1/*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28#ifndef NIR_H
29#define NIR_H
30
31#include "util/hash_table.h"
32#include "compiler/glsl/list.h"
33#include "GL/gl.h" /* GLenum */
34#include "util/list.h"
35#include "util/ralloc.h"
36#include "util/set.h"
37#include "util/bitscan.h"
38#include "util/bitset.h"
39#include "util/macros.h"
40#include "compiler/nir_types.h"
41#include "compiler/shader_enums.h"
42#include "compiler/shader_info.h"
43#include <stdio.h>
44
45#ifndef NDEBUG
46#include "util/debug.h"
47#endif /* NDEBUG */
48
49#include "nir_opcodes.h"
50
51#if defined(_WIN32) && !defined(snprintf)
52#define snprintf _snprintf
53#endif
54
55#ifdef __cplusplus
56extern "C" {
57#endif
58
59#define NIR_FALSE 0u
60#define NIR_TRUE (~0u)
61#define NIR_MAX_VEC_COMPONENTS 4
62#define NIR_MAX_MATRIX_COLUMNS 4
63typedef uint8_t nir_component_mask_t;
64
65/** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73#define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74                        type_field, type_value)         \
75static inline out_type *                                \
76name(const in_type *parent)                             \
77{                                                       \
78   assert(parent && parent->type_field == type_value);  \
79   return exec_node_data(out_type, parent, field);      \
80}
81
82struct nir_function;
83struct nir_shader;
84struct nir_instr;
85struct nir_builder;
86
87
88/**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93typedef struct {
94   gl_state_index16 tokens[STATE_LENGTH];
95   int swizzle;
96} nir_state_slot;
97
98typedef enum {
99   nir_var_shader_in       = (1 << 0),
100   nir_var_shader_out      = (1 << 1),
101   nir_var_shader_temp     = (1 << 2),
102   nir_var_function_temp   = (1 << 3),
103   nir_var_uniform         = (1 << 4),
104   nir_var_mem_ubo         = (1 << 5),
105   nir_var_system_value    = (1 << 6),
106   nir_var_mem_ssbo        = (1 << 7),
107   nir_var_mem_shared      = (1 << 8),
108   nir_var_mem_global      = (1 << 9),
109   nir_var_all             = ~0,
110} nir_variable_mode;
111
112/**
113 * Rounding modes.
114 */
115typedef enum {
116   nir_rounding_mode_undef = 0,
117   nir_rounding_mode_rtne  = 1, /* round to nearest even */
118   nir_rounding_mode_ru    = 2, /* round up */
119   nir_rounding_mode_rd    = 3, /* round down */
120   nir_rounding_mode_rtz   = 4, /* round towards zero */
121} nir_rounding_mode;
122
123typedef union {
124   bool b;
125   float f32;
126   double f64;
127   int8_t i8;
128   uint8_t u8;
129   int16_t i16;
130   uint16_t u16;
131   int32_t i32;
132   uint32_t u32;
133   int64_t i64;
134   uint64_t u64;
135} nir_const_value;
136
137#define nir_const_value_to_array(arr, c, components, m) \
138{ \
139   for (unsigned i = 0; i < components; ++i) \
140      arr[i] = c[i].m; \
141} while (false)
142
143static inline nir_const_value
144nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
145{
146   nir_const_value v;
147   memset(&v, 0, sizeof(v));
148
149   switch (bit_size) {
150   case 1:  v.b   = x;  break;
151   case 8:  v.u8  = x;  break;
152   case 16: v.u16 = x;  break;
153   case 32: v.u32 = x;  break;
154   case 64: v.u64 = x;  break;
155   default:
156      unreachable("Invalid bit size");
157   }
158
159   return v;
160}
161
162static inline nir_const_value
163nir_const_value_for_int(int64_t i, unsigned bit_size)
164{
165   nir_const_value v;
166   memset(&v, 0, sizeof(v));
167
168   assert(bit_size <= 64);
169   if (bit_size < 64) {
170      assert(i >= (-(1ll << (bit_size - 1))));
171      assert(i < (1ll << (bit_size - 1)));
172   }
173
174   return nir_const_value_for_raw_uint(i, bit_size);
175}
176
177static inline nir_const_value
178nir_const_value_for_uint(uint64_t u, unsigned bit_size)
179{
180   nir_const_value v;
181   memset(&v, 0, sizeof(v));
182
183   assert(bit_size <= 64);
184   if (bit_size < 64)
185      assert(u < (1ull << bit_size));
186
187   return nir_const_value_for_raw_uint(u, bit_size);
188}
189
190static inline nir_const_value
191nir_const_value_for_bool(bool b, unsigned bit_size)
192{
193   /* Booleans use a 0/-1 convention */
194   return nir_const_value_for_int(-(int)b, bit_size);
195}
196
197/* This one isn't inline because it requires half-float conversion */
198nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
199
200static inline int64_t
201nir_const_value_as_int(nir_const_value value, unsigned bit_size)
202{
203   switch (bit_size) {
204   /* int1_t uses 0/-1 convention */
205   case 1:  return -(int)value.b;
206   case 8:  return value.i8;
207   case 16: return value.i16;
208   case 32: return value.i32;
209   case 64: return value.i64;
210   default:
211      unreachable("Invalid bit size");
212   }
213}
214
215static inline int64_t
216nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
217{
218   switch (bit_size) {
219   case 1:  return value.b;
220   case 8:  return value.u8;
221   case 16: return value.u16;
222   case 32: return value.u32;
223   case 64: return value.u64;
224   default:
225      unreachable("Invalid bit size");
226   }
227}
228
229static inline bool
230nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
231{
232   int64_t i = nir_const_value_as_int(value, bit_size);
233
234   /* Booleans of any size use 0/-1 convention */
235   assert(i == 0 || i == -1);
236
237   return i;
238}
239
240/* This one isn't inline because it requires half-float conversion */
241double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
242
243typedef struct nir_constant {
244   /**
245    * Value of the constant.
246    *
247    * The field used to back the values supplied by the constant is determined
248    * by the type associated with the \c nir_variable.  Constants may be
249    * scalars, vectors, or matrices.
250    */
251   nir_const_value values[NIR_MAX_MATRIX_COLUMNS][NIR_MAX_VEC_COMPONENTS];
252
253   /* we could get this from the var->type but makes clone *much* easier to
254    * not have to care about the type.
255    */
256   unsigned num_elements;
257
258   /* Array elements / Structure Fields */
259   struct nir_constant **elements;
260} nir_constant;
261
262/**
263 * \brief Layout qualifiers for gl_FragDepth.
264 *
265 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
266 * with a layout qualifier.
267 */
268typedef enum {
269    nir_depth_layout_none, /**< No depth layout is specified. */
270    nir_depth_layout_any,
271    nir_depth_layout_greater,
272    nir_depth_layout_less,
273    nir_depth_layout_unchanged
274} nir_depth_layout;
275
276/**
277 * Enum keeping track of how a variable was declared.
278 */
279typedef enum {
280   /**
281    * Normal declaration.
282    */
283   nir_var_declared_normally = 0,
284
285   /**
286    * Variable is implicitly generated by the compiler and should not be
287    * visible via the API.
288    */
289   nir_var_hidden,
290} nir_var_declaration_type;
291
292/**
293 * Either a uniform, global variable, shader input, or shader output. Based on
294 * ir_variable - it should be easy to translate between the two.
295 */
296
297typedef struct nir_variable {
298   struct exec_node node;
299
300   /**
301    * Declared type of the variable
302    */
303   const struct glsl_type *type;
304
305   /**
306    * Declared name of the variable
307    */
308   char *name;
309
310   struct nir_variable_data {
311      /**
312       * Storage class of the variable.
313       *
314       * \sa nir_variable_mode
315       */
316      nir_variable_mode mode;
317
318      /**
319       * Is the variable read-only?
320       *
321       * This is set for variables declared as \c const, shader inputs,
322       * and uniforms.
323       */
324      unsigned read_only:1;
325      unsigned centroid:1;
326      unsigned sample:1;
327      unsigned patch:1;
328      unsigned invariant:1;
329
330      /**
331       * When separate shader programs are enabled, only input/outputs between
332       * the stages of a multi-stage separate program can be safely removed
333       * from the shader interface. Other input/outputs must remains active.
334       *
335       * This is also used to make sure xfb varyings that are unused by the
336       * fragment shader are not removed.
337       */
338      unsigned always_active_io:1;
339
340      /**
341       * Interpolation mode for shader inputs / outputs
342       *
343       * \sa glsl_interp_mode
344       */
345      unsigned interpolation:2;
346
347      /**
348       * If non-zero, then this variable may be packed along with other variables
349       * into a single varying slot, so this offset should be applied when
350       * accessing components.  For example, an offset of 1 means that the x
351       * component of this variable is actually stored in component y of the
352       * location specified by \c location.
353       */
354      unsigned location_frac:2;
355
356      /**
357       * If true, this variable represents an array of scalars that should
358       * be tightly packed.  In other words, consecutive array elements
359       * should be stored one component apart, rather than one slot apart.
360       */
361      unsigned compact:1;
362
363      /**
364       * Whether this is a fragment shader output implicitly initialized with
365       * the previous contents of the specified render target at the
366       * framebuffer location corresponding to this shader invocation.
367       */
368      unsigned fb_fetch_output:1;
369
370      /**
371       * Non-zero if this variable is considered bindless as defined by
372       * ARB_bindless_texture.
373       */
374      unsigned bindless:1;
375
376      /**
377       * Was an explicit binding set in the shader?
378       */
379      unsigned explicit_binding:1;
380
381      /**
382       * Was a transfer feedback buffer set in the shader?
383       */
384      unsigned explicit_xfb_buffer:1;
385
386      /**
387       * Was a transfer feedback stride set in the shader?
388       */
389      unsigned explicit_xfb_stride:1;
390
391      /**
392       * Was an explicit offset set in the shader?
393       */
394      unsigned explicit_offset:1;
395
396      /**
397       * \brief Layout qualifier for gl_FragDepth.
398       *
399       * This is not equal to \c ir_depth_layout_none if and only if this
400       * variable is \c gl_FragDepth and a layout qualifier is specified.
401       */
402      nir_depth_layout depth_layout;
403
404      /**
405       * Storage location of the base of this variable
406       *
407       * The precise meaning of this field depends on the nature of the variable.
408       *
409       *   - Vertex shader input: one of the values from \c gl_vert_attrib.
410       *   - Vertex shader output: one of the values from \c gl_varying_slot.
411       *   - Geometry shader input: one of the values from \c gl_varying_slot.
412       *   - Geometry shader output: one of the values from \c gl_varying_slot.
413       *   - Fragment shader input: one of the values from \c gl_varying_slot.
414       *   - Fragment shader output: one of the values from \c gl_frag_result.
415       *   - Uniforms: Per-stage uniform slot number for default uniform block.
416       *   - Uniforms: Index within the uniform block definition for UBO members.
417       *   - Non-UBO Uniforms: uniform slot number.
418       *   - Other: This field is not currently used.
419       *
420       * If the variable is a uniform, shader input, or shader output, and the
421       * slot has not been assigned, the value will be -1.
422       */
423      int location;
424
425      /**
426       * The actual location of the variable in the IR. Only valid for inputs
427       * and outputs.
428       */
429      unsigned int driver_location;
430
431      /**
432       * Vertex stream output identifier.
433       *
434       * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
435       * stream of the i-th component.
436       */
437      unsigned stream;
438
439      /**
440       * output index for dual source blending.
441       */
442      int index;
443
444      /**
445       * Descriptor set binding for sampler or UBO.
446       */
447      int descriptor_set;
448
449      /**
450       * Initial binding point for a sampler or UBO.
451       *
452       * For array types, this represents the binding point for the first element.
453       */
454      int binding;
455
456      /**
457       * Location an atomic counter or transform feedback is stored at.
458       */
459      unsigned offset;
460
461      /**
462       * Transform feedback buffer.
463       */
464      unsigned xfb_buffer;
465
466      /**
467       * Transform feedback stride.
468       */
469      unsigned xfb_stride;
470
471      /**
472       * How the variable was declared.  See nir_var_declaration_type.
473       *
474       * This is used to detect variables generated by the compiler, so should
475       * not be visible via the API.
476       */
477      unsigned how_declared:2;
478
479      /**
480       * ARB_shader_image_load_store qualifiers.
481       */
482      struct {
483         enum gl_access_qualifier access;
484
485         /** Image internal format if specified explicitly, otherwise GL_NONE. */
486         GLenum format;
487      } image;
488   } data;
489
490   /**
491    * Built-in state that backs this uniform
492    *
493    * Once set at variable creation, \c state_slots must remain invariant.
494    * This is because, ideally, this array would be shared by all clones of
495    * this variable in the IR tree.  In other words, we'd really like for it
496    * to be a fly-weight.
497    *
498    * If the variable is not a uniform, \c num_state_slots will be zero and
499    * \c state_slots will be \c NULL.
500    */
501   /*@{*/
502   unsigned num_state_slots;    /**< Number of state slots used */
503   nir_state_slot *state_slots;  /**< State descriptors. */
504   /*@}*/
505
506   /**
507    * Constant expression assigned in the initializer of the variable
508    *
509    * This field should only be used temporarily by creators of NIR shaders
510    * and then lower_constant_initializers can be used to get rid of them.
511    * Most of the rest of NIR ignores this field or asserts that it's NULL.
512    */
513   nir_constant *constant_initializer;
514
515   /**
516    * For variables that are in an interface block or are an instance of an
517    * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
518    *
519    * \sa ir_variable::location
520    */
521   const struct glsl_type *interface_type;
522
523   /**
524    * Description of per-member data for per-member struct variables
525    *
526    * This is used for variables which are actually an amalgamation of
527    * multiple entities such as a struct of built-in values or a struct of
528    * inputs each with their own layout specifier.  This is only allowed on
529    * variables with a struct or array of array of struct type.
