1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28#include "brw_eu.h" 29#include "brw_fs.h" 30#include "brw_cfg.h" 31#include "util/register_allocate.h" 32 33using namespace brw; 34 35static void 36assign_reg(unsigned *reg_hw_locations, fs_reg *reg) 37{ 38 if (reg->file == VGRF) { 39 reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE; 40 reg->offset %= REG_SIZE; 41 } 42} 43 44void 45fs_visitor::assign_regs_trivial() 46{ 47 unsigned hw_reg_mapping[this->alloc.count + 1]; 48 unsigned i; 49 int reg_width = dispatch_width / 8; 50 51 /* Note that compressed instructions require alignment to 2 registers. */ 52 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width); 53 for (i = 1; i <= this->alloc.count; i++) { 54 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] + 55 this->alloc.sizes[i - 1]); 56 } 57 this->grf_used = hw_reg_mapping[this->alloc.count]; 58 59 foreach_block_and_inst(block, fs_inst, inst, cfg) { 60 assign_reg(hw_reg_mapping, &inst->dst); 61 for (i = 0; i < inst->sources; i++) { 62 assign_reg(hw_reg_mapping, &inst->src[i]); 63 } 64 } 65 66 if (this->grf_used >= max_grf) { 67 fail("Ran out of regs on trivial allocator (%d/%d)\n", 68 this->grf_used, max_grf); 69 } else { 70 this->alloc.count = this->grf_used; 71 } 72 73} 74 75static void 76brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width) 77{ 78 const struct gen_device_info *devinfo = compiler->devinfo; 79 int base_reg_count = BRW_MAX_GRF; 80 const int index = _mesa_logbase2(dispatch_width / 8); 81 82 if (dispatch_width > 8 && devinfo->gen >= 7) { 83 /* For IVB+, we don't need the PLN hacks or the even-reg alignment in 84 * SIMD16. Therefore, we can use the exact same register sets for 85 * SIMD16 as we do for SIMD8 and we don't need to recalculate them. 86 */ 87 compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0]; 88 return; 89 } 90 91 /* The registers used to make up almost all values handled in the compiler 92 * are a scalar value occupying a single register (or 2 registers in the 93 * case of SIMD16, which is handled by dividing base_reg_count by 2 and 94 * multiplying allocated register numbers by 2). Things that were 95 * aggregates of scalar values at the GLSL level were split to scalar 96 * values by split_virtual_grfs(). 97 * 98 * However, texture SEND messages return a series of contiguous registers 99 * to write into. We currently always ask for 4 registers, but we may 100 * convert that to use less some day. 101 * 102 * Additionally, on gen5 we need aligned pairs of registers for the PLN 103 * instruction, and on gen4 we need 8 contiguous regs for workaround simd16 104 * texturing. 105 */ 106 const int class_count = MAX_VGRF_SIZE; 107 int class_sizes[MAX_VGRF_SIZE]; 108 for (unsigned i = 0; i < MAX_VGRF_SIZE; i++) 109 class_sizes[i] = i + 1; 110 111 memset(compiler->fs_reg_sets[index].class_to_ra_reg_range, 0, 112 sizeof(compiler->fs_reg_sets[index].class_to_ra_reg_range)); 113 int *class_to_ra_reg_range = compiler->fs_reg_sets[index].class_to_ra_reg_range; 114 115 /* Compute the total number of registers across all classes. */ 116 int ra_reg_count = 0; 117 for (int i = 0; i < class_count; i++) { 118 if (devinfo->gen <= 5 && dispatch_width >= 16) { 119 /* From the G45 PRM: 120 * 121 * In order to reduce the hardware complexity, the following 122 * rules and restrictions apply to the compressed instruction: 123 * ... 124 * * Operand Alignment Rule: With the exceptions listed below, a 125 * source/destination operand in general should be aligned to 126 * even 256-bit physical register with a region size equal to 127 * two 256-bit physical register 128 */ 129 ra_reg_count += (base_reg_count - (class_sizes[i] - 1)) / 2; 130 } else { 131 ra_reg_count += base_reg_count - (class_sizes[i] - 1); 132 } 133 /* Mark the last register. We'll fill in the beginnings later. */ 134 class_to_ra_reg_range[class_sizes[i]] = ra_reg_count; 135 } 136 137 /* Fill out the rest of the range markers */ 138 for (int i = 1; i < 17; ++i) { 139 if (class_to_ra_reg_range[i] == 0) 140 class_to_ra_reg_range[i] = class_to_ra_reg_range[i-1]; 141 } 142 143 uint8_t *ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count); 144 struct ra_regs *regs = ra_alloc_reg_set(compiler, ra_reg_count, false); 145 if (devinfo->gen >= 6) 146 ra_set_allocate_round_robin(regs); 147 int *classes = ralloc_array(compiler, int, class_count); 148 int aligned_pairs_class = -1; 149 150 /* Allocate space for q values. We allocate class_count + 1 because we 151 * want to leave room for the aligned pairs class if we have it. */ 152 unsigned int **q_values = ralloc_array(compiler, unsigned int *, 153 class_count + 1); 154 for (int i = 0; i < class_count + 1; ++i) 155 q_values[i] = ralloc_array(q_values, unsigned int, class_count + 1); 156 157 /* Now, add the registers to their classes, and add the conflicts 158 * between them and the base GRF registers (and also each other). 