 fields[i].centroid = 8005 earlier_per_vertex->fields.structure[j].centroid; 8006 fields[i].sample = 8007 earlier_per_vertex->fields.structure[j].sample; 8008 fields[i].patch = 8009 earlier_per_vertex->fields.structure[j].patch; 8010 fields[i].precision = 8011 earlier_per_vertex->fields.structure[j].precision; 8012 fields[i].explicit_xfb_buffer = 8013 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer; 8014 fields[i].xfb_buffer = 8015 earlier_per_vertex->fields.structure[j].xfb_buffer; 8016 fields[i].xfb_stride = 8017 earlier_per_vertex->fields.structure[j].xfb_stride; 8018 } 8019 } 8020 8021 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 8022 * spec: 8023 * 8024 * If a built-in interface block is redeclared, it must appear in 8025 * the shader before any use of any member included in the built-in 8026 * declaration, or a compilation error will result. 8027 * 8028 * This appears to be a clarification to the behaviour established for 8029 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour 8030 * regardless of GLSL version. 8031 */ 8032 interface_block_usage_visitor v(var_mode, earlier_per_vertex); 8033 v.run(instructions); 8034 if (v.usage_found()) { 8035 _mesa_glsl_error(&loc, state, 8036 "redeclaration of a built-in interface block must " 8037 "appear before any use of any member of the " 8038 "interface block"); 8039 } 8040 } 8041 8042 const glsl_type *block_type = 8043 glsl_type::get_interface_instance(fields, 8044 num_variables, 8045 packing, 8046 matrix_layout == 8047 GLSL_MATRIX_LAYOUT_ROW_MAJOR, 8048 this->block_name); 8049 8050 unsigned component_size = block_type->contains_double() ? 8 : 4; 8051 int xfb_offset = 8052 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1; 8053 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type, 8054 component_size); 8055 8056 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) { 8057 YYLTYPE loc = this->get_location(); 8058 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' " 8059 "already taken in the current scope", 8060 this->block_name, iface_type_name); 8061 } 8062 8063 /* Since interface blocks cannot contain statements, it should be 8064 * impossible for the block to generate any instructions. 8065 */ 8066 assert(declared_variables.is_empty()); 8067 8068 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: 8069 * 8070 * Geometry shader input variables get the per-vertex values written 8071 * out by vertex shader output variables of the same names. Since a 8072 * geometry shader operates on a set of vertices, each input varying 8073 * variable (or input block, see interface blocks below) needs to be 8074 * declared as an array. 8075 */ 8076 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL && 8077 var_mode == ir_var_shader_in) { 8078 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays"); 8079 } else if ((state->stage == MESA_SHADER_TESS_CTRL || 8080 state->stage == MESA_SHADER_TESS_EVAL) && 8081 !this->layout.flags.q.patch && 8082 this->array_specifier == NULL && 8083 var_mode == ir_var_shader_in) { 8084 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays"); 8085 } else if (state->stage == MESA_SHADER_TESS_CTRL && 8086 !this->layout.flags.q.patch && 8087 this->array_specifier == NULL && 8088 var_mode == ir_var_shader_out) { 8089 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays"); 8090 } 8091 8092 8093 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec 8094 * says: 8095 * 8096 * "If an instance name (instance-name) is used, then it puts all the 8097 * members inside a scope within its own name space, accessed with the 8098 * field selector ( . ) operator (analogously to structures)." 8099 */ 8100 if (this->instance_name) { 8101 if (redeclaring_per_vertex) { 8102 /* When a built-in in an unnamed interface block is redeclared, 8103 * get_variable_being_redeclared() calls 8104 * check_builtin_array_max_size() to make sure that built-in array 8105 * variables aren't redeclared to illegal sizes. But we're looking 8106 * at a redeclaration of a named built-in interface block. So we 8107 * have to manually call check_builtin_array_max_size() for all parts 8108 * of the interface that are arrays. 