genX_cmd_buffer.c revision b8e80941
1/* 2 * Copyright © 2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include <assert.h> 25#include <stdbool.h> 26 27#include "anv_private.h" 28#include "vk_format_info.h" 29#include "vk_util.h" 30#include "util/fast_idiv_by_const.h" 31 32#include "common/gen_l3_config.h" 33#include "genxml/gen_macros.h" 34#include "genxml/genX_pack.h" 35 36/* We reserve GPR 14 and 15 for conditional rendering */ 37#define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14 38#define __gen_get_batch_dwords anv_batch_emit_dwords 39#define __gen_address_offset anv_address_add 40#include "common/gen_mi_builder.h" 41 42static void 43emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm) 44{ 45 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) { 46 lri.RegisterOffset = reg; 47 lri.DataDWord = imm; 48 } 49} 50 51void 52genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer) 53{ 54 struct anv_device *device = cmd_buffer->device; 55 56 /* If we are emitting a new state base address we probably need to re-emit 57 * binding tables. 58 */ 59 cmd_buffer->state.descriptors_dirty |= ~0; 60 61 /* Emit a render target cache flush. 62 * 63 * This isn't documented anywhere in the PRM. However, it seems to be 64 * necessary prior to changing the surface state base adress. Without 65 * this, we get GPU hangs when using multi-level command buffers which 66 * clear depth, reset state base address, and then go render stuff. 67 */ 68 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 69 pc.DCFlushEnable = true; 70 pc.RenderTargetCacheFlushEnable = true; 71 pc.CommandStreamerStallEnable = true; 72 } 73 74 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) { 75 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 }; 76 sba.GeneralStateMOCS = GENX(MOCS); 77 sba.GeneralStateBaseAddressModifyEnable = true; 78 79 sba.StatelessDataPortAccessMOCS = GENX(MOCS); 80 81 sba.SurfaceStateBaseAddress = 82 anv_cmd_buffer_surface_base_address(cmd_buffer); 83 sba.SurfaceStateMOCS = GENX(MOCS); 84 sba.SurfaceStateBaseAddressModifyEnable = true; 85 86 sba.DynamicStateBaseAddress = 87 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 }; 88 sba.DynamicStateMOCS = GENX(MOCS); 89 sba.DynamicStateBaseAddressModifyEnable = true; 90 91 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 }; 92 sba.IndirectObjectMOCS = GENX(MOCS); 93 sba.IndirectObjectBaseAddressModifyEnable = true; 94 95 sba.InstructionBaseAddress = 96 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 }; 97 sba.InstructionMOCS = GENX(MOCS); 98 sba.InstructionBaseAddressModifyEnable = true; 99 100# if (GEN_GEN >= 8) 101 /* Broadwell requires that we specify a buffer size for a bunch of 102 * these fields. However, since we will be growing the BO's live, we 103 * just set them all to the maximum. 104 */ 105 sba.GeneralStateBufferSize = 0xfffff; 106 sba.GeneralStateBufferSizeModifyEnable = true; 107 sba.DynamicStateBufferSize = 0xfffff; 108 sba.DynamicStateBufferSizeModifyEnable = true; 109 sba.IndirectObjectBufferSize = 0xfffff; 110 sba.IndirectObjectBufferSizeModifyEnable = true; 111 sba.InstructionBufferSize = 0xfffff; 112 sba.InstructionBuffersizeModifyEnable = true; 113# else 114 /* On gen7, we have upper bounds instead. According to the docs, 115 * setting an upper bound of zero means that no bounds checking is 116 * performed so, in theory, we should be able to leave them zero. 117 * However, border color is broken and the GPU bounds-checks anyway. 118 * To avoid this and other potential problems, we may as well set it 119 * for everything. 120 */ 121 sba.GeneralStateAccessUpperBound = 122 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 }; 123 sba.GeneralStateAccessUpperBoundModifyEnable = true; 124 sba.DynamicStateAccessUpperBound = 125 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 }; 126 sba.DynamicStateAccessUpperBoundModifyEnable = true; 127 sba.InstructionAccessUpperBound = 128 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 }; 129 sba.InstructionAccessUpperBoundModifyEnable = true; 130# endif 131# if (GEN_GEN >= 9) 132 if (cmd_buffer->device->instance->physicalDevice.use_softpin) { 133 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) { 134 .bo = device->surface_state_pool.block_pool.bo, 135 .offset = 0, 136 }; 137 sba.BindlessSurfaceStateSize = (1 << 20) - 1; 138 } else { 139 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS; 140 sba.BindlessSurfaceStateSize = 0; 141 } 142 sba.BindlessSurfaceStateMOCS = GENX(MOCS); 143 sba.BindlessSurfaceStateBaseAddressModifyEnable = true; 144# endif 145# if (GEN_GEN >= 10) 146 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 }; 147 sba.BindlessSamplerStateMOCS = GENX(MOCS); 148 sba.BindlessSamplerStateBaseAddressModifyEnable = true; 149 sba.BindlessSamplerStateBufferSize = 0; 150# endif 151 } 152 153 /* After re-setting the surface state base address, we have to do some 154 * cache flusing so that the sampler engine will pick up the new 155 * SURFACE_STATE objects and binding tables. From the Broadwell PRM, 156 * Shared Function > 3D Sampler > State > State Caching (page 96): 157 * 158 * Coherency with system memory in the state cache, like the texture 159 * cache is handled partially by software. It is expected that the 160 * command stream or shader will issue Cache Flush operation or 161 * Cache_Flush sampler message to ensure that the L1 cache remains 162 * coherent with system memory. 163 * 164 * [...] 165 * 166 * Whenever the value of the Dynamic_State_Base_Addr, 167 * Surface_State_Base_Addr are altered, the L1 state cache must be 168 * invalidated to ensure the new surface or sampler state is fetched 169 * from system memory. 170 * 171 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit 172 * which, according the PIPE_CONTROL instruction documentation in the 173 * Broadwell PRM: 174 * 175 * Setting this bit is independent of any other bit in this packet. 176 * This bit controls the invalidation of the L1 and L2 state caches 177 * at the top of the pipe i.e. at the parsing time. 178 * 179 * Unfortunately, experimentation seems to indicate that state cache 180 * invalidation through a PIPE_CONTROL does nothing whatsoever in 181 * regards to surface state and binding tables. In stead, it seems that 182 * invalidating the texture cache is what is actually needed. 183 * 184 * XXX: As far as we have been able to determine through 185 * experimentation, shows that flush the texture cache appears to be 186 * sufficient. The theory here is that all of the sampling/rendering 187 * units cache the binding table in the texture cache. However, we have 188 * yet to be able to actually confirm this. 189 */ 190 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 191 pc.TextureCacheInvalidationEnable = true; 192 pc.ConstantCacheInvalidationEnable = true; 193 pc.StateCacheInvalidationEnable = true; 194 } 195} 196 197static void 198add_surface_reloc(struct anv_cmd_buffer *cmd_buffer, 199 struct anv_state state, struct anv_address addr) 200{ 201 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; 202 203 VkResult result = 204 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc, 205 state.offset + isl_dev->ss.addr_offset, 206 addr.bo, addr.offset); 207 if (result != VK_SUCCESS) 208 anv_batch_set_error(&cmd_buffer->batch, result); 209} 210 211static void 212add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer, 213 struct anv_surface_state state) 214{ 215 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; 216 217 assert(!anv_address_is_null(state.address)); 218 add_surface_reloc(cmd_buffer, state.state, state.address); 219 220 if (!anv_address_is_null(state.aux_address)) { 221 VkResult result = 222 anv_reloc_list_add(&cmd_buffer->surface_relocs, 223 &cmd_buffer->pool->alloc, 224 state.state.offset + isl_dev->ss.aux_addr_offset, 225 state.aux_address.bo, state.aux_address.offset); 226 if (result != VK_SUCCESS) 227 anv_batch_set_error(&cmd_buffer->batch, result); 228 } 229 230 if (!anv_address_is_null(state.clear_address)) { 231 VkResult result = 232 anv_reloc_list_add(&cmd_buffer->surface_relocs, 233 &cmd_buffer->pool->alloc, 234 state.state.offset + 235 isl_dev->ss.clear_color_state_offset, 236 state.clear_address.bo, state.clear_address.offset); 237 if (result != VK_SUCCESS) 238 anv_batch_set_error(&cmd_buffer->batch, result); 239 } 240} 241 242static void 243color_attachment_compute_aux_usage(struct anv_device * device, 244 struct anv_cmd_state * cmd_state, 245 uint32_t att, VkRect2D render_area, 246 union isl_color_value *fast_clear_color) 247{ 248 struct anv_attachment_state *att_state = &cmd_state->attachments[att]; 249 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att]; 250 251 assert(iview->n_planes == 1); 252 253 if (iview->planes[0].isl.base_array_layer >= 254 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT, 255 iview->planes[0].isl.base_level)) { 256 /* There is no aux buffer which corresponds to the level and layer(s) 257 * being accessed. 258 */ 259 att_state->aux_usage = ISL_AUX_USAGE_NONE; 260 att_state->input_aux_usage = ISL_AUX_USAGE_NONE; 261 att_state->fast_clear = false; 262 return; 263 } 264 265 att_state->aux_usage = 266 anv_layout_to_aux_usage(&device->info, iview->image, 267 VK_IMAGE_ASPECT_COLOR_BIT, 268 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); 269 270 /* If we don't have aux, then we should have returned early in the layer 271 * check above. If we got here, we must have something. 272 */ 273 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE); 274 275 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E || 276 att_state->aux_usage == ISL_AUX_USAGE_MCS) { 277 att_state->input_aux_usage = att_state->aux_usage; 278 } else { 279 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode: 280 * 281 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D 282 * setting is only allowed if Surface Format supported for Fast 283 * Clear. In addition, if the surface is bound to the sampling 284 * engine, Surface Format must be supported for Render Target 285 * Compression for surfaces bound to the sampling engine." 