1b8e80941Smrg/* 2b8e80941Smrg * Copyright © 2015 Intel Corporation 3b8e80941Smrg * 4b8e80941Smrg * Permission is hereby granted, free of charge, to any person obtaining a 5b8e80941Smrg * copy of this software and associated documentation files (the "Software"), 6b8e80941Smrg * to deal in the Software without restriction, including without limitation 7b8e80941Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8b8e80941Smrg * and/or sell copies of the Software, and to permit persons to whom the 9b8e80941Smrg * Software is furnished to do so, subject to the following conditions: 10b8e80941Smrg * 11b8e80941Smrg * The above copyright notice and this permission notice (including the next 12b8e80941Smrg * paragraph) shall be included in all copies or substantial portions of the 13b8e80941Smrg * Software. 14b8e80941Smrg * 15b8e80941Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16b8e80941Smrg * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17b8e80941Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18b8e80941Smrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19b8e80941Smrg * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20b8e80941Smrg * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21b8e80941Smrg * IN THE SOFTWARE. 22b8e80941Smrg */ 23b8e80941Smrg 24b8e80941Smrg/** 25b8e80941Smrg * This file implements VkQueue, VkFence, and VkSemaphore 26b8e80941Smrg */ 27b8e80941Smrg 28b8e80941Smrg#include <fcntl.h> 29b8e80941Smrg#include <unistd.h> 30b8e80941Smrg 31b8e80941Smrg#include "anv_private.h" 32b8e80941Smrg#include "vk_util.h" 33b8e80941Smrg 34b8e80941Smrg#include "genxml/gen7_pack.h" 35b8e80941Smrg 36b8e80941SmrgVkResult 37b8e80941Smrganv_device_execbuf(struct anv_device *device, 38b8e80941Smrg struct drm_i915_gem_execbuffer2 *execbuf, 39b8e80941Smrg struct anv_bo **execbuf_bos) 40b8e80941Smrg{ 41b8e80941Smrg int ret = device->no_hw ? 0 : anv_gem_execbuffer(device, execbuf); 42b8e80941Smrg if (ret != 0) { 43b8e80941Smrg /* We don't know the real error. */ 44b8e80941Smrg return anv_device_set_lost(device, "execbuf2 failed: %m"); 45b8e80941Smrg } 46b8e80941Smrg 47b8e80941Smrg struct drm_i915_gem_exec_object2 *objects = 48b8e80941Smrg (void *)(uintptr_t)execbuf->buffers_ptr; 49b8e80941Smrg for (uint32_t k = 0; k < execbuf->buffer_count; k++) { 50b8e80941Smrg if (execbuf_bos[k]->flags & EXEC_OBJECT_PINNED) 51b8e80941Smrg assert(execbuf_bos[k]->offset == objects[k].offset); 52b8e80941Smrg execbuf_bos[k]->offset = objects[k].offset; 53b8e80941Smrg } 54b8e80941Smrg 55b8e80941Smrg return VK_SUCCESS; 56b8e80941Smrg} 57b8e80941Smrg 58b8e80941SmrgVkResult 59b8e80941Smrganv_device_submit_simple_batch(struct anv_device *device, 60b8e80941Smrg struct anv_batch *batch) 61b8e80941Smrg{ 62b8e80941Smrg struct drm_i915_gem_execbuffer2 execbuf; 63b8e80941Smrg struct drm_i915_gem_exec_object2 exec2_objects[1]; 64b8e80941Smrg struct anv_bo bo, *exec_bos[1]; 65b8e80941Smrg VkResult result = VK_SUCCESS; 66b8e80941Smrg uint32_t size; 67b8e80941Smrg 68b8e80941Smrg /* Kernel driver requires 8 byte aligned batch length */ 69b8e80941Smrg size = align_u32(batch->next - batch->start, 8); 70b8e80941Smrg result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size); 71b8e80941Smrg if (result != VK_SUCCESS) 72b8e80941Smrg return result; 73b8e80941Smrg 74b8e80941Smrg memcpy(bo.map, batch->start, size); 75b8e80941Smrg if (!device->info.has_llc) 76b8e80941Smrg gen_flush_range(bo.map, size); 77b8e80941Smrg 78b8e80941Smrg exec_bos[0] = &bo; 79b8e80941Smrg exec2_objects[0].handle = bo.gem_handle; 80b8e80941Smrg exec2_objects[0].relocation_count = 0; 81b8e80941Smrg exec2_objects[0].relocs_ptr = 0; 82b8e80941Smrg exec2_objects[0].alignment = 0; 83b8e80941Smrg exec2_objects[0].offset = bo.offset; 84b8e80941Smrg exec2_objects[0].flags = bo.flags; 85b8e80941Smrg exec2_objects[0].rsvd1 = 0; 86b8e80941Smrg exec2_objects[0].rsvd2 = 0; 87b8e80941Smrg 88b8e80941Smrg execbuf.buffers_ptr = (uintptr_t) exec2_objects; 89b8e80941Smrg execbuf.buffer_count = 1; 90b8e80941Smrg execbuf.batch_start_offset = 0; 91b8e80941Smrg execbuf.batch_len = size; 92b8e80941Smrg execbuf.cliprects_ptr = 0; 93b8e80941Smrg execbuf.num_cliprects = 0; 94b8e80941Smrg execbuf.DR1 = 0; 95b8e80941Smrg execbuf.DR4 = 0; 96b8e80941Smrg 97b8e80941Smrg execbuf.flags = 98b8e80941Smrg I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER; 99b8e80941Smrg execbuf.rsvd1 = device->context_id; 100b8e80941Smrg execbuf.rsvd2 = 0; 101b8e80941Smrg 102b8e80941Smrg if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) 103b8e80941Smrg gen_print_batch(&device->decoder_ctx, bo.map, bo.size, bo.offset, false); 104b8e80941Smrg 105b8e80941Smrg result = anv_device_execbuf(device, &execbuf, exec_bos); 106b8e80941Smrg if (result != VK_SUCCESS) 107b8e80941Smrg goto fail; 108b8e80941Smrg 109b8e80941Smrg result = anv_device_wait(device, &bo, INT64_MAX); 110b8e80941Smrg 111b8e80941Smrg fail: 112b8e80941Smrg anv_bo_pool_free(&device->batch_bo_pool, &bo); 113b8e80941Smrg 114b8e80941Smrg return result; 115b8e80941Smrg} 116b8e80941Smrg 117b8e80941SmrgVkResult anv_QueueSubmit( 118b8e80941Smrg VkQueue _queue, 119b8e80941Smrg uint32_t submitCount, 120b8e80941Smrg const VkSubmitInfo* pSubmits, 121b8e80941Smrg VkFence fence) 122b8e80941Smrg{ 123b8e80941Smrg ANV_FROM_HANDLE(anv_queue, queue, _queue); 124b8e80941Smrg struct anv_device *device = queue->device; 125b8e80941Smrg 126b8e80941Smrg /* Query for device status prior to submitting. Technically, we don't need 127b8e80941Smrg * to do this. However, if we have a client that's submitting piles of 128b8e80941Smrg * garbage, we would rather break as early as possible to keep the GPU 129b8e80941Smrg * hanging contained. If we don't check here, we'll either be waiting for 130b8e80941Smrg * the kernel to kick us or we'll have to wait until the client waits on a 131b8e80941Smrg * fence before we actually know whether or not we've hung. 132b8e80941Smrg */ 133b8e80941Smrg VkResult result = anv_device_query_status(device); 134b8e80941Smrg if (result != VK_SUCCESS) 135b8e80941Smrg return result; 136b8e80941Smrg 137b8e80941Smrg /* We lock around QueueSubmit for three main reasons: 138b8e80941Smrg * 139b8e80941Smrg * 1) When a block pool is resized, we create a new gem handle with a 140b8e80941Smrg * different size and, in the case of surface states, possibly a 141b8e80941Smrg * different center offset but we re-use the same anv_bo struct when 142b8e80941Smrg * we do so. If this happens in the middle of setting up an execbuf, 143b8e80941Smrg * we could end up with our list of BOs out of sync with our list of 144b8e80941Smrg * gem handles. 