530    */
531   unsigned num_members;
532   struct nir_variable_data *members;
533} nir_variable;
534
535#define nir_foreach_variable(var, var_list) \
536   foreach_list_typed(nir_variable, var, node, var_list)
537
538#define nir_foreach_variable_safe(var, var_list) \
539   foreach_list_typed_safe(nir_variable, var, node, var_list)
540
541static inline bool
542nir_variable_is_global(const nir_variable *var)
543{
544   return var->data.mode != nir_var_function_temp;
545}
546
547typedef struct nir_register {
548   struct exec_node node;
549
550   unsigned num_components; /** < number of vector components */
551   unsigned num_array_elems; /** < size of array (0 for no array) */
552
553   /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
554   uint8_t bit_size;
555
556   /** generic register index. */
557   unsigned index;
558
559   /** only for debug purposes, can be NULL */
560   const char *name;
561
562   /** set of nir_srcs where this register is used (read from) */
563   struct list_head uses;
564
565   /** set of nir_dests where this register is defined (written to) */
566   struct list_head defs;
567
568   /** set of nir_ifs where this register is used as a condition */
569   struct list_head if_uses;
570} nir_register;
571
572#define nir_foreach_register(reg, reg_list) \
573   foreach_list_typed(nir_register, reg, node, reg_list)
574#define nir_foreach_register_safe(reg, reg_list) \
575   foreach_list_typed_safe(nir_register, reg, node, reg_list)
576
577typedef enum PACKED {
578   nir_instr_type_alu,
579   nir_instr_type_deref,
580   nir_instr_type_call,
581   nir_instr_type_tex,
582   nir_instr_type_intrinsic,
583   nir_instr_type_load_const,
584   nir_instr_type_jump,
585   nir_instr_type_ssa_undef,
586   nir_instr_type_phi,
587   nir_instr_type_parallel_copy,
588} nir_instr_type;
589
590typedef struct nir_instr {
591   struct exec_node node;
592   struct nir_block *block;
593   nir_instr_type type;
594
595   /* A temporary for optimization and analysis passes to use for storing
596    * flags.  For instance, DCE uses this to store the "dead/live" info.
597    */
598   uint8_t pass_flags;
599
600   /** generic instruction index. */
601   unsigned index;
602} nir_instr;
603
604static inline nir_instr *
605nir_instr_next(nir_instr *instr)
606{
607   struct exec_node *next = exec_node_get_next(&instr->node);
608   if (exec_node_is_tail_sentinel(next))
609      return NULL;
610   else
611      return exec_node_data(nir_instr, next, node);
612}
613
614static inline nir_instr *
615nir_instr_prev(nir_instr *instr)
616{
617   struct exec_node *prev = exec_node_get_prev(&instr->node);
618   if (exec_node_is_head_sentinel(prev))
619      return NULL;
620   else
621      return exec_node_data(nir_instr, prev, node);
622}
623
624static inline bool
625nir_instr_is_first(const nir_instr *instr)
626{
627   return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
628}
629
630static inline bool
631nir_instr_is_last(const nir_instr *instr)
632{
633   return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
634}
635
636typedef struct nir_ssa_def {
637   /** for debugging only, can be NULL */
638   const char* name;
639
640   /** generic SSA definition index. */
641   unsigned index;
642
643   /** Index into the live_in and live_out bitfields */
644   unsigned live_index;
645
646   /** Instruction which produces this SSA value. */
647   nir_instr *parent_instr;
648
649   /** set of nir_instrs where this register is used (read from) */
650   struct list_head uses;
651
652   /** set of nir_ifs where this register is used as a condition */
653   struct list_head if_uses;
654
655   uint8_t num_components;
656
657   /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
658   uint8_t bit_size;
659} nir_ssa_def;
660
661struct nir_src;
662
663typedef struct {
664   nir_register *reg;
665   struct nir_src *indirect; /** < NULL for no indirect offset */
666   unsigned base_offset;
667
668   /* TODO use-def chain goes here */
669} nir_reg_src;
670
671typedef struct {
672   nir_instr *parent_instr;
673   struct list_head def_link;
674
675   nir_register *reg;
676   struct nir_src *indirect; /** < NULL for no indirect offset */
677   unsigned base_offset;
678
679   /* TODO def-use chain goes here */
680} nir_reg_dest;
681
682struct nir_if;
683
684typedef struct nir_src {
685   union {
686      /** Instruction that consumes this value as a source. */
687      nir_instr *parent_instr;
688      struct nir_if *parent_if;
689   };
690
691   struct list_head use_link;
692
693   union {
694      nir_reg_src reg;
695      nir_ssa_def *ssa;
696   };
697
698   bool is_ssa;
699} nir_src;
700
701static inline nir_src
702nir_src_init(void)
703{
704   nir_src src = { { NULL } };
705   return src;
706}
707
708#define NIR_SRC_INIT nir_src_init()
709
710#define nir_foreach_use(src, reg_or_ssa_def) \
711   list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
712
713#define nir_foreach_use_safe(src, reg_or_ssa_def) \
714   list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
715
716#define nir_foreach_if_use(src, reg_or_ssa_def) \
717   list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
718
719#define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
720   list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
721
722typedef struct {
723   union {
724      nir_reg_dest reg;
725      nir_ssa_def ssa;
726   };
727
728   bool is_ssa;
729} nir_dest;
730
731static inline nir_dest
732nir_dest_init(void)
733{
734   nir_dest dest = { { { NULL } } };
735   return dest;
736}
737
738#define NIR_DEST_INIT nir_dest_init()
739
740#define nir_foreach_def(dest, reg) \
741   list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
742
743#define nir_foreach_def_safe(dest, reg) \
744   list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
745
746static inline nir_src
747nir_src_for_ssa(nir_ssa_def *def)
748{
749   nir_src src = NIR_SRC_INIT;
750
751   src.is_ssa = true;
752   src.ssa = def;
753
754   return src;
755}
756
757static inline nir_src
758nir_src_for_reg(nir_register *reg)
759{
760   nir_src src = NIR_SRC_INIT;
761
762   src.is_ssa = false;
763   src.reg.reg = reg;
764   src.reg.indirect = NULL;
765   src.reg.base_offset = 0;
766
767   return src;
768}
769
770static inline nir_dest
771nir_dest_for_reg(nir_register *reg)
772{
773   nir_dest dest = NIR_DEST_INIT;
774
775   dest.reg.reg = reg;
776
777   return dest;
778}
779
780static inline unsigned
781nir_src_bit_size(nir_src src)
782{
783   return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
784}
785
786static inline unsigned
787nir_src_num_components(nir_src src)
788{
789   return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
790}
791
792static inline bool
793nir_src_is_const(nir_src src)
794{
795   return src.is_ssa &&
796          src.ssa->parent_instr->type == nir_instr_type_load_const;
797}
798
799int64_t nir_src_as_int(nir_src src);
800uint64_t nir_src_as_uint(nir_src src);
801bool nir_src_as_bool(nir_src src);
802double nir_src_as_float(nir_src src);
803int64_t nir_src_comp_as_int(nir_src src, unsigned component);
804uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
805bool nir_src_comp_as_bool(nir_src src, unsigned component);
806double nir_src_comp_as_float(nir_src src, unsigned component);
807
808static inline unsigned
809nir_dest_bit_size(nir_dest dest)
810{
811   return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
812}
813
814static inline unsigned
815nir_dest_num_components(nir_dest dest)
816{
817   return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
818}
819
820void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
821void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
822
823typedef struct {
824   nir_src src;
825
826   /**
827    * \name input modifiers
828    */
829   /*@{*/
830   /**
831    * For inputs interpreted as floating point, flips the sign bit. For
832    * inputs interpreted as integers, performs the two's complement negation.
833    */
834   bool negate;
835
836   /**
837    * Clears the sign bit for floating point values, and computes the integer
838    * absolute value for integers. Note that the negate modifier acts after
839    * the absolute value modifier, therefore if both are set then all inputs
840    * will become negative.
841    */
842   bool abs;
843   /*@}*/
844
845   /**
846    * For each input component, says which component of the register it is
847    * chosen from. Note that which elements of the swizzle are used and which
848    * are ignored are based on the write mask for most opcodes - for example,
849    * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
850    * a swizzle of {2, x, 1, 0} where x means "don't care."
851    */
852   uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
853} nir_alu_src;
854
855typedef struct {
856   nir_dest dest;
857
858   /**
859    * \name saturate output modifier
860    *
861    * Only valid for opcodes that output floating-point numbers. Clamps the
862    * output to between 0.0 and 1.0 inclusive.
863    */
864
865   bool saturate;
866
867   unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
868} nir_alu_dest;
869
870/** NIR sized and unsized types
871 *
872 * The values in this enum are carefully chosen so that the sized type is
873 * just the unsized type OR the number of bits.
874 */
875typedef enum {
876   nir_type_invalid = 0, /* Not a valid type */
877   nir_type_int =       2,
878   nir_type_uint =      4,
879   nir_type_bool =      6,
880   nir_type_float =     128,
881   nir_type_bool1 =     1  | nir_type_bool,
882   nir_type_bool32 =    32 | nir_type_bool,
883   nir_type_int1 =      1  | nir_type_int,
884   nir_type_int8 =      8  | nir_type_int,
885   nir_type_int16 =     16 | nir_type_int,
886   nir_type_int32 =     32 | nir_type_int,
887   nir_type_int64 =     64 | nir_type_int,
888   nir_type_uint1 =     1  | nir_type_uint,
889   nir_type_uint8 =     8  | nir_type_uint,
890   nir_type_uint16 =    16 | nir_type_uint,
891   nir_type_uint32 =    32 | nir_type_uint,
892   nir_type_uint64 =    64 | nir_type_uint,
893   nir_type_float16 =   16 | nir_type_float,
894   nir_type_float32 =   32 | nir_type_float,
895   nir_type_float64 =   64 | nir_type_float,
896} nir_alu_type;
897
898#define NIR_ALU_TYPE_SIZE_MASK 0x79
899#define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
900
901static inline unsigned
902nir_alu_type_get_type_size(nir_alu_type type)
903{
904   return type & NIR_ALU_TYPE_SIZE_MASK;
905}
906
907static inline unsigned
908nir_alu_type_get_base_type(nir_alu_type type)
909{
910   return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
911}
912
913static inline nir_alu_type
914nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
915{
916   switch (base_type) {
917   case GLSL_TYPE_BOOL:
918      return nir_type_bool1;
919      break;
920   case GLSL_TYPE_UINT:
921      return nir_type_uint32;
922      break;
923   case GLSL_TYPE_INT:
924      return nir_type_int32;
925      break;
926   case GLSL_TYPE_UINT16:
927      return nir_type_uint16;
928      break;
929   case GLSL_TYPE_INT16:
930      return nir_type_int16;
931      break;
932   case GLSL_TYPE_UINT8:
933      return nir_type_uint8;
934   case GLSL_TYPE_INT8:
935      return nir_type_int8;
936   case GLSL_TYPE_UINT64:
937      return nir_type_uint64;
938      break;
939   case GLSL_TYPE_INT64:
940      return nir_type_int64;
941      break;
942   case GLSL_TYPE_FLOAT:
943      return nir_type_float32;
944      break;
945   case GLSL_TYPE_FLOAT16:
946      return nir_type_float16;
947      break;
948   case GLSL_TYPE_DOUBLE:
949      return nir_type_float64;
950      break;
951   default:
952      unreachable("unknown type");
953   }
954}
955
956static inline nir_alu_type
957nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
958{
959   return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
960}
961
962nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
963                              nir_rounding_mode rnd);
964
965static inline nir_op
966nir_op_vec(unsigned components)
967{
968   switch (components) {
969   case  1: return nir_op_imov;
970   case  2: return nir_op_vec2;
971   case  3: return nir_op_vec3;
972   case  4: return nir_op_vec4;
973   default: unreachable("bad component count");
974   }
975}
976
977typedef enum {
978   NIR_OP_IS_COMMUTATIVE = (1 << 0),
979   NIR_OP_IS_ASSOCIATIVE = (1 << 1),
980} nir_op_algebraic_property;
981
982typedef struct {
983   const char *name;
984
985   unsigned num_inputs;
986
987   /**
988    * The number of components in the output
989    *
990    * If non-zero, this is the size of the output and input sizes are
991    * explicitly given; swizzle and writemask are still in effect, but if
992    * the output component is masked out, then the input component may
993    * still be in use.
994    *
995    * If zero, the opcode acts in the standard, per-component manner; the
996    * operation is performed on each component (except the ones that are
997    * masked out) with the input being taken from the input swizzle for
998    * that component.
999    *
1000    * The size of some of the inputs may be given (i.e. non-zero) even
1001    * though output_size is zero; in that case, the inputs with a zero
1002    * size act per-component, while the inputs with non-zero size don't.
1003    */
1004   unsigned output_size;
1005
1006   /**
1007    * The type of vector that the instruction outputs. Note that the
1008    * staurate modifier is only allowed on outputs with the float type.
1009    */
1010
1011   nir_alu_type output_type;
1012
1013   /**
1014    * The number of components in each input
1015    */
1016   unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
1017
1018   /**
1019    * The type of vector that each input takes. Note that negate and
1020    * absolute value are only allowed on inputs with int or float type and
1021    * behave differently on the two.
1022    */
1023   nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1024
1025   nir_op_algebraic_property algebraic_properties;
1026
1027   /* Whether this represents a numeric conversion opcode */
1028   bool is_conversion;
1029} nir_op_info;
1030
1031extern const nir_op_info nir_op_infos[nir_num_opcodes];
1032
1033typedef struct nir_alu_instr {
1034   nir_instr instr;
1035   nir_op op;
1036
1037   /** Indicates that this ALU instruction generates an exact value
1038    *
1039    * This is kind of a mixture of GLSL "precise" and "invariant" and not
1040    * really equivalent to either.  This indicates that the value generated by
1041    * this operation is high-precision and any code transformations that touch
1042    * it must ensure that the resulting value is bit-for-bit identical to the
1043    * original.