286 * 287 * In other words, we can only sample from a fast-cleared image if it 288 * also supports color compression. 289 */ 290 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) { 291 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D; 292 293 /* While fast-clear resolves and partial resolves are fairly cheap in the 294 * case where you render to most of the pixels, full resolves are not 295 * because they potentially involve reading and writing the entire 296 * framebuffer. If we can't texture with CCS_E, we should leave it off and 297 * limit ourselves to fast clears. 298 */ 299 if (cmd_state->pass->attachments[att].first_subpass_layout == 300 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) { 301 anv_perf_warn(device->instance, iview->image, 302 "Not temporarily enabling CCS_E."); 303 } 304 } else { 305 att_state->input_aux_usage = ISL_AUX_USAGE_NONE; 306 } 307 } 308 309 assert(iview->image->planes[0].aux_surface.isl.usage & 310 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT)); 311 312 union isl_color_value clear_color = {}; 313 anv_clear_color_from_att_state(&clear_color, att_state, iview); 314 315 att_state->clear_color_is_zero_one = 316 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format); 317 att_state->clear_color_is_zero = 318 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format); 319 320 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) { 321 /* Start by getting the fast clear type. We use the first subpass 322 * layout here because we don't want to fast-clear if the first subpass 323 * to use the attachment can't handle fast-clears. 324 */ 325 enum anv_fast_clear_type fast_clear_type = 326 anv_layout_to_fast_clear_type(&device->info, iview->image, 327 VK_IMAGE_ASPECT_COLOR_BIT, 328 cmd_state->pass->attachments[att].first_subpass_layout); 329 switch (fast_clear_type) { 330 case ANV_FAST_CLEAR_NONE: 331 att_state->fast_clear = false; 332 break; 333 case ANV_FAST_CLEAR_DEFAULT_VALUE: 334 att_state->fast_clear = att_state->clear_color_is_zero; 335 break; 336 case ANV_FAST_CLEAR_ANY: 337 att_state->fast_clear = true; 338 break; 339 } 340 341 /* Potentially, we could do partial fast-clears but doing so has crazy 342 * alignment restrictions. It's easier to just restrict to full size 343 * fast clears for now. 344 */ 345 if (render_area.offset.x != 0 || 346 render_area.offset.y != 0 || 347 render_area.extent.width != iview->extent.width || 348 render_area.extent.height != iview->extent.height) 349 att_state->fast_clear = false; 350 351 /* On Broadwell and earlier, we can only handle 0/1 clear colors */ 352 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one) 353 att_state->fast_clear = false; 354 355 /* We only allow fast clears to the first slice of an image (level 0, 356 * layer 0) and only for the entire slice. This guarantees us that, at 357 * any given time, there is only one clear color on any given image at 358 * any given time. At the time of our testing (Jan 17, 2018), there 359 * were no known applications which would benefit from fast-clearing 360 * more than just the first slice. 361 */ 362 if (att_state->fast_clear && 363 (iview->planes[0].isl.base_level > 0 || 364 iview->planes[0].isl.base_array_layer > 0)) { 365 anv_perf_warn(device->instance, iview->image, 366 "Rendering with multi-lod or multi-layer framebuffer " 367 "with LOAD_OP_LOAD and baseMipLevel > 0 or " 368 "baseArrayLayer > 0. Not fast clearing."); 369 att_state->fast_clear = false; 370 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) { 371 anv_perf_warn(device->instance, iview->image, 372 "Rendering to a multi-layer framebuffer with " 373 "LOAD_OP_CLEAR. Only fast-clearing the first slice"); 374 } 375 376 if (att_state->fast_clear) 377 *fast_clear_color = clear_color; 378 } else { 379 att_state->fast_clear = false; 380 } 381} 382 383static void 384depth_stencil_attachment_compute_aux_usage(struct anv_device *device, 385 struct anv_cmd_state *cmd_state, 386 uint32_t att, VkRect2D render_area) 387{ 388 struct anv_render_pass_attachment *pass_att = 389 &cmd_state->pass->attachments[att]; 390 struct anv_attachment_state *att_state = &cmd_state->attachments[att]; 391 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att]; 392 393 /* These will be initialized after the first subpass transition. */ 394 att_state->aux_usage = ISL_AUX_USAGE_NONE; 395 att_state->input_aux_usage = ISL_AUX_USAGE_NONE; 396 397 if (GEN_GEN == 7) { 398 /* We don't do any HiZ or depth fast-clears on gen7 yet */ 399 att_state->fast_clear = false; 400 return; 401 } 402 403 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) { 404 /* If we're just clearing stencil, we can always HiZ clear */ 405 att_state->fast_clear = true; 406 return; 407 } 408 409 /* Default to false for now */ 410 att_state->fast_clear = false; 411 412 /* We must have depth in order to have HiZ */ 413 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) 414 return; 415 416 const enum isl_aux_usage first_subpass_aux_usage = 417 anv_layout_to_aux_usage(&device->info, iview->image, 418 VK_IMAGE_ASPECT_DEPTH_BIT, 419 pass_att->first_subpass_layout); 420 if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ) 421 return; 422 423 if (!blorp_can_hiz_clear_depth(GEN_GEN, 424 iview->planes[0].isl.format, 425 iview->image->samples, 426 render_area.offset.x, 427 render_area.offset.y, 428 render_area.offset.x + 429 render_area.extent.width, 430 render_area.offset.y + 431 render_area.extent.height)) 432 return; 433 434 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL) 435 return; 436 437 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) { 438 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a 439 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8 440 * only supports returning 0.0f. Gens prior to gen8 do not support this 441 * feature at all. 442 */ 443 return; 444 } 445 446 /* If we got here, then we can fast clear */ 447 att_state->fast_clear = true; 448} 449 450static bool 451need_input_attachment_state(const struct anv_render_pass_attachment *att) 452{ 453 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) 454 return false; 455 456 /* We only allocate input attachment states for color surfaces. Compression 457 * is not yet enabled for depth textures and stencil doesn't allow 458 * compression so we can just use the texture surface state from the view. 459 */ 460 return vk_format_is_color(att->format); 461} 462 463/* Transitions a HiZ-enabled depth buffer from one layout to another. Unless 464 * the initial layout is undefined, the HiZ buffer and depth buffer will 465 * represent the same data at the end of this operation. 466 */ 467static void 468transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer, 469 const struct anv_image *image, 470 VkImageLayout initial_layout, 471 VkImageLayout final_layout) 472{ 473 const bool hiz_enabled = ISL_AUX_USAGE_HIZ == 474 anv_layout_to_aux_usage(&cmd_buffer->device->info, image, 475 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout); 476 const bool enable_hiz = ISL_AUX_USAGE_HIZ == 477 anv_layout_to_aux_usage(&cmd_buffer->device->info, image, 478 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout); 479 480 enum isl_aux_op hiz_op; 481 if (hiz_enabled && !enable_hiz) { 482 hiz_op = ISL_AUX_OP_FULL_RESOLVE; 483 } else if (!hiz_enabled && enable_hiz) { 484 hiz_op = ISL_AUX_OP_AMBIGUATE; 485 } else { 486 assert(hiz_enabled == enable_hiz); 487 /* If the same buffer will be used, no resolves are necessary. */ 488 hiz_op = ISL_AUX_OP_NONE; 489 } 490 491 if (hiz_op != ISL_AUX_OP_NONE) 492 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT, 493 0, 0, 1, hiz_op); 494} 495 496#define MI_PREDICATE_SRC0 0x2400 497#define MI_PREDICATE_SRC1 0x2408 498#define MI_PREDICATE_RESULT 0x2418 499 500static void 501set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer, 502 const struct anv_image *image, 503 VkImageAspectFlagBits aspect, 504 uint32_t level, 505 uint32_t base_layer, uint32_t layer_count, 506 bool compressed) 507{ 508 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); 509 510 /* We only have compression tracking for CCS_E */ 511 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E) 512 return; 513 514 for (uint32_t a = 0; a < layer_count; a++) { 515 uint32_t layer = base_layer + a; 516 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { 517 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device, 518 image, aspect, 519 level, layer); 520 sdi.ImmediateData = compressed ? UINT32_MAX : 0; 521 } 522 } 523} 524 525static void 526set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer, 527 const struct anv_image *image, 528 VkImageAspectFlagBits aspect, 529 enum anv_fast_clear_type fast_clear) 530{ 531 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { 532 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device, 533 image, aspect); 534 sdi.ImmediateData = fast_clear; 535 } 536 537 /* Whenever we have fast-clear, we consider that slice to be compressed. 538 * This makes building predicates much easier. 539 */ 540 if (fast_clear != ANV_FAST_CLEAR_NONE) 541 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true); 542} 543 544#if GEN_IS_HASWELL || GEN_GEN >= 8 545static inline uint32_t 546mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2) 547{ 548 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = { 549 .ALUOpcode = opcode, 550 .Operand1 = operand1, 551 .Operand2 = operand2, 552 }; 553 554 uint32_t dw; 555 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr); 556 557 return dw; 558} 559#endif 560 561/* This is only really practical on haswell and above because it requires 562 * MI math in order to get it correct. 