145b8e80941Smrg * 146b8e80941Smrg * 2) The algorithm we use for building the list of unique buffers isn't 147b8e80941Smrg * thread-safe. While the client is supposed to syncronize around 148b8e80941Smrg * QueueSubmit, this would be extremely difficult to debug if it ever 149b8e80941Smrg * came up in the wild due to a broken app. It's better to play it 150b8e80941Smrg * safe and just lock around QueueSubmit. 151b8e80941Smrg * 152b8e80941Smrg * 3) The anv_cmd_buffer_execbuf function may perform relocations in 153b8e80941Smrg * userspace. Due to the fact that the surface state buffer is shared 154b8e80941Smrg * between batches, we can't afford to have that happen from multiple 155b8e80941Smrg * threads at the same time. Even though the user is supposed to 156b8e80941Smrg * ensure this doesn't happen, we play it safe as in (2) above. 157b8e80941Smrg * 158b8e80941Smrg * Since the only other things that ever take the device lock such as block 159b8e80941Smrg * pool resize only rarely happen, this will almost never be contended so 160b8e80941Smrg * taking a lock isn't really an expensive operation in this case. 161b8e80941Smrg */ 162b8e80941Smrg pthread_mutex_lock(&device->mutex); 163b8e80941Smrg 164b8e80941Smrg if (fence && submitCount == 0) { 165b8e80941Smrg /* If we don't have any command buffers, we need to submit a dummy 166b8e80941Smrg * batch to give GEM something to wait on. We could, potentially, 167b8e80941Smrg * come up with something more efficient but this shouldn't be a 168b8e80941Smrg * common case. 169b8e80941Smrg */ 170b8e80941Smrg result = anv_cmd_buffer_execbuf(device, NULL, NULL, 0, NULL, 0, fence); 171b8e80941Smrg goto out; 172b8e80941Smrg } 173b8e80941Smrg 174b8e80941Smrg for (uint32_t i = 0; i < submitCount; i++) { 175b8e80941Smrg /* Fence for this submit. NULL for all but the last one */ 176b8e80941Smrg VkFence submit_fence = (i == submitCount - 1) ? fence : VK_NULL_HANDLE; 177b8e80941Smrg 178b8e80941Smrg if (pSubmits[i].commandBufferCount == 0) { 179b8e80941Smrg /* If we don't have any command buffers, we need to submit a dummy 180b8e80941Smrg * batch to give GEM something to wait on. We could, potentially, 181b8e80941Smrg * come up with something more efficient but this shouldn't be a 182b8e80941Smrg * common case. 183b8e80941Smrg */ 184b8e80941Smrg result = anv_cmd_buffer_execbuf(device, NULL, 185b8e80941Smrg pSubmits[i].pWaitSemaphores, 186b8e80941Smrg pSubmits[i].waitSemaphoreCount, 187b8e80941Smrg pSubmits[i].pSignalSemaphores, 188b8e80941Smrg pSubmits[i].signalSemaphoreCount, 189b8e80941Smrg submit_fence); 190b8e80941Smrg if (result != VK_SUCCESS) 191b8e80941Smrg goto out; 192b8e80941Smrg 193b8e80941Smrg continue; 194b8e80941Smrg } 195b8e80941Smrg 196b8e80941Smrg for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) { 197b8e80941Smrg ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, 198b8e80941Smrg pSubmits[i].pCommandBuffers[j]); 199b8e80941Smrg assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); 200b8e80941Smrg assert(!anv_batch_has_error(&cmd_buffer->batch)); 201b8e80941Smrg 202b8e80941Smrg /* Fence for this execbuf. NULL for all but the last one */ 203b8e80941Smrg VkFence execbuf_fence = 204b8e80941Smrg (j == pSubmits[i].commandBufferCount - 1) ? 205b8e80941Smrg submit_fence : VK_NULL_HANDLE; 206b8e80941Smrg 207b8e80941Smrg const VkSemaphore *in_semaphores = NULL, *out_semaphores = NULL; 208b8e80941Smrg uint32_t num_in_semaphores = 0, num_out_semaphores = 0; 209b8e80941Smrg if (j == 0) { 210b8e80941Smrg /* Only the first batch gets the in semaphores */ 211b8e80941Smrg in_semaphores = pSubmits[i].pWaitSemaphores; 212b8e80941Smrg num_in_semaphores = pSubmits[i].waitSemaphoreCount; 213b8e80941Smrg } 214b8e80941Smrg 215b8e80941Smrg if (j == pSubmits[i].commandBufferCount - 1) { 216b8e80941Smrg /* Only the last batch gets the out semaphores */ 217b8e80941Smrg out_semaphores = pSubmits[i].pSignalSemaphores; 218b8e80941Smrg num_out_semaphores = pSubmits[i].signalSemaphoreCount; 219b8e80941Smrg } 220b8e80941Smrg 221b8e80941Smrg result = anv_cmd_buffer_execbuf(device, cmd_buffer, 222b8e80941Smrg in_semaphores, num_in_semaphores, 223b8e80941Smrg out_semaphores, num_out_semaphores, 224b8e80941Smrg execbuf_fence); 225b8e80941Smrg if (result != VK_SUCCESS) 226b8e80941Smrg goto out; 227b8e80941Smrg } 228b8e80941Smrg } 229b8e80941Smrg 230b8e80941Smrg pthread_cond_broadcast(&device->queue_submit); 231b8e80941Smrg 232b8e80941Smrgout: 233b8e80941Smrg if (result != VK_SUCCESS) { 234b8e80941Smrg /* In the case that something has gone wrong we may end up with an 235b8e80941Smrg * inconsistent state from which it may not be trivial to recover. 236b8e80941Smrg * For example, we might have computed address relocations and 237b8e80941Smrg * any future attempt to re-submit this job will need to know about 238b8e80941Smrg * this and avoid computing relocation addresses again. 239b8e80941Smrg * 240b8e80941Smrg * To avoid this sort of issues, we assume that if something was 241b8e80941Smrg * wrong during submission we must already be in a really bad situation 242b8e80941Smrg * anyway (such us being out of memory) and return 243b8e80941Smrg * VK_ERROR_DEVICE_LOST to ensure that clients do not attempt to 244b8e80941Smrg * submit the same job again to this device. 245b8e80941Smrg */ 246b8e80941Smrg result = anv_device_set_lost(device, "vkQueueSubmit() failed"); 247b8e80941Smrg } 248b8e80941Smrg 249b8e80941Smrg pthread_mutex_unlock(&device->mutex); 250b8e80941Smrg 251b8e80941Smrg return result; 252b8e80941Smrg} 253b8e80941Smrg 254b8e80941SmrgVkResult anv_QueueWaitIdle( 255b8e80941Smrg VkQueue _queue) 256b8e80941Smrg{ 257b8e80941Smrg ANV_FROM_HANDLE(anv_queue, queue, _queue); 258b8e80941Smrg 259b8e80941Smrg return anv_DeviceWaitIdle(anv_device_to_handle(queue->device)); 260b8e80941Smrg} 261b8e80941Smrg 262b8e80941SmrgVkResult anv_CreateFence( 263b8e80941Smrg VkDevice _device, 264b8e80941Smrg const VkFenceCreateInfo* pCreateInfo, 265b8e80941Smrg const VkAllocationCallbacks* pAllocator, 266b8e80941Smrg VkFence* pFence) 267b8e80941Smrg{ 268b8e80941Smrg ANV_FROM_HANDLE(anv_device, device, _device); 269b8e80941Smrg struct anv_fence *fence; 270b8e80941Smrg 271b8e80941Smrg assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO); 272b8e80941Smrg 273b8e80941Smrg fence = vk_zalloc2(&device->alloc, pAllocator, sizeof(*fence), 8, 274b8e80941Smrg VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); 275b8e80941Smrg if (fence == NULL) 276b8e80941Smrg return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 277b8e80941Smrg 278b8e80941Smrg if (device->instance->physicalDevice.has_syncobj_wait) { 279b8e80941Smrg fence->permanent.type = ANV_FENCE_TYPE_SYNCOBJ; 280b8e80941Smrg 281b8e80941Smrg uint32_t create_flags = 0; 282b8e80941Smrg if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) 283b8e80941Smrg create_flags |= DRM_SYNCOBJ_CREATE_SIGNALED; 284b8e80941Smrg 285b8e80941Smrg