1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <stdlib.h>
25#include <unistd.h>
26#include <limits.h>
27#include <assert.h>
28#include <linux/memfd.h>
29#include <sys/mman.h>
30
31#include "anv_private.h"
32
33#include "util/hash_table.h"
34#include "util/simple_mtx.h"
35
36#ifdef HAVE_VALGRIND
37#define VG_NOACCESS_READ(__ptr) ({                       \
38   VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
39   __typeof(*(__ptr)) __val = *(__ptr);                  \
40   VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
41   __val;                                                \
42})
43#define VG_NOACCESS_WRITE(__ptr, __val) ({                  \
44   VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr)));  \
45   *(__ptr) = (__val);                                      \
46   VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));   \
47})
48#else
49#define VG_NOACCESS_READ(__ptr) (*(__ptr))
50#define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
51#endif
52
53/* Design goals:
54 *
55 *  - Lock free (except when resizing underlying bos)
56 *
57 *  - Constant time allocation with typically only one atomic
58 *
59 *  - Multiple allocation sizes without fragmentation
60 *
61 *  - Can grow while keeping addresses and offset of contents stable
62 *
63 *  - All allocations within one bo so we can point one of the
64 *    STATE_BASE_ADDRESS pointers at it.
65 *
66 * The overall design is a two-level allocator: top level is a fixed size, big
67 * block (8k) allocator, which operates out of a bo.  Allocation is done by
68 * either pulling a block from the free list or growing the used range of the
69 * bo.  Growing the range may run out of space in the bo which we then need to
70 * grow.  Growing the bo is tricky in a multi-threaded, lockless environment:
71 * we need to keep all pointers and contents in the old map valid.  GEM bos in
72 * general can't grow, but we use a trick: we create a memfd and use ftruncate
73 * to grow it as necessary.  We mmap the new size and then create a gem bo for
74 * it using the new gem userptr ioctl.  Without heavy-handed locking around
75 * our allocation fast-path, there isn't really a way to munmap the old mmap,
76 * so we just keep it around until garbage collection time.  While the block
77 * allocator is lockless for normal operations, we block other threads trying
78 * to allocate while we're growing the map.  It sholdn't happen often, and
79 * growing is fast anyway.
80 *
81 * At the next level we can use various sub-allocators.  The state pool is a
82 * pool of smaller, fixed size objects, which operates much like the block
83 * pool.  It uses a free list for freeing objects, but when it runs out of
84 * space it just allocates a new block from the block pool.  This allocator is
85 * intended for longer lived state objects such as SURFACE_STATE and most
86 * other persistent state objects in the API.  We may need to track more info
87 * with these object and a pointer back to the CPU object (eg VkImage).  In
88 * those cases we just allocate a slightly bigger object and put the extra
89 * state after the GPU state object.
90 *
91 * The state stream allocator works similar to how the i965 DRI driver streams
92 * all its state.  Even with Vulkan, we need to emit transient state (whether
93 * surface state base or dynamic state base), and for that we can just get a
94 * block and fill it up.  These cases are local to a command buffer and the
95 * sub-allocator need not be thread safe.  The streaming allocator gets a new
96 * block when it runs out of space and chains them together so they can be
97 * easily freed.
98 */
99
100/* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
101 * We use it to indicate the free list is empty. */
102#define EMPTY UINT32_MAX
103
104#define PAGE_SIZE 4096
105
106struct anv_mmap_cleanup {
107   void *map;
108   size_t size;
109   uint32_t gem_handle;
110};
111
112#define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
113
114#ifndef HAVE_MEMFD_CREATE
115static inline int
116memfd_create(const char *name, unsigned int flags)
117{
118   return syscall(SYS_memfd_create, name, flags);
119}
120#endif
121
122static inline uint32_t
123ilog2_round_up(uint32_t value)
124{
125   assert(value != 0);
126   return 32 - __builtin_clz(value - 1);
127}
128
129static inline uint32_t
130round_to_power_of_two(uint32_t value)
131{
132   return 1 << ilog2_round_up(value);
133}
134
135struct anv_state_table_cleanup {
136   void *map;
137   size_t size;
138};
139
140#define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
141#define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
142
143static VkResult
144anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
145
146VkResult
147anv_state_table_init(struct anv_state_table *table,
148                    struct anv_device *device,
149                    uint32_t initial_entries)
150{
151   VkResult result;
152
153   table->device = device;
154
155   table->fd = memfd_create("state table", MFD_CLOEXEC);
156   if (table->fd == -1)
157      return vk_error(VK_ERROR_INITIALIZATION_FAILED);
158
159   /* Just make it 2GB up-front.  The Linux kernel won't actually back it
160    * with pages until we either map and fault on one of them or we use
161    * userptr and send a chunk of it off to the GPU.
162    */
163   if (ftruncate(table->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
164      result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
165      goto fail_fd;
166   }
167
168   if (!u_vector_init(&table->cleanups,
169                      round_to_power_of_two(sizeof(struct anv_state_table_cleanup)),
170                      128)) {
171      result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
172      goto fail_fd;
173   }
174
175   table->state.next = 0;
176   table->state.end = 0;
177   table->size = 0;
178
179   uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
180   result = anv_state_table_expand_range(table, initial_size);
181   if (result != VK_SUCCESS)
182      goto fail_cleanups;
183
184   return VK_SUCCESS;
185
186 fail_cleanups:
187   u_vector_finish(&table->cleanups);
188 fail_fd:
189   close(table->fd);
190
191   return result;
192}
193
194static VkResult
195anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
196{
197   void *map;
198   struct anv_state_table_cleanup *cleanup;
199
200   /* Assert that we only ever grow the pool */
201   assert(size >= table->state.end);
202
203   /* Make sure that we don't go outside the bounds of the memfd */
204   if (size > BLOCK_POOL_MEMFD_SIZE)
205      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
206
207   cleanup = u_vector_add(&table->cleanups);
208   if (!cleanup)
209      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
210
211   *cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
212
213   /* Just leak the old map until we destroy the pool.  We can't munmap it
214    * without races or imposing locking on the block allocate fast path. On
215    * the whole the leaked maps adds up to less than the size of the
216    * current map.  MAP_POPULATE seems like the right thing to do, but we
217    * should try to get some numbers.
218    */
219   map = mmap(NULL, size, PROT_READ | PROT_WRITE,
220              MAP_SHARED | MAP_POPULATE, table->fd, 0);
221   if (map == MAP_FAILED) {
222      return vk_errorf(table->device->instance, table->device,
223                       VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m");
224   }
225
226   cleanup->map = map;
227   cleanup->size = size;
228
229   table->map = map;
230   table->size = size;
231
232   return VK_SUCCESS;
233}
234
235static VkResult
236anv_state_table_grow(struct anv_state_table *table)
237{
238   VkResult result = VK_SUCCESS;
239
240   uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
241                             PAGE_SIZE);
242   uint32_t old_size = table->size;
243
244   /* The block pool is always initialized to a nonzero size and this function
245    * is always called after initialization.
246    */
247   assert(old_size > 0);
248
249   uint32_t required = MAX2(used, old_size);
250   if (used * 2 <= required) {
251      /* If we're in this case then this isn't the firsta allocation and we
252       * already have enough space on both sides to hold double what we
253       * have allocated.  There's nothing for us to do.
