1/*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file brw_vec4_gs_visitor.cpp
26 *
27 * Geometry-shader-specific code derived from the vec4_visitor class.
28 */
29
30#include "brw_vec4_gs_visitor.h"
31#include "gen6_gs_visitor.h"
32#include "brw_cfg.h"
33#include "brw_fs.h"
34#include "brw_nir.h"
35#include "dev/gen_debug.h"
36
37namespace brw {
38
39vec4_gs_visitor::vec4_gs_visitor(const struct brw_compiler *compiler,
40                                 void *log_data,
41                                 struct brw_gs_compile *c,
42                                 struct brw_gs_prog_data *prog_data,
43                                 const nir_shader *shader,
44                                 void *mem_ctx,
45                                 bool no_spills,
46                                 int shader_time_index)
47   : vec4_visitor(compiler, log_data, &c->key.tex,
48                  &prog_data->base, shader,  mem_ctx,
49                  no_spills, shader_time_index),
50     c(c),
51     gs_prog_data(prog_data)
52{
53}
54
55
56static inline struct brw_reg
57attribute_to_hw_reg(int attr, brw_reg_type type, bool interleaved)
58{
59   struct brw_reg reg;
60
61   unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(type));
62   if (interleaved) {
63      reg = stride(brw_vecn_grf(width, attr / 2, (attr % 2) * 4), 0, width, 1);
64   } else {
65      reg = brw_vecn_grf(width, attr, 0);
66   }
67
68   reg.type = type;
69   return reg;
70}
71
72/**
73 * Replace each register of type ATTR in this->instructions with a reference
74 * to a fixed HW register.
75 *
76 * If interleaved is true, then each attribute takes up half a register, with
77 * register N containing attribute 2*N in its first half and attribute 2*N+1
78 * in its second half (this corresponds to the payload setup used by geometry
79 * shaders in "single" or "dual instanced" dispatch mode).  If interleaved is
80 * false, then each attribute takes up a whole register, with register N
81 * containing attribute N (this corresponds to the payload setup used by
82 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
83 */
84int
85vec4_gs_visitor::setup_varying_inputs(int payload_reg,
86                                      int attributes_per_reg)
87{
88   /* For geometry shaders there are N copies of the input attributes, where N
89    * is the number of input vertices.  attribute_map[BRW_VARYING_SLOT_COUNT *
90    * i + j] represents attribute j for vertex i.
91    *
92    * Note that GS inputs are read from the VUE 256 bits (2 vec4's) at a time,
93    * so the total number of input slots that will be delivered to the GS (and
94    * thus the stride of the input arrays) is urb_read_length * 2.
95    */
96   const unsigned num_input_vertices = nir->info.gs.vertices_in;
97   assert(num_input_vertices <= MAX_GS_INPUT_VERTICES);
98   unsigned input_array_stride = prog_data->urb_read_length * 2;
99
100   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
101      for (int i = 0; i < 3; i++) {
102         if (inst->src[i].file != ATTR)
103            continue;
104
105         assert(inst->src[i].offset % REG_SIZE == 0);
106         int grf = payload_reg * attributes_per_reg +
107                   inst->src[i].nr + inst->src[i].offset / REG_SIZE;
108
109         struct brw_reg reg =
110            attribute_to_hw_reg(grf, inst->src[i].type, attributes_per_reg > 1);
111         reg.swizzle = inst->src[i].swizzle;
112         if (inst->src[i].abs)
113            reg = brw_abs(reg);
114         if (inst->src[i].negate)
115            reg = negate(reg);
116
117         inst->src[i] = reg;
118      }
119   }
120
121   int regs_used = ALIGN(input_array_stride * num_input_vertices,
122                         attributes_per_reg) / attributes_per_reg;
123   return payload_reg + regs_used;
124}
125
126void
127vec4_gs_visitor::setup_payload()
128{
129   /* If we are in dual instanced or single mode, then attributes are going
130    * to be interleaved, so one register contains two attribute slots.
131    */
132   int attributes_per_reg =
133      prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT ? 1 : 2;
134
135   int reg = 0;
136
137   /* The payload always contains important data in r0, which contains
138    * the URB handles that are passed on to the URB write at the end
139    * of the thread.
140    */
141   reg++;
142
143   /* If the shader uses gl_PrimitiveIDIn, that goes in r1. */
144   if (gs_prog_data->include_primitive_id)
145      reg++;
146
147   reg = setup_uniforms(reg);
148
149   reg = setup_varying_inputs(reg, attributes_per_reg);
150
151   this->first_non_payload_grf = reg;
152}
153
154
155void
156vec4_gs_visitor::emit_prolog()
157{
158   /* In vertex shaders, r0.2 is guaranteed to be initialized to zero.  In
159    * geometry shaders, it isn't (it contains a bunch of information we don't
160    * need, like the input primitive type).  We need r0.2 to be zero in order
161    * to build scratch read/write messages correctly (otherwise this value
162    * will be interpreted as a global offset, causing us to do our scratch
163    * reads/writes to garbage memory).  So just set it to zero at the top of
164    * the shader.
