1/*
2 * Copyright 2013 Ilia Mirkin
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#include "nv50/nv84_video.h"
24
25#include "util/u_sse.h"
26
27struct h264_iparm1 {
28   uint8_t scaling_lists_4x4[6][16]; // 00
29   uint8_t scaling_lists_8x8[2][64]; // 60
30   uint32_t width; // e0
31   uint32_t height; // e4
32   uint64_t ref1_addrs[16]; // e8
33   uint64_t ref2_addrs[16]; // 168
34   uint32_t unk1e8;
35   uint32_t unk1ec;
36   uint32_t w1; // 1f0
37   uint32_t w2; // 1f4
38   uint32_t w3; // 1f8
39   uint32_t h1; // 1fc
40   uint32_t h2; // 200
41   uint32_t h3; // 204
42   uint32_t mb_adaptive_frame_field_flag; // 208
43   uint32_t field_pic_flag; // 20c
44   uint32_t format; // 210
45   uint32_t unk214; // 214
46};
47
48struct h264_iparm2 {
49   uint32_t width; // 00
50   uint32_t height; // 04
51   uint32_t mbs; // 08
52   uint32_t w1; // 0c
53   uint32_t w2; // 10
54   uint32_t w3; // 14
55   uint32_t h1; // 18
56   uint32_t h2; // 1c
57   uint32_t h3; // 20
58   uint32_t unk24;
59   uint32_t mb_adaptive_frame_field_flag; // 28
60   uint32_t top; // 2c
61   uint32_t bottom; // 30
62   uint32_t is_reference; // 34
63};
64
65void
66nv84_decoder_vp_h264(struct nv84_decoder *dec,
67                     struct pipe_h264_picture_desc *desc,
68                     struct nv84_video_buffer *dest)
69{
70   struct h264_iparm1 param1;
71   struct h264_iparm2 param2;
72   int i, width = align(dest->base.width, 16),
73      height = align(dest->base.height, 16);
74
75   struct nouveau_pushbuf *push = dec->vp_pushbuf;
76   struct nouveau_pushbuf_refn bo_refs[] = {
77      { dest->interlaced, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
78      { dest->full, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
79      { dec->vpring, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
80      { dec->mbring, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
81      { dec->vp_params, NOUVEAU_BO_RDWR | NOUVEAU_BO_GART },
82      { dec->fence, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
83   };
84   int num_refs = ARRAY_SIZE(bo_refs);
85   bool is_ref = desc->is_reference;
86
87   STATIC_ASSERT(sizeof(struct h264_iparm1) == 0x218);
88   STATIC_ASSERT(sizeof(struct h264_iparm2) == 0x38);
89
90   memset(&param1, 0, sizeof(param1));
91   memset(&param2, 0, sizeof(param2));
92
93   memcpy(&param1.scaling_lists_4x4, desc->pps->ScalingList4x4,
94          sizeof(param1.scaling_lists_4x4));
95   memcpy(&param1.scaling_lists_8x8, desc->pps->ScalingList8x8,
96          sizeof(param1.scaling_lists_8x8));
97
98   param1.width = width;
99   param1.w1 = param1.w2 = param1.w3 = align(width, 64);
100   param1.height = param1.h2 = height;
101   param1.h1 = param1.h3 = align(height, 32);
102   param1.format = 0x3231564e; /* 'NV12' */
103   param1.mb_adaptive_frame_field_flag = desc->pps->sps->mb_adaptive_frame_field_flag;
104   param1.field_pic_flag = desc->field_pic_flag;
105
106   param2.width = width;
107   param2.w1 = param2.w2 = param2.w3 = param1.w1;
108   if (desc->field_pic_flag)
109      param2.height = align(height, 32) / 2;
110   else
111      param2.height = height;
