1b8e80941Smrg/* 2b8e80941Smrg * Copyright © 2012 Intel Corporation 3b8e80941Smrg * 4b8e80941Smrg * Permission is hereby granted, free of charge, to any person obtaining a 5b8e80941Smrg * copy of this software and associated documentation files (the "Software"), 6b8e80941Smrg * to deal in the Software without restriction, including without limitation 7b8e80941Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8b8e80941Smrg * and/or sell copies of the Software, and to permit persons to whom the 9b8e80941Smrg * Software is furnished to do so, subject to the following conditions: 10b8e80941Smrg * 11b8e80941Smrg * The above copyright notice and this permission notice (including the next 12b8e80941Smrg * paragraph) shall be included in all copies or substantial portions of the 13b8e80941Smrg * Software. 14b8e80941Smrg * 15b8e80941Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16b8e80941Smrg * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17b8e80941Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18b8e80941Smrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19b8e80941Smrg * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20b8e80941Smrg * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21b8e80941Smrg * IN THE SOFTWARE. 22b8e80941Smrg * 23b8e80941Smrg * Authors: 24b8e80941Smrg * Eric Anholt <eric@anholt.net> 25b8e80941Smrg * 26b8e80941Smrg */ 27b8e80941Smrg 28b8e80941Smrg#include "brw_cfg.h" 29b8e80941Smrg 30b8e80941Smrg/** @file brw_cfg.cpp 31b8e80941Smrg * 32b8e80941Smrg * Walks the shader instructions generated and creates a set of basic 33b8e80941Smrg * blocks with successor/predecessor edges connecting them. 34b8e80941Smrg */ 35b8e80941Smrg 36b8e80941Smrgstatic bblock_t * 37b8e80941Smrgpop_stack(exec_list *list) 38b8e80941Smrg{ 39b8e80941Smrg bblock_link *link = (bblock_link *)list->get_tail(); 40b8e80941Smrg bblock_t *block = link->block; 41b8e80941Smrg link->link.remove(); 42b8e80941Smrg 43b8e80941Smrg return block; 44b8e80941Smrg} 45b8e80941Smrg 46b8e80941Smrgstatic exec_node * 47b8e80941Smrglink(void *mem_ctx, bblock_t *block) 48b8e80941Smrg{ 49b8e80941Smrg bblock_link *l = new(mem_ctx) bblock_link(block); 50b8e80941Smrg return &l->link; 51b8e80941Smrg} 52b8e80941Smrg 53b8e80941Smrgbblock_t::bblock_t(cfg_t *cfg) : 54b8e80941Smrg cfg(cfg), idom(NULL), start_ip(0), end_ip(0), num(0), cycle_count(0) 55b8e80941Smrg{ 56b8e80941Smrg instructions.make_empty(); 57b8e80941Smrg parents.make_empty(); 58b8e80941Smrg children.make_empty(); 59b8e80941Smrg} 60b8e80941Smrg 61b8e80941Smrgvoid 62b8e80941Smrgbblock_t::add_successor(void *mem_ctx, bblock_t *successor) 63b8e80941Smrg{ 64b8e80941Smrg successor->parents.push_tail(::link(mem_ctx, this)); 65b8e80941Smrg children.push_tail(::link(mem_ctx, successor)); 66b8e80941Smrg} 67b8e80941Smrg 68b8e80941Smrgbool 69b8e80941Smrgbblock_t::is_predecessor_of(const bblock_t *block) const 70b8e80941Smrg{ 71b8e80941Smrg foreach_list_typed_safe (bblock_link, parent, link, &block->parents) { 