1044    */
1045   bool exact;
1046
1047   nir_alu_dest dest;
1048   nir_alu_src src[];
1049} nir_alu_instr;
1050
1051void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1052                      nir_alu_instr *instr);
1053void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1054                       nir_alu_instr *instr);
1055
1056/* is this source channel used? */
1057static inline bool
1058nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1059                           unsigned channel)
1060{
1061   if (nir_op_infos[instr->op].input_sizes[src] > 0)
1062      return channel < nir_op_infos[instr->op].input_sizes[src];
1063
1064   return (instr->dest.write_mask >> channel) & 1;
1065}
1066
1067static inline nir_component_mask_t
1068nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1069{
1070   nir_component_mask_t read_mask = 0;
1071   for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1072      if (!nir_alu_instr_channel_used(instr, src, c))
1073         continue;
1074
1075      read_mask |= (1 << instr->src[src].swizzle[c]);
1076   }
1077   return read_mask;
1078}
1079
1080/*
1081 * For instructions whose destinations are SSA, get the number of channels
1082 * used for a source
1083 */
1084static inline unsigned
1085nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1086{
1087   assert(instr->dest.dest.is_ssa);
1088
1089   if (nir_op_infos[instr->op].input_sizes[src] > 0)
1090      return nir_op_infos[instr->op].input_sizes[src];
1091
1092   return instr->dest.dest.ssa.num_components;
1093}
1094
1095bool nir_const_value_negative_equal(const nir_const_value *c1,
1096                                    const nir_const_value *c2,
1097                                    unsigned components,
1098                                    nir_alu_type base_type,
1099                                    unsigned bits);
1100
1101bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1102                        unsigned src1, unsigned src2);
1103
1104bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1105                                 const nir_alu_instr *alu2,
1106                                 unsigned src1, unsigned src2);
1107
1108typedef enum {
1109   nir_deref_type_var,
1110   nir_deref_type_array,
1111   nir_deref_type_array_wildcard,
1112   nir_deref_type_ptr_as_array,
1113   nir_deref_type_struct,
1114   nir_deref_type_cast,
1115} nir_deref_type;
1116
1117typedef struct {
1118   nir_instr instr;
1119
1120   /** The type of this deref instruction */
1121   nir_deref_type deref_type;
1122
1123   /** The mode of the underlying variable */
1124   nir_variable_mode mode;
1125
1126   /** The dereferenced type of the resulting pointer value */
1127   const struct glsl_type *type;
1128
1129   union {
1130      /** Variable being dereferenced if deref_type is a deref_var */
1131      nir_variable *var;
1132
1133      /** Parent deref if deref_type is not deref_var */
1134      nir_src parent;
1135   };
1136
1137   /** Additional deref parameters */
1138   union {
1139      struct {
1140         nir_src index;
1141      } arr;
1142
1143      struct {
1144         unsigned index;
1145      } strct;
1146
1147      struct {
1148         unsigned ptr_stride;
1149      } cast;
1150   };
1151
1152   /** Destination to store the resulting "pointer" */
1153   nir_dest dest;
1154} nir_deref_instr;
1155
1156static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1157
1158static inline nir_deref_instr *
1159nir_deref_instr_parent(const nir_deref_instr *instr)
1160{
1161   if (instr->deref_type == nir_deref_type_var)
1162      return NULL;
1163   else
1164      return nir_src_as_deref(instr->parent);
1165}
1166
1167static inline nir_variable *
1168nir_deref_instr_get_variable(const nir_deref_instr *instr)
1169{
1170   while (instr->deref_type != nir_deref_type_var) {
1171      if (instr->deref_type == nir_deref_type_cast)
1172         return NULL;
1173
1174      instr = nir_deref_instr_parent(instr);
1175   }
1176
1177   return instr->var;
1178}
1179
1180bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1181
1182bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1183
1184unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1185
1186typedef struct {
1187   nir_instr instr;
1188
1189   struct nir_function *callee;
1190
1191   unsigned num_params;
1192   nir_src params[];
1193} nir_call_instr;
1194
1195#include "nir_intrinsics.h"
1196
1197#define NIR_INTRINSIC_MAX_CONST_INDEX 4
1198
1199/** Represents an intrinsic
1200 *
1201 * An intrinsic is an instruction type for handling things that are
1202 * more-or-less regular operations but don't just consume and produce SSA
1203 * values like ALU operations do.  Intrinsics are not for things that have
1204 * special semantic meaning such as phi nodes and parallel copies.
1205 * Examples of intrinsics include variable load/store operations, system
1206 * value loads, and the like.  Even though texturing more-or-less falls
1207 * under this category, texturing is its own instruction type because
1208 * trying to represent texturing with intrinsics would lead to a
1209 * combinatorial explosion of intrinsic opcodes.
1210 *
1211 * By having a single instruction type for handling a lot of different
1212 * cases, optimization passes can look for intrinsics and, for the most
1213 * part, completely ignore them.  Each intrinsic type also has a few
1214 * possible flags that govern whether or not they can be reordered or
1215 * eliminated.  That way passes like dead code elimination can still work
1216 * on intrisics without understanding the meaning of each.
1217 *
1218 * Each intrinsic has some number of constant indices, some number of
1219 * variables, and some number of sources.  What these sources, variables,
1220 * and indices mean depends on the intrinsic and is documented with the
1221 * intrinsic declaration in nir_intrinsics.h.  Intrinsics and texture
1222 * instructions are the only types of instruction that can operate on
1223 * variables.
1224 */
1225typedef struct {
1226   nir_instr instr;
1227
1228   nir_intrinsic_op intrinsic;
1229
1230   nir_dest dest;
1231
1232   /** number of components if this is a vectorized intrinsic
1233    *
1234    * Similarly to ALU operations, some intrinsics are vectorized.
1235    * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1236    * For vectorized intrinsics, the num_components field specifies the
1237    * number of destination components and the number of source components
1238    * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1239    */
1240   uint8_t num_components;
1241
1242   int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1243
1244   nir_src src[];
1245} nir_intrinsic_instr;
1246
1247static inline nir_variable *
1248nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1249{
1250   return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1251}
1252
1253/**
1254 * \name NIR intrinsics semantic flags
1255 *
1256 * information about what the compiler can do with the intrinsics.
1257 *
1258 * \sa nir_intrinsic_info::flags
1259 */
1260typedef enum {
1261   /**
1262    * whether the intrinsic can be safely eliminated if none of its output
1263    * value is not being used.
1264    */
1265   NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1266
1267   /**
1268    * Whether the intrinsic can be reordered with respect to any other
1269    * intrinsic, i.e. whether the only reordering dependencies of the
1270    * intrinsic are due to the register reads/writes.
1271    */
1272   NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1273} nir_intrinsic_semantic_flag;
1274
1275/**
1276 * \name NIR intrinsics const-index flag
1277 *
1278 * Indicates the usage of a const_index slot.
1279 *
1280 * \sa nir_intrinsic_info::index_map
1281 */
1282typedef enum {
1283   /**
1284    * Generally instructions that take a offset src argument, can encode
1285    * a constant 'base' value which is added to the offset.
1286    */
1287   NIR_INTRINSIC_BASE = 1,
1288
1289   /**
1290    * For store instructions, a writemask for the store.
1291    */
1292   NIR_INTRINSIC_WRMASK = 2,
1293
1294   /**
1295    * The stream-id for GS emit_vertex/end_primitive intrinsics.
1296    */
1297   NIR_INTRINSIC_STREAM_ID = 3,
1298
1299   /**
1300    * The clip-plane id for load_user_clip_plane intrinsic.
1301    */
1302   NIR_INTRINSIC_UCP_ID = 4,
1303
1304   /**
1305    * The amount of data, starting from BASE, that this instruction may
1306    * access.  This is used to provide bounds if the offset is not constant.
1307    */
1308   NIR_INTRINSIC_RANGE = 5,
1309
1310   /**
1311    * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1312    */
1313   NIR_INTRINSIC_DESC_SET = 6,
1314
1315   /**
1316    * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1317    */
1318   NIR_INTRINSIC_BINDING = 7,
1319
1320   /**
1321    * Component offset.
1322    */
1323   NIR_INTRINSIC_COMPONENT = 8,
1324
1325   /**
1326    * Interpolation mode (only meaningful for FS inputs).
1327    */
1328   NIR_INTRINSIC_INTERP_MODE = 9,
1329
1330   /**
1331    * A binary nir_op to use when performing a reduction or scan operation
1332    */
1333   NIR_INTRINSIC_REDUCTION_OP = 10,
1334
1335   /**
1336    * Cluster size for reduction operations
1337    */
1338   NIR_INTRINSIC_CLUSTER_SIZE = 11,
1339
1340   /**
1341    * Parameter index for a load_param intrinsic
1342    */
1343   NIR_INTRINSIC_PARAM_IDX = 12,
1344
1345   /**
1346    * Image dimensionality for image intrinsics
1347    *
1348    * One of GLSL_SAMPLER_DIM_*
1349    */
1350   NIR_INTRINSIC_IMAGE_DIM = 13,
1351
1352   /**
1353    * Non-zero if we are accessing an array image
1354    */
1355   NIR_INTRINSIC_IMAGE_ARRAY = 14,
1356
1357   /**
1358    * Image format for image intrinsics
1359    */
1360   NIR_INTRINSIC_FORMAT = 15,
1361
1362   /**
1363    * Access qualifiers for image and memory access intrinsics
1364    */
1365   NIR_INTRINSIC_ACCESS = 16,
1366
1367   /**
1368    * Alignment for offsets and addresses
1369    *
1370    * These two parameters, specify an alignment in terms of a multiplier and
1371    * an offset.  The offset or address parameter X of the intrinsic is
1372    * guaranteed to satisfy the following:
1373    *
1374    *                (X - align_offset) % align_mul == 0
1375    */
1376   NIR_INTRINSIC_ALIGN_MUL = 17,
1377   NIR_INTRINSIC_ALIGN_OFFSET = 18,
1378
1379   /**
1380    * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1381    */
1382   NIR_INTRINSIC_DESC_TYPE = 19,
1383
1384   /* Separate source/dest access flags for copies */
1385   NIR_INTRINSIC_SRC_ACCESS,
1386   NIR_INTRINSIC_DST_ACCESS,
1387
1388   NIR_INTRINSIC_NUM_INDEX_FLAGS,
1389
1390} nir_intrinsic_index_flag;
1391
1392#define NIR_INTRINSIC_MAX_INPUTS 5
1393
1394typedef struct {
1395   const char *name;
1396
1397   unsigned num_srcs; /** < number of register/SSA inputs */
1398
1399   /** number of components of each input register
1400    *
1401    * If this value is 0, the number of components is given by the
1402    * num_components field of nir_intrinsic_instr.  If this value is -1, the
1403    * intrinsic consumes however many components are provided and it is not
1404    * validated at all.
1405    */
1406   int src_components[NIR_INTRINSIC_MAX_INPUTS];
1407
1408   bool has_dest;
1409
1410   /** number of components of the output register
1411    *
1412    * If this value is 0, the number of components is given by the
1413    * num_components field of nir_intrinsic_instr.
1414    */
1415   unsigned dest_components;
1416
1417   /** bitfield of legal bit sizes */
1418   unsigned dest_bit_sizes;
1419
1420   /** the number of constant indices used by the intrinsic */
1421   unsigned num_indices;
1422
1423   /** indicates the usage of intr->const_index[n] */
1424   unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1425
1426   /** semantic flags for calls to this intrinsic */
1427   nir_intrinsic_semantic_flag flags;
1428} nir_intrinsic_info;
1429
1430extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1431
1432static inline unsigned
1433nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1434{
1435   const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1436   assert(srcn < info->num_srcs);
1437   if (info->src_components[srcn] > 0)
1438      return info->src_components[srcn];
1439   else if (info->src_components[srcn] == 0)
1440      return intr->num_components;
1441   else
1442      return nir_src_num_components(intr->src[srcn]);
1443}
1444
1445static inline unsigned
1446nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1447{
1448   const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1449   if (!info->has_dest)
1450      return 0;
1451   else if (info->dest_components)
1452      return info->dest_components;
1453   else
1454      return intr->num_components;
1455}
1456
1457#define INTRINSIC_IDX_ACCESSORS(name, flag, type)                             \
1458static inline type                                                            \
1459nir_intrinsic_##name(const nir_intrinsic_instr *instr)                        \
1460{                                                                             \
1461   const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
1462   assert(info->index_map[NIR_INTRINSIC_##flag] > 0);                         \
1463   return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1464}                                                                             \
1465static inline void                                                            \
1466nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val)                \
1467{                                                                             \
1468   const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
1469   assert(info->index_map[NIR_INTRINSIC_##flag] > 0);                         \
1470   instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val;       \
1471}
1472
1473INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1474INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1475INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1476INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1477INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1478INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1479INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1480INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1481INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1482INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1483INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1484INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1485INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1486INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1487INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1488INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1489INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1490INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1491INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1492INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1493INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1494
1495static inline void
1496nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1497                        unsigned align_mul, unsigned align_offset)
1498{
1499   assert(util_is_power_of_two_nonzero(align_mul));
1500   assert(align_offset < align_mul);
1501   nir_intrinsic_set_align_mul(intrin, align_mul);
1502   nir_intrinsic_set_align_offset(intrin, align_offset);
1503}
1504
1505/** Returns a simple alignment for a load/store intrinsic offset
1506 *
1507 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1508 * and ALIGN_OFFSET parameters, this helper takes both into account and
1509 * provides a single simple alignment parameter.  The offset X is guaranteed
1510 * to satisfy X % align == 0.