112   param2.h1 = param2.h2 = align(height, 32);
113   param2.h3 = height;
114   param2.mbs = width * height >> 8;
115   if (desc->field_pic_flag) {
116      param2.top = desc->bottom_field_flag ? 2 : 1;
117      param2.bottom = desc->bottom_field_flag;
118   }
119   param2.mb_adaptive_frame_field_flag = desc->pps->sps->mb_adaptive_frame_field_flag;
120   param2.is_reference = desc->is_reference;
121
122   PUSH_SPACE(push, 5 + 16 + 3 + 2 + 6 + (is_ref ? 2 : 0) + 3 + 2 + 4 + 2);
123
124   struct nouveau_bo *ref2_default = dest->full;
125
126   for (i = 0; i < 16; i++) {
127      struct nv84_video_buffer *buf = (struct nv84_video_buffer *)desc->ref[i];
128      struct nouveau_bo *bo1, *bo2;
129      if (buf) {
130         bo1 = buf->interlaced;
131         bo2 = buf->full;
132         if (i == 0)
133            ref2_default = buf->full;
134      } else {
135         bo1 = dest->interlaced;
136         bo2 = ref2_default;
137      }
138      param1.ref1_addrs[i] = bo1->offset;
139      param1.ref2_addrs[i] = bo2->offset;
140      struct nouveau_pushbuf_refn bo_refs[] = {
141         { bo1, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
142         { bo2, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
143      };
144      nouveau_pushbuf_refn(push, bo_refs, ARRAY_SIZE(bo_refs));
145   }
146
147   memcpy(dec->vp_params->map, &param1, sizeof(param1));
148   memcpy(dec->vp_params->map + 0x400, &param2, sizeof(param2));
149
150   nouveau_pushbuf_refn(push, bo_refs, num_refs);
151
152   /* Wait for BSP to have completed */
153   BEGIN_NV04(push, SUBC_VP(0x10), 4);
154   PUSH_DATAh(push, dec->fence->offset);
155   PUSH_DATA (push, dec->fence->offset);
156   PUSH_DATA (push, 2);
157   PUSH_DATA (push, 1); /* wait for sem == 2 */
158
159   /* VP step 1 */
160   BEGIN_NV04(push, SUBC_VP(0x400), 15);
161   PUSH_DATA (push, 1);
162   PUSH_DATA (push, param2.mbs);
163   PUSH_DATA (push, 0x3987654); /* each nibble probably a dma index */
164   PUSH_DATA (push, 0x55001); /* constant */
165   PUSH_DATA (push, dec->vp_params->offset >> 8);
166   PUSH_DATA (push, (dec->vpring->offset + dec->vpring_residual) >> 8);
167   PUSH_DATA (push, dec->vpring_ctrl);
168   PUSH_DATA (push, dec->vpring->offset >> 8);
169   PUSH_DATA (push, dec->bitstream->size / 2 - 0x700);
170   PUSH_DATA (push, (dec->mbring->offset + dec->mbring->size - 0x2000) >> 8);
171   PUSH_DATA (push, (dec->vpring->offset + dec->vpring_ctrl +
172                     dec->vpring_residual + dec->vpring_deblock) >> 8);
173   PUSH_DATA (push, 0);
174   PUSH_DATA (push, 0x100008);
175   PUSH_DATA (push, dest->interlaced->offset >> 8);
176   PUSH_DATA (push, 0);
177
178   BEGIN_NV04(push, SUBC_VP(0x620), 2);
179   PUSH_DATA (push, 0);
180   PUSH_DATA (push, 0);
181
182   BEGIN_NV04(push, SUBC_VP(0x300), 1);
183   PUSH_DATA (push, 0);
184
185   /* VP step 2 */
186   BEGIN_NV04(push, SUBC_VP(0x400), 5);
187   PUSH_DATA (push, 0x54530201);
188   PUSH_DATA (push, (dec->vp_params->offset >> 8) + 0x4);
189   PUSH_DATA (push, (dec->vpring->offset + dec->vpring_ctrl +
190                     dec->vpring_residual) >> 8);
191   PUSH_DATA (push, dest->interlaced->offset >> 8);
