1/* -*- c++ -*- */
2/*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25#ifndef IR_H
26#define IR_H
27
28#include <stdio.h>
29#include <stdlib.h>
30
31#include "util/ralloc.h"
32#include "compiler/glsl_types.h"
33#include "list.h"
34#include "ir_visitor.h"
35#include "ir_hierarchical_visitor.h"
36
37#ifdef __cplusplus
38
39/**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45/**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant.  The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor.  While using type tags is not very C++, it is extremely
51 * convenient.  For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types.  For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59enum ir_node_type {
60   ir_type_dereference_array,
61   ir_type_dereference_record,
62   ir_type_dereference_variable,
63   ir_type_constant,
64   ir_type_expression,
65   ir_type_swizzle,
66   ir_type_texture,
67   ir_type_variable,
68   ir_type_assignment,
69   ir_type_call,
70   ir_type_function,
71   ir_type_function_signature,
72   ir_type_if,
73   ir_type_loop,
74   ir_type_loop_jump,
75   ir_type_return,
76   ir_type_discard,
77   ir_type_emit_vertex,
78   ir_type_end_primitive,
79   ir_type_barrier,
80   ir_type_max, /**< maximum ir_type enum number, for validation */
81   ir_type_unset = ir_type_max
82};
83
84
85/**
86 * Base class of all IR instructions
87 */
88class ir_instruction : public exec_node {
89public:
90   enum ir_node_type ir_type;
91
92   /**
93    * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94    * there's a virtual destructor present.  Because we almost
95    * universally use ralloc for our memory management of
96    * ir_instructions, the destructor doesn't need to do any work.
97    */
98   virtual ~ir_instruction()
99   {
100   }
101
102   /** ir_print_visitor helper for debugging. */
103   void print(void) const;
104   void fprint(FILE *f) const;
105
106   virtual void accept(ir_visitor *) = 0;
107   virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
108   virtual ir_instruction *clone(void *mem_ctx,
109				 struct hash_table *ht) const = 0;
110
111   bool is_rvalue() const
112   {
113      return ir_type == ir_type_dereference_array ||
114             ir_type == ir_type_dereference_record ||
115             ir_type == ir_type_dereference_variable ||
116             ir_type == ir_type_constant ||
117             ir_type == ir_type_expression ||
118             ir_type == ir_type_swizzle ||
119             ir_type == ir_type_texture;
120   }
121
122   bool is_dereference() const
123   {
124      return ir_type == ir_type_dereference_array ||
125             ir_type == ir_type_dereference_record ||
126             ir_type == ir_type_dereference_variable;
127   }
128
129   bool is_jump() const
130   {
131      return ir_type == ir_type_loop_jump ||
132             ir_type == ir_type_return ||
133             ir_type == ir_type_discard;
134   }
135
136   /**
137    * \name IR instruction downcast functions
138    *
139    * These functions either cast the object to a derived class or return
140    * \c NULL if the object's type does not match the specified derived class.
141    * Additional downcast functions will be added as needed.
142    */
143   /*@{*/
144   #define AS_BASE(TYPE)                                \
145   class ir_##TYPE *as_##TYPE()                         \
146   {                                                    \
147      assume(this != NULL);                             \
148      return is_##TYPE() ? (ir_##TYPE *) this : NULL;   \
149   }                                                    \
150   const class ir_##TYPE *as_##TYPE() const             \
151   {                                                    \
152      assume(this != NULL);                             \
153      return is_##TYPE() ? (ir_##TYPE *) this : NULL;   \
154   }
155
156   AS_BASE(rvalue)
157   AS_BASE(dereference)
158   AS_BASE(jump)
159   #undef AS_BASE
160
161   #define AS_CHILD(TYPE) \
162   class ir_##TYPE * as_##TYPE() \
163   { \
164      assume(this != NULL);                                         \
165      return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
166   }                                                                      \
167   const class ir_##TYPE * as_##TYPE() const                              \
168   {                                                                      \
169      assume(this != NULL);                                               \
170      return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
171   }
172   AS_CHILD(variable)
173   AS_CHILD(function)
174   AS_CHILD(dereference_array)
175   AS_CHILD(dereference_variable)
176   AS_CHILD(dereference_record)
177   AS_CHILD(expression)
178   AS_CHILD(loop)
179   AS_CHILD(assignment)
180   AS_CHILD(call)
181   AS_CHILD(return)
182   AS_CHILD(if)
183   AS_CHILD(swizzle)
184   AS_CHILD(texture)
185   AS_CHILD(constant)
186   AS_CHILD(discard)
187   #undef AS_CHILD
188   /*@}*/
189
190   /**
191    * IR equality method: Return true if the referenced instruction would
192    * return the same value as this one.
193    *
194    * This intended to be used for CSE and algebraic optimizations, on rvalues
195    * in particular.  No support for other instruction types (assignments,
196    * jumps, calls, etc.) is planned.
197    */
198   virtual bool equals(const ir_instruction *ir,
199                       enum ir_node_type ignore = ir_type_unset) const;
200
201protected:
202   ir_instruction(enum ir_node_type t)
203      : ir_type(t)
204   {
205   }
206
207private:
208   ir_instruction()
209   {
210      assert(!"Should not get here.");
211   }
212};
213
214
215/**
216 * The base class for all "values"/expression trees.
217 */
218class ir_rvalue : public ir_instruction {
219public:
220   const struct glsl_type *type;
221
222   virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
223
224   virtual void accept(ir_visitor *v)
225   {
226      v->visit(this);
227   }
228
229   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
230
231   virtual ir_constant *constant_expression_value(void *mem_ctx,
232                                                  struct hash_table *variable_context = NULL);
233
234   ir_rvalue *as_rvalue_to_saturate();
235
236   virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
237   {
238      return false;
239   }
240
241   /**
242    * Get the variable that is ultimately referenced by an r-value
243    */
244   virtual ir_variable *variable_referenced() const
245   {
246      return NULL;
247   }
248
249
250   /**
251    * If an r-value is a reference to a whole variable, get that variable
252    *
253    * \return
254    * Pointer to a variable that is completely dereferenced by the r-value.  If
255    * the r-value is not a dereference or the dereference does not access the
256    * entire variable (i.e., it's just one array element, struct field), \c NULL
257    * is returned.
258    */
259   virtual ir_variable *whole_variable_referenced()
260   {
261      return NULL;
262   }
263
264   /**
265    * Determine if an r-value has the value zero
266    *
267    * The base implementation of this function always returns \c false.  The
268    * \c ir_constant class over-rides this function to return \c true \b only
269    * for vector and scalar types that have all elements set to the value
270    * zero (or \c false for booleans).
271    *
272    * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273    */
274   virtual bool is_zero() const;
275
276   /**
277    * Determine if an r-value has the value one
278    *
279    * The base implementation of this function always returns \c false.  The
280    * \c ir_constant class over-rides this function to return \c true \b only
281    * for vector and scalar types that have all elements set to the value
282    * one (or \c true for booleans).
283    *
284    * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285    */
286   virtual bool is_one() const;
287
288   /**
289    * Determine if an r-value has the value negative one
290    *
291    * The base implementation of this function always returns \c false.  The
292    * \c ir_constant class over-rides this function to return \c true \b only
293    * for vector and scalar types that have all elements set to the value
294    * negative one.  For boolean types, the result is always \c false.
295    *
296    * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297    */
298   virtual bool is_negative_one() const;
299
300   /**
301    * Determine if an r-value is an unsigned integer constant which can be
302    * stored in 16 bits.
303    *
304    * \sa ir_constant::is_uint16_constant.
305    */
306   virtual bool is_uint16_constant() const { return false; }
307
308   /**
309    * Return a generic value of error_type.
310    *
311    * Allocation will be performed with 'mem_ctx' as ralloc owner.
312    */
313   static ir_rvalue *error_value(void *mem_ctx);
314
315protected:
316   ir_rvalue(enum ir_node_type t);
317};
318
319
320/**
321 * Variable storage classes
322 */
323enum ir_variable_mode {
324   ir_var_auto = 0,             /**< Function local variables and globals. */
325   ir_var_uniform,              /**< Variable declared as a uniform. */
326   ir_var_shader_storage,       /**< Variable declared as an ssbo. */
327   ir_var_shader_shared,        /**< Variable declared as shared. */
328   ir_var_shader_in,
329   ir_var_shader_out,
330   ir_var_function_in,
331   ir_var_function_out,
332   ir_var_function_inout,
333   ir_var_const_in,             /**< "in" param that must be a constant expression */
334   ir_var_system_value,         /**< Ex: front-face, instance-id, etc. */
335   ir_var_temporary,            /**< Temporary variable generated during compilation. */
336   ir_var_mode_count            /**< Number of variable modes */
337};
338
339/**
340 * Enum keeping track of how a variable was declared.  For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343enum ir_var_declaration_type {
344   /**
345    * Normal declaration (for most variables, this means an explicit
346    * declaration.  Exception: temporaries are always implicitly declared, but
347    * they still use ir_var_declared_normally).
