1b8e80941Smrg/* 2b8e80941Smrg * Copyright © 2011 Intel Corporation 3b8e80941Smrg * 4b8e80941Smrg * Permission is hereby granted, free of charge, to any person obtaining a 5b8e80941Smrg * copy of this software and associated documentation files (the "Software"), 6b8e80941Smrg * to deal in the Software without restriction, including without limitation 7b8e80941Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8b8e80941Smrg * and/or sell copies of the Software, and to permit persons to whom the 9b8e80941Smrg * Software is furnished to do so, subject to the following conditions: 10b8e80941Smrg * 11b8e80941Smrg * The above copyright notice and this permission notice (including the next 12b8e80941Smrg * paragraph) shall be included in all copies or substantial portions of the 13b8e80941Smrg * Software. 14b8e80941Smrg * 15b8e80941Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16b8e80941Smrg * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17b8e80941Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18b8e80941Smrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19b8e80941Smrg * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20b8e80941Smrg * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21b8e80941Smrg * DEALINGS IN THE SOFTWARE. 22b8e80941Smrg */ 23b8e80941Smrg 24b8e80941Smrg/** 25b8e80941Smrg * \file lower_varyings_to_packed.cpp 26b8e80941Smrg * 27b8e80941Smrg * This lowering pass generates GLSL code that manually packs varyings into 28b8e80941Smrg * vec4 slots, for the benefit of back-ends that don't support packed varyings 29b8e80941Smrg * natively. 30b8e80941Smrg * 31b8e80941Smrg * For example, the following shader: 32b8e80941Smrg * 33b8e80941Smrg * out mat3x2 foo; // location=4, location_frac=0 34b8e80941Smrg * out vec3 bar[2]; // location=5, location_frac=2 35b8e80941Smrg * 36b8e80941Smrg * main() 37b8e80941Smrg * { 38b8e80941Smrg * ... 39b8e80941Smrg * } 40b8e80941Smrg * 41b8e80941Smrg * Is rewritten to: 42b8e80941Smrg * 43b8e80941Smrg * mat3x2 foo; 44b8e80941Smrg * vec3 bar[2]; 45b8e80941Smrg * out vec4 packed4; // location=4, location_frac=0 46b8e80941Smrg * out vec4 packed5; // location=5, location_frac=0 47b8e80941Smrg * out vec4 packed6; // location=6, location_frac=0 48b8e80941Smrg * 49b8e80941Smrg * main() 50b8e80941Smrg * { 51b8e80941Smrg * ... 52b8e80941Smrg * packed4.xy = foo[0]; 53b8e80941Smrg * packed4.zw = foo[1]; 54b8e80941Smrg * packed5.xy = foo[2]; 55b8e80941Smrg * packed5.zw = bar[0].xy; 56b8e80941Smrg * packed6.x = bar[0].z; 57b8e80941Smrg * packed6.yzw = bar[1]; 58b8e80941Smrg * } 59b8e80941Smrg * 60b8e80941Smrg * This lowering pass properly handles "double parking" of a varying vector 61b8e80941Smrg * across two varying slots. For example, in the code above, two of the 62b8e80941Smrg * components of bar[0] are stored in packed5, and the remaining component is 63b8e80941Smrg * stored in packed6. 64b8e80941Smrg * 65b8e80941Smrg * Note that in theory, the extra instructions may cause some loss of 66b8e80941Smrg * performance. However, hopefully in most cases the performance loss will 67b8e80941Smrg * either be absorbed by a later optimization pass, or it will be offset by 68b8e80941Smrg * memory bandwidth savings (because fewer varyings are used). 69b8e80941Smrg * 70b8e80941Smrg * This lowering pass also packs flat floats, ints, and uints together, by 71b8e80941Smrg * using ivec4 as the base type of flat "varyings", and using appropriate 72b8e80941Smrg * casts to convert floats and uints into ints. 73b8e80941Smrg * 74b8e80941Smrg * This lowering pass also handles varyings whose type is a struct or an array 75b8e80941Smrg * of struct. Structs are packed in order and with no gaps, so there may be a 76b8e80941Smrg * performance penalty due to structure elements being double-parked. 77b8e80941Smrg * 78b8e80941Smrg * Lowering of geometry shader inputs is slightly more complex, since geometry 79b8e80941Smrg * inputs are always arrays, so we need to lower arrays to arrays. For 80b8e80941Smrg * example, the following input: 81b8e80941Smrg * 82b8e80941Smrg * in struct Foo { 83b8e80941Smrg * float f; 84b8e80941Smrg * vec3 v; 85b8e80941Smrg * vec2 a[2]; 86b8e80941Smrg * } arr[3]; // location=4, location_frac=0 87b8e80941Smrg * 88b8e80941Smrg * Would get lowered like this if it occurred in a fragment shader: 89b8e80941Smrg * 90b8e80941Smrg * struct Foo { 91b8e80941Smrg * float f; 92b8e80941Smrg * vec3 v; 93b8e80941Smrg * vec2 a[2]; 94b8e80941Smrg * } arr[3]; 95b8e80941Smrg * in vec4 packed4; // location=4, location_frac=0 96b8e80941Smrg * in vec4 packed5; // location=5, location_frac=0 97b8e80941Smrg * in vec4 packed6; // location=6, location_frac=0 98b8e80941Smrg * in vec4 packed7; // location=7, location_frac=0 99b8e80941Smrg * in vec4 packed8; // location=8, location_frac=0 100b8e80941Smrg * in vec4 packed9; // location=9, location_frac=0 101b8e80941Smrg * 102b8e80941Smrg * main() 103b8e80941Smrg * { 104b8e80941Smrg * arr[0].f = packed4.x; 105b8e80941Smrg * arr[0].v = packed4.yzw; 106b8e80941Smrg * arr[0].a[0] = packed5.xy; 107b8e80941Smrg * arr[0].a[1] = packed5.zw; 108b8e80941Smrg * arr[1].f = packed6.x; 109b8e80941Smrg * arr[1].v = packed6.yzw; 110b8e80941Smrg * arr[1].a[0] = packed7.xy; 111b8e80941Smrg * arr[1].a[1] = packed7.zw; 112b8e80941Smrg * arr[2].f = packed8.x; 113b8e80941Smrg * arr[2].v = packed8.yzw; 114b8e80941Smrg * arr[2].a[0] = packed9.xy; 115b8e80941Smrg * arr[2].a[1] = packed9.zw; 116b8e80941Smrg * ... 