254       */
255      goto done;
256   }
257
258   uint32_t size = old_size * 2;
259   while (size < required)
260      size *= 2;
261
262   assert(size > table->size);
263
264   result = anv_state_table_expand_range(table, size);
265
266 done:
267   return result;
268}
269
270void
271anv_state_table_finish(struct anv_state_table *table)
272{
273   struct anv_state_table_cleanup *cleanup;
274
275   u_vector_foreach(cleanup, &table->cleanups) {
276      if (cleanup->map)
277         munmap(cleanup->map, cleanup->size);
278   }
279
280   u_vector_finish(&table->cleanups);
281
282   close(table->fd);
283}
284
285VkResult
286anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
287                    uint32_t count)
288{
289   struct anv_block_state state, old, new;
290   VkResult result;
291
292   assert(idx);
293
294   while(1) {
295      state.u64 = __sync_fetch_and_add(&table->state.u64, count);
296      if (state.next + count <= state.end) {
297         assert(table->map);
298         struct anv_free_entry *entry = &table->map[state.next];
299         for (int i = 0; i < count; i++) {
300            entry[i].state.idx = state.next + i;
301         }
302         *idx = state.next;
303         return VK_SUCCESS;
304      } else if (state.next <= state.end) {
305         /* We allocated the first block outside the pool so we have to grow
306          * the pool.  pool_state->next acts a mutex: threads who try to
307          * allocate now will get block indexes above the current limit and
308          * hit futex_wait below.
309          */
310         new.next = state.next + count;
311         do {
312            result = anv_state_table_grow(table);
313            if (result != VK_SUCCESS)
314               return result;
315            new.end = table->size / ANV_STATE_ENTRY_SIZE;
316         } while (new.end < new.next);
317
318         old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
319         if (old.next != state.next)
320            futex_wake(&table->state.end, INT_MAX);
321      } else {
322         futex_wait(&table->state.end, state.end, NULL);
323         continue;
324      }
325   }
326}
327
328void
329anv_free_list_push(union anv_free_list *list,
330                   struct anv_state_table *table,
331                   uint32_t first, uint32_t count)
332{
333   union anv_free_list current, old, new;
334   uint32_t last = first;
335
336   for (uint32_t i = 1; i < count; i++, last++)
337      table->map[last].next = last + 1;
338
339   old = *list;
340   do {
341      current = old;
342      table->map[last].next = current.offset;
343      new.offset = first;
344      new.count = current.count + 1;
345      old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
346   } while (old.u64 != current.u64);
347}
348
349struct anv_state *
350anv_free_list_pop(union anv_free_list *list,
351                  struct anv_state_table *table)
352{
353   union anv_free_list current, new, old;
354
355   current.u64 = list->u64;
356   while (current.offset != EMPTY) {
357      __sync_synchronize();
358      new.offset = table->map[current.offset].next;
359      new.count = current.count + 1;
360      old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
361      if (old.u64 == current.u64) {
362         struct anv_free_entry *entry = &table->map[current.offset];
363         return &entry->state;
364      }
365      current = old;
366   }
367
368   return NULL;
369}
370
371/* All pointers in the ptr_free_list are assumed to be page-aligned.  This
372 * means that the bottom 12 bits should all be zero.
373 */
374#define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
375#define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
376#define PFL_PACK(ptr, count) ({           \
377   (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
378})
379
380static bool
381anv_ptr_free_list_pop(void **list, void **elem)
382{
383   void *current = *list;
384   while (PFL_PTR(current) != NULL) {
385      void **next_ptr = PFL_PTR(current);
386      void *new_ptr = VG_NOACCESS_READ(next_ptr);
387      unsigned new_count = PFL_COUNT(current) + 1;
388      void *new = PFL_PACK(new_ptr, new_count);
389      void *old = __sync_val_compare_and_swap(list, current, new);
390      if (old == current) {
391         *elem = PFL_PTR(current);
392         return true;
393      }
394      current = old;
395   }
396
397   return false;
398}
399
400static void
401anv_ptr_free_list_push(void **list, void *elem)
402{
403   void *old, *current;
404   void **next_ptr = elem;
405
406   /* The pointer-based free list requires that the pointer be
407    * page-aligned.  This is because we use the bottom 12 bits of the
408    * pointer to store a counter to solve the ABA concurrency problem.
409    */
410   assert(((uintptr_t)elem & 0xfff) == 0);
411
412   old = *list;
413   do {
414      current = old;
415      VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
416      unsigned new_count = PFL_COUNT(current) + 1;
417      void *new = PFL_PACK(elem, new_count);
418      old = __sync_val_compare_and_swap(list, current, new);
419   } while (old != current);
420}
421
422static VkResult
423anv_block_pool_expand_range(struct anv_block_pool *pool,
424                            uint32_t center_bo_offset, uint32_t size);
425
426VkResult
427anv_block_pool_init(struct anv_block_pool *pool,
428                    struct anv_device *device,
429                    uint64_t start_address,
430                    uint32_t initial_size,
431                    uint64_t bo_flags)
432{
433   VkResult result;
434
435   pool->device = device;
436   pool->bo_flags = bo_flags;
437   pool->nbos = 0;
438   pool->size = 0;
439   pool->center_bo_offset = 0;
440   pool->start_address = gen_canonical_address(start_address);
441   pool->map = NULL;
442
443   /* This pointer will always point to the first BO in the list */
444   pool->bo = &pool->bos[0];
445
446   anv_bo_init(pool->bo, 0, 0);
447
448   if (!(pool->bo_flags & EXEC_OBJECT_PINNED)) {
449      pool->fd = memfd_create("block pool", MFD_CLOEXEC);
450      if (pool->fd == -1)
451         return vk_error(VK_ERROR_INITIALIZATION_FAILED);
452
453      /* Just make it 2GB up-front.  The Linux kernel won't actually back it
454       * with pages until we either map and fault on one of them or we use
455       * userptr and send a chunk of it off to the GPU.
456       */
457      if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
458         result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
459         goto fail_fd;
460      }
461   } else {
462      pool->fd = -1;
463   }
464
465   if (!u_vector_init(&pool->mmap_cleanups,
466                      round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
467                      128)) {
468      result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
469      goto fail_fd;
470   }
471
472   pool->state.next = 0;
473   pool->state.end = 0;
474   pool->back_state.next = 0;
475   pool->back_state.end = 0;
476
477   result = anv_block_pool_expand_range(pool, 0, initial_size);
478   if (result != VK_SUCCESS)
479      goto fail_mmap_cleanups;
480
481   /* Make the entire pool available in the front of the pool.  If back
482    * allocation needs to use this space, the "ends" will be re-arranged.
483    */
484   pool->state.end = pool->size;
485
486   return VK_SUCCESS;
487
488 fail_mmap_cleanups:
489   u_vector_finish(&pool->mmap_cleanups);
490 fail_fd:
491   if (!(pool->bo_flags & EXEC_OBJECT_PINNED))
492      close(pool->fd);
493
494   return result;
495}
496
497void
498anv_block_pool_finish(struct anv_block_pool *pool)
499{
500   struct anv_mmap_cleanup *cleanup;
501   const bool use_softpin = !!(pool->bo_flags & EXEC_OBJECT_PINNED);
502
503   u_vector_foreach(cleanup, &pool->mmap_cleanups) {
504      if (use_softpin)
505         anv_gem_munmap(cleanup->map, cleanup->size);
506      else
507         munmap(cleanup->map, cleanup->size);
508
509      if (cleanup->gem_handle)
510         anv_gem_close(pool->device, cleanup->gem_handle);
511   }
512
513   u_vector_finish(&pool->mmap_cleanups);
514   if (!(pool->bo_flags & EXEC_OBJECT_PINNED))
515      close(pool->fd);
516}
517
518static VkResult
519anv_block_pool_expand_range(struct anv_block_pool *pool,
520                            uint32_t center_bo_offset, uint32_t size)
521{
522   void *map;
523   uint32_t gem_handle;
524   struct anv_mmap_cleanup *cleanup;
525   const bool use_softpin = !!(pool->bo_flags & EXEC_OBJECT_PINNED);
526
527   /* Assert that we only ever grow the pool */
528   assert(center_bo_offset >= pool->back_state.end);
529   assert(size - center_bo_offset >= pool->state.end);
530
531   /* Assert that we don't go outside the bounds of the memfd */
532   assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
533   assert(use_softpin ||
534          size - center_bo_offset <=
535          BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
536
537   cleanup = u_vector_add(&pool->mmap_cleanups);
538   if (!cleanup)
539      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
540
541   *cleanup = ANV_MMAP_CLEANUP_INIT;
542
543   uint32_t newbo_size = size - pool->size;
544   if (use_softpin) {
545      gem_handle = anv_gem_create(pool->device, newbo_size);
546      map = anv_gem_mmap(pool->device, gem_handle, 0, newbo_size, 0);
547      if (map == MAP_FAILED)
548         return vk_errorf(pool->device->instance, pool->device,
549                          VK_ERROR_MEMORY_MAP_FAILED, "gem mmap failed: %m");
550      assert(center_bo_offset == 0);
551   } else {
552      /* Just leak the old map until we destroy the pool.  We can't munmap it
553       * without races or imposing locking on the block allocate fast path. On
554       * the whole the leaked maps adds up to less than the size of the
555       * current map.  MAP_POPULATE seems like the right thing to do, but we
556       * should try to get some numbers.