348    *
349    * Note: an ir_variable that represents a named interface block uses
350    * ir_var_declared_normally.
351    */
352   ir_var_declared_normally = 0,
353
354   /**
355    * Variable was explicitly declared (or re-declared) in an unnamed
356    * interface block.
357    */
358   ir_var_declared_in_block,
359
360   /**
361    * Variable is an implicitly declared built-in that has not been explicitly
362    * re-declared by the shader.
363    */
364   ir_var_declared_implicitly,
365
366   /**
367    * Variable is implicitly generated by the compiler and should not be
368    * visible via the API.
369    */
370   ir_var_hidden,
371};
372
373/**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379enum ir_depth_layout {
380    ir_depth_layout_none, /**< No depth layout is specified. */
381    ir_depth_layout_any,
382    ir_depth_layout_greater,
383    ir_depth_layout_less,
384    ir_depth_layout_unchanged
385};
386
387/**
388 * \brief Convert depth layout qualifier to string.
389 */
390const char*
391depth_layout_string(ir_depth_layout layout);
392
393/**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398struct ir_state_slot {
399   gl_state_index16 tokens[STATE_LENGTH];
400   int swizzle;
401};
402
403
404/**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416const char *interpolation_string(unsigned interpolation);
417
418
419class ir_variable : public ir_instruction {
420public:
421   ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423   virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425   virtual void accept(ir_visitor *v)
426   {
427      v->visit(this);
428   }
429
430   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433   /**
434    * Determine whether or not a variable is part of a uniform or
435    * shader storage block.
436    */
437   inline bool is_in_buffer_block() const
438   {
439      return (this->data.mode == ir_var_uniform ||
440              this->data.mode == ir_var_shader_storage) &&
441             this->interface_type != NULL;
442   }
443
444   /**
445    * Determine whether or not a variable is part of a shader storage block.
446    */
447   inline bool is_in_shader_storage_block() const
448   {
449      return this->data.mode == ir_var_shader_storage &&
450             this->interface_type != NULL;
451   }
452
453   /**
454    * Determine whether or not a variable is the declaration of an interface
455    * block
456    *
457    * For the first declaration below, there will be an \c ir_variable named
458    * "instance" whose type and whose instance_type will be the same
459    * \c glsl_type.  For the second declaration, there will be an \c ir_variable
460    * named "f" whose type is float and whose instance_type is B2.
461    *
462    * "instance" is an interface instance variable, but "f" is not.
463    *
464    * uniform B1 {
465    *     float f;
466    * } instance;
467    *
468    * uniform B2 {
469    *     float f;
470    * };
471    */
472   inline bool is_interface_instance() const
473   {
474      return this->type->without_array() == this->interface_type;
475   }
476
477   /**
478    * Return whether this variable contains a bindless sampler/image.
479    */
480   inline bool contains_bindless() const
481   {
482      if (!this->type->contains_sampler() && !this->type->contains_image())
483         return false;
484
485      return this->data.bindless || this->data.mode != ir_var_uniform;
486   }
487
488   /**
489    * Set this->interface_type on a newly created variable.
490    */
491   void init_interface_type(const struct glsl_type *type)
492   {
493      assert(this->interface_type == NULL);
494      this->interface_type = type;
495      if (this->is_interface_instance()) {
496         this->u.max_ifc_array_access =
497            ralloc_array(this, int, type->length);
498         for (unsigned i = 0; i < type->length; i++) {
499            this->u.max_ifc_array_access[i] = -1;
500         }
501      }
502   }
503
504   /**
505    * Change this->interface_type on a variable that previously had a
506    * different, but compatible, interface_type.  This is used during linking
507    * to set the size of arrays in interface blocks.
508    */
509   void change_interface_type(const struct glsl_type *type)
510   {
511      if (this->u.max_ifc_array_access != NULL) {
512         /* max_ifc_array_access has already been allocated, so make sure the
513          * new interface has the same number of fields as the old one.
514          */
515         assert(this->interface_type->length == type->length);
516      }
517      this->interface_type = type;
518   }
519
520   /**
521    * Change this->interface_type on a variable that previously had a
522    * different, and incompatible, interface_type. This is used during
523    * compilation to handle redeclaration of the built-in gl_PerVertex
524    * interface block.
525    */
526   void reinit_interface_type(const struct glsl_type *type)
527   {
528      if (this->u.max_ifc_array_access != NULL) {
529#ifndef NDEBUG
530         /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
531          * it defines have been accessed yet; so it's safe to throw away the
532          * old max_ifc_array_access pointer, since all of its values are
533          * zero.
534          */
535         for (unsigned i = 0; i < this->interface_type->length; i++)
536            assert(this->u.max_ifc_array_access[i] == -1);
537#endif
538         ralloc_free(this->u.max_ifc_array_access);
539         this->u.max_ifc_array_access = NULL;
540      }
541      this->interface_type = NULL;
542      init_interface_type(type);
543   }
544
545   const glsl_type *get_interface_type() const
546   {
547      return this->interface_type;
548   }
549
550   enum glsl_interface_packing get_interface_type_packing() const
551   {
552     return this->interface_type->get_interface_packing();
553   }
554   /**
555    * Get the max_ifc_array_access pointer
556    *
557    * A "set" function is not needed because the array is dynmically allocated
558    * as necessary.
559    */
560   inline int *get_max_ifc_array_access()
561   {
562      assert(this->data._num_state_slots == 0);
563      return this->u.max_ifc_array_access;
564   }
565
566   inline unsigned get_num_state_slots() const
567   {
568      assert(!this->is_interface_instance()
569             || this->data._num_state_slots == 0);
570      return this->data._num_state_slots;
571   }
572
573   inline void set_num_state_slots(unsigned n)
574   {
575      assert(!this->is_interface_instance()
576             || n == 0);
577      this->data._num_state_slots = n;
578   }
579
580   inline ir_state_slot *get_state_slots()
581   {
582      return this->is_interface_instance() ? NULL : this->u.state_slots;
583   }
584
585   inline const ir_state_slot *get_state_slots() const
586   {
587      return this->is_interface_instance() ? NULL : this->u.state_slots;
588   }
589
590   inline ir_state_slot *allocate_state_slots(unsigned n)
591   {
592      assert(!this->is_interface_instance());
593
594      this->u.state_slots = ralloc_array(this, ir_state_slot, n);
595      this->data._num_state_slots = 0;
596
597      if (this->u.state_slots != NULL)
598         this->data._num_state_slots = n;
599
600      return this->u.state_slots;
601   }
602
603   inline bool is_interpolation_flat() const
604   {
605      return this->data.interpolation == INTERP_MODE_FLAT ||
606             this->type->contains_integer() ||
607             this->type->contains_double();
608   }
609
610   inline bool is_name_ralloced() const
611   {
612      return this->name != ir_variable::tmp_name &&
613             this->name != this->name_storage;
614   }
615
616   /**
617    * Enable emitting extension warnings for this variable
618    */
619   void enable_extension_warning(const char *extension);
620
621   /**
622    * Get the extension warning string for this variable
623    *
624    * If warnings are not enabled, \c NULL is returned.
625    */
626   const char *get_extension_warning() const;
627
628   /**
629    * Declared type of the variable
630    */
631   const struct glsl_type *type;
632
633   /**
634    * Declared name of the variable
635    */
636   const char *name;
637
638private:
639   /**
640    * If the name length fits into name_storage, it's used, otherwise
641    * the name is ralloc'd. shader-db mining showed that 70% of variables
642    * fit here. This is a win over ralloc where only ralloc_header has
643    * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
644    */
645   char name_storage[16];
646
647public:
648   struct ir_variable_data {
649
650      /**
651       * Is the variable read-only?
652       *
653       * This is set for variables declared as \c const, shader inputs,
654       * and uniforms.
655       */
656      unsigned read_only:1;
657      unsigned centroid:1;
658      unsigned sample:1;
659      unsigned patch:1;
660      /**
661       * Was an 'invariant' qualifier explicitly set in the shader?
662       *
663       * This is used to cross validate qualifiers.
664       */
665      unsigned explicit_invariant:1;
666      /**
667       * Is the variable invariant?