117b8e80941Smrg * } 118b8e80941Smrg * 119b8e80941Smrg * But it would get lowered like this if it occurred in a geometry shader: 120b8e80941Smrg * 121b8e80941Smrg * struct Foo { 122b8e80941Smrg * float f; 123b8e80941Smrg * vec3 v; 124b8e80941Smrg * vec2 a[2]; 125b8e80941Smrg * } arr[3]; 126b8e80941Smrg * in vec4 packed4[3]; // location=4, location_frac=0 127b8e80941Smrg * in vec4 packed5[3]; // location=5, location_frac=0 128b8e80941Smrg * 129b8e80941Smrg * main() 130b8e80941Smrg * { 131b8e80941Smrg * arr[0].f = packed4[0].x; 132b8e80941Smrg * arr[0].v = packed4[0].yzw; 133b8e80941Smrg * arr[0].a[0] = packed5[0].xy; 134b8e80941Smrg * arr[0].a[1] = packed5[0].zw; 135b8e80941Smrg * arr[1].f = packed4[1].x; 136b8e80941Smrg * arr[1].v = packed4[1].yzw; 137b8e80941Smrg * arr[1].a[0] = packed5[1].xy; 138b8e80941Smrg * arr[1].a[1] = packed5[1].zw; 139b8e80941Smrg * arr[2].f = packed4[2].x; 140b8e80941Smrg * arr[2].v = packed4[2].yzw; 141b8e80941Smrg * arr[2].a[0] = packed5[2].xy; 142b8e80941Smrg * arr[2].a[1] = packed5[2].zw; 143b8e80941Smrg * ... 144b8e80941Smrg * } 145b8e80941Smrg */ 146b8e80941Smrg 147b8e80941Smrg#include "glsl_symbol_table.h" 148b8e80941Smrg#include "ir.h" 149b8e80941Smrg#include "ir_builder.h" 150b8e80941Smrg#include "ir_optimization.h" 151b8e80941Smrg#include "program/prog_instruction.h" 152b8e80941Smrg#include "main/mtypes.h" 153b8e80941Smrg 154b8e80941Smrgusing namespace ir_builder; 155b8e80941Smrg 156b8e80941Smrgnamespace { 157b8e80941Smrg 158b8e80941Smrg/** 159b8e80941Smrg * Visitor that performs varying packing. For each varying declared in the 160b8e80941Smrg * shader, this visitor determines whether it needs to be packed. If so, it 161b8e80941Smrg * demotes it to an ordinary global, creates new packed varyings, and 162b8e80941Smrg * generates assignments to convert between the original varying and the 163b8e80941Smrg * packed varying. 164b8e80941Smrg */ 165b8e80941Smrgclass lower_packed_varyings_visitor 166b8e80941Smrg{ 167b8e80941Smrgpublic: 168b8e80941Smrg lower_packed_varyings_visitor(void *mem_ctx, 169b8e80941Smrg unsigned locations_used, 170b8e80941Smrg const uint8_t *components, 171b8e80941Smrg ir_variable_mode mode, 172b8e80941Smrg unsigned gs_input_vertices, 173b8e80941Smrg exec_list *out_instructions, 174b8e80941Smrg exec_list *out_variables, 175b8e80941Smrg bool disable_varying_packing, 176b8e80941Smrg bool xfb_enabled); 177b8e80941Smrg 178b8e80941Smrg void run(struct gl_linked_shader *shader); 179b8e80941Smrg 180b8e80941Smrgprivate: 181b8e80941Smrg void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs); 182b8e80941Smrg void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs); 183b8e80941Smrg unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location, 184b8e80941Smrg ir_variable *unpacked_var, const char *name, 185b8e80941Smrg bool gs_input_toplevel, unsigned vertex_index); 186b8e80941Smrg unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size, 187b8e80941Smrg unsigned fine_location, 188b8e80941Smrg ir_variable *unpacked_var, const char *name, 189b8e80941Smrg bool gs_input_toplevel, unsigned vertex_index); 190b8e80941Smrg ir_dereference *get_packed_varying_deref(unsigned location, 191b8e80941Smrg ir_variable *unpacked_var, 192b8e80941Smrg const char *name, 193b8e80941Smrg unsigned vertex_index); 194b8e80941Smrg bool needs_lowering(ir_variable *var); 195b8e80941Smrg 196b8e80941Smrg /** 197b8e80941Smrg * Memory context used to allocate new instructions for the shader. 198b8e80941Smrg */ 199b8e80941Smrg void * const mem_ctx; 200b8e80941Smrg 201b8e80941Smrg /** 202b8e80941Smrg * Number of generic varying slots which are used by this shader. This is 203b8e80941Smrg * used to allocate temporary intermediate data structures. If any varying 204b8e80941Smrg * used by this shader has a location greater than or equal to 205b8e80941Smrg * VARYING_SLOT_VAR0 + locations_used, an assertion will fire. 206b8e80941Smrg */ 207b8e80941Smrg const unsigned locations_used; 208b8e80941Smrg 209b8e80941Smrg const uint8_t* components; 210b8e80941Smrg 211b8e80941Smrg /** 212b8e80941Smrg * Array of pointers to the packed varyings that have been created for each 213b8e80941Smrg * generic varying slot. NULL entries in this array indicate varying slots 214b8e80941Smrg * for which a packed varying has not been created yet. 215b8e80941Smrg */ 216b8e80941Smrg ir_variable **packed_varyings; 217b8e80941Smrg 218b8e80941Smrg /** 219b8e80941Smrg * Type of varying which is being lowered in this pass (either 220b8e80941Smrg * ir_var_shader_in or ir_var_shader_out). 221b8e80941Smrg */ 222b8e80941Smrg const ir_variable_mode mode; 223b8e80941Smrg 224b8e80941Smrg /** 225b8e80941Smrg * If we are currently lowering geometry shader inputs, the number of input 226b8e80941Smrg * vertices the geometry shader accepts. Otherwise zero. 227b8e80941Smrg */ 228b8e80941Smrg const unsigned gs_input_vertices; 229b8e80941Smrg 230b8e80941Smrg /** 231b8e80941Smrg * Exec list into which the visitor should insert the packing instructions. 232b8e80941Smrg * Caller provides this list; it should insert the instructions into the 233b8e80941Smrg * appropriate place in the shader once the visitor has finished running. 234b8e80941Smrg */ 235b8e80941Smrg exec_list *out_instructions; 236b8e80941Smrg 237b8e80941Smrg /** 238b8e80941Smrg * Exec list into which the visitor should insert any new variables. 