563 */ 564#if GEN_GEN >= 8 || GEN_IS_HASWELL 565static void 566anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer, 567 const struct anv_image *image, 568 VkImageAspectFlagBits aspect, 569 uint32_t level, uint32_t array_layer, 570 enum isl_aux_op resolve_op, 571 enum anv_fast_clear_type fast_clear_supported) 572{ 573 struct gen_mi_builder b; 574 gen_mi_builder_init(&b, &cmd_buffer->batch); 575 576 const struct gen_mi_value fast_clear_type = 577 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device, 578 image, aspect)); 579 580 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) { 581 /* In this case, we're doing a full resolve which means we want the 582 * resolve to happen if any compression (including fast-clears) is 583 * present. 584 * 585 * In order to simplify the logic a bit, we make the assumption that, 586 * if the first slice has been fast-cleared, it is also marked as 587 * compressed. See also set_image_fast_clear_state. 588 */ 589 const struct gen_mi_value compression_state = 590 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device, 591 image, aspect, 592 level, array_layer)); 593 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), 594 compression_state); 595 gen_mi_store(&b, compression_state, gen_mi_imm(0)); 596 597 if (level == 0 && array_layer == 0) { 598 /* If the predicate is true, we want to write 0 to the fast clear type 599 * and, if it's false, leave it alone. We can do this by writing 600 * 601 * clear_type = clear_type & ~predicate; 602 */ 603 struct gen_mi_value new_fast_clear_type = 604 gen_mi_iand(&b, fast_clear_type, 605 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0))); 606 gen_mi_store(&b, fast_clear_type, new_fast_clear_type); 607 } 608 } else if (level == 0 && array_layer == 0) { 609 /* In this case, we are doing a partial resolve to get rid of fast-clear 610 * colors. We don't care about the compression state but we do care 611 * about how much fast clear is allowed by the final layout. 612 */ 613 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); 614 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY); 615 616 /* We need to compute (fast_clear_supported < image->fast_clear) */ 617 struct gen_mi_value pred = 618 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type); 619 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), 620 gen_mi_value_ref(&b, pred)); 621 622 /* If the predicate is true, we want to write 0 to the fast clear type 623 * and, if it's false, leave it alone. We can do this by writing 624 * 625 * clear_type = clear_type & ~predicate; 626 */ 627 struct gen_mi_value new_fast_clear_type = 628 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred)); 629 gen_mi_store(&b, fast_clear_type, new_fast_clear_type); 630 } else { 631 /* In this case, we're trying to do a partial resolve on a slice that 632 * doesn't have clear color. There's nothing to do. 633 */ 634 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); 635 return; 636 } 637 638 /* Set src1 to 0 and use a != condition */ 639 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0)); 640 641 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { 642 mip.LoadOperation = LOAD_LOADINV; 643 mip.CombineOperation = COMBINE_SET; 644 mip.CompareOperation = COMPARE_SRCS_EQUAL; 645 } 646} 647#endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */ 648 649#if GEN_GEN <= 8 650static void 651anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer, 652 const struct anv_image *image, 653 VkImageAspectFlagBits aspect, 654 uint32_t level, uint32_t array_layer, 655 enum isl_aux_op resolve_op, 656 enum anv_fast_clear_type fast_clear_supported) 657{ 658 struct gen_mi_builder b; 659 gen_mi_builder_init(&b, &cmd_buffer->batch); 660 661 struct gen_mi_value fast_clear_type_mem = 662 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device, 663 image, aspect)); 664 665 /* This only works for partial resolves and only when the clear color is 666 * all or nothing. On the upside, this emits less command streamer code 667 * and works on Ivybridge and Bay Trail. 668 */ 669 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); 670 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY); 671 672 /* We don't support fast clears on anything other than the first slice. */ 673 if (level > 0 || array_layer > 0) 674 return; 675 676 /* On gen8, we don't have a concept of default clear colors because we 677 * can't sample from CCS surfaces. It's enough to just load the fast clear 678 * state into the predicate register. 679 */ 680 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem); 681 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0)); 682 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0)); 683 684 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { 685 mip.LoadOperation = LOAD_LOADINV; 686 mip.CombineOperation = COMBINE_SET; 687 mip.CompareOperation = COMPARE_SRCS_EQUAL; 688 } 689} 690#endif /* GEN_GEN <= 8 */ 691 692static void 693anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer, 694 const struct anv_image *image, 695 enum isl_format format, 696 VkImageAspectFlagBits aspect, 697 uint32_t level, uint32_t array_layer, 698 enum isl_aux_op resolve_op, 699 enum anv_fast_clear_type fast_clear_supported) 700{ 701 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); 702 703#if GEN_GEN >= 9 704 anv_cmd_compute_resolve_predicate(cmd_buffer, image, 705 aspect, level, array_layer, 706 resolve_op, fast_clear_supported); 707#else /* GEN_GEN <= 8 */ 708 anv_cmd_simple_resolve_predicate(cmd_buffer, image, 709 aspect, level, array_layer, 710 resolve_op, fast_clear_supported); 711#endif 712 713 /* CCS_D only supports full resolves and BLORP will assert on us if we try 714 * to do a partial resolve on a CCS_D surface. 715 */ 716 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE && 717 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) 718 resolve_op = ISL_AUX_OP_FULL_RESOLVE; 719 720 anv_image_ccs_op(cmd_buffer, image, format, aspect, level, 721 array_layer, 1, resolve_op, NULL, true); 722} 723 724static void 725anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer, 726 const struct anv_image *image, 727 enum isl_format format, 728 VkImageAspectFlagBits aspect, 729 uint32_t array_layer, 730 enum isl_aux_op resolve_op, 731 enum anv_fast_clear_type fast_clear_supported) 732{ 733 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT); 734 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); 735 736#if GEN_GEN >= 8 || GEN_IS_HASWELL 737 anv_cmd_compute_resolve_predicate(cmd_buffer, image, 738 aspect, 0, array_layer, 739 resolve_op, fast_clear_supported); 740 741 anv_image_mcs_op(cmd_buffer, image, format, aspect, 742 array_layer, 1, resolve_op, NULL, true); 743#else 744 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail"); 745#endif 746} 747 748void 749genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer, 750 const struct anv_image *image, 751 VkImageAspectFlagBits aspect, 752 enum isl_aux_usage aux_usage, 753 uint32_t level, 754 uint32_t base_layer, 755 uint32_t layer_count) 756{ 757 /* The aspect must be exactly one of the image aspects. */ 758 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects)); 759 760 /* The only compression types with more than just fast-clears are MCS, 761 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually 762 * track the current fast-clear and compression state. This leaves us 763 * with just MCS and CCS_E. 764 */ 765 if (aux_usage != ISL_AUX_USAGE_CCS_E && 766 aux_usage != ISL_AUX_USAGE_MCS) 767 return; 768 769 set_image_compressed_bit(cmd_buffer, image, aspect, 770 level, base_layer, layer_count, true); 771} 772 773static void 774init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer, 775 const struct anv_image *image, 776 VkImageAspectFlagBits aspect) 777{ 778 assert(cmd_buffer && image); 779 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); 780 781 set_image_fast_clear_state(cmd_buffer, image, aspect, 782 ANV_FAST_CLEAR_NONE); 783 784 /* Initialize the struct fields that are accessed for fast-clears so that 785 * the HW restrictions on the field values are satisfied. 786 */ 787 struct anv_address addr = 788 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect); 789 790 if (GEN_GEN >= 9) { 791 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; 792 const unsigned num_dwords = GEN_GEN >= 10 ? 793 isl_dev->ss.clear_color_state_size / 4 : 794 isl_dev->ss.clear_value_size / 4; 795 for (unsigned i = 0; i < num_dwords; i++) { 796 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { 797 sdi.Address = addr; 798 sdi.Address.offset += i * 4; 799 sdi.ImmediateData = 0; 800 } 801 } 802 } else { 803 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { 804 sdi.Address = addr; 805 if (GEN_GEN >= 8 || GEN_IS_HASWELL) { 806 /* Pre-SKL, the dword containing the clear values also contains 807 * other fields, so we need to initialize those fields to match the 808 * values that would be in a color attachment. 809 */ 810 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 | 811 ISL_CHANNEL_SELECT_GREEN << 22 | 812 ISL_CHANNEL_SELECT_BLUE << 19 | 813 ISL_CHANNEL_SELECT_ALPHA << 16; 814 } else if (GEN_GEN == 7) { 815 /* On IVB, the dword containing the clear values also contains 816 * other fields that must be zero or can be zero. 817 */ 818 sdi.ImmediateData = 0; 819 } 820 } 821 } 822} 823 824/* Copy the fast-clear value dword(s) between a surface state object and an 825 * image's fast clear state buffer. 