557       */
558      map = mmap(NULL, size, PROT_READ | PROT_WRITE,
559                 MAP_SHARED | MAP_POPULATE, pool->fd,
560                 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
561      if (map == MAP_FAILED)
562         return vk_errorf(pool->device->instance, pool->device,
563                          VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
564
565      /* Now that we mapped the new memory, we can write the new
566       * center_bo_offset back into pool and update pool->map. */
567      pool->center_bo_offset = center_bo_offset;
568      pool->map = map + center_bo_offset;
569      gem_handle = anv_gem_userptr(pool->device, map, size);
570      if (gem_handle == 0) {
571         munmap(map, size);
572         return vk_errorf(pool->device->instance, pool->device,
573                          VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m");
574      }
575   }
576
577   cleanup->map = map;
578   cleanup->size = use_softpin ? newbo_size : size;
579   cleanup->gem_handle = gem_handle;
580
581   /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
582    * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
583    * always created as I915_CACHING_CACHED, which on non-LLC means
584    * snooped.
585    *
586    * On platforms that support softpin, we are not going to use userptr
587    * anymore, but we still want to rely on the snooped states. So make sure
588    * everything is set to I915_CACHING_CACHED.
589    */
590   if (!pool->device->info.has_llc)
591      anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_CACHED);
592
593   /* For block pool BOs we have to be a bit careful about where we place them
594    * in the GTT.  There are two documented workarounds for state base address
595    * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
596    * which state that those two base addresses do not support 48-bit
597    * addresses and need to be placed in the bottom 32-bit range.
598    * Unfortunately, this is not quite accurate.
599    *
600    * The real problem is that we always set the size of our state pools in
601    * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
602    * likely significantly smaller.  We do this because we do not no at the
603    * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
604    * the pool during command buffer building so we don't actually have a
605    * valid final size.  If the address + size, as seen by STATE_BASE_ADDRESS
606    * overflows 48 bits, the GPU appears to treat all accesses to the buffer
607    * as being out of bounds and returns zero.  For dynamic state, this
608    * usually just leads to rendering corruptions, but shaders that are all
609    * zero hang the GPU immediately.
610    *
611    * The easiest solution to do is exactly what the bogus workarounds say to
612    * do: restrict these buffers to 32-bit addresses.  We could also pin the
613    * BO to some particular location of our choosing, but that's significantly
614    * more work than just not setting a flag.  So, we explicitly DO NOT set
615    * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
616    * hard work for us.
617    */
618   struct anv_bo *bo;
619   uint32_t bo_size;
620   uint64_t bo_offset;
621
622   assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
623
624   if (use_softpin) {
625      /* With softpin, we add a new BO to the pool, and set its offset to right
626       * where the previous BO ends (the end of the pool).
627       */
628      bo = &pool->bos[pool->nbos++];
629      bo_size = newbo_size;
630      bo_offset = pool->start_address + pool->size;
631   } else {
632      /* Without softpin, we just need one BO, and we already have a pointer to
633       * it. Simply "allocate" it from our array if we didn't do it before.
634       * The offset doesn't matter since we are not pinning the BO anyway.
635       */
636      if (pool->nbos == 0)
637         pool->nbos++;
638      bo = pool->bo;
639      bo_size = size;
640      bo_offset = 0;
641   }
642
643   anv_bo_init(bo, gem_handle, bo_size);
644   bo->offset = bo_offset;
645   bo->flags = pool->bo_flags;
646   bo->map = map;
647   pool->size = size;
648
649   return VK_SUCCESS;
650}
651
652static struct anv_bo *
653anv_block_pool_get_bo(struct anv_block_pool *pool, int32_t *offset)
654{
655   struct anv_bo *bo, *bo_found = NULL;
656   int32_t cur_offset = 0;
657
658   assert(offset);
659
660   if (!(pool->bo_flags & EXEC_OBJECT_PINNED))
661      return pool->bo;
662
663   anv_block_pool_foreach_bo(bo, pool) {
664      if (*offset < cur_offset + bo->size) {
665         bo_found = bo;
666         break;
667      }
668      cur_offset += bo->size;
669   }
670
671   assert(bo_found != NULL);
672   *offset -= cur_offset;
673
674   return bo_found;
675}
676
677/** Returns current memory map of the block pool.
678 *
679 * The returned pointer points to the map for the memory at the specified
680 * offset. The offset parameter is relative to the "center" of the block pool
681 * rather than the start of the block pool BO map.
682 */
683void*
684anv_block_pool_map(struct anv_block_pool *pool, int32_t offset)
685{
686   if (pool->bo_flags & EXEC_OBJECT_PINNED) {
687      struct anv_bo *bo = anv_block_pool_get_bo(pool, &offset);
688      return bo->map + offset;
689   } else {
690      return pool->map + offset;
691   }
692}
693
694/** Grows and re-centers the block pool.
695 *
696 * We grow the block pool in one or both directions in such a way that the
697 * following conditions are met:
698 *
699 *  1) The size of the entire pool is always a power of two.
700 *
701 *  2) The pool only grows on both ends.  Neither end can get
702 *     shortened.
703 *
704 *  3) At the end of the allocation, we have about twice as much space
705 *     allocated for each end as we have used.  This way the pool doesn't
706 *     grow too far in one direction or the other.
707 *
708 *  4) If the _alloc_back() has never been called, then the back portion of
709 *     the pool retains a size of zero.  (This makes it easier for users of
710 *     the block pool that only want a one-sided pool.)
711 *
712 *  5) We have enough space allocated for at least one more block in
713 *     whichever side `state` points to.
714 *
715 *  6) The center of the pool is always aligned to both the block_size of
716 *     the pool and a 4K CPU page.
717 */
718static uint32_t
719anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
720{
721   VkResult result = VK_SUCCESS;
722
723   pthread_mutex_lock(&pool->device->mutex);
724
725   assert(state == &pool->state || state == &pool->back_state);
726
727   /* Gather a little usage information on the pool.  Since we may have
728    * threadsd waiting in queue to get some storage while we resize, it's
729    * actually possible that total_used will be larger than old_size.  In
730    * particular, block_pool_alloc() increments state->next prior to
731    * calling block_pool_grow, so this ensures that we get enough space for
732    * which ever side tries to grow the pool.
733    *
734    * We align to a page size because it makes it easier to do our
735    * calculations later in such a way that we state page-aigned.
736    */
737   uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
738   uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
739   uint32_t total_used = front_used + back_used;
740
741   assert(state == &pool->state || back_used > 0);
742
743   uint32_t old_size = pool->size;
744
745   /* The block pool is always initialized to a nonzero size and this function
746    * is always called after initialization.
747    */
748   assert(old_size > 0);
749
750   /* The back_used and front_used may actually be smaller than the actual
751    * requirement because they are based on the next pointers which are
752    * updated prior to calling this function.
753    */
754   uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
755   uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
756
757   if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
758      /* If we're in this case then this isn't the firsta allocation and we
759       * already have enough space on both sides to hold double what we
760       * have allocated.  There's nothing for us to do.