159 */ 160 int reg = 0; 161 int pairs_base_reg = 0; 162 int pairs_reg_count = 0; 163 for (int i = 0; i < class_count; i++) { 164 int class_reg_count; 165 if (devinfo->gen <= 5 && dispatch_width >= 16) { 166 class_reg_count = (base_reg_count - (class_sizes[i] - 1)) / 2; 167 168 /* See comment below. The only difference here is that we are 169 * dealing with pairs of registers instead of single registers. 170 * Registers of odd sizes simply get rounded up. */ 171 for (int j = 0; j < class_count; j++) 172 q_values[i][j] = (class_sizes[i] + 1) / 2 + 173 (class_sizes[j] + 1) / 2 - 1; 174 } else { 175 class_reg_count = base_reg_count - (class_sizes[i] - 1); 176 177 /* From register_allocate.c: 178 * 179 * q(B,C) (indexed by C, B is this register class) in 180 * Runeson/Nyström paper. This is "how many registers of B could 181 * the worst choice register from C conflict with". 182 * 183 * If we just let the register allocation algorithm compute these 184 * values, is extremely expensive. However, since all of our 185 * registers are laid out, we can very easily compute them 186 * ourselves. View the register from C as fixed starting at GRF n 187 * somwhere in the middle, and the register from B as sliding back 188 * and forth. Then the first register to conflict from B is the 189 * one starting at n - class_size[B] + 1 and the last register to 190 * conflict will start at n + class_size[B] - 1. Therefore, the 191 * number of conflicts from B is class_size[B] + class_size[C] - 1. 192 * 193 * +-+-+-+-+-+-+ +-+-+-+-+-+-+ 194 * B | | | | | |n| --> | | | | | | | 195 * +-+-+-+-+-+-+ +-+-+-+-+-+-+ 196 * +-+-+-+-+-+ 197 * C |n| | | | | 198 * +-+-+-+-+-+ 199 */ 200 for (int j = 0; j < class_count; j++) 201 q_values[i][j] = class_sizes[i] + class_sizes[j] - 1; 202 } 203 classes[i] = ra_alloc_reg_class(regs); 204 205 /* Save this off for the aligned pair class at the end. */ 206 if (class_sizes[i] == 2) { 207 pairs_base_reg = reg; 208 pairs_reg_count = class_reg_count; 209 } 210 211 if (devinfo->gen <= 5 && dispatch_width >= 16) { 212 for (int j = 0; j < class_reg_count; j++) { 213 ra_class_add_reg(regs, classes[i], reg); 214 215 ra_reg_to_grf[reg] = j * 2; 216 217 for (int base_reg = j; 218 base_reg < j + (class_sizes[i] + 1) / 2; 219 base_reg++) { 220 ra_add_reg_conflict(regs, base_reg, reg); 221 } 222 223 reg++; 224 } 225 } else { 226 for (int j = 0; j < class_reg_count; j++) { 227 ra_class_add_reg(regs, classes[i], reg); 228 229 ra_reg_to_grf[reg] = j; 230 231 for (int base_reg = j; 232 base_reg < j + class_sizes[i]; 233 base_reg++) { 234 ra_add_reg_conflict(regs, base_reg, reg); 235 } 236 237 reg++; 238 } 239 } 240 } 241 assert(reg == ra_reg_count); 242 243 /* Applying transitivity to all of the base registers gives us the 244 * appropreate register conflict relationships everywhere. 245 */ 246 for (int reg = 0; reg < base_reg_count; reg++) 247 ra_make_reg_conflicts_transitive(regs, reg); 248 249 /* Add a special class for aligned pairs, which we'll put delta_xy 250 * in on Gen <= 6 so that we can do PLN. 251 */ 252 if (devinfo->has_pln && dispatch_width == 8 && devinfo->gen <= 6) { 253 aligned_pairs_class = ra_alloc_reg_class(regs); 254 255 for (int i = 0; i < pairs_reg_count; i++) { 256 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) { 257 ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i); 258 } 259 } 260 261 for (int i = 0; i < class_count; i++) { 262 /* These are a little counter-intuitive because the pair registers 263 * are required to be aligned while the register they are 264 * potentially interferring with are not. In the case where the 265 * size is even, the worst-case is that the register is 266 * odd-aligned. In the odd-size case, it doesn't matter. 