72b8e80941Smrg if (parent->block == this) { 73b8e80941Smrg return true; 74b8e80941Smrg } 75b8e80941Smrg } 76b8e80941Smrg 77b8e80941Smrg return false; 78b8e80941Smrg} 79b8e80941Smrg 80b8e80941Smrgbool 81b8e80941Smrgbblock_t::is_successor_of(const bblock_t *block) const 82b8e80941Smrg{ 83b8e80941Smrg foreach_list_typed_safe (bblock_link, child, link, &block->children) { 84b8e80941Smrg if (child->block == this) { 85b8e80941Smrg return true; 86b8e80941Smrg } 87b8e80941Smrg } 88b8e80941Smrg 89b8e80941Smrg return false; 90b8e80941Smrg} 91b8e80941Smrg 92b8e80941Smrgstatic bool 93b8e80941Smrgends_block(const backend_instruction *inst) 94b8e80941Smrg{ 95b8e80941Smrg enum opcode op = inst->opcode; 96b8e80941Smrg 97b8e80941Smrg return op == BRW_OPCODE_IF || 98b8e80941Smrg op == BRW_OPCODE_ELSE || 99b8e80941Smrg op == BRW_OPCODE_CONTINUE || 100b8e80941Smrg op == BRW_OPCODE_BREAK || 101b8e80941Smrg op == BRW_OPCODE_DO || 102b8e80941Smrg op == BRW_OPCODE_WHILE; 103b8e80941Smrg} 104b8e80941Smrg 105b8e80941Smrgstatic bool 106b8e80941Smrgstarts_block(const backend_instruction *inst) 107b8e80941Smrg{ 108b8e80941Smrg enum opcode op = inst->opcode; 109b8e80941Smrg 110b8e80941Smrg return op == BRW_OPCODE_DO || 111b8e80941Smrg op == BRW_OPCODE_ENDIF; 112b8e80941Smrg} 113b8e80941Smrg 114b8e80941Smrgbool 115b8e80941Smrgbblock_t::can_combine_with(const bblock_t *that) const 116b8e80941Smrg{ 117b8e80941Smrg if ((const bblock_t *)this->link.next != that) 118b8e80941Smrg return false; 119b8e80941Smrg 120b8e80941Smrg if (ends_block(this->end()) || 121b8e80941Smrg starts_block(that->start())) 122b8e80941Smrg return false; 123b8e80941Smrg 124b8e80941Smrg return true; 125b8e80941Smrg} 126b8e80941Smrg 127b8e80941Smrgvoid 128b8e80941Smrgbblock_t::combine_with(bblock_t *that) 129b8e80941Smrg{ 130b8e80941Smrg assert(this->can_combine_with(that)); 131b8e80941Smrg foreach_list_typed (bblock_link, link, link, &that->parents) { 132b8e80941Smrg assert(link->block == this); 133b8e80941Smrg } 134b8e80941Smrg 135b8e80941Smrg this->end_ip = that->end_ip; 136b8e80941Smrg this->instructions.append_list(&that->instructions); 137b8e80941Smrg 138b8e80941Smrg this->cfg->remove_block(that); 139b8e80941Smrg} 140b8e80941Smrg 141b8e80941Smrgvoid 142b8e80941Smrgbblock_t::dump(backend_shader *s) const 143b8e80941Smrg{ 144b8e80941Smrg int ip = this->start_ip; 145b8e80941Smrg foreach_inst_in_block(backend_instruction, inst, this) { 146b8e80941Smrg fprintf(stderr, "%5d: ", ip); 147b8e80941Smrg s->dump_instruction(inst); 148b8e80941Smrg ip++; 149b8e80941Smrg } 150b8e80941Smrg} 151b8e80941Smrg 152b8e80941Smrgcfg_t::cfg_t(exec_list *instructions) 153b8e80941Smrg{ 154b8e80941Smrg mem_ctx = ralloc_context(NULL); 155b8e80941Smrg block_list.make_empty(); 156b8e80941Smrg blocks = NULL; 157b8e80941Smrg num_blocks = 0; 158b8e80941Smrg idom_dirty = true; 159b8e80941Smrg cycle_count = 0; 160b8e80941Smrg 161b8e80941Smrg bblock_t *cur = NULL; 162b8e80941Smrg int ip = 0; 163b8e80941Smrg 