1/**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2008-2010 VMware, Inc.  All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * Texture sampling
31 *
32 * Authors:
33 *   Brian Paul
34 *   Keith Whitwell
35 */
36
37#include "pipe/p_context.h"
38#include "pipe/p_defines.h"
39#include "pipe/p_shader_tokens.h"
40#include "util/u_math.h"
41#include "util/u_format.h"
42#include "util/u_memory.h"
43#include "util/u_inlines.h"
44#include "sp_quad.h"   /* only for #define QUAD_* tokens */
45#include "sp_tex_sample.h"
46#include "sp_texture.h"
47#include "sp_tex_tile_cache.h"
48
49
50/** Set to one to help debug texture sampling */
51#define DEBUG_TEX 0
52
53
54/*
55 * Return fractional part of 'f'.  Used for computing interpolation weights.
56 * Need to be careful with negative values.
57 * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
58 * of improperly weighted linear-filtered textures.
59 * The tests/texwrap.c demo is a good test.
60 */
61static inline float
62frac(float f)
63{
64   return f - floorf(f);
65}
66
67
68
69/**
70 * Linear interpolation macro
71 */
72static inline float
73lerp(float a, float v0, float v1)
74{
75   return v0 + a * (v1 - v0);
76}
77
78
79/**
80 * Do 2D/bilinear interpolation of float values.
81 * v00, v10, v01 and v11 are typically four texture samples in a square/box.
82 * a and b are the horizontal and vertical interpolants.
83 * It's important that this function is inlined when compiled with
84 * optimization!  If we find that's not true on some systems, convert
85 * to a macro.
86 */
87static inline float
88lerp_2d(float a, float b,
89        float v00, float v10, float v01, float v11)
90{
91   const float temp0 = lerp(a, v00, v10);
92   const float temp1 = lerp(a, v01, v11);
93   return lerp(b, temp0, temp1);
94}
95
96
97/**
98 * As above, but 3D interpolation of 8 values.
99 */
100static inline float
101lerp_3d(float a, float b, float c,
102        float v000, float v100, float v010, float v110,
103        float v001, float v101, float v011, float v111)
104{
105   const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
106   const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
107   return lerp(c, temp0, temp1);
108}
109
110
111
112/**
113 * Compute coord % size for repeat wrap modes.
114 * Note that if coord is negative, coord % size doesn't give the right
115 * value.  To avoid that problem we add a large multiple of the size
116 * (rather than using a conditional).
117 */
118static inline int
119repeat(int coord, unsigned size)
120{
121   return (coord + size * 1024) % size;
122}
123
124
125/**
126 * Apply texture coord wrapping mode and return integer texture indexes
127 * for a vector of four texcoords (S or T or P).
128 * \param wrapMode  PIPE_TEX_WRAP_x
129 * \param s  the incoming texcoords
130 * \param size  the texture image size
131 * \param icoord  returns the integer texcoords
132 */
133static void
134wrap_nearest_repeat(float s, unsigned size, int offset, int *icoord)
135{
136   /* s limited to [0,1) */
137   /* i limited to [0,size-1] */
138   const int i = util_ifloor(s * size);
139   *icoord = repeat(i + offset, size);
140}
141
142
143static void
144wrap_nearest_clamp(float s, unsigned size, int offset, int *icoord)
145{
146   /* s limited to [0,1] */
147   /* i limited to [0,size-1] */
148   s *= size;
149   s += offset;
150   if (s <= 0.0F)
151      *icoord = 0;
152   else if (s >= size)
153      *icoord = size - 1;
154   else
155      *icoord = util_ifloor(s);
156}
157
158
159static void
160wrap_nearest_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
161{
162   /* s limited to [min,max] */
163   /* i limited to [0, size-1] */
164   const float min = 0.5F;
165   const float max = (float)size - 0.5F;
166
167   s *= size;
168   s += offset;
169
170   if (s < min)
171      *icoord = 0;
172   else if (s > max)
173      *icoord = size - 1;
174   else
175      *icoord = util_ifloor(s);
176}
177
178
179static void
180wrap_nearest_clamp_to_border(float s, unsigned size, int offset, int *icoord)
181{
182   /* s limited to [min,max] */
183   /* i limited to [-1, size] */
184   const float min = -0.5F;
185   const float max = size + 0.5F;
186
187   s *= size;
188   s += offset;
189   if (s <= min)
190      *icoord = -1;
191   else if (s >= max)
192      *icoord = size;
193   else
194      *icoord = util_ifloor(s);
195}
196
197static void
198wrap_nearest_mirror_repeat(float s, unsigned size, int offset, int *icoord)
199{
200   const float min = 1.0F / (2.0F * size);
201   const float max = 1.0F - min;
202   int flr;
203   float u;
204
205   s += (float)offset / size;
206   flr = util_ifloor(s);
207   u = frac(s);
208   if (flr & 1)
209      u = 1.0F - u;
210   if (u < min)
211      *icoord = 0;
212   else if (u > max)
213      *icoord = size - 1;
214   else
215      *icoord = util_ifloor(u * size);
216}
217
218
219static void
220wrap_nearest_mirror_clamp(float s, unsigned size, int offset, int *icoord)
221{
222   /* s limited to [0,1] */
223   /* i limited to [0,size-1] */
224   const float u = fabsf(s * size + offset);
225   if (u <= 0.0F)
226      *icoord = 0;
227   else if (u >= size)
228      *icoord = size - 1;
229   else
230      *icoord = util_ifloor(u);
231}
232
233
234static void
235wrap_nearest_mirror_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
236{
237   /* s limited to [min,max] */
238   /* i limited to [0, size-1] */
239   const float min = 0.5F;
240   const float max = (float)size - 0.5F;
241   const float u = fabsf(s * size + offset);
242
243   if (u < min)
244      *icoord = 0;
245   else if (u > max)
246      *icoord = size - 1;
247   else
248      *icoord = util_ifloor(u);
249}
250
251
252static void
253wrap_nearest_mirror_clamp_to_border(float s, unsigned size, int offset, int *icoord)
254{
255   /* u limited to [-0.5, size-0.5] */
256   const float min = -0.5F;
257   const float max = (float)size + 0.5F;
258   const float u = fabsf(s * size + offset);
259
260   if (u < min)
261      *icoord = -1;
262   else if (u > max)
263      *icoord = size;
264   else
265      *icoord = util_ifloor(u);
266}
267
268
269/**
270 * Used to compute texel locations for linear sampling
271 * \param wrapMode  PIPE_TEX_WRAP_x
272 * \param s  the texcoord
273 * \param size  the texture image size
274 * \param icoord0  returns first texture index
275 * \param icoord1  returns second texture index (usually icoord0 + 1)
276 * \param w  returns blend factor/weight between texture indices
277 * \param icoord  returns the computed integer texture coord
278 */
279static void
280wrap_linear_repeat(float s, unsigned size, int offset,
281                   int *icoord0, int *icoord1, float *w)
282{
283   const float u = s * size - 0.5F;
284   *icoord0 = repeat(util_ifloor(u) + offset, size);
285   *icoord1 = repeat(*icoord0 + 1, size);
286   *w = frac(u);
287}
288
289
290static void
291wrap_linear_clamp(float s, unsigned size, int offset,
292                  int *icoord0, int *icoord1, float *w)
293{
294   const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
295
296   *icoord0 = util_ifloor(u);
297   *icoord1 = *icoord0 + 1;
298   *w = frac(u);
299}
300
301
302static void
303wrap_linear_clamp_to_edge(float s, unsigned size, int offset,
304                          int *icoord0, int *icoord1, float *w)
305{
306   const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
307   *icoord0 = util_ifloor(u);
308   *icoord1 = *icoord0 + 1;
309   if (*icoord0 < 0)
310      *icoord0 = 0;
311   if (*icoord1 >= (int) size)
312      *icoord1 = size - 1;
313   *w = frac(u);
314}
315
316
317static void
318wrap_linear_clamp_to_border(float s, unsigned size, int offset,
319                            int *icoord0, int *icoord1, float *w)
320{
321   const float min = -0.5F;
322   const float max = (float)size + 0.5F;
323   const float u = CLAMP(s * size + offset, min, max) - 0.5f;
324   *icoord0 = util_ifloor(u);
325   *icoord1 = *icoord0 + 1;
326   *w = frac(u);
327}
328
329
330static void
331wrap_linear_mirror_repeat(float s, unsigned size, int offset,
332                          int *icoord0, int *icoord1, float *w)
333{
334   int flr;
335   float u;
336
337   s += (float)offset / size;
338   flr = util_ifloor(s);
339   u = frac(s);
340   if (flr & 1)
341      u = 1.0F - u;
342   u = u * size - 0.5F;
343   *icoord0 = util_ifloor(u);
344   *icoord1 = *icoord0 + 1;
345   if (*icoord0 < 0)
346      *icoord0 = 0;
347   if (*icoord1 >= (int) size)
348      *icoord1 = size - 1;
349   *w = frac(u);
350}
351
352
353static void
354wrap_linear_mirror_clamp(float s, unsigned size, int offset,
355                         int *icoord0, int *icoord1, float *w)
356{
357   float u = fabsf(s * size + offset);
358   if (u >= size)
359      u = (float) size;
360   u -= 0.5F;
361   *icoord0 = util_ifloor(u);
362   *icoord1 = *icoord0 + 1;
363   *w = frac(u);
364}
365
366
367static void
368wrap_linear_mirror_clamp_to_edge(float s, unsigned size, int offset,
369                                 int *icoord0, int *icoord1, float *w)
370{
371   float u = fabsf(s * size + offset);
372   if (u >= size)
373      u = (float) size;
374   u -= 0.5F;
375   *icoord0 = util_ifloor(u);
376   *icoord1 = *icoord0 + 1;
377   if (*icoord0 < 0)
378      *icoord0 = 0;
379   if (*icoord1 >= (int) size)
380      *icoord1 = size - 1;
381   *w = frac(u);
382}
383
384
385static void
386wrap_linear_mirror_clamp_to_border(float s, unsigned size, int offset,
387                                   int *icoord0, int *icoord1, float *w)
388{
389   const float min = -0.5F;
390   const float max = size + 0.5F;
391   const float t = fabsf(s * size + offset);
392   const float u = CLAMP(t, min, max) - 0.5F;
393   *icoord0 = util_ifloor(u);
394   *icoord1 = *icoord0 + 1;
395   *w = frac(u);
396}
397
398
399/**
400 * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
401 */
402static void
403wrap_nearest_unorm_clamp(float s, unsigned size, int offset, int *icoord)
404{
405   const int i = util_ifloor(s);
406   *icoord = CLAMP(i + offset, 0, (int) size-1);
407}
408
409
410/**
411 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
412 */
413static void
414wrap_nearest_unorm_clamp_to_border(float s, unsigned size, int offset, int *icoord)
415{
416   *icoord = util_ifloor( CLAMP(s + offset, -0.5F, (float) size + 0.5F) );
417}
418
419
420/**
421 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
422 */
423static void
424wrap_nearest_unorm_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
425{
426   *icoord = util_ifloor( CLAMP(s + offset, 0.5F, (float) size - 0.5F) );
427}
428
429
430/**
431 * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
432 */
433static void
434wrap_linear_unorm_clamp(float s, unsigned size, int offset,
435                        int *icoord0, int *icoord1, float *w)
436{
437   /* Not exactly what the spec says, but it matches NVIDIA output */
438   const float u = CLAMP(s + offset - 0.5F, 0.0f, (float) size - 1.0f);
439   *icoord0 = util_ifloor(u);
440   *icoord1 = *icoord0 + 1;
441   *w = frac(u);
442}
443
444
445/**
446 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
447 */
448static void
449wrap_linear_unorm_clamp_to_border(float s, unsigned size, int offset,
450                                  int *icoord0, int *icoord1, float *w)
451{
452   const float u = CLAMP(s + offset, -0.5F, (float) size + 0.5F) - 0.5F;
453   *icoord0 = util_ifloor(u);
454   *icoord1 = *icoord0 + 1;
455   if (*icoord1 > (int) size - 1)
456      *icoord1 = size - 1;
457   *w = frac(u);
458}
459
460
461/**
462 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
463 */
464static void
465wrap_linear_unorm_clamp_to_edge(float s, unsigned size, int offset,
466                                int *icoord0, int *icoord1, float *w)
467{
468   const float u = CLAMP(s + offset, +0.5F, (float) size - 0.5F) - 0.5F;
469   *icoord0 = util_ifloor(u);
470   *icoord1 = *icoord0 + 1;
471   if (*icoord1 > (int) size - 1)
472      *icoord1 = size - 1;
473   *w = frac(u);
474}
475
476
477/**
478 * Do coordinate to array index conversion.  For array textures.
479 */
480static inline int
481coord_to_layer(float coord, unsigned first_layer, unsigned last_layer)
482{
483   const int c = util_ifloor(coord + 0.5F);
484   return CLAMP(c, (int)first_layer, (int)last_layer);
485}
486
487static void
488compute_gradient_1d(const float s[TGSI_QUAD_SIZE],
489                    const float t[TGSI_QUAD_SIZE],
490                    const float p[TGSI_QUAD_SIZE],
491                    float derivs[3][2][TGSI_QUAD_SIZE])
492{
493   memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
494   derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
495   derivs[0][1][0] = s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT];
496}
497
498static float
499compute_lambda_1d_explicit_gradients(const struct sp_sampler_view *sview,
500                                     const float derivs[3][2][TGSI_QUAD_SIZE],
501                                     uint quad)
502{
503   const struct pipe_resource *texture = sview->base.texture;
504   const float dsdx = fabsf(derivs[0][0][quad]);
505   const float dsdy = fabsf(derivs[0][1][quad]);
506   const float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
507   return util_fast_log2(rho);
508}
509
510
511/**
512 * Examine the quad's texture coordinates to compute the partial
513 * derivatives w.r.t X and Y, then compute lambda (level of detail).