1511 */
1512static inline unsigned
1513nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1514{
1515   const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1516   const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1517   assert(align_offset < align_mul);
1518   return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1519}
1520
1521/* Converts a image_deref_* intrinsic into a image_* one */
1522void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1523                                 nir_ssa_def *handle, bool bindless);
1524
1525/* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1526static inline bool
1527nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1528{
1529   const nir_intrinsic_info *info =
1530      &nir_intrinsic_infos[instr->intrinsic];
1531   return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1532          (info->flags & NIR_INTRINSIC_CAN_REORDER);
1533}
1534
1535/**
1536 * \group texture information
1537 *
1538 * This gives semantic information about textures which is useful to the
1539 * frontend, the backend, and lowering passes, but not the optimizer.
1540 */
1541
1542typedef enum {
1543   nir_tex_src_coord,
1544   nir_tex_src_projector,
1545   nir_tex_src_comparator, /* shadow comparator */
1546   nir_tex_src_offset,
1547   nir_tex_src_bias,
1548   nir_tex_src_lod,
1549   nir_tex_src_min_lod,
1550   nir_tex_src_ms_index, /* MSAA sample index */
1551   nir_tex_src_ms_mcs, /* MSAA compression value */
1552   nir_tex_src_ddx,
1553   nir_tex_src_ddy,
1554   nir_tex_src_texture_deref, /* < deref pointing to the texture */
1555   nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1556   nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1557   nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1558   nir_tex_src_texture_handle, /* < bindless texture handle */
1559   nir_tex_src_sampler_handle, /* < bindless sampler handle */
1560   nir_tex_src_plane,          /* < selects plane for planar textures */
1561   nir_num_tex_src_types
1562} nir_tex_src_type;
1563
1564typedef struct {
1565   nir_src src;
1566   nir_tex_src_type src_type;
1567} nir_tex_src;
1568
1569typedef enum {
1570   nir_texop_tex,                /**< Regular texture look-up */
1571   nir_texop_txb,                /**< Texture look-up with LOD bias */
1572   nir_texop_txl,                /**< Texture look-up with explicit LOD */
1573   nir_texop_txd,                /**< Texture look-up with partial derivatives */
1574   nir_texop_txf,                /**< Texel fetch with explicit LOD */
1575   nir_texop_txf_ms,             /**< Multisample texture fetch */
1576   nir_texop_txf_ms_fb,          /**< Multisample texture fetch from framebuffer */
1577   nir_texop_txf_ms_mcs,         /**< Multisample compression value fetch */
1578   nir_texop_txs,                /**< Texture size */
1579   nir_texop_lod,                /**< Texture lod query */
1580   nir_texop_tg4,                /**< Texture gather */
1581   nir_texop_query_levels,       /**< Texture levels query */
1582   nir_texop_texture_samples,    /**< Texture samples query */
1583   nir_texop_samples_identical,  /**< Query whether all samples are definitely
1584                                  * identical.
1585                                  */
1586} nir_texop;
1587
1588typedef struct {
1589   nir_instr instr;
1590
1591   enum glsl_sampler_dim sampler_dim;
1592   nir_alu_type dest_type;
1593
1594   nir_texop op;
1595   nir_dest dest;
1596   nir_tex_src *src;
1597   unsigned num_srcs, coord_components;
1598   bool is_array, is_shadow;
1599
1600   /**
1601    * If is_shadow is true, whether this is the old-style shadow that outputs 4
1602    * components or the new-style shadow that outputs 1 component.
1603    */
1604   bool is_new_style_shadow;
1605
1606   /* gather component selector */
1607   unsigned component : 2;
1608
1609   /* gather offsets */
1610   int8_t tg4_offsets[4][2];
1611
1612   /* True if the texture index or handle is not dynamically uniform */
1613   bool texture_non_uniform;
1614
1615   /* True if the sampler index or handle is not dynamically uniform */
1616   bool sampler_non_uniform;
1617
1618   /** The texture index
1619    *
1620    * If this texture instruction has a nir_tex_src_texture_offset source,
1621    * then the texture index is given by texture_index + texture_offset.
1622    */
1623   unsigned texture_index;
1624
1625   /** The size of the texture array or 0 if it's not an array */
1626   unsigned texture_array_size;
1627
1628   /** The sampler index
1629    *
1630    * The following operations do not require a sampler and, as such, this
1631    * field should be ignored:
1632    *    - nir_texop_txf
1633    *    - nir_texop_txf_ms
1634    *    - nir_texop_txs
1635    *    - nir_texop_lod
1636    *    - nir_texop_query_levels
1637    *    - nir_texop_texture_samples
1638    *    - nir_texop_samples_identical
1639    *
1640    * If this texture instruction has a nir_tex_src_sampler_offset source,
1641    * then the sampler index is given by sampler_index + sampler_offset.
1642    */
1643   unsigned sampler_index;
1644} nir_tex_instr;
1645
1646static inline unsigned
1647nir_tex_instr_dest_size(const nir_tex_instr *instr)
1648{
1649   switch (instr->op) {
1650   case nir_texop_txs: {
1651      unsigned ret;
1652      switch (instr->sampler_dim) {
1653         case GLSL_SAMPLER_DIM_1D:
1654         case GLSL_SAMPLER_DIM_BUF:
1655            ret = 1;
1656            break;
1657         case GLSL_SAMPLER_DIM_2D:
1658         case GLSL_SAMPLER_DIM_CUBE:
1659         case GLSL_SAMPLER_DIM_MS:
1660         case GLSL_SAMPLER_DIM_RECT:
1661         case GLSL_SAMPLER_DIM_EXTERNAL:
1662         case GLSL_SAMPLER_DIM_SUBPASS:
1663            ret = 2;
1664            break;
1665         case GLSL_SAMPLER_DIM_3D:
1666            ret = 3;
1667            break;
1668         default:
1669            unreachable("not reached");
1670      }
1671      if (instr->is_array)
1672         ret++;
1673      return ret;
1674   }
1675
1676   case nir_texop_lod:
1677      return 2;
1678
1679   case nir_texop_texture_samples:
1680   case nir_texop_query_levels:
1681   case nir_texop_samples_identical:
1682      return 1;
1683
1684   default:
1685      if (instr->is_shadow && instr->is_new_style_shadow)
1686         return 1;
1687
1688      return 4;
1689   }
1690}
1691
1692/* Returns true if this texture operation queries something about the texture
1693 * rather than actually sampling it.
1694 */
1695static inline bool
1696nir_tex_instr_is_query(const nir_tex_instr *instr)
1697{
1698   switch (instr->op) {
1699   case nir_texop_txs:
1700   case nir_texop_lod:
1701   case nir_texop_texture_samples:
1702   case nir_texop_query_levels:
1703   case nir_texop_txf_ms_mcs:
1704      return true;
1705   case nir_texop_tex:
1706   case nir_texop_txb:
1707   case nir_texop_txl:
1708   case nir_texop_txd:
1709   case nir_texop_txf:
1710   case nir_texop_txf_ms:
1711   case nir_texop_txf_ms_fb:
1712   case nir_texop_tg4:
1713      return false;
1714   default:
1715      unreachable("Invalid texture opcode");
1716   }
1717}
1718
1719static inline bool
1720nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1721{
1722   switch (instr->op) {
1723   case nir_op_flt:
1724   case nir_op_fge:
1725   case nir_op_feq:
1726   case nir_op_fne:
1727   case nir_op_ilt:
1728   case nir_op_ult:
1729   case nir_op_ige:
1730   case nir_op_uge:
1731   case nir_op_ieq:
1732   case nir_op_ine:
1733   case nir_op_i2b1:
1734   case nir_op_f2b1:
1735   case nir_op_inot:
1736   case nir_op_fnot:
1737      return true;
1738   default:
1739      return false;
1740   }
1741}
1742
1743static inline nir_alu_type
1744nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1745{
1746   switch (instr->src[src].src_type) {
1747   case nir_tex_src_coord:
1748      switch (instr->op) {
1749      case nir_texop_txf:
1750      case nir_texop_txf_ms:
1751      case nir_texop_txf_ms_fb:
1752      case nir_texop_txf_ms_mcs:
1753      case nir_texop_samples_identical:
1754         return nir_type_int;
1755
1756      default:
1757         return nir_type_float;
1758      }
1759
1760   case nir_tex_src_lod:
1761      switch (instr->op) {
1762      case nir_texop_txs:
1763      case nir_texop_txf:
1764         return nir_type_int;
1765
1766      default:
1767         return nir_type_float;
1768      }
1769
1770   case nir_tex_src_projector:
1771   case nir_tex_src_comparator:
1772   case nir_tex_src_bias:
1773   case nir_tex_src_ddx:
1774   case nir_tex_src_ddy:
1775      return nir_type_float;
1776
1777   case nir_tex_src_offset:
1778   case nir_tex_src_ms_index:
1779   case nir_tex_src_texture_offset:
1780   case nir_tex_src_sampler_offset:
1781      return nir_type_int;
1782
1783   default:
1784      unreachable("Invalid texture source type");
1785   }
1786}
1787
1788static inline unsigned
1789nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1790{
1791   if (instr->src[src].src_type == nir_tex_src_coord)
1792      return instr->coord_components;
1793
1794   /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1795   if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1796      return 4;
1797
1798   if (instr->src[src].src_type == nir_tex_src_ddx ||
1799       instr->src[src].src_type == nir_tex_src_ddy) {
1800      if (instr->is_array)
1801         return instr->coord_components - 1;
1802      else
1803         return instr->coord_components;
1804   }
1805
1806   /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1807    * the offset, since a cube maps to a single face.
1808    */
1809   if (instr->src[src].src_type == nir_tex_src_offset) {
1810      if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1811         return 2;
1812      else if (instr->is_array)
1813         return instr->coord_components - 1;
1814      else
1815         return instr->coord_components;
1816   }
1817
1818   return 1;
1819}
1820
1821static inline int
1822nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1823{
1824   for (unsigned i = 0; i < instr->num_srcs; i++)
1825      if (instr->src[i].src_type == type)
1826         return (int) i;
1827
1828   return -1;
1829}
1830
1831void nir_tex_instr_add_src(nir_tex_instr *tex,
1832                           nir_tex_src_type src_type,
1833                           nir_src src);
1834
1835void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1836
1837bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1838
1839typedef struct {
1840   nir_instr instr;
1841
1842   nir_ssa_def def;
1843
1844   nir_const_value value[];
1845} nir_load_const_instr;
1846
1847#define nir_const_load_to_arr(arr, l, m) \
1848{ \
1849   nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1850} while (false);
1851
1852typedef enum {
1853   nir_jump_return,
1854   nir_jump_break,
1855   nir_jump_continue,
1856} nir_jump_type;
1857
1858typedef struct {
1859   nir_instr instr;
1860   nir_jump_type type;
1861} nir_jump_instr;
1862
1863/* creates a new SSA variable in an undefined state */
1864
1865typedef struct {
1866   nir_instr instr;
1867   nir_ssa_def def;
1868} nir_ssa_undef_instr;
1869
1870typedef struct {
1871   struct exec_node node;
1872
1873   /* The predecessor block corresponding to this source */
1874   struct nir_block *pred;
1875
1876   nir_src src;
1877} nir_phi_src;
1878
1879#define nir_foreach_phi_src(phi_src, phi) \
1880   foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1881#define nir_foreach_phi_src_safe(phi_src, phi) \
1882   foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1883
1884typedef struct {
1885   nir_instr instr;
1886
1887   struct exec_list srcs; /** < list of nir_phi_src */
1888
1889   nir_dest dest;
1890} nir_phi_instr;
1891
1892typedef struct {
1893   struct exec_node node;
1894   nir_src src;
1895   nir_dest dest;
1896} nir_parallel_copy_entry;
1897
1898#define nir_foreach_parallel_copy_entry(entry, pcopy) \
1899   foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1900
1901typedef struct {
1902   nir_instr instr;
1903
1904   /* A list of nir_parallel_copy_entrys.  The sources of all of the
1905    * entries are copied to the corresponding destinations "in parallel".
1906    * In other words, if we have two entries: a -> b and b -> a, the values
1907    * get swapped.
1908    */
1909   struct exec_list entries;
1910} nir_parallel_copy_instr;
1911
1912NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1913                type, nir_instr_type_alu)
1914NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1915                type, nir_instr_type_deref)
1916NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1917                type, nir_instr_type_call)
1918NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1919                type, nir_instr_type_jump)
1920NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1921                type, nir_instr_type_tex)
1922NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1923                type, nir_instr_type_intrinsic)
1924NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1925                type, nir_instr_type_load_const)
1926NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1927                type, nir_instr_type_ssa_undef)
1928NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1929                type, nir_instr_type_phi)
1930NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1931                nir_parallel_copy_instr, instr,
1932                type, nir_instr_type_parallel_copy)
1933
1934typedef struct {
1935   nir_ssa_def *def;
1936   unsigned comp;
1937} nir_ssa_scalar;
1938
1939static inline bool
1940nir_ssa_scalar_is_const(nir_ssa_scalar s)
1941{
1942   return s.def->parent_instr->type == nir_instr_type_load_const;
1943}
1944
1945static inline nir_const_value
1946nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
1947{
1948   assert(s.comp < s.def->num_components);
1949   nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
1950   return load->value[s.comp];
1951}
1952
1953#define NIR_DEFINE_SCALAR_AS_CONST(type, suffix)                     \
1954static inline type                                                   \
1955nir_ssa_scalar_as_##suffix(nir_ssa_scalar s)                         \
1956{                                                                    \
1957   return nir_const_value_as_##suffix(                               \
1958      nir_ssa_scalar_as_const_value(s), s.def->bit_size);            \
1959}
1960
1961NIR_DEFINE_SCALAR_AS_CONST(int64_t,    int)
1962NIR_DEFINE_SCALAR_AS_CONST(uint64_t,   uint)
1963NIR_DEFINE_SCALAR_AS_CONST(bool,       bool)
1964NIR_DEFINE_SCALAR_AS_CONST(double,     float)
1965
1966#undef NIR_DEFINE_SCALAR_AS_CONST
1967
1968static inline bool
1969nir_ssa_scalar_is_alu(nir_ssa_scalar s)
1970{
1971   return s.def->parent_instr->type == nir_instr_type_alu;
1972}
1973
1974static inline nir_op
1975nir_ssa_scalar_alu_op(nir_ssa_scalar s)
1976{
1977   return nir_instr_as_alu(s.def->parent_instr)->op;
1978}
1979
1980static inline nir_ssa_scalar
1981nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
1982{
1983   nir_ssa_scalar out = { NULL, 0 };
1984
1985   nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
1986   assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
1987
1988   /* Our component must be written */
1989   assert(s.comp < s.def->num_components);
1990   assert(alu->dest.write_mask & (1u << s.comp));
1991
1992   assert(alu->src[alu_src_idx].src.is_ssa);
1993   out.def = alu->src[alu_src_idx].src.ssa;
1994
1995   if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
1996      /* The ALU src is unsized so the source component follows the
1997       * destination component.