826 */ 827static void 828genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer, 829 struct anv_state surface_state, 830 const struct anv_image *image, 831 VkImageAspectFlagBits aspect, 832 bool copy_from_surface_state) 833{ 834 assert(cmd_buffer && image); 835 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); 836 837 struct anv_address ss_clear_addr = { 838 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo, 839 .offset = surface_state.offset + 840 cmd_buffer->device->isl_dev.ss.clear_value_offset, 841 }; 842 const struct anv_address entry_addr = 843 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect); 844 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size; 845 846#if GEN_GEN == 7 847 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM 848 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is 849 * in-flight when they are issued even if the memory touched is not 850 * currently active for rendering. The weird bit is that it is not the 851 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight 852 * rendering hangs such that the next stalling command after the 853 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang. 854 * 855 * It is unclear exactly why this hang occurs. Both MI commands come with 856 * warnings about the 3D pipeline but that doesn't seem to fully explain 857 * it. My (Jason's) best theory is that it has something to do with the 858 * fact that we're using a GPU state register as our temporary and that 859 * something with reading/writing it is causing problems. 860 * 861 * In order to work around this issue, we emit a PIPE_CONTROL with the 862 * command streamer stall bit set. 863 */ 864 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; 865 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); 866#endif 867 868 struct gen_mi_builder b; 869 gen_mi_builder_init(&b, &cmd_buffer->batch); 870 871 if (copy_from_surface_state) { 872 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size); 873 } else { 874 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size); 875 876 /* Updating a surface state object may require that the state cache be 877 * invalidated. From the SKL PRM, Shared Functions -> State -> State 878 * Caching: 879 * 880 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by 881 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is 882 * modified [...], the L1 state cache must be invalidated to ensure 883 * the new surface or sampler state is fetched from system memory. 884 * 885 * In testing, SKL doesn't actually seem to need this, but HSW does. 886 */ 887 cmd_buffer->state.pending_pipe_bits |= 888 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT; 889 } 890} 891 892/** 893 * @brief Transitions a color buffer from one layout to another. 894 * 895 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for 896 * more information. 897 * 898 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported. 899 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images, 900 * this represents the maximum layers to transition at each 901 * specified miplevel. 902 */ 903static void 904transition_color_buffer(struct anv_cmd_buffer *cmd_buffer, 905 const struct anv_image *image, 906 VkImageAspectFlagBits aspect, 907 const uint32_t base_level, uint32_t level_count, 908 uint32_t base_layer, uint32_t layer_count, 909 VkImageLayout initial_layout, 910 VkImageLayout final_layout) 911{ 912 const struct gen_device_info *devinfo = &cmd_buffer->device->info; 913 /* Validate the inputs. */ 914 assert(cmd_buffer); 915 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); 916 /* These values aren't supported for simplicity's sake. */ 917 assert(level_count != VK_REMAINING_MIP_LEVELS && 918 layer_count != VK_REMAINING_ARRAY_LAYERS); 919 /* Ensure the subresource range is valid. */ 920 UNUSED uint64_t last_level_num = base_level + level_count; 921 const uint32_t max_depth = anv_minify(image->extent.depth, base_level); 922 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth); 923 assert((uint64_t)base_layer + layer_count <= image_layers); 924 assert(last_level_num <= image->levels); 925 /* The spec disallows these final layouts. */ 926 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED && 927 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED); 928 929 /* No work is necessary if the layout stays the same or if this subresource 930 * range lacks auxiliary data. 931 */ 932 if (initial_layout == final_layout) 933 return; 934 935 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); 936 937 if (image->planes[plane].shadow_surface.isl.size_B > 0 && 938 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) { 939 /* This surface is a linear compressed image with a tiled shadow surface 940 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so 941 * we need to ensure the shadow copy is up-to-date. 942 */ 943 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); 944 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR); 945 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR); 946 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format)); 947 assert(plane == 0); 948 anv_image_copy_to_shadow(cmd_buffer, image, 949 base_level, level_count, 950 base_layer, layer_count); 951 } 952 953 if (base_layer >= anv_image_aux_layers(image, aspect, base_level)) 954 return; 955 956 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL); 957 958 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED || 959 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) { 960 /* A subresource in the undefined layout may have been aliased and 961 * populated with any arrangement of bits. Therefore, we must initialize 962 * the related aux buffer and clear buffer entry with desirable values. 963 * An initial layout of PREINITIALIZED is the same as UNDEFINED for 964 * images with VK_IMAGE_TILING_OPTIMAL. 965 * 966 * Initialize the relevant clear buffer entries. 967 */ 968 if (base_level == 0 && base_layer == 0) 969 init_fast_clear_color(cmd_buffer, image, aspect); 970 971 /* Initialize the aux buffers to enable correct rendering. In order to 972 * ensure that things such as storage images work correctly, aux buffers 973 * need to be initialized to valid data. 974 * 975 * Having an aux buffer with invalid data is a problem for two reasons: 976 * 977 * 1) Having an invalid value in the buffer can confuse the hardware. 978 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is 979 * invalid and leads to the hardware doing strange things. It 980 * doesn't hang as far as we can tell but rendering corruption can 981 * occur. 982 * 983 * 2) If this transition is into the GENERAL layout and we then use the 984 * image as a storage image, then we must have the aux buffer in the 985 * pass-through state so that, if we then go to texture from the 986 * image, we get the results of our storage image writes and not the 987 * fast clear color or other random data. 988 * 989 * For CCS both of the problems above are real demonstrable issues. In 990 * that case, the only thing we can do is to perform an ambiguate to 991 * transition the aux surface into the pass-through state. 992 * 993 * For MCS, (2) is never an issue because we don't support multisampled 994 * storage images. In theory, issue (1) is a problem with MCS but we've 995 * never seen it in the wild. For 4x and 16x, all bit patters could, in 996 * theory, be interpreted as something but we don't know that all bit 997 * patterns are actually valid. For 2x and 8x, you could easily end up 998 * with the MCS referring to an invalid plane because not all bits of 999 * the MCS value are actually used. Even though we've never seen issues 1000 * in the wild, it's best to play it safe and initialize the MCS. We 1001 * can use a fast-clear for MCS because we only ever touch from render 1002 * and texture (no image load store). 1003 */ 1004 if (image->samples == 1) { 1005 for (uint32_t l = 0; l < level_count; l++) { 1006 const uint32_t level = base_level + l; 1007 1008 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level); 1009 if (base_layer >= aux_layers) 1010 break; /* We will only get fewer layers as level increases */ 1011 uint32_t level_layer_count = 1012 MIN2(layer_count, aux_layers - base_layer); 1013 1014 anv_image_ccs_op(cmd_buffer, image, 1015 image->planes[plane].surface.isl.format, 1016 aspect, level, base_layer, level_layer_count, 1017 ISL_AUX_OP_AMBIGUATE, NULL, false); 1018 1019 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) { 1020 set_image_compressed_bit(cmd_buffer, image, aspect, 1021 level, base_layer, level_layer_count, 1022 false); 1023 } 1024 } 1025 } else { 1026 if (image->samples == 4 || image->samples == 16) { 1027 anv_perf_warn(cmd_buffer->device->instance, image, 1028 "Doing a potentially unnecessary fast-clear to " 1029 "define an MCS buffer."); 1030 } 1031 1032 assert(base_level == 0 && level_count == 1); 1033 anv_image_mcs_op(cmd_buffer, image, 1034 image->planes[plane].surface.isl.format, 1035 aspect, base_layer, layer_count, 1036 ISL_AUX_OP_FAST_CLEAR, NULL, false); 1037 } 1038 return; 1039 } 1040 1041 const enum isl_aux_usage initial_aux_usage = 1042 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout); 1043 const enum isl_aux_usage final_aux_usage = 1044 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout); 1045 1046 /* The current code assumes that there is no mixing of CCS_E and CCS_D. 1047 * We can handle transitions between CCS_D/E to and from NONE. What we 1048 * don't yet handle is switching between CCS_E and CCS_D within a given 1049 * image. Doing so in a performant way requires more detailed aux state 1050 * tracking such as what is done in i965. For now, just assume that we 1051 * only have one type of compression. 1052 */ 1053 assert(initial_aux_usage == ISL_AUX_USAGE_NONE || 1054 final_aux_usage == ISL_AUX_USAGE_NONE || 1055 initial_aux_usage == final_aux_usage); 1056 1057 /* If initial aux usage is NONE, there is nothing to resolve */ 1058 if (initial_aux_usage == ISL_AUX_USAGE_NONE) 1059 return; 1060 1061 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE; 1062 1063 /* If the initial layout supports more fast clear than the final layout 1064 * then we need at least a partial resolve. 