192   PUSH_DATA (push, dest->interlaced->offset >> 8);
193
194   if (is_ref) {
195      BEGIN_NV04(push, SUBC_VP(0x414), 1);
196      PUSH_DATA (push, dest->full->offset >> 8);
197   }
198
199   BEGIN_NV04(push, SUBC_VP(0x620), 2);
200   PUSH_DATAh(push, dec->vp_fw2_offset);
201   PUSH_DATA (push, dec->vp_fw2_offset);
202
203   BEGIN_NV04(push, SUBC_VP(0x300), 1);
204   PUSH_DATA (push, 0);
205
206   /* Set the semaphore back to 1 */
207   BEGIN_NV04(push, SUBC_VP(0x610), 3);
208   PUSH_DATAh(push, dec->fence->offset);
209   PUSH_DATA (push, dec->fence->offset);
210   PUSH_DATA (push, 1);
211
212   /* Write to the semaphore location, intr */
213   BEGIN_NV04(push, SUBC_VP(0x304), 1);
214   PUSH_DATA (push, 0x101);
215
216   for (i = 0; i < 2; i++) {
217      struct nv50_miptree *mt = nv50_miptree(dest->resources[i]);
218      mt->base.status |= NOUVEAU_BUFFER_STATUS_GPU_WRITING;
219   }
220
221   PUSH_KICK (push);
222}
223
224static inline int16_t inverse_quantize(int16_t val, uint8_t quant, int mpeg1) {
225   int16_t ret = val * quant / 16;
226   if (mpeg1 && ret) {
227      if (ret > 0)
228         ret = (ret - 1) | 1;
229      else
230         ret = (ret + 1) | 1;
231   }
232   if (ret < -2048)
233      ret = -2048;
234   else if (ret > 2047)
235      ret = 2047;
236   return ret;
237}
238
239struct mpeg12_mb_info {
240   uint32_t index;
241   uint8_t unk4;
242   uint8_t unk5;
243   uint16_t coded_block_pattern;
244   uint8_t block_counts[6];
245   uint16_t PMV[8];
246   uint16_t skipped;
247};
248
249void
250nv84_decoder_vp_mpeg12_mb(struct nv84_decoder *dec,
251                          struct pipe_mpeg12_picture_desc *desc,
252                          const struct pipe_mpeg12_macroblock *macrob)
253{
254   STATIC_ASSERT(sizeof(struct mpeg12_mb_info) == 32);
255
256   struct mpeg12_mb_info info = {0};
257   int i, sum = 0, mask, block_index, count;
258   const int16_t *blocks;
259   int intra = macrob->macroblock_type & PIPE_MPEG12_MB_TYPE_INTRA;
260   int motion = macrob->macroblock_type &
261      (PIPE_MPEG12_MB_TYPE_MOTION_FORWARD | PIPE_MPEG12_MB_TYPE_MOTION_BACKWARD);
262   const uint8_t *quant_matrix = intra ? dec->mpeg12_intra_matrix :
263      dec->mpeg12_non_intra_matrix;
264   int mpeg1 = dec->base.profile == PIPE_VIDEO_PROFILE_MPEG1;
265
266   info.index = macrob->y * mb(dec->base.width) + macrob->x;
267   info.unk4 = motion;
268   if (intra)
269      info.unk4 |= 1;
270   if (macrob->macroblock_modes.bits.dct_type)
271      info.unk4 |= 0x20;
272   info.unk5 = (macrob->motion_vertical_field_select << 4) |
273      (macrob->macroblock_modes.value & 0xf);
274   info.coded_block_pattern = macrob->coded_block_pattern;
275   if (motion) {
276      memcpy(info.PMV, macrob->PMV, sizeof(info.PMV));
277   }
278   blocks = macrob->blocks;
279   for (mask = 0x20, block_index = 0; mask > 0; mask >>= 1, block_index++) {
280      if ((macrob->coded_block_pattern & mask) == 0)
281         continue;
282
283      count = 0;
284
285      /*
286       * The observation here is that there are a lot of 0's, and things go
287       * a lot faster if one skips over them.