761       */
762      goto done;
763   }
764
765   uint32_t size = old_size * 2;
766   while (size < back_required + front_required)
767      size *= 2;
768
769   assert(size > pool->size);
770
771   /* We compute a new center_bo_offset such that, when we double the size
772    * of the pool, we maintain the ratio of how much is used by each side.
773    * This way things should remain more-or-less balanced.
774    */
775   uint32_t center_bo_offset;
776   if (back_used == 0) {
777      /* If we're in this case then we have never called alloc_back().  In
778       * this case, we want keep the offset at 0 to make things as simple
779       * as possible for users that don't care about back allocations.
780       */
781      center_bo_offset = 0;
782   } else {
783      /* Try to "center" the allocation based on how much is currently in
784       * use on each side of the center line.
785       */
786      center_bo_offset = ((uint64_t)size * back_used) / total_used;
787
788      /* Align down to a multiple of the page size */
789      center_bo_offset &= ~(PAGE_SIZE - 1);
790
791      assert(center_bo_offset >= back_used);
792
793      /* Make sure we don't shrink the back end of the pool */
794      if (center_bo_offset < back_required)
795         center_bo_offset = back_required;
796
797      /* Make sure that we don't shrink the front end of the pool */
798      if (size - center_bo_offset < front_required)
799         center_bo_offset = size - front_required;
800   }
801
802   assert(center_bo_offset % PAGE_SIZE == 0);
803
804   result = anv_block_pool_expand_range(pool, center_bo_offset, size);
805
806   pool->bo->flags = pool->bo_flags;
807
808done:
809   pthread_mutex_unlock(&pool->device->mutex);
810
811   if (result == VK_SUCCESS) {
812      /* Return the appropriate new size.  This function never actually
813       * updates state->next.  Instead, we let the caller do that because it
814       * needs to do so in order to maintain its concurrency model.
815       */
816      if (state == &pool->state) {
817         return pool->size - pool->center_bo_offset;
818      } else {
819         assert(pool->center_bo_offset > 0);
820         return pool->center_bo_offset;
821      }
822   } else {
823      return 0;
824   }
825}
826
827static uint32_t
828anv_block_pool_alloc_new(struct anv_block_pool *pool,
829                         struct anv_block_state *pool_state,
830                         uint32_t block_size, uint32_t *padding)
831{
832   struct anv_block_state state, old, new;
833
834   /* Most allocations won't generate any padding */
835   if (padding)
836      *padding = 0;
837
838   while (1) {
839      state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
840      if (state.next + block_size <= state.end) {
841         return state.next;
842      } else if (state.next <= state.end) {
843         if (pool->bo_flags & EXEC_OBJECT_PINNED && state.next < state.end) {
844            /* We need to grow the block pool, but still have some leftover
845             * space that can't be used by that particular allocation. So we
846             * add that as a "padding", and return it.
847             */
848            uint32_t leftover = state.end - state.next;
849
850            /* If there is some leftover space in the pool, the caller must
851             * deal with it.
852             */
853            assert(leftover == 0 || padding);
854            if (padding)
855               *padding = leftover;
856            state.next += leftover;
857         }
858
859         /* We allocated the first block outside the pool so we have to grow
860          * the pool.  pool_state->next acts a mutex: threads who try to
861          * allocate now will get block indexes above the current limit and
862          * hit futex_wait below.
863          */
864         new.next = state.next + block_size;
865         do {
866            new.end = anv_block_pool_grow(pool, pool_state);
867         } while (new.end < new.next);
868
869         old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
870         if (old.next != state.next)
871            futex_wake(&pool_state->end, INT_MAX);
872         return state.next;
873      } else {
874         futex_wait(&pool_state->end, state.end, NULL);
875         continue;
876      }
877   }
878}
879
880int32_t
881anv_block_pool_alloc(struct anv_block_pool *pool,
882                     uint32_t block_size, uint32_t *padding)
883{
884   uint32_t offset;
885
886   offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
887
888   return offset;
889}
890
891/* Allocates a block out of the back of the block pool.
892 *
893 * This will allocated a block earlier than the "start" of the block pool.
894 * The offsets returned from this function will be negative but will still
895 * be correct relative to the block pool's map pointer.
896 *
897 * If you ever use anv_block_pool_alloc_back, then you will have to do
898 * gymnastics with the block pool's BO when doing relocations.
899 */
900int32_t
901anv_block_pool_alloc_back(struct anv_block_pool *pool,
902                          uint32_t block_size)
903{
904   int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
905                                             block_size, NULL);
906
907   /* The offset we get out of anv_block_pool_alloc_new() is actually the
908    * number of bytes downwards from the middle to the end of the block.
909    * We need to turn it into a (negative) offset from the middle to the
910    * start of the block.
911    */
912   assert(offset >= 0);
913   return -(offset + block_size);
914}
915
916VkResult
917anv_state_pool_init(struct anv_state_pool *pool,
918                    struct anv_device *device,
919                    uint64_t start_address,
920                    uint32_t block_size,
921                    uint64_t bo_flags)
922{
923   VkResult result = anv_block_pool_init(&pool->block_pool, device,
924                                         start_address,
925                                         block_size * 16,
926                                         bo_flags);
927   if (result != VK_SUCCESS)
928      return result;
929
930   result = anv_state_table_init(&pool->table, device, 64);
931   if (result != VK_SUCCESS) {
932      anv_block_pool_finish(&pool->block_pool);
933      return result;
934   }
935
936   assert(util_is_power_of_two_or_zero(block_size));
937   pool->block_size = block_size;
938   pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
939   for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
940      pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
941      pool->buckets[i].block.next = 0;
942      pool->buckets[i].block.end = 0;
943   }
944   VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
945
946   return VK_SUCCESS;
947}
948
949void
950anv_state_pool_finish(struct anv_state_pool *pool)
951{
952   VG(VALGRIND_DESTROY_MEMPOOL(pool));
953   anv_state_table_finish(&pool->table);
954   anv_block_pool_finish(&pool->block_pool);
955}
956
957static uint32_t
958anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
959                                    struct anv_block_pool *block_pool,
960                                    uint32_t state_size,
961                                    uint32_t block_size,
962                                    uint32_t *padding)
963{
964   struct anv_block_state block, old, new;
965   uint32_t offset;
966
967   /* We don't always use anv_block_pool_alloc(), which would set *padding to
968    * zero for us. So if we have a pointer to padding, we must zero it out
969    * ourselves here, to make sure we always return some sensible value.
970    */
971   if (padding)
972      *padding = 0;
973
974   /* If our state is large, we don't need any sub-allocation from a block.
975    * Instead, we just grab whole (potentially large) blocks.
976    */
977   if (state_size >= block_size)
978      return anv_block_pool_alloc(block_pool, state_size, padding);
979
980 restart:
981   block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
982
983   if (block.next < block.end) {
984      return block.next;
985   } else if (block.next == block.end) {
986      offset = anv_block_pool_alloc(block_pool, block_size, padding);
987      new.next = offset + state_size;
988      new.end = offset + block_size;
989      old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
990      if (old.next != block.next)
991         futex_wake(&pool->block.end, INT_MAX);
992      return offset;
993   } else {
994      futex_wait(&pool->block.end, block.end, NULL);
995      goto restart;
996   }
997}
998
999static uint32_t
1000anv_state_pool_get_bucket(uint32_t size)
1001{
1002   unsigned size_log2 = ilog2_round_up(size);
1003   assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
1004   if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
1005      size_log2 = ANV_MIN_STATE_SIZE_LOG2;
1006   return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
1007}
1008
1009static uint32_t
1010anv_state_pool_get_bucket_size(uint32_t bucket)
1011{
1012   uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
1013   return 1 << size_log2;
1014}
1015
1016/** Helper to push a chunk into the state table.
1017 *
1018 * It creates 'count' entries into the state table and update their sizes,
1019 * offsets and maps, also pushing them as "free" states.