239b8e80941Smrg */ 240b8e80941Smrg exec_list *out_variables; 241b8e80941Smrg 242b8e80941Smrg bool disable_varying_packing; 243b8e80941Smrg bool xfb_enabled; 244b8e80941Smrg}; 245b8e80941Smrg 246b8e80941Smrg} /* anonymous namespace */ 247b8e80941Smrg 248b8e80941Smrglower_packed_varyings_visitor::lower_packed_varyings_visitor( 249b8e80941Smrg void *mem_ctx, unsigned locations_used, const uint8_t *components, 250b8e80941Smrg ir_variable_mode mode, 251b8e80941Smrg unsigned gs_input_vertices, exec_list *out_instructions, 252b8e80941Smrg exec_list *out_variables, bool disable_varying_packing, 253b8e80941Smrg bool xfb_enabled) 254b8e80941Smrg : mem_ctx(mem_ctx), 255b8e80941Smrg locations_used(locations_used), 256b8e80941Smrg components(components), 257b8e80941Smrg packed_varyings((ir_variable **) 258b8e80941Smrg rzalloc_array_size(mem_ctx, sizeof(*packed_varyings), 259b8e80941Smrg locations_used)), 260b8e80941Smrg mode(mode), 261b8e80941Smrg gs_input_vertices(gs_input_vertices), 262b8e80941Smrg out_instructions(out_instructions), 263b8e80941Smrg out_variables(out_variables), 264b8e80941Smrg disable_varying_packing(disable_varying_packing), 265b8e80941Smrg xfb_enabled(xfb_enabled) 266b8e80941Smrg{ 267b8e80941Smrg} 268b8e80941Smrg 269b8e80941Smrgvoid 270b8e80941Smrglower_packed_varyings_visitor::run(struct gl_linked_shader *shader) 271b8e80941Smrg{ 272b8e80941Smrg foreach_in_list(ir_instruction, node, shader->ir) { 273b8e80941Smrg ir_variable *var = node->as_variable(); 274b8e80941Smrg if (var == NULL) 275b8e80941Smrg continue; 276b8e80941Smrg 277b8e80941Smrg if (var->data.mode != this->mode || 278b8e80941Smrg var->data.location < VARYING_SLOT_VAR0 || 279b8e80941Smrg !this->needs_lowering(var)) 280b8e80941Smrg continue; 281b8e80941Smrg 282b8e80941Smrg /* This lowering pass is only capable of packing floats and ints 283b8e80941Smrg * together when their interpolation mode is "flat". Treat integers as 284b8e80941Smrg * being flat when the interpolation mode is none. 285b8e80941Smrg */ 286b8e80941Smrg assert(var->data.interpolation == INTERP_MODE_FLAT || 287b8e80941Smrg var->data.interpolation == INTERP_MODE_NONE || 288b8e80941Smrg !var->type->contains_integer()); 289b8e80941Smrg 290b8e80941Smrg /* Clone the variable for program resource list before 291b8e80941Smrg * it gets modified and lost. 292b8e80941Smrg */ 293b8e80941Smrg if (!shader->packed_varyings) 294b8e80941Smrg shader->packed_varyings = new (shader) exec_list; 295b8e80941Smrg 296b8e80941Smrg shader->packed_varyings->push_tail(var->clone(shader, NULL)); 297b8e80941Smrg 298b8e80941Smrg /* Change the old varying into an ordinary global. */ 299b8e80941Smrg assert(var->data.mode != ir_var_temporary); 300b8e80941Smrg var->data.mode = ir_var_auto; 301b8e80941Smrg 302b8e80941Smrg /* Create a reference to the old varying. */ 303b8e80941Smrg ir_dereference_variable *deref 304b8e80941Smrg = new(this->mem_ctx) ir_dereference_variable(var); 305b8e80941Smrg 306b8e80941Smrg /* Recursively pack or unpack it. */ 307b8e80941Smrg this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var, 308b8e80941Smrg var->name, this->gs_input_vertices != 0, 0); 309b8e80941Smrg } 310b8e80941Smrg} 311b8e80941Smrg 312b8e80941Smrg#define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W) 313b8e80941Smrg 314b8e80941Smrg/** 315b8e80941Smrg * Make an ir_assignment from \c rhs to \c lhs, performing appropriate 316b8e80941Smrg * bitcasts if necessary to match up types. 317b8e80941Smrg * 318b8e80941Smrg * This function is called when packing varyings. 319b8e80941Smrg */ 320b8e80941Smrgvoid 321b8e80941Smrglower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs, 322b8e80941Smrg ir_rvalue *rhs) 323b8e80941Smrg{ 324b8e80941Smrg if (lhs->type->base_type != rhs->type->base_type) { 325b8e80941Smrg /* Since we only mix types in flat varyings, and we always store flat 326b8e80941Smrg * varyings as type ivec4, we need only produce conversions from (uint 327b8e80941Smrg * or float) to int. 328b8e80941Smrg */ 329b8e80941Smrg assert(lhs->type->base_type == GLSL_TYPE_INT); 330b8e80941Smrg switch (rhs->type->base_type) { 331b8e80941Smrg case GLSL_TYPE_UINT: 332b8e80941Smrg rhs = new(this->mem_ctx) 333b8e80941Smrg ir_expression(ir_unop_u2i, lhs->type, rhs); 334b8e80941Smrg break; 335b8e80941Smrg case GLSL_TYPE_FLOAT: 336b8e80941Smrg rhs = new(this->mem_ctx) 337b8e80941Smrg ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs); 338b8e80941Smrg break; 339b8e80941Smrg case GLSL_TYPE_DOUBLE: 340b8e80941Smrg assert(rhs->type->vector_elements <= 2); 341b8e80941Smrg if (rhs->type->vector_elements == 2) { 342b8e80941Smrg ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary); 343b8e80941Smrg 344b8e80941Smrg assert(lhs->type->vector_elements == 4); 345b8e80941Smrg this->out_variables->push_tail(t); 346b8e80941Smrg this->out_instructions->push_tail( 347b8e80941Smrg assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3)); 348b8e80941Smrg this->out_instructions->push_tail( 349b8e80941Smrg assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc)); 350b8e80941Smrg rhs = deref(t).val; 351b8e80941Smrg } else { 352b8e80941Smrg rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs)); 353b8e80941Smrg } 354b8e80941Smrg break; 355b8e80941Smrg case GLSL_TYPE_INT64: 356b8e80941Smrg assert(rhs->type->vector_elements <= 2); 357b8e80941Smrg if (rhs->type->vector_elements == 2) { 358b8e80941Smrg ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary); 359b8e80941Smrg 360b8e80941Smrg assert(lhs->type->vector_elements == 4); 361b8e80941Smrg this->out_variables->push_tail(t); 362b8e80941Smrg this->out_instructions->push_tail( 363b8e80941Smrg