164b8e80941Smrg bblock_t *entry = new_block(); 165b8e80941Smrg bblock_t *cur_if = NULL; /**< BB ending with IF. */ 166b8e80941Smrg bblock_t *cur_else = NULL; /**< BB ending with ELSE. */ 167b8e80941Smrg bblock_t *cur_endif = NULL; /**< BB starting with ENDIF. */ 168b8e80941Smrg bblock_t *cur_do = NULL; /**< BB starting with DO. */ 169b8e80941Smrg bblock_t *cur_while = NULL; /**< BB immediately following WHILE. */ 170b8e80941Smrg exec_list if_stack, else_stack, do_stack, while_stack; 171b8e80941Smrg bblock_t *next; 172b8e80941Smrg 173b8e80941Smrg set_next_block(&cur, entry, ip); 174b8e80941Smrg 175b8e80941Smrg foreach_in_list_safe(backend_instruction, inst, instructions) { 176b8e80941Smrg /* set_next_block wants the post-incremented ip */ 177b8e80941Smrg ip++; 178b8e80941Smrg 179b8e80941Smrg inst->exec_node::remove(); 180b8e80941Smrg 181b8e80941Smrg switch (inst->opcode) { 182b8e80941Smrg case BRW_OPCODE_IF: 183b8e80941Smrg cur->instructions.push_tail(inst); 184b8e80941Smrg 185b8e80941Smrg /* Push our information onto a stack so we can recover from 186b8e80941Smrg * nested ifs. 187b8e80941Smrg */ 188b8e80941Smrg if_stack.push_tail(link(mem_ctx, cur_if)); 189b8e80941Smrg else_stack.push_tail(link(mem_ctx, cur_else)); 190b8e80941Smrg 191b8e80941Smrg cur_if = cur; 192b8e80941Smrg cur_else = NULL; 193b8e80941Smrg cur_endif = NULL; 194b8e80941Smrg 195b8e80941Smrg /* Set up our immediately following block, full of "then" 196b8e80941Smrg * instructions. 197b8e80941Smrg */ 198b8e80941Smrg next = new_block(); 199b8e80941Smrg cur_if->add_successor(mem_ctx, next); 200b8e80941Smrg 201b8e80941Smrg set_next_block(&cur, next, ip); 202b8e80941Smrg break; 203b8e80941Smrg 204b8e80941Smrg case BRW_OPCODE_ELSE: 205b8e80941Smrg cur->instructions.push_tail(inst); 206b8e80941Smrg 207b8e80941Smrg cur_else = cur; 208b8e80941Smrg 209b8e80941Smrg next = new_block(); 210b8e80941Smrg assert(cur_if != NULL); 211b8e80941Smrg cur_if->add_successor(mem_ctx, next); 212b8e80941Smrg 213b8e80941Smrg set_next_block(&cur, next, ip); 214b8e80941Smrg break; 215b8e80941Smrg 216b8e80941Smrg case BRW_OPCODE_ENDIF: { 217b8e80941Smrg if (cur->instructions.is_empty()) { 218b8e80941Smrg /* New block was just created; use it. */ 219b8e80941Smrg cur_endif = cur; 220b8e80941Smrg } else { 221b8e80941Smrg cur_endif = new_block(); 222b8e80941Smrg 223b8e80941Smrg cur->add_successor(mem_ctx, cur_endif); 224b8e80941Smrg 225b8e80941Smrg set_next_block(&cur, cur_endif, ip - 1); 226b8e80941Smrg } 227b8e80941Smrg 228b8e80941Smrg cur->instructions.push_tail(inst); 229b8e80941Smrg 230b8e80941Smrg if (cur_else) { 231b8e80941Smrg cur_else->add_successor(mem_ctx, cur_endif); 232b8e80941Smrg } else { 233b8e80941Smrg assert(cur_if != NULL); 234b8e80941Smrg cur_if->add_successor(mem_ctx, cur_endif); 235b8e80941Smrg } 236b8e80941Smrg 237b8e80941Smrg assert(cur_if->end()->opcode == BRW_OPCODE_IF); 238b8e80941Smrg assert(!cur_else || cur_else->end()->opcode == BRW_OPCODE_ELSE); 239b8e80941Smrg 240b8e80941Smrg /* Pop the stack so we're in the previous if/else/endif */ 241b8e80941Smrg cur_if = pop_stack(&if_stack); 242b8e80941Smrg cur_else = pop_stack(&else_stack); 243b8e80941Smrg break; 244b8e80941Smrg } 245b8e80941Smrg case BRW_OPCODE_DO: 246b8e80941Smrg /* Push our information onto a stack so we can recover from 247b8e80941Smrg * nested loops. 