1020 */
1021static void
1022anv_state_pool_return_blocks(struct anv_state_pool *pool,
1023                             uint32_t chunk_offset, uint32_t count,
1024                             uint32_t block_size)
1025{
1026   /* Disallow returning 0 chunks */
1027   assert(count != 0);
1028
1029   /* Make sure we always return chunks aligned to the block_size */
1030   assert(chunk_offset % block_size == 0);
1031
1032   uint32_t st_idx;
1033   UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
1034   assert(result == VK_SUCCESS);
1035   for (int i = 0; i < count; i++) {
1036      /* update states that were added back to the state table */
1037      struct anv_state *state_i = anv_state_table_get(&pool->table,
1038                                                      st_idx + i);
1039      state_i->alloc_size = block_size;
1040      state_i->offset = chunk_offset + block_size * i;
1041      state_i->map = anv_block_pool_map(&pool->block_pool, state_i->offset);
1042   }
1043
1044   uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
1045   anv_free_list_push(&pool->buckets[block_bucket].free_list,
1046                      &pool->table, st_idx, count);
1047}
1048
1049/** Returns a chunk of memory back to the state pool.
1050 *
1051 * Do a two-level split. If chunk_size is bigger than divisor
1052 * (pool->block_size), we return as many divisor sized blocks as we can, from
1053 * the end of the chunk.
1054 *
1055 * The remaining is then split into smaller blocks (starting at small_size if
1056 * it is non-zero), with larger blocks always being taken from the end of the
1057 * chunk.
1058 */
1059static void
1060anv_state_pool_return_chunk(struct anv_state_pool *pool,
1061                            uint32_t chunk_offset, uint32_t chunk_size,
1062                            uint32_t small_size)
1063{
1064   uint32_t divisor = pool->block_size;
1065   uint32_t nblocks = chunk_size / divisor;
1066   uint32_t rest = chunk_size - nblocks * divisor;
1067
1068   if (nblocks > 0) {
1069      /* First return divisor aligned and sized chunks. We start returning
1070       * larger blocks from the end fo the chunk, since they should already be
1071       * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
1072       * aligned chunks.
1073       */
1074      uint32_t offset = chunk_offset + rest;
1075      anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
1076   }
1077
1078   chunk_size = rest;
1079   divisor /= 2;
1080
1081   if (small_size > 0 && small_size < divisor)
1082      divisor = small_size;
1083
1084   uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
1085
1086   /* Just as before, return larger divisor aligned blocks from the end of the
1087    * chunk first.
1088    */
1089   while (chunk_size > 0 && divisor >= min_size) {
1090      nblocks = chunk_size / divisor;
1091      rest = chunk_size - nblocks * divisor;
1092      if (nblocks > 0) {
1093         anv_state_pool_return_blocks(pool, chunk_offset + rest,
1094                                      nblocks, divisor);
1095         chunk_size = rest;
1096      }
1097      divisor /= 2;
1098   }
1099}
1100
1101static struct anv_state
1102anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
1103                           uint32_t size, uint32_t align)
1104{
1105   uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
1106
1107   struct anv_state *state;
1108   uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
1109   int32_t offset;
1110
1111   /* Try free list first. */
1112   state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1113                             &pool->table);
1114   if (state) {
1115      assert(state->offset >= 0);
1116      goto done;
1117   }
1118
1119   /* Try to grab a chunk from some larger bucket and split it up */
1120   for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1121      state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1122      if (state) {
1123         unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1124         int32_t chunk_offset = state->offset;
1125
1126         /* First lets update the state we got to its new size. offset and map
1127          * remain the same.
1128          */
1129         state->alloc_size = alloc_size;
1130
1131         /* Now return the unused part of the chunk back to the pool as free
1132          * blocks
1133          *
1134          * There are a couple of options as to what we do with it:
1135          *
1136          *    1) We could fully split the chunk into state.alloc_size sized
1137          *       pieces.  However, this would mean that allocating a 16B
1138          *       state could potentially split a 2MB chunk into 512K smaller
1139          *       chunks.  This would lead to unnecessary fragmentation.
1140          *
1141          *    2) The classic "buddy allocator" method would have us split the
1142          *       chunk in half and return one half.  Then we would split the
1143          *       remaining half in half and return one half, and repeat as
1144          *       needed until we get down to the size we want.  However, if
1145          *       you are allocating a bunch of the same size state (which is
1146          *       the common case), this means that every other allocation has
1147          *       to go up a level and every fourth goes up two levels, etc.
1148          *       This is not nearly as efficient as it could be if we did a
1149          *       little more work up-front.
1150          *
1151          *    3) Split the difference between (1) and (2) by doing a
1152          *       two-level split.  If it's bigger than some fixed block_size,
1153          *       we split it into block_size sized chunks and return all but
1154          *       one of them.  Then we split what remains into
1155          *       state.alloc_size sized chunks and return them.
1156          *
1157          * We choose something close to option (3), which is implemented with
1158          * anv_state_pool_return_chunk(). That is done by returning the
1159          * remaining of the chunk, with alloc_size as a hint of the size that
1160          * we want the smaller chunk split into.
1161          */
1162         anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1163                                     chunk_size - alloc_size, alloc_size);
1164         goto done;
1165      }
1166   }
1167
1168   uint32_t padding;
1169   offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1170                                                &pool->block_pool,
1171                                                alloc_size,
1172                                                pool->block_size,
1173                                                &padding);
1174   /* Everytime we allocate a new state, add it to the state pool */
1175   uint32_t idx;
1176   UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1177   assert(result == VK_SUCCESS);
1178
1179   state = anv_state_table_get(&pool->table, idx);
1180   state->offset = offset;
1181   state->alloc_size = alloc_size;
1182   state->map = anv_block_pool_map(&pool->block_pool, offset);
1183
1184   if (padding > 0) {
1185      uint32_t return_offset = offset - padding;
1186      anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1187   }
1188
1189done:
1190   return *state;
1191}
1192
1193struct anv_state
1194anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1195{
1196   if (size == 0)
1197      return ANV_STATE_NULL;
1198
1199   struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1200   VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1201   return state;
1202}
1203
1204struct anv_state
1205anv_state_pool_alloc_back(struct anv_state_pool *pool)
1206{
1207   struct anv_state *state;
1208   uint32_t alloc_size = pool->block_size;
1209
1210   state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1211   if (state) {
1212      assert(state->offset < 0);
1213      goto done;
1214   }
1215
1216   int32_t offset;
1217   offset = anv_block_pool_alloc_back(&pool->block_pool,
1218                                      pool->block_size);
1219   uint32_t idx;
1220   UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1221   assert(result == VK_SUCCESS);
1222
1223   state = anv_state_table_get(&pool->table, idx);
1224   state->offset = offset;
1225   state->alloc_size = alloc_size;
1226   state->map = anv_block_pool_map(&pool->block_pool, state->offset);
1227
1228done:
1229   VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1230   return *state;
1231}
1232
1233static void
1234anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1235{
1236   assert(util_is_power_of_two_or_zero(state.alloc_size));
1237   unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1238
1239   if (state.offset < 0) {
1240      assert(state.alloc_size == pool->block_size);
1241      anv_free_list_push(&pool->back_alloc_free_list,
1242                         &pool->table, state.idx, 1);
1243   } else {
1244      anv_free_list_push(&pool->buckets[bucket].free_list,
1245                         &pool->table, state.idx, 1);
1246   }
1247}
1248
1249void
1250anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1251{
1252   if (state.alloc_size == 0)
1253      return;
1254
1255   VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1256   anv_state_pool_free_no_vg(pool, state);
1257}
1258
1259struct anv_state_stream_block {
1260   struct anv_state block;
1261
1262   /* The next block */
1263   struct anv_state_stream_block *next;
1264
1265#ifdef HAVE_VALGRIND
1266   /* A pointer to the first user-allocated thing in this block.  This is
1267    * what valgrind sees as the start of the block.