8109 */ 8110 for (unsigned i = 0; i < num_variables; i++) { 8111 if (fields[i].type->is_array()) { 8112 const unsigned size = fields[i].type->array_size(); 8113 check_builtin_array_max_size(fields[i].name, size, loc, state); 8114 } 8115 } 8116 } else { 8117 validate_identifier(this->instance_name, loc, state); 8118 } 8119 8120 ir_variable *var; 8121 8122 if (this->array_specifier != NULL) { 8123 const glsl_type *block_array_type = 8124 process_array_type(&loc, block_type, this->array_specifier, state); 8125 8126 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says: 8127 * 8128 * For uniform blocks declared an array, each individual array 8129 * element corresponds to a separate buffer object backing one 8130 * instance of the block. As the array size indicates the number 8131 * of buffer objects needed, uniform block array declarations 8132 * must specify an array size. 8133 * 8134 * And a few paragraphs later: 8135 * 8136 * Geometry shader input blocks must be declared as arrays and 8137 * follow the array declaration and linking rules for all 8138 * geometry shader inputs. All other input and output block 8139 * arrays must specify an array size. 8140 * 8141 * The same applies to tessellation shaders. 8142 * 8143 * The upshot of this is that the only circumstance where an 8144 * interface array size *doesn't* need to be specified is on a 8145 * geometry shader input, tessellation control shader input, 8146 * tessellation control shader output, and tessellation evaluation 8147 * shader input. 8148 */ 8149 if (block_array_type->is_unsized_array()) { 8150 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY || 8151 state->stage == MESA_SHADER_TESS_CTRL || 8152 state->stage == MESA_SHADER_TESS_EVAL; 8153 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL; 8154 8155 if (this->layout.flags.q.in) { 8156 if (!allow_inputs) 8157 _mesa_glsl_error(&loc, state, 8158 "unsized input block arrays not allowed in " 8159 "%s shader", 8160 _mesa_shader_stage_to_string(state->stage)); 8161 } else if (this->layout.flags.q.out) { 8162 if (!allow_outputs) 8163 _mesa_glsl_error(&loc, state, 8164 "unsized output block arrays not allowed in " 8165 "%s shader", 8166 _mesa_shader_stage_to_string(state->stage)); 8167 } else { 8168 /* by elimination, this is a uniform block array */ 8169 _mesa_glsl_error(&loc, state, 8170 "unsized uniform block arrays not allowed in " 8171 "%s shader", 8172 _mesa_shader_stage_to_string(state->stage)); 8173 } 8174 } 8175 8176 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec: 8177 * 8178 * * Arrays of arrays of blocks are not allowed 8179 */ 8180 if (state->es_shader && block_array_type->is_array() && 8181 block_array_type->fields.array->is_array()) { 8182 _mesa_glsl_error(&loc, state, 8183 "arrays of arrays interface blocks are " 8184 "not allowed"); 8185 } 8186 8187 var = new(state) ir_variable(block_array_type, 8188 this->instance_name, 8189 var_mode); 8190 } else { 8191 var = new(state) ir_variable(block_type, 8192 this->instance_name, 8193 var_mode); 8194 } 8195 8196 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED 8197 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; 8198 8199 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) 8200 var->data.read_only = true; 8201 8202 var->data.patch = this->layout.flags.q.patch; 8203 8204 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in) 8205 handle_geometry_shader_input_decl(state, loc, var); 8206 else if ((state->stage == MESA_SHADER_TESS_CTRL || 8207 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in) 8208 handle_tess_shader_input_decl(state, loc, var); 8209 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out) 8210 handle_tess_ctrl_shader_output_decl(state, loc, var); 8211 8212 for (unsigned i = 0; i < num_variables; i++) { 8213 if (var->data.mode == ir_var_shader_storage) 