165    */
166   this->current_annotation = "clear r0.2";
167   dst_reg r0(retype(brw_vec4_grf(0, 0), BRW_REGISTER_TYPE_UD));
168   vec4_instruction *inst = emit(GS_OPCODE_SET_DWORD_2, r0, brw_imm_ud(0u));
169   inst->force_writemask_all = true;
170
171   /* Create a virtual register to hold the vertex count */
172   this->vertex_count = src_reg(this, glsl_type::uint_type);
173
174   /* Initialize the vertex_count register to 0 */
175   this->current_annotation = "initialize vertex_count";
176   inst = emit(MOV(dst_reg(this->vertex_count), brw_imm_ud(0u)));
177   inst->force_writemask_all = true;
178
179   if (c->control_data_header_size_bits > 0) {
180      /* Create a virtual register to hold the current set of control data
181       * bits.
182       */
183      this->control_data_bits = src_reg(this, glsl_type::uint_type);
184
185      /* If we're outputting more than 32 control data bits, then EmitVertex()
186       * will set control_data_bits to 0 after emitting the first vertex.
187       * Otherwise, we need to initialize it to 0 here.
188       */
189      if (c->control_data_header_size_bits <= 32) {
190         this->current_annotation = "initialize control data bits";
191         inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
192         inst->force_writemask_all = true;
193      }
194   }
195
196   this->current_annotation = NULL;
197}
198
199void
200vec4_gs_visitor::emit_thread_end()
201{
202   if (c->control_data_header_size_bits > 0) {
203      /* During shader execution, we only ever call emit_control_data_bits()
204       * just prior to outputting a vertex.  Therefore, the control data bits
205       * corresponding to the most recently output vertex still need to be
206       * emitted.
207       */
208      current_annotation = "thread end: emit control data bits";
209      emit_control_data_bits();
210   }
211
212   /* MRF 0 is reserved for the debugger, so start with message header
213    * in MRF 1.
214    */
215   int base_mrf = 1;
216
217   bool static_vertex_count = gs_prog_data->static_vertex_count != -1;
218
219   /* If the previous instruction was a URB write, we don't need to issue
220    * a second one - we can just set the EOT bit on the previous write.
221    *
222    * Skip this on Gen8+ unless there's a static vertex count, as we also
223    * need to write the vertex count out, and combining the two may not be
224    * possible (or at least not straightforward).
225    */
226   vec4_instruction *last = (vec4_instruction *) instructions.get_tail();
227   if (last && last->opcode == GS_OPCODE_URB_WRITE &&
228       !(INTEL_DEBUG & DEBUG_SHADER_TIME) &&
229       devinfo->gen >= 8 && static_vertex_count) {
230      last->urb_write_flags = BRW_URB_WRITE_EOT | last->urb_write_flags;
231      return;
232   }
233
234   current_annotation = "thread end";
235   dst_reg mrf_reg(MRF, base_mrf);
236   src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
237   vec4_instruction *inst = emit(MOV(mrf_reg, r0));
238   inst->force_writemask_all = true;
239   if (devinfo->gen < 8 || !static_vertex_count)
240      emit(GS_OPCODE_SET_VERTEX_COUNT, mrf_reg, this->vertex_count);
241   if (INTEL_DEBUG & DEBUG_SHADER_TIME)
242      emit_shader_time_end();
243   inst = emit(GS_OPCODE_THREAD_END);
244   inst->base_mrf = base_mrf;
245   inst->mlen = devinfo->gen >= 8 && !static_vertex_count ? 2 : 1;
246}
247
248
249void
250vec4_gs_visitor::emit_urb_write_header(int mrf)
251{
252   /* The SEND instruction that writes the vertex data to the VUE will use
253    * per_slot_offset=true, which means that DWORDs 3 and 4 of the message
254    * header specify an offset (in multiples of 256 bits) into the URB entry
255    * at which the write should take place.
256    *
257    * So we have to prepare a message header with the appropriate offset
258    * values.
259    */
260   dst_reg mrf_reg(MRF, mrf);
261   src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
262   this->current_annotation = "URB write header";
263   vec4_instruction *inst = emit(MOV(mrf_reg, r0));
264   inst->force_writemask_all = true;
265   emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, this->vertex_count,
266        brw_imm_ud(gs_prog_data->output_vertex_size_hwords));
267}
268
269
270vec4_instruction *
271vec4_gs_visitor::emit_urb_write_opcode(bool complete)
272{
273   /* We don't care whether the vertex is complete, because in general
274    * geometry shaders output multiple vertices, and we don't terminate the
275    * thread until all vertices are complete.