267 */ 268 q_values[class_count][i] = class_sizes[i] / 2 + 1; 269 q_values[i][class_count] = class_sizes[i] + 1; 270 } 271 q_values[class_count][class_count] = 1; 272 } 273 274 ra_set_finalize(regs, q_values); 275 276 ralloc_free(q_values); 277 278 compiler->fs_reg_sets[index].regs = regs; 279 for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++) 280 compiler->fs_reg_sets[index].classes[i] = -1; 281 for (int i = 0; i < class_count; i++) 282 compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i]; 283 compiler->fs_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf; 284 compiler->fs_reg_sets[index].aligned_pairs_class = aligned_pairs_class; 285} 286 287void 288brw_fs_alloc_reg_sets(struct brw_compiler *compiler) 289{ 290 brw_alloc_reg_set(compiler, 8); 291 brw_alloc_reg_set(compiler, 16); 292 brw_alloc_reg_set(compiler, 32); 293} 294 295static int 296count_to_loop_end(const bblock_t *block) 297{ 298 if (block->end()->opcode == BRW_OPCODE_WHILE) 299 return block->end_ip; 300 301 int depth = 1; 302 /* Skip the first block, since we don't want to count the do the calling 303 * function found. 304 */ 305 for (block = block->next(); 306 depth > 0; 307 block = block->next()) { 308 if (block->start()->opcode == BRW_OPCODE_DO) 309 depth++; 310 if (block->end()->opcode == BRW_OPCODE_WHILE) { 311 depth--; 312 if (depth == 0) 313 return block->end_ip; 314 } 315 } 316 unreachable("not reached"); 317} 318 319void fs_visitor::calculate_payload_ranges(int payload_node_count, 320 int *payload_last_use_ip) 321{ 322 int loop_depth = 0; 323 int loop_end_ip = 0; 324 325 for (int i = 0; i < payload_node_count; i++) 326 payload_last_use_ip[i] = -1; 327 328 int ip = 0; 329 foreach_block_and_inst(block, fs_inst, inst, cfg) { 330 switch (inst->opcode) { 331 case BRW_OPCODE_DO: 332 loop_depth++; 333 334 /* Since payload regs are deffed only at the start of the shader 335 * execution, any uses of the payload within a loop mean the live 336 * interval extends to the end of the outermost loop. Find the ip of 337 * the end now. 338 */ 339 if (loop_depth == 1) 340 loop_end_ip = count_to_loop_end(block); 341 break; 342 case BRW_OPCODE_WHILE: 343 loop_depth--; 344 break; 345 default: 346 break; 347 } 348 349 int use_ip; 350 if (loop_depth > 0) 351 use_ip = loop_end_ip; 352 else 353 use_ip = ip; 354 355 /* Note that UNIFORM args have been turned into FIXED_GRF by 356 * assign_curbe_setup(), and interpolation uses fixed hardware regs from 357 * the start (see interp_reg()). 358 */ 359 for (int i = 0; i < inst->sources; i++) { 360 if (inst->src[i].file == FIXED_GRF) { 361 int node_nr = inst->src[i].nr; 362 if (node_nr >= payload_node_count) 363 continue; 364 365 for (unsigned j = 0; j < regs_read(inst, i); j++) { 366 payload_last_use_ip[node_nr + j] = use_ip; 367 assert(node_nr + j < unsigned(payload_node_count)); 368 } 369 } 370 } 371 372 /* Special case instructions which have extra implied registers used. */ 373 switch (inst->opcode) { 374 case CS_OPCODE_CS_TERMINATE: 375 payload_last_use_ip[0] = use_ip; 376 break; 377 378 default: 379 if (inst->eot) { 380 /* We could omit this for the !inst->header_present case, except 381 * that the simulator apparently incorrectly reads from g0/g1 382 * instead of sideband. It also really freaks out driver 383 * developers to see g0 used in unusual places, so just always 384 * reserve it. 385 */ 386 payload_last_use_ip[0] = use_ip; 387 payload_last_use_ip[1] = use_ip; 388 } 389 break; 390 } 391 392 ip++; 393 } 394} 395 396 397/** 398 * Sets up interference between thread payload registers and the virtual GRFs 399 * to be allocated for program temporaries. 400 * 401 * We want to be able to reallocate the payload for our virtual GRFs, notably 402 * because the setup coefficients for a full set of 16 FS inputs takes up 8 of 403 * our 128 registers. 404 * 405 * The layout of the payload registers is: 406 * 407 * 0..payload.num_regs-1: fixed function setup (including bary coordinates). 408 * payload.num_regs..payload.num_regs+curb_read_lengh-1: uniform data 409 * payload.num_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients. 410 * 411 * And we have payload_node_count nodes covering these registers in order 412 * (note that in SIMD16, a node is two registers). 413 */ 414void 415fs_visitor::setup_payload_interference(struct ra_graph *g, 416 int payload_node_count, 417 int first_payload_node) 418{ 419 int payload_last_use_ip[payload_node_count]; 420 calculate_payload_ranges(payload_node_count, payload_last_use_ip); 421 422 for (int i = 0; i < payload_node_count; i++) { 423 if (payload_last_use_ip[i] == -1) 424 continue; 425 426 /* Mark the payload node as interfering with any virtual grf that is 427 * live between the start of the program and our last use of the payload 428 * node. 429 */ 430 for (unsigned j = 0; j < this->alloc.count; j++) { 431 /* Note that we use a <= comparison, unlike virtual_grf_interferes(), 432 * in order to not have to worry about the uniform issue described in 433 * calculate_live_intervals(). 