8214 apply_memory_qualifiers(var, fields[i]); 8215 } 8216 8217 if (ir_variable *earlier = 8218 state->symbols->get_variable(this->instance_name)) { 8219 if (!redeclaring_per_vertex) { 8220 _mesa_glsl_error(&loc, state, "`%s' redeclared", 8221 this->instance_name); 8222 } 8223 earlier->data.how_declared = ir_var_declared_normally; 8224 earlier->type = var->type; 8225 earlier->reinit_interface_type(block_type); 8226 delete var; 8227 } else { 8228 if (this->layout.flags.q.explicit_binding) { 8229 apply_explicit_binding(state, &loc, var, var->type, 8230 &this->layout); 8231 } 8232 8233 var->data.stream = qual_stream; 8234 if (layout.flags.q.explicit_location) { 8235 var->data.location = expl_location; 8236 var->data.explicit_location = true; 8237 } 8238 8239 state->symbols->add_variable(var); 8240 instructions->push_tail(var); 8241 } 8242 } else { 8243 /* In order to have an array size, the block must also be declared with 8244 * an instance name. 8245 */ 8246 assert(this->array_specifier == NULL); 8247 8248 for (unsigned i = 0; i < num_variables; i++) { 8249 ir_variable *var = 8250 new(state) ir_variable(fields[i].type, 8251 ralloc_strdup(state, fields[i].name), 8252 var_mode); 8253 var->data.interpolation = fields[i].interpolation; 8254 var->data.centroid = fields[i].centroid; 8255 var->data.sample = fields[i].sample; 8256 var->data.patch = fields[i].patch; 8257 var->data.stream = qual_stream; 8258 var->data.location = fields[i].location; 8259 8260 if (fields[i].location != -1) 8261 var->data.explicit_location = true; 8262 8263 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer; 8264 var->data.xfb_buffer = fields[i].xfb_buffer; 8265 8266 if (fields[i].offset != -1) 8267 var->data.explicit_xfb_offset = true; 8268 var->data.offset = fields[i].offset; 8269 8270 var->init_interface_type(block_type); 8271 8272 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) 8273 var->data.read_only = true; 8274 8275 /* Precision qualifiers do not have any meaning in Desktop GLSL */ 8276 if (state->es_shader) { 8277 var->data.precision = 8278 select_gles_precision(fields[i].precision, fields[i].type, 8279 state, &loc); 8280 } 8281 8282 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) { 8283 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED 8284 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; 8285 } else { 8286 var->data.matrix_layout = fields[i].matrix_layout; 8287 } 8288 8289 if (var->data.mode == ir_var_shader_storage) 8290 apply_memory_qualifiers(var, fields[i]); 8291 8292 /* Examine var name here since var may get deleted in the next call */ 8293 bool var_is_gl_id = is_gl_identifier(var->name); 8294 8295 if (redeclaring_per_vertex) { 8296 bool is_redeclaration; 8297 var = 8298 get_variable_being_redeclared(&var, loc, state, 8299 true /* allow_all_redeclarations */, 8300 &is_redeclaration); 8301 if (!var_is_gl_id || !is_redeclaration) { 8302 _mesa_glsl_error(&loc, state, 8303 "redeclaration of gl_PerVertex can only " 8304 "include built-in variables"); 8305 } else if (var->data.how_declared == ir_var_declared_normally) { 8306 _mesa_glsl_error(&loc, state, 8307 "`%s' has already been redeclared", 8308 var->name); 8309 } else { 8310 var->data.how_declared = ir_var_declared_in_block; 8311 var->reinit_interface_type(block_type); 8312 } 8313 continue; 8314 } 8315 8316 if (state->symbols->get_variable(var->name) != NULL) 8317 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); 8318 8319 /* Propagate the "binding" keyword into this UBO/SSBO's fields. 8320 * The UBO declaration itself doesn't get an ir_variable unless it 8321 * has an instance name. This is ugly. 8322 */ 8323 if (this->layout.flags.q.explicit_binding) { 8324 apply_explicit_binding(state, &loc, var, 8325 var->get_interface_type(), &this->layout); 8326 } 8327 8328 if (var->type->is_unsized_array()) { 8329 if (var->is_in_shader_storage_block() && 8330 is_unsized_array_last_element(var)) { 8331 var->data.from_ssbo_unsized_array = true; 8332 } else { 8333 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays": 8334 * 8335 * "If an array is declared as the last member of a shader storage 8336 * block and the size is not specified at compile-time, it is 8337 * sized at run-time. In all other cases, arrays are sized only 8338 * at compile-time." 8339 * 8340 * In desktop GLSL it is allowed to have unsized-arrays that are 8341 * not last, as long as we can determine that they are implicitly 8342 * sized. 