fence->permanent.syncobj = anv_gem_syncobj_create(device, create_flags); 286b8e80941Smrg if (!fence->permanent.syncobj) 287b8e80941Smrg return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 288b8e80941Smrg } else { 289b8e80941Smrg fence->permanent.type = ANV_FENCE_TYPE_BO; 290b8e80941Smrg 291b8e80941Smrg VkResult result = anv_bo_pool_alloc(&device->batch_bo_pool, 292b8e80941Smrg &fence->permanent.bo.bo, 4096); 293b8e80941Smrg if (result != VK_SUCCESS) 294b8e80941Smrg return result; 295b8e80941Smrg 296b8e80941Smrg if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) { 297b8e80941Smrg fence->permanent.bo.state = ANV_BO_FENCE_STATE_SIGNALED; 298b8e80941Smrg } else { 299b8e80941Smrg fence->permanent.bo.state = ANV_BO_FENCE_STATE_RESET; 300b8e80941Smrg } 301b8e80941Smrg } 302b8e80941Smrg 303b8e80941Smrg *pFence = anv_fence_to_handle(fence); 304b8e80941Smrg 305b8e80941Smrg return VK_SUCCESS; 306b8e80941Smrg} 307b8e80941Smrg 308b8e80941Smrgstatic void 309b8e80941Smrganv_fence_impl_cleanup(struct anv_device *device, 310b8e80941Smrg struct anv_fence_impl *impl) 311b8e80941Smrg{ 312b8e80941Smrg switch (impl->type) { 313b8e80941Smrg case ANV_FENCE_TYPE_NONE: 314b8e80941Smrg /* Dummy. Nothing to do */ 315b8e80941Smrg break; 316b8e80941Smrg 317b8e80941Smrg case ANV_FENCE_TYPE_BO: 318b8e80941Smrg anv_bo_pool_free(&device->batch_bo_pool, &impl->bo.bo); 319b8e80941Smrg break; 320b8e80941Smrg 321b8e80941Smrg case ANV_FENCE_TYPE_SYNCOBJ: 322b8e80941Smrg anv_gem_syncobj_destroy(device, impl->syncobj); 323b8e80941Smrg break; 324b8e80941Smrg 325b8e80941Smrg case ANV_FENCE_TYPE_WSI: 326b8e80941Smrg impl->fence_wsi->destroy(impl->fence_wsi); 327b8e80941Smrg break; 328b8e80941Smrg 329b8e80941Smrg default: 330b8e80941Smrg unreachable("Invalid fence type"); 331b8e80941Smrg } 332b8e80941Smrg 333b8e80941Smrg impl->type = ANV_FENCE_TYPE_NONE; 334b8e80941Smrg} 335b8e80941Smrg 336b8e80941Smrgvoid anv_DestroyFence( 337b8e80941Smrg VkDevice _device, 338b8e80941Smrg VkFence _fence, 339b8e80941Smrg const VkAllocationCallbacks* pAllocator) 340b8e80941Smrg{ 341b8e80941Smrg ANV_FROM_HANDLE(anv_device, device, _device); 342b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, _fence); 343b8e80941Smrg 344b8e80941Smrg if (!fence) 345b8e80941Smrg return; 346b8e80941Smrg 347b8e80941Smrg anv_fence_impl_cleanup(device, &fence->temporary); 348b8e80941Smrg anv_fence_impl_cleanup(device, &fence->permanent); 349b8e80941Smrg 350b8e80941Smrg vk_free2(&device->alloc, pAllocator, fence); 351b8e80941Smrg} 352b8e80941Smrg 353b8e80941SmrgVkResult anv_ResetFences( 354b8e80941Smrg VkDevice _device, 355b8e80941Smrg uint32_t fenceCount, 356b8e80941Smrg const VkFence* pFences) 357b8e80941Smrg{ 358b8e80941Smrg ANV_FROM_HANDLE(anv_device, device, _device); 359b8e80941Smrg 360b8e80941Smrg for (uint32_t i = 0; i < fenceCount; i++) { 361b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); 362b8e80941Smrg 363b8e80941Smrg /* From the Vulkan 1.0.53 spec: 364b8e80941Smrg * 365b8e80941Smrg * "If any member of pFences currently has its payload imported with 366b8e80941Smrg * temporary permanence, that fence’s prior permanent payload is 367b8e80941Smrg * first restored. The remaining operations described therefore 368b8e80941Smrg * operate on the restored payload. 369b8e80941Smrg */ 370b8e80941Smrg if (fence->temporary.type != ANV_FENCE_TYPE_NONE) 371b8e80941Smrg anv_fence_impl_cleanup(device, &fence->temporary); 372b8e80941Smrg 373b8e80941Smrg struct anv_fence_impl *impl = &fence->permanent; 374b8e80941Smrg 375b8e80941Smrg switch (impl->type) { 376b8e80941Smrg case ANV_FENCE_TYPE_BO: 377b8e80941Smrg impl->bo.state = ANV_BO_FENCE_STATE_RESET; 378b8e80941Smrg break; 379b8e80941Smrg 380b8e80941Smrg case ANV_FENCE_TYPE_SYNCOBJ: 381b8e80941Smrg anv_gem_syncobj_reset(device, impl->syncobj); 382b8e80941Smrg break; 383b8e80941Smrg 384b8e80941Smrg default: 385b8e80941Smrg unreachable("Invalid fence type"); 386b8e80941Smrg } 387b8e80941Smrg } 388b8e80941Smrg 389b8e80941Smrg return VK_SUCCESS; 390b8e80941Smrg} 391b8e80941Smrg 392b8e80941SmrgVkResult anv_GetFenceStatus( 393b8e80941Smrg VkDevice _device, 394b8e80941Smrg VkFence _fence) 395b8e80941Smrg{ 396b8e80941Smrg ANV_FROM_HANDLE(anv_device, device, _device); 397b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, _fence); 398b8e80941Smrg 399b8e80941Smrg if (anv_device_is_lost(device)) 400b8e80941Smrg return VK_ERROR_DEVICE_LOST; 401b8e80941Smrg 402b8e80941Smrg struct anv_fence_impl *impl = 403b8e80941Smrg fence->temporary.type != ANV_FENCE_TYPE_NONE ? 404b8e80941Smrg &fence->temporary : &fence->permanent; 405b8e80941Smrg 406b8e80941Smrg switch (impl->type) { 407b8e80941Smrg case ANV_FENCE_TYPE_BO: 408b8e80941Smrg /* BO fences don't support import/export */ 409b8e80941Smrg assert(fence->temporary.type == ANV_FENCE_TYPE_NONE); 410b8e80941Smrg switch (impl->bo.state) { 411b8e80941Smrg case ANV_BO_FENCE_STATE_RESET: 412b8e80941Smrg /* If it hasn't even been sent off to the GPU yet, it's not ready */ 413b8e80941Smrg return VK_NOT_READY; 414b8e80941Smrg 415b8e80941Smrg case ANV_BO_FENCE_STATE_SIGNALED: 416b8e80941Smrg /* It's been signaled, return success */ 417b8e80941Smrg return VK_SUCCESS; 418b8e80941Smrg 419b8e80941Smrg case ANV_BO_FENCE_STATE_SUBMITTED: { 420b8e80941Smrg VkResult result = anv_device_bo_busy(device, &impl->bo.bo); 421b8e80941Smrg if (result == VK_SUCCESS) { 422b8e80941Smrg impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED; 423b8e80941Smrg return VK_SUCCESS; 424b8e80941Smrg } else { 425b8e80941Smrg return result; 426b8e80941Smrg } 427b8e80941Smrg } 428b8e80941Smrg default: 429b8e80941Smrg unreachable("Invalid fence status"); 430b8e80941Smrg } 431b8e80941Smrg 432b8e80941Smrg case ANV_FENCE_TYPE_SYNCOBJ: { 433b8e80941Smrg int ret = anv_gem_syncobj_wait(device, &impl->syncobj, 1, 0, true); 434b8e80941Smrg if (ret == -1) { 435b8e80941Smrg if (errno == ETIME) { 436b8e80941Smrg return VK_NOT_READY; 437b8e80941Smrg } else { 438b8e80941Smrg /* We don't know the real error. */ 439b8e80941Smrg return anv_device_set_lost(device, "drm_syncobj_wait failed: %m"); 440b8e80941Smrg } 441b8e80941Smrg } else { 442b8e80941Smrg return VK_SUCCESS; 443b8e80941Smrg } 444b8e80941Smrg } 445b8e80941Smrg 446b8e80941Smrg default: 447b8e80941Smrg unreachable("Invalid fence type"); 448b8e80941Smrg } 449b8e80941Smrg} 450b8e80941Smrg 451b8e80941Smrg#define NSEC_PER_SEC 1000000000 452b8e80941Smrg#define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1) 453b8e80941Smrg 454b8e80941Smrgstatic uint64_t 455b8e80941Smrggettime_ns(void) 456b8e80941Smrg{ 457b8e80941Smrg struct timespec current; 458b8e80941Smrg clock_gettime(CLOCK_MONOTONIC, ¤t); 459b8e80941Smrg return (uint64_t)current.tv_sec * NSEC_PER_SEC + current.tv_nsec; 460b8e80941Smrg} 461b8e80941Smrg 462b8e80941Smrgstatic uint64_t anv_get_absolute_timeout(uint64_t timeout) 463b8e80941Smrg{ 464b8e80941Smrg if (timeout == 0) 465b8e80941Smrg return 0; 466b8e80941Smrg uint64_t current_time = gettime_ns(); 467b8e80941Smrg uint64_t max_timeout = (uint64_t) INT64_MAX - current_time; 468b8e80941Smrg 469b8e80941Smrg timeout = MIN2(max_timeout, timeout); 470b8e80941Smrg 471b8e80941Smrg return (current_time + timeout); 472b8e80941Smrg} 473b8e80941Smrg 474b8e80941Smrgstatic int64_t anv_get_relative_timeout(uint64_t abs_timeout) 475b8e80941Smrg{ 476b8e80941Smrg uint64_t now = gettime_ns(); 477b8e80941Smrg 478b8e80941Smrg /* We don't want negative timeouts. 