288       */
289
290#if defined(PIPE_ARCH_SSE) && defined(PIPE_ARCH_X86_64)
291/* Note that the SSE implementation is much more tuned to X86_64. As it's not
292 * benchmarked on X86_32, disable it there. I suspect that the code needs to
293 * be reorganized in terms of 32-bit wide data in order to be more
294 * efficient. NV84+ were released well into the 64-bit CPU era, so it should
295 * be a minority case.
296 */
297
298/* This returns a 16-bit bit-mask, each 2 bits are both 1 or both 0, depending
299 * on whether the corresponding (16-bit) word in blocks is zero or non-zero. */
300#define wordmask(blocks, zero) \
301      (uint64_t)(_mm_movemask_epi8( \
302                       _mm_cmpeq_epi16( \
303                             zero, _mm_load_si128((__m128i *)(blocks)))))
304
305      __m128i zero = _mm_setzero_si128();
306
307      /* TODO: Look into doing the inverse quantization in terms of SSE
308       * operations unconditionally, when necessary. */
309      uint64_t bmask0 = wordmask(blocks, zero);
310      bmask0 |= wordmask(blocks + 8, zero) << 16;
311      bmask0 |= wordmask(blocks + 16, zero) << 32;
312      bmask0 |= wordmask(blocks + 24, zero) << 48;
313      uint64_t bmask1 = wordmask(blocks + 32, zero);
314      bmask1 |= wordmask(blocks + 40, zero) << 16;
315      bmask1 |= wordmask(blocks + 48, zero) << 32;
316      bmask1 |= wordmask(blocks + 56, zero) << 48;
317
318      /* The wordmask macro returns the inverse of what we want, since it
319       * returns a 1 for equal-to-zero. Invert. */
320      bmask0 = ~bmask0;
321      bmask1 = ~bmask1;
322
323      /* Note that the bitmask is actually sequences of 2 bits for each block
324       * index. This is because there is no movemask_epi16. That means that
325       * (a) ffs will never return 64, since the prev bit will always be set
326       * in that case, and (b) we need to do an extra bit shift. Or'ing the
327       * bitmasks together is faster than having a loop that computes them one
328       * at a time and processes them, on a Core i7-920. Trying to put bmask
329       * into an array and then looping also slows things down.
330       */
331
332      /* shift needs to be the same width as i, and unsigned so that / 2
333       * becomes a rshift operation */
334      uint32_t shift;
335      i = 0;
336
337      if (dec->base.entrypoint == PIPE_VIDEO_ENTRYPOINT_BITSTREAM) {
338         int16_t tmp;
339         while ((shift = __builtin_ffsll(bmask0))) {
340            i += (shift - 1) / 2;
341            bmask0 >>= shift - 1;
342            *dec->mpeg12_data++ = dec->zscan[i] * 2;
343            tmp = inverse_quantize(blocks[i], quant_matrix[i], mpeg1);
344            *dec->mpeg12_data++ = tmp;
345            sum += tmp;
346            count++;
347            i++;
348            bmask0 >>= 2;
349         }
350         i = 32;
351         while ((shift = __builtin_ffsll(bmask1))) {
352            i += (shift - 1) / 2;
353            bmask1 >>= shift - 1;
354            *dec->mpeg12_data++ = dec->zscan[i] * 2;
355            tmp = inverse_quantize(blocks[i], quant_matrix[i], mpeg1);
356            *dec->mpeg12_data++ = tmp;
357            sum += tmp;
358            count++;
359            i++;
360            bmask1 >>= 2;
361         }
362      } else {
363         while ((shift = __builtin_ffsll(bmask0))) {
364            i += (shift - 1) / 2;
365            bmask0 >>= shift - 1;
366            *dec->mpeg12_data++ = i * 2;
367            *dec->mpeg12_data++ = blocks[i];
368            count++;
369            i++;
370            bmask0 >>= 2;
371         }
372         i = 32;
373         while ((shift = __builtin_ffsll(bmask1))) {
374            i += (shift - 1) / 2;
375            bmask1 >>= shift - 1;
376            *dec->mpeg12_data++ = i * 2;
377            *dec->mpeg12_data++ = blocks[i];
378            count++;
379            i++;
380            bmask1 >>= 2;
381         }
382      }
383#undef wordmask
384#else
385
386      /*
387       * This loop looks ridiculously written... and it is. I tried a lot of
388       * different ways of achieving this scan, and this was the fastest, at
389       * least on a Core i7-920. Note that it's not necessary to skip the 0's,
390       * the firmware will deal with those just fine. But it's faster to skip
391       * them. Note to people trying benchmarks: make sure to use realistic
392       * mpeg data, which can often be a single data point first followed by
393       * 63 0's, or <data> 7x <0> <data> 7x <0> etc.