514 */
515static float
516compute_lambda_1d(const struct sp_sampler_view *sview,
517                  const float s[TGSI_QUAD_SIZE],
518                  const float t[TGSI_QUAD_SIZE],
519                  const float p[TGSI_QUAD_SIZE])
520{
521   float derivs[3][2][TGSI_QUAD_SIZE];
522   compute_gradient_1d(s, t, p, derivs);
523   return compute_lambda_1d_explicit_gradients(sview, derivs, 0);
524}
525
526
527static void
528compute_gradient_2d(const float s[TGSI_QUAD_SIZE],
529                    const float t[TGSI_QUAD_SIZE],
530                    const float p[TGSI_QUAD_SIZE],
531                    float derivs[3][2][TGSI_QUAD_SIZE])
532{
533   memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
534   derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
535   derivs[0][1][0] = s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT];
536   derivs[1][0][0] = t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT];
537   derivs[1][1][0] = t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT];
538}
539
540static float
541compute_lambda_2d_explicit_gradients(const struct sp_sampler_view *sview,
542                                     const float derivs[3][2][TGSI_QUAD_SIZE],
543                                     uint quad)
544{
545   const struct pipe_resource *texture = sview->base.texture;
546   const float dsdx = fabsf(derivs[0][0][quad]);
547   const float dsdy = fabsf(derivs[0][1][quad]);
548   const float dtdx = fabsf(derivs[1][0][quad]);
549   const float dtdy = fabsf(derivs[1][1][quad]);
550   const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
551   const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
552   const float rho  = MAX2(maxx, maxy);
553   return util_fast_log2(rho);
554}
555
556
557static float
558compute_lambda_2d(const struct sp_sampler_view *sview,
559                  const float s[TGSI_QUAD_SIZE],
560                  const float t[TGSI_QUAD_SIZE],
561                  const float p[TGSI_QUAD_SIZE])
562{
563   float derivs[3][2][TGSI_QUAD_SIZE];
564   compute_gradient_2d(s, t, p, derivs);
565   return compute_lambda_2d_explicit_gradients(sview, derivs, 0);
566}
567
568
569static void
570compute_gradient_3d(const float s[TGSI_QUAD_SIZE],
571                    const float t[TGSI_QUAD_SIZE],
572                    const float p[TGSI_QUAD_SIZE],
573                    float derivs[3][2][TGSI_QUAD_SIZE])
574{
575   memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
576   derivs[0][0][0] = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
577   derivs[0][1][0] = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
578   derivs[1][0][0] = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
579   derivs[1][1][0] = fabsf(t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]);
580   derivs[2][0][0] = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
581   derivs[2][1][0] = fabsf(p[QUAD_TOP_LEFT]     - p[QUAD_BOTTOM_LEFT]);
582}
583
584static float
585compute_lambda_3d_explicit_gradients(const struct sp_sampler_view *sview,
586                                     const float derivs[3][2][TGSI_QUAD_SIZE],
587                                     uint quad)
588{
589   const struct pipe_resource *texture = sview->base.texture;
590   const float dsdx = fabsf(derivs[0][0][quad]);
591   const float dsdy = fabsf(derivs[0][1][quad]);
592   const float dtdx = fabsf(derivs[1][0][quad]);
593   const float dtdy = fabsf(derivs[1][1][quad]);
594   const float dpdx = fabsf(derivs[2][0][quad]);
595   const float dpdy = fabsf(derivs[2][1][quad]);
596   const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
597   const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
598   const float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, sview->base.u.tex.first_level);
599   const float rho = MAX3(maxx, maxy, maxz);
600
601   return util_fast_log2(rho);
602}
603
604
605static float
606compute_lambda_3d(const struct sp_sampler_view *sview,
607                  const float s[TGSI_QUAD_SIZE],
608                  const float t[TGSI_QUAD_SIZE],
609                  const float p[TGSI_QUAD_SIZE])
610{
611   float derivs[3][2][TGSI_QUAD_SIZE];
612   compute_gradient_3d(s, t, p, derivs);
613   return compute_lambda_3d_explicit_gradients(sview, derivs, 0);
614}
615
616
617static float
618compute_lambda_cube_explicit_gradients(const struct sp_sampler_view *sview,
619                                       const float derivs[3][2][TGSI_QUAD_SIZE],
620                                       uint quad)
621{
622   const struct pipe_resource *texture = sview->base.texture;
623   const float dsdx = fabsf(derivs[0][0][quad]);
624   const float dsdy = fabsf(derivs[0][1][quad]);
625   const float dtdx = fabsf(derivs[1][0][quad]);
626   const float dtdy = fabsf(derivs[1][1][quad]);
627   const float dpdx = fabsf(derivs[2][0][quad]);
628   const float dpdy = fabsf(derivs[2][1][quad]);
629   const float maxx = MAX2(dsdx, dsdy);
630   const float maxy = MAX2(dtdx, dtdy);
631   const float maxz = MAX2(dpdx, dpdy);
632   const float rho = MAX3(maxx, maxy, maxz) * u_minify(texture->width0, sview->base.u.tex.first_level) / 2.0f;
633
634   return util_fast_log2(rho);
635}
636
637static float
638compute_lambda_cube(const struct sp_sampler_view *sview,
639                    const float s[TGSI_QUAD_SIZE],
640                    const float t[TGSI_QUAD_SIZE],
641                    const float p[TGSI_QUAD_SIZE])
642{
643   float derivs[3][2][TGSI_QUAD_SIZE];
644   compute_gradient_3d(s, t, p, derivs);
645   return compute_lambda_cube_explicit_gradients(sview, derivs, 0);
646}
647
648/**
649 * Compute lambda for a vertex texture sampler.
650 * Since there aren't derivatives to use, just return 0.
651 */
652static float
653compute_lambda_vert(const struct sp_sampler_view *sview,
654                    const float s[TGSI_QUAD_SIZE],
655                    const float t[TGSI_QUAD_SIZE],
656                    const float p[TGSI_QUAD_SIZE])
657{
658   return 0.0f;
659}
660
661
662compute_lambda_from_grad_func
663softpipe_get_lambda_from_grad_func(const struct pipe_sampler_view *view,
664                                   enum pipe_shader_type shader)
665{
666   switch (view->target) {
667   case PIPE_BUFFER:
668   case PIPE_TEXTURE_1D:
669   case PIPE_TEXTURE_1D_ARRAY:
670      return compute_lambda_1d_explicit_gradients;
671   case PIPE_TEXTURE_2D:
672   case PIPE_TEXTURE_2D_ARRAY:
673   case PIPE_TEXTURE_RECT:
674      return compute_lambda_2d_explicit_gradients;
675   case PIPE_TEXTURE_CUBE:
676   case PIPE_TEXTURE_CUBE_ARRAY:
677      return compute_lambda_cube_explicit_gradients;
678   case PIPE_TEXTURE_3D:
679      return compute_lambda_3d_explicit_gradients;
680   default:
681      assert(0);
682      return compute_lambda_1d_explicit_gradients;
683   }
684}
685
686
687/**
688 * Get a texel from a texture, using the texture tile cache.
689 *
690 * \param addr  the template tex address containing cube, z, face info.
691 * \param x  the x coord of texel within 2D image
692 * \param y  the y coord of texel within 2D image
693 * \param rgba  the quad to put the texel/color into
694 *
695 * XXX maybe move this into sp_tex_tile_cache.c and merge with the
696 * sp_get_cached_tile_tex() function.
697 */
698
699
700
701static inline const float *
702get_texel_buffer_no_border(const struct sp_sampler_view *sp_sview,
703                           union tex_tile_address addr, int x, unsigned elmsize)
704{
705   const struct softpipe_tex_cached_tile *tile;
706   addr.bits.x = x * elmsize / TEX_TILE_SIZE;
707   assert(x * elmsize / TEX_TILE_SIZE == addr.bits.x);
708
709   x %= TEX_TILE_SIZE / elmsize;
710
711   tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
712
713   return &tile->data.color[0][x][0];
714}
715
716
717static inline const float *
718get_texel_2d_no_border(const struct sp_sampler_view *sp_sview,
719                       union tex_tile_address addr, int x, int y)
720{
721   const struct softpipe_tex_cached_tile *tile;
722   addr.bits.x = x / TEX_TILE_SIZE;
723   addr.bits.y = y / TEX_TILE_SIZE;
724   y %= TEX_TILE_SIZE;
725   x %= TEX_TILE_SIZE;
726
727   tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
728
729   return &tile->data.color[y][x][0];
730}
731
732
733static inline const float *
734get_texel_2d(const struct sp_sampler_view *sp_sview,
735             const struct sp_sampler *sp_samp,
736             union tex_tile_address addr, int x, int y)
737{
738   const struct pipe_resource *texture = sp_sview->base.texture;
739   const unsigned level = addr.bits.level;
740
741   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
742       y < 0 || y >= (int) u_minify(texture->height0, level)) {
743      return sp_samp->base.border_color.f;
744   }
745   else {
746      return get_texel_2d_no_border( sp_sview, addr, x, y );
747   }
748}
749
750
751/*
752 * Here's the complete logic (HOLY CRAP) for finding next face and doing the
753 * corresponding coord wrapping, implemented by get_next_face,
754 * get_next_xcoord, get_next_ycoord.
755 * Read like that (first line):
756 * If face is +x and s coord is below zero, then
757 * new face is +z, new s is max , new t is old t
758 * (max is always cube size - 1).
759 *
760 * +x s- -> +z: s = max,   t = t
761 * +x s+ -> -z: s = 0,     t = t
762 * +x t- -> +y: s = max,   t = max-s
763 * +x t+ -> -y: s = max,   t = s
764 *
765 * -x s- -> -z: s = max,   t = t
766 * -x s+ -> +z: s = 0,     t = t
767 * -x t- -> +y: s = 0,     t = s
768 * -x t+ -> -y: s = 0,     t = max-s
769 *
770 * +y s- -> -x: s = t,     t = 0
771 * +y s+ -> +x: s = max-t, t = 0
772 * +y t- -> -z: s = max-s, t = 0
773 * +y t+ -> +z: s = s,     t = 0
774 *
775 * -y s- -> -x: s = max-t, t = max
776 * -y s+ -> +x: s = t,     t = max
777 * -y t- -> +z: s = s,     t = max
778 * -y t+ -> -z: s = max-s, t = max
779
780 * +z s- -> -x: s = max,   t = t
781 * +z s+ -> +x: s = 0,     t = t
782 * +z t- -> +y: s = s,     t = max
783 * +z t+ -> -y: s = s,     t = 0
784
785 * -z s- -> +x: s = max,   t = t
786 * -z s+ -> -x: s = 0,     t = t
787 * -z t- -> +y: s = max-s, t = 0
788 * -z t+ -> -y: s = max-s, t = max
789 */
790
791
792/*
793 * seamless cubemap neighbour array.
794 * this array is used to find the adjacent face in each of 4 directions,
795 * left, right, up, down. (or -x, +x, -y, +y).
796 */
797static const unsigned face_array[PIPE_TEX_FACE_MAX][4] = {
798   /* pos X first then neg X is Z different, Y the same */
799   /* PIPE_TEX_FACE_POS_X,*/
800   { PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z,
801     PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
802   /* PIPE_TEX_FACE_NEG_X */
803   { PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z,
804     PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
805
806   /* pos Y first then neg Y is X different, X the same */
807   /* PIPE_TEX_FACE_POS_Y */
808   { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
809     PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z },
810
811   /* PIPE_TEX_FACE_NEG_Y */
812   { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
813     PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z },
814
815   /* pos Z first then neg Y is X different, X the same */
816   /* PIPE_TEX_FACE_POS_Z */
817   { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
818     PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
819
820   /* PIPE_TEX_FACE_NEG_Z */
821   { PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_X,
822     PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y }
823};
824
825static inline unsigned
826get_next_face(unsigned face, int idx)
827{
828   return face_array[face][idx];
829}
830
831/*
832 * return a new xcoord based on old face, old coords, cube size
833 * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
834 */
835static inline int
836get_next_xcoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
837{
838   if ((face == 0 && fall_off_index != 1) ||
839       (face == 1 && fall_off_index == 0) ||
840       (face == 4 && fall_off_index == 0) ||
841       (face == 5 && fall_off_index == 0)) {
842      return max;
843   }
844   if ((face == 1 && fall_off_index != 0) ||
845       (face == 0 && fall_off_index == 1) ||
846       (face == 4 && fall_off_index == 1) ||
847       (face == 5 && fall_off_index == 1)) {
848      return 0;
849   }
850   if ((face == 4 && fall_off_index >= 2) ||
851       (face == 2 && fall_off_index == 3) ||
852       (face == 3 && fall_off_index == 2)) {
853      return xc;
854   }
855   if ((face == 5 && fall_off_index >= 2) ||
856       (face == 2 && fall_off_index == 2) ||
857       (face == 3 && fall_off_index == 3)) {
858      return max - xc;
859   }
860   if ((face == 2 && fall_off_index == 0) ||
861       (face == 3 && fall_off_index == 1)) {
862      return yc;
863   }
864   /* (face == 2 && fall_off_index == 1) ||
865      (face == 3 && fall_off_index == 0)) */
866   return max - yc;
867}
868
869/*
870 * return a new ycoord based on old face, old coords, cube size
871 * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
872 */
873static inline int
874get_next_ycoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
875{
876   if ((fall_off_index <= 1) && (face <= 1 || face >= 4)) {
877      return yc;
878   }
879   if (face == 2 ||
880       (face == 4 && fall_off_index == 3) ||
881       (face == 5 && fall_off_index == 2)) {
882      return 0;
883   }
884   if (face == 3 ||
885       (face == 4 && fall_off_index == 2) ||
886       (face == 5 && fall_off_index == 3)) {
887      return max;
888   }
889   if ((face == 0 && fall_off_index == 3) ||
890       (face == 1 && fall_off_index == 2)) {
891      return xc;
892   }
893   /* (face == 0 && fall_off_index == 2) ||
894      (face == 1 && fall_off_index == 3) */
895   return max - xc;
896}
897
898
899/* Gather a quad of adjacent texels within a tile:
900 */
901static inline void
902get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_view *sp_sview,
903                                        union tex_tile_address addr,
904                                        unsigned x, unsigned y,
905                                        const float *out[4])
906{
907    const struct softpipe_tex_cached_tile *tile;
908
909   addr.bits.x = x / TEX_TILE_SIZE;
910   addr.bits.y = y / TEX_TILE_SIZE;
911   y %= TEX_TILE_SIZE;
912   x %= TEX_TILE_SIZE;
913
914   tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
915
916   out[0] = &tile->data.color[y  ][x  ][0];
917   out[1] = &tile->data.color[y  ][x+1][0];
918   out[2] = &tile->data.color[y+1][x  ][0];
919   out[3] = &tile->data.color[y+1][x+1][0];
920}
921
922
923/* Gather a quad of potentially non-adjacent texels:
924 */
925static inline void
926get_texel_quad_2d_no_border(const struct sp_sampler_view *sp_sview,
927                            union tex_tile_address addr,
928                            int x0, int y0,
929                            int x1, int y1,
930                            const float *out[4])
931{
932   out[0] = get_texel_2d_no_border( sp_sview, addr, x0, y0 );
933   out[1] = get_texel_2d_no_border( sp_sview, addr, x1, y0 );
934   out[2] = get_texel_2d_no_border( sp_sview, addr, x0, y1 );
935   out[3] = get_texel_2d_no_border( sp_sview, addr, x1, y1 );
936}
937
938
939/* 3d variants:
940 */
941static inline const float *
942get_texel_3d_no_border(const struct sp_sampler_view *sp_sview,
943                       union tex_tile_address addr, int x, int y, int z)
944{
945   const struct softpipe_tex_cached_tile *tile;
946
947   addr.bits.x = x / TEX_TILE_SIZE;
948   addr.bits.y = y / TEX_TILE_SIZE;
949   addr.bits.z = z;
950   y %= TEX_TILE_SIZE;
951   x %= TEX_TILE_SIZE;
952
953   tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
954
955   return &tile->data.color[y][x][0];
956}
957
958
959static inline const float *
960get_texel_3d(const struct sp_sampler_view *sp_sview,
961             const struct sp_sampler *sp_samp,
962             union tex_tile_address addr, int x, int y, int z)
963{
964   const struct pipe_resource *texture = sp_sview->base.texture;
965   const unsigned level = addr.bits.level;
966
967   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
968       y < 0 || y >= (int) u_minify(texture->height0, level) ||
969       z < 0 || z >= (int) u_minify(texture->depth0, level)) {
970      return sp_samp->base.border_color.f;
971   }
972   else {
973      return get_texel_3d_no_border( sp_sview, addr, x, y, z );
974   }
975}
976
977
978/* Get texel pointer for 1D array texture */
979static inline const float *
980get_texel_1d_array(const struct sp_sampler_view *sp_sview,
981                   const struct sp_sampler *sp_samp,
982                   union tex_tile_address addr, int x, int y)
983{
984   const struct pipe_resource *texture = sp_sview->base.texture;
985   const unsigned level = addr.bits.level;
986
987   if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
988      return sp_samp->base.border_color.f;
989   }
990   else {
991      return get_texel_2d_no_border(sp_sview, addr, x, y);
992   }
993}
994
995
996/* Get texel pointer for 2D array texture */
997static inline const float *
998get_texel_2d_array(const struct sp_sampler_view *sp_sview,
999                   const struct sp_sampler *sp_samp,
1000                   union tex_tile_address addr, int x, int y, int layer)
1001{
1002   const struct pipe_resource *texture = sp_sview->base.texture;
1003   const unsigned level = addr.bits.level;
1004
1005   assert(layer < (int) texture->array_size);
1006   assert(layer >= 0);
1007
1008   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
1009       y < 0 || y >= (int) u_minify(texture->height0, level)) {
1010      return sp_samp->base.border_color.f;
1011   }
1012   else {
1013      return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
1014   }
1015}
1016
1017
1018static inline const float *
1019get_texel_cube_seamless(const struct sp_sampler_view *sp_sview,
1020                        union tex_tile_address addr, int x, int y,
1021                        float *corner, int layer, unsigned face)
1022{
1023   const struct pipe_resource *texture = sp_sview->base.texture;
1024   const unsigned level = addr.bits.level;
1025   int new_x, new_y, max_x;
1026
1027   max_x = (int) u_minify(texture->width0, level);
1028
1029   assert(texture->width0 == texture->height0);
1030   new_x = x;
1031   new_y = y;
1032
1033   /* change the face */
1034   if (x < 0) {
1035      /*
1036       * Cheat with corners. They are difficult and I believe because we don't get
1037       * per-pixel faces we can actually have multiple corner texels per pixel,
1038       * which screws things up majorly in any case (as the per spec behavior is
1039       * to average the 3 remaining texels, which we might not have).
1040       * Hence just make sure that the 2nd coord is clamped, will simply pick the
1041       * sample which would have fallen off the x coord, but not y coord.