276    */
277   (void) complete;
278
279   vec4_instruction *inst = emit(GS_OPCODE_URB_WRITE);
280   inst->offset = gs_prog_data->control_data_header_size_hwords;
281
282   /* We need to increment Global Offset by 1 to make room for Broadwell's
283    * extra "Vertex Count" payload at the beginning of the URB entry.
284    */
285   if (devinfo->gen >= 8 && gs_prog_data->static_vertex_count == -1)
286      inst->offset++;
287
288   inst->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
289   return inst;
290}
291
292
293/**
294 * Write out a batch of 32 control data bits from the control_data_bits
295 * register to the URB.
296 *
297 * The current value of the vertex_count register determines which DWORD in
298 * the URB receives the control data bits.  The control_data_bits register is
299 * assumed to contain the correct data for the vertex that was most recently
300 * output, and all previous vertices that share the same DWORD.
301 *
302 * This function takes care of ensuring that if no vertices have been output
303 * yet, no control bits are emitted.
304 */
305void
306vec4_gs_visitor::emit_control_data_bits()
307{
308   assert(c->control_data_bits_per_vertex != 0);
309
310   /* Since the URB_WRITE_OWORD message operates with 128-bit (vec4 sized)
311    * granularity, we need to use two tricks to ensure that the batch of 32
312    * control data bits is written to the appropriate DWORD in the URB.  To
313    * select which vec4 we are writing to, we use the "slot {0,1} offset"
314    * fields of the message header.  To select which DWORD in the vec4 we are
315    * writing to, we use the channel mask fields of the message header.  To
316    * avoid penalizing geometry shaders that emit a small number of vertices
317    * with extra bookkeeping, we only do each of these tricks when
318    * c->prog_data.control_data_header_size_bits is large enough to make it
319    * necessary.
320    *
321    * Note: this means that if we're outputting just a single DWORD of control
322    * data bits, we'll actually replicate it four times since we won't do any
323    * channel masking.  But that's not a problem since in this case the
324    * hardware only pays attention to the first DWORD.
325    */
326   enum brw_urb_write_flags urb_write_flags = BRW_URB_WRITE_OWORD;
327   if (c->control_data_header_size_bits > 32)
328      urb_write_flags = urb_write_flags | BRW_URB_WRITE_USE_CHANNEL_MASKS;
329   if (c->control_data_header_size_bits > 128)
330      urb_write_flags = urb_write_flags | BRW_URB_WRITE_PER_SLOT_OFFSET;
331
332   /* If we are using either channel masks or a per-slot offset, then we
333    * need to figure out which DWORD we are trying to write to, using the
334    * formula:
335    *
336    *     dword_index = (vertex_count - 1) * bits_per_vertex / 32
337    *
338    * Since bits_per_vertex is a power of two, and is known at compile
339    * time, this can be optimized to:
340    *
341    *     dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
342    */
343   src_reg dword_index(this, glsl_type::uint_type);
344   if (urb_write_flags) {
345      src_reg prev_count(this, glsl_type::uint_type);
346      emit(ADD(dst_reg(prev_count), this->vertex_count,
347               brw_imm_ud(0xffffffffu)));
348      unsigned log2_bits_per_vertex =
349         util_last_bit(c->control_data_bits_per_vertex);
350      emit(SHR(dst_reg(dword_index), prev_count,
351               brw_imm_ud(6 - log2_bits_per_vertex)));
352   }
353
354   /* Start building the URB write message.  The first MRF gets a copy of
355    * R0.
356    */
357   int base_mrf = 1;
358   dst_reg mrf_reg(MRF, base_mrf);
359   src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
360   vec4_instruction *inst = emit(MOV(mrf_reg, r0));
361   inst->force_writemask_all = true;
362
363   if (urb_write_flags & BRW_URB_WRITE_PER_SLOT_OFFSET) {
364      /* Set the per-slot offset to dword_index / 4, to that we'll write to
365       * the appropriate OWORD within the control data header.
366       */
367      src_reg per_slot_offset(this, glsl_type::uint_type);
368      emit(SHR(dst_reg(per_slot_offset), dword_index, brw_imm_ud(2u)));
369      emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, per_slot_offset,
370           brw_imm_ud(1u));
371   }
372
373   if (urb_write_flags & BRW_URB_WRITE_USE_CHANNEL_MASKS) {
374      /* Set the channel masks to 1 << (dword_index % 4), so that we'll
375       * write to the appropriate DWORD within the OWORD.  We need to do
376       * this computation with force_writemask_all, otherwise garbage data
377       * from invocation 0 might clobber the mask for invocation 1 when
378       * GS_OPCODE_PREPARE_CHANNEL_MASKS tries to OR the two masks
379       * together.