434 */ 435 if (this->virtual_grf_start[j] <= payload_last_use_ip[i]) { 436 ra_add_node_interference(g, first_payload_node + i, j); 437 } 438 } 439 } 440 441 for (int i = 0; i < payload_node_count; i++) { 442 /* Mark each payload node as being allocated to its physical register. 443 * 444 * The alternative would be to have per-physical-register classes, which 445 * would just be silly. 446 */ 447 if (devinfo->gen <= 5 && dispatch_width >= 16) { 448 /* We have to divide by 2 here because we only have even numbered 449 * registers. Some of the payload registers will be odd, but 450 * that's ok because their physical register numbers have already 451 * been assigned. The only thing this is used for is interference. 452 */ 453 ra_set_node_reg(g, first_payload_node + i, i / 2); 454 } else { 455 ra_set_node_reg(g, first_payload_node + i, i); 456 } 457 } 458} 459 460/** 461 * Sets the mrf_used array to indicate which MRFs are used by the shader IR 462 * 463 * This is used in assign_regs() to decide which of the GRFs that we use as 464 * MRFs on gen7 get normally register allocated, and in register spilling to 465 * see if we can actually use MRFs to do spills without overwriting normal MRF 466 * contents. 467 */ 468static void 469get_used_mrfs(fs_visitor *v, bool *mrf_used) 470{ 471 int reg_width = v->dispatch_width / 8; 472 473 memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->gen) * sizeof(bool)); 474 475 foreach_block_and_inst(block, fs_inst, inst, v->cfg) { 476 if (inst->dst.file == MRF) { 477 int reg = inst->dst.nr & ~BRW_MRF_COMPR4; 478 mrf_used[reg] = true; 479 if (reg_width == 2) { 480 if (inst->dst.nr & BRW_MRF_COMPR4) { 481 mrf_used[reg + 4] = true; 482 } else { 483 mrf_used[reg + 1] = true; 484 } 485 } 486 } 487 488 if (inst->mlen > 0) { 489 for (int i = 0; i < v->implied_mrf_writes(inst); i++) { 490 mrf_used[inst->base_mrf + i] = true; 491 } 492 } 493 } 494} 495 496/** 497 * Sets interference between virtual GRFs and usage of the high GRFs for SEND 498 * messages (treated as MRFs in code generation). 499 */ 500static void 501setup_mrf_hack_interference(fs_visitor *v, struct ra_graph *g, 502 int first_mrf_node, int *first_used_mrf) 503{ 504 bool mrf_used[BRW_MAX_MRF(v->devinfo->gen)]; 505 get_used_mrfs(v, mrf_used); 506 507 *first_used_mrf = BRW_MAX_MRF(v->devinfo->gen); 508 for (int i = 0; i < BRW_MAX_MRF(v->devinfo->gen); i++) { 509 /* Mark each MRF reg node as being allocated to its physical register. 510 * 511 * The alternative would be to have per-physical-register classes, which 512 * would just be silly. 513 */ 514 ra_set_node_reg(g, first_mrf_node + i, GEN7_MRF_HACK_START + i); 515 516 /* Since we don't have any live/dead analysis on the MRFs, just mark all 517 * that are used as conflicting with all virtual GRFs. 518 */ 519 if (mrf_used[i]) { 520 if (i < *first_used_mrf) 521 *first_used_mrf = i; 522 523 for (unsigned j = 0; j < v->alloc.count; j++) { 524 ra_add_node_interference(g, first_mrf_node + i, j); 525 } 526 } 527 } 528} 529 530bool 531fs_visitor::assign_regs(bool allow_spilling, bool spill_all) 532{ 533 /* Most of this allocation was written for a reg_width of 1 534 * (dispatch_width == 8). In extending to SIMD16, the code was 535 * left in place and it was converted to have the hardware 536 * registers it's allocating be contiguous physical pairs of regs 537 * for reg_width == 2. 538 */ 539 int reg_width = dispatch_width / 8; 540 unsigned hw_reg_mapping[this->alloc.count]; 541 int payload_node_count = ALIGN(this->first_non_payload_grf, reg_width); 542 int rsi = _mesa_logbase2(reg_width); /* Which compiler->fs_reg_sets[] to use */ 543 calculate_live_intervals(); 544 545 int node_count = this->alloc.count; 546 int first_payload_node = node_count; 547 node_count += payload_node_count; 548 int first_mrf_hack_node = node_count; 549 if (devinfo->gen >= 7) 550 node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START; 551 int grf127_send_hack_node = node_count; 552 if (devinfo->gen >= 8) 553 node_count ++; 554 struct ra_graph *g = 555 ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count); 556 557 for (unsigned i = 0; i < this->alloc.count; i++) { 558 unsigned size = this->alloc.sizes[i]; 559 int c; 560 561 assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) && 562 "Register allocation relies on split_virtual_grfs()"); 563 c = compiler->fs_reg_sets[rsi].classes[size - 1]; 564 565 /* Special case: on pre-GEN6 hardware that supports PLN, the 566 * second operand of a PLN instruction needs to be an 567 * even-numbered register, so we have a special register class 568 * wm_aligned_pairs_class to handle this case. pre-GEN6 always 569 * uses this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] as the 570 * second operand of a PLN instruction (since it doesn't support 571 * any other interpolation modes). So all we need to do is find 572 * that register and set it to the appropriate class. 