1042       * So the filter weight of the samples will be wrong, but at least this
1043       * ensures that only valid texels near the corner are used.
1044       */
1045      if (y < 0 || y >= max_x) {
1046         y = CLAMP(y, 0, max_x - 1);
1047      }
1048      new_x = get_next_xcoord(face, 0, max_x -1, x, y);
1049      new_y = get_next_ycoord(face, 0, max_x -1, x, y);
1050      face = get_next_face(face, 0);
1051   } else if (x >= max_x) {
1052      if (y < 0 || y >= max_x) {
1053         y = CLAMP(y, 0, max_x - 1);
1054      }
1055      new_x = get_next_xcoord(face, 1, max_x -1, x, y);
1056      new_y = get_next_ycoord(face, 1, max_x -1, x, y);
1057      face = get_next_face(face, 1);
1058   } else if (y < 0) {
1059      new_x = get_next_xcoord(face, 2, max_x -1, x, y);
1060      new_y = get_next_ycoord(face, 2, max_x -1, x, y);
1061      face = get_next_face(face, 2);
1062   } else if (y >= max_x) {
1063      new_x = get_next_xcoord(face, 3, max_x -1, x, y);
1064      new_y = get_next_ycoord(face, 3, max_x -1, x, y);
1065      face = get_next_face(face, 3);
1066   }
1067
1068   return get_texel_3d_no_border(sp_sview, addr, new_x, new_y, layer + face);
1069}
1070
1071
1072/* Get texel pointer for cube array texture */
1073static inline const float *
1074get_texel_cube_array(const struct sp_sampler_view *sp_sview,
1075                     const struct sp_sampler *sp_samp,
1076                     union tex_tile_address addr, int x, int y, int layer)
1077{
1078   const struct pipe_resource *texture = sp_sview->base.texture;
1079   const unsigned level = addr.bits.level;
1080
1081   assert(layer < (int) texture->array_size);
1082   assert(layer >= 0);
1083
1084   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
1085       y < 0 || y >= (int) u_minify(texture->height0, level)) {
1086      return sp_samp->base.border_color.f;
1087   }
1088   else {
1089      return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
1090   }
1091}
1092/**
1093 * Given the logbase2 of a mipmap's base level size and a mipmap level,
1094 * return the size (in texels) of that mipmap level.
1095 * For example, if level[0].width = 256 then base_pot will be 8.
1096 * If level = 2, then we'll return 64 (the width at level=2).
1097 * Return 1 if level > base_pot.
1098 */
1099static inline unsigned
1100pot_level_size(unsigned base_pot, unsigned level)
1101{
1102   return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
1103}
1104
1105
1106static void
1107print_sample(const char *function, const float *rgba)
1108{
1109   debug_printf("%s %g %g %g %g\n",
1110                function,
1111                rgba[0], rgba[TGSI_NUM_CHANNELS], rgba[2*TGSI_NUM_CHANNELS], rgba[3*TGSI_NUM_CHANNELS]);
1112}
1113
1114
1115static void
1116print_sample_4(const char *function, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1117{
1118   debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
1119                function,
1120                rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
1121                rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
1122                rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
1123                rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
1124}
1125
1126
1127/* Some image-filter fastpaths:
1128 */
1129static inline void
1130img_filter_2d_linear_repeat_POT(const struct sp_sampler_view *sp_sview,
1131                                const struct sp_sampler *sp_samp,
1132                                const struct img_filter_args *args,
1133                                float *rgba)
1134{
1135   const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1136   const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1137   const int xmax = (xpot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, xpot) - 1; */
1138   const int ymax = (ypot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, ypot) - 1; */
1139   union tex_tile_address addr;
1140   int c;
1141
1142   const float u = (args->s * xpot - 0.5F) + args->offset[0];
1143   const float v = (args->t * ypot - 0.5F) + args->offset[1];
1144
1145   const int uflr = util_ifloor(u);
1146   const int vflr = util_ifloor(v);
1147
1148   const float xw = u - (float)uflr;
1149   const float yw = v - (float)vflr;
1150
1151   const int x0 = uflr & (xpot - 1);
1152   const int y0 = vflr & (ypot - 1);
1153
1154   const float *tx[4];
1155
1156   addr.value = 0;
1157   addr.bits.level = args->level;
1158   addr.bits.z = sp_sview->base.u.tex.first_layer;
1159
1160   /* Can we fetch all four at once:
1161    */
1162   if (x0 < xmax && y0 < ymax) {
1163      get_texel_quad_2d_no_border_single_tile(sp_sview, addr, x0, y0, tx);
1164   }
1165   else {
1166      const unsigned x1 = (x0 + 1) & (xpot - 1);
1167      const unsigned y1 = (y0 + 1) & (ypot - 1);
1168      get_texel_quad_2d_no_border(sp_sview, addr, x0, y0, x1, y1, tx);
1169   }
1170
1171   /* interpolate R, G, B, A */
1172   for (c = 0; c < TGSI_NUM_CHANNELS; c++) {
1173      rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1174                                       tx[0][c], tx[1][c],
1175                                       tx[2][c], tx[3][c]);
1176   }
1177
1178   if (DEBUG_TEX) {
1179      print_sample(__FUNCTION__, rgba);
1180   }
1181}
1182
1183
1184static inline void
1185img_filter_2d_nearest_repeat_POT(const struct sp_sampler_view *sp_sview,
1186                                 const struct sp_sampler *sp_samp,
1187                                 const struct img_filter_args *args,
1188                                 float *rgba)
1189{
1190   const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1191   const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1192   const float *out;
1193   union tex_tile_address addr;
1194   int c;
1195
1196   const float u = args->s * xpot + args->offset[0];
1197   const float v = args->t * ypot + args->offset[1];
1198
1199   const int uflr = util_ifloor(u);
1200   const int vflr = util_ifloor(v);
1201
1202   const int x0 = uflr & (xpot - 1);
1203   const int y0 = vflr & (ypot - 1);
1204
1205   addr.value = 0;
1206   addr.bits.level = args->level;
1207   addr.bits.z = sp_sview->base.u.tex.first_layer;
1208
1209   out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1210   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1211      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1212
1213   if (DEBUG_TEX) {
1214      print_sample(__FUNCTION__, rgba);
1215   }
1216}
1217
1218
1219static inline void
1220img_filter_2d_nearest_clamp_POT(const struct sp_sampler_view *sp_sview,
1221                                const struct sp_sampler *sp_samp,
1222                                const struct img_filter_args *args,
1223                                float *rgba)
1224{
1225   const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1226   const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1227   union tex_tile_address addr;
1228   int c;
1229
1230   const float u = args->s * xpot + args->offset[0];
1231   const float v = args->t * ypot + args->offset[1];
1232
1233   int x0, y0;
1234   const float *out;
1235
1236   addr.value = 0;
1237   addr.bits.level = args->level;
1238   addr.bits.z = sp_sview->base.u.tex.first_layer;
1239
1240   x0 = util_ifloor(u);
1241   if (x0 < 0)
1242      x0 = 0;
1243   else if (x0 > (int) xpot - 1)
1244      x0 = xpot - 1;
1245
1246   y0 = util_ifloor(v);
1247   if (y0 < 0)
1248      y0 = 0;
1249   else if (y0 > (int) ypot - 1)
1250      y0 = ypot - 1;
1251
1252   out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1253   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1254      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1255
1256   if (DEBUG_TEX) {
1257      print_sample(__FUNCTION__, rgba);
1258   }
1259}
1260
1261
1262static void
1263img_filter_1d_nearest(const struct sp_sampler_view *sp_sview,
1264                      const struct sp_sampler *sp_samp,
1265                      const struct img_filter_args *args,
1266                      float *rgba)
1267{
1268   const struct pipe_resource *texture = sp_sview->base.texture;
1269   const int width = u_minify(texture->width0, args->level);
1270   int x;
1271   union tex_tile_address addr;
1272   const float *out;
1273   int c;
1274
1275   assert(width > 0);
1276
1277   addr.value = 0;
1278   addr.bits.level = args->level;
1279
1280   sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1281
1282   out = get_texel_1d_array(sp_sview, sp_samp, addr, x,
1283                            sp_sview->base.u.tex.first_layer);
1284   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1285      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1286
1287   if (DEBUG_TEX) {
1288      print_sample(__FUNCTION__, rgba);
1289   }
1290}
1291
1292
1293static void
1294img_filter_1d_array_nearest(const struct sp_sampler_view *sp_sview,
1295                            const struct sp_sampler *sp_samp,
1296                            const struct img_filter_args *args,
1297                            float *rgba)
1298{
1299   const struct pipe_resource *texture = sp_sview->base.texture;
1300   const int width = u_minify(texture->width0, args->level);
1301   const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1302                                    sp_sview->base.u.tex.last_layer);
1303   int x;
1304   union tex_tile_address addr;
1305   const float *out;
1306   int c;
1307
1308   assert(width > 0);
1309
1310   addr.value = 0;
1311   addr.bits.level = args->level;
1312
1313   sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1314
1315   out = get_texel_1d_array(sp_sview, sp_samp, addr, x, layer);
1316   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1317      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1318
1319   if (DEBUG_TEX) {
1320      print_sample(__FUNCTION__, rgba);
1321   }
1322}
1323
1324
1325static void
1326img_filter_2d_nearest(const struct sp_sampler_view *sp_sview,
1327                      const struct sp_sampler *sp_samp,
1328                      const struct img_filter_args *args,
1329                      float *rgba)
1330{
1331   const struct pipe_resource *texture = sp_sview->base.texture;
1332   const int width = u_minify(texture->width0, args->level);
1333   const int height = u_minify(texture->height0, args->level);
1334   int x, y;
1335   union tex_tile_address addr;
1336   const float *out;
1337   int c;
1338
1339   assert(width > 0);
1340   assert(height > 0);
1341
1342   addr.value = 0;
1343   addr.bits.level = args->level;
1344   addr.bits.z = sp_sview->base.u.tex.first_layer;
1345
1346   sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1347   sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1348
1349   out = get_texel_2d(sp_sview, sp_samp, addr, x, y);
1350   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1351      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1352
1353   if (DEBUG_TEX) {
1354      print_sample(__FUNCTION__, rgba);
1355   }
1356}
1357
1358
1359static void
1360img_filter_2d_array_nearest(const struct sp_sampler_view *sp_sview,
1361                            const struct sp_sampler *sp_samp,
1362                            const struct img_filter_args *args,
1363                            float *rgba)
1364{
1365   const struct pipe_resource *texture = sp_sview->base.texture;
1366   const int width = u_minify(texture->width0, args->level);
1367   const int height = u_minify(texture->height0, args->level);
1368   const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1369                                    sp_sview->base.u.tex.last_layer);
1370   int x, y;
1371   union tex_tile_address addr;
1372   const float *out;
1373   int c;
1374
1375   assert(width > 0);
1376   assert(height > 0);
1377
1378   addr.value = 0;
1379   addr.bits.level = args->level;
1380
1381   sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1382   sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1383
1384   out = get_texel_2d_array(sp_sview, sp_samp, addr, x, y, layer);
1385   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1386      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1387
1388   if (DEBUG_TEX) {
1389      print_sample(__FUNCTION__, rgba);
1390   }
1391}
1392
1393
1394static void
1395img_filter_cube_nearest(const struct sp_sampler_view *sp_sview,
1396                        const struct sp_sampler *sp_samp,
1397                        const struct img_filter_args *args,
1398                        float *rgba)
1399{
1400   const struct pipe_resource *texture = sp_sview->base.texture;
1401   const int width = u_minify(texture->width0, args->level);
1402   const int height = u_minify(texture->height0, args->level);
1403   const int layerface = args->face_id + sp_sview->base.u.tex.first_layer;
1404   int x, y;
1405   union tex_tile_address addr;
1406   const float *out;
1407   int c;
1408
1409   assert(width > 0);
1410   assert(height > 0);
1411
1412   addr.value = 0;
1413   addr.bits.level = args->level;
1414
1415   /*
1416    * If NEAREST filtering is done within a miplevel, always apply wrap
1417    * mode CLAMP_TO_EDGE.
1418    */
1419   if (sp_samp->base.seamless_cube_map) {
1420      wrap_nearest_clamp_to_edge(args->s, width, args->offset[0], &x);
1421      wrap_nearest_clamp_to_edge(args->t, height, args->offset[1], &y);
1422   } else {
1423      /* Would probably make sense to ignore mode and just do edge clamp */
1424      sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1425      sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1426   }
1427
1428   out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1429   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1430      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1431
1432   if (DEBUG_TEX) {
1433      print_sample(__FUNCTION__, rgba);
1434   }
1435}
1436
1437static void
1438img_filter_cube_array_nearest(const struct sp_sampler_view *sp_sview,
1439                              const struct sp_sampler *sp_samp,
1440                              const struct img_filter_args *args,
1441                              float *rgba)
1442{
1443   const struct pipe_resource *texture = sp_sview->base.texture;
1444   const int width = u_minify(texture->width0, args->level);
1445   const int height = u_minify(texture->height0, args->level);
1446   const int layerface =
1447      coord_to_layer(6 * args->p + sp_sview->base.u.tex.first_layer,
1448                     sp_sview->base.u.tex.first_layer,
1449                     sp_sview->base.u.tex.last_layer - 5) + args->face_id;
1450   int x, y;
1451   union tex_tile_address addr;
1452   const float *out;
1453   int c;
1454
1455   assert(width > 0);
1456   assert(height > 0);
1457
1458   addr.value = 0;
1459   addr.bits.level = args->level;
1460
1461   sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1462   sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1463
1464   out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1465   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1466      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1467
1468   if (DEBUG_TEX) {
1469      print_sample(__FUNCTION__, rgba);
1470   }
1471}
1472
1473static void
1474img_filter_3d_nearest(const struct sp_sampler_view *sp_sview,
1475                      const struct sp_sampler *sp_samp,
1476                      const struct img_filter_args *args,
1477                      float *rgba)
1478{
1479   const struct pipe_resource *texture = sp_sview->base.texture;
1480   const int width = u_minify(texture->width0, args->level);
1481   const int height = u_minify(texture->height0, args->level);
1482   const int depth = u_minify(texture->depth0, args->level);
1483   int x, y, z;
1484   union tex_tile_address addr;
1485   const float *out;
1486   int c;
1487
1488   assert(width > 0);
1489   assert(height > 0);
1490   assert(depth > 0);
1491
1492   sp_samp->nearest_texcoord_s(args->s, width,  args->offset[0], &x);
1493   sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1494   sp_samp->nearest_texcoord_p(args->p, depth,  args->offset[2], &z);
1495
1496   addr.value = 0;
1497   addr.bits.level = args->level;
1498
1499   out = get_texel_3d(sp_sview, sp_samp, addr, x, y, z);
1500   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1501      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1502}
1503
1504
1505static void
1506img_filter_1d_linear(const struct sp_sampler_view *sp_sview,
1507                     const struct sp_sampler *sp_samp,
1508                     const struct img_filter_args *args,
1509                     float *rgba)
1510{
1511   const struct pipe_resource *texture = sp_sview->base.texture;
1512   const int width = u_minify(texture->width0, args->level);
1513   int x0, x1;
1514   float xw; /* weights */
1515   union tex_tile_address addr;
1516   const float *tx0, *tx1;
1517   int c;
1518
1519   assert(width > 0);
1520
1521   addr.value = 0;
1522   addr.bits.level = args->level;
1523
1524   sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1525
1526   tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0,
1527                            sp_sview->base.u.tex.first_layer);
1528   tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1,
1529                            sp_sview->base.u.tex.first_layer);
1530
1531   /* interpolate R, G, B, A */
1532   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1533      rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1534}
1535
1536
1537static void
1538img_filter_1d_array_linear(const struct sp_sampler_view *sp_sview,
1539                           const struct sp_sampler *sp_samp,
1540                           const struct img_filter_args *args,
1541                           float *rgba)
1542{
1543   const struct pipe_resource *texture = sp_sview->base.texture;
1544   const int width = u_minify(texture->width0, args->level);
1545   const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1546                                    sp_sview->base.u.tex.last_layer);
1547   int x0, x1;
1548   float xw; /* weights */
1549   union tex_tile_address addr;
1550   const float *tx0, *tx1;
1551   int c;
1552
1553   assert(width > 0);
1554
1555   addr.value = 0;
1556   addr.bits.level = args->level;
1557
1558   sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1559
1560   tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0, layer);
1561   tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1, layer);
1562
1563   /* interpolate R, G, B, A */
1564   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1565      rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1566}
1567
1568/*
1569 * Retrieve the gathered value, need to convert to the
1570 * TGSI expected interface, and take component select
1571 * and swizzling into account.
