u_sse.h revision b8e80941
1/**************************************************************************
2 *
3 * Copyright 2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * @file
30 * SSE intrinsics portability header.
31 *
32 * Although the SSE intrinsics are support by all modern x86 and x86-64
33 * compilers, there are some intrisincs missing in some implementations
34 * (especially older MSVC versions). This header abstracts that away.
35 */
36
37#ifndef U_SSE_H_
38#define U_SSE_H_
39
40#include "pipe/p_config.h"
41
42#if defined(PIPE_ARCH_SSE)
43
44#include <emmintrin.h>
45
46
47union m128i {
48   __m128i m;
49   ubyte ub[16];
50   ushort us[8];
51   uint ui[4];
52};
53
54static inline void u_print_epi8(const char *name, __m128i r)
55{
56   union { __m128i m; ubyte ub[16]; } u;
57   u.m = r;
58
59   debug_printf("%s: "
60                "%02x/"
61                "%02x/"
62                "%02x/"
63                "%02x/"
64                "%02x/"
65                "%02x/"
66                "%02x/"
67                "%02x/"
68                "%02x/"
69                "%02x/"
70                "%02x/"
71                "%02x/"
72                "%02x/"
73                "%02x/"
74                "%02x/"
75                "%02x\n",
76                name,
77                u.ub[0],  u.ub[1],  u.ub[2],  u.ub[3],
78                u.ub[4],  u.ub[5],  u.ub[6],  u.ub[7],
79                u.ub[8],  u.ub[9],  u.ub[10], u.ub[11],
80                u.ub[12], u.ub[13], u.ub[14], u.ub[15]);
81}
82
83static inline void u_print_epi16(const char *name, __m128i r)
84{
85   union { __m128i m; ushort us[8]; } u;
86   u.m = r;
87
88   debug_printf("%s: "
89                "%04x/"
90                "%04x/"
91                "%04x/"
92                "%04x/"
93                "%04x/"
94                "%04x/"
95                "%04x/"
96                "%04x\n",
97                name,
98                u.us[0],  u.us[1],  u.us[2],  u.us[3],
99                u.us[4],  u.us[5],  u.us[6],  u.us[7]);
100}
101
102static inline void u_print_epi32(const char *name, __m128i r)
103{
104   union { __m128i m; uint ui[4]; } u;
105   u.m = r;
106
107   debug_printf("%s: "
108                "%08x/"
109                "%08x/"
110                "%08x/"
111                "%08x\n",
112                name,
113                u.ui[0],  u.ui[1],  u.ui[2],  u.ui[3]);
114}
115
116static inline void u_print_ps(const char *name, __m128 r)
117{
118   union { __m128 m; float f[4]; } u;
119   u.m = r;
120
121   debug_printf("%s: "
122                "%f/"
123                "%f/"
124                "%f/"
125                "%f\n",
126                name,
127                u.f[0],  u.f[1],  u.f[2],  u.f[3]);
128}
129
130
131#define U_DUMP_EPI32(a) u_print_epi32(#a, a)
132#define U_DUMP_EPI16(a) u_print_epi16(#a, a)
133#define U_DUMP_EPI8(a)  u_print_epi8(#a, a)
134#define U_DUMP_PS(a)    u_print_ps(#a, a)
135
136
137
138#if defined(PIPE_ARCH_SSSE3)
139
140#include <tmmintrin.h>
141
142#else /* !PIPE_ARCH_SSSE3 */
143
144/**
145 * Describe _mm_shuffle_epi8() with gcc extended inline assembly, for cases
146 * where -mssse3 is not supported/enabled.
147 *
148 * MSVC will never get in here as its intrinsics support do not rely on
149 * compiler command line options.
150 */
151static __inline __m128i
152#ifdef __clang__
153   __attribute__((__always_inline__, __nodebug__))
154#else
155   __attribute__((__gnu_inline__, __always_inline__, __artificial__))
156#endif
157_mm_shuffle_epi8(__m128i a, __m128i mask)
158{
159    __m128i result;
160    __asm__("pshufb %1, %0"
161            : "=x" (result)
162            : "xm" (mask), "0" (a));
163    return result;
164}
165
166#endif /* !PIPE_ARCH_SSSE3 */
167
168
169/*
170 * Provide an SSE implementation of _mm_mul_epi32() in terms of
171 * _mm_mul_epu32().
172 *
173 * Basically, albeit surprising at first (and second, and third...) look
174 * if a * b is done signed instead of unsigned, can just
175 * subtract b from the high bits of the result if a is negative
176 * (and the same for a if b is negative). Modular arithmetic at its best!
177 *
178 * So for int32 a,b in crude pseudo-code ("*" here denoting a widening mul)
179 * fixupb = (signmask(b) & a) << 32ULL
180 * fixupa = (signmask(a) & b) << 32ULL
181 * a * b = (unsigned)a * (unsigned)b - fixupb - fixupa
182 * = (unsigned)a * (unsigned)b -(fixupb + fixupa)
183 *
184 * This does both lo (dwords 0/2) and hi parts (1/3) at the same time due
185 * to some optimization potential.