668       *
669       * It can happen either by having the 'invariant' qualifier
670       * explicitly set in the shader or by being used in calculations
671       * of other invariant variables.
672       */
673      unsigned invariant:1;
674      unsigned precise:1;
675
676      /**
677       * Has this variable been used for reading or writing?
678       *
679       * Several GLSL semantic checks require knowledge of whether or not a
680       * variable has been used.  For example, it is an error to redeclare a
681       * variable as invariant after it has been used.
682       *
683       * This is maintained in the ast_to_hir.cpp path and during linking,
684       * but not in Mesa's fixed function or ARB program paths.
685       */
686      unsigned used:1;
687
688      /**
689       * Has this variable been statically assigned?
690       *
691       * This answers whether the variable was assigned in any path of
692       * the shader during ast_to_hir.  This doesn't answer whether it is
693       * still written after dead code removal, nor is it maintained in
694       * non-ast_to_hir.cpp (GLSL parsing) paths.
695       */
696      unsigned assigned:1;
697
698      /**
699       * When separate shader programs are enabled, only input/outputs between
700       * the stages of a multi-stage separate program can be safely removed
701       * from the shader interface. Other input/outputs must remains active.
702       */
703      unsigned always_active_io:1;
704
705      /**
706       * Enum indicating how the variable was declared.  See
707       * ir_var_declaration_type.
708       *
709       * This is used to detect certain kinds of illegal variable redeclarations.
710       */
711      unsigned how_declared:2;
712
713      /**
714       * Storage class of the variable.
715       *
716       * \sa ir_variable_mode
717       */
718      unsigned mode:4;
719
720      /**
721       * Interpolation mode for shader inputs / outputs
722       *
723       * \sa glsl_interp_mode
724       */
725      unsigned interpolation:2;
726
727      /**
728       * Was the location explicitly set in the shader?
729       *
730       * If the location is explicitly set in the shader, it \b cannot be changed
731       * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
732       * no effect).
733       */
734      unsigned explicit_location:1;
735      unsigned explicit_index:1;
736
737      /**
738       * Was an initial binding explicitly set in the shader?
739       *
740       * If so, constant_value contains an integer ir_constant representing the
741       * initial binding point.
742       */
743      unsigned explicit_binding:1;
744
745      /**
746       * Was an initial component explicitly set in the shader?
747       */
748      unsigned explicit_component:1;
749
750      /**
751       * Does this variable have an initializer?
752       *
753       * This is used by the linker to cross-validiate initializers of global
754       * variables.
755       */
756      unsigned has_initializer:1;
757
758      /**
759       * Is this variable a generic output or input that has not yet been matched
760       * up to a variable in another stage of the pipeline?
761       *
762       * This is used by the linker as scratch storage while assigning locations
763       * to generic inputs and outputs.
764       */
765      unsigned is_unmatched_generic_inout:1;
766
767      /**
768       * Is this varying used only by transform feedback?
769       *
770       * This is used by the linker to decide if its safe to pack the varying.
771       */
772      unsigned is_xfb_only:1;
773
774      /**
775       * Was a transform feedback buffer set in the shader?
776       */
777      unsigned explicit_xfb_buffer:1;
778
779      /**
780       * Was a transform feedback offset set in the shader?
781       */
782      unsigned explicit_xfb_offset:1;
783
784      /**
785       * Was a transform feedback stride set in the shader?
786       */
787      unsigned explicit_xfb_stride:1;
788
789      /**
790       * If non-zero, then this variable may be packed along with other variables
791       * into a single varying slot, so this offset should be applied when
792       * accessing components.  For example, an offset of 1 means that the x
793       * component of this variable is actually stored in component y of the
794       * location specified by \c location.
795       */
796      unsigned location_frac:2;
797
798      /**
799       * Layout of the matrix.  Uses glsl_matrix_layout values.
800       */
801      unsigned matrix_layout:2;
802
803      /**
804       * Non-zero if this variable was created by lowering a named interface
805       * block.
806       */
807      unsigned from_named_ifc_block:1;
808
809      /**
810       * Non-zero if the variable must be a shader input. This is useful for
811       * constraints on function parameters.
812       */
813      unsigned must_be_shader_input:1;
814
815      /**
816       * Output index for dual source blending.
817       *
818       * \note
819       * The GLSL spec only allows the values 0 or 1 for the index in \b dual
820       * source blending.
821       */
822      unsigned index:1;
823
824      /**
825       * Precision qualifier.
826       *
827       * In desktop GLSL we do not care about precision qualifiers at all, in
828       * fact, the spec says that precision qualifiers are ignored.
829       *
830       * To make things easy, we make it so that this field is always
831       * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
832       * have the same precision value and the checks we add in the compiler
833       * for this field will never break a desktop shader compile.
834       */
835      unsigned precision:2;
836
837      /**
838       * \brief Layout qualifier for gl_FragDepth.
839       *
840       * This is not equal to \c ir_depth_layout_none if and only if this
841       * variable is \c gl_FragDepth and a layout qualifier is specified.
842       */
843      ir_depth_layout depth_layout:3;
844
845      /**
846       * Memory qualifiers.
847       */
848      unsigned memory_read_only:1; /**< "readonly" qualifier. */
849      unsigned memory_write_only:1; /**< "writeonly" qualifier. */
850      unsigned memory_coherent:1;
851      unsigned memory_volatile:1;
852      unsigned memory_restrict:1;
853
854      /**
855       * ARB_shader_storage_buffer_object
856       */
857      unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
858
859      unsigned implicit_sized_array:1;
860
861      /**
862       * Whether this is a fragment shader output implicitly initialized with
863       * the previous contents of the specified render target at the
864       * framebuffer location corresponding to this shader invocation.
865       */
866      unsigned fb_fetch_output:1;
867
868      /**
869       * Non-zero if this variable is considered bindless as defined by
870       * ARB_bindless_texture.
871       */
872      unsigned bindless:1;
873
874      /**
875       * Non-zero if this variable is considered bound as defined by
876       * ARB_bindless_texture.
877       */
878      unsigned bound:1;
879
880      /**
881       * Emit a warning if this variable is accessed.
882       */
883   private:
884      uint8_t warn_extension_index;
885
886   public:
887      /** Image internal format if specified explicitly, otherwise GL_NONE. */
888      uint16_t image_format;
889
890   private:
891      /**
892       * Number of state slots used
893       *
894       * \note
895       * This could be stored in as few as 7-bits, if necessary.  If it is made
896       * smaller, add an assertion to \c ir_variable::allocate_state_slots to
897       * be safe.
898       */
899      uint16_t _num_state_slots;
900
901   public:
902      /**
903       * Initial binding point for a sampler, atomic, or UBO.
904       *
905       * For array types, this represents the binding point for the first element.
906       */
907      int16_t binding;
908
909      /**
910       * Storage location of the base of this variable
911       *
912       * The precise meaning of this field depends on the nature of the variable.
913       *
914       *   - Vertex shader input: one of the values from \c gl_vert_attrib.
915       *   - Vertex shader output: one of the values from \c gl_varying_slot.
916       *   - Geometry shader input: one of the values from \c gl_varying_slot.
917       *   - Geometry shader output: one of the values from \c gl_varying_slot.
918       *   - Fragment shader input: one of the values from \c gl_varying_slot.
919       *   - Fragment shader output: one of the values from \c gl_frag_result.
920       *   - Uniforms: Per-stage uniform slot number for default uniform block.
921       *   - Uniforms: Index within the uniform block definition for UBO members.
922       *   - Non-UBO Uniforms: explicit location until linking then reused to
923       *     store uniform slot number.
924       *   - Other: This field is not currently used.
925       *
926       * If the variable is a uniform, shader input, or shader output, and the
927       * slot has not been assigned, the value will be -1.
928       */
929      int location;
930
931      /**
932       * for glsl->tgsi/mesa IR we need to store the index into the
933       * parameters for uniforms, initially the code overloaded location
934       * but this causes problems with indirect samplers and AoA.
935       * This is assigned in _mesa_generate_parameters_list_for_uniforms.
936       */
937      int param_index;
938
939      /**
940       * Vertex stream output identifier.
941       *
942       * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
943       * stream of the i-th component.
944       */
945      unsigned stream;
946
947      /**
948       * Atomic, transform feedback or block member offset.
949       */
950      unsigned offset;
951
952      /**
953       * Highest element accessed with a constant expression array index
954       *
955       * Not used for non-array variables. -1 is never accessed.
956       */
957      int max_array_access;
958
959      /**
960       * Transform feedback buffer.