380       */
381      src_reg channel(this, glsl_type::uint_type);
382      inst = emit(AND(dst_reg(channel), dword_index, brw_imm_ud(3u)));
383      inst->force_writemask_all = true;
384      src_reg one(this, glsl_type::uint_type);
385      inst = emit(MOV(dst_reg(one), brw_imm_ud(1u)));
386      inst->force_writemask_all = true;
387      src_reg channel_mask(this, glsl_type::uint_type);
388      inst = emit(SHL(dst_reg(channel_mask), one, channel));
389      inst->force_writemask_all = true;
390      emit(GS_OPCODE_PREPARE_CHANNEL_MASKS, dst_reg(channel_mask),
391                                            channel_mask);
392      emit(GS_OPCODE_SET_CHANNEL_MASKS, mrf_reg, channel_mask);
393   }
394
395   /* Store the control data bits in the message payload and send it. */
396   dst_reg mrf_reg2(MRF, base_mrf + 1);
397   inst = emit(MOV(mrf_reg2, this->control_data_bits));
398   inst->force_writemask_all = true;
399   inst = emit(GS_OPCODE_URB_WRITE);
400   inst->urb_write_flags = urb_write_flags;
401   /* We need to increment Global Offset by 256-bits to make room for
402    * Broadwell's extra "Vertex Count" payload at the beginning of the
403    * URB entry.  Since this is an OWord message, Global Offset is counted
404    * in 128-bit units, so we must set it to 2.
405    */
406   if (devinfo->gen >= 8 && gs_prog_data->static_vertex_count == -1)
407      inst->offset = 2;
408   inst->base_mrf = base_mrf;
409   inst->mlen = 2;
410}
411
412void
413vec4_gs_visitor::set_stream_control_data_bits(unsigned stream_id)
414{
415   /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
416
417   /* Note: we are calling this *before* increasing vertex_count, so
418    * this->vertex_count == vertex_count - 1 in the formula above.
419    */
420
421   /* Stream mode uses 2 bits per vertex */
422   assert(c->control_data_bits_per_vertex == 2);
423
424   /* Must be a valid stream */
425   assert(stream_id < MAX_VERTEX_STREAMS);
426
427   /* Control data bits are initialized to 0 so we don't have to set any
428    * bits when sending vertices to stream 0.
429    */
430   if (stream_id == 0)
431      return;
432
433   /* reg::sid = stream_id */
434   src_reg sid(this, glsl_type::uint_type);
435   emit(MOV(dst_reg(sid), brw_imm_ud(stream_id)));
436
437   /* reg:shift_count = 2 * (vertex_count - 1) */
438   src_reg shift_count(this, glsl_type::uint_type);
439   emit(SHL(dst_reg(shift_count), this->vertex_count, brw_imm_ud(1u)));
440
441   /* Note: we're relying on the fact that the GEN SHL instruction only pays
442    * attention to the lower 5 bits of its second source argument, so on this
443    * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
444    * stream_id << ((2 * (vertex_count - 1)) % 32).
445    */
446   src_reg mask(this, glsl_type::uint_type);
447   emit(SHL(dst_reg(mask), sid, shift_count));
448   emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
449}
450
451void
452vec4_gs_visitor::gs_emit_vertex(int stream_id)
453{
454   this->current_annotation = "emit vertex: safety check";
455
456   /* Haswell and later hardware ignores the "Render Stream Select" bits
457    * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
458    * and instead sends all primitives down the pipeline for rasterization.
459    * If the SOL stage is enabled, "Render Stream Select" is honored and
460    * primitives bound to non-zero streams are discarded after stream output.
461    *
462    * Since the only purpose of primives sent to non-zero streams is to
463    * be recorded by transform feedback, we can simply discard all geometry
464    * bound to these streams when transform feedback is disabled.
465    */
466   if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
467      return;
468
469   /* If we're outputting 32 control data bits or less, then we can wait
470    * until the shader is over to output them all.  Otherwise we need to
471    * output them as we go.  Now is the time to do it, since we're about to
472    * output the vertex_count'th vertex, so it's guaranteed that the
473    * control data bits associated with the (vertex_count - 1)th vertex are
474    * correct.
475    */
476   if (c->control_data_header_size_bits > 32) {
477      this->current_annotation = "emit vertex: emit control data bits";
478      /* Only emit control data bits if we've finished accumulating a batch
479       * of 32 bits.  This is the case when:
480       *
481       *     (vertex_count * bits_per_vertex) % 32 == 0
482       *
483       * (in other words, when the last 5 bits of vertex_count *
484       * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
485       * integer n (which is always the case, since bits_per_vertex is
486       * always 1 or 2), this is equivalent to requiring that the last 5-n
487       * bits of vertex_count are 0:
488       *
489       *     vertex_count & (2^(5-n) - 1) == 0
490       *
491       * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
492       * equivalent to:
493       *
494       *     vertex_count & (32 / bits_per_vertex - 1) == 0
495       */
496      vec4_instruction *inst =
497         emit(AND(dst_null_ud(), this->vertex_count,
498                  brw_imm_ud(32 / c->control_data_bits_per_vertex - 1)));
499      inst->conditional_mod = BRW_CONDITIONAL_Z;
500
501      emit(IF(BRW_PREDICATE_NORMAL));
502      {
503         /* If vertex_count is 0, then no control data bits have been
504          * accumulated yet, so we skip emitting them.