479b8e80941Smrg * 480b8e80941Smrg * DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is 481b8e80941Smrg * supposed to block indefinitely timeouts < 0. Unfortunately, 482b8e80941Smrg * this was broken for a couple of kernel releases. Since there's 483b8e80941Smrg * no way to know whether or not the kernel we're using is one of 484b8e80941Smrg * the broken ones, the best we can do is to clamp the timeout to 485b8e80941Smrg * INT64_MAX. This limits the maximum timeout from 584 years to 486b8e80941Smrg * 292 years - likely not a big deal. 487b8e80941Smrg */ 488b8e80941Smrg if (abs_timeout < now) 489b8e80941Smrg return 0; 490b8e80941Smrg 491b8e80941Smrg uint64_t rel_timeout = abs_timeout - now; 492b8e80941Smrg if (rel_timeout > (uint64_t) INT64_MAX) 493b8e80941Smrg rel_timeout = INT64_MAX; 494b8e80941Smrg 495b8e80941Smrg return rel_timeout; 496b8e80941Smrg} 497b8e80941Smrg 498b8e80941Smrgstatic VkResult 499b8e80941Smrganv_wait_for_syncobj_fences(struct anv_device *device, 500b8e80941Smrg uint32_t fenceCount, 501b8e80941Smrg const VkFence *pFences, 502b8e80941Smrg bool waitAll, 503b8e80941Smrg uint64_t abs_timeout_ns) 504b8e80941Smrg{ 505b8e80941Smrg uint32_t *syncobjs = vk_zalloc(&device->alloc, 506b8e80941Smrg sizeof(*syncobjs) * fenceCount, 8, 507b8e80941Smrg VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); 508b8e80941Smrg if (!syncobjs) 509b8e80941Smrg return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 510b8e80941Smrg 511b8e80941Smrg for (uint32_t i = 0; i < fenceCount; i++) { 512b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); 513b8e80941Smrg assert(fence->permanent.type == ANV_FENCE_TYPE_SYNCOBJ); 514b8e80941Smrg 515b8e80941Smrg struct anv_fence_impl *impl = 516b8e80941Smrg fence->temporary.type != ANV_FENCE_TYPE_NONE ? 517b8e80941Smrg &fence->temporary : &fence->permanent; 518b8e80941Smrg 519b8e80941Smrg assert(impl->type == ANV_FENCE_TYPE_SYNCOBJ); 520b8e80941Smrg syncobjs[i] = impl->syncobj; 521b8e80941Smrg } 522b8e80941Smrg 523b8e80941Smrg /* The gem_syncobj_wait ioctl may return early due to an inherent 524b8e80941Smrg * limitation in the way it computes timeouts. Loop until we've actually 525b8e80941Smrg * passed the timeout. 526b8e80941Smrg */ 527b8e80941Smrg int ret; 528b8e80941Smrg do { 529b8e80941Smrg ret = anv_gem_syncobj_wait(device, syncobjs, fenceCount, 530b8e80941Smrg abs_timeout_ns, waitAll); 531b8e80941Smrg } while (ret == -1 && errno == ETIME && gettime_ns() < abs_timeout_ns); 532b8e80941Smrg 533b8e80941Smrg vk_free(&device->alloc, syncobjs); 534b8e80941Smrg 535b8e80941Smrg if (ret == -1) { 536b8e80941Smrg if (errno == ETIME) { 537b8e80941Smrg return VK_TIMEOUT; 538b8e80941Smrg } else { 539b8e80941Smrg /* We don't know the real error. */ 540b8e80941Smrg return anv_device_set_lost(device, "drm_syncobj_wait failed: %m"); 541b8e80941Smrg } 542b8e80941Smrg } else { 543b8e80941Smrg return VK_SUCCESS; 544b8e80941Smrg } 545b8e80941Smrg} 546b8e80941Smrg 547b8e80941Smrgstatic VkResult 548b8e80941Smrganv_wait_for_bo_fences(struct anv_device *device, 549b8e80941Smrg uint32_t fenceCount, 550b8e80941Smrg const VkFence *pFences, 551b8e80941Smrg bool waitAll, 552b8e80941Smrg uint64_t abs_timeout_ns) 553b8e80941Smrg{ 554b8e80941Smrg VkResult result = VK_SUCCESS; 555b8e80941Smrg uint32_t pending_fences = fenceCount; 556b8e80941Smrg while (pending_fences) { 557b8e80941Smrg pending_fences = 0; 558b8e80941Smrg bool signaled_fences = false; 559b8e80941Smrg for (uint32_t i = 0; i < fenceCount; i++) { 560b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); 561b8e80941Smrg 562b8e80941Smrg /* This function assumes that all fences are BO fences and that they 563b8e80941Smrg * have no temporary state. Since BO fences will never be exported, 564b8e80941Smrg * this should be a safe assumption. 565b8e80941Smrg */ 566b8e80941Smrg assert(fence->permanent.type == ANV_FENCE_TYPE_BO); 567b8e80941Smrg assert(fence->temporary.type == ANV_FENCE_TYPE_NONE); 568b8e80941Smrg struct anv_fence_impl *impl = &fence->permanent; 569b8e80941Smrg 570b8e80941Smrg switch (impl->bo.state) { 571b8e80941Smrg case ANV_BO_FENCE_STATE_RESET: 572b8e80941Smrg /* This fence hasn't been submitted yet, we'll catch it the next 573b8e80941Smrg * time around. Yes, this may mean we dead-loop but, short of 574b8e80941Smrg * lots of locking and a condition variable, there's not much that 575b8e80941Smrg * we can do about that. 576b8e80941Smrg */ 577b8e80941Smrg pending_fences++; 578b8e80941Smrg continue; 579b8e80941Smrg 580b8e80941Smrg case ANV_BO_FENCE_STATE_SIGNALED: 581b8e80941Smrg /* This fence is not pending. If waitAll isn't set, we can return 582b8e80941Smrg * early. Otherwise, we have to keep going. 583b8e80941Smrg */ 584b8e80941Smrg if (!waitAll) { 585b8e80941Smrg result = VK_SUCCESS; 586b8e80941Smrg goto done; 587b8e80941Smrg } 588b8e80941Smrg continue; 589b8e80941Smrg 590b8e80941Smrg case ANV_BO_FENCE_STATE_SUBMITTED: 591b8e80941Smrg /* These are the fences we really care about. Go ahead and wait 592b8e80941Smrg * on it until we hit a timeout. 593b8e80941Smrg */ 594b8e80941Smrg result = anv_device_wait(device, &impl->bo.bo, 595b8e80941Smrg anv_get_relative_timeout(abs_timeout_ns)); 596b8e80941Smrg switch (result) { 597b8e80941Smrg case VK_SUCCESS: 598b8e80941Smrg impl->bo.state = ANV_BO_FENCE_STATE_SIGNALED; 599b8e80941Smrg signaled_fences = true; 600b8e80941Smrg if (!waitAll) 601b8e80941Smrg goto done; 602b8e80941Smrg break; 603b8e80941Smrg 604b8e80941Smrg case VK_TIMEOUT: 605b8e80941Smrg goto done; 606b8e80941Smrg 607b8e80941Smrg default: 608b8e80941Smrg return result; 609b8e80941Smrg } 610b8e80941Smrg } 611b8e80941Smrg } 612b8e80941Smrg 613b8e80941Smrg if (pending_fences && !signaled_fences) { 614b8e80941Smrg /* If we've hit this then someone decided to vkWaitForFences before 615b8e80941Smrg * they've actually submitted any of them to a queue. This is a 616b8e80941Smrg * fairly pessimal case, so it's ok to lock here and use a standard 617b8e80941Smrg * pthreads condition variable. 