1065 */ 1066 const enum anv_fast_clear_type initial_fast_clear = 1067 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout); 1068 const enum anv_fast_clear_type final_fast_clear = 1069 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout); 1070 if (final_fast_clear < initial_fast_clear) 1071 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE; 1072 1073 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E && 1074 final_aux_usage != ISL_AUX_USAGE_CCS_E) 1075 resolve_op = ISL_AUX_OP_FULL_RESOLVE; 1076 1077 if (resolve_op == ISL_AUX_OP_NONE) 1078 return; 1079 1080 /* Perform a resolve to synchronize data between the main and aux buffer. 1081 * Before we begin, we must satisfy the cache flushing requirement specified 1082 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)": 1083 * 1084 * Any transition from any value in {Clear, Render, Resolve} to a 1085 * different value in {Clear, Render, Resolve} requires end of pipe 1086 * synchronization. 1087 * 1088 * We perform a flush of the write cache before and after the clear and 1089 * resolve operations to meet this requirement. 1090 * 1091 * Unlike other drawing, fast clear operations are not properly 1092 * synchronized. The first PIPE_CONTROL here likely ensures that the 1093 * contents of the previous render or clear hit the render target before we 1094 * resolve and the second likely ensures that the resolve is complete before 1095 * we do any more rendering or clearing. 1096 */ 1097 cmd_buffer->state.pending_pipe_bits |= 1098 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT; 1099 1100 for (uint32_t l = 0; l < level_count; l++) { 1101 uint32_t level = base_level + l; 1102 1103 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level); 1104 if (base_layer >= aux_layers) 1105 break; /* We will only get fewer layers as level increases */ 1106 uint32_t level_layer_count = 1107 MIN2(layer_count, aux_layers - base_layer); 1108 1109 for (uint32_t a = 0; a < level_layer_count; a++) { 1110 uint32_t array_layer = base_layer + a; 1111 if (image->samples == 1) { 1112 anv_cmd_predicated_ccs_resolve(cmd_buffer, image, 1113 image->planes[plane].surface.isl.format, 1114 aspect, level, array_layer, resolve_op, 1115 final_fast_clear); 1116 } else { 1117 /* We only support fast-clear on the first layer so partial 1118 * resolves should not be used on other layers as they will use 1119 * the clear color stored in memory that is only valid for layer0. 1120 */ 1121 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE && 1122 array_layer != 0) 1123 continue; 1124 1125 anv_cmd_predicated_mcs_resolve(cmd_buffer, image, 1126 image->planes[plane].surface.isl.format, 1127 aspect, array_layer, resolve_op, 1128 final_fast_clear); 1129 } 1130 } 1131 } 1132 1133 cmd_buffer->state.pending_pipe_bits |= 1134 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT; 1135} 1136 1137/** 1138 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass. 1139 */ 1140static VkResult 1141genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer, 1142 struct anv_render_pass *pass, 1143 const VkRenderPassBeginInfo *begin) 1144{ 1145 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; 1146 struct anv_cmd_state *state = &cmd_buffer->state; 1147 1148 vk_free(&cmd_buffer->pool->alloc, state->attachments); 1149 1150 if (pass->attachment_count > 0) { 1151 state->attachments = vk_alloc(&cmd_buffer->pool->alloc, 1152 pass->attachment_count * 1153 sizeof(state->attachments[0]), 1154 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); 1155 if (state->attachments == NULL) { 1156 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */ 1157 return anv_batch_set_error(&cmd_buffer->batch, 1158 VK_ERROR_OUT_OF_HOST_MEMORY); 1159 } 1160 } else { 1161 state->attachments = NULL; 1162 } 1163 1164 /* Reserve one for the NULL state. */ 1165 unsigned num_states = 1; 1166 for (uint32_t i = 0; i < pass->attachment_count; ++i) { 1167 if (vk_format_is_color(pass->attachments[i].format)) 1168 num_states++; 1169 1170 if (need_input_attachment_state(&pass->attachments[i])) 1171 num_states++; 1172 } 1173 1174 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align); 1175 state->render_pass_states = 1176 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 1177 num_states * ss_stride, isl_dev->ss.align); 1178 1179 struct anv_state next_state = state->render_pass_states; 1180 next_state.alloc_size = isl_dev->ss.size; 1181 1182 state->null_surface_state = next_state; 1183 next_state.offset += ss_stride; 1184 next_state.map += ss_stride; 1185 1186 for (uint32_t i = 0; i < pass->attachment_count; ++i) { 1187 if (vk_format_is_color(pass->attachments[i].format)) { 1188 state->attachments[i].color.state = next_state; 1189 next_state.offset += ss_stride; 1190 next_state.map += ss_stride; 1191 } 1192 1193 if (need_input_attachment_state(&pass->attachments[i])) { 1194 state->attachments[i].input.state = next_state; 1195 next_state.offset += ss_stride; 1196 next_state.map += ss_stride; 1197 } 1198 } 1199 assert(next_state.offset == state->render_pass_states.offset + 1200 state->render_pass_states.alloc_size); 1201 1202 if (begin) { 1203 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer); 1204 assert(pass->attachment_count == framebuffer->attachment_count); 1205 1206 isl_null_fill_state(isl_dev, state->null_surface_state.map, 1207 isl_extent3d(framebuffer->width, 1208 framebuffer->height, 1209 framebuffer->layers)); 1210 1211 for (uint32_t i = 0; i < pass->attachment_count; ++i) { 1212 struct anv_render_pass_attachment *att = &pass->attachments[i]; 1213 VkImageAspectFlags att_aspects = vk_format_aspects(att->format); 1214 VkImageAspectFlags clear_aspects = 0; 1215 VkImageAspectFlags load_aspects = 0; 1216 1217 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { 1218 /* color attachment */ 1219 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { 1220 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT; 1221 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) { 1222 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT; 1223 } 1224 } else { 1225 /* depthstencil attachment */ 1226 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { 1227 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { 1228 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT; 1229 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) { 1230 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT; 1231 } 1232 } 1233 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { 1234 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { 1235 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT; 1236 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) { 1237 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT; 1238 } 1239 } 1240 } 1241 1242 state->attachments[i].current_layout = att->initial_layout; 1243 state->attachments[i].pending_clear_aspects = clear_aspects; 1244 state->attachments[i].pending_load_aspects = load_aspects; 1245 if (clear_aspects) 1246 state->attachments[i].clear_value = begin->pClearValues[i]; 1247 1248 struct anv_image_view *iview = framebuffer->attachments[i]; 1249 anv_assert(iview->vk_format == att->format); 1250 1251 const uint32_t num_layers = iview->planes[0].isl.array_len; 1252 state->attachments[i].pending_clear_views = (1 << num_layers) - 1; 1253 1254 union isl_color_value clear_color = { .u32 = { 0, } }; 1255 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { 1256 anv_assert(iview->n_planes == 1); 1257 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT); 1258 color_attachment_compute_aux_usage(cmd_buffer->device, 1259 state, i, begin->renderArea, 1260 &clear_color); 1261 1262 anv_image_fill_surface_state(cmd_buffer->device, 1263 iview->image, 1264 VK_IMAGE_ASPECT_COLOR_BIT, 1265 &iview->planes[0].isl, 1266 ISL_SURF_USAGE_RENDER_TARGET_BIT, 1267 state->attachments[i].aux_usage, 1268 &clear_color, 1269 0, 1270 &state->attachments[i].color, 1271 NULL); 1272 1273 add_surface_state_relocs(cmd_buffer, state->attachments[i].color); 1274 } else { 1275 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device, 1276 state, i, 1277 begin->renderArea); 1278 } 1279 1280 if (need_input_attachment_state(&pass->attachments[i])) { 1281 anv_image_fill_surface_state(cmd_buffer->device, 1282 iview->image, 1283 VK_IMAGE_ASPECT_COLOR_BIT, 1284 &iview->planes[0].isl, 1285 ISL_SURF_USAGE_TEXTURE_BIT, 1286 state->attachments[i].input_aux_usage, 1287 &clear_color, 1288 0, 1289 &state->attachments[i].input, 1290 NULL); 1291 1292 add_surface_state_relocs(cmd_buffer, state->attachments[i].input); 1293 } 1294 } 1295 } 1296 1297 return VK_SUCCESS; 1298} 1299 1300VkResult 1301genX(BeginCommandBuffer)( 1302 VkCommandBuffer commandBuffer, 1303 const VkCommandBufferBeginInfo* pBeginInfo) 1304{ 1305 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 1306 1307 /* If this is the first vkBeginCommandBuffer, we must *initialize* the 1308 * command buffer's state. Otherwise, we must *reset* its state. In both 1309 * cases we reset it. 1310 * 1311 * From the Vulkan 1.0 spec: 1312 * 1313 * If a command buffer is in the executable state and the command buffer 1314 * was allocated from a command pool with the 1315 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then 1316 * vkBeginCommandBuffer implicitly resets the command buffer, behaving 1317 * as if vkResetCommandBuffer had been called with 1318 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts 1319 * the command buffer in the recording state. 1320 */ 1321 anv_cmd_buffer_reset(cmd_buffer); 1322 1323 cmd_buffer->usage_flags = pBeginInfo->flags; 1324 1325 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY || 1326 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)); 1327 1328 genX(cmd_buffer_emit_state_base_address)(cmd_buffer); 1329 1330 /* We sometimes store vertex data in the dynamic state buffer for blorp 1331 * operations and our dynamic state stream may re-use data from previous 1332 * command buffers. In order to prevent stale cache data, we flush the VF 1333 * cache. We could do this on every blorp call but that's not really 1334 * needed as all of the data will get written by the CPU prior to the GPU 1335 * executing anything. The chances are fairly high that they will use 1336 * blorp at least once per primary command buffer so it shouldn't be 1337 * wasted. 