573 */ 574 if (compiler->fs_reg_sets[rsi].aligned_pairs_class >= 0 && 575 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL].file == VGRF && 576 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL].nr == i) { 577 c = compiler->fs_reg_sets[rsi].aligned_pairs_class; 578 } 579 580 ra_set_node_class(g, i, c); 581 582 for (unsigned j = 0; j < i; j++) { 583 if (virtual_grf_interferes(i, j)) { 584 ra_add_node_interference(g, i, j); 585 } 586 } 587 } 588 589 /* Certain instructions can't safely use the same register for their 590 * sources and destination. Add interference. 591 */ 592 foreach_block_and_inst(block, fs_inst, inst, cfg) { 593 if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) { 594 for (unsigned i = 0; i < inst->sources; i++) { 595 if (inst->src[i].file == VGRF) { 596 ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr); 597 } 598 } 599 } 600 } 601 602 setup_payload_interference(g, payload_node_count, first_payload_node); 603 if (devinfo->gen >= 7) { 604 int first_used_mrf = BRW_MAX_MRF(devinfo->gen); 605 setup_mrf_hack_interference(this, g, first_mrf_hack_node, 606 &first_used_mrf); 607 608 foreach_block_and_inst(block, fs_inst, inst, cfg) { 609 /* When we do send-from-GRF for FB writes, we need to ensure that 610 * the last write instruction sends from a high register. This is 611 * because the vertex fetcher wants to start filling the low 612 * payload registers while the pixel data port is still working on 613 * writing out the memory. If we don't do this, we get rendering 614 * artifacts. 615 * 616 * We could just do "something high". Instead, we just pick the 617 * highest register that works. 618 */ 619 if (inst->eot) { 620 const int vgrf = inst->opcode == SHADER_OPCODE_SEND ? 621 inst->src[2].nr : inst->src[0].nr; 622 int size = alloc.sizes[vgrf]; 623 int reg = compiler->fs_reg_sets[rsi].class_to_ra_reg_range[size] - 1; 624 625 /* If something happened to spill, we want to push the EOT send 626 * register early enough in the register file that we don't 627 * conflict with any used MRF hack registers. 628 */ 629 reg -= BRW_MAX_MRF(devinfo->gen) - first_used_mrf; 630 631 ra_set_node_reg(g, vgrf, reg); 632 break; 633 } 634 } 635 } 636 637 /* In 16-wide instructions we have an issue where a compressed 638 * instruction is actually two instructions executed simultaneously. 639 * It's actually ok to have the source and destination registers be 640 * the same. In this case, each instruction over-writes its own 641 * source and there's no problem. The real problem here is if the 642 * source and destination registers are off by one. Then you can end 643 * up in a scenario where the first instruction over-writes the 644 * source of the second instruction. Since the compiler doesn't know 645 * about this level of granularity, we simply make the source and 646 * destination interfere. 647 */ 648 foreach_block_and_inst(block, fs_inst, inst, cfg) { 649 if (inst->exec_size < 16 || inst->dst.file != VGRF) 650 continue; 651 652 for (int i = 0; i < inst->sources; ++i) { 653 if (inst->src[i].file == VGRF) { 654 ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr); 655 } 656 } 657 } 658 659 if (devinfo->gen >= 8) { 660 /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference", 661 * subsection "EUISA Instructions", Send Message (page 990): 662 * 663 * "r127 must not be used for return address when there is a src and 664 * dest overlap in send instruction." 665 * 666 * We are avoiding using grf127 as part of the destination of send 667 * messages adding a node interference to the grf127_send_hack_node. 668 * This node has a fixed asignment to grf127. 669 * 670 * We don't apply it to SIMD16 instructions because previous code avoids 671 * any register overlap between sources and destination. 