1572 */
1573static float
1574get_gather_value(const struct sp_sampler_view *sp_sview,
1575                 int chan_in, int comp_sel,
1576                 const float *tx[4])
1577{
1578   int chan;
1579   unsigned swizzle;
1580
1581   /*
1582    * softpipe samples in a different order
1583    * to TGSI expects, so we need to swizzle,
1584    * the samples into the correct slots.
1585    */
1586   switch (chan_in) {
1587   case 0:
1588      chan = 2;
1589      break;
1590   case 1:
1591      chan = 3;
1592      break;
1593   case 2:
1594      chan = 1;
1595      break;
1596   case 3:
1597      chan = 0;
1598      break;
1599   default:
1600      assert(0);
1601      return 0.0;
1602   }
1603
1604   /* pick which component to use for the swizzle */
1605   switch (comp_sel) {
1606   case 0:
1607      swizzle = sp_sview->base.swizzle_r;
1608      break;
1609   case 1:
1610      swizzle = sp_sview->base.swizzle_g;
1611      break;
1612   case 2:
1613      swizzle = sp_sview->base.swizzle_b;
1614      break;
1615   case 3:
1616      swizzle = sp_sview->base.swizzle_a;
1617      break;
1618   default:
1619      assert(0);
1620      return 0.0;
1621   }
1622
1623   /* get correct result using the channel and swizzle */
1624   switch (swizzle) {
1625   case PIPE_SWIZZLE_0:
1626      return 0.0;
1627   case PIPE_SWIZZLE_1:
1628      return 1.0;
1629   default:
1630      return tx[chan][swizzle];
1631   }
1632}
1633
1634
1635static void
1636img_filter_2d_linear(const struct sp_sampler_view *sp_sview,
1637                     const struct sp_sampler *sp_samp,
1638                     const struct img_filter_args *args,
1639                     float *rgba)
1640{
1641   const struct pipe_resource *texture = sp_sview->base.texture;
1642   const int width = u_minify(texture->width0, args->level);
1643   const int height = u_minify(texture->height0, args->level);
1644   int x0, y0, x1, y1;
1645   float xw, yw; /* weights */
1646   union tex_tile_address addr;
1647   const float *tx[4];
1648   int c;
1649
1650   assert(width > 0);
1651   assert(height > 0);
1652
1653   addr.value = 0;
1654   addr.bits.level = args->level;
1655   addr.bits.z = sp_sview->base.u.tex.first_layer;
1656
1657   sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1658   sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1659
1660   tx[0] = get_texel_2d(sp_sview, sp_samp, addr, x0, y0);
1661   tx[1] = get_texel_2d(sp_sview, sp_samp, addr, x1, y0);
1662   tx[2] = get_texel_2d(sp_sview, sp_samp, addr, x0, y1);
1663   tx[3] = get_texel_2d(sp_sview, sp_samp, addr, x1, y1);
1664
1665   if (args->gather_only) {
1666      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1667         rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1668                                                      args->gather_comp,
1669                                                      tx);
1670   } else {
1671      /* interpolate R, G, B, A */
1672      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1673         rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1674                                             tx[0][c], tx[1][c],
1675                                             tx[2][c], tx[3][c]);
1676   }
1677}
1678
1679
1680static void
1681img_filter_2d_array_linear(const struct sp_sampler_view *sp_sview,
1682                           const struct sp_sampler *sp_samp,
1683                           const struct img_filter_args *args,
1684                           float *rgba)
1685{
1686   const struct pipe_resource *texture = sp_sview->base.texture;
1687   const int width = u_minify(texture->width0, args->level);
1688   const int height = u_minify(texture->height0, args->level);
1689   const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1690                                    sp_sview->base.u.tex.last_layer);
1691   int x0, y0, x1, y1;
1692   float xw, yw; /* weights */
1693   union tex_tile_address addr;
1694   const float *tx[4];
1695   int c;
1696
1697   assert(width > 0);
1698   assert(height > 0);
1699
1700   addr.value = 0;
1701   addr.bits.level = args->level;
1702
1703   sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1704   sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1705
1706   tx[0] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y0, layer);
1707   tx[1] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y0, layer);
1708   tx[2] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y1, layer);
1709   tx[3] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y1, layer);
1710
1711   if (args->gather_only) {
1712      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1713         rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1714                                                      args->gather_comp,
1715                                                      tx);
1716   } else {
1717      /* interpolate R, G, B, A */
1718      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1719         rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1720                                             tx[0][c], tx[1][c],
1721                                             tx[2][c], tx[3][c]);
1722   }
1723}
1724
1725
1726static void
1727img_filter_cube_linear(const struct sp_sampler_view *sp_sview,
1728                       const struct sp_sampler *sp_samp,
1729                       const struct img_filter_args *args,
1730                       float *rgba)
1731{
1732   const struct pipe_resource *texture = sp_sview->base.texture;
1733   const int width = u_minify(texture->width0, args->level);
1734   const int height = u_minify(texture->height0, args->level);
1735   const int layer = sp_sview->base.u.tex.first_layer;
1736   int x0, y0, x1, y1;
1737   float xw, yw; /* weights */
1738   union tex_tile_address addr;
1739   const float *tx[4];
1740   float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1741         corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1742   int c;
1743
1744   assert(width > 0);
1745   assert(height > 0);
1746
1747   addr.value = 0;
1748   addr.bits.level = args->level;
1749
1750   /*
1751    * For seamless if LINEAR filtering is done within a miplevel,
1752    * always apply wrap mode CLAMP_TO_BORDER.
1753    */
1754   if (sp_samp->base.seamless_cube_map) {
1755      /* Note this is a bit overkill, actual clamping is not required */
1756      wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1757      wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1758   } else {
1759      /* Would probably make sense to ignore mode and just do edge clamp */
1760      sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1761      sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1762   }
1763
1764   if (sp_samp->base.seamless_cube_map) {
1765      tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1766      tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1767      tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1768      tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1769   } else {
1770      tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1771      tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1772      tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1773      tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1774   }
1775
1776   if (args->gather_only) {
1777      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1778         rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1779                                                      args->gather_comp,
1780                                                      tx);
1781   } else {
1782      /* interpolate R, G, B, A */
1783      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1784         rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1785                                             tx[0][c], tx[1][c],
1786                                             tx[2][c], tx[3][c]);
1787   }
1788}
1789
1790
1791static void
1792img_filter_cube_array_linear(const struct sp_sampler_view *sp_sview,
1793                             const struct sp_sampler *sp_samp,
1794                             const struct img_filter_args *args,
1795                             float *rgba)
1796{
1797   const struct pipe_resource *texture = sp_sview->base.texture;
1798   const int width = u_minify(texture->width0, args->level);
1799   const int height = u_minify(texture->height0, args->level);
1800   const int layer =
1801      coord_to_layer(6 * args->p + sp_sview->base.u.tex.first_layer,
1802                     sp_sview->base.u.tex.first_layer,
1803                     sp_sview->base.u.tex.last_layer - 5);
1804   int x0, y0, x1, y1;
1805   float xw, yw; /* weights */
1806   union tex_tile_address addr;
1807   const float *tx[4];
1808   float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1809         corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1810   int c;
1811
1812   assert(width > 0);
1813   assert(height > 0);
1814
1815   addr.value = 0;
1816   addr.bits.level = args->level;
1817
1818   /*
1819    * For seamless if LINEAR filtering is done within a miplevel,
1820    * always apply wrap mode CLAMP_TO_BORDER.
1821    */
1822   if (sp_samp->base.seamless_cube_map) {
1823      /* Note this is a bit overkill, actual clamping is not required */
1824      wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1825      wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1826   } else {
1827      /* Would probably make sense to ignore mode and just do edge clamp */
1828      sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1829      sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1830   }
1831
1832   if (sp_samp->base.seamless_cube_map) {
1833      tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1834      tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1835      tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1836      tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1837   } else {
1838      tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1839      tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1840      tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1841      tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1842   }
1843
1844   if (args->gather_only) {
1845      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1846         rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1847                                                      args->gather_comp,
1848                                                      tx);
1849   } else {
1850      /* interpolate R, G, B, A */
1851      for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1852         rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1853                                             tx[0][c], tx[1][c],
1854                                             tx[2][c], tx[3][c]);
1855   }
1856}
1857
1858static void
1859img_filter_3d_linear(const struct sp_sampler_view *sp_sview,
1860                     const struct sp_sampler *sp_samp,
1861                     const struct img_filter_args *args,
1862                     float *rgba)
1863{
1864   const struct pipe_resource *texture = sp_sview->base.texture;
1865   const int width = u_minify(texture->width0, args->level);
1866   const int height = u_minify(texture->height0, args->level);
1867   const int depth = u_minify(texture->depth0, args->level);
1868   int x0, x1, y0, y1, z0, z1;
1869   float xw, yw, zw; /* interpolation weights */
1870   union tex_tile_address addr;
1871   const float *tx00, *tx01, *tx02, *tx03, *tx10, *tx11, *tx12, *tx13;
1872   int c;
1873
1874   addr.value = 0;
1875   addr.bits.level = args->level;
1876
1877   assert(width > 0);
1878   assert(height > 0);
1879   assert(depth > 0);
1880
1881   sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1882   sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1883   sp_samp->linear_texcoord_p(args->p, depth,  args->offset[2], &z0, &z1, &zw);
1884
1885   tx00 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z0);
1886   tx01 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z0);
1887   tx02 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z0);
1888   tx03 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z0);
1889
1890   tx10 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z1);
1891   tx11 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z1);
1892   tx12 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z1);
1893   tx13 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z1);
1894
1895      /* interpolate R, G, B, A */
1896   for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1897      rgba[TGSI_NUM_CHANNELS*c] =  lerp_3d(xw, yw, zw,
1898                                           tx00[c], tx01[c],
1899                                           tx02[c], tx03[c],
1900                                           tx10[c], tx11[c],
1901                                           tx12[c], tx13[c]);
1902}
1903
1904
1905/* Calculate level of detail for every fragment,
1906 * with lambda already computed.
1907 * Note that lambda has already been biased by global LOD bias.
1908 * \param biased_lambda per-quad lambda.
1909 * \param lod_in per-fragment lod_bias or explicit_lod.
1910 * \param lod returns the per-fragment lod.
1911 */
1912static inline void
1913compute_lod(const struct pipe_sampler_state *sampler,
1914            enum tgsi_sampler_control control,
1915            const float biased_lambda,
1916            const float lod_in[TGSI_QUAD_SIZE],
1917            float lod[TGSI_QUAD_SIZE])
1918{
1919   const float min_lod = sampler->min_lod;
1920   const float max_lod = sampler->max_lod;
1921   uint i;
1922
1923   switch (control) {
1924   case TGSI_SAMPLER_LOD_NONE:
1925   case TGSI_SAMPLER_LOD_ZERO:
1926      lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(biased_lambda, min_lod, max_lod);
1927      break;
1928   case TGSI_SAMPLER_DERIVS_EXPLICIT:
1929      for (i = 0; i < TGSI_QUAD_SIZE; i++)
1930         lod[i] = lod_in[i];
1931      break;
1932   case TGSI_SAMPLER_LOD_BIAS:
1933      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1934         lod[i] = biased_lambda + lod_in[i];
1935         lod[i] = CLAMP(lod[i], min_lod, max_lod);
1936      }
1937      break;
1938   case TGSI_SAMPLER_LOD_EXPLICIT:
1939      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1940         lod[i] = CLAMP(lod_in[i], min_lod, max_lod);
1941      }
1942      break;
1943   default:
1944      assert(0);
1945      lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1946   }
1947}
1948
1949
1950/* Calculate level of detail for every fragment. The computed value is not
1951 * clamped to lod_min and lod_max.
1952 * \param lod_in per-fragment lod_bias or explicit_lod.
1953 * \param lod results per-fragment lod.
1954 */
1955static inline void
1956compute_lambda_lod_unclamped(const struct sp_sampler_view *sp_sview,
1957                             const struct sp_sampler *sp_samp,
1958                             const float s[TGSI_QUAD_SIZE],
1959                             const float t[TGSI_QUAD_SIZE],
1960                             const float p[TGSI_QUAD_SIZE],
1961                             const float derivs[3][2][TGSI_QUAD_SIZE],
1962                             const float lod_in[TGSI_QUAD_SIZE],
1963                             enum tgsi_sampler_control control,
1964                             float lod[TGSI_QUAD_SIZE])
1965{
1966   const struct pipe_sampler_state *sampler = &sp_samp->base;
1967   const float lod_bias = sampler->lod_bias;
1968   float lambda;
1969   uint i;
1970
1971   switch (control) {
1972   case TGSI_SAMPLER_LOD_NONE:
1973      lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1974      lod[0] = lod[1] = lod[2] = lod[3] = lambda;
1975      break;
1976   case TGSI_SAMPLER_DERIVS_EXPLICIT:
1977      for (i = 0; i < TGSI_QUAD_SIZE; i++)
1978         lod[i] = sp_sview->compute_lambda_from_grad(sp_sview, derivs, i);
1979      break;
1980   case TGSI_SAMPLER_LOD_BIAS:
1981      lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1982      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1983         lod[i] = lambda + lod_in[i];
1984      }
1985      break;
1986   case TGSI_SAMPLER_LOD_EXPLICIT:
1987      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1988         lod[i] = lod_in[i] + lod_bias;
1989      }
1990      break;
1991   case TGSI_SAMPLER_LOD_ZERO:
1992   case TGSI_SAMPLER_GATHER:
1993      lod[0] = lod[1] = lod[2] = lod[3] = lod_bias;
1994      break;
1995   default:
1996      assert(0);
1997      lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1998   }
1999}
2000
2001/* Calculate level of detail for every fragment.
2002 * \param lod_in per-fragment lod_bias or explicit_lod.
2003 * \param lod results per-fragment lod.
2004 */
2005static inline void
2006compute_lambda_lod(const struct sp_sampler_view *sp_sview,
2007                   const struct sp_sampler *sp_samp,
2008                   const float s[TGSI_QUAD_SIZE],
2009                   const float t[TGSI_QUAD_SIZE],
2010                   const float p[TGSI_QUAD_SIZE],
2011                   float derivs[3][2][TGSI_QUAD_SIZE],
2012                   const float lod_in[TGSI_QUAD_SIZE],
2013                   enum tgsi_sampler_control control,
2014                   float lod[TGSI_QUAD_SIZE])
2015{
2016   const struct pipe_sampler_state *sampler = &sp_samp->base;
2017   const float min_lod = sampler->min_lod;
2018   const float max_lod = sampler->max_lod;
2019   int i;
2020
2021   compute_lambda_lod_unclamped(sp_sview, sp_samp,
2022                                s, t, p, derivs, lod_in, control, lod);
2023   for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2024      lod[i] = CLAMP(lod[i], min_lod, max_lod);
2025   }
2026}
2027
2028static inline unsigned
2029get_gather_component(const float lod_in[TGSI_QUAD_SIZE])
2030{
2031   /* gather component is stored in lod_in slot as unsigned */
2032   return (*(unsigned int *)lod_in) & 0x3;
2033}
2034
2035/**
2036 * Clamps given lod to both lod limits and mip level limits. Clamping to the
2037 * latter limits is done so that lod is relative to the first (base) level.