248b8e80941Smrg */ 249b8e80941Smrg do_stack.push_tail(link(mem_ctx, cur_do)); 250b8e80941Smrg while_stack.push_tail(link(mem_ctx, cur_while)); 251b8e80941Smrg 252b8e80941Smrg /* Set up the block just after the while. Don't know when exactly 253b8e80941Smrg * it will start, yet. 254b8e80941Smrg */ 255b8e80941Smrg cur_while = new_block(); 256b8e80941Smrg 257b8e80941Smrg if (cur->instructions.is_empty()) { 258b8e80941Smrg /* New block was just created; use it. */ 259b8e80941Smrg cur_do = cur; 260b8e80941Smrg } else { 261b8e80941Smrg cur_do = new_block(); 262b8e80941Smrg 263b8e80941Smrg cur->add_successor(mem_ctx, cur_do); 264b8e80941Smrg 265b8e80941Smrg set_next_block(&cur, cur_do, ip - 1); 266b8e80941Smrg } 267b8e80941Smrg 268b8e80941Smrg cur->instructions.push_tail(inst); 269b8e80941Smrg 270b8e80941Smrg /* Represent divergent execution of the loop as a pair of alternative 271b8e80941Smrg * edges coming out of the DO instruction: For any physical iteration 272b8e80941Smrg * of the loop a given logical thread can either start off enabled 273b8e80941Smrg * (which is represented as the "next" successor), or disabled (if it 274b8e80941Smrg * has reached a non-uniform exit of the loop during a previous 275b8e80941Smrg * iteration, which is represented as the "cur_while" successor). 276b8e80941Smrg * 277b8e80941Smrg * The disabled edge will be taken by the logical thread anytime we 278b8e80941Smrg * arrive at the DO instruction through a back-edge coming from a 279b8e80941Smrg * conditional exit of the loop where divergent control flow started. 280b8e80941Smrg * 281b8e80941Smrg * This guarantees that there is a control-flow path from any 282b8e80941Smrg * divergence point of the loop into the convergence point 283b8e80941Smrg * (immediately past the WHILE instruction) such that it overlaps the 284b8e80941Smrg * whole IP region of divergent control flow (potentially the whole 285b8e80941Smrg * loop) *and* doesn't imply the execution of any instructions part 286b8e80941Smrg * of the loop (since the corresponding execution mask bit will be 287b8e80941Smrg * disabled for a diverging thread). 288b8e80941Smrg * 289b8e80941Smrg * This way we make sure that any variables that are live throughout 290b8e80941Smrg * the region of divergence for an inactive logical thread are also 291b8e80941Smrg * considered to interfere with any other variables assigned by 292b8e80941Smrg * active logical threads within the same physical region of the 293b8e80941Smrg * program, since otherwise we would risk cross-channel data 294b8e80941Smrg * corruption. 