394       */
395      i = 0;
396      if (dec->base.entrypoint == PIPE_VIDEO_ENTRYPOINT_BITSTREAM) {
397         while (true) {
398            int16_t tmp;
399            while (likely(i < 64 && !(tmp = blocks[i]))) i++;
400            if (i >= 64) break;
401            *dec->mpeg12_data++ = dec->zscan[i] * 2;
402            tmp = inverse_quantize(tmp, quant_matrix[i], mpeg1);
403            *dec->mpeg12_data++ = tmp;
404            sum += tmp;
405            count++;
406            i++;
407         }
408      } else {
409         while (true) {
410            int16_t tmp;
411            while (likely(i < 64 && !(tmp = blocks[i]))) i++;
412            if (i >= 64) break;
413            *dec->mpeg12_data++ = i * 2;
414            *dec->mpeg12_data++ = tmp;
415            count++;
416            i++;
417         }
418      }
419
420#endif
421
422      if (dec->base.entrypoint == PIPE_VIDEO_ENTRYPOINT_BITSTREAM) {
423         if (!mpeg1 && (sum & 1) == 0) {
424            if (count && *(dec->mpeg12_data - 2) == 63 * 2) {
425               uint16_t *val = dec->mpeg12_data - 1;
426               if (*val & 1) *val -= 1;
427               else *val += 1;
428            } else {
429               *dec->mpeg12_data++ = 63 * 2;
430               *dec->mpeg12_data++ = 1;
431               count++;
432            }
433         }
434      }
435
436      if (count) {
437         *(dec->mpeg12_data - 2) |= 1;
438      } else {
439         *dec->mpeg12_data++ = 1;
440         *dec->mpeg12_data++ = 0;
441         count = 1;
442      }
443      info.block_counts[block_index] = count;
444      blocks += 64;
445   }
446
447   memcpy(dec->mpeg12_mb_info, &info, sizeof(info));
448   dec->mpeg12_mb_info += sizeof(info);
449
450   if (macrob->num_skipped_macroblocks) {
451      info.index++;
452      info.coded_block_pattern = 0;
453      info.skipped = macrob->num_skipped_macroblocks - 1;
454      memset(info.block_counts, 0, sizeof(info.block_counts));
455      memcpy(dec->mpeg12_mb_info, &info, sizeof(info));
456      dec->mpeg12_mb_info += sizeof(info);
457   }
458}
459
460struct mpeg12_header {
461   uint32_t luma_top_size; // 00
462   uint32_t luma_bottom_size; // 04
463   uint32_t chroma_top_size; // 08
464   uint32_t mbs; // 0c
465   uint32_t mb_info_size; // 10
466   uint32_t mb_width_minus1; // 14
467   uint32_t mb_height_minus1; // 18
468   uint32_t width; // 1c
469   uint32_t height; // 20
470   uint8_t progressive; // 24
471   uint8_t mocomp_only; // 25
472   uint8_t frames; // 26
473   uint8_t picture_structure; // 27
474   uint32_t unk28; // 28 -- 0x50100
475   uint32_t unk2c; // 2c
476   uint32_t pad[4 * 13];
477};
478
479void
480nv84_decoder_vp_mpeg12(struct nv84_decoder *dec,
481                       struct pipe_mpeg12_picture_desc *desc,
482                       struct nv84_video_buffer *dest)
483{
484   struct nouveau_pushbuf *push = dec->vp_pushbuf;