618b8e80941Smrg */ 619b8e80941Smrg pthread_mutex_lock(&device->mutex); 620b8e80941Smrg 621b8e80941Smrg /* It's possible that some of the fences have changed state since the 622b8e80941Smrg * last time we checked. Now that we have the lock, check for 623b8e80941Smrg * pending fences again and don't wait if it's changed. 624b8e80941Smrg */ 625b8e80941Smrg uint32_t now_pending_fences = 0; 626b8e80941Smrg for (uint32_t i = 0; i < fenceCount; i++) { 627b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); 628b8e80941Smrg if (fence->permanent.bo.state == ANV_BO_FENCE_STATE_RESET) 629b8e80941Smrg now_pending_fences++; 630b8e80941Smrg } 631b8e80941Smrg assert(now_pending_fences <= pending_fences); 632b8e80941Smrg 633b8e80941Smrg if (now_pending_fences == pending_fences) { 634b8e80941Smrg struct timespec abstime = { 635b8e80941Smrg .tv_sec = abs_timeout_ns / NSEC_PER_SEC, 636b8e80941Smrg .tv_nsec = abs_timeout_ns % NSEC_PER_SEC, 637b8e80941Smrg }; 638b8e80941Smrg 639b8e80941Smrg MAYBE_UNUSED int ret; 640b8e80941Smrg ret = pthread_cond_timedwait(&device->queue_submit, 641b8e80941Smrg &device->mutex, &abstime); 642b8e80941Smrg assert(ret != EINVAL); 643b8e80941Smrg if (gettime_ns() >= abs_timeout_ns) { 644b8e80941Smrg pthread_mutex_unlock(&device->mutex); 645b8e80941Smrg result = VK_TIMEOUT; 646b8e80941Smrg goto done; 647b8e80941Smrg } 648b8e80941Smrg } 649b8e80941Smrg 650b8e80941Smrg pthread_mutex_unlock(&device->mutex); 651b8e80941Smrg } 652b8e80941Smrg } 653b8e80941Smrg 654b8e80941Smrgdone: 655b8e80941Smrg if (anv_device_is_lost(device)) 656b8e80941Smrg return VK_ERROR_DEVICE_LOST; 657b8e80941Smrg 658b8e80941Smrg return result; 659b8e80941Smrg} 660b8e80941Smrg 661b8e80941Smrgstatic VkResult 662b8e80941Smrganv_wait_for_wsi_fence(struct anv_device *device, 663b8e80941Smrg const VkFence _fence, 664b8e80941Smrg uint64_t abs_timeout) 665b8e80941Smrg{ 666b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, _fence); 667b8e80941Smrg struct anv_fence_impl *impl = &fence->permanent; 668b8e80941Smrg 669b8e80941Smrg return impl->fence_wsi->wait(impl->fence_wsi, abs_timeout); 670b8e80941Smrg} 671b8e80941Smrg 672b8e80941Smrgstatic VkResult 673b8e80941Smrganv_wait_for_fences(struct anv_device *device, 674b8e80941Smrg uint32_t fenceCount, 675b8e80941Smrg const VkFence *pFences, 676b8e80941Smrg bool waitAll, 677b8e80941Smrg uint64_t abs_timeout) 678b8e80941Smrg{ 679b8e80941Smrg VkResult result = VK_SUCCESS; 680b8e80941Smrg 681b8e80941Smrg if (fenceCount <= 1 || waitAll) { 682b8e80941Smrg for (uint32_t i = 0; i < fenceCount; i++) { 683b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); 684b8e80941Smrg switch (fence->permanent.type) { 685b8e80941Smrg case ANV_FENCE_TYPE_BO: 686b8e80941Smrg result = anv_wait_for_bo_fences(device, 1, &pFences[i], 687b8e80941Smrg true, abs_timeout); 688b8e80941Smrg break; 689b8e80941Smrg case ANV_FENCE_TYPE_SYNCOBJ: 690b8e80941Smrg result = anv_wait_for_syncobj_fences(device, 1, &pFences[i], 691b8e80941Smrg true, abs_timeout); 692b8e80941Smrg break; 693b8e80941Smrg case ANV_FENCE_TYPE_WSI: 694b8e80941Smrg result = anv_wait_for_wsi_fence(device, pFences[i], abs_timeout); 695b8e80941Smrg break; 696b8e80941Smrg case ANV_FENCE_TYPE_NONE: 697b8e80941Smrg result = VK_SUCCESS; 698b8e80941Smrg break; 699b8e80941Smrg } 700b8e80941Smrg if (result != VK_SUCCESS) 701b8e80941Smrg return result; 702b8e80941Smrg } 703b8e80941Smrg } else { 704b8e80941Smrg do { 705b8e80941Smrg for (uint32_t i = 0; i < fenceCount; i++) { 706b8e80941Smrg if (anv_wait_for_fences(device, 1, &pFences[i], true, 0) == VK_SUCCESS) 707b8e80941Smrg return VK_SUCCESS; 708b8e80941Smrg } 709b8e80941Smrg } while (gettime_ns() < abs_timeout); 710b8e80941Smrg result = VK_TIMEOUT; 711b8e80941Smrg } 712b8e80941Smrg return result; 713b8e80941Smrg} 714b8e80941Smrg 715b8e80941Smrgstatic bool anv_all_fences_syncobj(uint32_t fenceCount, const VkFence *pFences) 716b8e80941Smrg{ 717b8e80941Smrg for (uint32_t i = 0; i < fenceCount; ++i) { 718b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); 719b8e80941Smrg if (fence->permanent.type != ANV_FENCE_TYPE_SYNCOBJ) 720b8e80941Smrg return false; 721b8e80941Smrg } 722b8e80941Smrg return true; 723b8e80941Smrg} 724b8e80941Smrg 725b8e80941Smrgstatic bool anv_all_fences_bo(uint32_t fenceCount, const VkFence *pFences) 726b8e80941Smrg{ 727b8e80941Smrg for (uint32_t i = 0; i < fenceCount; ++i) { 728b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, pFences[i]); 729b8e80941Smrg if (fence->permanent.type != ANV_FENCE_TYPE_BO) 730b8e80941Smrg return false; 731b8e80941Smrg } 732b8e80941Smrg return true; 733b8e80941Smrg} 734b8e80941Smrg 735b8e80941SmrgVkResult anv_WaitForFences( 736b8e80941Smrg VkDevice _device, 737b8e80941Smrg uint32_t fenceCount, 738b8e80941Smrg const VkFence* pFences, 739b8e80941Smrg VkBool32 waitAll, 740b8e80941Smrg uint64_t timeout) 741b8e80941Smrg{ 742b8e80941Smrg ANV_FROM_HANDLE(anv_device, device, _device); 743b8e80941Smrg 744b8e80941Smrg if (anv_device_is_lost(device)) 745b8e80941Smrg return VK_ERROR_DEVICE_LOST; 746b8e80941Smrg 747b8e80941Smrg uint64_t abs_timeout = anv_get_absolute_timeout(timeout); 748b8e80941Smrg if (anv_all_fences_syncobj(fenceCount, pFences)) { 749b8e80941Smrg return anv_wait_for_syncobj_fences(device, fenceCount, pFences, 750b8e80941Smrg waitAll, abs_timeout); 751b8e80941Smrg } else if (anv_all_fences_bo(fenceCount, pFences)) { 752b8e80941Smrg return anv_wait_for_bo_fences(device, fenceCount, pFences, 753b8e80941Smrg waitAll, abs_timeout); 754b8e80941Smrg } else { 755b8e80941Smrg return anv_wait_for_fences(device, fenceCount, pFences, 756b8e80941Smrg waitAll, abs_timeout); 757b8e80941Smrg } 758b8e80941Smrg} 759b8e80941Smrg 760b8e80941Smrgvoid anv_GetPhysicalDeviceExternalFenceProperties( 761b8e80941Smrg VkPhysicalDevice physicalDevice, 762b8e80941Smrg const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo, 763b8e80941Smrg VkExternalFenceProperties* pExternalFenceProperties) 764b8e80941Smrg{ 765b8e80941Smrg ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice); 766b8e80941Smrg 767b8e80941Smrg switch (pExternalFenceInfo->handleType) { 768b8e80941Smrg case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT: 769b8e80941Smrg case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT: 770b8e80941Smrg if (device->has_syncobj_wait) { 771b8e80941Smrg pExternalFenceProperties->exportFromImportedHandleTypes = 772b8e80941Smrg VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | 773b8e80941Smrg VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT; 774b8e80941Smrg pExternalFenceProperties->compatibleHandleTypes = 775b8e80941Smrg VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | 776b8e80941Smrg VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT; 777b8e80941Smrg pExternalFenceProperties->externalFenceFeatures = 778b8e80941Smrg VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT | 779b8e80941Smrg VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT; 780b8e80941Smrg return; 781b8e80941Smrg } 782b8e80941Smrg break; 783b8e80941Smrg 784b8e80941Smrg default: 785b8e80941Smrg break; 786b8e80941Smrg } 787b8e80941Smrg 788b8e80941Smrg pExternalFenceProperties->exportFromImportedHandleTypes = 0; 789b8e80941Smrg pExternalFenceProperties->compatibleHandleTypes = 0; 790b8e80941Smrg pExternalFenceProperties->externalFenceFeatures = 0; 791b8e80941Smrg} 792b8e80941Smrg 793b8e80941SmrgVkResult anv_ImportFenceFdKHR( 794b8e80941Smrg VkDevice _device, 795b8e80941Smrg const VkImportFenceFdInfoKHR* pImportFenceFdInfo) 796b8e80941Smrg{ 797b8e80941Smrg ANV_FROM_HANDLE(anv_device, device, _device); 798b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, pImportFenceFdInfo->fence); 799b8e80941Smrg int fd = pImportFenceFdInfo->fd; 800b8e80941Smrg 801b8e80941Smrg assert(pImportFenceFdInfo->sType == 802b8e80941Smrg VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR); 803b8e80941Smrg 804b8e80941Smrg struct anv_fence_impl new_impl = { 805b8e80941Smrg .type = ANV_FENCE_TYPE_NONE, 806b8e80941Smrg }; 807b8e80941Smrg 808b8e80941Smrg switch (pImportFenceFdInfo->handleType) { 809b8e80941Smrg case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT: 810b8e80941Smrg new_impl.type = ANV_FENCE_TYPE_SYNCOBJ; 811b8e80941Smrg 812b8e80941Smrg new_impl.syncobj = anv_gem_syncobj_fd_to_handle(device, fd); 813b8e80941Smrg if (!new_impl.syncobj) 814b8e80941Smrg return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); 815b8e80941Smrg 816b8e80941Smrg break; 817b8e80941Smrg 818b8e80941Smrg case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT: 819b8e80941Smrg /* Sync files are a bit tricky. Because we want to continue using the 820b8e80941Smrg * syncobj implementation of WaitForFences, we don't use the sync file 821b8e80941Smrg * directly but instead import it into a syncobj. 822b8e80941Smrg */ 823b8e80941Smrg new_impl.type = ANV_FENCE_TYPE_SYNCOBJ; 824b8e80941Smrg 825b8e80941Smrg new_impl.syncobj = anv_gem_syncobj_create(device, 0); 826b8e80941Smrg if (!new_impl.syncobj) 827b8e80941Smrg return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 828b8e80941Smrg 829b8e80941Smrg if (anv_gem_syncobj_import_sync_file(device, new_impl.syncobj, fd)) { 830b8e80941Smrg anv_gem_syncobj_destroy(device, new_impl.syncobj); 831b8e80941Smrg return vk_errorf(device->instance, NULL, 832b8e80941Smrg VK_ERROR_INVALID_EXTERNAL_HANDLE, 833b8e80941Smrg "syncobj sync file import failed: %m"); 834b8e80941Smrg } 835b8e80941Smrg break; 836b8e80941Smrg 837b8e80941Smrg default: 838b8e80941Smrg return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); 839b8e80941Smrg } 840b8e80941Smrg 841b8e80941Smrg /* From the Vulkan 1.0.53 spec: 842b8e80941Smrg * 843b8e80941Smrg * "Importing a fence payload from a file descriptor transfers 844b8e80941Smrg * ownership of the file descriptor from the application to the 845b8e80941Smrg * Vulkan implementation. The application must not perform any 846b8e80941Smrg * operations on the file descriptor after a successful import." 847b8e80941Smrg * 848b8e80941Smrg * If the import fails, we leave the file descriptor open. 849b8e80941Smrg */ 850b8e80941Smrg close(fd); 851b8e80941Smrg 852b8e80941Smrg if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT) { 853b8e80941Smrg anv_fence_impl_cleanup(device, &fence->temporary); 854b8e80941Smrg fence->temporary = new_impl; 855b8e80941Smrg } else { 856b8e80941Smrg anv_fence_impl_cleanup(device, &fence->permanent); 857b8e80941Smrg fence->permanent = new_impl; 858b8e80941Smrg } 859b8e80941Smrg 860b8e80941Smrg return VK_SUCCESS; 861b8e80941Smrg} 862b8e80941Smrg 863b8e80941SmrgVkResult anv_GetFenceFdKHR( 864b8e80941Smrg VkDevice _device, 865b8e80941Smrg const VkFenceGetFdInfoKHR* pGetFdInfo, 866b8e80941Smrg int* pFd) 867b8e80941Smrg{ 868b8e80941Smrg ANV_FROM_HANDLE(anv_device, device, _device); 869b8e80941Smrg ANV_FROM_HANDLE(anv_fence, fence, pGetFdInfo->fence); 870b8e80941Smrg 871b8e80941Smrg assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR); 872b8e80941Smrg 873b8e80941Smrg struct anv_fence_impl *impl = 874b8e80941Smrg fence->temporary.type != ANV_FENCE_TYPE_NONE ? 875b8e80941Smrg &fence->temporary : &fence->permanent; 876b8e80941Smrg 877b8e80941Smrg assert(impl->type == ANV_FENCE_TYPE_SYNCOBJ); 878b8e80941Smrg switch (pGetFdInfo->handleType) { 879b8e80941Smrg case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT: { 880b8e80941Smrg int fd = anv_gem_syncobj_handle_to_fd(device, impl->syncobj); 881b8e80941Smrg if (fd < 0) 882b8e80941Smrg return vk_error(VK_ERROR_TOO_MANY_OBJECTS); 883b8e80941Smrg 884b8e80941Smrg *pFd = fd; 885b8e80941Smrg break; 886b8e80941Smrg } 887b8e80941Smrg 888b8e80941Smrg case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT: { 889b8e80941Smrg int fd = anv_gem_syncobj_export_sync_file(device, impl->syncobj); 890b8e80941Smrg if (fd < 0) 891b8e80941Smrg return vk_error(VK_ERROR_TOO_MANY_OBJECTS); 892b8e80941Smrg 893b8e80941Smrg *pFd = fd; 894b8e80941Smrg break; 895b8e80941Smrg } 896b8e80941Smrg 897b8e80941Smrg default: 898b8e80941Smrg unreachable("Invalid fence export handle type"); 899b8e80941Smrg } 900b8e80941Smrg 901b8e80941Smrg /* From the Vulkan 1.0.53 spec: 902b8e80941Smrg * 903b8e80941Smrg * "Export operations have the same transference as the specified handle 904b8e80941Smrg * type’s import operations. [...] If the fence was using a 905b8e80941Smrg * temporarily imported payload, the fence’s prior permanent payload 906b8e80941Smrg * will be restored. 907b8e80941Smrg */ 908b8e80941Smrg if (impl == &fence->temporary) 909b8e80941Smrg anv_fence_impl_cleanup(device, impl); 910b8e80941Smrg 911b8e80941Smrg return VK_SUCCESS; 912b8e80941Smrg} 913b8e80941Smrg 914b8e80941Smrg// Queue semaphore functions 915b8e80941Smrg 916b8e80941SmrgVkResult anv_CreateSemaphore( 917b8e80941Smrg VkDevice _device, 918b8e80941Smrg const VkSemaphoreCreateInfo* pCreateInfo, 919b8e80941Smrg const VkAllocationCallbacks* pAllocator, 920b8e80941Smrg VkSemaphore* pSemaphore) 921b8e80941Smrg{ 922b8e80941Smrg ANV_FROM_HANDLE(anv_device, device, _device); 923b8e80941Smrg struct anv_semaphore *semaphore; 924b8e80941Smrg 925b8e80941Smrg assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO); 926b8e80941Smrg 927b8e80941Smrg semaphore = vk_alloc2(&device->alloc, pAllocator, sizeof(*semaphore), 8, 928b8e80941Smrg VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); 929b8e80941Smrg if (semaphore == NULL) 930b8e80941Smrg return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 931b8e80941Smrg 932b8e80941Smrg const VkExportSemaphoreCreateInfo *export = 933b8e80941Smrg vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO); 934b8e80941Smrg VkExternalSemaphoreHandleTypeFlags handleTypes = 935b8e80941Smrg export ? export->handleTypes : 0; 936b8e80941Smrg 937b8e80941Smrg if (handleTypes == 0) { 938b8e80941Smrg /* The DRM execbuffer ioctl always execute in-oder so long as you stay 939b8e80941Smrg * on the same ring. Since we don't expose the blit engine as a DMA 940b8e80941Smrg * queue, a dummy no-op semaphore is a perfectly valid implementation. 