961       */
962      unsigned xfb_buffer;
963
964      /**
965       * Transform feedback stride.
966       */
967      unsigned xfb_stride;
968
969      /**
970       * Allow (only) ir_variable direct access private members.
971       */
972      friend class ir_variable;
973   } data;
974
975   /**
976    * Value assigned in the initializer of a variable declared "const"
977    */
978   ir_constant *constant_value;
979
980   /**
981    * Constant expression assigned in the initializer of the variable
982    *
983    * \warning
984    * This field and \c ::constant_value are distinct.  Even if the two fields
985    * refer to constants with the same value, they must point to separate
986    * objects.
987    */
988   ir_constant *constant_initializer;
989
990private:
991   static const char *const warn_extension_table[];
992
993   union {
994      /**
995       * For variables which satisfy the is_interface_instance() predicate,
996       * this points to an array of integers such that if the ith member of
997       * the interface block is an array, max_ifc_array_access[i] is the
998       * maximum array element of that member that has been accessed.  If the
999       * ith member of the interface block is not an array,
1000       * max_ifc_array_access[i] is unused.
1001       *
1002       * For variables whose type is not an interface block, this pointer is
1003       * NULL.
1004       */
1005      int *max_ifc_array_access;
1006
1007      /**
1008       * Built-in state that backs this uniform
1009       *
1010       * Once set at variable creation, \c state_slots must remain invariant.
1011       *
1012       * If the variable is not a uniform, \c _num_state_slots will be zero
1013       * and \c state_slots will be \c NULL.
1014       */
1015      ir_state_slot *state_slots;
1016   } u;
1017
1018   /**
1019    * For variables that are in an interface block or are an instance of an
1020    * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1021    *
1022    * \sa ir_variable::location
1023    */
1024   const glsl_type *interface_type;
1025
1026   /**
1027    * Name used for anonymous compiler temporaries
1028    */
1029   static const char tmp_name[];
1030
1031public:
1032   /**
1033    * Should the construct keep names for ir_var_temporary variables?
1034    *
1035    * When this global is false, names passed to the constructor for
1036    * \c ir_var_temporary variables will be dropped.  Instead, the variable will
1037    * be named "compiler_temp".  This name will be in static storage.
1038    *
1039    * \warning
1040    * \b NEVER change the mode of an \c ir_var_temporary.
1041    *
1042    * \warning
1043    * This variable is \b not thread-safe.  It is global, \b not
1044    * per-context. It begins life false.  A context can, at some point, make
1045    * it true.  From that point on, it will be true forever.  This should be
1046    * okay since it will only be set true while debugging.
1047    */
1048   static bool temporaries_allocate_names;
1049};
1050
1051/**
1052 * A function that returns whether a built-in function is available in the
1053 * current shading language (based on version, ES or desktop, and extensions).
1054 */
1055typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1056
1057#define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1058   ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1059
1060#define MAP_INTRINSIC_TO_TYPE(i, t) \
1061   ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1062
1063enum ir_intrinsic_id {
1064   ir_intrinsic_invalid = 0,
1065
1066   /**
1067    * \name Generic intrinsics
1068    *
1069    * Each of these intrinsics has a specific version for shared variables and
1070    * SSBOs.
1071    */
1072   /*@{*/
1073   ir_intrinsic_generic_load,
1074   ir_intrinsic_generic_store,
1075   ir_intrinsic_generic_atomic_add,
1076   ir_intrinsic_generic_atomic_and,
1077   ir_intrinsic_generic_atomic_or,
1078   ir_intrinsic_generic_atomic_xor,
1079   ir_intrinsic_generic_atomic_min,
1080   ir_intrinsic_generic_atomic_max,
1081   ir_intrinsic_generic_atomic_exchange,
1082   ir_intrinsic_generic_atomic_comp_swap,
1083   /*@}*/
1084
1085   ir_intrinsic_atomic_counter_read,
1086   ir_intrinsic_atomic_counter_increment,
1087   ir_intrinsic_atomic_counter_predecrement,
1088   ir_intrinsic_atomic_counter_add,
1089   ir_intrinsic_atomic_counter_and,
1090   ir_intrinsic_atomic_counter_or,
1091   ir_intrinsic_atomic_counter_xor,
1092   ir_intrinsic_atomic_counter_min,
1093   ir_intrinsic_atomic_counter_max,
1094   ir_intrinsic_atomic_counter_exchange,
1095   ir_intrinsic_atomic_counter_comp_swap,
1096
1097   ir_intrinsic_image_load,
1098   ir_intrinsic_image_store,
1099   ir_intrinsic_image_atomic_add,
1100   ir_intrinsic_image_atomic_and,
1101   ir_intrinsic_image_atomic_or,
1102   ir_intrinsic_image_atomic_xor,
1103   ir_intrinsic_image_atomic_min,
1104   ir_intrinsic_image_atomic_max,
1105   ir_intrinsic_image_atomic_exchange,
1106   ir_intrinsic_image_atomic_comp_swap,
1107   ir_intrinsic_image_size,
1108   ir_intrinsic_image_samples,
1109
1110   ir_intrinsic_ssbo_load,
1111   ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1112   ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1113   ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1114   ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1115   ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1116   ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1117   ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1118   ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1119   ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1120
1121   ir_intrinsic_memory_barrier,
1122   ir_intrinsic_shader_clock,
1123   ir_intrinsic_group_memory_barrier,
1124   ir_intrinsic_memory_barrier_atomic_counter,
1125   ir_intrinsic_memory_barrier_buffer,
1126   ir_intrinsic_memory_barrier_image,
1127   ir_intrinsic_memory_barrier_shared,
1128   ir_intrinsic_begin_invocation_interlock,
1129   ir_intrinsic_end_invocation_interlock,
1130
1131   ir_intrinsic_vote_all,
1132   ir_intrinsic_vote_any,
1133   ir_intrinsic_vote_eq,
1134   ir_intrinsic_ballot,
1135   ir_intrinsic_read_invocation,
1136   ir_intrinsic_read_first_invocation,
1137
1138   ir_intrinsic_shared_load,
1139   ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1140   ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1141   ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1142   ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1143   ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1144   ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1145   ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1146   ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1147   ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1148};
1149
1150/*@{*/
1151/**
1152 * The representation of a function instance; may be the full definition or
1153 * simply a prototype.
1154 */
1155class ir_function_signature : public ir_instruction {
1156   /* An ir_function_signature will be part of the list of signatures in
1157    * an ir_function.
1158    */
1159public:
1160   ir_function_signature(const glsl_type *return_type,
1161                         builtin_available_predicate builtin_avail = NULL);
1162
1163   virtual ir_function_signature *clone(void *mem_ctx,
1164					struct hash_table *ht) const;
1165   ir_function_signature *clone_prototype(void *mem_ctx,
1166					  struct hash_table *ht) const;
1167
1168   virtual void accept(ir_visitor *v)
1169   {
1170      v->visit(this);
1171   }
1172
1173   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1174
1175   /**
1176    * Attempt to evaluate this function as a constant expression,
1177    * given a list of the actual parameters and the variable context.
1178    * Returns NULL for non-built-ins.
1179    */
1180   ir_constant *constant_expression_value(void *mem_ctx,
1181                                          exec_list *actual_parameters,
1182                                          struct hash_table *variable_context);
1183
1184   /**
1185    * Get the name of the function for which this is a signature
1186    */
1187   const char *function_name() const;
1188
1189   /**
1190    * Get a handle to the function for which this is a signature
1191    *
1192    * There is no setter function, this function returns a \c const pointer,
1193    * and \c ir_function_signature::_function is private for a reason.  The
1194    * only way to make a connection between a function and function signature
1195    * is via \c ir_function::add_signature.  This helps ensure that certain
1196    * invariants (i.e., a function signature is in the list of signatures for
1197    * its \c _function) are met.
1198    *
1199    * \sa ir_function::add_signature
1200    */
1201   inline const class ir_function *function() const
1202   {
1203      return this->_function;
1204   }
1205
1206   /**
1207    * Check whether the qualifiers match between this signature's parameters
1208    * and the supplied parameter list.  If not, returns the name of the first
1209    * parameter with mismatched qualifiers (for use in error messages).
1210    */
1211   const char *qualifiers_match(exec_list *params);
1212
1213   /**
1214    * Replace the current parameter list with the given one.  This is useful
1215    * if the current information came from a prototype, and either has invalid
1216    * or missing parameter names.
1217    */
1218   void replace_parameters(exec_list *new_params);
1219
1220   /**
1221    * Function return type.
1222    *
1223    * \note This discards the optional precision qualifier.