672 */ 673 ra_set_node_reg(g, grf127_send_hack_node, 127); 674 foreach_block_and_inst(block, fs_inst, inst, cfg) { 675 if (inst->exec_size < 16 && inst->is_send_from_grf() && 676 inst->dst.file == VGRF) 677 ra_add_node_interference(g, inst->dst.nr, grf127_send_hack_node); 678 } 679 680 if (spilled_any_registers) { 681 foreach_block_and_inst(block, fs_inst, inst, cfg) { 682 /* Spilling instruction are genereated as SEND messages from MRF 683 * but as Gen7+ supports sending from GRF the driver will maps 684 * assingn these MRF registers to a GRF. Implementations reuses 685 * the dest of the send message as source. So as we will have an 686 * overlap for sure, we create an interference between destination 687 * and grf127. 688 */ 689 if ((inst->opcode == SHADER_OPCODE_GEN7_SCRATCH_READ || 690 inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ) && 691 inst->dst.file == VGRF) 692 ra_add_node_interference(g, inst->dst.nr, grf127_send_hack_node); 693 } 694 } 695 } 696 697 /* From the Skylake PRM Vol. 2a docs for sends: 698 * 699 * "It is required that the second block of GRFs does not overlap with 700 * the first block." 701 * 702 * Normally, this is taken care of by fixup_sends_duplicate_payload() but 703 * in the case where one of the registers is an undefined value, the 704 * register allocator may decide that they don't interfere even though 705 * they're used as sources in the same instruction. We also need to add 706 * interference here. 707 */ 708 if (devinfo->gen >= 9) { 709 foreach_block_and_inst(block, fs_inst, inst, cfg) { 710 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 && 711 inst->src[2].file == VGRF && 712 inst->src[3].file == VGRF && 713 inst->src[2].nr != inst->src[3].nr) 714 ra_add_node_interference(g, inst->src[2].nr, 715 inst->src[3].nr); 716 } 717 } 718 719 /* Debug of register spilling: Go spill everything. */ 720 if (unlikely(spill_all)) { 721 int reg = choose_spill_reg(g); 722 723 if (reg != -1) { 724 spill_reg(reg); 725 ralloc_free(g); 726 return false; 727 } 728 } 729 730 if (!ra_allocate(g)) { 731 /* Failed to allocate registers. Spill a reg, and the caller will 732 * loop back into here to try again. 733 */ 734 int reg = choose_spill_reg(g); 735 736 if (reg == -1) { 737 fail("no register to spill:\n"); 738 dump_instructions(NULL); 739 } else if (allow_spilling) { 740 spill_reg(reg); 741 } 742 743 ralloc_free(g); 744 745 return false; 746 } 747 748 /* Get the chosen virtual registers for each node, and map virtual 749 * regs in the register classes back down to real hardware reg 750 * numbers. 751 */ 752 this->grf_used = payload_node_count; 753 for (unsigned i = 0; i < this->alloc.count; i++) { 754 int reg = ra_get_node_reg(g, i); 755 756 hw_reg_mapping[i] = compiler->fs_reg_sets[rsi].ra_reg_to_grf[reg]; 757 this->grf_used = MAX2(this->grf_used, 758 hw_reg_mapping[i] + this->alloc.sizes[i]); 759 } 760 761 foreach_block_and_inst(block, fs_inst, inst, cfg) { 762 assign_reg(hw_reg_mapping, &inst->dst); 763 for (int i = 0; i < inst->sources; i++) { 764 assign_reg(hw_reg_mapping, &inst->src[i]); 765 } 766 } 767 768 this->alloc.count = this->grf_used; 769 770 ralloc_free(g); 771 772 return true; 773} 774 775namespace { 776 /** 777 * Maximum spill block size we expect to encounter in 32B units. 778 * 779 * This is somewhat arbitrary and doesn't necessarily limit the maximum 780 * variable size that can be spilled -- A higher value will allow a 781 * variable of a given size to be spilled more efficiently with a smaller 782 * number of scratch messages, but will increase the likelihood of a 783 * collision between the MRFs reserved for spilling and other MRFs used by 784 * the program (and possibly increase GRF register pressure on platforms 785 * without hardware MRFs), what could cause register allocation to fail. 786 * 787 * For the moment reserve just enough space so a register of 32 bit 788 * component type and natural region width can be spilled without splitting 789 * into multiple (force_writemask_all) scratch messages. 790 */ 791 unsigned 792 spill_max_size(const backend_shader *s) 793 { 794 /* FINISHME - On Gen7+ it should be possible to avoid this limit 795 * altogether by spilling directly from the temporary GRF 796 * allocated to hold the result of the instruction (and the 797 * scratch write header). 798 */ 799 /* FINISHME - The shader's dispatch width probably belongs in 800 * backend_shader (or some nonexistent fs_shader class?) 801 * rather than in the visitor class. 802 */ 803 return static_cast<const fs_visitor *>(s)->dispatch_width / 8; 804 } 805 806 /** 807 * First MRF register available for spilling. 