505          */
506         emit(CMP(dst_null_ud(), this->vertex_count, brw_imm_ud(0u),
507                  BRW_CONDITIONAL_NEQ));
508         emit(IF(BRW_PREDICATE_NORMAL));
509         emit_control_data_bits();
510         emit(BRW_OPCODE_ENDIF);
511
512         /* Reset control_data_bits to 0 so we can start accumulating a new
513          * batch.
514          *
515          * Note: in the case where vertex_count == 0, this neutralizes the
516          * effect of any call to EndPrimitive() that the shader may have
517          * made before outputting its first vertex.
518          */
519         inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
520         inst->force_writemask_all = true;
521      }
522      emit(BRW_OPCODE_ENDIF);
523   }
524
525   this->current_annotation = "emit vertex: vertex data";
526   emit_vertex();
527
528   /* In stream mode we have to set control data bits for all vertices
529    * unless we have disabled control data bits completely (which we do
530    * do for GL_POINTS outputs that don't use streams).
531    */
532   if (c->control_data_header_size_bits > 0 &&
533       gs_prog_data->control_data_format ==
534          GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
535       this->current_annotation = "emit vertex: Stream control data bits";
536       set_stream_control_data_bits(stream_id);
537   }
538
539   this->current_annotation = NULL;
540}
541
542void
543vec4_gs_visitor::gs_end_primitive()
544{
545   /* We can only do EndPrimitive() functionality when the control data
546    * consists of cut bits.  Fortunately, the only time it isn't is when the
547    * output type is points, in which case EndPrimitive() is a no-op.
548    */
549   if (gs_prog_data->control_data_format !=
550       GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
551      return;
552   }
553
554   if (c->control_data_header_size_bits == 0)
555      return;
556
557   /* Cut bits use one bit per vertex. */
558   assert(c->control_data_bits_per_vertex == 1);
559
560   /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
561    * vertex n, 0 otherwise.  So all we need to do here is mark bit
562    * (vertex_count - 1) % 32 in the cut_bits register to indicate that
563    * EndPrimitive() was called after emitting vertex (vertex_count - 1);
564    * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
565    *
566    * Note that if EndPrimitve() is called before emitting any vertices, this
567    * will cause us to set bit 31 of the control_data_bits register to 1.
568    * That's fine because:
569    *
570    * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
571    *   output, so the hardware will ignore cut bit 31.
572    *
573    * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
574    *   last vertex, so setting cut bit 31 has no effect (since the primitive
575    *   is automatically ended when the GS terminates).
576    *
577    * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
578    *   control_data_bits register to 0 when the first vertex is emitted.
579    */
580
581   /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
582   src_reg one(this, glsl_type::uint_type);
583   emit(MOV(dst_reg(one), brw_imm_ud(1u)));
584   src_reg prev_count(this, glsl_type::uint_type);
585   emit(ADD(dst_reg(prev_count), this->vertex_count, brw_imm_ud(0xffffffffu)));
586   src_reg mask(this, glsl_type::uint_type);
587   /* Note: we're relying on the fact that the GEN SHL instruction only pays
588    * attention to the lower 5 bits of its second source argument, so on this
589    * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
590    * ((vertex_count - 1) % 32).
591    */
592   emit(SHL(dst_reg(mask), one, prev_count));
593   emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
594}
595
596static const GLuint gl_prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1] = {
597   [GL_POINTS] =_3DPRIM_POINTLIST,
598   [GL_LINES] = _3DPRIM_LINELIST,
599   [GL_LINE_LOOP] = _3DPRIM_LINELOOP,
600   [GL_LINE_STRIP] = _3DPRIM_LINESTRIP,
601   [GL_TRIANGLES] = _3DPRIM_TRILIST,
602   [GL_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
603   [GL_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
604   [GL_QUADS] = _3DPRIM_QUADLIST,
605   [GL_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
606   [GL_POLYGON] = _3DPRIM_POLYGON,
607   [GL_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
608   [GL_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
609   [GL_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
610   [GL_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
611};
612
613extern "C" const unsigned *
614brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
615               void *mem_ctx,
616               const struct brw_gs_prog_key *key,
617               struct brw_gs_prog_data *prog_data,
618               nir_shader *shader,
619               struct gl_program *prog,
620               int shader_time_index,
621               char **error_str)
622{
623   struct brw_gs_compile c;
624   memset(&c, 0, sizeof(c));
625   c.key = *key;
626
627   const bool is_scalar = compiler->scalar_stage[MESA_SHADER_GEOMETRY];
628
629   /* The GLSL linker will have already matched up GS inputs and the outputs
630    * of prior stages.  The driver does extend VS outputs in some cases, but
631    * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
632    * geometry shader support.  So we can safely ignore that.