8343 */ 8344 if (state->es_shader) { 8345 _mesa_glsl_error(&loc, state, "unsized array `%s' " 8346 "definition: only last member of a shader " 8347 "storage block can be defined as unsized " 8348 "array", fields[i].name); 8349 } 8350 } 8351 } 8352 8353 state->symbols->add_variable(var); 8354 instructions->push_tail(var); 8355 } 8356 8357 if (redeclaring_per_vertex && block_type != earlier_per_vertex) { 8358 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec: 8359 * 8360 * It is also a compilation error ... to redeclare a built-in 8361 * block and then use a member from that built-in block that was 8362 * not included in the redeclaration. 8363 * 8364 * This appears to be a clarification to the behaviour established 8365 * for gl_PerVertex by GLSL 1.50, therefore we implement this 8366 * behaviour regardless of GLSL version. 8367 * 8368 * To prevent the shader from using a member that was not included in 8369 * the redeclaration, we disable any ir_variables that are still 8370 * associated with the old declaration of gl_PerVertex (since we've 8371 * already updated all of the variables contained in the new 8372 * gl_PerVertex to point to it). 8373 * 8374 * As a side effect this will prevent 8375 * validate_intrastage_interface_blocks() from getting confused and 8376 * thinking there are conflicting definitions of gl_PerVertex in the 8377 * shader. 8378 */ 8379 foreach_in_list_safe(ir_instruction, node, instructions) { 8380 ir_variable *const var = node->as_variable(); 8381 if (var != NULL && 8382 var->get_interface_type() == earlier_per_vertex && 8383 var->data.mode == var_mode) { 8384 if (var->data.how_declared == ir_var_declared_normally) { 8385 _mesa_glsl_error(&loc, state, 8386 "redeclaration of gl_PerVertex cannot " 8387 "follow a redeclaration of `%s'", 8388 var->name); 8389 } 8390 state->symbols->disable_variable(var->name); 8391 var->remove(); 8392 } 8393 } 8394 } 8395 } 8396 8397 return NULL; 8398} 8399 8400 8401ir_rvalue * 8402ast_tcs_output_layout::hir(exec_list *instructions, 8403 struct _mesa_glsl_parse_state *state) 8404{ 8405 YYLTYPE loc = this->get_location(); 8406 8407 unsigned num_vertices; 8408 if (!state->out_qualifier->vertices-> 8409 process_qualifier_constant(state, "vertices", &num_vertices, 8410 false)) { 8411 /* return here to stop cascading incorrect error messages */ 8412 return NULL; 8413 } 8414 8415 /* If any shader outputs occurred before this declaration and specified an 8416 * array size, make sure the size they specified is consistent with the 8417 * primitive type. 8418 */ 8419 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) { 8420 _mesa_glsl_error(&loc, state, 8421 "this tessellation control shader output layout " 8422 "specifies %u vertices, but a previous output " 8423 "is declared with size %u", 8424 num_vertices, state->tcs_output_size); 8425 return NULL; 8426 } 8427 8428 state->tcs_output_vertices_specified = true; 8429 8430 /* If any shader outputs occurred before this declaration and did not 8431 * specify an array size, their size is determined now. 8432 */ 8433 foreach_in_list (ir_instruction, node, instructions) { 8434 ir_variable *var = node->as_variable(); 8435 if (var == NULL || var->data.mode != ir_var_shader_out) 8436 continue; 8437 8438 /* Note: Not all tessellation control shader output are arrays. */ 8439 if (!var->type->is_unsized_array() || var->data.patch) 8440 continue; 8441 8442 if (var->data.max_array_access >= (int)num_vertices) { 8443 _mesa_glsl_error(&loc, state, 8444 "this tessellation control shader output layout " 8445 "specifies %u vertices, but an access to element " 8446 "%u of output `%s' already exists", num_vertices, 8447 var->data.max_array_access, var->name); 8448 } else { 8449 var->type = glsl_type::get_array_instance(var->type->fields.array, 8450 num_vertices); 8451 } 8452 } 8453 8454 return NULL; 8455} 8456 8457 8458ir_rvalue * 8459ast_gs_input_layout::hir(exec_list *instructions, 8460 struct _mesa_glsl_parse_state *state) 8461{ 8462 YYLTYPE loc = this->get_location(); 8463 8464 /* Should have been prevented by the parser. */ 8465 assert(!state->gs_input_prim_type_specified 8466 || state->in_qualifier->prim_type == this->prim_type); 8467 8468 /* If any shader inputs occurred before this declaration and specified an 8469 * array size, make sure the size they specified is consistent with the 8470 * primitive type. 8471 */ 8472 unsigned num_vertices = vertices_per_prim(this->prim_type); 8473 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) { 8474 _mesa_glsl_error(&loc, state, 8475 "this geometry shader input layout implies %u vertices" 8476 " per primitive, but a previous input is declared" 8477 " with size %u", num_vertices, state->gs_input_size); 8478 return NULL; 8479 } 8480 8481 state->gs_input_prim_type_specified = true; 8482 8483 /* If any shader inputs occurred before this declaration and did not 8484 * specify an array size, their size is determined now. 8485 */ 8486 foreach_in_list(ir_instruction, node, instructions) { 8487 ir_variable *var = node->as_variable(); 8488 if (var == NULL || var->data.mode != ir_var_shader_in) 8489 continue; 8490 8491 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an 8492 * array; skip it. 8493 */ 8494 8495 if (var->type->is_unsized_array()) { 8496 if (var->data.max_array_access >= (int)num_vertices) { 8497 _mesa_glsl_error(&loc, state, 8498 "this geometry shader input layout implies %u" 8499 " vertices, but an access to element %u of input" 8500 " `%s' already exists", num_vertices, 8501 var->data.max_array_access, var->name); 8502 } else { 8503 var->type = glsl_type::get_array_instance(var->type->fields.array, 8504 num_vertices); 8505 } 8506 } 8507 } 8508 8509 return NULL; 8510} 8511 8512 8513ir_rvalue * 8514ast_cs_input_layout::hir(exec_list *instructions, 8515 struct _mesa_glsl_parse_state *state) 8516{ 8517 YYLTYPE loc = this->get_location(); 8518 8519 /* From the ARB_compute_shader specification: 8520 * 8521 * If the local size of the shader in any dimension is greater 8522 * than the maximum size supported by the implementation for that 8523 * dimension, a compile-time error results. 8524 * 8525 * It is not clear from the spec how the error should be reported if 8526 * the total size of the work group exceeds 8527 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to 8528 * report it at compile time as well. 8529 */ 8530 GLuint64 total_invocations = 1; 8531 unsigned qual_local_size[3]; 8532 for (int i = 0; i < 3; i++) { 8533 8534 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c", 8535 'x' + i); 8536 /* Infer a local_size of 1 for unspecified dimensions */ 8537 if (this->local_size[i] == NULL) { 8538 qual_local_size[i] = 1; 8539 } else if (!this->local_size[i]-> 8540 process_qualifier_constant(state, local_size_str, 8541 &qual_local_size[i], false)) { 8542 ralloc_free(local_size_str); 8543 return NULL; 8544 } 8545 ralloc_free(local_size_str); 8546 8547 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) { 8548 _mesa_glsl_error(&loc, state, 8549 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE" 8550 " (%d)", 'x' + i, 8551 state->ctx->Const.MaxComputeWorkGroupSize[i]); 8552 break; 8553 } 8554 total_invocations *= qual_local_size[i]; 8555 if (total_invocations > 8556 state->ctx->Const.MaxComputeWorkGroupInvocations) { 8557 _mesa_glsl_error(&loc, state, 8558 "product of local_sizes exceeds " 8559 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)", 8560 state->ctx->Const.MaxComputeWorkGroupInvocations); 8561 break; 8562 } 8563 } 8564 8565 /* If any compute input layout