1224    */
1225   const struct glsl_type *return_type;
1226
1227   /**
1228    * List of ir_variable of function parameters.
1229    *
1230    * This represents the storage.  The paramaters passed in a particular
1231    * call will be in ir_call::actual_paramaters.
1232    */
1233   struct exec_list parameters;
1234
1235   /** Whether or not this function has a body (which may be empty). */
1236   unsigned is_defined:1;
1237
1238   /** Whether or not this function signature is a built-in. */
1239   bool is_builtin() const;
1240
1241   /**
1242    * Whether or not this function is an intrinsic to be implemented
1243    * by the driver.
1244    */
1245   inline bool is_intrinsic() const
1246   {
1247      return intrinsic_id != ir_intrinsic_invalid;
1248   }
1249
1250   /** Indentifier for this intrinsic. */
1251   enum ir_intrinsic_id intrinsic_id;
1252
1253   /** Whether or not a built-in is available for this shader. */
1254   bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1255
1256   /** Body of instructions in the function. */
1257   struct exec_list body;
1258
1259private:
1260   /**
1261    * A function pointer to a predicate that answers whether a built-in
1262    * function is available in the current shader.  NULL if not a built-in.
1263    */
1264   builtin_available_predicate builtin_avail;
1265
1266   /** Function of which this signature is one overload. */
1267   class ir_function *_function;
1268
1269   /** Function signature of which this one is a prototype clone */
1270   const ir_function_signature *origin;
1271
1272   friend class ir_function;
1273
1274   /**
1275    * Helper function to run a list of instructions for constant
1276    * expression evaluation.
1277    *
1278    * The hash table represents the values of the visible variables.
1279    * There are no scoping issues because the table is indexed on
1280    * ir_variable pointers, not variable names.
1281    *
1282    * Returns false if the expression is not constant, true otherwise,
1283    * and the value in *result if result is non-NULL.
1284    */
1285   bool constant_expression_evaluate_expression_list(void *mem_ctx,
1286                                                     const struct exec_list &body,
1287						     struct hash_table *variable_context,
1288						     ir_constant **result);
1289};
1290
1291
1292/**
1293 * Header for tracking multiple overloaded functions with the same name.
1294 * Contains a list of ir_function_signatures representing each of the
1295 * actual functions.
1296 */
1297class ir_function : public ir_instruction {
1298public:
1299   ir_function(const char *name);
1300
1301   virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1302
1303   virtual void accept(ir_visitor *v)
1304   {
1305      v->visit(this);
1306   }
1307
1308   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1309
1310   void add_signature(ir_function_signature *sig)
1311   {
1312      sig->_function = this;
1313      this->signatures.push_tail(sig);
1314   }
1315
1316   /**
1317    * Find a signature that matches a set of actual parameters, taking implicit
1318    * conversions into account.  Also flags whether the match was exact.
1319    */
1320   ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1321                                             const exec_list *actual_param,
1322                                             bool allow_builtins,
1323					     bool *match_is_exact);
1324
1325   /**
1326    * Find a signature that matches a set of actual parameters, taking implicit
1327    * conversions into account.
1328    */
1329   ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1330                                             const exec_list *actual_param,
1331                                             bool allow_builtins);
1332
1333   /**
1334    * Find a signature that exactly matches a set of actual parameters without
1335    * any implicit type conversions.
1336    */
1337   ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1338                                                   const exec_list *actual_ps);
1339
1340   /**
1341    * Name of the function.
1342    */
1343   const char *name;
1344
1345   /** Whether or not this function has a signature that isn't a built-in. */
1346   bool has_user_signature();
1347
1348   /**
1349    * List of ir_function_signature for each overloaded function with this name.
1350    */
1351   struct exec_list signatures;
1352
1353   /**
1354    * is this function a subroutine type declaration
1355    * e.g. subroutine void type1(float arg1);
1356    */
1357   bool is_subroutine;
1358
1359   /**
1360    * is this function associated to a subroutine type
1361    * e.g. subroutine (type1, type2) function_name { function_body };
1362    * would have num_subroutine_types 2,
1363    * and pointers to the type1 and type2 types.
1364    */
1365   int num_subroutine_types;
1366   const struct glsl_type **subroutine_types;
1367
1368   int subroutine_index;
1369};
1370
1371inline const char *ir_function_signature::function_name() const
1372{
1373   return this->_function->name;
1374}
1375/*@}*/
1376
1377
1378/**
1379 * IR instruction representing high-level if-statements
1380 */
1381class ir_if : public ir_instruction {
1382public:
1383   ir_if(ir_rvalue *condition)
1384      : ir_instruction(ir_type_if), condition(condition)
1385   {
1386   }
1387
1388   virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1389
1390   virtual void accept(ir_visitor *v)
1391   {
1392      v->visit(this);
1393   }
1394
1395   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1396
1397   ir_rvalue *condition;
1398   /** List of ir_instruction for the body of the then branch */
1399   exec_list  then_instructions;
1400   /** List of ir_instruction for the body of the else branch */
1401   exec_list  else_instructions;
1402};
1403
1404
1405/**
1406 * IR instruction representing a high-level loop structure.
1407 */
1408class ir_loop : public ir_instruction {
1409public:
1410   ir_loop();
1411
1412   virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1413
1414   virtual void accept(ir_visitor *v)
1415   {
1416      v->visit(this);
1417   }
1418
1419   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1420
1421   /** List of ir_instruction that make up the body of the loop. */
1422   exec_list body_instructions;
1423};
1424
1425
1426class ir_assignment : public ir_instruction {
1427public:
1428   ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1429
1430   /**
1431    * Construct an assignment with an explicit write mask
1432    *
1433    * \note
1434    * Since a write mask is supplied, the LHS must already be a bare
1435    * \c ir_dereference.  The cannot be any swizzles in the LHS.
1436    */
1437   ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1438		 unsigned write_mask);
1439
1440   virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1441
1442   virtual ir_constant *constant_expression_value(void *mem_ctx,
1443                                                  struct hash_table *variable_context = NULL);
1444
1445   virtual void accept(ir_visitor *v)
1446   {
1447      v->visit(this);
1448   }
1449
1450   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1451
1452   /**
1453    * Get a whole variable written by an assignment
1454    *
1455    * If the LHS of the assignment writes a whole variable, the variable is
1456    * returned.  Otherwise \c NULL is returned.  Examples of whole-variable
1457    * assignment are:
1458    *
1459    *  - Assigning to a scalar
1460    *  - Assigning to all components of a vector
1461    *  - Whole array (or matrix) assignment
1462    *  - Whole structure assignment
1463    */
1464   ir_variable *whole_variable_written();
1465
1466   /**
1467    * Set the LHS of an assignment
1468    */
1469   void set_lhs(ir_rvalue *lhs);
1470
1471   /**
1472    * Left-hand side of the assignment.
1473    *
1474    * This should be treated as read only.  If you need to set the LHS of an
1475    * assignment, use \c ir_assignment::set_lhs.
1476    */
1477   ir_dereference *lhs;
1478
1479   /**
1480    * Value being assigned
1481    */
1482   ir_rvalue *rhs;
1483
1484   /**
1485    * Optional condition for the assignment.
1486    */
1487   ir_rvalue *condition;
1488
1489
1490   /**
1491    * Component mask written
1492    *
1493    * For non-vector types in the LHS, this field will be zero.  For vector
1494    * types, a bit will be set for each component that is written.  Note that
1495    * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1496    *
1497    * A partially-set write mask means that each enabled channel gets
1498    * the value from a consecutive channel of the rhs.  For example,
1499    * to write just .xyw of gl_FrontColor with color:
1500    *
1501    * (assign (constant bool (1)) (xyw)
1502    *     (var_ref gl_FragColor)
1503    *     (swiz xyw (var_ref color)))
1504    */
1505   unsigned write_mask:4;
1506};
1507
1508#include "ir_expression_operation.h"
1509
1510extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1511extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1512
1513class ir_expression : public ir_rvalue {
1514public:
1515   ir_expression(int op, const struct glsl_type *type,
1516                 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1517                 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1518
1519   /**
1520    * Constructor for unary operation expressions
1521    */
1522   ir_expression(int op, ir_rvalue *);
1523
1524   /**
1525    * Constructor for binary operation expressions
1526    */
1527   ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1528
1529   /**
1530    * Constructor for ternary operation expressions
1531    */
1532   ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1533
1534   virtual bool equals(const ir_instruction *ir,
1535                       enum ir_node_type ignore = ir_type_unset) const;
1536
1537   virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1538
1539   /**
1540    * Attempt to constant-fold the expression
1541    *
1542    * The "variable_context" hash table links ir_variable * to ir_constant *
1543    * that represent the variables' values.  \c NULL represents an empty
1544    * context.