assign(t, expr(ir_unop_unpack_int_2x32, swizzle_x(rhs->clone(mem_ctx, NULL))), 0x3)); 364b8e80941Smrg this->out_instructions->push_tail( 365b8e80941Smrg assign(t, expr(ir_unop_unpack_int_2x32, swizzle_y(rhs)), 0xc)); 366b8e80941Smrg rhs = deref(t).val; 367b8e80941Smrg } else { 368b8e80941Smrg rhs = expr(ir_unop_unpack_int_2x32, rhs); 369b8e80941Smrg } 370b8e80941Smrg break; 371b8e80941Smrg case GLSL_TYPE_UINT64: 372b8e80941Smrg assert(rhs->type->vector_elements <= 2); 373b8e80941Smrg if (rhs->type->vector_elements == 2) { 374b8e80941Smrg ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary); 375b8e80941Smrg 376b8e80941Smrg assert(lhs->type->vector_elements == 4); 377b8e80941Smrg this->out_variables->push_tail(t); 378b8e80941Smrg this->out_instructions->push_tail( 379b8e80941Smrg assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3)); 380b8e80941Smrg this->out_instructions->push_tail( 381b8e80941Smrg assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_y(rhs))), 0xc)); 382b8e80941Smrg rhs = deref(t).val; 383b8e80941Smrg } else { 384b8e80941Smrg rhs = u2i(expr(ir_unop_unpack_uint_2x32, rhs)); 385b8e80941Smrg } 386b8e80941Smrg break; 387b8e80941Smrg case GLSL_TYPE_SAMPLER: 388b8e80941Smrg rhs = u2i(expr(ir_unop_unpack_sampler_2x32, rhs)); 389b8e80941Smrg break; 390b8e80941Smrg case GLSL_TYPE_IMAGE: 391b8e80941Smrg rhs = u2i(expr(ir_unop_unpack_image_2x32, rhs)); 392b8e80941Smrg break; 393b8e80941Smrg default: 394b8e80941Smrg assert(!"Unexpected type conversion while lowering varyings"); 395b8e80941Smrg break; 396b8e80941Smrg } 397b8e80941Smrg } 398b8e80941Smrg this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs)); 399b8e80941Smrg} 400b8e80941Smrg 401b8e80941Smrg 402b8e80941Smrg/** 403b8e80941Smrg * Make an ir_assignment from \c rhs to \c lhs, performing appropriate 404b8e80941Smrg * bitcasts if necessary to match up types. 405b8e80941Smrg * 406b8e80941Smrg * This function is called when unpacking varyings. 407b8e80941Smrg */ 408b8e80941Smrgvoid 409b8e80941Smrglower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs, 410b8e80941Smrg ir_rvalue *rhs) 411b8e80941Smrg{ 412b8e80941Smrg if (lhs->type->base_type != rhs->type->base_type) { 413b8e80941Smrg /* Since we only mix types in flat varyings, and we always store flat 414b8e80941Smrg * varyings as type ivec4, we need only produce conversions from int to 415b8e80941Smrg * (uint or float). 416b8e80941Smrg */ 417b8e80941Smrg assert(rhs->type->base_type == GLSL_TYPE_INT); 418b8e80941Smrg switch (lhs->type->base_type) { 419b8e80941Smrg case GLSL_TYPE_UINT: 420b8e80941Smrg rhs = new(this->mem_ctx) 421b8e80941Smrg ir_expression(ir_unop_i2u, lhs->type, rhs); 422b8e80941Smrg break; 423b8e80941Smrg case GLSL_TYPE_FLOAT: 424b8e80941Smrg rhs = new(this->mem_ctx) 425b8e80941Smrg ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs); 426b8e80941Smrg break; 427b8e80941Smrg case GLSL_TYPE_DOUBLE: 428b8e80941Smrg assert(lhs->type->vector_elements <= 2); 429b8e80941Smrg if (lhs->type->vector_elements == 2) { 430b8e80941Smrg ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary); 431b8e80941Smrg assert(rhs->type->vector_elements == 4); 432b8e80941Smrg this->out_variables->push_tail(t); 433b8e80941Smrg this->out_instructions->push_tail( 434b8e80941Smrg assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1)); 435b8e80941Smrg this->out_instructions->push_tail( 436b8e80941Smrg assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2)); 437b8e80941Smrg rhs = deref(t).val; 438b8e80941Smrg } else { 439b8e80941Smrg rhs = expr(ir_unop_pack_double_2x32, i2u(rhs)); 440b8e80941Smrg } 441b8e80941Smrg break; 442b8e80941Smrg case GLSL_TYPE_INT64: 443b8e80941Smrg assert(lhs->type->vector_elements <= 2); 444b8e80941Smrg if (lhs->type->vector_elements == 2) { 445b8e80941Smrg ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary); 446b8e80941Smrg assert(rhs->type->vector_elements == 4); 447b8e80941Smrg this->out_variables->push_tail(t); 448b8e80941Smrg this->out_instructions->push_tail( 449b8e80941Smrg assign(t, expr(ir_unop_pack_int_2x32, swizzle_xy(rhs->clone(mem_ctx, NULL))), 0x1)); 450b8e80941Smrg this->out_instructions->push_tail( 451b8e80941Smrg assign(t, expr(ir_unop_pack_int_2x32, swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2)), 0x2)); 452b8e80941Smrg rhs = deref(t).val; 453b8e80941Smrg } else { 454b8e80941Smrg rhs = expr(ir_unop_pack_int_2x32, rhs); 455b8e80941Smrg } 456b8e80941Smrg break; 457b8e80941Smrg case GLSL_TYPE_UINT64: 458b8e80941Smrg assert(lhs->type->vector_elements <= 2); 459b8e80941Smrg if (lhs->type->vector_elements == 2) { 460b8e80941Smrg ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary); 461b8e80941Smrg assert(rhs->type->vector_elements == 4); 462b8e80941Smrg this->out_variables->push_tail(t); 463b8e80941Smrg this->out_instructions->push_tail( 464b8e80941Smrg assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1)); 465b8e80941Smrg this->out_instructions->push_tail( 466b8e80941Smrg assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2)); 467b8e80941Smrg rhs = deref(t).val; 468b8e80941Smrg } else { 469b8e80941Smrg rhs = expr(ir_unop_pack_uint_2x32, i2u(rhs)); 470b8e80941Smrg } 471b8e80941Smrg break; 472b8e80941Smrg case GLSL_TYPE_SAMPLER: 473b8e80941Smrg rhs = new(mem_ctx) 474b8e80941Smrg ir_expression(ir_unop_pack_sampler_2x32, lhs->type, i2u(rhs)); 475b8e80941Smrg break; 476b8e80941Smrg case GLSL_TYPE_IMAGE: 477b8e80941Smrg rhs = new(mem_ctx) 478b8e80941Smrg ir_expression(ir_unop_pack_image_2x32, lhs->type, i2u(rhs)); 479b8e80941Smrg break; 480b8e80941Smrg default: 481b8e80941Smrg assert(!"Unexpected type conversion while lowering varyings"); 482b8e80941Smrg break; 483b8e80941Smrg } 484b8e80941Smrg } 485b8e80941Smrg this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs)); 486b8e80941Smrg} 487b8e80941Smrg 488b8e80941Smrg 489b8e80941Smrg/** 490b8e80941Smrg * Recursively pack or unpack the given varying (or portion of a varying) by 491b8e80941Smrg * traversing all of its constituent vectors. 