1998       */
1999      out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2000   } else {
2001      /* This is a sized source so all source components work together to
2002       * produce all the destination components.  Since we need to return a
2003       * scalar, this only works if the source is a scalar.
2004       */
2005      assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2006      out.comp = alu->src[alu_src_idx].swizzle[0];
2007   }
2008   assert(out.comp < out.def->num_components);
2009
2010   return out;
2011}
2012
2013/*
2014 * Control flow
2015 *
2016 * Control flow consists of a tree of control flow nodes, which include
2017 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2018 * instructions that always run start-to-finish. Each basic block also keeps
2019 * track of its successors (blocks which may run immediately after the current
2020 * block) and predecessors (blocks which could have run immediately before the
2021 * current block). Each function also has a start block and an end block which
2022 * all return statements point to (which is always empty). Together, all the
2023 * blocks with their predecessors and successors make up the control flow
2024 * graph (CFG) of the function. There are helpers that modify the tree of
2025 * control flow nodes while modifying the CFG appropriately; these should be
2026 * used instead of modifying the tree directly.
2027 */
2028
2029typedef enum {
2030   nir_cf_node_block,
2031   nir_cf_node_if,
2032   nir_cf_node_loop,
2033   nir_cf_node_function
2034} nir_cf_node_type;
2035
2036typedef struct nir_cf_node {
2037   struct exec_node node;
2038   nir_cf_node_type type;
2039   struct nir_cf_node *parent;
2040} nir_cf_node;
2041
2042typedef struct nir_block {
2043   nir_cf_node cf_node;
2044
2045   struct exec_list instr_list; /** < list of nir_instr */
2046
2047   /** generic block index; generated by nir_index_blocks */
2048   unsigned index;
2049
2050   /*
2051    * Each block can only have up to 2 successors, so we put them in a simple
2052    * array - no need for anything more complicated.
2053    */
2054   struct nir_block *successors[2];
2055
2056   /* Set of nir_block predecessors in the CFG */
2057   struct set *predecessors;
2058
2059   /*
2060    * this node's immediate dominator in the dominance tree - set to NULL for
2061    * the start block.
2062    */
2063   struct nir_block *imm_dom;
2064
2065   /* This node's children in the dominance tree */
2066   unsigned num_dom_children;
2067   struct nir_block **dom_children;
2068
2069   /* Set of nir_blocks on the dominance frontier of this block */
2070   struct set *dom_frontier;
2071
2072   /*
2073    * These two indices have the property that dom_{pre,post}_index for each
2074    * child of this block in the dominance tree will always be between
2075    * dom_pre_index and dom_post_index for this block, which makes testing if
2076    * a given block is dominated by another block an O(1) operation.
2077    */
2078   unsigned dom_pre_index, dom_post_index;
2079
2080   /* live in and out for this block; used for liveness analysis */
2081   BITSET_WORD *live_in;
2082   BITSET_WORD *live_out;
2083} nir_block;
2084
2085static inline nir_instr *
2086nir_block_first_instr(nir_block *block)
2087{
2088   struct exec_node *head = exec_list_get_head(&block->instr_list);
2089   return exec_node_data(nir_instr, head, node);
2090}
2091
2092static inline nir_instr *
2093nir_block_last_instr(nir_block *block)
2094{
2095   struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2096   return exec_node_data(nir_instr, tail, node);
2097}
2098
2099static inline bool
2100nir_block_ends_in_jump(nir_block *block)
2101{
2102   return !exec_list_is_empty(&block->instr_list) &&
2103          nir_block_last_instr(block)->type == nir_instr_type_jump;
2104}
2105
2106#define nir_foreach_instr(instr, block) \
2107   foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2108#define nir_foreach_instr_reverse(instr, block) \
2109   foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2110#define nir_foreach_instr_safe(instr, block) \
2111   foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2112#define nir_foreach_instr_reverse_safe(instr, block) \
2113   foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2114
2115typedef enum {
2116   nir_selection_control_none = 0x0,
2117   nir_selection_control_flatten = 0x1,
2118   nir_selection_control_dont_flatten = 0x2,
2119} nir_selection_control;
2120
2121typedef struct nir_if {
2122   nir_cf_node cf_node;
2123   nir_src condition;
2124   nir_selection_control control;
2125
2126   struct exec_list then_list; /** < list of nir_cf_node */
2127   struct exec_list else_list; /** < list of nir_cf_node */
2128} nir_if;
2129
2130typedef struct {
2131   nir_if *nif;
2132
2133   /** Instruction that generates nif::condition. */
2134   nir_instr *conditional_instr;
2135
2136   /** Block within ::nif that has the break instruction. */
2137   nir_block *break_block;
2138
2139   /** Last block for the then- or else-path that does not contain the break. */
2140   nir_block *continue_from_block;
2141
2142   /** True when ::break_block is in the else-path of ::nif. */
2143   bool continue_from_then;
2144   bool induction_rhs;
2145
2146   /* This is true if the terminators exact trip count is unknown. For
2147    * example:
2148    *
2149    *    for (int i = 0; i < imin(x, 4); i++)
2150    *       ...
2151    *
2152    * Here loop analysis would have set a max_trip_count of 4 however we dont
2153    * know for sure that this is the exact trip count.
2154    */
2155   bool exact_trip_count_unknown;
2156
2157   struct list_head loop_terminator_link;
2158} nir_loop_terminator;
2159
2160typedef struct {
2161   /* Estimated cost (in number of instructions) of the loop */
2162   unsigned instr_cost;
2163
2164   /* Guessed trip count based on array indexing */
2165   unsigned guessed_trip_count;
2166
2167   /* Maximum number of times the loop is run (if known) */
2168   unsigned max_trip_count;
2169
2170   /* Do we know the exact number of times the loop will be run */
2171   bool exact_trip_count_known;
2172
2173   /* Unroll the loop regardless of its size */
2174   bool force_unroll;
2175
2176   /* Does the loop contain complex loop terminators, continues or other
2177    * complex behaviours? If this is true we can't rely on
2178    * loop_terminator_list to be complete or accurate.
2179    */
2180   bool complex_loop;
2181
2182   nir_loop_terminator *limiting_terminator;
2183
2184   /* A list of loop_terminators terminating this loop. */
2185   struct list_head loop_terminator_list;
2186} nir_loop_info;
2187
2188typedef enum {
2189   nir_loop_control_none = 0x0,
2190   nir_loop_control_unroll = 0x1,
2191   nir_loop_control_dont_unroll = 0x2,
2192} nir_loop_control;
2193
2194typedef struct {
2195   nir_cf_node cf_node;
2196
2197   struct exec_list body; /** < list of nir_cf_node */
2198
2199   nir_loop_info *info;
2200   nir_loop_control control;
2201   bool partially_unrolled;
2202} nir_loop;
2203
2204/**
2205 * Various bits of metadata that can may be created or required by
2206 * optimization and analysis passes
2207 */
2208typedef enum {
2209   nir_metadata_none = 0x0,
2210   nir_metadata_block_index = 0x1,
2211   nir_metadata_dominance = 0x2,
2212   nir_metadata_live_ssa_defs = 0x4,
2213   nir_metadata_not_properly_reset = 0x8,
2214   nir_metadata_loop_analysis = 0x10,
2215} nir_metadata;
2216
2217typedef struct {
2218   nir_cf_node cf_node;
2219
2220   /** pointer to the function of which this is an implementation */
2221   struct nir_function *function;
2222
2223   struct exec_list body; /** < list of nir_cf_node */
2224
2225   nir_block *end_block;
2226
2227   /** list for all local variables in the function */
2228   struct exec_list locals;
2229
2230   /** list of local registers in the function */
2231   struct exec_list registers;
2232
2233   /** next available local register index */
2234   unsigned reg_alloc;
2235
2236   /** next available SSA value index */
2237   unsigned ssa_alloc;
2238
2239   /* total number of basic blocks, only valid when block_index_dirty = false */
2240   unsigned num_blocks;
2241
2242   nir_metadata valid_metadata;
2243} nir_function_impl;
2244
2245ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2246nir_start_block(nir_function_impl *impl)
2247{
2248   return (nir_block *) impl->body.head_sentinel.next;
2249}
2250
2251ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2252nir_impl_last_block(nir_function_impl *impl)
2253{
2254   return (nir_block *) impl->body.tail_sentinel.prev;
2255}
2256
2257static inline nir_cf_node *
2258nir_cf_node_next(nir_cf_node *node)
2259{
2260   struct exec_node *next = exec_node_get_next(&node->node);
2261   if (exec_node_is_tail_sentinel(next))
2262      return NULL;
2263   else
2264      return exec_node_data(nir_cf_node, next, node);
2265}
2266
2267static inline nir_cf_node *
2268nir_cf_node_prev(nir_cf_node *node)
2269{
2270   struct exec_node *prev = exec_node_get_prev(&node->node);
2271   if (exec_node_is_head_sentinel(prev))
2272      return NULL;
2273   else
2274      return exec_node_data(nir_cf_node, prev, node);
2275}
2276
2277static inline bool
2278nir_cf_node_is_first(const nir_cf_node *node)
2279{
2280   return exec_node_is_head_sentinel(node->node.prev);
2281}
2282
2283static inline bool
2284nir_cf_node_is_last(const nir_cf_node *node)
2285{
2286   return exec_node_is_tail_sentinel(node->node.next);
2287}
2288
2289NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2290                type, nir_cf_node_block)
2291NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2292                type, nir_cf_node_if)
2293NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2294                type, nir_cf_node_loop)
2295NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2296                nir_function_impl, cf_node, type, nir_cf_node_function)
2297
2298static inline nir_block *
2299nir_if_first_then_block(nir_if *if_stmt)
2300{
2301   struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2302   return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2303}
2304
2305static inline nir_block *
2306nir_if_last_then_block(nir_if *if_stmt)
2307{
2308   struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2309   return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2310}
2311
2312static inline nir_block *
2313nir_if_first_else_block(nir_if *if_stmt)
2314{
2315   struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2316   return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2317}
2318
2319static inline nir_block *
2320nir_if_last_else_block(nir_if *if_stmt)
2321{
2322   struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2323   return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2324}
2325
2326static inline nir_block *
2327nir_loop_first_block(nir_loop *loop)
2328{
2329   struct exec_node *head = exec_list_get_head(&loop->body);
2330   return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2331}
2332
2333static inline nir_block *
2334nir_loop_last_block(nir_loop *loop)
2335{
2336   struct exec_node *tail = exec_list_get_tail(&loop->body);
2337   return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2338}
2339
2340/**
2341 * Return true if this list of cf_nodes contains a single empty block.
2342 */
2343static inline bool
2344nir_cf_list_is_empty_block(struct exec_list *cf_list)
2345{
2346   if (exec_list_is_singular(cf_list)) {
2347      struct exec_node *head = exec_list_get_head(cf_list);
2348      nir_block *block =
2349         nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2350      return exec_list_is_empty(&block->instr_list);
2351   }
2352   return false;
2353}
2354
2355typedef struct {
2356   uint8_t num_components;
2357   uint8_t bit_size;
2358} nir_parameter;
2359
2360typedef struct nir_function {
2361   struct exec_node node;
2362
2363   const char *name;
2364   struct nir_shader *shader;
2365
2366   unsigned num_params;
2367   nir_parameter *params;
2368
2369   /** The implementation of this function.
2370    *
2371    * If the function is only declared and not implemented, this is NULL.