633    *
634    * For SSO pipelines, we use a fixed VUE map layout based on variable
635    * locations, so we can rely on rendezvous-by-location making this work.
636    */
637   GLbitfield64 inputs_read = shader->info.inputs_read;
638   brw_compute_vue_map(compiler->devinfo,
639                       &c.input_vue_map, inputs_read,
640                       shader->info.separate_shader);
641
642   shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar);
643   brw_nir_lower_vue_inputs(shader, &c.input_vue_map);
644   brw_nir_lower_vue_outputs(shader);
645   shader = brw_postprocess_nir(shader, compiler, is_scalar);
646
647   prog_data->base.clip_distance_mask =
648      ((1 << shader->info.clip_distance_array_size) - 1);
649   prog_data->base.cull_distance_mask =
650      ((1 << shader->info.cull_distance_array_size) - 1) <<
651      shader->info.clip_distance_array_size;
652
653   prog_data->include_primitive_id =
654      (shader->info.system_values_read & (1 << SYSTEM_VALUE_PRIMITIVE_ID)) != 0;
655
656   prog_data->invocations = shader->info.gs.invocations;
657
658   if (compiler->devinfo->gen >= 8)
659      prog_data->static_vertex_count = nir_gs_count_vertices(shader);
660
661   if (compiler->devinfo->gen >= 7) {
662      if (shader->info.gs.output_primitive == GL_POINTS) {
663         /* When the output type is points, the geometry shader may output data
664          * to multiple streams, and EndPrimitive() has no effect.  So we
665          * configure the hardware to interpret the control data as stream ID.
666          */
667         prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
668
669         /* We only have to emit control bits if we are using streams */
670         if (shader->info.gs.uses_streams)
671            c.control_data_bits_per_vertex = 2;
672         else
673            c.control_data_bits_per_vertex = 0;
674      } else {
675         /* When the output type is triangle_strip or line_strip, EndPrimitive()
676          * may be used to terminate the current strip and start a new one
677          * (similar to primitive restart), and outputting data to multiple
678          * streams is not supported.  So we configure the hardware to interpret
679          * the control data as EndPrimitive information (a.k.a. "cut bits").
680          */
681         prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
682
683         /* We only need to output control data if the shader actually calls
684          * EndPrimitive().
685          */
686         c.control_data_bits_per_vertex =
687            shader->info.gs.uses_end_primitive ? 1 : 0;
688      }
689   } else {
690      /* There are no control data bits in gen6. */
691      c.control_data_bits_per_vertex = 0;
692   }
693   c.control_data_header_size_bits =
694      shader->info.gs.vertices_out * c.control_data_bits_per_vertex;
695
696   /* 1 HWORD = 32 bytes = 256 bits */
697   prog_data->control_data_header_size_hwords =
698      ALIGN(c.control_data_header_size_bits, 256) / 256;
699
700   /* Compute the output vertex size.
701    *
702    * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
703    * Size (p168):
704    *
705    *     [0,62] indicating [1,63] 16B units
706    *
707    *     Specifies the size of each vertex stored in the GS output entry
708    *     (following any Control Header data) as a number of 128-bit units
709    *     (minus one).
710    *
711    *     Programming Restrictions: The vertex size must be programmed as a
712    *     multiple of 32B units with the following exception: Rendering is
713    *     disabled (as per SOL stage state) and the vertex size output by the
714    *     GS thread is 16B.
715    *
716    *     If rendering is enabled (as per SOL state) the vertex size must be
717    *     programmed as a multiple of 32B units. In other words, the only time
718    *     software can program a vertex size with an odd number of 16B units
719    *     is when rendering is disabled.
720    *
721    * Note: B=bytes in the above text.
722    *
723    * It doesn't seem worth the extra trouble to optimize the case where the
724    * vertex size is 16B (especially since this would require special-casing
725    * the GEN assembly that writes to the URB).  So we just set the vertex
726    * size to a multiple of 32B (2 vec4's) in all cases.