492b8e80941Smrg * 493b8e80941Smrg * \param fine_location is the location where the first constituent vector 494b8e80941Smrg * should be packed--the word "fine" indicates that this location is expressed 495b8e80941Smrg * in multiples of a float, rather than multiples of a vec4 as is used 496b8e80941Smrg * elsewhere in Mesa. 497b8e80941Smrg * 498b8e80941Smrg * \param gs_input_toplevel should be set to true if we are lowering geometry 499b8e80941Smrg * shader inputs, and we are currently lowering the whole input variable 500b8e80941Smrg * (i.e. we are lowering the array whose index selects the vertex). 501b8e80941Smrg * 502b8e80941Smrg * \param vertex_index: if we are lowering geometry shader inputs, and the 503b8e80941Smrg * level of the array that we are currently lowering is *not* the top level, 504b8e80941Smrg * then this indicates which vertex we are currently lowering. Otherwise it 505b8e80941Smrg * is ignored. 506b8e80941Smrg * 507b8e80941Smrg * \return the location where the next constituent vector (after this one) 508b8e80941Smrg * should be packed. 509b8e80941Smrg */ 510b8e80941Smrgunsigned 511b8e80941Smrglower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue, 512b8e80941Smrg unsigned fine_location, 513b8e80941Smrg ir_variable *unpacked_var, 514b8e80941Smrg const char *name, 515b8e80941Smrg bool gs_input_toplevel, 516b8e80941Smrg unsigned vertex_index) 517b8e80941Smrg{ 518b8e80941Smrg unsigned dmul = rvalue->type->is_64bit() ? 2 : 1; 519b8e80941Smrg /* When gs_input_toplevel is set, we should be looking at a geometry shader 520b8e80941Smrg * input array. 521b8e80941Smrg */ 522b8e80941Smrg assert(!gs_input_toplevel || rvalue->type->is_array()); 523b8e80941Smrg 524b8e80941Smrg if (rvalue->type->is_struct()) { 525b8e80941Smrg for (unsigned i = 0; i < rvalue->type->length; i++) { 526b8e80941Smrg if (i != 0) 527b8e80941Smrg rvalue = rvalue->clone(this->mem_ctx, NULL); 528b8e80941Smrg const char *field_name = rvalue->type->fields.structure[i].name; 529b8e80941Smrg ir_dereference_record *dereference_record = new(this->mem_ctx) 530b8e80941Smrg ir_dereference_record(rvalue, field_name); 531b8e80941Smrg char *deref_name 532b8e80941Smrg = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name); 533b8e80941Smrg fine_location = this->lower_rvalue(dereference_record, fine_location, 534b8e80941Smrg unpacked_var, deref_name, false, 535b8e80941Smrg vertex_index); 536b8e80941Smrg } 537b8e80941Smrg return fine_location; 538b8e80941Smrg } else if (rvalue->type->is_array()) { 539b8e80941Smrg /* Arrays are packed/unpacked by considering each array element in 540b8e80941Smrg * sequence. 541b8e80941Smrg */ 542b8e80941Smrg return this->lower_arraylike(rvalue, rvalue->type->array_size(), 543b8e80941Smrg fine_location, unpacked_var, name, 544b8e80941Smrg gs_input_toplevel, vertex_index); 545b8e80941Smrg } else if (rvalue->type->is_matrix()) { 546b8e80941Smrg /* Matrices are packed/unpacked by considering each column vector in 547b8e80941Smrg * sequence. 548b8e80941Smrg */ 549b8e80941Smrg return this->lower_arraylike(rvalue, rvalue->type->matrix_columns, 550b8e80941Smrg fine_location, unpacked_var, name, 551b8e80941Smrg false, vertex_index); 552b8e80941Smrg } else if (rvalue->type->vector_elements * dmul + 553b8e80941Smrg fine_location % 4 > 4) { 554b8e80941Smrg /* This vector is going to be "double parked" across two varying slots, 555b8e80941Smrg * so handle it as two separate assignments. For doubles, a dvec3/dvec4 556b8e80941Smrg * can end up being spread over 3 slots. However the second splitting 557b8e80941Smrg * will happen later, here we just always want to split into 2. 558b8e80941Smrg */ 559b8e80941Smrg unsigned left_components, right_components; 560b8e80941Smrg unsigned left_swizzle_values[4] = { 0, 0, 0, 0 }; 561b8e80941Smrg unsigned right_swizzle_values[4] = { 0, 0, 0, 0 }; 562b8e80941Smrg char left_swizzle_name[4] = { 0, 0, 0, 0 }; 563b8e80941Smrg char right_swizzle_name[4] = { 0, 0, 0, 0 }; 564b8e80941Smrg 565b8e80941Smrg left_components = 4 - fine_location % 4; 566b8e80941Smrg if (rvalue->type->is_64bit()) { 567b8e80941Smrg /* We might actually end up with 0 left components! */ 568b8e80941Smrg left_components /= 2; 569b8e80941Smrg } 570b8e80941Smrg right_components = rvalue->type->vector_elements - left_components; 571b8e80941Smrg 572b8e80941Smrg for (unsigned i = 0; i < left_components; i++) { 573b8e80941Smrg left_swizzle_values[i] = i; 574b8e80941Smrg left_swizzle_name[i] = "xyzw"[i]; 575b8e80941Smrg } 576b8e80941Smrg for (unsigned i = 0; i < right_components; i++) { 577b8e80941Smrg right_swizzle_values[i] = i + left_components; 578b8e80941Smrg right_swizzle_name[i] = "xyzw"[i + left_components]; 579b8e80941Smrg } 580b8e80941Smrg ir_swizzle *left_swizzle = new(this->mem_ctx) 581b8e80941Smrg ir_swizzle(rvalue, left_swizzle_values, left_components); 582b8e80941Smrg ir_swizzle *right_swizzle = new(this->mem_ctx) 583b8e80941Smrg ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values, 584b8e80941Smrg right_components); 585b8e80941Smrg char *left_name 586b8e80941Smrg = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name); 587b8e80941Smrg char *right_name 588b8e80941Smrg = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name); 589b8e80941Smrg if (left_components) 590b8e80941Smrg fine_location = this->lower_rvalue(left_swizzle, fine_location, 591b8e80941Smrg unpacked_var, left_name, false, 592b8e80941Smrg vertex_index); 593b8e80941Smrg else 594b8e80941Smrg /* Top up the fine location to the next slot */ 595b8e80941Smrg fine_location++; 596b8e80941Smrg return this->lower_rvalue(right_swizzle, fine_location, unpacked_var, 597b8e80941Smrg right_name, false, vertex_index); 598b8e80941Smrg } else { 599b8e80941Smrg /* No special handling is necessary; pack the rvalue into the 600b8e80941Smrg * varying. 