1268    */
1269   void *_vg_ptr;
1270#endif
1271};
1272
1273/* The state stream allocator is a one-shot, single threaded allocator for
1274 * variable sized blocks.  We use it for allocating dynamic state.
1275 */
1276void
1277anv_state_stream_init(struct anv_state_stream *stream,
1278                      struct anv_state_pool *state_pool,
1279                      uint32_t block_size)
1280{
1281   stream->state_pool = state_pool;
1282   stream->block_size = block_size;
1283
1284   stream->block = ANV_STATE_NULL;
1285
1286   stream->block_list = NULL;
1287
1288   /* Ensure that next + whatever > block_size.  This way the first call to
1289    * state_stream_alloc fetches a new block.
1290    */
1291   stream->next = block_size;
1292
1293   VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1294}
1295
1296void
1297anv_state_stream_finish(struct anv_state_stream *stream)
1298{
1299   struct anv_state_stream_block *next = stream->block_list;
1300   while (next != NULL) {
1301      struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
1302      VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
1303      VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
1304      anv_state_pool_free_no_vg(stream->state_pool, sb.block);
1305      next = sb.next;
1306   }
1307
1308   VG(VALGRIND_DESTROY_MEMPOOL(stream));
1309}
1310
1311struct anv_state
1312anv_state_stream_alloc(struct anv_state_stream *stream,
1313                       uint32_t size, uint32_t alignment)
1314{
1315   if (size == 0)
1316      return ANV_STATE_NULL;
1317
1318   assert(alignment <= PAGE_SIZE);
1319
1320   uint32_t offset = align_u32(stream->next, alignment);
1321   if (offset + size > stream->block.alloc_size) {
1322      uint32_t block_size = stream->block_size;
1323      if (block_size < size)
1324         block_size = round_to_power_of_two(size);
1325
1326      stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1327                                                 block_size, PAGE_SIZE);
1328
1329      struct anv_state_stream_block *sb = stream->block.map;
1330      VG_NOACCESS_WRITE(&sb->block, stream->block);
1331      VG_NOACCESS_WRITE(&sb->next, stream->block_list);
1332      stream->block_list = sb;
1333      VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
1334
1335      VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
1336
1337      /* Reset back to the start plus space for the header */
1338      stream->next = sizeof(*sb);
1339
1340      offset = align_u32(stream->next, alignment);
1341      assert(offset + size <= stream->block.alloc_size);
1342   }
1343
1344   struct anv_state state = stream->block;
1345   state.offset += offset;
1346   state.alloc_size = size;
1347   state.map += offset;
1348
1349   stream->next = offset + size;
1350
1351#ifdef HAVE_VALGRIND
1352   struct anv_state_stream_block *sb = stream->block_list;
1353   void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
1354   if (vg_ptr == NULL) {
1355      vg_ptr = state.map;
1356      VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
1357      VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
1358   } else {
1359      void *state_end = state.map + state.alloc_size;
1360      /* This only updates the mempool.  The newly allocated chunk is still
1361       * marked as NOACCESS. */
1362      VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
1363      /* Mark the newly allocated chunk as undefined */
1364      VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
1365   }
1366#endif
1367
1368   return state;
1369}
1370
1371struct bo_pool_bo_link {
1372   struct bo_pool_bo_link *next;
1373   struct anv_bo bo;
1374};
1375
1376void
1377anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
1378                 uint64_t bo_flags)
1379{
1380   pool->device = device;
1381   pool->bo_flags = bo_flags;
1382   memset(pool->free_list, 0, sizeof(pool->free_list));
1383
1384   VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1385}
1386
1387void
1388anv_bo_pool_finish(struct anv_bo_pool *pool)
1389{
1390   for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1391      struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
1392      while (link != NULL) {
1393         struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
1394
1395         anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
1396         anv_vma_free(pool->device, &link_copy.bo);
1397         anv_gem_close(pool->device, link_copy.bo.gem_handle);
1398         link = link_copy.next;
1399      }
1400   }
1401
1402   VG(VALGRIND_DESTROY_MEMPOOL(pool));
1403}
1404
1405VkResult
1406anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
1407{
1408   VkResult result;
1409
1410   const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1411   const unsigned pow2_size = 1 << size_log2;
1412   const unsigned bucket = size_log2 - 12;
1413   assert(bucket < ARRAY_SIZE(pool->free_list));
1414
1415   void *next_free_void;
1416   if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
1417      struct bo_pool_bo_link *next_free = next_free_void;
1418      *bo = VG_NOACCESS_READ(&next_free->bo);
1419      assert(bo->gem_handle);
1420      assert(bo->map == next_free);
1421      assert(size <= bo->size);
1422
1423      VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1424
1425      return VK_SUCCESS;
1426   }
1427
1428   struct anv_bo new_bo;
1429
1430   result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
1431   if (result != VK_SUCCESS)
1432      return result;
1433
1434   new_bo.flags = pool->bo_flags;
1435
1436   if (!anv_vma_alloc(pool->device, &new_bo))
1437      return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1438
1439   assert(new_bo.size == pow2_size);
1440
1441   new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
1442   if (new_bo.map == MAP_FAILED) {
1443      anv_gem_close(pool->device, new_bo.gem_handle);
1444      anv_vma_free(pool->device, &new_bo);
1445      return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1446   }
1447
1448   /* We are removing the state flushes, so lets make sure that these buffers
1449    * are cached/snooped.
1450    */
1451   if (!pool->device->info.has_llc) {
1452      anv_gem_set_caching(pool->device, new_bo.gem_handle,
1453                          I915_CACHING_CACHED);
1454   }
1455
1456   *bo = new_bo;
1457
1458   VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1459
1460   return VK_SUCCESS;
1461}
1462
1463void
1464anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
1465{
1466   /* Make a copy in case the anv_bo happens to be storred in the BO */
1467   struct anv_bo bo = *bo_in;
1468
1469   VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
1470
1471   struct bo_pool_bo_link *link = bo.map;
1472   VG_NOACCESS_WRITE(&link->bo, bo);
1473
1474   assert(util_is_power_of_two_or_zero(bo.size));
1475   const unsigned size_log2 = ilog2_round_up(bo.size);
1476   const unsigned bucket = size_log2 - 12;
1477   assert(bucket < ARRAY_SIZE(pool->free_list));
1478
1479   anv_ptr_free_list_push(&pool->free_list[bucket], link);
1480}
1481
1482// Scratch pool
1483
1484void
1485anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1486{
1487   memset(pool, 0, sizeof(*pool));
1488}
1489
1490void
1491anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1492{
1493   for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1494      for (unsigned i = 0; i < 16; i++) {
1495         struct anv_scratch_bo *bo = &pool->bos[i][s];
1496         if (bo->exists > 0) {
1497            anv_vma_free(device, &bo->bo);
1498            anv_gem_close(device, bo->bo.gem_handle);
1499         }
1500      }
1501   }
1502}
1503
1504struct anv_bo *
1505anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1506                       gl_shader_stage stage, unsigned per_thread_scratch)
1507{
1508   if (per_thread_scratch == 0)
1509      return NULL;
1510
1511   unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1512   assert(scratch_size_log2 < 16);
1513
1514   struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
1515
1516   /* We can use "exists" to shortcut and ignore the critical section */
1517   if (bo->exists)
1518      return &bo->bo;
1519
1520   pthread_mutex_lock(&device->mutex);
1521
1522   __sync_synchronize();
1523   if (bo->exists) {
1524      pthread_mutex_unlock(&device->mutex);
1525      return &bo->bo;
1526   }
1527
1528   const struct anv_physical_device *physical_device =
1529      &device->instance->physicalDevice;
1530   const struct gen_device_info *devinfo = &physical_device->info;
1531
1532   const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1533
1534   unsigned scratch_ids_per_subslice;
1535   if (devinfo->is_haswell) {
1536      /* WaCSScratchSize:hsw
1537       *
1538       * Haswell's scratch space address calculation appears to be sparse
1539       * rather than tightly packed. The Thread ID has bits indicating
1540       * which subslice, EU within a subslice, and thread within an EU it
1541       * is. There's a maximum of two slices and two subslices, so these
1542       * can be stored with a single bit. Even though there are only 10 EUs
1543       * per subslice, this is stored in 4 bits, so there's an effective
1544       * maximum value of 16 EUs. Similarly, although there are only 7
1545       * threads per EU, this is stored in a 3 bit number, giving an
1546       * effective maximum value of 8 threads per EU.