727    *
728    * The maximum output vertex size is 62*16 = 992 bytes (31 hwords).  We
729    * budget that as follows:
730    *
731    *   512 bytes for varyings (a varying component is 4 bytes and
732    *             gl_MaxGeometryOutputComponents = 128)
733    *    16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
734    *             bytes)
735    *    16 bytes overhead for gl_Position (we allocate it a slot in the VUE
736    *             even if it's not used)
737    *    32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
738    *             whenever clip planes are enabled, even if the shader doesn't
739    *             write to gl_ClipDistance)
740    *    16 bytes overhead since the VUE size must be a multiple of 32 bytes
741    *             (see below)--this causes up to 1 VUE slot to be wasted
742    *   400 bytes available for varying packing overhead
743    *
744    * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
745    * per interpolation type, so this is plenty.
746    *
747    */
748   unsigned output_vertex_size_bytes = prog_data->base.vue_map.num_slots * 16;
749   assert(compiler->devinfo->gen == 6 ||
750          output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
751   prog_data->output_vertex_size_hwords =
752      ALIGN(output_vertex_size_bytes, 32) / 32;
753
754   /* Compute URB entry size.  The maximum allowed URB entry size is 32k.
755    * That divides up as follows:
756    *
757    *     64 bytes for the control data header (cut indices or StreamID bits)
758    *   4096 bytes for varyings (a varying component is 4 bytes and
759    *              gl_MaxGeometryTotalOutputComponents = 1024)
760    *   4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
761    *              bytes/vertex and gl_MaxGeometryOutputVertices is 256)
762    *   4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
763    *              even if it's not used)
764    *   8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
765    *              whenever clip planes are enabled, even if the shader doesn't
766    *              write to gl_ClipDistance)
767    *   4096 bytes overhead since the VUE size must be a multiple of 32
768    *              bytes (see above)--this causes up to 1 VUE slot to be wasted
769    *   8128 bytes available for varying packing overhead
770    *
771    * Worst-case varying packing overhead is 3/4 of a varying slot per
772    * interpolation type, which works out to 3072 bytes, so this would allow
773    * us to accommodate 2 interpolation types without any danger of running
774    * out of URB space.
775    *
776    * In practice, the risk of running out of URB space is very small, since
777    * the above figures are all worst-case, and most of them scale with the
778    * number of output vertices.  So we'll just calculate the amount of space
779    * we need, and if it's too large, fail to compile.
780    *
781    * The above is for gen7+ where we have a single URB entry that will hold
782    * all the output. In gen6, we will have to allocate URB entries for every
783    * vertex we emit, so our URB entries only need to be large enough to hold
784    * a single vertex. Also, gen6 does not have a control data header.
785    */
786   unsigned output_size_bytes;
787   if (compiler->devinfo->gen >= 7) {
788      output_size_bytes =
789         prog_data->output_vertex_size_hwords * 32 * shader->info.gs.vertices_out;
790      output_size_bytes += 32 * prog_data->control_data_header_size_hwords;
791   } else {
792      output_size_bytes = prog_data->output_vertex_size_hwords * 32;
793   }
794
795   /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
796    * which comes before the control header.
797    */
798   if (compiler->devinfo->gen >= 8)
799      output_size_bytes += 32;
800
801   /* Shaders can technically set max_vertices = 0, at which point we
802    * may have a URB size of 0 bytes.  Nothing good can come from that,
803    * so enforce a minimum size.
804    */
805   if (output_size_bytes == 0)
806      output_size_bytes = 1;
807
808   unsigned max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
809   if (compiler->devinfo->gen == 6)
810      max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
811   if (output_size_bytes > max_output_size_bytes)
812      return NULL;
813
814
815   /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
816    * a multiple of 128 bytes in gen6.
817    */
818   if (compiler->devinfo->gen >= 7) {
819      prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
820      /* On Cannonlake software shall not program an allocation size that
821       * specifies a size that is a multiple of 3 64B (512-bit) cachelines.
822       */
823      if (compiler->devinfo->gen == 10 &&
824          prog_data->base.urb_entry_size % 3 == 0)
825         prog_data->base.urb_entry_size++;
826   } else {
827      prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
828   }
829
830   assert(shader->info.gs.output_primitive < ARRAY_SIZE(gl_prim_to_hw_prim));
831   prog_data->output_topology =
832      gl_prim_to_hw_prim[shader->info.gs.output_primitive];
833
834   prog_data->vertices_in = shader->info.gs.vertices_in;
835
836   /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
837    * need to program a URB read length of ceiling(num_slots / 2).
838    */
839   prog_data->base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
840
841   /* Now that prog_data setup is done, we are ready to actually compile the
842    * program.