1338 */ 1339 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) 1340 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT; 1341 1342 /* We send an "Indirect State Pointers Disable" packet at 1343 * EndCommandBuffer, so all push contant packets are ignored during a 1344 * context restore. Documentation says after that command, we need to 1345 * emit push constants again before any rendering operation. So we 1346 * flag them dirty here to make sure they get emitted. 1347 */ 1348 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS; 1349 1350 VkResult result = VK_SUCCESS; 1351 if (cmd_buffer->usage_flags & 1352 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) { 1353 assert(pBeginInfo->pInheritanceInfo); 1354 cmd_buffer->state.pass = 1355 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass); 1356 cmd_buffer->state.subpass = 1357 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass]; 1358 1359 /* This is optional in the inheritance info. */ 1360 cmd_buffer->state.framebuffer = 1361 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer); 1362 1363 result = genX(cmd_buffer_setup_attachments)(cmd_buffer, 1364 cmd_buffer->state.pass, NULL); 1365 1366 /* Record that HiZ is enabled if we can. */ 1367 if (cmd_buffer->state.framebuffer) { 1368 const struct anv_image_view * const iview = 1369 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer); 1370 1371 if (iview) { 1372 VkImageLayout layout = 1373 cmd_buffer->state.subpass->depth_stencil_attachment->layout; 1374 1375 enum isl_aux_usage aux_usage = 1376 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image, 1377 VK_IMAGE_ASPECT_DEPTH_BIT, layout); 1378 1379 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ; 1380 } 1381 } 1382 1383 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS; 1384 } 1385 1386#if GEN_GEN >= 8 || GEN_IS_HASWELL 1387 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) { 1388 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info = 1389 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT); 1390 1391 /* If secondary buffer supports conditional rendering 1392 * we should emit commands as if conditional rendering is enabled. 1393 */ 1394 cmd_buffer->state.conditional_render_enabled = 1395 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable; 1396 } 1397#endif 1398 1399 return result; 1400} 1401 1402/* From the PRM, Volume 2a: 1403 * 1404 * "Indirect State Pointers Disable 1405 * 1406 * At the completion of the post-sync operation associated with this pipe 1407 * control packet, the indirect state pointers in the hardware are 1408 * considered invalid; the indirect pointers are not saved in the context. 1409 * If any new indirect state commands are executed in the command stream 1410 * while the pipe control is pending, the new indirect state commands are 1411 * preserved. 1412 * 1413 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context 1414 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant 1415 * commands are only considered as Indirect State Pointers. Once ISP is 1416 * issued in a context, SW must initialize by programming push constant 1417 * commands for all the shaders (at least to zero length) before attempting 1418 * any rendering operation for the same context." 1419 * 1420 * 3DSTATE_CONSTANT_* packets are restored during a context restore, 1421 * even though they point to a BO that has been already unreferenced at 1422 * the end of the previous batch buffer. This has been fine so far since 1423 * we are protected by these scratch page (every address not covered by 1424 * a BO should be pointing to the scratch page). But on CNL, it is 1425 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_* 1426 * instruction. 1427 * 1428 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the 1429 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a 1430 * context restore, so the mentioned hang doesn't happen. However, 1431 * software must program push constant commands for all stages prior to 1432 * rendering anything. So we flag them dirty in BeginCommandBuffer. 1433 * 1434 * Finally, we also make sure to stall at pixel scoreboard to make sure the 1435 * constants have been loaded into the EUs prior to disable the push constants 1436 * so that it doesn't hang a previous 3DPRIMITIVE. 1437 */ 1438static void 1439emit_isp_disable(struct anv_cmd_buffer *cmd_buffer) 1440{ 1441 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 1442 pc.StallAtPixelScoreboard = true; 1443 pc.CommandStreamerStallEnable = true; 1444 } 1445 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 1446 pc.IndirectStatePointersDisable = true; 1447 pc.CommandStreamerStallEnable = true; 1448 } 1449} 1450 1451VkResult 1452genX(EndCommandBuffer)( 1453 VkCommandBuffer commandBuffer) 1454{ 1455 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 1456 1457 if (anv_batch_has_error(&cmd_buffer->batch)) 1458 return cmd_buffer->batch.status; 1459 1460 /* We want every command buffer to start with the PMA fix in a known state, 1461 * so we disable it at the end of the command buffer. 1462 */ 1463 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false); 1464 1465 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); 1466 1467 emit_isp_disable(cmd_buffer); 1468 1469 anv_cmd_buffer_end_batch_buffer(cmd_buffer); 1470 1471 return VK_SUCCESS; 1472} 1473 1474void 1475genX(CmdExecuteCommands)( 1476 VkCommandBuffer commandBuffer, 1477 uint32_t commandBufferCount, 1478 const VkCommandBuffer* pCmdBuffers) 1479{ 1480 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer); 1481 1482 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); 1483 1484 if (anv_batch_has_error(&primary->batch)) 1485 return; 1486 1487 /* The secondary command buffers will assume that the PMA fix is disabled 1488 * when they begin executing. Make sure this is true. 1489 */ 1490 genX(cmd_buffer_enable_pma_fix)(primary, false); 1491 1492 /* The secondary command buffer doesn't know which textures etc. have been 1493 * flushed prior to their execution. Apply those flushes now. 1494 */ 1495 genX(cmd_buffer_apply_pipe_flushes)(primary); 1496 1497 for (uint32_t i = 0; i < commandBufferCount; i++) { 1498 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]); 1499 1500 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY); 1501 assert(!anv_batch_has_error(&secondary->batch)); 1502 1503#if GEN_GEN >= 8 || GEN_IS_HASWELL 1504 if (secondary->state.conditional_render_enabled) { 1505 if (!primary->state.conditional_render_enabled) { 1506 /* Secondary buffer is constructed as if it will be executed 1507 * with conditional rendering, we should satisfy this dependency 1508 * regardless of conditional rendering being enabled in primary. 1509 */ 1510 struct gen_mi_builder b; 1511 gen_mi_builder_init(&b, &primary->batch); 1512 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG), 1513 gen_mi_imm(UINT64_MAX)); 1514 } 1515 } 1516#endif 1517 1518 if (secondary->usage_flags & 1519 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) { 1520 /* If we're continuing a render pass from the primary, we need to 1521 * copy the surface states for the current subpass into the storage 1522 * we allocated for them in BeginCommandBuffer. 1523 */ 1524 struct anv_bo *ss_bo = 1525 primary->device->surface_state_pool.block_pool.bo; 1526 struct anv_state src_state = primary->state.render_pass_states; 1527 struct anv_state dst_state = secondary->state.render_pass_states; 1528 assert(src_state.alloc_size == dst_state.alloc_size); 1529 1530 genX(cmd_buffer_so_memcpy)(primary, 1531 (struct anv_address) { 1532 .bo = ss_bo, 1533 .offset = dst_state.offset, 1534 }, 1535 (struct anv_address) { 1536 .bo = ss_bo, 1537 .offset = src_state.offset, 1538 }, 1539 src_state.alloc_size); 1540 } 1541 1542 anv_cmd_buffer_add_secondary(primary, secondary); 1543 } 1544 1545 /* The secondary may have selected a different pipeline (3D or compute) and 1546 * may have changed the current L3$ configuration. Reset our tracking 1547 * variables to invalid values to ensure that we re-emit these in the case 1548 * where we do any draws or compute dispatches from the primary after the 1549 * secondary has returned. 1550 */ 1551 primary->state.current_pipeline = UINT32_MAX; 1552 primary->state.current_l3_config = NULL; 1553 1554 /* Each of the secondary command buffers will use its own state base 1555 * address. We need to re-emit state base address for the primary after 1556 * all of the secondaries are done. 1557 * 1558 * TODO: Maybe we want to make this a dirty bit to avoid extra state base 1559 * address calls? 1560 */ 1561 genX(cmd_buffer_emit_state_base_address)(primary); 1562} 1563 1564#define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000 1565#define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000 1566#define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000 1567 1568/** 1569 * Program the hardware to use the specified L3 configuration. 1570 */ 1571void 1572genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer, 1573 const struct gen_l3_config *cfg) 1574{ 1575 assert(cfg); 1576 if (cfg == cmd_buffer->state.current_l3_config) 1577 return; 1578 1579 if (unlikely(INTEL_DEBUG & DEBUG_L3)) { 1580 intel_logd("L3 config transition: "); 1581 gen_dump_l3_config(cfg, stderr); 1582 } 1583 1584 const bool has_slm = cfg->n[GEN_L3P_SLM]; 1585 1586 /* According to the hardware docs, the L3 partitioning can only be changed 1587 * while the pipeline is completely drained and the caches are flushed, 1588 * which involves a first PIPE_CONTROL flush which stalls the pipeline... 