808 */ 809 unsigned 810 spill_base_mrf(const backend_shader *s) 811 { 812 return BRW_MAX_MRF(s->devinfo->gen) - spill_max_size(s) - 1; 813 } 814} 815 816static void 817emit_unspill(const fs_builder &bld, fs_reg dst, 818 uint32_t spill_offset, unsigned count) 819{ 820 const gen_device_info *devinfo = bld.shader->devinfo; 821 const unsigned reg_size = dst.component_size(bld.dispatch_width()) / 822 REG_SIZE; 823 assert(count % reg_size == 0); 824 825 for (unsigned i = 0; i < count / reg_size; i++) { 826 /* The Gen7 descriptor-based offset is 12 bits of HWORD units. Because 827 * the Gen7-style scratch block read is hardwired to BTI 255, on Gen9+ 828 * it would cause the DC to do an IA-coherent read, what largely 829 * outweighs the slight advantage from not having to provide the address 830 * as part of the message header, so we're better off using plain old 831 * oword block reads. 832 */ 833 bool gen7_read = (devinfo->gen >= 7 && devinfo->gen < 9 && 834 spill_offset < (1 << 12) * REG_SIZE); 835 fs_inst *unspill_inst = bld.emit(gen7_read ? 836 SHADER_OPCODE_GEN7_SCRATCH_READ : 837 SHADER_OPCODE_GEN4_SCRATCH_READ, 838 dst); 839 unspill_inst->offset = spill_offset; 840 841 if (!gen7_read) { 842 unspill_inst->base_mrf = spill_base_mrf(bld.shader); 843 unspill_inst->mlen = 1; /* header contains offset */ 844 } 845 846 dst.offset += reg_size * REG_SIZE; 847 spill_offset += reg_size * REG_SIZE; 848 } 849} 850 851static void 852emit_spill(const fs_builder &bld, fs_reg src, 853 uint32_t spill_offset, unsigned count) 854{ 855 const unsigned reg_size = src.component_size(bld.dispatch_width()) / 856 REG_SIZE; 857 assert(count % reg_size == 0); 858 859 for (unsigned i = 0; i < count / reg_size; i++) { 860 fs_inst *spill_inst = 861 bld.emit(SHADER_OPCODE_GEN4_SCRATCH_WRITE, bld.null_reg_f(), src); 862 src.offset += reg_size * REG_SIZE; 863 spill_inst->offset = spill_offset + i * reg_size * REG_SIZE; 864 spill_inst->mlen = 1 + reg_size; /* header, value */ 865 spill_inst->base_mrf = spill_base_mrf(bld.shader); 866 } 867} 868 869int 870fs_visitor::choose_spill_reg(struct ra_graph *g) 871{ 872 float block_scale = 1.0; 873 float spill_costs[this->alloc.count]; 874 bool no_spill[this->alloc.count]; 875 876 for (unsigned i = 0; i < this->alloc.count; i++) { 877 spill_costs[i] = 0.0; 878 no_spill[i] = false; 879 } 880 881 /* Calculate costs for spilling nodes. Call it a cost of 1 per 882 * spill/unspill we'll have to do, and guess that the insides of 883 * loops run 10 times. 884 */ 885 foreach_block_and_inst(block, fs_inst, inst, cfg) { 886 for (unsigned int i = 0; i < inst->sources; i++) { 887 if (inst->src[i].file == VGRF) 888 spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale; 889 } 890 891 if (inst->dst.file == VGRF) 892 spill_costs[inst->dst.nr] += regs_written(inst) * block_scale; 893 894 switch (inst->opcode) { 895 896 case BRW_OPCODE_DO: 897 block_scale *= 10; 898 break; 899 900 case BRW_OPCODE_WHILE: 901 block_scale /= 10; 902 break; 903 904 case BRW_OPCODE_IF: 905 case BRW_OPCODE_IFF: 906 block_scale *= 0.5; 907 break; 908 909 case BRW_OPCODE_ENDIF: 910 block_scale /= 0.5; 911 break; 912 913 case SHADER_OPCODE_GEN4_SCRATCH_WRITE: 914 if (inst->src[0].file == VGRF) 915 no_spill[inst->src[0].nr] = true; 916 break; 917 918 case SHADER_OPCODE_GEN4_SCRATCH_READ: 919 case SHADER_OPCODE_GEN7_SCRATCH_READ: 920 if (inst->dst.file == VGRF) 921 no_spill[inst->dst.nr] = true; 922 break; 923 924 default: 925 break; 926 } 927 } 928 929 for (unsigned i = 0; i < this->alloc.count; i++) { 930 int live_length = virtual_grf_end[i] - virtual_grf_start[i]; 931 if (live_length <= 0) 932 continue; 933 934 /* Divide the cost (in number of spills/fills) by the log of the length 935 * of the live range of the register. This will encourage spill logic 936 * to spill long-living things before spilling short-lived things where 937 * spilling is less likely to actually do us any good. We use the log 938 * of the length because it will fall off very quickly and not cause us 939 * to spill medium length registers with more uses. 940 */ 941 float adjusted_cost = spill_costs[i] / logf(live_length); 942 if (!no_spill[i]) 943 ra_set_node_spill_cost(g, i, adjusted_cost); 944 } 945 946 return ra_get_best_spill_node(g); 947} 948 949void 950fs_visitor::spill_reg(unsigned spill_reg) 951{ 952 int size = alloc.sizes[spill_reg]; 953 unsigned int spill_offset = last_scratch; 954 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */ 955 956 /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done 957 * using up to 11 MRFs starting from either m1 or m2, and fb writes can use 958 * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or 959 * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst 960 * depth), starting from m1. In summary: We may not be able to spill in 961 * SIMD16 mode, because we'd stomp the FB writes. 