1545    *
1546    * If the expression cannot be constant folded, this method will return
1547    * \c NULL.
1548    */
1549   virtual ir_constant *constant_expression_value(void *mem_ctx,
1550                                                  struct hash_table *variable_context = NULL);
1551
1552   /**
1553    * This is only here for ir_reader to used for testing purposes please use
1554    * the precomputed num_operands field if you need the number of operands.
1555    */
1556   static unsigned get_num_operands(ir_expression_operation);
1557
1558   /**
1559    * Return whether the expression operates on vectors horizontally.
1560    */
1561   bool is_horizontal() const
1562   {
1563      return operation == ir_binop_all_equal ||
1564             operation == ir_binop_any_nequal ||
1565             operation == ir_binop_dot ||
1566             operation == ir_binop_vector_extract ||
1567             operation == ir_triop_vector_insert ||
1568             operation == ir_binop_ubo_load ||
1569             operation == ir_quadop_vector;
1570   }
1571
1572   /**
1573    * Do a reverse-lookup to translate the given string into an operator.
1574    */
1575   static ir_expression_operation get_operator(const char *);
1576
1577   virtual void accept(ir_visitor *v)
1578   {
1579      v->visit(this);
1580   }
1581
1582   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1583
1584   virtual ir_variable *variable_referenced() const;
1585
1586   /**
1587    * Determine the number of operands used by an expression
1588    */
1589   void init_num_operands()
1590   {
1591      if (operation == ir_quadop_vector) {
1592         num_operands = this->type->vector_elements;
1593      } else {
1594         num_operands = get_num_operands(operation);
1595      }
1596   }
1597
1598   ir_expression_operation operation;
1599   ir_rvalue *operands[4];
1600   uint8_t num_operands;
1601};
1602
1603
1604/**
1605 * HIR instruction representing a high-level function call, containing a list
1606 * of parameters and returning a value in the supplied temporary.
1607 */
1608class ir_call : public ir_instruction {
1609public:
1610   ir_call(ir_function_signature *callee,
1611	   ir_dereference_variable *return_deref,
1612	   exec_list *actual_parameters)
1613      : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1614   {
1615      assert(callee->return_type != NULL);
1616      actual_parameters->move_nodes_to(& this->actual_parameters);
1617   }
1618
1619   ir_call(ir_function_signature *callee,
1620	   ir_dereference_variable *return_deref,
1621	   exec_list *actual_parameters,
1622	   ir_variable *var, ir_rvalue *array_idx)
1623      : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1624   {
1625      assert(callee->return_type != NULL);
1626      actual_parameters->move_nodes_to(& this->actual_parameters);
1627   }
1628
1629   virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1630
1631   virtual ir_constant *constant_expression_value(void *mem_ctx,
1632                                                  struct hash_table *variable_context = NULL);
1633
1634   virtual void accept(ir_visitor *v)
1635   {
1636      v->visit(this);
1637   }
1638
1639   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1640
1641   /**
1642    * Get the name of the function being called.
1643    */
1644   const char *callee_name() const
1645   {
1646      return callee->function_name();
1647   }
1648
1649   /**
1650    * Generates an inline version of the function before @ir,
1651    * storing the return value in return_deref.
1652    */
1653   void generate_inline(ir_instruction *ir);
1654
1655   /**
1656    * Storage for the function's return value.
1657    * This must be NULL if the return type is void.
1658    */
1659   ir_dereference_variable *return_deref;
1660
1661   /**
1662    * The specific function signature being called.
1663    */
1664   ir_function_signature *callee;
1665
1666   /* List of ir_rvalue of paramaters passed in this call. */
1667   exec_list actual_parameters;
1668
1669   /*
1670    * ARB_shader_subroutine support -
1671    * the subroutine uniform variable and array index
1672    * rvalue to be used in the lowering pass later.
1673    */
1674   ir_variable *sub_var;
1675   ir_rvalue *array_idx;
1676};
1677
1678
1679/**
1680 * \name Jump-like IR instructions.
1681 *
1682 * These include \c break, \c continue, \c return, and \c discard.
1683 */
1684/*@{*/
1685class ir_jump : public ir_instruction {
1686protected:
1687   ir_jump(enum ir_node_type t)
1688      : ir_instruction(t)
1689   {
1690   }
1691};
1692
1693class ir_return : public ir_jump {
1694public:
1695   ir_return()
1696      : ir_jump(ir_type_return), value(NULL)
1697   {
1698   }
1699
1700   ir_return(ir_rvalue *value)
1701      : ir_jump(ir_type_return), value(value)
1702   {
1703   }
1704
1705   virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1706
1707   ir_rvalue *get_value() const
1708   {
1709      return value;
1710   }
1711
1712   virtual void accept(ir_visitor *v)
1713   {
1714      v->visit(this);
1715   }
1716
1717   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1718
1719   ir_rvalue *value;
1720};
1721
1722
1723/**
1724 * Jump instructions used inside loops
1725 *
1726 * These include \c break and \c continue.  The \c break within a loop is
1727 * different from the \c break within a switch-statement.
1728 *
1729 * \sa ir_switch_jump
1730 */
1731class ir_loop_jump : public ir_jump {
1732public:
1733   enum jump_mode {
1734      jump_break,
1735      jump_continue
1736   };
1737
1738   ir_loop_jump(jump_mode mode)
1739      : ir_jump(ir_type_loop_jump)
1740   {
1741      this->mode = mode;
1742   }
1743
1744   virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1745
1746   virtual void accept(ir_visitor *v)
1747   {
1748      v->visit(this);
1749   }
1750
1751   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1752
1753   bool is_break() const
1754   {
1755      return mode == jump_break;
1756   }
1757
1758   bool is_continue() const
1759   {
1760      return mode == jump_continue;
1761   }
1762
1763   /** Mode selector for the jump instruction. */
1764   enum jump_mode mode;
1765};
1766
1767/**
1768 * IR instruction representing discard statements.
1769 */
1770class ir_discard : public ir_jump {
1771public:
1772   ir_discard()
1773      : ir_jump(ir_type_discard)
1774   {
1775      this->condition = NULL;
1776   }
1777
1778   ir_discard(ir_rvalue *cond)
1779      : ir_jump(ir_type_discard)
1780   {
1781      this->condition = cond;
1782   }
1783
1784   virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1785
1786   virtual void accept(ir_visitor *v)
1787   {
1788      v->visit(this);
1789   }
1790
1791   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1792
1793   ir_rvalue *condition;
1794};
1795/*@}*/
1796
1797
1798/**
1799 * Texture sampling opcodes used in ir_texture
1800 */
1801enum ir_texture_opcode {
1802   ir_tex,		/**< Regular texture look-up */
1803   ir_txb,		/**< Texture look-up with LOD bias */
1804   ir_txl,		/**< Texture look-up with explicit LOD */
1805   ir_txd,		/**< Texture look-up with partial derivatvies */
1806   ir_txf,		/**< Texel fetch with explicit LOD */
1807   ir_txf_ms,           /**< Multisample texture fetch */
1808   ir_txs,		/**< Texture size */
1809   ir_lod,		/**< Texture lod query */
1810   ir_tg4,		/**< Texture gather */
1811   ir_query_levels,     /**< Texture levels query */
1812   ir_texture_samples,  /**< Texture samples query */
1813   ir_samples_identical, /**< Query whether all samples are definitely identical. */
1814};
1815
1816
1817/**
1818 * IR instruction to sample a texture
1819 *
1820 * The specific form of the IR instruction depends on the \c mode value
1821 * selected from \c ir_texture_opcodes.  In the printed IR, these will
1822 * appear as:
1823 *
1824 *                                    Texel offset (0 or an expression)
1825 *                                    | Projection divisor
1826 *                                    | |  Shadow comparator
1827 *                                    | |  |
1828 *                                    v v  v
1829 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1830 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1831 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1832 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1833 * (txf <type> <sampler> <coordinate> 0       <lod>)
1834 * (txf_ms
1835 *      <type> <sampler> <coordinate>         <sample_index>)
1836 * (txs <type> <sampler> <lod>)
1837 * (lod <type> <sampler> <coordinate>)
1838 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1839 * (query_levels <type> <sampler>)
1840 * (samples_identical <sampler> <coordinate>)
1841 */
1842class ir_texture : public ir_rvalue {
1843public:
1844   ir_texture(enum ir_texture_opcode op)
1845      : ir_rvalue(ir_type_texture),
1846        op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1847        shadow_comparator(NULL), offset(NULL)
1848   {
1849      memset(&lod_info, 0, sizeof(lod_info));
1850   }
1851
1852   virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1853
1854   virtual ir_constant *constant_expression_value(void *mem_ctx,
1855                                                  struct hash_table *variable_context = NULL);
1856
1857   virtual void accept(ir_visitor *v)
1858   {
1859      v->visit(this);
1860   }
1861
1862   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1863
1864   virtual bool equals(const ir_instruction *ir,
1865                       enum ir_node_type ignore = ir_type_unset) const;
1866
1867   /**
1868    * Return a string representing the ir_texture_opcode.