601b8e80941Smrg */ 602b8e80941Smrg unsigned swizzle_values[4] = { 0, 0, 0, 0 }; 603b8e80941Smrg unsigned components = rvalue->type->vector_elements * dmul; 604b8e80941Smrg unsigned location = fine_location / 4; 605b8e80941Smrg unsigned location_frac = fine_location % 4; 606b8e80941Smrg for (unsigned i = 0; i < components; ++i) 607b8e80941Smrg swizzle_values[i] = i + location_frac; 608b8e80941Smrg ir_dereference *packed_deref = 609b8e80941Smrg this->get_packed_varying_deref(location, unpacked_var, name, 610b8e80941Smrg vertex_index); 611b8e80941Smrg if (unpacked_var->data.stream != 0) { 612b8e80941Smrg assert(unpacked_var->data.stream < 4); 613b8e80941Smrg ir_variable *packed_var = packed_deref->variable_referenced(); 614b8e80941Smrg for (unsigned i = 0; i < components; ++i) { 615b8e80941Smrg packed_var->data.stream |= 616b8e80941Smrg unpacked_var->data.stream << (2 * (location_frac + i)); 617b8e80941Smrg } 618b8e80941Smrg } 619b8e80941Smrg ir_swizzle *swizzle = new(this->mem_ctx) 620b8e80941Smrg ir_swizzle(packed_deref, swizzle_values, components); 621b8e80941Smrg if (this->mode == ir_var_shader_out) { 622b8e80941Smrg this->bitwise_assign_pack(swizzle, rvalue); 623b8e80941Smrg } else { 624b8e80941Smrg this->bitwise_assign_unpack(rvalue, swizzle); 625b8e80941Smrg } 626b8e80941Smrg return fine_location + components; 627b8e80941Smrg } 628b8e80941Smrg} 629b8e80941Smrg 630b8e80941Smrg/** 631b8e80941Smrg * Recursively pack or unpack a varying for which we need to iterate over its 632b8e80941Smrg * constituent elements, accessing each one using an ir_dereference_array. 633b8e80941Smrg * This takes care of both arrays and matrices, since ir_dereference_array 634b8e80941Smrg * treats a matrix like an array of its column vectors. 635b8e80941Smrg * 636b8e80941Smrg * \param gs_input_toplevel should be set to true if we are lowering geometry 637b8e80941Smrg * shader inputs, and we are currently lowering the whole input variable 638b8e80941Smrg * (i.e. we are lowering the array whose index selects the vertex). 639b8e80941Smrg * 640b8e80941Smrg * \param vertex_index: if we are lowering geometry shader inputs, and the 641b8e80941Smrg * level of the array that we are currently lowering is *not* the top level, 642b8e80941Smrg * then this indicates which vertex we are currently lowering. Otherwise it 643b8e80941Smrg * is ignored. 644b8e80941Smrg */ 645b8e80941Smrgunsigned 646b8e80941Smrglower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue, 647b8e80941Smrg unsigned array_size, 648b8e80941Smrg unsigned fine_location, 649b8e80941Smrg ir_variable *unpacked_var, 650b8e80941Smrg const char *name, 651b8e80941Smrg bool gs_input_toplevel, 652b8e80941Smrg unsigned vertex_index) 653b8e80941Smrg{ 654b8e80941Smrg for (unsigned i = 0; i < array_size; i++) { 655b8e80941Smrg if (i != 0) 656b8e80941Smrg rvalue = rvalue->clone(this->mem_ctx, NULL); 657b8e80941Smrg ir_constant *constant = new(this->mem_ctx) ir_constant(i); 658b8e80941Smrg ir_dereference_array *dereference_array = new(this->mem_ctx) 659b8e80941Smrg ir_dereference_array(rvalue, constant); 660b8e80941Smrg if (gs_input_toplevel) { 661b8e80941Smrg /* Geometry shader inputs are a special case. Instead of storing 662b8e80941Smrg * each element of the array at a different location, all elements 663b8e80941Smrg * are at the same location, but with a different vertex index. 664b8e80941Smrg */ 665b8e80941Smrg (void) this->lower_rvalue(dereference_array, fine_location, 666b8e80941Smrg unpacked_var, name, false, i); 667b8e80941Smrg } else { 668b8e80941Smrg char *subscripted_name 669b8e80941Smrg = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i); 670b8e80941Smrg fine_location = 671b8e80941Smrg this->lower_rvalue(dereference_array, fine_location, 672b8e80941Smrg unpacked_var, subscripted_name, 673b8e80941Smrg false, vertex_index); 674b8e80941Smrg } 675b8e80941Smrg } 676b8e80941Smrg return fine_location; 677b8e80941Smrg} 678b8e80941Smrg 679b8e80941Smrg/** 680b8e80941Smrg * Retrieve the packed varying corresponding to the given varying location. 681b8e80941Smrg * If no packed varying has been created for the given varying location yet, 682b8e80941Smrg * create it and add it to the shader before returning it. 683b8e80941Smrg * 684b8e80941Smrg * The newly created varying inherits its interpolation parameters from \c 685b8e80941Smrg * unpacked_var. Its base type is ivec4 if we are lowering a flat varying, 686b8e80941Smrg * vec4 otherwise. 687b8e80941Smrg * 688b8e80941Smrg * \param vertex_index: if we are lowering geometry shader inputs, then this 689b8e80941Smrg * indicates which vertex we are currently lowering. Otherwise it is ignored. 