485   struct nv84_video_buffer *ref1 = (struct nv84_video_buffer *)desc->ref[0];
486   struct nv84_video_buffer *ref2 = (struct nv84_video_buffer *)desc->ref[1];
487   struct nouveau_pushbuf_refn bo_refs[] = {
488      { dest->interlaced, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
489      { NULL, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
490      { NULL, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
491      { dec->mpeg12_bo, NOUVEAU_BO_RDWR | NOUVEAU_BO_GART },
492   };
493   int i, num_refs = ARRAY_SIZE(bo_refs);
494   struct mpeg12_header header = {0};
495   struct nv50_miptree *y = nv50_miptree(dest->resources[0]);
496   struct nv50_miptree *uv = nv50_miptree(dest->resources[1]);
497
498   STATIC_ASSERT(sizeof(struct mpeg12_header) == 0x100);
499
500   if (!ref1)
501      ref1 = dest;
502   if (!ref2)
503      ref2 = dest;
504   bo_refs[1].bo = ref1->interlaced;
505   bo_refs[2].bo = ref2->interlaced;
506
507   header.luma_top_size = y->layer_stride;
508   header.luma_bottom_size = y->layer_stride;
509   header.chroma_top_size = uv->layer_stride;
510   header.mbs = mb(dec->base.width) * mb(dec->base.height);
511   header.mb_info_size = dec->mpeg12_mb_info - dec->mpeg12_bo->map - 0x100;
512   header.mb_width_minus1 = mb(dec->base.width) - 1;
513   header.mb_height_minus1 = mb(dec->base.height) - 1;
514   header.width = align(dec->base.width, 16);
515   header.height = align(dec->base.height, 16);
516   header.progressive = desc->frame_pred_frame_dct;
517   header.frames = 1 + (desc->ref[0] != NULL) + (desc->ref[1] != NULL);
518   header.picture_structure = desc->picture_structure;
519   header.unk28 = 0x50100;
520
521   memcpy(dec->mpeg12_bo->map, &header, sizeof(header));
522
523   PUSH_SPACE(push, 10 + 3 + 2);
524
525   nouveau_pushbuf_refn(push, bo_refs, num_refs);
526
527   BEGIN_NV04(push, SUBC_VP(0x400), 9);
528   PUSH_DATA (push, 0x543210); /* each nibble possibly a dma index */
529   PUSH_DATA (push, 0x555001); /* constant */
530   PUSH_DATA (push, dec->mpeg12_bo->offset >> 8);
531   PUSH_DATA (push, (dec->mpeg12_bo->offset + 0x100) >> 8);
532   PUSH_DATA (push, (dec->mpeg12_bo->offset + 0x100 +
533                     align(0x20 * mb(dec->base.width) *
534                           mb(dec->base.height), 0x100)) >> 8);
535   PUSH_DATA (push, dest->interlaced->offset >> 8);
536   PUSH_DATA (push, ref1->interlaced->offset >> 8);
537   PUSH_DATA (push, ref2->interlaced->offset >> 8);
538   PUSH_DATA (push, 6 * 64 * 8 * header.mbs);
539
540   BEGIN_NV04(push, SUBC_VP(0x620), 2);
541   PUSH_DATA (push, 0);
542   PUSH_DATA (push, 0);
543
544   BEGIN_NV04(push, SUBC_VP(0x300), 1);
545   PUSH_DATA (push, 0);
546
547   for (i = 0; i < 2; i++) {
548      struct nv50_miptree *mt = nv50_miptree(dest->resources[i]);
549      mt->base.status |= NOUVEAU_BUFFER_STATUS_GPU_WRITING;
550   }
551   PUSH_KICK (push);
552}
553