941b8e80941Smrg */ 942b8e80941Smrg semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DUMMY; 943b8e80941Smrg } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) { 944b8e80941Smrg assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT); 945b8e80941Smrg if (device->instance->physicalDevice.has_syncobj) { 946b8e80941Smrg semaphore->permanent.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ; 947b8e80941Smrg semaphore->permanent.syncobj = anv_gem_syncobj_create(device, 0); 948b8e80941Smrg if (!semaphore->permanent.syncobj) { 949b8e80941Smrg vk_free2(&device->alloc, pAllocator, semaphore); 950b8e80941Smrg return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); 951b8e80941Smrg } 952b8e80941Smrg } else { 953b8e80941Smrg semaphore->permanent.type = ANV_SEMAPHORE_TYPE_BO; 954b8e80941Smrg VkResult result = anv_bo_cache_alloc(device, &device->bo_cache, 955b8e80941Smrg 4096, ANV_BO_EXTERNAL, 956b8e80941Smrg &semaphore->permanent.bo); 957b8e80941Smrg if (result != VK_SUCCESS) { 958b8e80941Smrg vk_free2(&device->alloc, pAllocator, semaphore); 959b8e80941Smrg return result; 960b8e80941Smrg } 961b8e80941Smrg 962b8e80941Smrg /* If we're going to use this as a fence, we need to *not* have the 963b8e80941Smrg * EXEC_OBJECT_ASYNC bit set. 964b8e80941Smrg */ 965b8e80941Smrg assert(!(semaphore->permanent.bo->flags & EXEC_OBJECT_ASYNC)); 966b8e80941Smrg } 967b8e80941Smrg } else if (handleTypes & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT) { 968b8e80941Smrg assert(handleTypes == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT); 969b8e80941Smrg 970b8e80941Smrg semaphore->permanent.type = ANV_SEMAPHORE_TYPE_SYNC_FILE; 971b8e80941Smrg semaphore->permanent.fd = -1; 972b8e80941Smrg } else { 973b8e80941Smrg assert(!"Unknown handle type"); 974b8e80941Smrg vk_free2(&device->alloc, pAllocator, semaphore); 975b8e80941Smrg return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); 976b8e80941Smrg } 977b8e80941Smrg 978b8e80941Smrg semaphore->temporary.type = ANV_SEMAPHORE_TYPE_NONE; 979b8e80941Smrg 980b8e80941Smrg *pSemaphore = anv_semaphore_to_handle(semaphore); 981b8e80941Smrg 982b8e80941Smrg return VK_SUCCESS; 983b8e80941Smrg} 984b8e80941Smrg 985b8e80941Smrgstatic void 986b8e80941Smrganv_semaphore_impl_cleanup(struct anv_device *device, 987b8e80941Smrg struct anv_semaphore_impl *impl) 988b8e80941Smrg{ 989b8e80941Smrg switch (impl->type) { 990b8e80941Smrg case ANV_SEMAPHORE_TYPE_NONE: 991b8e80941Smrg case ANV_SEMAPHORE_TYPE_DUMMY: 992b8e80941Smrg /* Dummy. Nothing to do */ 993b8e80941Smrg break; 994b8e80941Smrg 995b8e80941Smrg case ANV_SEMAPHORE_TYPE_BO: 996b8e80941Smrg anv_bo_cache_release(device, &device->bo_cache, impl->bo); 997b8e80941Smrg break; 998b8e80941Smrg 999b8e80941Smrg case ANV_SEMAPHORE_TYPE_SYNC_FILE: 1000b8e80941Smrg close(impl->fd); 1001b8e80941Smrg break; 1002b8e80941Smrg 1003b8e80941Smrg case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ: 1004b8e80941Smrg anv_gem_syncobj_destroy(device, impl->syncobj); 1005b8e80941Smrg break; 1006b8e80941Smrg 1007b8e80941Smrg default: 1008b8e80941Smrg unreachable("Invalid semaphore type"); 1009b8e80941Smrg } 1010b8e80941Smrg 1011b8e80941Smrg impl->type = ANV_SEMAPHORE_TYPE_NONE; 1012b8e80941Smrg} 1013b8e80941Smrg 1014b8e80941Smrgvoid 1015b8e80941Smrganv_semaphore_reset_temporary(struct anv_device *device, 1016b8e80941Smrg struct anv_semaphore *semaphore) 1017b8e80941Smrg{ 1018b8e80941Smrg if (semaphore->temporary.type == ANV_SEMAPHORE_TYPE_NONE) 1019b8e80941Smrg return; 1020b8e80941Smrg 1021b8e80941Smrg anv_semaphore_impl_cleanup(device, &semaphore->temporary); 1022b8e80941Smrg} 1023b8e80941Smrg 1024b8e80941Smrgvoid anv_DestroySemaphore( 1025b8e80941Smrg VkDevice _device, 1026b8e80941Smrg VkSemaphore _semaphore, 1027b8e80941Smrg const VkAllocationCallbacks* pAllocator) 1028b8e80941Smrg{ 1029b8e80941Smrg ANV_FROM_HANDLE(anv_device, device, _device); 1030b8e80941Smrg ANV_FROM_HANDLE(anv_semaphore, semaphore, _semaphore); 1031b8e80941Smrg 1032b8e80941Smrg if (semaphore == NULL) 1033b8e80941Smrg return; 1034b8e80941Smrg 1035b8e80941Smrg anv_semaphore_impl_cleanup(device, &semaphore->temporary); 1036b8e80941Smrg anv_semaphore_impl_cleanup(device, &semaphore->permanent); 1037b8e80941Smrg 1038b8e80941Smrg vk_free2(&device->alloc, pAllocator, semaphore); 1039b8e80941Smrg} 1040b8e80941Smrg 1041b8e80941Smrgvoid anv_GetPhysicalDeviceExternalSemaphoreProperties( 1042b8e80941Smrg VkPhysicalDevice physicalDevice, 1043b8e80941Smrg const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo, 1044b8e80941Smrg VkExternalSemaphoreProperties* pExternalSemaphoreProperties) 1045b8e80941Smrg{ 1046b8e80941Smrg ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice); 1047b8e80941Smrg 1048b8e80941Smrg switch (pExternalSemaphoreInfo->handleType) { 1049b8e80941Smrg case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT: 1050b8e80941Smrg pExternalSemaphoreProperties->exportFromImportedHandleTypes = 1051b8e80941Smrg VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT; 1052b8e80941Smrg pExternalSemaphoreProperties->compatibleHandleTypes = 1053b8e80941Smrg VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT; 1054b8e80941Smrg pExternalSemaphoreProperties->externalSemaphoreFeatures = 1055b8e80941Smrg VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT | 1056b8e80941Smrg VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT; 1057b8e80941Smrg return; 1058b8e80941Smrg 1059b8e80941Smrg case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT: 1060b8e80941Smrg if (device->has_exec_fence) { 1061b8e80941Smrg pExternalSemaphoreProperties->exportFromImportedHandleTypes = 1062b8e80941Smrg VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT; 1063b8e80941Smrg pExternalSemaphoreProperties->compatibleHandleTypes = 1064b8e80941Smrg VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT; 1065b8e80941Smrg pExternalSemaphoreProperties->externalSemaphoreFeatures = 1066b8e80941Smrg VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT | 1067b8e80941Smrg VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT; 1068b8e80941Smrg return; 1069b8e80941Smrg } 1070b8e80941Smrg break; 1071b8e80941Smrg 1072b8e80941Smrg default: 1073b8e80941Smrg break; 1074b8e80941Smrg } 1075b8e80941Smrg 1076b8e80941Smrg pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0; 1077b8e80941Smrg pExternalSemaphoreProperties->compatibleHandleTypes = 0; 1078b8e80941Smrg