1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "brw_cfg.h"
29#include "brw_fs_live_variables.h"
30
31using namespace brw;
32
33#define MAX_INSTRUCTION (1 << 30)
34
35/** @file brw_fs_live_variables.cpp
36 *
37 * Support for calculating liveness information about virtual GRFs.
38 *
39 * This produces a live interval for each whole virtual GRF.  We could
40 * choose to expose per-component live intervals for VGRFs of size > 1,
41 * but we currently do not.  It is easier for the consumers of this
42 * information to work with whole VGRFs.
43 *
44 * However, we internally track use/def information at the per-GRF level for
45 * greater accuracy.  Large VGRFs may be accessed piecemeal over many
46 * (possibly non-adjacent) instructions.  In this case, examining a single
47 * instruction is insufficient to decide whether a whole VGRF is ultimately
48 * used or defined.  Tracking individual components allows us to easily
49 * assemble this information.
50 *
51 * See Muchnick's Advanced Compiler Design and Implementation, section
52 * 14.1 (p444).
53 */
54
55void
56fs_live_variables::setup_one_read(struct block_data *bd, fs_inst *inst,
57                                  int ip, const fs_reg &reg)
58{
59   int var = var_from_reg(reg);
60   assert(var < num_vars);
61
62   start[var] = MIN2(start[var], ip);
63   end[var] = MAX2(end[var], ip);
64
65   /* The use[] bitset marks when the block makes use of a variable (VGRF
66    * channel) without having completely defined that variable within the
67    * block.
68    */
69   if (!BITSET_TEST(bd->def, var))
70      BITSET_SET(bd->use, var);
71}
72
73void
74fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst,
75                                   int ip, const fs_reg &reg)
76{
77   int var = var_from_reg(reg);
78   assert(var < num_vars);
79
80   start[var] = MIN2(start[var], ip);
81   end[var] = MAX2(end[var], ip);
82
83   /* The def[] bitset marks when an initialization in a block completely
84    * screens off previous updates of that variable (VGRF channel).
85    */
86   if (inst->dst.file == VGRF) {
87      if (!inst->is_partial_write() && !BITSET_TEST(bd->use, var))
88         BITSET_SET(bd->def, var);
89
90      BITSET_SET(bd->defout, var);
91   }
92}
93
94/**
95 * Sets up the use[] and def[] bitsets.
96 *
97 * The basic-block-level live variable analysis needs to know which
98 * variables get used before they're completely defined, and which
99 * variables are completely defined before they're used.
100 *
101 * These are tracked at the per-component level, rather than whole VGRFs.
102 */
103void
104fs_live_variables::setup_def_use()
105{
106   int ip = 0;
107
108   foreach_block (block, cfg) {
109      assert(ip == block->start_ip);
110      if (block->num > 0)
111	 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
112
113      struct block_data *bd = &block_data[block->num];
114
115      foreach_inst_in_block(fs_inst, inst, block) {
116	 /* Set use[] for this instruction */
117	 for (unsigned int i = 0; i < inst->sources; i++) {
118            fs_reg reg = inst->src[i];
119
120            if (reg.file != VGRF)
121               continue;
122
123            for (unsigned j = 0; j < regs_read(inst, i); j++) {
124               setup_one_read(bd, inst, ip, reg);
125               reg.offset += REG_SIZE;
126            }
127	 }
128
129         bd->flag_use[0] |= inst->flags_read(v->devinfo) & ~bd->flag_def[0];
130
131         /* Set def[] for this instruction */
132         if (inst->dst.file == VGRF) {
133            fs_reg reg = inst->dst;
134            for (unsigned j = 0; j < regs_written(inst); j++) {
135               setup_one_write(bd, inst, ip, reg);
136               reg.offset += REG_SIZE;
137            }
138	 }
139
140         if (!inst->predicate && inst->exec_size >= 8)
141            bd->flag_def[0] |= inst->flags_written() & ~bd->flag_use[0];
142
143	 ip++;
144      }
145   }
146}
147
148/**
149 * The algorithm incrementally sets bits in liveout and livein,
150 * propagating it through control flow.  It will eventually terminate
151 * because it only ever adds bits, and stops when no bits are added in
152 * a pass.
153 */
154void
155fs_live_variables::compute_live_variables()
156{
157   bool cont = true;
158
159   while (cont) {
160      cont = false;
161
162      foreach_block_reverse (block, cfg) {
163         struct block_data *bd = &block_data[block->num];
164
165	 /* Update liveout */
166	 foreach_list_typed(bblock_link, child_link, link, &block->children) {
167            struct block_data *child_bd = &block_data[child_link->block->num];
168
169	    for (int i = 0; i < bitset_words; i++) {
170               BITSET_WORD new_liveout = (child_bd->livein[i] &
171                                          ~bd->liveout[i]);
172               if (new_liveout) {
173                  bd->liveout[i] |= new_liveout;
174                  cont = true;
175               }
176	    }
177            BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
178                                       ~bd->flag_liveout[0]);
179            if (new_liveout) {
180               bd->flag_liveout[0] |= new_liveout;
181               cont = true;
182            }
183	 }
184
185         /* Update livein */
186         for (int i = 0; i < bitset_words; i++) {
187            BITSET_WORD new_livein = (bd->use[i] |
188                                      (bd->liveout[i] &
189                                       ~bd->def[i]));
190            if (new_livein & ~bd->livein[i]) {
191               bd->livein[i] |= new_livein;
192               cont = true;
193            }
194         }
195         BITSET_WORD new_livein = (bd->flag_use[0] |
196                                   (bd->flag_liveout[0] &
197                                    ~bd->flag_def[0]));
198         if (new_livein & ~bd->flag_livein[0]) {
199            bd->flag_livein[0] |= new_livein;
200            cont = true;
201         }
202      }
203   }
204
205   /* Propagate defin and defout down the CFG to calculate the union of live
206    * variables potentially defined along any possible control flow path.