2038 */
2039static void
2040clamp_lod(const struct sp_sampler_view *sp_sview,
2041          const struct sp_sampler *sp_samp,
2042          const float lod[TGSI_QUAD_SIZE],
2043          float clamped[TGSI_QUAD_SIZE])
2044{
2045   const float min_lod = sp_samp->base.min_lod;
2046   const float max_lod = sp_samp->base.max_lod;
2047   const float min_level = sp_sview->base.u.tex.first_level;
2048   const float max_level = sp_sview->base.u.tex.last_level;
2049   int i;
2050
2051   for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2052      float cl = lod[i];
2053
2054      cl = CLAMP(cl, min_lod, max_lod);
2055      cl = CLAMP(cl, 0, max_level - min_level);
2056      clamped[i] = cl;
2057   }
2058}
2059
2060/**
2061 * Get mip level relative to base level for linear mip filter
2062 */
2063static void
2064mip_rel_level_linear(const struct sp_sampler_view *sp_sview,
2065                     const struct sp_sampler *sp_samp,
2066                     const float lod[TGSI_QUAD_SIZE],
2067                     float level[TGSI_QUAD_SIZE])
2068{
2069   clamp_lod(sp_sview, sp_samp, lod, level);
2070}
2071
2072static void
2073mip_filter_linear(const struct sp_sampler_view *sp_sview,
2074                  const struct sp_sampler *sp_samp,
2075                  img_filter_func min_filter,
2076                  img_filter_func mag_filter,
2077                  const float s[TGSI_QUAD_SIZE],
2078                  const float t[TGSI_QUAD_SIZE],
2079                  const float p[TGSI_QUAD_SIZE],
2080                  int gather_comp,
2081                  const float lod[TGSI_QUAD_SIZE],
2082                  const struct filter_args *filt_args,
2083                  float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2084{
2085   const struct pipe_sampler_view *psview = &sp_sview->base;
2086   int j;
2087   struct img_filter_args args;
2088
2089   args.offset = filt_args->offset;
2090   args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2091   args.gather_comp = gather_comp;
2092
2093   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2094      const int level0 = psview->u.tex.first_level + (int)lod[j];
2095
2096      args.s = s[j];
2097      args.t = t[j];
2098      args.p = p[j];
2099      args.face_id = filt_args->faces[j];
2100
2101      if (lod[j] <= 0.0 && !args.gather_only) {
2102         args.level = psview->u.tex.first_level;
2103         mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2104      }
2105      else if (level0 >= (int) psview->u.tex.last_level) {
2106         args.level = psview->u.tex.last_level;
2107         min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2108      }
2109      else {
2110         float levelBlend = frac(lod[j]);
2111         float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2112         int c;
2113
2114         args.level = level0;
2115         min_filter(sp_sview, sp_samp, &args, &rgbax[0][0]);
2116         args.level = level0+1;
2117         min_filter(sp_sview, sp_samp, &args, &rgbax[0][1]);
2118
2119         for (c = 0; c < 4; c++) {
2120            rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2121         }
2122      }
2123   }
2124
2125   if (DEBUG_TEX) {
2126      print_sample_4(__FUNCTION__, rgba);
2127   }
2128}
2129
2130
2131/**
2132 * Get mip level relative to base level for nearest mip filter
2133 */
2134static void
2135mip_rel_level_nearest(const struct sp_sampler_view *sp_sview,
2136                      const struct sp_sampler *sp_samp,
2137                      const float lod[TGSI_QUAD_SIZE],
2138                      float level[TGSI_QUAD_SIZE])
2139{
2140   int j;
2141
2142   clamp_lod(sp_sview, sp_samp, lod, level);
2143   for (j = 0; j < TGSI_QUAD_SIZE; j++)
2144      /* TODO: It should rather be:
2145       * level[j] = ceil(level[j] + 0.5F) - 1.0F;
2146       */
2147      level[j] = (int)(level[j] + 0.5F);
2148}
2149
2150/**
2151 * Compute nearest mipmap level from texcoords.
2152 * Then sample the texture level for four elements of a quad.
2153 * \param c0  the LOD bias factors, or absolute LODs (depending on control)
2154 */
2155static void
2156mip_filter_nearest(const struct sp_sampler_view *sp_sview,
2157                   const struct sp_sampler *sp_samp,
2158                   img_filter_func min_filter,
2159                   img_filter_func mag_filter,
2160                   const float s[TGSI_QUAD_SIZE],
2161                   const float t[TGSI_QUAD_SIZE],
2162                   const float p[TGSI_QUAD_SIZE],
2163                   int gather_component,
2164                   const float lod[TGSI_QUAD_SIZE],
2165                   const struct filter_args *filt_args,
2166                   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2167{
2168   const struct pipe_sampler_view *psview = &sp_sview->base;
2169   int j;
2170   struct img_filter_args args;
2171
2172   args.offset = filt_args->offset;
2173   args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2174   args.gather_comp = gather_component;
2175
2176   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2177      args.s = s[j];
2178      args.t = t[j];
2179      args.p = p[j];
2180      args.face_id = filt_args->faces[j];
2181
2182      if (lod[j] <= 0.0f && !args.gather_only) {
2183         args.level = psview->u.tex.first_level;
2184         mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2185      } else {
2186         const int level = psview->u.tex.first_level + (int)(lod[j] + 0.5F);
2187         args.level = MIN2(level, (int)psview->u.tex.last_level);
2188         min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2189      }
2190   }
2191
2192   if (DEBUG_TEX) {
2193      print_sample_4(__FUNCTION__, rgba);
2194   }
2195}
2196
2197
2198/**
2199 * Get mip level relative to base level for none mip filter
2200 */
2201static void
2202mip_rel_level_none(const struct sp_sampler_view *sp_sview,
2203                   const struct sp_sampler *sp_samp,
2204                   const float lod[TGSI_QUAD_SIZE],
2205                   float level[TGSI_QUAD_SIZE])
2206{
2207   int j;
2208
2209   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2210      level[j] = 0;
2211   }
2212}
2213
2214static void
2215mip_filter_none(const struct sp_sampler_view *sp_sview,
2216                const struct sp_sampler *sp_samp,
2217                img_filter_func min_filter,
2218                img_filter_func mag_filter,
2219                const float s[TGSI_QUAD_SIZE],
2220                const float t[TGSI_QUAD_SIZE],
2221                const float p[TGSI_QUAD_SIZE],
2222                int gather_component,
2223                const float lod[TGSI_QUAD_SIZE],
2224                const struct filter_args *filt_args,
2225                float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2226{
2227   int j;
2228   struct img_filter_args args;
2229
2230   args.level = sp_sview->base.u.tex.first_level;
2231   args.offset = filt_args->offset;
2232   args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2233   args.gather_comp = gather_component;
2234
2235   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2236      args.s = s[j];
2237      args.t = t[j];
2238      args.p = p[j];
2239      args.face_id = filt_args->faces[j];
2240      if (lod[j] <= 0.0f && !args.gather_only) {
2241         mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2242      }
2243      else {
2244         min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2245      }
2246   }
2247}
2248
2249
2250/**
2251 * Get mip level relative to base level for none mip filter
2252 */
2253static void
2254mip_rel_level_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2255                                    const struct sp_sampler *sp_samp,
2256                                    const float lod[TGSI_QUAD_SIZE],
2257                                    float level[TGSI_QUAD_SIZE])
2258{
2259   mip_rel_level_none(sp_sview, sp_samp, lod, level);
2260}
2261
2262static void
2263mip_filter_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2264                                 const struct sp_sampler *sp_samp,
2265                                 img_filter_func min_filter,
2266                                 img_filter_func mag_filter,
2267                                 const float s[TGSI_QUAD_SIZE],
2268                                 const float t[TGSI_QUAD_SIZE],
2269                                 const float p[TGSI_QUAD_SIZE],
2270                                 int gather_comp,
2271                                 const float lod_in[TGSI_QUAD_SIZE],
2272                                 const struct filter_args *filt_args,
2273                                 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2274{
2275   int j;
2276   struct img_filter_args args;
2277   args.level = sp_sview->base.u.tex.first_level;
2278   args.offset = filt_args->offset;
2279   args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2280   args.gather_comp = gather_comp;
2281   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2282      args.s = s[j];
2283      args.t = t[j];
2284      args.p = p[j];
2285      args.face_id = filt_args->faces[j];
2286      mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2287   }
2288}
2289
2290
2291/* For anisotropic filtering */
2292#define WEIGHT_LUT_SIZE 1024
2293
2294static const float *weightLut = NULL;
2295
2296/**
2297 * Creates the look-up table used to speed-up EWA sampling
2298 */
2299static void
2300create_filter_table(void)
2301{
2302   unsigned i;
2303   if (!weightLut) {
2304      float *lut = (float *) MALLOC(WEIGHT_LUT_SIZE * sizeof(float));
2305
2306      for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
2307         const float alpha = 2;
2308         const float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
2309         const float weight = (float) exp(-alpha * r2);
2310         lut[i] = weight;
2311      }
2312      weightLut = lut;
2313   }
2314}
2315
2316
2317/**
2318 * Elliptical weighted average (EWA) filter for producing high quality
2319 * anisotropic filtered results.
2320 * Based on the Higher Quality Elliptical Weighted Average Filter
2321 * published by Paul S. Heckbert in his Master's Thesis
2322 * "Fundamentals of Texture Mapping and Image Warping" (1989)
2323 */
2324static void
2325img_filter_2d_ewa(const struct sp_sampler_view *sp_sview,
2326                  const struct sp_sampler *sp_samp,
2327                  img_filter_func min_filter,
2328                  img_filter_func mag_filter,
2329                  const float s[TGSI_QUAD_SIZE],
2330                  const float t[TGSI_QUAD_SIZE],
2331                  const float p[TGSI_QUAD_SIZE],
2332                  const uint faces[TGSI_QUAD_SIZE],
2333                  const int8_t *offset,
2334                  unsigned level,
2335                  const float dudx, const float dvdx,
2336                  const float dudy, const float dvdy,
2337                  float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2338{
2339   const struct pipe_resource *texture = sp_sview->base.texture;
2340
2341   // ??? Won't the image filters blow up if level is negative?
2342   const unsigned level0 = level > 0 ? level : 0;
2343   const float scaling = 1.0f / (1 << level0);
2344   const int width = u_minify(texture->width0, level0);
2345   const int height = u_minify(texture->height0, level0);
2346   struct img_filter_args args;
2347   const float ux = dudx * scaling;
2348   const float vx = dvdx * scaling;
2349   const float uy = dudy * scaling;
2350   const float vy = dvdy * scaling;
2351
2352   /* compute ellipse coefficients to bound the region:
2353    * A*x*x + B*x*y + C*y*y = F.
2354    */
2355   float A = vx*vx+vy*vy+1;
2356   float B = -2*(ux*vx+uy*vy);
2357   float C = ux*ux+uy*uy+1;
2358   float F = A*C-B*B/4.0f;
2359
2360   /* check if it is an ellipse */
2361   /* assert(F > 0.0); */
2362
2363   /* Compute the ellipse's (u,v) bounding box in texture space */
2364   const float d = -B*B+4.0f*C*A;
2365   const float box_u = 2.0f / d * sqrtf(d*C*F); /* box_u -> half of bbox with   */
2366   const float box_v = 2.0f / d * sqrtf(A*d*F); /* box_v -> half of bbox height */
2367
2368   float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2369   float s_buffer[TGSI_QUAD_SIZE];
2370   float t_buffer[TGSI_QUAD_SIZE];
2371   float weight_buffer[TGSI_QUAD_SIZE];
2372   int j;
2373
2374   /* For each quad, the du and dx values are the same and so the ellipse is
2375    * also the same. Note that texel/image access can only be performed using
2376    * a quad, i.e. it is not possible to get the pixel value for a single
2377    * tex coord. In order to have a better performance, the access is buffered
2378    * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is
2379    * full, then the pixel values are read from the image.
2380    */
2381   const float ddq = 2 * A;
2382
2383   /* Scale ellipse formula to directly index the Filter Lookup Table.
2384    * i.e. scale so that F = WEIGHT_LUT_SIZE-1
2385    */
2386   const double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
2387   A *= formScale;
2388   B *= formScale;
2389   C *= formScale;
2390   /* F *= formScale; */ /* no need to scale F as we don't use it below here */
2391
2392   args.level = level;
2393   args.offset = offset;
2394
2395   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2396      /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
2397       * and incrementally update the value of Ax^2+Bxy*Cy^2; when this
2398       * value, q, is less than F, we're inside the ellipse
2399       */
2400      const float tex_u = -0.5F + s[j] * texture->width0 * scaling;
2401      const float tex_v = -0.5F + t[j] * texture->height0 * scaling;
2402
2403      const int u0 = (int) floorf(tex_u - box_u);
2404      const int u1 = (int) ceilf(tex_u + box_u);
2405      const int v0 = (int) floorf(tex_v - box_v);
2406      const int v1 = (int) ceilf(tex_v + box_v);
2407      const float U = u0 - tex_u;
2408
2409      float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
2410      unsigned buffer_next = 0;
2411      float den = 0;
2412      int v;
2413      args.face_id = faces[j];
2414
2415      for (v = v0; v <= v1; ++v) {
2416         const float V = v - tex_v;
2417         float dq = A * (2 * U + 1) + B * V;
2418         float q = (C * V + B * U) * V + A * U * U;
2419
2420         int u;
2421         for (u = u0; u <= u1; ++u) {
2422            /* Note that the ellipse has been pre-scaled so F =
2423             * WEIGHT_LUT_SIZE - 1
2424             */
2425            if (q < WEIGHT_LUT_SIZE) {
2426               /* as a LUT is used, q must never be negative;
2427                * should not happen, though
2428                */
2429               const int qClamped = q >= 0.0F ? q : 0;
2430               const float weight = weightLut[qClamped];
2431
2432               weight_buffer[buffer_next] = weight;
2433               s_buffer[buffer_next] = u / ((float) width);
2434               t_buffer[buffer_next] = v / ((float) height);
2435
2436               buffer_next++;
2437               if (buffer_next == TGSI_QUAD_SIZE) {
2438                  /* 4 texel coords are in the buffer -> read it now */
2439                  unsigned jj;
2440                  /* it is assumed that samp->min_img_filter is set to
2441                   * img_filter_2d_nearest or one of the
2442                   * accelerated img_filter_2d_nearest_XXX functions.
2443                   */
2444                  for (jj = 0; jj < buffer_next; jj++) {
2445                     args.s = s_buffer[jj];
2446                     args.t = t_buffer[jj];
2447                     args.p = p[jj];
2448                     min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2449                     num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2450                     num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2451                     num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2452                     num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2453                  }
2454
2455                  buffer_next = 0;
2456               }
2457
2458               den += weight;
2459            }
2460            q += dq;
2461            dq += ddq;
2462         }
2463      }
2464
2465      /* if the tex coord buffer contains unread values, we will read
2466       * them now.
2467       */
2468      if (buffer_next > 0) {
2469         unsigned jj;
2470         /* it is assumed that samp->min_img_filter is set to
2471          * img_filter_2d_nearest or one of the
2472          * accelerated img_filter_2d_nearest_XXX functions.
2473          */
2474         for (jj = 0; jj < buffer_next; jj++) {
2475            args.s = s_buffer[jj];
2476            args.t = t_buffer[jj];
2477            args.p = p[jj];
2478            min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2479            num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2480            num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2481            num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2482            num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2483         }
2484      }
2485
2486      if (den <= 0.0F) {
2487         /* Reaching this place would mean that no pixels intersected
2488          * the ellipse.  This should never happen because the filter
2489          * we use always intersects at least one pixel.
2490          */
2491
2492         /*rgba[0]=0;
2493         rgba[1]=0;
2494         rgba[2]=0;
2495         rgba[3]=0;*/
2496         /* not enough pixels in resampling, resort to direct interpolation */
2497         args.s = s[j];
2498         args.t = t[j];
2499         args.p = p[j];
2500         min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][j]);
2501         den = 1;
2502         num[0] = rgba_temp[0][j];
2503         num[1] = rgba_temp[1][j];
2504         num[2] = rgba_temp[2][j];
2505         num[3] = rgba_temp[3][j];
2506      }
2507
2508      rgba[0][j] = num[0] / den;
2509      rgba[1][j] = num[1] / den;
2510      rgba[2][j] = num[2] / den;
2511      rgba[3][j] = num[3] / den;
2512   }
2513}
2514
2515
2516/**
2517 * Get mip level relative to base level for linear mip filter
2518 */
2519static void
2520mip_rel_level_linear_aniso(const struct sp_sampler_view *sp_sview,
2521                           const struct sp_sampler *sp_samp,
2522                           const float lod[TGSI_QUAD_SIZE],
2523                           float level[TGSI_QUAD_SIZE])
2524{
2525   mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2526}
2527
2528/**
2529 * Sample 2D texture using an anisotropic filter.