1589 */ 1590 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 1591 pc.DCFlushEnable = true; 1592 pc.PostSyncOperation = NoWrite; 1593 pc.CommandStreamerStallEnable = true; 1594 } 1595 1596 /* ...followed by a second pipelined PIPE_CONTROL that initiates 1597 * invalidation of the relevant caches. Note that because RO invalidation 1598 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL 1599 * command is processed by the CS) we cannot combine it with the previous 1600 * stalling flush as the hardware documentation suggests, because that 1601 * would cause the CS to stall on previous rendering *after* RO 1602 * invalidation and wouldn't prevent the RO caches from being polluted by 1603 * concurrent rendering before the stall completes. This intentionally 1604 * doesn't implement the SKL+ hardware workaround suggesting to enable CS 1605 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for 1606 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs 1607 * already guarantee that there is no concurrent GPGPU kernel execution 1608 * (see SKL HSD 2132585). 1609 */ 1610 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 1611 pc.TextureCacheInvalidationEnable = true; 1612 pc.ConstantCacheInvalidationEnable = true; 1613 pc.InstructionCacheInvalidateEnable = true; 1614 pc.StateCacheInvalidationEnable = true; 1615 pc.PostSyncOperation = NoWrite; 1616 } 1617 1618 /* Now send a third stalling flush to make sure that invalidation is 1619 * complete when the L3 configuration registers are modified. 1620 */ 1621 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 1622 pc.DCFlushEnable = true; 1623 pc.PostSyncOperation = NoWrite; 1624 pc.CommandStreamerStallEnable = true; 1625 } 1626 1627#if GEN_GEN >= 8 1628 1629 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]); 1630 1631 uint32_t l3cr; 1632 anv_pack_struct(&l3cr, GENX(L3CNTLREG), 1633 .SLMEnable = has_slm, 1634#if GEN_GEN == 11 1635 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set 1636 * in L3CNTLREG register. The default setting of the bit is not the 1637 * desirable behavior. 1638 */ 1639 .ErrorDetectionBehaviorControl = true, 1640 .UseFullWays = true, 1641#endif 1642 .URBAllocation = cfg->n[GEN_L3P_URB], 1643 .ROAllocation = cfg->n[GEN_L3P_RO], 1644 .DCAllocation = cfg->n[GEN_L3P_DC], 1645 .AllAllocation = cfg->n[GEN_L3P_ALL]); 1646 1647 /* Set up the L3 partitioning. */ 1648 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr); 1649 1650#else 1651 1652 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL]; 1653 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] || 1654 cfg->n[GEN_L3P_ALL]; 1655 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] || 1656 cfg->n[GEN_L3P_ALL]; 1657 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] || 1658 cfg->n[GEN_L3P_ALL]; 1659 1660 assert(!cfg->n[GEN_L3P_ALL]); 1661 1662 /* When enabled SLM only uses a portion of the L3 on half of the banks, 1663 * the matching space on the remaining banks has to be allocated to a 1664 * client (URB for all validated configurations) set to the 1665 * lower-bandwidth 2-bank address hashing mode. 1666 */ 1667 const struct gen_device_info *devinfo = &cmd_buffer->device->info; 1668 const bool urb_low_bw = has_slm && !devinfo->is_baytrail; 1669 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]); 1670 1671 /* Minimum number of ways that can be allocated to the URB. */ 1672 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0; 1673 assert(cfg->n[GEN_L3P_URB] >= n0_urb); 1674 1675 uint32_t l3sqcr1, l3cr2, l3cr3; 1676 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1), 1677 .ConvertDC_UC = !has_dc, 1678 .ConvertIS_UC = !has_is, 1679 .ConvertC_UC = !has_c, 1680 .ConvertT_UC = !has_t); 1681 l3sqcr1 |= 1682 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT : 1683 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT : 1684 IVB_L3SQCREG1_SQGHPCI_DEFAULT; 1685 1686 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2), 1687 .SLMEnable = has_slm, 1688 .URBLowBandwidth = urb_low_bw, 1689 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb, 1690#if !GEN_IS_HASWELL 1691 .ALLAllocation = cfg->n[GEN_L3P_ALL], 1692#endif 1693 .ROAllocation = cfg->n[GEN_L3P_RO], 1694 .DCAllocation = cfg->n[GEN_L3P_DC]); 1695 1696 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3), 1697 .ISAllocation = cfg->n[GEN_L3P_IS], 1698 .ISLowBandwidth = 0, 1699 .CAllocation = cfg->n[GEN_L3P_C], 1700 .CLowBandwidth = 0, 1701 .TAllocation = cfg->n[GEN_L3P_T], 1702 .TLowBandwidth = 0); 1703 1704 /* Set up the L3 partitioning. */ 1705 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1); 1706 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2); 1707 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3); 1708 1709#if GEN_IS_HASWELL 1710 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) { 1711 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep 1712 * them disabled to avoid crashing the system hard. 1713 */ 1714 uint32_t scratch1, chicken3; 1715 anv_pack_struct(&scratch1, GENX(SCRATCH1), 1716 .L3AtomicDisable = !has_dc); 1717 anv_pack_struct(&chicken3, GENX(CHICKEN3), 1718 .L3AtomicDisableMask = true, 1719 .L3AtomicDisable = !has_dc); 1720 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1); 1721 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3); 1722 } 1723#endif 1724 1725#endif 1726 1727 cmd_buffer->state.current_l3_config = cfg; 1728} 1729 1730void 1731genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer) 1732{ 1733 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits; 1734 1735 /* Flushes are pipelined while invalidations are handled immediately. 1736 * Therefore, if we're flushing anything then we need to schedule a stall 1737 * before any invalidations can happen. 1738 */ 1739 if (bits & ANV_PIPE_FLUSH_BITS) 1740 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT; 1741 1742 /* If we're going to do an invalidate and we have a pending CS stall that 1743 * has yet to be resolved, we do the CS stall now. 1744 */ 1745 if ((bits & ANV_PIPE_INVALIDATE_BITS) && 1746 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) { 1747 bits |= ANV_PIPE_CS_STALL_BIT; 1748 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT; 1749 } 1750 1751 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) { 1752 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { 1753 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT; 1754 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT; 1755 pipe.RenderTargetCacheFlushEnable = 1756 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT; 1757 1758 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT; 1759 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT; 1760 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT; 1761 1762 /* 1763 * According to the Broadwell documentation, any PIPE_CONTROL with the 1764 * "Command Streamer Stall" bit set must also have another bit set, 1765 * with five different options: 1766 * 1767 * - Render Target Cache Flush 1768 * - Depth Cache Flush 1769 * - Stall at Pixel Scoreboard 1770 * - Post-Sync Operation 1771 * - Depth Stall 1772 * - DC Flush Enable 1773 * 1774 * I chose "Stall at Pixel Scoreboard" since that's what we use in 1775 * mesa and it seems to work fine. The choice is fairly arbitrary. 1776 */ 1777 if ((bits & ANV_PIPE_CS_STALL_BIT) && 1778 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT | 1779 ANV_PIPE_STALL_AT_SCOREBOARD_BIT))) 1780 pipe.StallAtPixelScoreboard = true; 1781 } 1782 1783 /* If a render target flush was emitted, then we can toggle off the bit 1784 * saying that render target writes are ongoing. 1785 */ 1786 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT) 1787 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES); 1788 1789 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT); 1790 } 1791 1792 if (bits & ANV_PIPE_INVALIDATE_BITS) { 1793 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL", 1794 * 1795 * "If the VF Cache Invalidation Enable is set to a 1 in a 1796 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to 1797 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent 1798 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to 1799 * a 1." 1800 * 1801 * This appears to hang Broadwell, so we restrict it to just gen9. 1802 */ 1803 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) 1804 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe); 1805 1806 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { 1807 pipe.StateCacheInvalidationEnable = 1808 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT; 1809 pipe.ConstantCacheInvalidationEnable = 1810 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT; 1811 pipe.VFCacheInvalidationEnable = 1812 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT; 1813 pipe.TextureCacheInvalidationEnable = 1814 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT; 1815 pipe.InstructionCacheInvalidateEnable = 1816 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT; 1817 1818 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL", 1819 * 1820 * "When VF Cache Invalidate is set “Post Sync Operation” must be 1821 * enabled to “Write Immediate Data” or “Write PS Depth Count” or 1822 * “Write Timestamp”. 1823 */ 1824 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) { 1825 pipe.PostSyncOperation = WriteImmediateData; 1826 pipe.Address = 1827 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 }; 1828 } 1829 } 1830 1831 bits &= ~ANV_PIPE_INVALIDATE_BITS; 1832 } 1833 1834 cmd_buffer->state.pending_pipe_bits = bits; 1835} 1836 1837void genX(CmdPipelineBarrier)( 1838 VkCommandBuffer commandBuffer, 1839 VkPipelineStageFlags srcStageMask, 1840 VkPipelineStageFlags destStageMask, 1841 VkBool32 byRegion, 1842 uint32_t memoryBarrierCount, 1843 const VkMemoryBarrier* pMemoryBarriers, 1844 uint32_t bufferMemoryBarrierCount, 1845 const VkBufferMemoryBarrier* pBufferMemoryBarriers, 1846 uint32_t imageMemoryBarrierCount, 1847 const VkImageMemoryBarrier* pImageMemoryBarriers) 1848{ 1849 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 1850 1851 /* XXX: Right now, we're really dumb and just flush whatever categories 1852 * the app asks for. One of these days we may make this a bit better 1853 * but right now that's all the hardware allows for in most areas. 