207    */
208   do {
209      cont = false;
210
211      foreach_block (block, cfg) {
212         const struct block_data *bd = &block_data[block->num];
213
214	 foreach_list_typed(bblock_link, child_link, link, &block->children) {
215            struct block_data *child_bd = &block_data[child_link->block->num];
216
217	    for (int i = 0; i < bitset_words; i++) {
218               const BITSET_WORD new_def = bd->defout[i] & ~child_bd->defin[i];
219               child_bd->defin[i] |= new_def;
220               child_bd->defout[i] |= new_def;
221               cont |= new_def;
222	    }
223	 }
224      }
225   } while (cont);
226}
227
228/**
229 * Extend the start/end ranges for each variable to account for the
230 * new information calculated from control flow.
231 */
232void
233fs_live_variables::compute_start_end()
234{
235   foreach_block (block, cfg) {
236      struct block_data *bd = &block_data[block->num];
237
238      for (int i = 0; i < num_vars; i++) {
239         if (BITSET_TEST(bd->livein, i) && BITSET_TEST(bd->defin, i)) {
240            start[i] = MIN2(start[i], block->start_ip);
241            end[i] = MAX2(end[i], block->start_ip);
242         }
243
244         if (BITSET_TEST(bd->liveout, i) && BITSET_TEST(bd->defout, i)) {
245            start[i] = MIN2(start[i], block->end_ip);
246            end[i] = MAX2(end[i], block->end_ip);
247         }
248      }
249   }
250}
251
252fs_live_variables::fs_live_variables(fs_visitor *v, const cfg_t *cfg)
253   : v(v), cfg(cfg)
254{
255   mem_ctx = ralloc_context(NULL);
256
257   num_vgrfs = v->alloc.count;
258   num_vars = 0;
259   var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
260   for (int i = 0; i < num_vgrfs; i++) {
261      var_from_vgrf[i] = num_vars;
262      num_vars += v->alloc.sizes[i];
263   }
264
265   vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
266   for (int i = 0; i < num_vgrfs; i++) {
267      for (unsigned j = 0; j < v->alloc.sizes[i]; j++) {
268         vgrf_from_var[var_from_vgrf[i] + j] = i;
269      }
270   }
271
272   start = ralloc_array(mem_ctx, int, num_vars);
273   end = rzalloc_array(mem_ctx, int, num_vars);
274   for (int i = 0; i < num_vars; i++) {
275      start[i] = MAX_INSTRUCTION;
276      end[i] = -1;
277   }
278
279   block_data= rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
280
281   bitset_words = BITSET_WORDS(num_vars);
282   for (int i = 0; i < cfg->num_blocks; i++) {
283      block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
284      block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
285      block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
286      block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
287      block_data[i].defin = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
288      block_data[i].defout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
289
290      block_data[i].flag_def[0] = 0;
291      block_data[i].flag_use[0] = 0;
292      block_data[i].flag_livein[0] = 0;
293      block_data[i].flag_liveout[0] = 0;
294   }
295
296   setup_def_use();
297   compute_live_variables();
298   compute_start_end();
299}
300
301fs_live_variables::~fs_live_variables()
302{
303   ralloc_free(mem_ctx);
304}
305
306void
307fs_visitor::invalidate_live_intervals()
308{
309   ralloc_free(live_intervals);
310   live_intervals = NULL;
311}
312
313/**
314 * Compute the live intervals for each virtual GRF.
315 *
316 * This uses the per-component use/def data, but combines it to produce
317 * information about whole VGRFs.
318 */
319void
320fs_visitor::calculate_live_intervals()
321{
322   if (this->live_intervals)
323      return;
324
325   int num_vgrfs = this->alloc.count;
326   ralloc_free(this->virtual_grf_start);
327   ralloc_free(this->virtual_grf_end);
328   virtual_grf_start = ralloc_array(mem_ctx, int, num_vgrfs);
329   virtual_grf_end = ralloc_array(mem_ctx, int, num_vgrfs);
330
331   for (int i = 0; i < num_vgrfs; i++) {
332      virtual_grf_start[i] = MAX_INSTRUCTION;
333      virtual_grf_end[i] = -1;
334   }
335
336   this->live_intervals = new(mem_ctx) fs_live_variables(this, cfg);
337
338   /* Merge the per-component live ranges to whole VGRF live ranges. */
339   for (int i = 0; i < live_intervals->num_vars; i++) {
340      int vgrf = live_intervals->vgrf_from_var[i];
341      virtual_grf_start[vgrf] = MIN2(virtual_grf_start[vgrf],
342                                     live_intervals->start[i]);
343      virtual_grf_end[vgrf] = MAX2(virtual_grf_end[vgrf],
344                                   live_intervals->end[i]);
345   }
346}
347
348bool
349fs_live_variables::vars_interfere(int a, int b)
350{
351   return !(end[b] <= start[a] ||
352            end[a] <= start[b]);
353}
354
355bool
356fs_visitor::virtual_grf_interferes(int a, int b)
357{
358   return !(virtual_grf_end[a] <= virtual_grf_start[b] ||
359            virtual_grf_end[b] <= virtual_grf_start[a]);
360}
361