2530 */
2531static void
2532mip_filter_linear_aniso(const struct sp_sampler_view *sp_sview,
2533                        const struct sp_sampler *sp_samp,
2534                        img_filter_func min_filter,
2535                        img_filter_func mag_filter,
2536                        const float s[TGSI_QUAD_SIZE],
2537                        const float t[TGSI_QUAD_SIZE],
2538                        const float p[TGSI_QUAD_SIZE],
2539                        UNUSED int gather_comp,
2540                        const float lod_in[TGSI_QUAD_SIZE],
2541                        const struct filter_args *filt_args,
2542                        float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2543{
2544   const struct pipe_resource *texture = sp_sview->base.texture;
2545   const struct pipe_sampler_view *psview = &sp_sview->base;
2546   int level0;
2547   float lambda;
2548   float lod[TGSI_QUAD_SIZE];
2549
2550   const float s_to_u = u_minify(texture->width0, psview->u.tex.first_level);
2551   const float t_to_v = u_minify(texture->height0, psview->u.tex.first_level);
2552   const float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2553   const float dudy = (s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2554   const float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2555   const float dvdy = (t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2556   struct img_filter_args args;
2557
2558   args.offset = filt_args->offset;
2559
2560   if (filt_args->control == TGSI_SAMPLER_LOD_BIAS ||
2561       filt_args->control == TGSI_SAMPLER_LOD_NONE ||
2562       /* XXX FIXME */
2563       filt_args->control == TGSI_SAMPLER_DERIVS_EXPLICIT) {
2564      /* note: instead of working with Px and Py, we will use the
2565       * squared length instead, to avoid sqrt.
2566       */
2567      const float Px2 = dudx * dudx + dvdx * dvdx;
2568      const float Py2 = dudy * dudy + dvdy * dvdy;
2569
2570      float Pmax2;
2571      float Pmin2;
2572      float e;
2573      const float maxEccentricity = sp_samp->base.max_anisotropy * sp_samp->base.max_anisotropy;
2574
2575      if (Px2 < Py2) {
2576         Pmax2 = Py2;
2577         Pmin2 = Px2;
2578      }
2579      else {
2580         Pmax2 = Px2;
2581         Pmin2 = Py2;
2582      }
2583
2584      /* if the eccentricity of the ellipse is too big, scale up the shorter
2585       * of the two vectors to limit the maximum amount of work per pixel
2586       */
2587      e = Pmax2 / Pmin2;
2588      if (e > maxEccentricity) {
2589         /* float s=e / maxEccentricity;
2590            minor[0] *= s;
2591            minor[1] *= s;
2592            Pmin2 *= s; */
2593         Pmin2 = Pmax2 / maxEccentricity;
2594      }
2595
2596      /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
2597       * this since 0.5*log(x) = log(sqrt(x))
2598       */
2599      lambda = 0.5F * util_fast_log2(Pmin2) + sp_samp->base.lod_bias;
2600      compute_lod(&sp_samp->base, filt_args->control, lambda, lod_in, lod);
2601   }
2602   else {
2603      assert(filt_args->control == TGSI_SAMPLER_LOD_EXPLICIT ||
2604             filt_args->control == TGSI_SAMPLER_LOD_ZERO);
2605      compute_lod(&sp_samp->base, filt_args->control, sp_samp->base.lod_bias, lod_in, lod);
2606   }
2607
2608   /* XXX: Take into account all lod values.
2609    */
2610   lambda = lod[0];
2611   level0 = psview->u.tex.first_level + (int)lambda;
2612
2613   /* If the ellipse covers the whole image, we can
2614    * simply return the average of the whole image.
2615    */
2616   if (level0 >= (int) psview->u.tex.last_level) {
2617      int j;
2618      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2619         args.s = s[j];
2620         args.t = t[j];
2621         args.p = p[j];
2622         args.level = psview->u.tex.last_level;
2623         args.face_id = filt_args->faces[j];
2624         /*
2625          * XXX: we overwrote any linear filter with nearest, so this
2626          * isn't right (albeit if last level is 1x1 and no border it
2627          * will work just the same).
2628          */
2629         min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2630      }
2631   }
2632   else {
2633      /* don't bother interpolating between multiple LODs; it doesn't
2634       * seem to be worth the extra running time.
2635       */
2636      img_filter_2d_ewa(sp_sview, sp_samp, min_filter, mag_filter,
2637                        s, t, p, filt_args->faces, filt_args->offset,
2638                        level0, dudx, dvdx, dudy, dvdy, rgba);
2639   }
2640
2641   if (DEBUG_TEX) {
2642      print_sample_4(__FUNCTION__, rgba);
2643   }
2644}
2645
2646/**
2647 * Get mip level relative to base level for linear mip filter
2648 */
2649static void
2650mip_rel_level_linear_2d_linear_repeat_POT(
2651   const struct sp_sampler_view *sp_sview,
2652   const struct sp_sampler *sp_samp,
2653   const float lod[TGSI_QUAD_SIZE],
2654   float level[TGSI_QUAD_SIZE])
2655{
2656   mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2657}
2658
2659/**
2660 * Specialized version of mip_filter_linear with hard-wired calls to
2661 * 2d lambda calculation and 2d_linear_repeat_POT img filters.
2662 */
2663static void
2664mip_filter_linear_2d_linear_repeat_POT(
2665   const struct sp_sampler_view *sp_sview,
2666   const struct sp_sampler *sp_samp,
2667   img_filter_func min_filter,
2668   img_filter_func mag_filter,
2669   const float s[TGSI_QUAD_SIZE],
2670   const float t[TGSI_QUAD_SIZE],
2671   const float p[TGSI_QUAD_SIZE],
2672   int gather_comp,
2673   const float lod[TGSI_QUAD_SIZE],
2674   const struct filter_args *filt_args,
2675   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2676{
2677   const struct pipe_sampler_view *psview = &sp_sview->base;
2678   int j;
2679
2680   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2681      const int level0 = psview->u.tex.first_level + (int)lod[j];
2682      struct img_filter_args args;
2683      /* Catches both negative and large values of level0:
2684       */
2685      args.s = s[j];
2686      args.t = t[j];
2687      args.p = p[j];
2688      args.face_id = filt_args->faces[j];
2689      args.offset = filt_args->offset;
2690      args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2691      args.gather_comp = gather_comp;
2692      if ((unsigned)level0 >= psview->u.tex.last_level) {
2693         if (level0 < 0)
2694            args.level = psview->u.tex.first_level;
2695         else
2696            args.level = psview->u.tex.last_level;
2697         img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args,
2698                                         &rgba[0][j]);
2699
2700      }
2701      else {
2702         const float levelBlend = frac(lod[j]);
2703         float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2704         int c;
2705
2706         args.level = level0;
2707         img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][0]);
2708         args.level = level0+1;
2709         img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][1]);
2710
2711         for (c = 0; c < TGSI_NUM_CHANNELS; c++)
2712            rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2713      }
2714   }
2715
2716   if (DEBUG_TEX) {
2717      print_sample_4(__FUNCTION__, rgba);
2718   }
2719}
2720
2721static const struct sp_filter_funcs funcs_linear = {
2722   mip_rel_level_linear,
2723   mip_filter_linear
2724};
2725
2726static const struct sp_filter_funcs funcs_nearest = {
2727   mip_rel_level_nearest,
2728   mip_filter_nearest
2729};
2730
2731static const struct sp_filter_funcs funcs_none = {
2732   mip_rel_level_none,
2733   mip_filter_none
2734};
2735
2736static const struct sp_filter_funcs funcs_none_no_filter_select = {
2737   mip_rel_level_none_no_filter_select,
2738   mip_filter_none_no_filter_select
2739};
2740
2741static const struct sp_filter_funcs funcs_linear_aniso = {
2742   mip_rel_level_linear_aniso,
2743   mip_filter_linear_aniso
2744};
2745
2746static const struct sp_filter_funcs funcs_linear_2d_linear_repeat_POT = {
2747   mip_rel_level_linear_2d_linear_repeat_POT,
2748   mip_filter_linear_2d_linear_repeat_POT
2749};
2750
2751/**
2752 * Do shadow/depth comparisons.
2753 */
2754static void
2755sample_compare(const struct sp_sampler_view *sp_sview,
2756               const struct sp_sampler *sp_samp,
2757               const float c0[TGSI_QUAD_SIZE],
2758               enum tgsi_sampler_control control,
2759               float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2760{
2761   const struct pipe_sampler_state *sampler = &sp_samp->base;
2762   int j, v;
2763   int k[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2764   float pc[4];
2765   const struct util_format_description *format_desc =
2766      util_format_description(sp_sview->base.format);
2767   /* not entirely sure we couldn't end up with non-valid swizzle here */
2768   const unsigned chan_type =
2769      format_desc->swizzle[0] <= PIPE_SWIZZLE_W ?
2770      format_desc->channel[format_desc->swizzle[0]].type :
2771      UTIL_FORMAT_TYPE_FLOAT;
2772   const bool is_gather = (control == TGSI_SAMPLER_GATHER);
2773
2774   /**
2775    * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
2776    * for 2D Array texture we need to use the 'c0' (aka Q).
2777    * When we sampled the depth texture, the depth value was put into all
2778    * RGBA channels.  We look at the red channel here.
2779    */
2780
2781
2782
2783   if (chan_type != UTIL_FORMAT_TYPE_FLOAT) {
2784      /*
2785       * clamping is a result of conversion to texture format, hence
2786       * doesn't happen with floats. Technically also should do comparison
2787       * in texture format (quantization!).
2788       */
2789      pc[0] = CLAMP(c0[0], 0.0F, 1.0F);
2790      pc[1] = CLAMP(c0[1], 0.0F, 1.0F);
2791      pc[2] = CLAMP(c0[2], 0.0F, 1.0F);
2792      pc[3] = CLAMP(c0[3], 0.0F, 1.0F);
2793   } else {
2794      pc[0] = c0[0];
2795      pc[1] = c0[1];
2796      pc[2] = c0[2];
2797      pc[3] = c0[3];
2798   }
2799
2800   for (v = 0; v < (is_gather ? TGSI_NUM_CHANNELS : 1); v++) {
2801      /* compare four texcoords vs. four texture samples */
2802      switch (sampler->compare_func) {
2803      case PIPE_FUNC_LESS:
2804         k[v][0] = pc[0] < rgba[v][0];
2805         k[v][1] = pc[1] < rgba[v][1];
2806         k[v][2] = pc[2] < rgba[v][2];
2807         k[v][3] = pc[3] < rgba[v][3];
2808         break;
2809      case PIPE_FUNC_LEQUAL:
2810         k[v][0] = pc[0] <= rgba[v][0];
2811         k[v][1] = pc[1] <= rgba[v][1];
2812         k[v][2] = pc[2] <= rgba[v][2];
2813         k[v][3] = pc[3] <= rgba[v][3];
2814         break;
2815      case PIPE_FUNC_GREATER:
2816         k[v][0] = pc[0] > rgba[v][0];
2817         k[v][1] = pc[1] > rgba[v][1];
2818         k[v][2] = pc[2] > rgba[v][2];
2819         k[v][3] = pc[3] > rgba[v][3];
2820         break;
2821      case PIPE_FUNC_GEQUAL:
2822         k[v][0] = pc[0] >= rgba[v][0];
2823         k[v][1] = pc[1] >= rgba[v][1];
2824         k[v][2] = pc[2] >= rgba[v][2];
2825         k[v][3] = pc[3] >= rgba[v][3];
2826         break;
2827      case PIPE_FUNC_EQUAL:
2828         k[v][0] = pc[0] == rgba[v][0];
2829         k[v][1] = pc[1] == rgba[v][1];
2830         k[v][2] = pc[2] == rgba[v][2];
2831         k[v][3] = pc[3] == rgba[v][3];
2832         break;
2833      case PIPE_FUNC_NOTEQUAL:
2834         k[v][0] = pc[0] != rgba[v][0];
2835         k[v][1] = pc[1] != rgba[v][1];
2836         k[v][2] = pc[2] != rgba[v][2];
2837         k[v][3] = pc[3] != rgba[v][3];
2838         break;
2839      case PIPE_FUNC_ALWAYS:
2840         k[v][0] = k[v][1] = k[v][2] = k[v][3] = 1;
2841         break;
2842      case PIPE_FUNC_NEVER:
2843         k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2844         break;
2845      default:
2846         k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2847         assert(0);
2848         break;
2849      }
2850   }
2851
2852   if (is_gather) {
2853      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2854         for (v = 0; v < TGSI_NUM_CHANNELS; v++) {
2855            rgba[v][j] = k[v][j];
2856         }
2857      }
2858   } else {
2859      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2860         rgba[0][j] = k[0][j];
2861         rgba[1][j] = k[0][j];
2862         rgba[2][j] = k[0][j];
2863         rgba[3][j] = 1.0F;
2864      }
2865   }
2866}
2867
2868static void
2869do_swizzling(const struct pipe_sampler_view *sview,
2870             float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE],
2871             float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2872{
2873   int j;
2874   const unsigned swizzle_r = sview->swizzle_r;
2875   const unsigned swizzle_g = sview->swizzle_g;
2876   const unsigned swizzle_b = sview->swizzle_b;
2877   const unsigned swizzle_a = sview->swizzle_a;
2878   float oneval = util_format_is_pure_integer(sview->format) ? uif(1) : 1.0f;
2879
2880   switch (swizzle_r) {
2881   case PIPE_SWIZZLE_0:
2882      for (j = 0; j < 4; j++)
2883         out[0][j] = 0.0f;
2884      break;
2885   case PIPE_SWIZZLE_1:
2886      for (j = 0; j < 4; j++)
2887         out[0][j] = oneval;
2888      break;
2889   default:
2890      assert(swizzle_r < 4);
2891      for (j = 0; j < 4; j++)
2892         out[0][j] = in[swizzle_r][j];
2893   }
2894
2895   switch (swizzle_g) {
2896   case PIPE_SWIZZLE_0:
2897      for (j = 0; j < 4; j++)
2898         out[1][j] = 0.0f;
2899      break;
2900   case PIPE_SWIZZLE_1:
2901      for (j = 0; j < 4; j++)
2902         out[1][j] = oneval;
2903      break;
2904   default:
2905      assert(swizzle_g < 4);
2906      for (j = 0; j < 4; j++)
2907         out[1][j] = in[swizzle_g][j];
2908   }
2909
2910   switch (swizzle_b) {
2911   case PIPE_SWIZZLE_0:
2912      for (j = 0; j < 4; j++)
2913         out[2][j] = 0.0f;
2914      break;
2915   case PIPE_SWIZZLE_1:
2916      for (j = 0; j < 4; j++)
2917         out[2][j] = oneval;
2918      break;
2919   default:
2920      assert(swizzle_b < 4);
2921      for (j = 0; j < 4; j++)
2922         out[2][j] = in[swizzle_b][j];
2923   }
2924
2925   switch (swizzle_a) {
2926   case PIPE_SWIZZLE_0:
2927      for (j = 0; j < 4; j++)
2928         out[3][j] = 0.0f;
2929      break;
2930   case PIPE_SWIZZLE_1:
2931      for (j = 0; j < 4; j++)
2932         out[3][j] = oneval;
2933      break;
2934   default:
2935      assert(swizzle_a < 4);
2936      for (j = 0; j < 4; j++)
2937         out[3][j] = in[swizzle_a][j];
2938   }
2939}
2940
2941
2942static wrap_nearest_func
2943get_nearest_unorm_wrap(unsigned mode)
2944{
2945   switch (mode) {
2946   case PIPE_TEX_WRAP_CLAMP:
2947      return wrap_nearest_unorm_clamp;
2948   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2949      return wrap_nearest_unorm_clamp_to_edge;
2950   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2951      return wrap_nearest_unorm_clamp_to_border;
2952   default:
2953      debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
2954      return wrap_nearest_unorm_clamp;
2955   }
2956}
2957
2958
2959static wrap_nearest_func
2960get_nearest_wrap(unsigned mode)
2961{
2962   switch (mode) {
2963   case PIPE_TEX_WRAP_REPEAT:
2964      return wrap_nearest_repeat;
2965   case PIPE_TEX_WRAP_CLAMP:
2966      return wrap_nearest_clamp;
2967   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2968      return wrap_nearest_clamp_to_edge;
2969   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2970      return wrap_nearest_clamp_to_border;
2971   case PIPE_TEX_WRAP_MIRROR_REPEAT:
2972      return wrap_nearest_mirror_repeat;
2973   case PIPE_TEX_WRAP_MIRROR_CLAMP:
2974      return wrap_nearest_mirror_clamp;
2975   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2976      return wrap_nearest_mirror_clamp_to_edge;
2977   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2978      return wrap_nearest_mirror_clamp_to_border;
2979   default:
2980      assert(0);
2981      return wrap_nearest_repeat;
2982   }
2983}
2984
2985
2986static wrap_linear_func
2987get_linear_unorm_wrap(unsigned mode)
2988{
2989   switch (mode) {
2990   case PIPE_TEX_WRAP_CLAMP:
2991      return wrap_linear_unorm_clamp;
2992   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2993      return wrap_linear_unorm_clamp_to_edge;
2994   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2995      return wrap_linear_unorm_clamp_to_border;
2996   default:
2997      debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
2998      return wrap_linear_unorm_clamp;
2999   }
3000}
3001
3002
3003static wrap_linear_func
3004get_linear_wrap(unsigned mode)
3005{
3006   switch (mode) {
3007   case PIPE_TEX_WRAP_REPEAT:
3008      return wrap_linear_repeat;
3009   case PIPE_TEX_WRAP_CLAMP:
3010      return wrap_linear_clamp;
3011   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
3012      return wrap_linear_clamp_to_edge;
3013   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
3014      return wrap_linear_clamp_to_border;
3015   case PIPE_TEX_WRAP_MIRROR_REPEAT:
3016      return wrap_linear_mirror_repeat;
3017   case PIPE_TEX_WRAP_MIRROR_CLAMP:
3018      return wrap_linear_mirror_clamp;
3019   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
3020      return wrap_linear_mirror_clamp_to_edge;
3021   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
3022      return wrap_linear_mirror_clamp_to_border;
3023   default:
3024      assert(0);
3025      return wrap_linear_repeat;
3026   }
3027}
3028
3029
3030/**
3031 * Is swizzling needed for the given state key?