1869    */
1870   const char *opcode_string();
1871
1872   /** Set the sampler and type. */
1873   void set_sampler(ir_dereference *sampler, const glsl_type *type);
1874
1875   /**
1876    * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1877    */
1878   static ir_texture_opcode get_opcode(const char *);
1879
1880   enum ir_texture_opcode op;
1881
1882   /** Sampler to use for the texture access. */
1883   ir_dereference *sampler;
1884
1885   /** Texture coordinate to sample */
1886   ir_rvalue *coordinate;
1887
1888   /**
1889    * Value used for projective divide.
1890    *
1891    * If there is no projective divide (the common case), this will be
1892    * \c NULL.  Optimization passes should check for this to point to a constant
1893    * of 1.0 and replace that with \c NULL.
1894    */
1895   ir_rvalue *projector;
1896
1897   /**
1898    * Coordinate used for comparison on shadow look-ups.
1899    *
1900    * If there is no shadow comparison, this will be \c NULL.  For the
1901    * \c ir_txf opcode, this *must* be \c NULL.
1902    */
1903   ir_rvalue *shadow_comparator;
1904
1905   /** Texel offset. */
1906   ir_rvalue *offset;
1907
1908   union {
1909      ir_rvalue *lod;		/**< Floating point LOD */
1910      ir_rvalue *bias;		/**< Floating point LOD bias */
1911      ir_rvalue *sample_index;  /**< MSAA sample index */
1912      ir_rvalue *component;     /**< Gather component selector */
1913      struct {
1914	 ir_rvalue *dPdx;	/**< Partial derivative of coordinate wrt X */
1915	 ir_rvalue *dPdy;	/**< Partial derivative of coordinate wrt Y */
1916      } grad;
1917   } lod_info;
1918};
1919
1920
1921struct ir_swizzle_mask {
1922   unsigned x:2;
1923   unsigned y:2;
1924   unsigned z:2;
1925   unsigned w:2;
1926
1927   /**
1928    * Number of components in the swizzle.
1929    */
1930   unsigned num_components:3;
1931
1932   /**
1933    * Does the swizzle contain duplicate components?
1934    *
1935    * L-value swizzles cannot contain duplicate components.
1936    */
1937   unsigned has_duplicates:1;
1938};
1939
1940
1941class ir_swizzle : public ir_rvalue {
1942public:
1943   ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1944              unsigned count);
1945
1946   ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1947
1948   ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1949
1950   virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1951
1952   virtual ir_constant *constant_expression_value(void *mem_ctx,
1953                                                  struct hash_table *variable_context = NULL);
1954
1955   /**
1956    * Construct an ir_swizzle from the textual representation.  Can fail.
1957    */
1958   static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1959
1960   virtual void accept(ir_visitor *v)
1961   {
1962      v->visit(this);
1963   }
1964
1965   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1966
1967   virtual bool equals(const ir_instruction *ir,
1968                       enum ir_node_type ignore = ir_type_unset) const;
1969
1970   bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
1971   {
1972      return val->is_lvalue(state) && !mask.has_duplicates;
1973   }
1974
1975   /**
1976    * Get the variable that is ultimately referenced by an r-value
1977    */
1978   virtual ir_variable *variable_referenced() const;
1979
1980   ir_rvalue *val;
1981   ir_swizzle_mask mask;
1982
1983private:
1984   /**
1985    * Initialize the mask component of a swizzle
1986    *
1987    * This is used by the \c ir_swizzle constructors.
1988    */
1989   void init_mask(const unsigned *components, unsigned count);
1990};
1991
1992
1993class ir_dereference : public ir_rvalue {
1994public:
1995   virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1996
1997   bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
1998
1999   /**
2000    * Get the variable that is ultimately referenced by an r-value
2001    */
2002   virtual ir_variable *variable_referenced() const = 0;
2003
2004protected:
2005   ir_dereference(enum ir_node_type t)
2006      : ir_rvalue(t)
2007   {
2008   }
2009};
2010
2011
2012class ir_dereference_variable : public ir_dereference {
2013public:
2014   ir_dereference_variable(ir_variable *var);
2015
2016   virtual ir_dereference_variable *clone(void *mem_ctx,
2017					  struct hash_table *) const;
2018
2019   virtual ir_constant *constant_expression_value(void *mem_ctx,
2020                                                  struct hash_table *variable_context = NULL);
2021
2022   virtual bool equals(const ir_instruction *ir,
2023                       enum ir_node_type ignore = ir_type_unset) const;
2024
2025   /**
2026    * Get the variable that is ultimately referenced by an r-value
2027    */
2028   virtual ir_variable *variable_referenced() const
2029   {
2030      return this->var;
2031   }
2032
2033   virtual ir_variable *whole_variable_referenced()
2034   {
2035      /* ir_dereference_variable objects always dereference the entire
2036       * variable.  However, if this dereference is dereferenced by anything
2037       * else, the complete deferefernce chain is not a whole-variable
2038       * dereference.  This method should only be called on the top most
2039       * ir_rvalue in a dereference chain.
2040       */
2041      return this->var;
2042   }
2043
2044   virtual void accept(ir_visitor *v)
2045   {
2046      v->visit(this);
2047   }
2048
2049   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2050
2051   /**
2052    * Object being dereferenced.
2053    */
2054   ir_variable *var;
2055};
2056
2057
2058class ir_dereference_array : public ir_dereference {
2059public:
2060   ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2061
2062   ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2063
2064   virtual ir_dereference_array *clone(void *mem_ctx,
2065				       struct hash_table *) const;
2066
2067   virtual ir_constant *constant_expression_value(void *mem_ctx,
2068                                                  struct hash_table *variable_context = NULL);
2069
2070   virtual bool equals(const ir_instruction *ir,
2071                       enum ir_node_type ignore = ir_type_unset) const;
2072
2073   /**
2074    * Get the variable that is ultimately referenced by an r-value
2075    */
2076   virtual ir_variable *variable_referenced() const
2077   {
2078      return this->array->variable_referenced();
2079   }
2080
2081   virtual void accept(ir_visitor *v)
2082   {
2083      v->visit(this);
2084   }
2085
2086   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2087
2088   ir_rvalue *array;
2089   ir_rvalue *array_index;
2090
2091private:
2092   void set_array(ir_rvalue *value);
2093};
2094
2095
2096class ir_dereference_record : public ir_dereference {
2097public:
2098   ir_dereference_record(ir_rvalue *value, const char *field);
2099
2100   ir_dereference_record(ir_variable *var, const char *field);
2101
2102   virtual ir_dereference_record *clone(void *mem_ctx,
2103					struct hash_table *) const;
2104
2105   virtual ir_constant *constant_expression_value(void *mem_ctx,
2106                                                  struct hash_table *variable_context = NULL);
2107
2108   /**
2109    * Get the variable that is ultimately referenced by an r-value
2110    */
2111   virtual ir_variable *variable_referenced() const
2112   {
2113      return this->record->variable_referenced();
2114   }
2115
2116   virtual void accept(ir_visitor *v)
2117   {
2118      v->visit(this);
2119   }
2120
2121   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2122
2123   ir_rvalue *record;
2124   int field_idx;
2125};
2126
2127
2128/**
2129 * Data stored in an ir_constant
2130 */
2131union ir_constant_data {
2132      unsigned u[16];
2133      int i[16];
2134      float f[16];
2135      bool b[16];
2136      double d[16];
2137      uint64_t u64[16];
2138      int64_t i64[16];
2139};
2140
2141
2142class ir_constant : public ir_rvalue {
2143public:
2144   ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2145   ir_constant(bool b, unsigned vector_elements=1);
2146   ir_constant(unsigned int u, unsigned vector_elements=1);
2147   ir_constant(int i, unsigned vector_elements=1);
2148   ir_constant(float f, unsigned vector_elements=1);
2149   ir_constant(double d, unsigned vector_elements=1);
2150   ir_constant(uint64_t u64, unsigned vector_elements=1);
2151   ir_constant(int64_t i64, unsigned vector_elements=1);
2152
2153   /**
2154    * Construct an ir_constant from a list of ir_constant values
2155    */
2156   ir_constant(const struct glsl_type *type, exec_list *values);
2157
2158   /**
2159    * Construct an ir_constant from a scalar component of another ir_constant
2160    *
2161    * The new \c ir_constant inherits the type of the component from the
2162    * source constant.