2372    */
2373   nir_function_impl *impl;
2374
2375   bool is_entrypoint;
2376} nir_function;
2377
2378typedef enum {
2379   nir_lower_imul64 = (1 << 0),
2380   nir_lower_isign64 = (1 << 1),
2381   /** Lower all int64 modulus and division opcodes */
2382   nir_lower_divmod64 = (1 << 2),
2383   /** Lower all 64-bit umul_high and imul_high opcodes */
2384   nir_lower_imul_high64 = (1 << 3),
2385   nir_lower_mov64 = (1 << 4),
2386   nir_lower_icmp64 = (1 << 5),
2387   nir_lower_iadd64 = (1 << 6),
2388   nir_lower_iabs64 = (1 << 7),
2389   nir_lower_ineg64 = (1 << 8),
2390   nir_lower_logic64 = (1 << 9),
2391   nir_lower_minmax64 = (1 << 10),
2392   nir_lower_shift64 = (1 << 11),
2393   nir_lower_imul_2x32_64 = (1 << 12),
2394   nir_lower_extract64 = (1 << 13),
2395} nir_lower_int64_options;
2396
2397typedef enum {
2398   nir_lower_drcp = (1 << 0),
2399   nir_lower_dsqrt = (1 << 1),
2400   nir_lower_drsq = (1 << 2),
2401   nir_lower_dtrunc = (1 << 3),
2402   nir_lower_dfloor = (1 << 4),
2403   nir_lower_dceil = (1 << 5),
2404   nir_lower_dfract = (1 << 6),
2405   nir_lower_dround_even = (1 << 7),
2406   nir_lower_dmod = (1 << 8),
2407   nir_lower_fp64_full_software = (1 << 9),
2408} nir_lower_doubles_options;
2409
2410typedef struct nir_shader_compiler_options {
2411   bool lower_fdiv;
2412   bool lower_ffma;
2413   bool fuse_ffma;
2414   bool lower_flrp16;
2415   bool lower_flrp32;
2416   /** Lowers flrp when it does not support doubles */
2417   bool lower_flrp64;
2418   bool lower_fpow;
2419   bool lower_fsat;
2420   bool lower_fsqrt;
2421   bool lower_fmod16;
2422   bool lower_fmod32;
2423   bool lower_fmod64;
2424   /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2425   bool lower_bitfield_extract;
2426   /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2427   bool lower_bitfield_extract_to_shifts;
2428   /** Lowers bitfield_insert to bfi/bfm */
2429   bool lower_bitfield_insert;
2430   /** Lowers bitfield_insert to bfm, compares, and shifts. */
2431   bool lower_bitfield_insert_to_shifts;
2432   /** Lowers bitfield_reverse to shifts. */
2433   bool lower_bitfield_reverse;
2434   /** Lowers bit_count to shifts. */
2435   bool lower_bit_count;
2436   /** Lowers bfm to shifts and subtracts. */
2437   bool lower_bfm;
2438   /** Lowers ifind_msb to compare and ufind_msb */
2439   bool lower_ifind_msb;
2440   /** Lowers find_lsb to ufind_msb and logic ops */
2441   bool lower_find_lsb;
2442   bool lower_uadd_carry;
2443   bool lower_usub_borrow;
2444   /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2445   bool lower_mul_high;
2446   /** lowers fneg and ineg to fsub and isub. */
2447   bool lower_negate;
2448   /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2449   bool lower_sub;
2450
2451   /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2452   bool lower_scmp;
2453
2454   /** enables rules to lower idiv by power-of-two: */
2455   bool lower_idiv;
2456
2457   /** enables rules to lower isign to imin+imax */
2458   bool lower_isign;
2459
2460   /** enables rules to lower fsign to fsub and flt */
2461   bool lower_fsign;
2462
2463   /* Does the native fdot instruction replicate its result for four
2464    * components?  If so, then opt_algebraic_late will turn all fdotN
2465    * instructions into fdot_replicatedN instructions.
2466    */
2467   bool fdot_replicates;
2468
2469   /** lowers ffloor to fsub+ffract: */
2470   bool lower_ffloor;
2471
2472   /** lowers ffract to fsub+ffloor: */
2473   bool lower_ffract;
2474
2475   /** lowers fceil to fneg+ffloor+fneg: */
2476   bool lower_fceil;
2477
2478   bool lower_ftrunc;
2479
2480   bool lower_ldexp;
2481
2482   bool lower_pack_half_2x16;
2483   bool lower_pack_unorm_2x16;
2484   bool lower_pack_snorm_2x16;
2485   bool lower_pack_unorm_4x8;
2486   bool lower_pack_snorm_4x8;
2487   bool lower_unpack_half_2x16;
2488   bool lower_unpack_unorm_2x16;
2489   bool lower_unpack_snorm_2x16;
2490   bool lower_unpack_unorm_4x8;
2491   bool lower_unpack_snorm_4x8;
2492
2493   bool lower_extract_byte;
2494   bool lower_extract_word;
2495
2496   bool lower_all_io_to_temps;
2497   bool lower_all_io_to_elements;
2498
2499   /**
2500    * Does the driver support real 32-bit integers?  (Otherwise, integers
2501    * are simulated by floats.)
2502    */
2503   bool native_integers;
2504
2505   /* Indicates that the driver only has zero-based vertex id */
2506   bool vertex_id_zero_based;
2507
2508   /**
2509    * If enabled, gl_BaseVertex will be lowered as:
2510    * is_indexed_draw (~0/0) & firstvertex
2511    */
2512   bool lower_base_vertex;
2513
2514   /**
2515    * If enabled, gl_HelperInvocation will be lowered as:
2516    *
2517    *   !((1 << sample_id) & sample_mask_in))
2518    *
2519    * This depends on some possibly hw implementation details, which may
2520    * not be true for all hw.  In particular that the FS is only executed
2521    * for covered samples or for helper invocations.  So, do not blindly
2522    * enable this option.
2523    *
2524    * Note: See also issue #22 in ARB_shader_image_load_store
2525    */
2526   bool lower_helper_invocation;
2527
2528   /**
2529    * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2530    *
2531    *   gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2532    *   gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2533    */
2534   bool optimize_sample_mask_in;
2535
2536   bool lower_cs_local_index_from_id;
2537   bool lower_cs_local_id_from_index;
2538
2539   bool lower_device_index_to_zero;
2540
2541   /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2542   bool lower_wpos_pntc;
2543
2544   bool lower_hadd;
2545   bool lower_add_sat;
2546
2547   /**
2548    * Should nir_lower_io() create load_interpolated_input intrinsics?
2549    *
2550    * If not, it generates regular load_input intrinsics and interpolation
2551    * information must be inferred from the list of input nir_variables.
2552    */
2553   bool use_interpolated_input_intrinsics;
2554
2555   /* Lowers when 32x32->64 bit multiplication is not supported */
2556   bool lower_mul_2x32_64;
2557
2558   unsigned max_unroll_iterations;
2559
2560   nir_lower_int64_options lower_int64_options;
2561   nir_lower_doubles_options lower_doubles_options;
2562} nir_shader_compiler_options;
2563
2564typedef struct nir_shader {
2565   /** list of uniforms (nir_variable) */
2566   struct exec_list uniforms;
2567
2568   /** list of inputs (nir_variable) */
2569   struct exec_list inputs;
2570
2571   /** list of outputs (nir_variable) */
2572   struct exec_list outputs;
2573
2574   /** list of shared compute variables (nir_variable) */
2575   struct exec_list shared;
2576
2577   /** Set of driver-specific options for the shader.
2578    *
2579    * The memory for the options is expected to be kept in a single static
2580    * copy by the driver.
2581    */
2582   const struct nir_shader_compiler_options *options;
2583
2584   /** Various bits of compile-time information about a given shader */
2585   struct shader_info info;
2586
2587   /** list of global variables in the shader (nir_variable) */
2588   struct exec_list globals;
2589
2590   /** list of system value variables in the shader (nir_variable) */
2591   struct exec_list system_values;
2592
2593   struct exec_list functions; /** < list of nir_function */
2594
2595   /**
2596    * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2597    * access plus one
2598    */
2599   unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2600
2601   /** Size in bytes of required scratch space */
2602   unsigned scratch_size;
2603
2604   /** Constant data associated with this shader.
2605    *
2606    * Constant data is loaded through load_constant intrinsics.  See also
2607    * nir_opt_large_constants.
2608    */
2609   void *constant_data;
2610   unsigned constant_data_size;
2611} nir_shader;
2612
2613#define nir_foreach_function(func, shader) \
2614   foreach_list_typed(nir_function, func, node, &(shader)->functions)
2615
2616static inline nir_function_impl *
2617nir_shader_get_entrypoint(nir_shader *shader)
2618{
2619   nir_function *func = NULL;
2620
2621   nir_foreach_function(function, shader) {
2622      assert(func == NULL);
2623      if (function->is_entrypoint) {
2624         func = function;
2625#ifndef NDEBUG
2626         break;
2627#endif
2628      }
2629   }
2630
2631   if (!func)
2632      return NULL;
2633
2634   assert(func->num_params == 0);
2635   assert(func->impl);
2636   return func->impl;
2637}
2638
2639nir_shader *nir_shader_create(void *mem_ctx,
2640                              gl_shader_stage stage,
2641                              const nir_shader_compiler_options *options,
2642                              shader_info *si);
2643
2644nir_register *nir_local_reg_create(nir_function_impl *impl);
2645
2646void nir_reg_remove(nir_register *reg);
2647
2648/** Adds a variable to the appropriate list in nir_shader */
2649void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2650
2651static inline void
2652nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2653{
2654   assert(var->data.mode == nir_var_function_temp);
2655   exec_list_push_tail(&impl->locals, &var->node);
2656}
2657
2658/** creates a variable, sets a few defaults, and adds it to the list */
2659nir_variable *nir_variable_create(nir_shader *shader,
2660                                  nir_variable_mode mode,
2661                                  const struct glsl_type *type,
2662                                  const char *name);
2663/** creates a local variable and adds it to the list */
2664nir_variable *nir_local_variable_create(nir_function_impl *impl,
2665                                        const struct glsl_type *type,
2666                                        const char *name);
2667
2668/** creates a function and adds it to the shader's list of functions */
2669nir_function *nir_function_create(nir_shader *shader, const char *name);
2670
2671nir_function_impl *nir_function_impl_create(nir_function *func);
2672/** creates a function_impl that isn't tied to any particular function */
2673nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2674
2675nir_block *nir_block_create(nir_shader *shader);
2676nir_if *nir_if_create(nir_shader *shader);
2677nir_loop *nir_loop_create(nir_shader *shader);
2678
2679nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2680
2681/** requests that the given pieces of metadata be generated */
2682void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2683/** dirties all but the preserved metadata */
2684void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2685
2686/** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2687nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2688
2689nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2690                                        nir_deref_type deref_type);
2691
2692nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2693
2694nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2695                                                  unsigned num_components,
2696                                                  unsigned bit_size);
2697
2698nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2699                                                nir_intrinsic_op op);
2700
2701nir_call_instr *nir_call_instr_create(nir_shader *shader,
2702                                      nir_function *callee);
2703
2704nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2705
2706nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2707
2708nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2709
2710nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2711                                                unsigned num_components,
2712                                                unsigned bit_size);
2713
2714nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2715
2716/**
2717 * NIR Cursors and Instruction Insertion API
2718 * @{
2719 *
2720 * A tiny struct representing a point to insert/extract instructions or
2721 * control flow nodes.  Helps reduce the combinatorial explosion of possible
2722 * points to insert/extract.
2723 *
2724 * \sa nir_control_flow.h
2725 */
2726typedef enum {
2727   nir_cursor_before_block,
2728   nir_cursor_after_block,
2729   nir_cursor_before_instr,
2730   nir_cursor_after_instr,
2731} nir_cursor_option;
2732
2733typedef struct {
2734   nir_cursor_option option;
2735   union {
2736      nir_block *block;
2737      nir_instr *instr;
2738   };
2739} nir_cursor;
2740
2741static inline nir_block *
2742nir_cursor_current_block(nir_cursor cursor)
2743{
2744   if (cursor.option == nir_cursor_before_instr ||
2745       cursor.option == nir_cursor_after_instr) {
2746      return cursor.instr->block;
2747   } else {
2748      return cursor.block;
2749   }
2750}
2751
2752bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2753
2754static inline nir_cursor
2755nir_before_block(nir_block *block)
2756{
2757   nir_cursor cursor;
2758   cursor.option = nir_cursor_before_block;
2759   cursor.block = block;
2760   return cursor;
2761}
2762
2763static inline nir_cursor
2764nir_after_block(nir_block *block)
2765{
2766   nir_cursor cursor;
2767   cursor.option = nir_cursor_after_block;
2768   cursor.block = block;
2769   return cursor;
2770}
2771
2772static inline nir_cursor
2773nir_before_instr(nir_instr *instr)
2774{
2775   nir_cursor cursor;
2776   cursor.option = nir_cursor_before_instr;
2777   cursor.instr = instr;
2778   return cursor;
2779}
2780
2781static inline nir_cursor
2782nir_after_instr(nir_instr *instr)
2783{
2784   nir_cursor cursor;
2785   cursor.option = nir_cursor_after_instr;
2786   cursor.instr = instr;
2787   return cursor;
2788}
2789
2790static inline nir_cursor
2791nir_after_block_before_jump(nir_block *block)
2792{
2793   nir_instr *last_instr = nir_block_last_instr(block);
2794   if (last_instr && last_instr->type == nir_instr_type_jump) {
2795      return nir_before_instr(last_instr);
2796   } else {
2797      return nir_after_block(block);
2798   }
2799}
2800
2801static inline nir_cursor
2802nir_before_src(nir_src *src, bool is_if_condition)
2803{
2804   if (is_if_condition) {
2805      nir_block *prev_block =
2806         nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2807      assert(!nir_block_ends_in_jump(prev_block));
2808      return nir_after_block(prev_block);
2809   } else if (src->parent_instr->type == nir_instr_type_phi) {
2810#ifndef NDEBUG
2811      nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2812      bool found = false;
2813      nir_foreach_phi_src(phi_src, cond_phi) {
2814         if (phi_src->src.ssa == src->ssa) {
2815            found = true;
2816            break;
2817         }
2818      }
2819      assert(found);
2820#endif
2821      /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2822       * to have a more specific name.
2823       */
2824      nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2825      return nir_after_block_before_jump(phi_src->pred);
2826   } else {
2827      return nir_before_instr(src->parent_instr);
2828   }
2829}
2830
2831static inline nir_cursor
2832nir_before_cf_node(nir_cf_node *node)
2833{
2834   if (node->type == nir_cf_node_block)
2835      return nir_before_block(nir_cf_node_as_block(node));
2836
2837   return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2838}
2839
2840static inline nir_cursor
2841nir_after_cf_node(nir_cf_node *node)
2842{
2843   if (node->type == nir_cf_node_block)
2844      return nir_after_block(nir_cf_node_as_block(node));
2845
2846   return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2847}
2848
2849static inline nir_cursor
2850nir_after_phis(nir_block *block)
2851{
2852   nir_foreach_instr(instr, block) {
2853      if (instr->type != nir_instr_type_phi)
2854         return nir_before_instr(instr);
2855   }
2856   return nir_after_block(block);
2857}
2858
2859static inline nir_cursor
2860nir_after_cf_node_and_phis(nir_cf_node *node)
2861{
2862   if (node->type == nir_cf_node_block)
2863      return nir_after_block(nir_cf_node_as_block(node));
2864
2865   nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2866
2867   return nir_after_phis(block);
2868}
2869
2870static inline nir_cursor
2871nir_before_cf_list(struct exec_list *cf_list)
2872{
2873   nir_cf_node *first_node = exec_node_data(nir_cf_node,
2874                                            exec_list_get_head(cf_list), node);
2875   return nir_before_cf_node(first_node);
2876}
2877
2878static inline nir_cursor
2879nir_after_cf_list(struct exec_list *cf_list)
2880{
2881   nir_cf_node *last_node = exec_node_data(nir_cf_node,
2882                                           exec_list_get_tail(cf_list), node);
2883   return nir_after_cf_node(last_node);
2884}
2885
2886/**
2887 * Insert a NIR instruction at the given cursor.