962 */ 963 if (!spilled_any_registers) { 964 bool mrf_used[BRW_MAX_MRF(devinfo->gen)]; 965 get_used_mrfs(this, mrf_used); 966 967 for (int i = spill_base_mrf(this); i < BRW_MAX_MRF(devinfo->gen); i++) { 968 if (mrf_used[i]) { 969 fail("Register spilling not supported with m%d used", i); 970 return; 971 } 972 } 973 974 spilled_any_registers = true; 975 } 976 977 last_scratch += size * REG_SIZE; 978 979 /* Generate spill/unspill instructions for the objects being 980 * spilled. Right now, we spill or unspill the whole thing to a 981 * virtual grf of the same size. For most instructions, though, we 982 * could just spill/unspill the GRF being accessed. 983 */ 984 foreach_block_and_inst (block, fs_inst, inst, cfg) { 985 const fs_builder ibld = fs_builder(this, block, inst); 986 987 for (unsigned int i = 0; i < inst->sources; i++) { 988 if (inst->src[i].file == VGRF && 989 inst->src[i].nr == spill_reg) { 990 int count = regs_read(inst, i); 991 int subset_spill_offset = spill_offset + 992 ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE); 993 fs_reg unspill_dst(VGRF, alloc.allocate(count)); 994 995 inst->src[i].nr = unspill_dst.nr; 996 inst->src[i].offset %= REG_SIZE; 997 998 /* We read the largest power-of-two divisor of the register count 999 * (because only POT scratch read blocks are allowed by the 1000 * hardware) up to the maximum supported block size. 1001 */ 1002 const unsigned width = 1003 MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1)); 1004 1005 /* Set exec_all() on unspill messages under the (rather 1006 * pessimistic) assumption that there is no one-to-one 1007 * correspondence between channels of the spilled variable in 1008 * scratch space and the scratch read message, which operates on 1009 * 32 bit channels. It shouldn't hurt in any case because the 1010 * unspill destination is a block-local temporary. 1011 */ 1012 emit_unspill(ibld.exec_all().group(width, 0), 1013 unspill_dst, subset_spill_offset, count); 1014 } 1015 } 1016 1017 if (inst->dst.file == VGRF && 1018 inst->dst.nr == spill_reg) { 1019 int subset_spill_offset = spill_offset + 1020 ROUND_DOWN_TO(inst->dst.offset, REG_SIZE); 1021 fs_reg spill_src(VGRF, alloc.allocate(regs_written(inst))); 1022 1023 inst->dst.nr = spill_src.nr; 1024 inst->dst.offset %= REG_SIZE; 1025 1026 /* If we're immediately spilling the register, we should not use 1027 * destination dependency hints. Doing so will cause the GPU do 1028 * try to read and write the register at the same time and may 1029 * hang the GPU. 1030 */ 1031 inst->no_dd_clear = false; 1032 inst->no_dd_check = false; 1033 1034 /* Calculate the execution width of the scratch messages (which work 1035 * in terms of 32 bit components so we have a fixed number of eight 1036 * channels per spilled register). We attempt to write one 1037 * exec_size-wide component of the variable at a time without 1038 * exceeding the maximum number of (fake) MRF registers reserved for 1039 * spills. 1040 */ 1041 const unsigned width = 8 * MIN2( 1042 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE), 1043 spill_max_size(this)); 1044 1045 /* Spills should only write data initialized by the instruction for 1046 * whichever channels are enabled in the excution mask. If that's 1047 * not possible we'll have to emit a matching unspill before the 1048 * instruction and set force_writemask_all on the spill. 1049 */ 1050 const bool per_channel = 1051 inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 && 1052 inst->exec_size == width; 1053 1054 /* Builder used to emit the scratch messages. */ 1055 const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0); 1056 1057 /* If our write is going to affect just part of the 1058 * regs_written(inst), then we need to unspill the destination since 1059 * we write back out all of the regs_written(). If the original 1060 * instruction had force_writemask_all set and is not a partial 1061 * write, there should be no need for the unspill since the 1062 * instruction will be overwriting the whole destination in any case. 1063 */ 1064 if (inst->is_partial_write() || 1065 (!inst->force_writemask_all && !per_channel)) 1066 emit_unspill(ubld, spill_src, subset_spill_offset, 1067 regs_written(inst)); 1068 1069 emit_spill(ubld.at(block, inst->next), spill_src, 1070 subset_spill_offset, regs_written(inst)); 1071 } 1072 } 1073 1074 invalidate_live_intervals(); 1075} 1076