843    */
844   if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
845      fprintf(stderr, "GS Input ");
846      brw_print_vue_map(stderr, &c.input_vue_map);
847      fprintf(stderr, "GS Output ");
848      brw_print_vue_map(stderr, &prog_data->base.vue_map);
849   }
850
851   if (is_scalar) {
852      fs_visitor v(compiler, log_data, mem_ctx, &c, prog_data, shader,
853                   shader_time_index);
854      if (v.run_gs()) {
855         prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
856         prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
857
858         fs_generator g(compiler, log_data, mem_ctx,
859                        &prog_data->base.base, v.promoted_constants,
860                        false, MESA_SHADER_GEOMETRY);
861         if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
862            const char *label =
863               shader->info.label ? shader->info.label : "unnamed";
864            char *name = ralloc_asprintf(mem_ctx, "%s geometry shader %s",
865                                         label, shader->info.name);
866            g.enable_debug(name);
867         }
868         g.generate_code(v.cfg, 8);
869         return g.get_assembly();
870      }
871   }
872
873   if (compiler->devinfo->gen >= 7) {
874      /* Compile the geometry shader in DUAL_OBJECT dispatch mode, if we can do
875       * so without spilling. If the GS invocations count > 1, then we can't use
876       * dual object mode.
877       */
878      if (prog_data->invocations <= 1 &&
879          likely(!(INTEL_DEBUG & DEBUG_NO_DUAL_OBJECT_GS))) {
880         prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
881
882         vec4_gs_visitor v(compiler, log_data, &c, prog_data, shader,
883                           mem_ctx, true /* no_spills */, shader_time_index);
884
885         /* Backup 'nr_params' and 'param' as they can be modified by the
886          * the DUAL_OBJECT visitor. If it fails, we will run the fallback
887          * (DUAL_INSTANCED or SINGLE mode) and we need to restore original
888          * values.
889          */
890         const unsigned param_count = prog_data->base.base.nr_params;
891         uint32_t *param = ralloc_array(NULL, uint32_t, param_count);
892         memcpy(param, prog_data->base.base.param,
893                sizeof(uint32_t) * param_count);
894
895         if (v.run()) {
896            /* Success! Backup is not needed */
897            ralloc_free(param);
898            return brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
899                                              shader, &prog_data->base, v.cfg);
900         } else {
901            /* These variables could be modified by the execution of the GS
902             * visitor if it packed the uniforms in the push constant buffer.
903             * As it failed, we need restore them so we can start again with
904             * DUAL_INSTANCED or SINGLE mode.
905             *
906             * FIXME: Could more variables be modified by this execution?
907             */
908            memcpy(prog_data->base.base.param, param,
909                   sizeof(uint32_t) * param_count);
910            prog_data->base.base.nr_params = param_count;
911            prog_data->base.base.nr_pull_params = 0;
912            ralloc_free(param);
913         }
914      }
915   }
916
917   /* Either we failed to compile in DUAL_OBJECT mode (probably because it
918    * would have required spilling) or DUAL_OBJECT mode is disabled.  So fall
919    * back to DUAL_INSTANCED or SINGLE mode, which consumes fewer registers.
920    *
921    * FIXME: Single dispatch mode requires that the driver can handle
922    * interleaving of input registers, but this is already supported (dual
923    * instance mode has the same requirement). However, to take full advantage
924    * of single dispatch mode to reduce register pressure we would also need to
925    * do interleaved outputs, but currently, the vec4 visitor and generator
926    * classes do not support this, so at the moment register pressure in
927    * single and dual instance modes is the same.
928    *
929    * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 "3DSTATE_GS"
930    * "If InstanceCount>1, DUAL_OBJECT mode is invalid. Software will likely
931    * want to use DUAL_INSTANCE mode for higher performance, but SINGLE mode
932    * is also supported. When InstanceCount=1 (one instance per object) software
933    * can decide which dispatch mode to use. DUAL_OBJECT mode would likely be
934    * the best choice for performance, followed by SINGLE mode."
935    *
936    * So SINGLE mode is more performant when invocations == 1 and DUAL_INSTANCE
937    * mode is more performant when invocations > 1. Gen6 only supports
938    * SINGLE mode.
939    */
940   if (prog_data->invocations <= 1 || compiler->devinfo->gen < 7)
941      prog_data->base.dispatch_mode = DISPATCH_MODE_4X1_SINGLE;
942   else
943      prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_INSTANCE;
944
945   vec4_gs_visitor *gs = NULL;
946   const unsigned *ret = NULL;
947
948   if (compiler->devinfo->gen >= 7)
949      gs = new vec4_gs_visitor(compiler, log_data, &c, prog_data,
950                               shader, mem_ctx, false /* no_spills */,
951                               shader_time_index);
952   else
953      gs = new gen6_gs_visitor(compiler, log_data, &c, prog_data, prog,
954                               shader, mem_ctx, false /* no_spills */,
955                               shader_time_index);
956
957   if (!gs->run()) {
958      if (error_str)
959         *error_str = ralloc_strdup(mem_ctx, gs->fail_msg);
960   } else {
961      ret = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, shader,
962                                       &prog_data->base, gs->cfg);
963   }
964
965   delete gs;
966   return ret;
967}
968
969
970} /* namespace brw */
971