295b8e80941Smrg */ 296b8e80941Smrg next = new_block(); 297b8e80941Smrg cur->add_successor(mem_ctx, next); 298b8e80941Smrg cur->add_successor(mem_ctx, cur_while); 299b8e80941Smrg set_next_block(&cur, next, ip); 300b8e80941Smrg break; 301b8e80941Smrg 302b8e80941Smrg case BRW_OPCODE_CONTINUE: 303b8e80941Smrg cur->instructions.push_tail(inst); 304b8e80941Smrg 305b8e80941Smrg /* A conditional CONTINUE may start a region of divergent control 306b8e80941Smrg * flow until the start of the next loop iteration (*not* until the 307b8e80941Smrg * end of the loop which is why the successor is not the top-level 308b8e80941Smrg * divergence point at cur_do). The live interval of any variable 309b8e80941Smrg * extending through a CONTINUE edge is guaranteed to overlap the 310b8e80941Smrg * whole region of divergent execution, because any variable live-out 311b8e80941Smrg * at the CONTINUE instruction will also be live-in at the top of the 312b8e80941Smrg * loop, and therefore also live-out at the bottom-most point of the 313b8e80941Smrg * loop which is reachable from the top (since a control flow path 314b8e80941Smrg * exists from a definition of the variable through this CONTINUE 315b8e80941Smrg * instruction, the top of the loop, the (reachable) bottom of the 316b8e80941Smrg * loop, the top of the loop again, into a use of the variable). 317b8e80941Smrg */ 318b8e80941Smrg assert(cur_do != NULL); 319b8e80941Smrg cur->add_successor(mem_ctx, cur_do->next()); 320b8e80941Smrg 321b8e80941Smrg next = new_block(); 322b8e80941Smrg if (inst->predicate) 323b8e80941Smrg cur->add_successor(mem_ctx, next); 324b8e80941Smrg 325b8e80941Smrg set_next_block(&cur, next, ip); 326b8e80941Smrg break; 327b8e80941Smrg 328b8e80941Smrg case BRW_OPCODE_BREAK: 329b8e80941Smrg cur->instructions.push_tail(inst); 330b8e80941Smrg 331b8e80941Smrg /* A conditional BREAK instruction may start a region of divergent 332b8e80941Smrg * control flow until the end of the loop if the condition is 333b8e80941Smrg * non-uniform, in which case the loop will execute additional 334b8e80941Smrg * iterations with the present channel disabled. We model this as a 335b8e80941Smrg * control flow path from the divergence point to the convergence 336b8e80941Smrg * point that overlaps the whole IP range of the loop and skips over 337b8e80941Smrg * the execution of any other instructions part of the loop. 338b8e80941Smrg * 339b8e80941Smrg * See the DO case for additional explanation. 340b8e80941Smrg */ 341b8e80941Smrg assert(cur_do != NULL); 342b8e80941Smrg cur->add_successor(mem_ctx, cur_do); 343b8e80941Smrg 344b8e80941Smrg next = new_block(); 345b8e80941Smrg if (inst->predicate) 346b8e80941Smrg cur->add_successor(mem_ctx, next); 347b8e80941Smrg 348b8e80941Smrg set_next_block(&cur, next, ip); 349b8e80941Smrg break; 350b8e80941Smrg 351b8e80941Smrg case BRW_OPCODE_WHILE: 352b8e80941Smrg cur->instructions.push_tail(inst); 353b8e80941Smrg 354b8e80941Smrg assert(cur_do != NULL && cur_while != NULL); 355b8e80941Smrg 356b8e80941Smrg /* A conditional WHILE