186 */
187static inline __m128i
188mm_mullohi_epi32(const __m128i a, const __m128i b, __m128i *res13)
189{
190   __m128i a13, b13, mul02, mul13;
191   __m128i anegmask, bnegmask, fixup, fixup02, fixup13;
192   a13 = _mm_shuffle_epi32(a, _MM_SHUFFLE(2,3,0,1));
193   b13 = _mm_shuffle_epi32(b, _MM_SHUFFLE(2,3,0,1));
194   anegmask = _mm_srai_epi32(a, 31);
195   bnegmask = _mm_srai_epi32(b, 31);
196   fixup = _mm_add_epi32(_mm_and_si128(anegmask, b),
197                         _mm_and_si128(bnegmask, a));
198   mul02 = _mm_mul_epu32(a, b);
199   mul13 = _mm_mul_epu32(a13, b13);
200   fixup02 = _mm_slli_epi64(fixup, 32);
201   fixup13 = _mm_and_si128(fixup, _mm_set_epi32(-1,0,-1,0));
202   *res13 = _mm_sub_epi64(mul13, fixup13);
203   return _mm_sub_epi64(mul02, fixup02);
204}
205
206
207/* Provide an SSE2 implementation of _mm_mullo_epi32() in terms of
208 * _mm_mul_epu32().
209 *
210 * This always works regardless the signs of the operands, since
211 * the high bits (which would be different) aren't used.
212 *
213 * This seems close enough to the speed of SSE4 and the real
214 * _mm_mullo_epi32() intrinsic as to not justify adding an sse4
215 * dependency at this point.
216 */
217static inline __m128i mm_mullo_epi32(const __m128i a, const __m128i b)
218{
219   __m128i a4   = _mm_srli_epi64(a, 32);  /* shift by one dword */
220   __m128i b4   = _mm_srli_epi64(b, 32);  /* shift by one dword */
221   __m128i ba   = _mm_mul_epu32(b, a);   /* multply dwords 0, 2 */
222   __m128i b4a4 = _mm_mul_epu32(b4, a4); /* multiply dwords 1, 3 */
223
224   /* Interleave the results, either with shuffles or (slightly
225    * faster) direct bit operations:
226    * XXX: might be only true for some cpus (in particular 65nm
227    * Core 2). On most cpus (including that Core 2, but not Nehalem...)
228    * using _mm_shuffle_ps/_mm_shuffle_epi32 might also be faster
229    * than using the 3 instructions below. But logic should be fine
230    * as well, we can't have optimal solution for all cpus (if anything,
231    * should just use _mm_mullo_epi32() if sse41 is available...).
232    */
233#if 0
234   __m128i ba8             = _mm_shuffle_epi32(ba, 8);
235   __m128i b4a48           = _mm_shuffle_epi32(b4a4, 8);
236   __m128i result          = _mm_unpacklo_epi32(ba8, b4a48);
237#else
238   __m128i mask            = _mm_setr_epi32(~0,0,~0,0);
239   __m128i ba_mask         = _mm_and_si128(ba, mask);
240   __m128i b4a4_mask_shift = _mm_slli_epi64(b4a4, 32);
241   __m128i result          = _mm_or_si128(ba_mask, b4a4_mask_shift);
242#endif
243
244   return result;
245}
246
247
248static inline void
249transpose4_epi32(const __m128i * restrict a,
250                 const __m128i * restrict b,
251                 const __m128i * restrict c,
252                 const __m128i * restrict d,
253                 __m128i * restrict o,
254                 __m128i * restrict p,
255                 __m128i * restrict q,
256                 __m128i * restrict r)
257{
258   __m128i t0 = _mm_unpacklo_epi32(*a, *b);
259   __m128i t1 = _mm_unpacklo_epi32(*c, *d);
260   __m128i t2 = _mm_unpackhi_epi32(*a, *b);
261   __m128i t3 = _mm_unpackhi_epi32(*c, *d);
262
263   *o = _mm_unpacklo_epi64(t0, t1);
264   *p = _mm_unpackhi_epi64(t0, t1);
265   *q = _mm_unpacklo_epi64(t2, t3);
266   *r = _mm_unpackhi_epi64(t2, t3);
267}
268
269
270/*
271 * Same as above, except the first two values are already interleaved
272 * (i.e. contain 64bit values).
273 */
274static inline void
275transpose2_64_2_32(const __m128i * restrict a01,
276                   const __m128i * restrict a23,
277                   const __m128i * restrict c,
278                   const __m128i * restrict d,
279                   __m128i * restrict o,
280                   __m128i * restrict p,
281                   __m128i * restrict q,
282                   __m128i * restrict r)
283{
284   __m128i t0 = *a01;
285   __m128i t1 = _mm_unpacklo_epi32(*c, *d);
286   __m128i t2 = *a23;
287   __m128i t3 = _mm_unpackhi_epi32(*c, *d);
288
289   *o = _mm_unpacklo_epi64(t0, t1);
290   *p = _mm_unpackhi_epi64(t0, t1);
291   *q = _mm_unpacklo_epi64(t2, t3);
292   *r = _mm_unpackhi_epi64(t2, t3);
293}
294
295
296#define SCALAR_EPI32(m, i) _mm_shuffle_epi32((m), _MM_SHUFFLE(i,i,i,i))
297
298
299#endif /* PIPE_ARCH_SSE */
300
301#endif /* U_SSE_H_ */
302