2888 *
2889 * Note: This does not update the cursor.
2890 */
2891void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2892
2893static inline void
2894nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2895{
2896   nir_instr_insert(nir_before_instr(instr), before);
2897}
2898
2899static inline void
2900nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2901{
2902   nir_instr_insert(nir_after_instr(instr), after);
2903}
2904
2905static inline void
2906nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2907{
2908   nir_instr_insert(nir_before_block(block), before);
2909}
2910
2911static inline void
2912nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2913{
2914   nir_instr_insert(nir_after_block(block), after);
2915}
2916
2917static inline void
2918nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2919{
2920   nir_instr_insert(nir_before_cf_node(node), before);
2921}
2922
2923static inline void
2924nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2925{
2926   nir_instr_insert(nir_after_cf_node(node), after);
2927}
2928
2929static inline void
2930nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2931{
2932   nir_instr_insert(nir_before_cf_list(list), before);
2933}
2934
2935static inline void
2936nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2937{
2938   nir_instr_insert(nir_after_cf_list(list), after);
2939}
2940
2941void nir_instr_remove_v(nir_instr *instr);
2942
2943static inline nir_cursor
2944nir_instr_remove(nir_instr *instr)
2945{
2946   nir_cursor cursor;
2947   nir_instr *prev = nir_instr_prev(instr);
2948   if (prev) {
2949      cursor = nir_after_instr(prev);
2950   } else {
2951      cursor = nir_before_block(instr->block);
2952   }
2953   nir_instr_remove_v(instr);
2954   return cursor;
2955}
2956
2957/** @} */
2958
2959typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2960typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2961typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2962bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2963                         void *state);
2964bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2965bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2966
2967nir_const_value *nir_src_as_const_value(nir_src src);
2968
2969#define NIR_SRC_AS_(name, c_type, type_enum, cast_macro)                \
2970static inline c_type *                                                  \
2971nir_src_as_ ## name (nir_src src)                                       \
2972{                                                                       \
2973    return src.is_ssa && src.ssa->parent_instr->type == type_enum       \
2974           ? cast_macro(src.ssa->parent_instr) : NULL;                  \
2975}
2976
2977NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2978NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
2979            nir_instr_type_intrinsic, nir_instr_as_intrinsic)
2980NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
2981
2982bool nir_src_is_dynamically_uniform(nir_src src);
2983bool nir_srcs_equal(nir_src src1, nir_src src2);
2984bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
2985void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2986void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2987void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2988void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2989                            nir_dest new_dest);
2990
2991void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2992                       unsigned num_components, unsigned bit_size,
2993                       const char *name);
2994void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2995                      unsigned num_components, unsigned bit_size,
2996                      const char *name);
2997static inline void
2998nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2999                           const struct glsl_type *type,
3000                           const char *name)
3001{
3002   assert(glsl_type_is_vector_or_scalar(type));
3003   nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3004                     glsl_get_bit_size(type), name);
3005}
3006void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3007void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3008                                    nir_instr *after_me);
3009
3010nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3011
3012/*
3013 * finds the next basic block in source-code order, returns NULL if there is
3014 * none
3015 */
3016
3017nir_block *nir_block_cf_tree_next(nir_block *block);
3018
3019/* Performs the opposite of nir_block_cf_tree_next() */
3020
3021nir_block *nir_block_cf_tree_prev(nir_block *block);
3022
3023/* Gets the first block in a CF node in source-code order */
3024
3025nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3026
3027/* Gets the last block in a CF node in source-code order */
3028
3029nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3030
3031/* Gets the next block after a CF node in source-code order */
3032
3033nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3034
3035/* Macros for loops that visit blocks in source-code order */
3036
3037#define nir_foreach_block(block, impl) \
3038   for (nir_block *block = nir_start_block(impl); block != NULL; \
3039        block = nir_block_cf_tree_next(block))
3040
3041#define nir_foreach_block_safe(block, impl) \
3042   for (nir_block *block = nir_start_block(impl), \
3043        *next = nir_block_cf_tree_next(block); \
3044        block != NULL; \
3045        block = next, next = nir_block_cf_tree_next(block))
3046
3047#define nir_foreach_block_reverse(block, impl) \
3048   for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3049        block = nir_block_cf_tree_prev(block))
3050
3051#define nir_foreach_block_reverse_safe(block, impl) \
3052   for (nir_block *block = nir_impl_last_block(impl), \
3053        *prev = nir_block_cf_tree_prev(block); \
3054        block != NULL; \
3055        block = prev, prev = nir_block_cf_tree_prev(block))
3056
3057#define nir_foreach_block_in_cf_node(block, node) \
3058   for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3059        block != nir_cf_node_cf_tree_next(node); \
3060        block = nir_block_cf_tree_next(block))
3061
3062/* If the following CF node is an if, this function returns that if.
3063 * Otherwise, it returns NULL.
3064 */
3065nir_if *nir_block_get_following_if(nir_block *block);
3066
3067nir_loop *nir_block_get_following_loop(nir_block *block);
3068
3069void nir_index_local_regs(nir_function_impl *impl);
3070void nir_index_ssa_defs(nir_function_impl *impl);
3071unsigned nir_index_instrs(nir_function_impl *impl);
3072
3073void nir_index_blocks(nir_function_impl *impl);
3074
3075void nir_print_shader(nir_shader *shader, FILE *fp);
3076void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3077void nir_print_instr(const nir_instr *instr, FILE *fp);
3078void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3079
3080nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3081nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3082                                           const nir_function_impl *fi);
3083nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3084nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3085
3086nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
3087
3088#ifndef NDEBUG
3089void nir_validate_shader(nir_shader *shader, const char *when);
3090void nir_metadata_set_validation_flag(nir_shader *shader);
3091void nir_metadata_check_validation_flag(nir_shader *shader);
3092
3093static inline bool
3094should_skip_nir(const char *name)
3095{
3096   static const char *list = NULL;
3097   if (!list) {
3098      /* Comma separated list of names to skip. */
3099      list = getenv("NIR_SKIP");
3100      if (!list)
3101         list = "";
3102   }
3103
3104   if (!list[0])
3105      return false;
3106
3107   return comma_separated_list_contains(list, name);
3108}
3109
3110static inline bool
3111should_clone_nir(void)
3112{
3113   static int should_clone = -1;
3114   if (should_clone < 0)
3115      should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3116
3117   return should_clone;
3118}
3119
3120static inline bool
3121should_serialize_deserialize_nir(void)
3122{
3123   static int test_serialize = -1;
3124   if (test_serialize < 0)
3125      test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3126
3127   return test_serialize;
3128}
3129
3130static inline bool
3131should_print_nir(void)
3132{
3133   static int should_print = -1;
3134   if (should_print < 0)
3135      should_print = env_var_as_boolean("NIR_PRINT", false);
3136
3137   return should_print;
3138}
3139#else
3140static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3141static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3142static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3143static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3144static inline bool should_clone_nir(void) { return false; }
3145static inline bool should_serialize_deserialize_nir(void) { return false; }
3146static inline bool should_print_nir(void) { return false; }
3147#endif /* NDEBUG */
3148
3149#define _PASS(pass, nir, do_pass) do {                               \
3150   if (should_skip_nir(#pass)) {                                     \
3151      printf("skipping %s\n", #pass);                                \
3152      break;                                                         \
3153   }                                                                 \
3154   do_pass                                                           \
3155   nir_validate_shader(nir, "after " #pass);                         \
3156   if (should_clone_nir()) {                                         \
3157      nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3158      ralloc_free(nir);                                              \
3159      nir = clone;                                                   \
3160   }                                                                 \
3161   if (should_serialize_deserialize_nir()) {                         \
3162      void *mem_ctx = ralloc_parent(nir);                            \
3163      nir = nir_shader_serialize_deserialize(mem_ctx, nir);          \
3164   }                                                                 \
3165} while (0)
3166
3167#define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir,          \
3168   nir_metadata_set_validation_flag(nir);                            \
3169   if (should_print_nir())                                           \
3170      printf("%s\n", #pass);                                         \
3171   if (pass(nir, ##__VA_ARGS__)) {                                   \
3172      progress = true;                                               \
3173      if (should_print_nir())                                        \
3174         nir_print_shader(nir, stdout);                              \
3175      nir_metadata_check_validation_flag(nir);                       \
3176   }                                                                 \
3177)
3178
3179#define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir,                  \
3180   if (should_print_nir())                                           \
3181      printf("%s\n", #pass);                                         \
3182   pass(nir, ##__VA_ARGS__);                                         \
3183   if (should_print_nir())                                           \
3184      nir_print_shader(nir, stdout);                                 \
3185)
3186
3187#define NIR_SKIP(name) should_skip_nir(#name)
3188
3189void nir_calc_dominance_impl(nir_function_impl *impl);
3190void nir_calc_dominance(nir_shader *shader);
3191
3192nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3193bool nir_block_dominates(nir_block *parent, nir_block *child);
3194bool nir_block_is_unreachable(nir_block *block);
3195
3196void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3197void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3198
3199void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3200void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3201
3202void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3203void nir_dump_cfg(nir_shader *shader, FILE *fp);
3204
3205int nir_gs_count_vertices(const nir_shader *shader);
3206
3207bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3208bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3209bool nir_split_var_copies(nir_shader *shader);
3210bool nir_split_per_member_structs(nir_shader *shader);
3211bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3212
3213bool nir_lower_returns_impl(nir_function_impl *impl);
3214bool nir_lower_returns(nir_shader *shader);
3215
3216void nir_inline_function_impl(struct nir_builder *b,
3217                              const nir_function_impl *impl,
3218                              nir_ssa_def **params);
3219bool nir_inline_functions(nir_shader *shader);
3220
3221bool nir_propagate_invariant(nir_shader *shader);
3222
3223void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3224void nir_lower_deref_copy_instr(struct nir_builder *b,
3225                                nir_intrinsic_instr *copy);
3226bool nir_lower_var_copies(nir_shader *shader);
3227
3228void nir_fixup_deref_modes(nir_shader *shader);
3229
3230bool nir_lower_global_vars_to_local(nir_shader *shader);
3231
3232typedef enum {
3233   nir_lower_direct_array_deref_of_vec_load     = (1 << 0),
3234   nir_lower_indirect_array_deref_of_vec_load   = (1 << 1),
3235   nir_lower_direct_array_deref_of_vec_store    = (1 << 2),
3236   nir_lower_indirect_array_deref_of_vec_store  = (1 << 3),
3237} nir_lower_array_deref_of_vec_options;
3238
3239bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3240                                  nir_lower_array_deref_of_vec_options options);
3241
3242bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3243
3244bool nir_lower_locals_to_regs(nir_shader *shader);
3245
3246void nir_lower_io_to_temporaries(nir_shader *shader,
3247                                 nir_function_impl *entrypoint,
3248                                 bool outputs, bool inputs);
3249
3250bool nir_lower_vars_to_scratch(nir_shader *shader,
3251                               nir_variable_mode modes,
3252                               int size_threshold,
3253                               glsl_type_size_align_func size_align);
3254
3255void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3256
3257void nir_gather_ssa_types(nir_function_impl *impl,
3258                          BITSET_WORD *float_types,
3259                          BITSET_WORD *int_types);
3260
3261void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3262                              int (*type_size)(const struct glsl_type *, bool));
3263
3264/* Some helpers to do very simple linking */
3265bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3266bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3267                               uint64_t *used_by_other_stage,
3268                               uint64_t *used_by_other_stage_patches);
3269void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3270                          bool default_to_smooth_interp);
3271void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3272bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3273
3274typedef enum {
3275   /* If set, this forces all non-flat fragment shader inputs to be
3276    * interpolated as if with the "sample" qualifier.  This requires
3277    * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3278    */
3279   nir_lower_io_force_sample_interpolation = (1 << 1),
3280} nir_lower_io_options;
3281bool nir_lower_io(nir_shader *shader,
3282                  nir_variable_mode modes,
3283                  int (*type_size)(const struct glsl_type *, bool),
3284                  nir_lower_io_options);
3285
3286typedef enum {
3287   /**
3288    * An address format which is a simple 32-bit global GPU address.
3289    */
3290   nir_address_format_32bit_global,
3291
3292   /**
3293    * An address format which is a simple 64-bit global GPU address.
3294    */
3295   nir_address_format_64bit_global,
3296
3297   /**
3298    * An address format which is a bounds-checked 64-bit global GPU address.
3299    *
3300    * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3301    * address stored with the low bits in .x and high bits in .y, .z is a
3302    * size, and .w is an offset.  When the final I/O operation is lowered, .w
3303    * is checked against .z and the operation is predicated on the result.
3304    */
3305   nir_address_format_64bit_bounded_global,
3306
3307   /**
3308    * An address format which is comprised of a vec2 where the first
3309    * component is a buffer index and the second is an offset.