1547       *
1548       * This means that we need to use 16 * 8 instead of 10 * 7 for the
1549       * number of threads per subslice.
1550       */
1551      scratch_ids_per_subslice = 16 * 8;
1552   } else if (devinfo->is_cherryview) {
1553      /* Cherryview devices have either 6 or 8 EUs per subslice, and each EU
1554       * has 7 threads. The 6 EU devices appear to calculate thread IDs as if
1555       * it had 8 EUs.
1556       */
1557      scratch_ids_per_subslice = 8 * 7;
1558   } else {
1559      scratch_ids_per_subslice = devinfo->max_cs_threads;
1560   }
1561
1562   uint32_t max_threads[] = {
1563      [MESA_SHADER_VERTEX]           = devinfo->max_vs_threads,
1564      [MESA_SHADER_TESS_CTRL]        = devinfo->max_tcs_threads,
1565      [MESA_SHADER_TESS_EVAL]        = devinfo->max_tes_threads,
1566      [MESA_SHADER_GEOMETRY]         = devinfo->max_gs_threads,
1567      [MESA_SHADER_FRAGMENT]         = devinfo->max_wm_threads,
1568      [MESA_SHADER_COMPUTE]          = scratch_ids_per_subslice * subslices,
1569   };
1570
1571   uint32_t size = per_thread_scratch * max_threads[stage];
1572
1573   anv_bo_init_new(&bo->bo, device, size);
1574
1575   /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1576    * are still relative to the general state base address.  When we emit
1577    * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1578    * to the maximum (1 page under 4GB).  This allows us to just place the
1579    * scratch buffers anywhere we wish in the bottom 32 bits of address space
1580    * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1581    * However, in order to do so, we need to ensure that the kernel does not
1582    * place the scratch BO above the 32-bit boundary.
1583    *
1584    * NOTE: Technically, it can't go "anywhere" because the top page is off
1585    * limits.  However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1586    * kernel allocates space using
1587    *
1588    *    end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1589    *
1590    * so nothing will ever touch the top page.
1591    */
1592   assert(!(bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS));
1593
1594   if (device->instance->physicalDevice.has_exec_async)
1595      bo->bo.flags |= EXEC_OBJECT_ASYNC;
1596
1597   if (device->instance->physicalDevice.use_softpin)
1598      bo->bo.flags |= EXEC_OBJECT_PINNED;
1599
1600   anv_vma_alloc(device, &bo->bo);
1601
1602   /* Set the exists last because it may be read by other threads */
1603   __sync_synchronize();
1604   bo->exists = true;
1605
1606   pthread_mutex_unlock(&device->mutex);
1607
1608   return &bo->bo;
1609}
1610
1611struct anv_cached_bo {
1612   struct anv_bo bo;
1613
1614   uint32_t refcount;
1615};
1616
1617VkResult
1618anv_bo_cache_init(struct anv_bo_cache *cache)
1619{
1620   cache->bo_map = _mesa_pointer_hash_table_create(NULL);
1621   if (!cache->bo_map)
1622      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1623
1624   if (pthread_mutex_init(&cache->mutex, NULL)) {
1625      _mesa_hash_table_destroy(cache->bo_map, NULL);
1626      return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
1627                       "pthread_mutex_init failed: %m");
1628   }
1629
1630   return VK_SUCCESS;
1631}
1632
1633void
1634anv_bo_cache_finish(struct anv_bo_cache *cache)
1635{
1636   _mesa_hash_table_destroy(cache->bo_map, NULL);
1637   pthread_mutex_destroy(&cache->mutex);
1638}
1639
1640static struct anv_cached_bo *
1641anv_bo_cache_lookup_locked(struct anv_bo_cache *cache, uint32_t gem_handle)
1642{
1643   struct hash_entry *entry =
1644      _mesa_hash_table_search(cache->bo_map,
1645                              (const void *)(uintptr_t)gem_handle);
1646   if (!entry)
1647      return NULL;
1648
1649   struct anv_cached_bo *bo = (struct anv_cached_bo *)entry->data;
1650   assert(bo->bo.gem_handle == gem_handle);
1651
1652   return bo;
1653}
1654
1655UNUSED static struct anv_bo *
1656anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle)
1657{
1658   pthread_mutex_lock(&cache->mutex);
1659
1660   struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1661
1662   pthread_mutex_unlock(&cache->mutex);
1663
1664   return bo ? &bo->bo : NULL;
1665}
1666
1667#define ANV_BO_CACHE_SUPPORTED_FLAGS \
1668   (EXEC_OBJECT_WRITE | \
1669    EXEC_OBJECT_ASYNC | \
1670    EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1671    EXEC_OBJECT_PINNED | \
1672    ANV_BO_EXTERNAL)
1673
1674VkResult
1675anv_bo_cache_alloc(struct anv_device *device,
1676                   struct anv_bo_cache *cache,
1677                   uint64_t size, uint64_t bo_flags,
1678                   struct anv_bo **bo_out)
1679{
1680   assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1681
1682   struct anv_cached_bo *bo =
1683      vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1684               VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1685   if (!bo)
1686      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1687
1688   bo->refcount = 1;
1689
1690   /* The kernel is going to give us whole pages anyway */
1691   size = align_u64(size, 4096);
1692
1693   VkResult result = anv_bo_init_new(&bo->bo, device, size);
1694   if (result != VK_SUCCESS) {
1695      vk_free(&device->alloc, bo);
1696      return result;
1697   }
1698
1699   bo->bo.flags = bo_flags;
1700
1701   if (!anv_vma_alloc(device, &bo->bo)) {
1702      anv_gem_close(device, bo->bo.gem_handle);
1703      vk_free(&device->alloc, bo);
1704      return vk_errorf(device->instance, NULL,
1705                       VK_ERROR_OUT_OF_DEVICE_MEMORY,
1706                       "failed to allocate virtual address for BO");
1707   }
1708
1709   assert(bo->bo.gem_handle);
1710
1711   pthread_mutex_lock(&cache->mutex);
1712
1713   _mesa_hash_table_insert(cache->bo_map,
1714                           (void *)(uintptr_t)bo->bo.gem_handle, bo);
1715
1716   pthread_mutex_unlock(&cache->mutex);
1717
1718   *bo_out = &bo->bo;
1719
1720   return VK_SUCCESS;
1721}
1722
1723VkResult
1724anv_bo_cache_import_host_ptr(struct anv_device *device,
1725                             struct anv_bo_cache *cache,
1726                             void *host_ptr, uint32_t size,
1727                             uint64_t bo_flags, struct anv_bo **bo_out)
1728{
1729   assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1730   assert((bo_flags & ANV_BO_EXTERNAL) == 0);
1731
1732   uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
1733   if (!gem_handle)
1734      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1735
1736   pthread_mutex_lock(&cache->mutex);
1737
1738   struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1739   if (bo) {
1740      /* VK_EXT_external_memory_host doesn't require handling importing the
1741       * same pointer twice at the same time, but we don't get in the way.  If
1742       * kernel gives us the same gem_handle, only succeed if the flags match.