declaration preceded this one, make sure it 8566 * was consistent with this one. 8567 */ 8568 if (state->cs_input_local_size_specified) { 8569 for (int i = 0; i < 3; i++) { 8570 if (state->cs_input_local_size[i] != qual_local_size[i]) { 8571 _mesa_glsl_error(&loc, state, 8572 "compute shader input layout does not match" 8573 " previous declaration"); 8574 return NULL; 8575 } 8576 } 8577 } 8578 8579 /* The ARB_compute_variable_group_size spec says: 8580 * 8581 * If a compute shader including a *local_size_variable* qualifier also 8582 * declares a fixed local group size using the *local_size_x*, 8583 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error 8584 * results 8585 */ 8586 if (state->cs_input_local_size_variable_specified) { 8587 _mesa_glsl_error(&loc, state, 8588 "compute shader can't include both a variable and a " 8589 "fixed local group size"); 8590 return NULL; 8591 } 8592 8593 state->cs_input_local_size_specified = true; 8594 for (int i = 0; i < 3; i++) 8595 state->cs_input_local_size[i] = qual_local_size[i]; 8596 8597 /* We may now declare the built-in constant gl_WorkGroupSize (see 8598 * builtin_variable_generator::generate_constants() for why we didn't 8599 * declare it earlier). 8600 */ 8601 ir_variable *var = new(state->symbols) 8602 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto); 8603 var->data.how_declared = ir_var_declared_implicitly; 8604 var->data.read_only = true; 8605 instructions->push_tail(var); 8606 state->symbols->add_variable(var); 8607 ir_constant_data data; 8608 memset(&data, 0, sizeof(data)); 8609 for (int i = 0; i < 3; i++) 8610 data.u[i] = qual_local_size[i]; 8611 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data); 8612 var->constant_initializer = 8613 new(var) ir_constant(glsl_type::uvec3_type, &data); 8614 var->data.has_initializer = true; 8615 8616 return NULL; 8617} 8618 8619 8620static void 8621detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, 8622 exec_list *instructions) 8623{ 8624 bool gl_FragColor_assigned = false; 8625 bool gl_FragData_assigned = false; 8626 bool gl_FragSecondaryColor_assigned = false; 8627 bool gl_FragSecondaryData_assigned = false; 8628 bool user_defined_fs_output_assigned = false; 8629 ir_variable *user_defined_fs_output = NULL; 8630 8631 /* It would be nice to have proper location information. */ 8632 YYLTYPE loc; 8633 memset(&loc, 0, sizeof(loc)); 8634 8635 foreach_in_list(ir_instruction, node, instructions) { 8636 ir_variable *var = node->as_variable(); 8637 8638 if (!var || !var->data.assigned) 8639 continue; 8640 8641 if (strcmp(var->name, "gl_FragColor") == 0) 8642 gl_FragColor_assigned = true; 8643 else if (strcmp(var->name, "gl_FragData") == 0) 8644 gl_FragData_assigned = true; 8645 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0) 8646 gl_FragSecondaryColor_assigned = true; 8647 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0) 8648 gl_FragSecondaryData_assigned = true; 8649 else if (!is_gl_identifier(var->name)) { 8650 if (state->stage == MESA_SHADER_FRAGMENT && 8651 var->data.mode == ir_var_shader_out) { 8652 user_defined_fs_output_assigned = true; 8653 user_defined_fs_output = var; 8654 } 8655 } 8656 } 8657 8658 /* From the GLSL 1.30 spec: 8659 * 8660 * "If a shader statically assigns a value to gl_FragColor, it 8661 * may not assign a value to any element of gl_FragData. If a 8662 * shader statically writes a value to any element of 8663 * gl_FragData, it may not assign a value to 8664 * gl_FragColor. That is, a shader may assign values to either 8665 * gl_FragColor or gl_FragData, but not both. Multiple shaders 8666 * linked together must also consistently write just one of 8667 * these variables. Similarly, if user declared output 8668 * variables are in use (statically assigned to), then the 8669 * built-in variables gl_FragColor and gl_FragData may not be 8670 * assigned to. These incorrect usages all generate compile 8671 * time errors." 