3310    */
3311   nir_address_format_32bit_index_offset,
3312} nir_address_format;
3313
3314static inline unsigned
3315nir_address_format_bit_size(nir_address_format addr_format)
3316{
3317   switch (addr_format) {
3318   case nir_address_format_32bit_global:           return 32;
3319   case nir_address_format_64bit_global:           return 64;
3320   case nir_address_format_64bit_bounded_global:   return 32;
3321   case nir_address_format_32bit_index_offset:     return 32;
3322   }
3323   unreachable("Invalid address format");
3324}
3325
3326static inline unsigned
3327nir_address_format_num_components(nir_address_format addr_format)
3328{
3329   switch (addr_format) {
3330   case nir_address_format_32bit_global:           return 1;
3331   case nir_address_format_64bit_global:           return 1;
3332   case nir_address_format_64bit_bounded_global:   return 4;
3333   case nir_address_format_32bit_index_offset:     return 2;
3334   }
3335   unreachable("Invalid address format");
3336}
3337
3338static inline const struct glsl_type *
3339nir_address_format_to_glsl_type(nir_address_format addr_format)
3340{
3341   unsigned bit_size = nir_address_format_bit_size(addr_format);
3342   assert(bit_size == 32 || bit_size == 64);
3343   return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3344                           nir_address_format_num_components(addr_format));
3345}
3346
3347nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3348                                                 nir_deref_instr *deref,
3349                                                 nir_ssa_def *base_addr,
3350                                                 nir_address_format addr_format);
3351void nir_lower_explicit_io_instr(struct nir_builder *b,
3352                                 nir_intrinsic_instr *io_instr,
3353                                 nir_ssa_def *addr,
3354                                 nir_address_format addr_format);
3355
3356bool nir_lower_explicit_io(nir_shader *shader,
3357                           nir_variable_mode modes,
3358                           nir_address_format);
3359
3360nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3361nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3362
3363bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3364
3365bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3366bool nir_lower_regs_to_ssa(nir_shader *shader);
3367bool nir_lower_vars_to_ssa(nir_shader *shader);
3368
3369bool nir_remove_dead_derefs(nir_shader *shader);
3370bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3371bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3372bool nir_lower_constant_initializers(nir_shader *shader,
3373                                     nir_variable_mode modes);
3374
3375bool nir_move_load_const(nir_shader *shader);
3376bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3377bool nir_lower_vec_to_movs(nir_shader *shader);
3378void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3379                          bool alpha_to_one);
3380bool nir_lower_alu(nir_shader *shader);
3381bool nir_lower_alu_to_scalar(nir_shader *shader);
3382bool nir_lower_bool_to_float(nir_shader *shader);
3383bool nir_lower_bool_to_int32(nir_shader *shader);
3384bool nir_lower_load_const_to_scalar(nir_shader *shader);
3385bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3386bool nir_lower_phis_to_scalar(nir_shader *shader);
3387void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3388void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3389                                                  bool outputs_only);
3390void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3391void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3392bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3393
3394void nir_lower_fragcoord_wtrans(nir_shader *shader);
3395void nir_lower_viewport_transform(nir_shader *shader);
3396bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3397
3398typedef struct nir_lower_subgroups_options {
3399   uint8_t subgroup_size;
3400   uint8_t ballot_bit_size;
3401   bool lower_to_scalar:1;
3402   bool lower_vote_trivial:1;
3403   bool lower_vote_eq_to_ballot:1;
3404   bool lower_subgroup_masks:1;
3405   bool lower_shuffle:1;
3406   bool lower_shuffle_to_32bit:1;
3407   bool lower_quad:1;
3408} nir_lower_subgroups_options;
3409
3410bool nir_lower_subgroups(nir_shader *shader,
3411                         const nir_lower_subgroups_options *options);
3412
3413bool nir_lower_system_values(nir_shader *shader);
3414
3415enum PACKED nir_lower_tex_packing {
3416   nir_lower_tex_packing_none = 0,
3417   /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3418    * or unsigned ints based on the sampler type
3419    */
3420   nir_lower_tex_packing_16,
3421   /* The sampler returns 1 32-bit word of 4x8 unorm */
3422   nir_lower_tex_packing_8,
3423};
3424
3425typedef struct nir_lower_tex_options {
3426   /**
3427    * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3428    * sampler types a texture projector is lowered.
3429    */
3430   unsigned lower_txp;
3431
3432   /**
3433    * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3434    */
3435   bool lower_txf_offset;
3436
3437   /**
3438    * If true, lower away nir_tex_src_offset for all rect textures.
3439    */
3440   bool lower_rect_offset;
3441
3442   /**
3443    * If true, lower rect textures to 2D, using txs to fetch the
3444    * texture dimensions and dividing the texture coords by the
3445    * texture dims to normalize.
3446    */
3447   bool lower_rect;
3448
3449   /**
3450    * If true, convert yuv to rgb.
3451    */
3452   unsigned lower_y_uv_external;
3453   unsigned lower_y_u_v_external;
3454   unsigned lower_yx_xuxv_external;
3455   unsigned lower_xy_uxvx_external;
3456   unsigned lower_ayuv_external;
3457   unsigned lower_xyuv_external;
3458
3459   /**
3460    * To emulate certain texture wrap modes, this can be used
3461    * to saturate the specified tex coord to [0.0, 1.0].  The
3462    * bits are according to sampler #, ie. if, for example:
3463    *
3464    *   (conf->saturate_s & (1 << n))
3465    *
3466    * is true, then the s coord for sampler n is saturated.
3467    *
3468    * Note that clamping must happen *after* projector lowering
3469    * so any projected texture sample instruction with a clamped
3470    * coordinate gets automatically lowered, regardless of the
3471    * 'lower_txp' setting.
3472    */
3473   unsigned saturate_s;
3474   unsigned saturate_t;
3475   unsigned saturate_r;
3476
3477   /* Bitmask of textures that need swizzling.
3478    *
3479    * If (swizzle_result & (1 << texture_index)), then the swizzle in
3480    * swizzles[texture_index] is applied to the result of the texturing
3481    * operation.
3482    */
3483   unsigned swizzle_result;
3484
3485   /* A swizzle for each texture.  Values 0-3 represent x, y, z, or w swizzles
3486    * while 4 and 5 represent 0 and 1 respectively.
3487    */
3488   uint8_t swizzles[32][4];
3489
3490   /* Can be used to scale sampled values in range required by the format. */
3491   float scale_factors[32];
3492
3493   /**
3494    * Bitmap of textures that need srgb to linear conversion.  If
3495    * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3496    * of the texture are lowered to linear.
3497    */
3498   unsigned lower_srgb;
3499
3500   /**
3501    * If true, lower nir_texop_tex on shaders that doesn't support implicit
3502    * LODs to nir_texop_txl.
3503    */
3504   bool lower_tex_without_implicit_lod;
3505
3506   /**
3507    * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3508    */
3509   bool lower_txd_cube_map;
3510
3511   /**
3512    * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3513    */
3514   bool lower_txd_3d;
3515
3516   /**
3517    * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3518    * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3519    * with lower_txd_cube_map.
3520    */
3521   bool lower_txd_shadow;
3522
3523   /**
3524    * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3525    * Implies lower_txd_cube_map and lower_txd_shadow.
3526    */
3527   bool lower_txd;
3528
3529   /**
3530    * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3531    * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3532    */
3533   bool lower_txb_shadow_clamp;
3534
3535   /**
3536    * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3537    * with nir_texop_txl.  This includes cube maps.
3538    */
3539   bool lower_txd_shadow_clamp;
3540
3541   /**
3542    * If true, lower nir_texop_txd on when it uses both offset and min_lod
3543    * with nir_texop_txl.  This includes cube maps.
3544    */
3545   bool lower_txd_offset_clamp;
3546
3547   /**
3548    * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3549    * sampler is bindless.
3550    */
3551   bool lower_txd_clamp_bindless_sampler;
3552
3553   /**
3554    * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3555    * sampler index is not statically determinable to be less than 16.
3556    */
3557   bool lower_txd_clamp_if_sampler_index_not_lt_16;
3558
3559   /**
3560    * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3561    * mixed-up tg4 locations.
3562    */
3563   bool lower_tg4_broadcom_swizzle;
3564
3565   /**
3566    * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3567    */
3568   bool lower_tg4_offsets;
3569
3570   enum nir_lower_tex_packing lower_tex_packing[32];
3571} nir_lower_tex_options;
3572
3573bool nir_lower_tex(nir_shader *shader,
3574                   const nir_lower_tex_options *options);
3575
3576enum nir_lower_non_uniform_access_type {
3577   nir_lower_non_uniform_ubo_access     = (1 << 0),
3578   nir_lower_non_uniform_ssbo_access    = (1 << 1),
3579   nir_lower_non_uniform_texture_access = (1 << 2),
3580   nir_lower_non_uniform_image_access   = (1 << 3),
3581};
3582
3583bool nir_lower_non_uniform_access(nir_shader *shader,
3584                                  enum nir_lower_non_uniform_access_type);
3585
3586bool nir_lower_idiv(nir_shader *shader);
3587
3588bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3589bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3590bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3591
3592bool nir_lower_frexp(nir_shader *nir);
3593
3594void nir_lower_two_sided_color(nir_shader *shader);
3595
3596bool nir_lower_clamp_color_outputs(nir_shader *shader);
3597
3598void nir_lower_passthrough_edgeflags(nir_shader *shader);
3599bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3600                              const gl_state_index16 *uniform_state_tokens);
3601
3602typedef struct nir_lower_wpos_ytransform_options {
3603   gl_state_index16 state_tokens[STATE_LENGTH];
3604   bool fs_coord_origin_upper_left :1;
3605   bool fs_coord_origin_lower_left :1;
3606   bool fs_coord_pixel_center_integer :1;
3607   bool fs_coord_pixel_center_half_integer :1;
3608} nir_lower_wpos_ytransform_options;
3609
3610bool nir_lower_wpos_ytransform(nir_shader *shader,
3611                               const nir_lower_wpos_ytransform_options *options);
3612bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3613
3614bool nir_lower_fb_read(nir_shader *shader);
3615
3616typedef struct nir_lower_drawpixels_options {
3617   gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3618   gl_state_index16 scale_state_tokens[STATE_LENGTH];
3619   gl_state_index16 bias_state_tokens[STATE_LENGTH];
3620   unsigned drawpix_sampler;
3621   unsigned pixelmap_sampler;
3622   bool pixel_maps :1;
3623   bool scale_and_bias :1;
3624} nir_lower_drawpixels_options;
3625
3626void nir_lower_drawpixels(nir_shader *shader,
3627                          const nir_lower_drawpixels_options *options);
3628
3629typedef struct nir_lower_bitmap_options {
3630   unsigned sampler;
3631   bool swizzle_xxxx;
3632} nir_lower_bitmap_options;
3633
3634void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3635
3636bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3637
3638typedef enum  {
3639   nir_lower_int_source_mods = 1 << 0,
3640   nir_lower_float_source_mods = 1 << 1,
3641   nir_lower_triop_abs = 1 << 2,
3642   nir_lower_all_source_mods = (1 << 3) - 1
3643} nir_lower_to_source_mods_flags;
3644
3645
3646bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3647
3648bool nir_lower_gs_intrinsics(nir_shader *shader);
3649
3650typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3651
3652bool nir_lower_bit_size(nir_shader *shader,
3653                        nir_lower_bit_size_callback callback,
3654                        void *callback_data);
3655
3656nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3657bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3658
3659nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3660bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3661                       nir_lower_doubles_options options);
3662bool nir_lower_pack(nir_shader *shader);
3663
3664bool nir_normalize_cubemap_coords(nir_shader *shader);
3665
3666void nir_live_ssa_defs_impl(nir_function_impl *impl);
3667
3668void nir_loop_analyze_impl(nir_function_impl *impl,
3669                           nir_variable_mode indirect_mask);
3670
3671bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3672
3673bool nir_repair_ssa_impl(nir_function_impl *impl);
3674bool nir_repair_ssa(nir_shader *shader);
3675
3676void nir_convert_loop_to_lcssa(nir_loop *loop);
3677
3678/* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3679 * registers.  If false, convert all values (even those not involved in a phi
3680 * node) to registers.
3681 */
3682bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3683
3684bool nir_lower_phis_to_regs_block(nir_block *block);
3685bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3686bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3687
3688/* This is here for unit tests. */
3689bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
3690
3691bool nir_opt_comparison_pre(nir_shader *shader);
3692
3693bool nir_opt_algebraic(nir_shader *shader);
3694bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3695bool nir_opt_algebraic_late(nir_shader *shader);
3696bool nir_opt_constant_folding(nir_shader *shader);
3697
3698bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3699
3700bool nir_copy_prop(nir_shader *shader);
3701
3702bool nir_opt_copy_prop_vars(nir_shader *shader);
3703
3704bool nir_opt_cse(nir_shader *shader);
3705
3706bool nir_opt_dce(nir_shader *shader);
3707
3708bool nir_opt_dead_cf(nir_shader *shader);
3709
3710bool nir_opt_dead_write_vars(nir_shader *shader);
3711
3712bool nir_opt_deref_impl(nir_function_impl *impl);
3713bool nir_opt_deref(nir_shader *shader);
3714
3715bool nir_opt_find_array_copies(nir_shader *shader);
3716
3717bool nir_opt_gcm(nir_shader *shader, bool value_number);
3718
3719bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3720
3721bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3722
3723bool nir_opt_intrinsics(nir_shader *shader);
3724
3725bool nir_opt_large_constants(nir_shader *shader,
3726                             glsl_type_size_align_func size_align,
3727                             unsigned threshold);
3728
3729bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3730
3731bool nir_opt_move_comparisons(nir_shader *shader);
3732
3733bool nir_opt_move_load_ubo(nir_shader *shader);
3734
3735bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3736                             bool indirect_load_ok, bool expensive_alu_ok);
3737
3738bool nir_opt_remove_phis(nir_shader *shader);
3739bool nir_opt_remove_phis_block(nir_block *block);
3740
3741bool nir_opt_shrink_load(nir_shader *shader);
3742
3743bool nir_opt_trivial_continues(nir_shader *shader);
3744
3745bool nir_opt_undef(nir_shader *shader);
3746
3747bool nir_opt_conditional_discard(nir_shader *shader);
3748
3749void nir_strip(nir_shader *shader);
3750
3751void nir_sweep(nir_shader *shader);
3752
3753void nir_remap_dual_slot_attributes(nir_shader *shader,
3754                                    uint64_t *dual_slot_inputs);
3755uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3756
3757nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3758gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3759
3760#ifdef __cplusplus
3761} /* extern "C" */
3762#endif
3763
3764#endif /* NIR_H */
3765