690b8e80941Smrg */ 691b8e80941Smrgir_dereference * 692b8e80941Smrglower_packed_varyings_visitor::get_packed_varying_deref( 693b8e80941Smrg unsigned location, ir_variable *unpacked_var, const char *name, 694b8e80941Smrg unsigned vertex_index) 695b8e80941Smrg{ 696b8e80941Smrg unsigned slot = location - VARYING_SLOT_VAR0; 697b8e80941Smrg assert(slot < locations_used); 698b8e80941Smrg if (this->packed_varyings[slot] == NULL) { 699b8e80941Smrg char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name); 700b8e80941Smrg const glsl_type *packed_type; 701b8e80941Smrg assert(components[slot] != 0); 702b8e80941Smrg if (unpacked_var->is_interpolation_flat()) 703b8e80941Smrg packed_type = glsl_type::get_instance(GLSL_TYPE_INT, components[slot], 1); 704b8e80941Smrg else 705b8e80941Smrg packed_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, components[slot], 1); 706b8e80941Smrg if (this->gs_input_vertices != 0) { 707b8e80941Smrg packed_type = 708b8e80941Smrg glsl_type::get_array_instance(packed_type, 709b8e80941Smrg this->gs_input_vertices); 710b8e80941Smrg } 711b8e80941Smrg ir_variable *packed_var = new(this->mem_ctx) 712b8e80941Smrg ir_variable(packed_type, packed_name, this->mode); 713b8e80941Smrg if (this->gs_input_vertices != 0) { 714b8e80941Smrg /* Prevent update_array_sizes() from messing with the size of the 715b8e80941Smrg * array. 716b8e80941Smrg */ 717b8e80941Smrg packed_var->data.max_array_access = this->gs_input_vertices - 1; 718b8e80941Smrg } 719b8e80941Smrg packed_var->data.centroid = unpacked_var->data.centroid; 720b8e80941Smrg packed_var->data.sample = unpacked_var->data.sample; 721b8e80941Smrg packed_var->data.patch = unpacked_var->data.patch; 722b8e80941Smrg packed_var->data.interpolation = 723b8e80941Smrg packed_type->without_array() == glsl_type::ivec4_type 724b8e80941Smrg ? unsigned(INTERP_MODE_FLAT) : unpacked_var->data.interpolation; 725b8e80941Smrg packed_var->data.location = location; 726b8e80941Smrg packed_var->data.precision = unpacked_var->data.precision; 727b8e80941Smrg packed_var->data.always_active_io = unpacked_var->data.always_active_io; 728b8e80941Smrg packed_var->data.stream = 1u << 31; 729b8e80941Smrg unpacked_var->insert_before(packed_var); 730b8e80941Smrg this->packed_varyings[slot] = packed_var; 731b8e80941Smrg } else { 732b8e80941Smrg ir_variable *var = this->packed_varyings[slot]; 733b8e80941Smrg 734b8e80941Smrg /* The slot needs to be marked as always active if any variable that got 735b8e80941Smrg * packed there was. 736b8e80941Smrg */ 737b8e80941Smrg var->data.always_active_io |= unpacked_var->data.always_active_io; 738b8e80941Smrg 739b8e80941Smrg /* For geometry shader inputs, only update the packed variable name the 740b8e80941Smrg * first time we visit each component. 741b8e80941Smrg */ 742b8e80941Smrg if (this->gs_input_vertices == 0 || vertex_index == 0) { 743b8e80941Smrg if (var->is_name_ralloced()) 744b8e80941Smrg ralloc_asprintf_append((char **) &var->name, ",%s", name); 745b8e80941Smrg else 746b8e80941Smrg var->name = ralloc_asprintf(var, "%s,%s", var->name, name); 747b8e80941Smrg } 748b8e80941Smrg } 749b8e80941Smrg 750b8e80941Smrg ir_dereference *deref = new(this->mem_ctx) 751b8e80941Smrg ir_dereference_variable(this->packed_varyings[slot]); 752b8e80941Smrg if (this->gs_input_vertices != 0) { 753b8e80941Smrg /* When lowering GS inputs, the packed variable is an array, so we need 754b8e80941Smrg * to dereference it using vertex_index. 755b8e80941Smrg */ 756b8e80941Smrg ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index); 757b8e80941Smrg deref = new(this->mem_ctx) ir_dereference_array(deref, constant); 758b8e80941Smrg } 759b8e80941Smrg return deref; 760b8e80941Smrg} 761b8e80941Smrg 762b8e80941Smrgbool 763b8e80941Smrglower_packed_varyings_visitor::needs_lowering(ir_variable *var) 764b8e80941Smrg{ 765b8e80941Smrg /* Things composed of vec4's, varyings with explicitly assigned 766b8e80941Smrg * locations or varyings marked as must_be_shader_input (which might be used 767b8e80941Smrg * by interpolateAt* functions) shouldn't be lowered. Everything else can be. 768b8e80941Smrg */ 769b8e80941Smrg if (var->data.explicit_location || var->data.must_be_shader_input) 770b8e80941Smrg return false; 771b8e80941Smrg 772b8e80941Smrg /* Override disable_varying_packing if the var is only used by transform 773b8e80941Smrg * feedback. Also override it if transform feedback is enabled and the 774b8e80941Smrg * variable is an array, struct or matrix as the elements of these types 775b8e80941Smrg * will always have the same interpolation and therefore are safe to pack. 776b8e80941Smrg */ 777b8e80941Smrg const glsl_type *type = var->type; 778b8e80941Smrg if (disable_varying_packing && !var->data.is_xfb_only && 779b8e80941Smrg !((type->is_array() || type->is_struct() || type->is_matrix()) && 780b8e80941Smrg xfb_enabled)) 781b8e80941Smrg return false; 782b8e80941Smrg 783b8e80941Smrg type = type->without_array(); 784b8e80941Smrg if (type->vector_elements == 4 && !type->is_64bit()) 785b8e80941Smrg return false; 786b8e80941Smrg return true; 787b8e80941Smrg} 788b8e80941Smrg 789b8e80941Smrg 790b8e80941Smrg/** 791b8e80941Smrg * Visitor that splices varying packing code before every use of EmitVertex() 792b8e80941Smrg * in a geometry shader. 793b8e80941Smrg */ 794b8e80941Smrgclass lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor 795b8e80941Smrg{ 796b8e80941Smrgpublic: 797b8e80941Smrg explicit lower_packed_varyings_gs_splicer(void *mem_ctx, 798b8e80941Smrg const exec_list *instructions); 799b8e80941Smrg 800b8e80941Smrg virtual ir_visitor_status visit_leave(ir_emit_vertex *ev); 801b8e80941Smrg 802b8e80941Smrgprivate: 803b8e80941Smrg /** 804b8e80941Smrg * Memory context used to allocate new instructions for the shader. 