1743       */
1744      if (bo_flags != bo->bo.flags) {
1745         pthread_mutex_unlock(&cache->mutex);
1746         return vk_errorf(device->instance, NULL,
1747                          VK_ERROR_INVALID_EXTERNAL_HANDLE,
1748                          "same host pointer imported two different ways");
1749      }
1750      __sync_fetch_and_add(&bo->refcount, 1);
1751   } else {
1752      bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1753                    VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1754      if (!bo) {
1755         anv_gem_close(device, gem_handle);
1756         pthread_mutex_unlock(&cache->mutex);
1757         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1758      }
1759
1760      bo->refcount = 1;
1761
1762      anv_bo_init(&bo->bo, gem_handle, size);
1763      bo->bo.flags = bo_flags;
1764
1765      if (!anv_vma_alloc(device, &bo->bo)) {
1766         anv_gem_close(device, bo->bo.gem_handle);
1767         pthread_mutex_unlock(&cache->mutex);
1768         vk_free(&device->alloc, bo);
1769         return vk_errorf(device->instance, NULL,
1770                          VK_ERROR_OUT_OF_DEVICE_MEMORY,
1771                          "failed to allocate virtual address for BO");
1772      }
1773
1774      _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo);
1775   }
1776
1777   pthread_mutex_unlock(&cache->mutex);
1778   *bo_out = &bo->bo;
1779
1780   return VK_SUCCESS;
1781}
1782
1783VkResult
1784anv_bo_cache_import(struct anv_device *device,
1785                    struct anv_bo_cache *cache,
1786                    int fd, uint64_t bo_flags,
1787                    struct anv_bo **bo_out)
1788{
1789   assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1790   assert(bo_flags & ANV_BO_EXTERNAL);
1791
1792   pthread_mutex_lock(&cache->mutex);
1793
1794   uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1795   if (!gem_handle) {
1796      pthread_mutex_unlock(&cache->mutex);
1797      return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1798   }
1799
1800   struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
1801   if (bo) {
1802      /* We have to be careful how we combine flags so that it makes sense.
1803       * Really, though, if we get to this case and it actually matters, the
1804       * client has imported a BO twice in different ways and they get what
1805       * they have coming.
1806       */
1807      uint64_t new_flags = ANV_BO_EXTERNAL;
1808      new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_WRITE;
1809      new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_ASYNC;
1810      new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1811      new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_PINNED;
1812
1813      /* It's theoretically possible for a BO to get imported such that it's
1814       * both pinned and not pinned.  The only way this can happen is if it
1815       * gets imported as both a semaphore and a memory object and that would
1816       * be an application error.  Just fail out in that case.
1817       */
1818      if ((bo->bo.flags & EXEC_OBJECT_PINNED) !=
1819          (bo_flags & EXEC_OBJECT_PINNED)) {
1820         pthread_mutex_unlock(&cache->mutex);
1821         return vk_errorf(device->instance, NULL,
1822                          VK_ERROR_INVALID_EXTERNAL_HANDLE,
1823                          "The same BO was imported two different ways");
1824      }
1825
1826      /* It's also theoretically possible that someone could export a BO from
1827       * one heap and import it into another or to import the same BO into two
1828       * different heaps.  If this happens, we could potentially end up both
1829       * allowing and disallowing 48-bit addresses.  There's not much we can
1830       * do about it if we're pinning so we just throw an error and hope no
1831       * app is actually that stupid.
1832       */
1833      if ((new_flags & EXEC_OBJECT_PINNED) &&
1834          (bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1835          (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1836         pthread_mutex_unlock(&cache->mutex);
1837         return vk_errorf(device->instance, NULL,
1838                          VK_ERROR_INVALID_EXTERNAL_HANDLE,
1839                          "The same BO was imported on two different heaps");
1840      }
1841
1842      bo->bo.flags = new_flags;
1843
1844      __sync_fetch_and_add(&bo->refcount, 1);
1845   } else {
1846      off_t size = lseek(fd, 0, SEEK_END);
1847      if (size == (off_t)-1) {
1848         anv_gem_close(device, gem_handle);
1849         pthread_mutex_unlock(&cache->mutex);
1850         return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1851      }
1852
1853      bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
1854                    VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1855      if (!bo) {
1856         anv_gem_close(device, gem_handle);
1857         pthread_mutex_unlock(&cache->mutex);
1858         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1859      }
1860
1861      bo->refcount = 1;
1862
1863      anv_bo_init(&bo->bo, gem_handle, size);
1864      bo->bo.flags = bo_flags;
1865
1866      if (!anv_vma_alloc(device, &bo->bo)) {
1867         anv_gem_close(device, bo->bo.gem_handle);
1868         pthread_mutex_unlock(&cache->mutex);
1869         vk_free(&device->alloc, bo);
1870         return vk_errorf(device->instance, NULL,
1871                          VK_ERROR_OUT_OF_DEVICE_MEMORY,
1872                          "failed to allocate virtual address for BO");
1873      }
1874
1875      _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo);
1876   }
1877
1878   pthread_mutex_unlock(&cache->mutex);
1879   *bo_out = &bo->bo;
1880
1881   return VK_SUCCESS;
1882}
1883
1884VkResult
1885anv_bo_cache_export(struct anv_device *device,
1886                    struct anv_bo_cache *cache,
1887                    struct anv_bo *bo_in, int *fd_out)
1888{
1889   assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1890   struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1891
1892   /* This BO must have been flagged external in order for us to be able
1893    * to export it.  This is done based on external options passed into
1894    * anv_AllocateMemory.
1895    */
1896   assert(bo->bo.flags & ANV_BO_EXTERNAL);
1897
1898   int fd = anv_gem_handle_to_fd(device, bo->bo.gem_handle);
1899   if (fd < 0)
1900      return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1901
1902   *fd_out = fd;
1903
1904   return VK_SUCCESS;
1905}
1906
1907static bool
1908atomic_dec_not_one(uint32_t *counter)
1909{
1910   uint32_t old, val;
1911
1912   val = *counter;
1913   while (1) {
1914      if (val == 1)
1915         return false;
1916
1917      old = __sync_val_compare_and_swap(counter, val, val - 1);
1918      if (old == val)
1919         return true;
1920
1921      val = old;
1922   }
1923}
1924
1925void
1926anv_bo_cache_release(struct anv_device *device,
1927                     struct anv_bo_cache *cache,
1928                     struct anv_bo *bo_in)
1929{
1930   assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
1931   struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
1932
1933   /* Try to decrement the counter but don't go below one.  If this succeeds
1934    * then the refcount has been decremented and we are not the last
1935    * reference.
1936    */
1937   if (atomic_dec_not_one(&bo->refcount))
1938      return;
1939
1940   pthread_mutex_lock(&cache->mutex);
1941
1942   /* We are probably the last reference since our attempt to decrement above
1943    * failed.  However, we can't actually know until we are inside the mutex.
1944    * Otherwise, someone could import the BO between the decrement and our
1945    * taking the mutex.
1946    */
1947   if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1948      /* Turns out we're not the last reference.  Unlock and bail. */
1949      pthread_mutex_unlock(&cache->mutex);
1950      return;
1951   }
1952
1953   struct hash_entry *entry =
1954      _mesa_hash_table_search(cache->bo_map,
1955                              (const void *)(uintptr_t)bo->bo.gem_handle);
1956   assert(entry);
1957   _mesa_hash_table_remove(cache->bo_map, entry);
1958
1959   if (bo->bo.map)
1960      anv_gem_munmap(bo->bo.map, bo->bo.size);
1961
1962   anv_vma_free(device, &bo->bo);
1963
1964   anv_gem_close(device, bo->bo.gem_handle);
1965
1966   /* Don't unlock until we've actually closed the BO.  The whole point of
1967    * the BO cache is to ensure that we correctly handle races with creating
1968    * and releasing GEM handles and we don't want to let someone import the BO
1969    * again between mutex unlock and closing the GEM handle.
1970    */
1971   pthread_mutex_unlock(&cache->mutex);
1972
1973   vk_free(&device->alloc, bo);
1974}
1975