instruction may start a region of divergent 357b8e80941Smrg * control flow until the end of the loop, just like the BREAK 358b8e80941Smrg * instruction. See the BREAK case for more details. OTOH an 359b8e80941Smrg * unconditional WHILE instruction is non-divergent (just like an 360b8e80941Smrg * unconditional CONTINUE), and will necessarily lead to the 361b8e80941Smrg * execution of an additional iteration of the loop for all enabled 362b8e80941Smrg * channels, so we may skip over the divergence point at the top of 363b8e80941Smrg * the loop to keep the CFG as unambiguous as possible. 364b8e80941Smrg */ 365b8e80941Smrg cur->add_successor(mem_ctx, inst->predicate ? cur_do : 366b8e80941Smrg cur_do->next()); 367b8e80941Smrg 368b8e80941Smrg set_next_block(&cur, cur_while, ip); 369b8e80941Smrg 370b8e80941Smrg /* Pop the stack so we're in the previous loop */ 371b8e80941Smrg cur_do = pop_stack(&do_stack); 372b8e80941Smrg cur_while = pop_stack(&while_stack); 373b8e80941Smrg break; 374b8e80941Smrg 375b8e80941Smrg default: 376b8e80941Smrg cur->instructions.push_tail(inst); 377b8e80941Smrg break; 378b8e80941Smrg } 379b8e80941Smrg } 380b8e80941Smrg 381b8e80941Smrg cur->end_ip = ip - 1; 382b8e80941Smrg 383b8e80941Smrg make_block_array(); 384b8e80941Smrg} 385b8e80941Smrg 386b8e80941Smrgcfg_t::~cfg_t() 387b8e80941Smrg{ 388b8e80941Smrg ralloc_free(mem_ctx); 389b8e80941Smrg} 390b8e80941Smrg 391b8e80941Smrgvoid 392b8e80941Smrgcfg_t::remove_block(bblock_t *block) 393b8e80941Smrg{ 394b8e80941Smrg foreach_list_typed_safe (bblock_link, predecessor, link, &block->parents) { 395b8e80941Smrg /* Remove block from all of its predecessors' successor lists. */ 396b8e80941Smrg foreach_list_typed_safe (bblock_link, successor, link, 397b8e80941Smrg &predecessor->block->children) { 398b8e80941Smrg if (block == successor->block) { 399b8e80941Smrg successor->link.remove(); 400b8e80941Smrg ralloc_free(successor); 401b8e80941Smrg } 402b8e80941Smrg } 403b8e80941Smrg 404b8e80941Smrg /* Add removed-block's successors to its predecessors' successor lists. */ 405b8e80941Smrg foreach_list_typed (bblock_link, successor, link, &block->children) { 406b8e80941Smrg if (!successor->block->is_successor_of(predecessor->block)) { 407b8e80941Smrg predecessor->block->children.push_tail(link(mem_ctx, 408b8e80941Smrg successor->block)); 409b8e80941Smrg } 410b8e80941Smrg } 411b8e80941Smrg } 412b8e80941Smrg 413b8e80941Smrg foreach_list_typed_safe (bblock_link, successor, link, &block->children) { 414b8e80941Smrg /* Remove block from all of its childrens' parents lists. */ 415b8e80941Smrg foreach_list_typed_safe (bblock_link, predecessor, link, 416b8e80941Smrg &successor->block->parents) { 417b8e80941Smrg if (block == predecessor->block) { 418b8e80941Smrg predecessor->link.remove(); 419b8e80941Smrg ralloc_free(predecessor); 420b8e80941Smrg } 421b8e80941Smrg } 422b8e80941Smrg 423b8e80941Smrg /* Add removed-block's predecessors to its successors' predecessor lists. */ 424b8e80941Smrg