3032 */
3033static inline bool
3034any_swizzle(const struct pipe_sampler_view *view)
3035{
3036   return (view->swizzle_r != PIPE_SWIZZLE_X ||
3037           view->swizzle_g != PIPE_SWIZZLE_Y ||
3038           view->swizzle_b != PIPE_SWIZZLE_Z ||
3039           view->swizzle_a != PIPE_SWIZZLE_W);
3040}
3041
3042
3043static img_filter_func
3044get_img_filter(const struct sp_sampler_view *sp_sview,
3045               const struct pipe_sampler_state *sampler,
3046               unsigned filter, bool gather)
3047{
3048   switch (sp_sview->base.target) {
3049   case PIPE_BUFFER:
3050   case PIPE_TEXTURE_1D:
3051      if (filter == PIPE_TEX_FILTER_NEAREST)
3052         return img_filter_1d_nearest;
3053      else
3054         return img_filter_1d_linear;
3055      break;
3056   case PIPE_TEXTURE_1D_ARRAY:
3057      if (filter == PIPE_TEX_FILTER_NEAREST)
3058         return img_filter_1d_array_nearest;
3059      else
3060         return img_filter_1d_array_linear;
3061      break;
3062   case PIPE_TEXTURE_2D:
3063   case PIPE_TEXTURE_RECT:
3064      /* Try for fast path:
3065       */
3066      if (!gather && sp_sview->pot2d &&
3067          sampler->wrap_s == sampler->wrap_t &&
3068          sampler->normalized_coords)
3069      {
3070         switch (sampler->wrap_s) {
3071         case PIPE_TEX_WRAP_REPEAT:
3072            switch (filter) {
3073            case PIPE_TEX_FILTER_NEAREST:
3074               return img_filter_2d_nearest_repeat_POT;
3075            case PIPE_TEX_FILTER_LINEAR:
3076               return img_filter_2d_linear_repeat_POT;
3077            default:
3078               break;
3079            }
3080            break;
3081         case PIPE_TEX_WRAP_CLAMP:
3082            switch (filter) {
3083            case PIPE_TEX_FILTER_NEAREST:
3084               return img_filter_2d_nearest_clamp_POT;
3085            default:
3086               break;
3087            }
3088         }
3089      }
3090      /* Otherwise use default versions:
3091       */
3092      if (filter == PIPE_TEX_FILTER_NEAREST)
3093         return img_filter_2d_nearest;
3094      else
3095         return img_filter_2d_linear;
3096      break;
3097   case PIPE_TEXTURE_2D_ARRAY:
3098      if (filter == PIPE_TEX_FILTER_NEAREST)
3099         return img_filter_2d_array_nearest;
3100      else
3101         return img_filter_2d_array_linear;
3102      break;
3103   case PIPE_TEXTURE_CUBE:
3104      if (filter == PIPE_TEX_FILTER_NEAREST)
3105         return img_filter_cube_nearest;
3106      else
3107         return img_filter_cube_linear;
3108      break;
3109   case PIPE_TEXTURE_CUBE_ARRAY:
3110      if (filter == PIPE_TEX_FILTER_NEAREST)
3111         return img_filter_cube_array_nearest;
3112      else
3113         return img_filter_cube_array_linear;
3114      break;
3115   case PIPE_TEXTURE_3D:
3116      if (filter == PIPE_TEX_FILTER_NEAREST)
3117         return img_filter_3d_nearest;
3118      else
3119         return img_filter_3d_linear;
3120      break;
3121   default:
3122      assert(0);
3123      return img_filter_1d_nearest;
3124   }
3125}
3126
3127/**
3128 * Get mip filter funcs, and optionally both img min filter and img mag
3129 * filter. Note that both img filter function pointers must be either non-NULL
3130 * or NULL.
3131 */
3132static void
3133get_filters(const struct sp_sampler_view *sp_sview,
3134            const struct sp_sampler *sp_samp,
3135            const enum tgsi_sampler_control control,
3136            const struct sp_filter_funcs **funcs,
3137            img_filter_func *min,
3138            img_filter_func *mag)
3139{
3140   assert(funcs);
3141   if (control == TGSI_SAMPLER_GATHER) {
3142      *funcs = &funcs_nearest;
3143      if (min) {
3144         *min = get_img_filter(sp_sview, &sp_samp->base,
3145                               PIPE_TEX_FILTER_LINEAR, true);
3146      }
3147   } else if (sp_sview->pot2d & sp_samp->min_mag_equal_repeat_linear) {
3148      *funcs = &funcs_linear_2d_linear_repeat_POT;
3149   } else {
3150      *funcs = sp_samp->filter_funcs;
3151      if (min) {
3152         assert(mag);
3153         *min = get_img_filter(sp_sview, &sp_samp->base,
3154                               sp_samp->min_img_filter, false);
3155         if (sp_samp->min_mag_equal) {
3156            *mag = *min;
3157         } else {
3158            *mag = get_img_filter(sp_sview, &sp_samp->base,
3159                                  sp_samp->base.mag_img_filter, false);
3160         }
3161      }
3162   }
3163}
3164
3165static void
3166sample_mip(const struct sp_sampler_view *sp_sview,
3167           const struct sp_sampler *sp_samp,
3168           const float s[TGSI_QUAD_SIZE],
3169           const float t[TGSI_QUAD_SIZE],
3170           const float p[TGSI_QUAD_SIZE],
3171           const float c0[TGSI_QUAD_SIZE],
3172           int gather_comp,
3173           const float lod[TGSI_QUAD_SIZE],
3174           const struct filter_args *filt_args,
3175           float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3176{
3177   const struct sp_filter_funcs *funcs = NULL;
3178   img_filter_func min_img_filter = NULL;
3179   img_filter_func mag_img_filter = NULL;
3180
3181   get_filters(sp_sview, sp_samp, filt_args->control,
3182               &funcs, &min_img_filter, &mag_img_filter);
3183
3184   funcs->filter(sp_sview, sp_samp, min_img_filter, mag_img_filter,
3185                 s, t, p, gather_comp, lod, filt_args, rgba);
3186
3187   if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE) {
3188      sample_compare(sp_sview, sp_samp, c0, filt_args->control, rgba);
3189   }
3190
3191   if (sp_sview->need_swizzle && filt_args->control != TGSI_SAMPLER_GATHER) {
3192      float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3193      memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3194      do_swizzling(&sp_sview->base, rgba_temp, rgba);
3195   }
3196
3197}
3198
3199
3200/**
3201 * This function uses cube texture coordinates to choose a face of a cube and
3202 * computes the 2D cube face coordinates. Puts face info into the sampler
3203 * faces[] array.
3204 */
3205static void
3206convert_cube(const struct sp_sampler_view *sp_sview,
3207             const struct sp_sampler *sp_samp,
3208             const float s[TGSI_QUAD_SIZE],
3209             const float t[TGSI_QUAD_SIZE],
3210             const float p[TGSI_QUAD_SIZE],
3211             const float c0[TGSI_QUAD_SIZE],
3212             float ssss[TGSI_QUAD_SIZE],
3213             float tttt[TGSI_QUAD_SIZE],
3214             float pppp[TGSI_QUAD_SIZE],
3215             uint faces[TGSI_QUAD_SIZE])
3216{
3217   unsigned j;
3218
3219   pppp[0] = c0[0];
3220   pppp[1] = c0[1];
3221   pppp[2] = c0[2];
3222   pppp[3] = c0[3];
3223   /*
3224     major axis
3225     direction    target                             sc     tc    ma
3226     ----------   -------------------------------    ---    ---   ---
3227     +rx          TEXTURE_CUBE_MAP_POSITIVE_X_EXT    -rz    -ry   rx
3228     -rx          TEXTURE_CUBE_MAP_NEGATIVE_X_EXT    +rz    -ry   rx
3229     +ry          TEXTURE_CUBE_MAP_POSITIVE_Y_EXT    +rx    +rz   ry
3230     -ry          TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT    +rx    -rz   ry
3231     +rz          TEXTURE_CUBE_MAP_POSITIVE_Z_EXT    +rx    -ry   rz
3232     -rz          TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT    -rx    -ry   rz
3233   */
3234
3235   /* Choose the cube face and compute new s/t coords for the 2D face.
3236    *
3237    * Use the same cube face for all four pixels in the quad.
3238    *
3239    * This isn't ideal, but if we want to use a different cube face
3240    * per pixel in the quad, we'd have to also compute the per-face
3241    * LOD here too.  That's because the four post-face-selection
3242    * texcoords are no longer related to each other (they're
3243    * per-face!)  so we can't use subtraction to compute the partial
3244    * deriviates to compute the LOD.  Doing so (near cube edges
3245    * anyway) gives us pretty much random values.
3246    */
3247   for (j = 0; j < TGSI_QUAD_SIZE; j++)  {
3248      const float rx = s[j], ry = t[j], rz = p[j];
3249      const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
3250
3251      if (arx >= ary && arx >= arz) {
3252         const float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
3253         const uint face = (rx >= 0.0F) ?
3254            PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
3255         const float ima = -0.5F / fabsf(s[j]);
3256         ssss[j] = sign *  p[j] * ima + 0.5F;
3257         tttt[j] =         t[j] * ima + 0.5F;
3258         faces[j] = face;
3259      }
3260      else if (ary >= arx && ary >= arz) {
3261         const float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
3262         const uint face = (ry >= 0.0F) ?
3263            PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
3264         const float ima = -0.5F / fabsf(t[j]);
3265         ssss[j] =        -s[j] * ima + 0.5F;
3266         tttt[j] = sign * -p[j] * ima + 0.5F;
3267         faces[j] = face;
3268      }
3269      else {
3270         const float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
3271         const uint face = (rz >= 0.0F) ?
3272            PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
3273         const float ima = -0.5F / fabsf(p[j]);
3274         ssss[j] = sign * -s[j] * ima + 0.5F;
3275         tttt[j] =         t[j] * ima + 0.5F;
3276         faces[j] = face;
3277      }
3278   }
3279}
3280
3281
3282static void
3283sp_get_dims(const struct sp_sampler_view *sp_sview,
3284            int level,
3285            int dims[4])
3286{
3287   const struct pipe_sampler_view *view = &sp_sview->base;
3288   const struct pipe_resource *texture = view->texture;
3289
3290   if (view->target == PIPE_BUFFER) {
3291      dims[0] = view->u.buf.size / util_format_get_blocksize(view->format);
3292      /* the other values are undefined, but let's avoid potential valgrind
3293       * warnings.
3294       */
3295      dims[1] = dims[2] = dims[3] = 0;
3296      return;
3297   }
3298
3299   /* undefined according to EXT_gpu_program */
3300   level += view->u.tex.first_level;
3301   if (level > view->u.tex.last_level)
3302      return;
3303
3304   dims[3] = view->u.tex.last_level - view->u.tex.first_level + 1;
3305   dims[0] = u_minify(texture->width0, level);
3306
3307   switch (view->target) {
3308   case PIPE_TEXTURE_1D_ARRAY:
3309      dims[1] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3310      /* fallthrough */
3311   case PIPE_TEXTURE_1D:
3312      return;
3313   case PIPE_TEXTURE_2D_ARRAY:
3314      dims[2] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3315      /* fallthrough */
3316   case PIPE_TEXTURE_2D:
3317   case PIPE_TEXTURE_CUBE:
3318   case PIPE_TEXTURE_RECT:
3319      dims[1] = u_minify(texture->height0, level);
3320      return;
3321   case PIPE_TEXTURE_3D:
3322      dims[1] = u_minify(texture->height0, level);
3323      dims[2] = u_minify(texture->depth0, level);
3324      return;
3325   case PIPE_TEXTURE_CUBE_ARRAY:
3326      dims[1] = u_minify(texture->height0, level);
3327      dims[2] = (view->u.tex.last_layer - view->u.tex.first_layer + 1) / 6;
3328      break;
3329   default:
3330      assert(!"unexpected texture target in sp_get_dims()");
3331      return;
3332   }
3333}
3334
3335/**
3336 * This function is only used for getting unfiltered texels via the
3337 * TXF opcode.  The GL spec says that out-of-bounds texel fetches
3338 * produce undefined results.  Instead of crashing, lets just clamp
3339 * coords to the texture image size.
3340 */
3341static void
3342sp_get_texels(const struct sp_sampler_view *sp_sview,
3343              const int v_i[TGSI_QUAD_SIZE],
3344              const int v_j[TGSI_QUAD_SIZE],
3345              const int v_k[TGSI_QUAD_SIZE],
3346              const int lod[TGSI_QUAD_SIZE],
3347              const int8_t offset[3],
3348              float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3349{
3350   union tex_tile_address addr;
3351   const struct pipe_resource *texture = sp_sview->base.texture;
3352   int j, c;
3353   const float *tx;
3354   /* TODO write a better test for LOD */
3355   const unsigned level =
3356      sp_sview->base.target == PIPE_BUFFER ? 0 :
3357      CLAMP(lod[0] + sp_sview->base.u.tex.first_level,
3358            sp_sview->base.u.tex.first_level,
3359            sp_sview->base.u.tex.last_level);
3360   const int width = u_minify(texture->width0, level);
3361   const int height = u_minify(texture->height0, level);
3362   const int depth = u_minify(texture->depth0, level);
3363   unsigned elem_size, first_element, last_element;
3364
3365   addr.value = 0;
3366   addr.bits.level = level;
3367
3368   switch (sp_sview->base.target) {
3369   case PIPE_BUFFER:
3370      elem_size = util_format_get_blocksize(sp_sview->base.format);
3371      first_element = sp_sview->base.u.buf.offset / elem_size;
3372      last_element = (sp_sview->base.u.buf.offset +
3373                      sp_sview->base.u.buf.size) / elem_size - 1;
3374      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3375         const int x = CLAMP(v_i[j] + offset[0] +
3376                             first_element,
3377                             first_element,
3378                             last_element);
3379         tx = get_texel_buffer_no_border(sp_sview, addr, x, elem_size);
3380         for (c = 0; c < 4; c++) {
3381            rgba[c][j] = tx[c];
3382         }
3383      }
3384      break;
3385   case PIPE_TEXTURE_1D:
3386      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3387         const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3388         tx = get_texel_2d_no_border(sp_sview, addr, x,
3389                                     sp_sview->base.u.tex.first_layer);
3390         for (c = 0; c < 4; c++) {
3391            rgba[c][j] = tx[c];
3392         }
3393      }
3394      break;
3395   case PIPE_TEXTURE_1D_ARRAY:
3396      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3397         const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3398         const int y = CLAMP(v_j[j], sp_sview->base.u.tex.first_layer,
3399                             sp_sview->base.u.tex.last_layer);
3400         tx = get_texel_2d_no_border(sp_sview, addr, x, y);
3401         for (c = 0; c < 4; c++) {
3402            rgba[c][j] = tx[c];
3403         }
3404      }
3405      break;
3406   case PIPE_TEXTURE_2D:
3407   case PIPE_TEXTURE_RECT:
3408      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3409         const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3410         const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3411         tx = get_texel_3d_no_border(sp_sview, addr, x, y,
3412                                     sp_sview->base.u.tex.first_layer);
3413         for (c = 0; c < 4; c++) {
3414            rgba[c][j] = tx[c];
3415         }
3416      }
3417      break;
3418   case PIPE_TEXTURE_2D_ARRAY:
3419      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3420         const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3421         const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3422         const int layer = CLAMP(v_k[j], sp_sview->base.u.tex.first_layer,
3423                                 sp_sview->base.u.tex.last_layer);
3424         tx = get_texel_3d_no_border(sp_sview, addr, x, y, layer);
3425         for (c = 0; c < 4; c++) {
3426            rgba[c][j] = tx[c];
3427         }
3428      }
3429      break;
3430   case PIPE_TEXTURE_3D:
3431      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3432         int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3433         int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3434         int z = CLAMP(v_k[j] + offset[2], 0, depth - 1);
3435         tx = get_texel_3d_no_border(sp_sview, addr, x, y, z);
3436         for (c = 0; c < 4; c++) {
3437            rgba[c][j] = tx[c];
3438         }
3439      }
3440      break;
3441   case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */
3442   case PIPE_TEXTURE_CUBE_ARRAY:
3443   default:
3444      assert(!"Unknown or CUBE texture type in TXF processing\n");
3445      break;
3446   }
3447
3448   if (sp_sview->need_swizzle) {
3449      float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3450      memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3451      do_swizzling(&sp_sview->base, rgba_temp, rgba);
3452   }
3453}
3454
3455
3456void *
3457softpipe_create_sampler_state(struct pipe_context *pipe,
3458                              const struct pipe_sampler_state *sampler)
3459{
3460   struct sp_sampler *samp = CALLOC_STRUCT(sp_sampler);
3461
3462   samp->base = *sampler;
3463
3464   /* Note that (for instance) linear_texcoord_s and
3465    * nearest_texcoord_s may be active at the same time, if the
3466    * sampler min_img_filter differs from its mag_img_filter.