8672 */ 8673 if (gl_FragColor_assigned && gl_FragData_assigned) { 8674 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8675 "`gl_FragColor' and `gl_FragData'"); 8676 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) { 8677 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8678 "`gl_FragColor' and `%s'", 8679 user_defined_fs_output->name); 8680 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) { 8681 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8682 "`gl_FragSecondaryColorEXT' and" 8683 " `gl_FragSecondaryDataEXT'"); 8684 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) { 8685 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8686 "`gl_FragColor' and" 8687 " `gl_FragSecondaryDataEXT'"); 8688 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) { 8689 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8690 "`gl_FragData' and" 8691 " `gl_FragSecondaryColorEXT'"); 8692 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) { 8693 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8694 "`gl_FragData' and `%s'", 8695 user_defined_fs_output->name); 8696 } 8697 8698 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) && 8699 !state->EXT_blend_func_extended_enable) { 8700 _mesa_glsl_error(&loc, state, 8701 "Dual source blending requires EXT_blend_func_extended"); 8702 } 8703} 8704 8705static void 8706verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state) 8707{ 8708 YYLTYPE loc; 8709 memset(&loc, 0, sizeof(loc)); 8710 8711 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says: 8712 * 8713 * "A program will fail to compile or link if any shader 8714 * or stage contains two or more functions with the same 8715 * name if the name is associated with a subroutine type." 8716 */ 8717 8718 for (int i = 0; i < state->num_subroutines; i++) { 8719 unsigned definitions = 0; 8720 ir_function *fn = state->subroutines[i]; 8721 /* Calculate number of function definitions with the same name */ 8722 foreach_in_list(ir_function_signature, sig, &fn->signatures) { 8723 if (sig->is_defined) { 8724 if (++definitions > 1) { 8725 _mesa_glsl_error(&loc, state, 8726 "%s shader contains two or more function " 8727 "definitions with name `%s', which is " 8728 "associated with a subroutine type.\n", 8729 _mesa_shader_stage_to_string(state->stage), 8730 fn->name); 8731 return; 8732 } 8733 } 8734 } 8735 } 8736} 8737 8738static void 8739remove_per_vertex_blocks(exec_list *instructions, 8740 _mesa_glsl_parse_state *state, ir_variable_mode mode) 8741{ 8742 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode, 8743 * if it exists in this shader type. 8744 */ 8745 const glsl_type *per_vertex = NULL; 8746 switch (mode) { 8747 case ir_var_shader_in: 8748 if (ir_variable *gl_in = state->symbols->get_variable("gl_in")) 8749 per_vertex = gl_in->get_interface_type(); 8750 break; 8751 case ir_var_shader_out: 8752 if (ir_variable *gl_Position = 8753 state->symbols->get_variable("gl_Position")) { 8754 per_vertex = gl_Position->get_interface_type(); 8755 } 8756 break; 8757 default: 8758 assert(!"Unexpected mode"); 8759 break; 8760 } 8761 8762 /* If we didn't find a built-in gl_PerVertex interface block, then we don't 8763 * need to do anything. 8764 */ 8765 if (per_vertex == NULL) 8766 return; 8767 8768 /* If the interface block is used by the shader, then we don't need to do 8769 * anything. 8770 */ 8771 interface_block_usage_visitor v(mode, per_vertex); 8772 v.run(instructions); 8773 if (v.usage_found()) 8774 return; 8775 8776 /* Remove any ir_variable declarations that refer to the interface block 8777 * we're removing. 8778 */ 8779 foreach_in_list_safe(ir_instruction, node, instructions) { 8780 ir_variable *const var = node->as_variable(); 8781 if (var != NULL && var->get_interface_type() == per_vertex && 8782 var->data.mode == mode) { 8783 state->symbols->disable_variable(var->name); 8784 var->remove(); 8785 } 8786 } 8787} 8788 8789ir_rvalue * 8790ast_warnings_toggle::hir(exec_list *, 8791 struct _mesa_glsl_parse_state *state) 8792{ 8793 state->warnings_enabled = enable; 8794 return NULL; 8795} 8796