foreach_list_typed (bblock_link, predecessor, link, &block->parents) { 425b8e80941Smrg if (!predecessor->block->is_predecessor_of(successor->block)) { 426b8e80941Smrg successor->block->parents.push_tail(link(mem_ctx, 427b8e80941Smrg predecessor->block)); 428b8e80941Smrg } 429b8e80941Smrg } 430b8e80941Smrg } 431b8e80941Smrg 432b8e80941Smrg block->link.remove(); 433b8e80941Smrg 434b8e80941Smrg for (int b = block->num; b < this->num_blocks - 1; b++) { 435b8e80941Smrg this->blocks[b] = this->blocks[b + 1]; 436b8e80941Smrg this->blocks[b]->num = b; 437b8e80941Smrg } 438b8e80941Smrg 439b8e80941Smrg this->blocks[this->num_blocks - 1]->num = this->num_blocks - 2; 440b8e80941Smrg this->num_blocks--; 441b8e80941Smrg idom_dirty = true; 442b8e80941Smrg} 443b8e80941Smrg 444b8e80941Smrgbblock_t * 445b8e80941Smrgcfg_t::new_block() 446b8e80941Smrg{ 447b8e80941Smrg bblock_t *block = new(mem_ctx) bblock_t(this); 448b8e80941Smrg 449b8e80941Smrg return block; 450b8e80941Smrg} 451b8e80941Smrg 452b8e80941Smrgvoid 453b8e80941Smrgcfg_t::set_next_block(bblock_t **cur, bblock_t *block, int ip) 454b8e80941Smrg{ 455b8e80941Smrg if (*cur) { 456b8e80941Smrg (*cur)->end_ip = ip - 1; 457b8e80941Smrg } 458b8e80941Smrg 459b8e80941Smrg block->start_ip = ip; 460b8e80941Smrg block->num = num_blocks++; 461b8e80941Smrg block_list.push_tail(&block->link); 462b8e80941Smrg *cur = block; 463b8e80941Smrg} 464b8e80941Smrg 465b8e80941Smrgvoid 466b8e80941Smrgcfg_t::make_block_array() 467b8e80941Smrg{ 468b8e80941Smrg blocks = ralloc_array(mem_ctx, bblock_t *, num_blocks); 469b8e80941Smrg 470b8e80941Smrg int i = 0; 471b8e80941Smrg foreach_block (block, this) { 472b8e80941Smrg blocks[i++] = block; 473b8e80941Smrg } 474b8e80941Smrg assert(i == num_blocks); 475b8e80941Smrg} 476b8e80941Smrg 477b8e80941Smrgvoid 478b8e80941Smrgcfg_t::dump(backend_shader *s) 479b8e80941Smrg{ 480b8e80941Smrg if (idom_dirty) 481b8e80941Smrg calculate_idom(); 482b8e80941Smrg 483b8e80941Smrg foreach_block (block, this) { 484b8e80941Smrg if (block->idom) 485b8e80941Smrg fprintf(stderr, "START B%d IDOM(B%d)", block->num, block->idom->num); 486b8e80941Smrg else 487b8e80941Smrg fprintf(stderr, "START B%d IDOM(none)", block->num); 488b8e80941Smrg 489b8e80941Smrg foreach_list_typed(bblock_link, link, link, &block->parents) { 490b8e80941Smrg fprintf(stderr, " <-B%d", 491b8e80941Smrg link->block->num); 492b8e80941Smrg } 493b8e80941Smrg fprintf(stderr, "\n"); 494b8e80941Smrg if (s != NULL) 495b8e80941Smrg block->dump(s); 496b8e80941Smrg fprintf(stderr, "END B%d", block->num); 497b8e80941Smrg foreach_list_typed(bblock_link, link, link, &block->children) { 498b8e80941Smrg fprintf(stderr, " ->B%d", 499b8e80941Smrg link->block->num); 500b8e80941Smrg } 501b8e80941Smrg fprintf(stderr, "\n"); 502b8e80941Smrg } 503b8e80941Smrg} 504b8e80941Smrg 505b8e80941Smrg/* Calculates the immediate dominator of each block, according to "A Simple, 506b8e80941Smrg * Fast Dominance Algorithm" by Keith D. Cooper, Timothy J. Harvey, and Ken 507b8e80941Smrg * Kennedy. 