2163    *
2164    * \note
2165    * In the case of a matrix constant, the new constant is a scalar, \b not
2166    * a vector.
2167    */
2168   ir_constant(const ir_constant *c, unsigned i);
2169
2170   /**
2171    * Return a new ir_constant of the specified type containing all zeros.
2172    */
2173   static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2174
2175   virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2176
2177   virtual ir_constant *constant_expression_value(void *mem_ctx,
2178                                                  struct hash_table *variable_context = NULL);
2179
2180   virtual void accept(ir_visitor *v)
2181   {
2182      v->visit(this);
2183   }
2184
2185   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2186
2187   virtual bool equals(const ir_instruction *ir,
2188                       enum ir_node_type ignore = ir_type_unset) const;
2189
2190   /**
2191    * Get a particular component of a constant as a specific type
2192    *
2193    * This is useful, for example, to get a value from an integer constant
2194    * as a float or bool.  This appears frequently when constructors are
2195    * called with all constant parameters.
2196    */
2197   /*@{*/
2198   bool get_bool_component(unsigned i) const;
2199   float get_float_component(unsigned i) const;
2200   double get_double_component(unsigned i) const;
2201   int get_int_component(unsigned i) const;
2202   unsigned get_uint_component(unsigned i) const;
2203   int64_t get_int64_component(unsigned i) const;
2204   uint64_t get_uint64_component(unsigned i) const;
2205   /*@}*/
2206
2207   ir_constant *get_array_element(unsigned i) const;
2208
2209   ir_constant *get_record_field(int idx);
2210
2211   /**
2212    * Copy the values on another constant at a given offset.
2213    *
2214    * The offset is ignored for array or struct copies, it's only for
2215    * scalars or vectors into vectors or matrices.
2216    *
2217    * With identical types on both sides and zero offset it's clone()
2218    * without creating a new object.
2219    */
2220
2221   void copy_offset(ir_constant *src, int offset);
2222
2223   /**
2224    * Copy the values on another constant at a given offset and
2225    * following an assign-like mask.
2226    *
2227    * The mask is ignored for scalars.
2228    *
2229    * Note that this function only handles what assign can handle,
2230    * i.e. at most a vector as source and a column of a matrix as
2231    * destination.
2232    */
2233
2234   void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2235
2236   /**
2237    * Determine whether a constant has the same value as another constant
2238    *
2239    * \sa ir_constant::is_zero, ir_constant::is_one,
2240    * ir_constant::is_negative_one
2241    */
2242   bool has_value(const ir_constant *) const;
2243
2244   /**
2245    * Return true if this ir_constant represents the given value.
2246    *
2247    * For vectors, this checks that each component is the given value.
2248    */
2249   virtual bool is_value(float f, int i) const;
2250   virtual bool is_zero() const;
2251   virtual bool is_one() const;
2252   virtual bool is_negative_one() const;
2253
2254   /**
2255    * Return true for constants that could be stored as 16-bit unsigned values.
2256    *
2257    * Note that this will return true even for signed integer ir_constants, as
2258    * long as the value is non-negative and fits in 16-bits.
2259    */
2260   virtual bool is_uint16_constant() const;
2261
2262   /**
2263    * Value of the constant.
2264    *
2265    * The field used to back the values supplied by the constant is determined
2266    * by the type associated with the \c ir_instruction.  Constants may be
2267    * scalars, vectors, or matrices.
2268    */
2269   union ir_constant_data value;
2270
2271   /* Array elements and structure fields */
2272   ir_constant **const_elements;
2273
2274private:
2275   /**
2276    * Parameterless constructor only used by the clone method
2277    */
2278   ir_constant(void);
2279};
2280
2281/**
2282 * IR instruction to emit a vertex in a geometry shader.
2283 */
2284class ir_emit_vertex : public ir_instruction {
2285public:
2286   ir_emit_vertex(ir_rvalue *stream)
2287      : ir_instruction(ir_type_emit_vertex),
2288        stream(stream)
2289   {
2290      assert(stream);
2291   }
2292
2293   virtual void accept(ir_visitor *v)
2294   {
2295      v->visit(this);
2296   }
2297
2298   virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2299   {
2300      return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2301   }
2302
2303   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2304
2305   int stream_id() const
2306   {
2307      return stream->as_constant()->value.i[0];
2308   }
2309
2310   ir_rvalue *stream;
2311};
2312
2313/**
2314 * IR instruction to complete the current primitive and start a new one in a
2315 * geometry shader.
2316 */
2317class ir_end_primitive : public ir_instruction {
2318public:
2319   ir_end_primitive(ir_rvalue *stream)
2320      : ir_instruction(ir_type_end_primitive),
2321        stream(stream)
2322   {
2323      assert(stream);
2324   }
2325
2326   virtual void accept(ir_visitor *v)
2327   {
2328      v->visit(this);
2329   }
2330
2331   virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2332   {
2333      return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2334   }
2335
2336   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2337
2338   int stream_id() const
2339   {
2340      return stream->as_constant()->value.i[0];
2341   }
2342
2343   ir_rvalue *stream;
2344};
2345
2346/**
2347 * IR instruction for tessellation control and compute shader barrier.
2348 */
2349class ir_barrier : public ir_instruction {
2350public:
2351   ir_barrier()
2352      : ir_instruction(ir_type_barrier)
2353   {
2354   }
2355
2356   virtual void accept(ir_visitor *v)
2357   {
2358      v->visit(this);
2359   }
2360
2361   virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2362   {
2363      return new(mem_ctx) ir_barrier();
2364   }
2365
2366   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2367};
2368
2369/*@}*/
2370
2371/**
2372 * Apply a visitor to each IR node in a list
2373 */
2374void
2375visit_exec_list(exec_list *list, ir_visitor *visitor);
2376
2377/**
2378 * Validate invariants on each IR node in a list
2379 */
2380void validate_ir_tree(exec_list *instructions);
2381
2382struct _mesa_glsl_parse_state;
2383struct gl_shader_program;
2384
2385/**
2386 * Detect whether an unlinked shader contains static recursion
2387 *
2388 * If the list of instructions is determined to contain static recursion,
2389 * \c _mesa_glsl_error will be called to emit error messages for each function
2390 * that is in the recursion cycle.
2391 */
2392void
2393detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2394			  exec_list *instructions);
2395
2396/**
2397 * Detect whether a linked shader contains static recursion
2398 *
2399 * If the list of instructions is determined to contain static recursion,
2400 * \c link_error_printf will be called to emit error messages for each function
2401 * that is in the recursion cycle.  In addition,
2402 * \c gl_shader_program::LinkStatus will be set to false.
2403 */
2404void
2405detect_recursion_linked(struct gl_shader_program *prog,
2406			exec_list *instructions);
2407
2408/**
2409 * Make a clone of each IR instruction in a list
2410 *
2411 * \param in   List of IR instructions that are to be cloned
2412 * \param out  List to hold the cloned instructions
2413 */
2414void
2415clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2416
2417extern void
2418_mesa_glsl_initialize_variables(exec_list *instructions,
2419				struct _mesa_glsl_parse_state *state);
2420
2421extern void
2422reparent_ir(exec_list *list, void *mem_ctx);
2423
2424extern void
2425do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2426                      gl_shader_stage shader_stage);
2427
2428extern char *
2429prototype_string(const glsl_type *return_type, const char *name,
2430		 exec_list *parameters);
2431
2432const char *
2433mode_string(const ir_variable *var);
2434
2435/**
2436 * Built-in / reserved GL variables names start with "gl_"
2437 */
2438static inline bool
2439is_gl_identifier(const char *s)
2440{
2441   return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2442}
2443
2444extern "C" {
2445#endif /* __cplusplus */
2446
2447extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2448                           struct _mesa_glsl_parse_state *state);
2449
2450extern void
2451fprint_ir(FILE *f, const void *instruction);
2452
2453extern const struct gl_builtin_uniform_desc *
2454_mesa_glsl_get_builtin_uniform_desc(const char *name);
2455
2456#ifdef __cplusplus
2457} /* extern "C" */
2458#endif
2459
2460unsigned
2461vertices_per_prim(GLenum prim);
2462
2463#endif /* IR_H */
2464