3467    */
3468   if (sampler->normalized_coords) {
3469      samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
3470      samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
3471      samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
3472
3473      samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
3474      samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
3475      samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
3476   }
3477   else {
3478      samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
3479      samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
3480      samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
3481
3482      samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
3483      samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
3484      samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
3485   }
3486
3487   samp->min_img_filter = sampler->min_img_filter;
3488
3489   switch (sampler->min_mip_filter) {
3490   case PIPE_TEX_MIPFILTER_NONE:
3491      if (sampler->min_img_filter == sampler->mag_img_filter)
3492         samp->filter_funcs = &funcs_none_no_filter_select;
3493      else
3494         samp->filter_funcs = &funcs_none;
3495      break;
3496
3497   case PIPE_TEX_MIPFILTER_NEAREST:
3498      samp->filter_funcs = &funcs_nearest;
3499      break;
3500
3501   case PIPE_TEX_MIPFILTER_LINEAR:
3502      if (sampler->min_img_filter == sampler->mag_img_filter &&
3503          sampler->normalized_coords &&
3504          sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
3505          sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
3506          sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR &&
3507          sampler->max_anisotropy <= 1) {
3508         samp->min_mag_equal_repeat_linear = TRUE;
3509      }
3510      samp->filter_funcs = &funcs_linear;
3511
3512      /* Anisotropic filtering extension. */
3513      if (sampler->max_anisotropy > 1) {
3514         samp->filter_funcs = &funcs_linear_aniso;
3515
3516         /* Override min_img_filter:
3517          * min_img_filter needs to be set to NEAREST since we need to access
3518          * each texture pixel as it is and weight it later; using linear
3519          * filters will have incorrect results.
3520          * By setting the filter to NEAREST here, we can avoid calling the
3521          * generic img_filter_2d_nearest in the anisotropic filter function,
3522          * making it possible to use one of the accelerated implementations
3523          */
3524         samp->min_img_filter = PIPE_TEX_FILTER_NEAREST;
3525
3526         /* on first access create the lookup table containing the filter weights. */
3527        if (!weightLut) {
3528           create_filter_table();
3529        }
3530      }
3531      break;
3532   }
3533   if (samp->min_img_filter == sampler->mag_img_filter) {
3534      samp->min_mag_equal = TRUE;
3535   }
3536
3537   return (void *)samp;
3538}
3539
3540
3541compute_lambda_func
3542softpipe_get_lambda_func(const struct pipe_sampler_view *view,
3543                         enum pipe_shader_type shader)
3544{
3545   if (shader != PIPE_SHADER_FRAGMENT)
3546      return compute_lambda_vert;
3547
3548   switch (view->target) {
3549   case PIPE_BUFFER:
3550   case PIPE_TEXTURE_1D:
3551   case PIPE_TEXTURE_1D_ARRAY:
3552      return compute_lambda_1d;
3553   case PIPE_TEXTURE_2D:
3554   case PIPE_TEXTURE_2D_ARRAY:
3555   case PIPE_TEXTURE_RECT:
3556      return compute_lambda_2d;
3557   case PIPE_TEXTURE_CUBE:
3558   case PIPE_TEXTURE_CUBE_ARRAY:
3559      return compute_lambda_cube;
3560   case PIPE_TEXTURE_3D:
3561      return compute_lambda_3d;
3562   default:
3563      assert(0);
3564      return compute_lambda_1d;
3565   }
3566}
3567
3568
3569struct pipe_sampler_view *
3570softpipe_create_sampler_view(struct pipe_context *pipe,
3571                             struct pipe_resource *resource,
3572                             const struct pipe_sampler_view *templ)
3573{
3574   struct sp_sampler_view *sview = CALLOC_STRUCT(sp_sampler_view);
3575   const struct softpipe_resource *spr = (struct softpipe_resource *)resource;
3576
3577   if (sview) {
3578      struct pipe_sampler_view *view = &sview->base;
3579      *view = *templ;
3580      view->reference.count = 1;
3581      view->texture = NULL;
3582      pipe_resource_reference(&view->texture, resource);
3583      view->context = pipe;
3584
3585#ifdef DEBUG
3586     /*
3587      * This is possibly too lenient, but the primary reason is just
3588      * to catch state trackers which forget to initialize this, so
3589      * it only catches clearly impossible view targets.
3590      */
3591      if (view->target != resource->target) {
3592         if (view->target == PIPE_TEXTURE_1D)
3593            assert(resource->target == PIPE_TEXTURE_1D_ARRAY);
3594         else if (view->target == PIPE_TEXTURE_1D_ARRAY)
3595            assert(resource->target == PIPE_TEXTURE_1D);
3596         else if (view->target == PIPE_TEXTURE_2D)
3597            assert(resource->target == PIPE_TEXTURE_2D_ARRAY ||
3598                   resource->target == PIPE_TEXTURE_CUBE ||
3599                   resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3600         else if (view->target == PIPE_TEXTURE_2D_ARRAY)
3601            assert(resource->target == PIPE_TEXTURE_2D ||
3602                   resource->target == PIPE_TEXTURE_CUBE ||
3603                   resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3604         else if (view->target == PIPE_TEXTURE_CUBE)
3605            assert(resource->target == PIPE_TEXTURE_CUBE_ARRAY ||
3606                   resource->target == PIPE_TEXTURE_2D_ARRAY);
3607         else if (view->target == PIPE_TEXTURE_CUBE_ARRAY)
3608            assert(resource->target == PIPE_TEXTURE_CUBE ||
3609                   resource->target == PIPE_TEXTURE_2D_ARRAY);
3610         else
3611            assert(0);
3612      }
3613#endif
3614
3615      if (any_swizzle(view)) {
3616         sview->need_swizzle = TRUE;
3617      }
3618
3619      sview->need_cube_convert = (view->target == PIPE_TEXTURE_CUBE ||
3620                                  view->target == PIPE_TEXTURE_CUBE_ARRAY);
3621      sview->pot2d = spr->pot &&
3622                     (view->target == PIPE_TEXTURE_2D ||
3623                      view->target == PIPE_TEXTURE_RECT);
3624
3625      sview->xpot = util_logbase2( resource->width0 );
3626      sview->ypot = util_logbase2( resource->height0 );
3627   }
3628
3629   return (struct pipe_sampler_view *) sview;
3630}
3631
3632
3633static inline const struct sp_tgsi_sampler *
3634sp_tgsi_sampler_cast_c(const struct tgsi_sampler *sampler)
3635{
3636   return (const struct sp_tgsi_sampler *)sampler;
3637}
3638
3639
3640static void
3641sp_tgsi_get_dims(struct tgsi_sampler *tgsi_sampler,
3642                 const unsigned sview_index,
3643                 int level, int dims[4])
3644{
3645   const struct sp_tgsi_sampler *sp_samp =
3646      sp_tgsi_sampler_cast_c(tgsi_sampler);
3647
3648   assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3649   /* always have a view here but texture is NULL if no sampler view was set. */
3650   if (!sp_samp->sp_sview[sview_index].base.texture) {
3651      dims[0] = dims[1] = dims[2] = dims[3] = 0;
3652      return;
3653   }
3654   sp_get_dims(&sp_samp->sp_sview[sview_index], level, dims);
3655}
3656
3657
3658static void prepare_compare_values(enum pipe_texture_target target,
3659                                   const float p[TGSI_QUAD_SIZE],
3660                                   const float c0[TGSI_QUAD_SIZE],
3661                                   const float c1[TGSI_QUAD_SIZE],
3662                                   float pc[TGSI_QUAD_SIZE])
3663{
3664   if (target == PIPE_TEXTURE_2D_ARRAY ||
3665       target == PIPE_TEXTURE_CUBE) {
3666      pc[0] = c0[0];
3667      pc[1] = c0[1];
3668      pc[2] = c0[2];
3669      pc[3] = c0[3];
3670   } else if (target == PIPE_TEXTURE_CUBE_ARRAY) {
3671      pc[0] = c1[0];
3672      pc[1] = c1[1];
3673      pc[2] = c1[2];
3674      pc[3] = c1[3];
3675   } else {
3676      pc[0] = p[0];
3677      pc[1] = p[1];
3678      pc[2] = p[2];
3679      pc[3] = p[3];
3680   }
3681}
3682
3683static void
3684sp_tgsi_get_samples(struct tgsi_sampler *tgsi_sampler,
3685                    const unsigned sview_index,
3686                    const unsigned sampler_index,
3687                    const float s[TGSI_QUAD_SIZE],
3688                    const float t[TGSI_QUAD_SIZE],
3689                    const float p[TGSI_QUAD_SIZE],
3690                    const float c0[TGSI_QUAD_SIZE],
3691                    const float lod_in[TGSI_QUAD_SIZE],
3692                    float derivs[3][2][TGSI_QUAD_SIZE],
3693                    const int8_t offset[3],
3694                    enum tgsi_sampler_control control,
3695                    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3696{
3697   const struct sp_tgsi_sampler *sp_tgsi_samp =
3698      sp_tgsi_sampler_cast_c(tgsi_sampler);
3699   const struct sp_sampler_view *sp_sview;
3700   const struct sp_sampler *sp_samp;
3701   struct filter_args filt_args;
3702   float compare_values[TGSI_QUAD_SIZE];
3703   float lod[TGSI_QUAD_SIZE];
3704
3705   assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3706   assert(sampler_index < PIPE_MAX_SAMPLERS);
3707   assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3708
3709   sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
3710   sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3711   /* always have a view here but texture is NULL if no sampler view was set. */
3712   if (!sp_sview->base.texture) {
3713      int i, j;
3714      for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3715         for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3716            rgba[j][i] = 0.0f;
3717         }
3718      }
3719      return;
3720   }
3721
3722   if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE)
3723      prepare_compare_values(sp_sview->base.target, p, c0, lod_in, compare_values);
3724
3725   filt_args.control = control;
3726   filt_args.offset = offset;
3727   int gather_comp = get_gather_component(lod_in);
3728
3729   compute_lambda_lod(sp_sview,sp_samp, s, t, p, derivs, lod_in, control, lod);
3730
3731   if (sp_sview->need_cube_convert) {
3732      float cs[TGSI_QUAD_SIZE];
3733      float ct[TGSI_QUAD_SIZE];
3734      float cp[TGSI_QUAD_SIZE];
3735      uint faces[TGSI_QUAD_SIZE];
3736
3737      convert_cube(sp_sview, sp_samp, s, t, p, c0, cs, ct, cp, faces);
3738
3739      filt_args.faces = faces;
3740      sample_mip(sp_sview, sp_samp, cs, ct, cp, compare_values, gather_comp, lod, &filt_args, rgba);
3741   } else {
3742      static const uint zero_faces[TGSI_QUAD_SIZE] = {0, 0, 0, 0};
3743
3744      filt_args.faces = zero_faces;
3745      sample_mip(sp_sview, sp_samp, s, t, p, compare_values, gather_comp, lod, &filt_args, rgba);
3746   }
3747}
3748
3749static void
3750sp_tgsi_query_lod(const struct tgsi_sampler *tgsi_sampler,
3751                  const unsigned sview_index,
3752                  const unsigned sampler_index,
3753                  const float s[TGSI_QUAD_SIZE],
3754                  const float t[TGSI_QUAD_SIZE],
3755                  const float p[TGSI_QUAD_SIZE],
3756                  const float c0[TGSI_QUAD_SIZE],
3757                  const enum tgsi_sampler_control control,
3758                  float mipmap[TGSI_QUAD_SIZE],
3759                  float lod[TGSI_QUAD_SIZE])
3760{
3761   static const float lod_in[TGSI_QUAD_SIZE] = { 0.0, 0.0, 0.0, 0.0 };
3762   static const float dummy_grad[3][2][TGSI_QUAD_SIZE];
3763
3764   const struct sp_tgsi_sampler *sp_tgsi_samp =
3765      sp_tgsi_sampler_cast_c(tgsi_sampler);
3766   const struct sp_sampler_view *sp_sview;
3767   const struct sp_sampler *sp_samp;
3768   const struct sp_filter_funcs *funcs;
3769   int i;
3770
3771   assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3772   assert(sampler_index < PIPE_MAX_SAMPLERS);
3773   assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3774
3775   sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
3776   sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3777   /* always have a view here but texture is NULL if no sampler view was
3778    * set. */
3779   if (!sp_sview->base.texture) {
3780      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3781         mipmap[i] = 0.0f;
3782         lod[i] = 0.0f;
3783      }
3784      return;
3785   }
3786   compute_lambda_lod_unclamped(sp_sview, sp_samp,
3787                                s, t, p, dummy_grad, lod_in, control, lod);
3788
3789   get_filters(sp_sview, sp_samp, control, &funcs, NULL, NULL);
3790   funcs->relative_level(sp_sview, sp_samp, lod, mipmap);
3791}
3792
3793static void
3794sp_tgsi_get_texel(struct tgsi_sampler *tgsi_sampler,
3795                  const unsigned sview_index,
3796                  const int i[TGSI_QUAD_SIZE],
3797                  const int j[TGSI_QUAD_SIZE], const int k[TGSI_QUAD_SIZE],
3798                  const int lod[TGSI_QUAD_SIZE], const int8_t offset[3],
3799                  float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3800{
3801   const struct sp_tgsi_sampler *sp_samp =
3802      sp_tgsi_sampler_cast_c(tgsi_sampler);
3803
3804   assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3805   /* always have a view here but texture is NULL if no sampler view was set. */
3806   if (!sp_samp->sp_sview[sview_index].base.texture) {
3807      int i, j;
3808      for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3809         for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3810            rgba[j][i] = 0.0f;
3811         }
3812      }
3813      return;
3814   }
3815   sp_get_texels(&sp_samp->sp_sview[sview_index], i, j, k, lod, offset, rgba);
3816}
3817
3818
3819struct sp_tgsi_sampler *
3820sp_create_tgsi_sampler(void)
3821{
3822   struct sp_tgsi_sampler *samp = CALLOC_STRUCT(sp_tgsi_sampler);
3823   if (!samp)
3824      return NULL;
3825
3826   samp->base.get_dims = sp_tgsi_get_dims;
3827   samp->base.get_samples = sp_tgsi_get_samples;
3828   samp->base.get_texel = sp_tgsi_get_texel;
3829   samp->base.query_lod = sp_tgsi_query_lod;
3830
3831   return samp;
3832}
3833