508b8e80941Smrg * 509b8e80941Smrg * The authors claim that for control flow graphs of sizes normally encountered 510b8e80941Smrg * (less than 1000 nodes) that this algorithm is significantly faster than 511b8e80941Smrg * others like Lengauer-Tarjan. 512b8e80941Smrg */ 513b8e80941Smrgvoid 514b8e80941Smrgcfg_t::calculate_idom() 515b8e80941Smrg{ 516b8e80941Smrg foreach_block(block, this) { 517b8e80941Smrg block->idom = NULL; 518b8e80941Smrg } 519b8e80941Smrg blocks[0]->idom = blocks[0]; 520b8e80941Smrg 521b8e80941Smrg bool changed; 522b8e80941Smrg do { 523b8e80941Smrg changed = false; 524b8e80941Smrg 525b8e80941Smrg foreach_block(block, this) { 526b8e80941Smrg if (block->num == 0) 527b8e80941Smrg continue; 528b8e80941Smrg 529b8e80941Smrg bblock_t *new_idom = NULL; 530b8e80941Smrg foreach_list_typed(bblock_link, parent, link, &block->parents) { 531b8e80941Smrg if (parent->block->idom) { 532b8e80941Smrg if (new_idom == NULL) { 533b8e80941Smrg new_idom = parent->block; 534b8e80941Smrg } else if (parent->block->idom != NULL) { 535b8e80941Smrg new_idom = intersect(parent->block, new_idom); 536b8e80941Smrg } 537b8e80941Smrg } 538b8e80941Smrg } 539b8e80941Smrg 540b8e80941Smrg if (block->idom != new_idom) { 541b8e80941Smrg block->idom = new_idom; 542b8e80941Smrg changed = true; 543b8e80941Smrg } 544b8e80941Smrg } 545b8e80941Smrg } while (changed); 546b8e80941Smrg 547b8e80941Smrg idom_dirty = false; 548b8e80941Smrg} 549b8e80941Smrg 550b8e80941Smrgbblock_t * 551b8e80941Smrgcfg_t::intersect(bblock_t *b1, bblock_t *b2) 552b8e80941Smrg{ 553b8e80941Smrg /* Note, the comparisons here are the opposite of what the paper says 554b8e80941Smrg * because we index blocks from beginning -> end (i.e. reverse post-order) 555b8e80941Smrg * instead of post-order like they assume. 556b8e80941Smrg */ 557b8e80941Smrg while (b1->num != b2->num) { 558b8e80941Smrg while (b1->num > b2->num) 559b8e80941Smrg b1 = b1->idom; 560b8e80941Smrg while (b2->num > b1->num) 561b8e80941Smrg b2 = b2->idom; 562b8e80941Smrg } 563b8e80941Smrg assert(b1); 564b8e80941Smrg return b1; 565b8e80941Smrg} 566b8e80941Smrg 567b8e80941Smrgvoid 568b8e80941Smrgcfg_t::dump_cfg() 569b8e80941Smrg{ 570b8e80941Smrg printf("digraph CFG {\n"); 571b8e80941Smrg for (int b = 0; b < num_blocks; b++) { 572b8e80941Smrg bblock_t *block = this->blocks[b]; 573b8e80941Smrg 574b8e80941Smrg foreach_list_typed_safe (bblock_link, child, link, &block->children) { 575b8e80941Smrg printf("\t%d -> %d\n", b, child->block->num); 576b8e80941Smrg } 577b8e80941Smrg } 578b8e80941Smrg printf("}\n"); 579b8e80941Smrg} 580b8e80941Smrg 581b8e80941Smrgvoid 582b8e80941Smrgcfg_t::dump_domtree() 583b8e80941Smrg{ 584b8e80941Smrg printf("digraph DominanceTree {\n"); 585b8e80941Smrg foreach_block(block, this) { 586b8e80941Smrg if (block->idom) { 587b8e80941Smrg printf("\t%d -> %d\n", block->idom->num, block->num); 588b8e80941Smrg } 589b8e80941Smrg } 590b8e80941Smrg printf("}\n"); 591b8e80941Smrg} 592