pExternalSemaphoreProperties->externalSemaphoreFeatures = 0; 1079b8e80941Smrg} 1080b8e80941Smrg 1081b8e80941SmrgVkResult anv_ImportSemaphoreFdKHR( 1082b8e80941Smrg VkDevice _device, 1083b8e80941Smrg const VkImportSemaphoreFdInfoKHR* pImportSemaphoreFdInfo) 1084b8e80941Smrg{ 1085b8e80941Smrg ANV_FROM_HANDLE(anv_device, device, _device); 1086b8e80941Smrg ANV_FROM_HANDLE(anv_semaphore, semaphore, pImportSemaphoreFdInfo->semaphore); 1087b8e80941Smrg int fd = pImportSemaphoreFdInfo->fd; 1088b8e80941Smrg 1089b8e80941Smrg struct anv_semaphore_impl new_impl = { 1090b8e80941Smrg .type = ANV_SEMAPHORE_TYPE_NONE, 1091b8e80941Smrg }; 1092b8e80941Smrg 1093b8e80941Smrg switch (pImportSemaphoreFdInfo->handleType) { 1094b8e80941Smrg case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT: 1095b8e80941Smrg if (device->instance->physicalDevice.has_syncobj) { 1096b8e80941Smrg new_impl.type = ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ; 1097b8e80941Smrg 1098b8e80941Smrg new_impl.syncobj = anv_gem_syncobj_fd_to_handle(device, fd); 1099b8e80941Smrg if (!new_impl.syncobj) 1100b8e80941Smrg return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); 1101b8e80941Smrg } else { 1102b8e80941Smrg new_impl.type = ANV_SEMAPHORE_TYPE_BO; 1103b8e80941Smrg 1104b8e80941Smrg VkResult result = anv_bo_cache_import(device, &device->bo_cache, 1105b8e80941Smrg fd, ANV_BO_EXTERNAL, 1106b8e80941Smrg &new_impl.bo); 1107b8e80941Smrg if (result != VK_SUCCESS) 1108b8e80941Smrg return result; 1109b8e80941Smrg 1110b8e80941Smrg if (new_impl.bo->size < 4096) { 1111b8e80941Smrg anv_bo_cache_release(device, &device->bo_cache, new_impl.bo); 1112b8e80941Smrg return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); 1113b8e80941Smrg } 1114b8e80941Smrg 1115b8e80941Smrg /* If we're going to use this as a fence, we need to *not* have the 1116b8e80941Smrg * EXEC_OBJECT_ASYNC bit set. 1117b8e80941Smrg */ 1118b8e80941Smrg assert(!(new_impl.bo->flags & EXEC_OBJECT_ASYNC)); 1119b8e80941Smrg } 1120b8e80941Smrg 1121b8e80941Smrg /* From the Vulkan spec: 1122b8e80941Smrg * 1123b8e80941Smrg * "Importing semaphore state from a file descriptor transfers 1124b8e80941Smrg * ownership of the file descriptor from the application to the 1125b8e80941Smrg * Vulkan implementation. The application must not perform any 1126b8e80941Smrg * operations on the file descriptor after a successful import." 1127b8e80941Smrg * 1128b8e80941Smrg * If the import fails, we leave the file descriptor open. 1129b8e80941Smrg */ 1130b8e80941Smrg close(fd); 1131b8e80941Smrg break; 1132b8e80941Smrg 1133b8e80941Smrg case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT: 1134b8e80941Smrg new_impl = (struct anv_semaphore_impl) { 1135b8e80941Smrg .type = ANV_SEMAPHORE_TYPE_SYNC_FILE, 1136b8e80941Smrg .fd = fd, 1137b8e80941Smrg }; 1138b8e80941Smrg break; 1139b8e80941Smrg 1140b8e80941Smrg default: 1141b8e80941Smrg return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); 1142b8e80941Smrg } 1143b8e80941Smrg 1144b8e80941Smrg if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) { 1145b8e80941Smrg anv_semaphore_impl_cleanup(device, &semaphore->temporary); 1146b8e80941Smrg semaphore->temporary = new_impl; 1147b8e80941Smrg } else { 1148b8e80941Smrg anv_semaphore_impl_cleanup(device, &semaphore->permanent); 1149b8e80941Smrg semaphore->permanent = new_impl; 1150b8e80941Smrg } 1151b8e80941Smrg 1152b8e80941Smrg return VK_SUCCESS; 1153b8e80941Smrg} 1154b8e80941Smrg 1155b8e80941SmrgVkResult anv_GetSemaphoreFdKHR( 1156b8e80941Smrg VkDevice _device, 1157b8e80941Smrg const VkSemaphoreGetFdInfoKHR* pGetFdInfo, 1158b8e80941Smrg int* pFd) 1159b8e80941Smrg{ 1160b8e80941Smrg ANV_FROM_HANDLE(anv_device, device, _device); 1161b8e80941Smrg ANV_FROM_HANDLE(anv_semaphore, semaphore, pGetFdInfo->semaphore); 1162b8e80941Smrg VkResult result; 1163b8e80941Smrg int fd; 1164b8e80941Smrg 1165b8e80941Smrg assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR); 1166b8e80941Smrg 1167b8e80941Smrg struct anv_semaphore_impl *impl = 1168b8e80941Smrg semaphore->temporary.type != ANV_SEMAPHORE_TYPE_NONE ? 1169b8e80941Smrg &semaphore->temporary : &semaphore->permanent; 1170b8e80941Smrg 1171b8e80941Smrg switch (impl->type) { 1172b8e80941Smrg case ANV_SEMAPHORE_TYPE_BO: 1173b8e80941Smrg result = anv_bo_cache_export(device, &device->bo_cache, impl->bo, pFd); 1174b8e80941Smrg if (result != VK_SUCCESS) 1175b8e80941Smrg return result; 1176b8e80941Smrg break; 1177b8e80941Smrg 1178b8e80941Smrg case ANV_SEMAPHORE_TYPE_SYNC_FILE: 1179b8e80941Smrg /* There are two reasons why this could happen: 1180b8e80941Smrg * 1181b8e80941Smrg * 1) The user is trying to export without submitting something that 1182b8e80941Smrg * signals the semaphore. If this is the case, it's their bug so 1183b8e80941Smrg * what we return here doesn't matter. 1184b8e80941Smrg * 1185b8e80941Smrg * 2) The kernel didn't give us a file descriptor. The most likely 1186b8e80941Smrg * reason for this is running out of file descriptors. 1187b8e80941Smrg */ 1188b8e80941Smrg if (impl->fd < 0) 1189b8e80941Smrg return vk_error(VK_ERROR_TOO_MANY_OBJECTS); 1190b8e80941Smrg 1191b8e80941Smrg *pFd = impl->fd; 1192b8e80941Smrg 1193b8e80941Smrg /* From the Vulkan 1.0.53 spec: 1194b8e80941Smrg * 1195b8e80941Smrg * "...exporting a semaphore payload to a handle with copy 1196b8e80941Smrg * transference has the same side effects on the source 1197b8e80941Smrg * semaphore’s payload as executing a semaphore wait operation." 1198b8e80941Smrg * 1199b8e80941Smrg * In other words, it may still be a SYNC_FD semaphore, but it's now 1200b8e80941Smrg * considered to have been waited on and no longer has a sync file 1201b8e80941Smrg * attached. 1202b8e80941Smrg */ 1203b8e80941Smrg impl->fd = -1; 1204b8e80941Smrg return VK_SUCCESS; 1205b8e80941Smrg 1206b8e80941Smrg case ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ: 1207b8e80941Smrg fd = anv_gem_syncobj_handle_to_fd(device, impl->syncobj); 1208b8e80941Smrg if (fd < 0) 1209b8e80941Smrg return vk_error(VK_ERROR_TOO_MANY_OBJECTS); 1210b8e80941Smrg *pFd = fd; 1211b8e80941Smrg break; 1212b8e80941Smrg 1213b8e80941Smrg default: 1214b8e80941Smrg return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE); 1215b8e80941Smrg } 1216b8e80941Smrg 1217b8e80941Smrg /* From the Vulkan 1.0.53 spec: 1218b8e80941Smrg * 1219b8e80941Smrg * "Export operations have the same transference as the specified handle 1220b8e80941Smrg * type’s import operations. [...] If the semaphore was using a 1221b8e80941Smrg * temporarily imported payload, the semaphore’s prior permanent payload 1222b8e80941Smrg * will be restored. 1223b8e80941Smrg */ 1224b8e80941Smrg if (impl == &semaphore->temporary) 1225b8e80941Smrg anv_semaphore_impl_cleanup(device, impl); 1226b8e80941Smrg 1227b8e80941Smrg return VK_SUCCESS; 1228b8e80941Smrg} 1229