805b8e80941Smrg */ 806b8e80941Smrg void * const mem_ctx; 807b8e80941Smrg 808b8e80941Smrg /** 809b8e80941Smrg * Instructions that should be spliced into place before each EmitVertex() 810b8e80941Smrg * call. 811b8e80941Smrg */ 812b8e80941Smrg const exec_list *instructions; 813b8e80941Smrg}; 814b8e80941Smrg 815b8e80941Smrg 816b8e80941Smrglower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer( 817b8e80941Smrg void *mem_ctx, const exec_list *instructions) 818b8e80941Smrg : mem_ctx(mem_ctx), instructions(instructions) 819b8e80941Smrg{ 820b8e80941Smrg} 821b8e80941Smrg 822b8e80941Smrg 823b8e80941Smrgir_visitor_status 824b8e80941Smrglower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev) 825b8e80941Smrg{ 826b8e80941Smrg foreach_in_list(ir_instruction, ir, this->instructions) { 827b8e80941Smrg ev->insert_before(ir->clone(this->mem_ctx, NULL)); 828b8e80941Smrg } 829b8e80941Smrg return visit_continue; 830b8e80941Smrg} 831b8e80941Smrg 832b8e80941Smrg/** 833b8e80941Smrg * Visitor that splices varying packing code before every return. 834b8e80941Smrg */ 835b8e80941Smrgclass lower_packed_varyings_return_splicer : public ir_hierarchical_visitor 836b8e80941Smrg{ 837b8e80941Smrgpublic: 838b8e80941Smrg explicit lower_packed_varyings_return_splicer(void *mem_ctx, 839b8e80941Smrg const exec_list *instructions); 840b8e80941Smrg 841b8e80941Smrg virtual ir_visitor_status visit_leave(ir_return *ret); 842b8e80941Smrg 843b8e80941Smrgprivate: 844b8e80941Smrg /** 845b8e80941Smrg * Memory context used to allocate new instructions for the shader. 846b8e80941Smrg */ 847b8e80941Smrg void * const mem_ctx; 848b8e80941Smrg 849b8e80941Smrg /** 850b8e80941Smrg * Instructions that should be spliced into place before each return. 851b8e80941Smrg */ 852b8e80941Smrg const exec_list *instructions; 853b8e80941Smrg}; 854b8e80941Smrg 855b8e80941Smrg 856b8e80941Smrglower_packed_varyings_return_splicer::lower_packed_varyings_return_splicer( 857b8e80941Smrg void *mem_ctx, const exec_list *instructions) 858b8e80941Smrg : mem_ctx(mem_ctx), instructions(instructions) 859b8e80941Smrg{ 860b8e80941Smrg} 861b8e80941Smrg 862b8e80941Smrg 863b8e80941Smrgir_visitor_status 864b8e80941Smrglower_packed_varyings_return_splicer::visit_leave(ir_return *ret) 865b8e80941Smrg{ 866b8e80941Smrg foreach_in_list(ir_instruction, ir, this->instructions) { 867b8e80941Smrg ret->insert_before(ir->clone(this->mem_ctx, NULL)); 868b8e80941Smrg } 869b8e80941Smrg return visit_continue; 870b8e80941Smrg} 871b8e80941Smrg 872b8e80941Smrgvoid 873b8e80941Smrglower_packed_varyings(void *mem_ctx, unsigned locations_used, 874b8e80941Smrg const uint8_t *components, 875b8e80941Smrg ir_variable_mode mode, unsigned gs_input_vertices, 876b8e80941Smrg gl_linked_shader *shader, bool disable_varying_packing, 877b8e80941Smrg bool xfb_enabled) 878b8e80941Smrg{ 879b8e80941Smrg exec_list *instructions = shader->ir; 880b8e80941Smrg ir_function *main_func = shader->symbols->get_function("main"); 881b8e80941Smrg exec_list void_parameters; 882b8e80941Smrg ir_function_signature *main_func_sig 883b8e80941Smrg = main_func->matching_signature(NULL, &void_parameters, false); 884b8e80941Smrg exec_list new_instructions, new_variables; 885b8e80941Smrg lower_packed_varyings_visitor visitor(mem_ctx, 886b8e80941Smrg locations_used, 887b8e80941Smrg components, 888b8e80941Smrg mode, 889b8e80941Smrg gs_input_vertices, 890b8e80941Smrg &new_instructions, 891b8e80941Smrg &new_variables, 892b8e80941Smrg disable_varying_packing, 893b8e80941Smrg xfb_enabled); 894b8e80941Smrg visitor.run(shader); 895b8e80941Smrg if (mode == ir_var_shader_out) { 896b8e80941Smrg if (shader->Stage == MESA_SHADER_GEOMETRY) { 897b8e80941Smrg /* For geometry shaders, outputs need to be lowered before each call 898b8e80941Smrg * to EmitVertex() 899b8e80941Smrg */ 900b8e80941Smrg lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions); 901b8e80941Smrg 902b8e80941Smrg /* Add all the variables in first. */ 903b8e80941Smrg main_func_sig->body.get_head_raw()->insert_before(&new_variables); 904b8e80941Smrg 905b8e80941Smrg /* Now update all the EmitVertex instances */ 906b8e80941Smrg splicer.run(instructions); 907b8e80941Smrg } else { 908b8e80941Smrg /* For other shader types, outputs need to be lowered before each 909b8e80941Smrg * return statement and at the end of main() 910b8e80941Smrg */ 911b8e80941Smrg 912b8e80941Smrg lower_packed_varyings_return_splicer splicer(mem_ctx, &new_instructions); 913b8e80941Smrg 914b8e80941Smrg main_func_sig->body.get_head_raw()->insert_before(&new_variables); 915b8e80941Smrg 916b8e80941Smrg splicer.run(instructions); 917b8e80941Smrg 918b8e80941Smrg /* Lower outputs at the end of main() if the last instruction is not 919b8e80941Smrg * a return statement 920b8e80941Smrg */ 921b8e80941Smrg if (((ir_instruction*)instructions->get_tail())->ir_type != ir_type_return) { 922b8e80941Smrg main_func_sig->body.append_list(&new_instructions); 923b8e80941Smrg } 924b8e80941Smrg } 925b8e80941Smrg } else { 926b8e80941Smrg /* Shader inputs need to be lowered at the beginning of main() */ 927b8e80941Smrg main_func_sig->body.get_head_raw()->insert_before(&new_instructions); 928b8e80941Smrg main_func_sig->body.get_head_raw()->insert_before(&new_variables); 929b8e80941Smrg } 930b8e80941Smrg} 931