1854 */ 1855 VkAccessFlags src_flags = 0; 1856 VkAccessFlags dst_flags = 0; 1857 1858 for (uint32_t i = 0; i < memoryBarrierCount; i++) { 1859 src_flags |= pMemoryBarriers[i].srcAccessMask; 1860 dst_flags |= pMemoryBarriers[i].dstAccessMask; 1861 } 1862 1863 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) { 1864 src_flags |= pBufferMemoryBarriers[i].srcAccessMask; 1865 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask; 1866 } 1867 1868 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) { 1869 src_flags |= pImageMemoryBarriers[i].srcAccessMask; 1870 dst_flags |= pImageMemoryBarriers[i].dstAccessMask; 1871 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image); 1872 const VkImageSubresourceRange *range = 1873 &pImageMemoryBarriers[i].subresourceRange; 1874 1875 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { 1876 transition_depth_buffer(cmd_buffer, image, 1877 pImageMemoryBarriers[i].oldLayout, 1878 pImageMemoryBarriers[i].newLayout); 1879 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { 1880 VkImageAspectFlags color_aspects = 1881 anv_image_expand_aspects(image, range->aspectMask); 1882 uint32_t aspect_bit; 1883 1884 uint32_t base_layer, layer_count; 1885 if (image->type == VK_IMAGE_TYPE_3D) { 1886 base_layer = 0; 1887 layer_count = anv_minify(image->extent.depth, range->baseMipLevel); 1888 } else { 1889 base_layer = range->baseArrayLayer; 1890 layer_count = anv_get_layerCount(image, range); 1891 } 1892 1893 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) { 1894 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit, 1895 range->baseMipLevel, 1896 anv_get_levelCount(image, range), 1897 base_layer, layer_count, 1898 pImageMemoryBarriers[i].oldLayout, 1899 pImageMemoryBarriers[i].newLayout); 1900 } 1901 } 1902 } 1903 1904 cmd_buffer->state.pending_pipe_bits |= 1905 anv_pipe_flush_bits_for_access_flags(src_flags) | 1906 anv_pipe_invalidate_bits_for_access_flags(dst_flags); 1907} 1908 1909static void 1910cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer) 1911{ 1912 VkShaderStageFlags stages = 1913 cmd_buffer->state.gfx.base.pipeline->active_stages; 1914 1915 /* In order to avoid thrash, we assume that vertex and fragment stages 1916 * always exist. In the rare case where one is missing *and* the other 1917 * uses push concstants, this may be suboptimal. However, avoiding stalls 1918 * seems more important. 1919 */ 1920 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT; 1921 1922 if (stages == cmd_buffer->state.push_constant_stages) 1923 return; 1924 1925#if GEN_GEN >= 8 1926 const unsigned push_constant_kb = 32; 1927#elif GEN_IS_HASWELL 1928 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16; 1929#else 1930 const unsigned push_constant_kb = 16; 1931#endif 1932 1933 const unsigned num_stages = 1934 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS); 1935 unsigned size_per_stage = push_constant_kb / num_stages; 1936 1937 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in 1938 * units of 2KB. Incidentally, these are the same platforms that have 1939 * 32KB worth of push constant space. 1940 */ 1941 if (push_constant_kb == 32) 1942 size_per_stage &= ~1u; 1943 1944 uint32_t kb_used = 0; 1945 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) { 1946 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0; 1947 anv_batch_emit(&cmd_buffer->batch, 1948 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) { 1949 alloc._3DCommandSubOpcode = 18 + i; 1950 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0; 1951 alloc.ConstantBufferSize = push_size; 1952 } 1953 kb_used += push_size; 1954 } 1955 1956 anv_batch_emit(&cmd_buffer->batch, 1957 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) { 1958 alloc.ConstantBufferOffset = kb_used; 1959 alloc.ConstantBufferSize = push_constant_kb - kb_used; 1960 } 1961 1962 cmd_buffer->state.push_constant_stages = stages; 1963 1964 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS: 1965 * 1966 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to 1967 * the next 3DPRIMITIVE command after programming the 1968 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS" 1969 * 1970 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of 1971 * pipeline setup, we need to dirty push constants. 1972 */ 1973 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS; 1974} 1975 1976static const struct anv_descriptor * 1977anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state, 1978 const struct anv_pipeline_binding *binding) 1979{ 1980 assert(binding->set < MAX_SETS); 1981 const struct anv_descriptor_set *set = 1982 pipe_state->descriptors[binding->set]; 1983 const uint32_t offset = 1984 set->layout->binding[binding->binding].descriptor_index; 1985 return &set->descriptors[offset + binding->index]; 1986} 1987 1988static uint32_t 1989dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state, 1990 const struct anv_pipeline_binding *binding) 1991{ 1992 assert(binding->set < MAX_SETS); 1993 const struct anv_descriptor_set *set = 1994 pipe_state->descriptors[binding->set]; 1995 1996 uint32_t dynamic_offset_idx = 1997 pipe_state->layout->set[binding->set].dynamic_offset_start + 1998 set->layout->binding[binding->binding].dynamic_offset_index + 1999 binding->index; 2000 2001 return pipe_state->dynamic_offsets[dynamic_offset_idx]; 2002} 2003 2004static struct anv_address 2005anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer, 2006 struct anv_descriptor_set *set) 2007{ 2008 if (set->pool) { 2009 /* This is a normal descriptor set */ 2010 return (struct anv_address) { 2011 .bo = &set->pool->bo, 2012 .offset = set->desc_mem.offset, 2013 }; 2014 } else { 2015 /* This is a push descriptor set. We have to flag it as used on the GPU 2016 * so that the next time we push descriptors, we grab a new memory. 2017 */ 2018 struct anv_push_descriptor_set *push_set = 2019 (struct anv_push_descriptor_set *)set; 2020 push_set->set_used_on_gpu = true; 2021 2022 return (struct anv_address) { 2023 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo, 2024 .offset = set->desc_mem.offset, 2025 }; 2026 } 2027} 2028 2029static VkResult 2030emit_binding_table(struct anv_cmd_buffer *cmd_buffer, 2031 gl_shader_stage stage, 2032 struct anv_state *bt_state) 2033{ 2034 struct anv_subpass *subpass = cmd_buffer->state.subpass; 2035 struct anv_cmd_pipeline_state *pipe_state; 2036 struct anv_pipeline *pipeline; 2037 uint32_t state_offset; 2038 2039 switch (stage) { 2040 case MESA_SHADER_COMPUTE: 2041 pipe_state = &cmd_buffer->state.compute.base; 2042 break; 2043 default: 2044 pipe_state = &cmd_buffer->state.gfx.base; 2045 break; 2046 } 2047 pipeline = pipe_state->pipeline; 2048 2049 if (!anv_pipeline_has_stage(pipeline, stage)) { 2050 *bt_state = (struct anv_state) { 0, }; 2051 return VK_SUCCESS; 2052 } 2053 2054 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map; 2055 if (map->surface_count == 0) { 2056 *bt_state = (struct anv_state) { 0, }; 2057 return VK_SUCCESS; 2058 } 2059 2060 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer, 2061 map->surface_count, 2062 &state_offset); 2063 uint32_t *bt_map = bt_state->map; 2064 2065 if (bt_state->map == NULL) 2066 return VK_ERROR_OUT_OF_DEVICE_MEMORY; 2067 2068 /* We only need to emit relocs if we're not using softpin. If we are using 2069 * softpin then we always keep all user-allocated memory objects resident. 2070 */ 2071 const bool need_client_mem_relocs = 2072 !cmd_buffer->device->instance->physicalDevice.use_softpin; 2073 2074 for (uint32_t s = 0; s < map->surface_count; s++) { 2075 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s]; 2076 2077 struct anv_state surface_state; 2078 2079 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) { 2080 /* Color attachment binding */ 2081 assert(stage == MESA_SHADER_FRAGMENT); 2082 assert(binding->binding == 0); 2083 if (binding->index < subpass->color_count) { 2084 const unsigned att = 2085 subpass->color_attachments[binding->index].attachment; 2086 2087 /* From the Vulkan 1.0.46 spec: 2088 * 2089 * "If any color or depth/stencil attachments are 2090 * VK_ATTACHMENT_UNUSED, then no writes occur for those 2091 * attachments." 2092 */ 2093 if (att == VK_ATTACHMENT_UNUSED) { 2094 surface_state = cmd_buffer->state.null_surface_state; 2095 } else { 2096 surface_state = cmd_buffer->state.attachments[att].color.state; 2097 } 2098 } else { 2099 surface_state = cmd_buffer->state.null_surface_state; 2100 } 2101 2102 bt_map[s] = surface_state.offset + state_offset; 2103 continue; 2104 } else if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) { 2105 struct anv_state surface_state = 2106 anv_cmd_buffer_alloc_surface_state(cmd_buffer); 2107 2108 struct anv_address constant_data = { 2109 .bo = pipeline->device->dynamic_state_pool.block_pool.bo, 2110 .offset = pipeline->shaders[stage]->constant_data.offset, 2111 }; 2112 unsigned constant_data_size = 2113 pipeline->shaders[stage]->constant_data_size; 2114 2115 const enum isl_format format = 2116 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER); 2117 anv_fill_buffer_surface_state(cmd_buffer->device, 2118 surface_state, format, 2119 constant_data, constant_data_size, 1); 2120 2121 bt_map[s] = surface_state.offset + state_offset; 2122 add_surface_reloc(cmd_buffer, surface_state, constant_data); 2123 continue; 2124 } else if (binding->set == ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS) { 2125 /* This is always the first binding for compute shaders */ 2126 assert(stage == MESA_SHADER_COMPUTE && s == 0); 2127 if (!get_cs_prog_data(pipeline)->uses_num_work_groups) 2128 continue; 2129 2130 struct anv_state surface_state = 2131 anv_cmd_buffer_alloc_surface_state(cmd_buffer); 2132 2133 const enum isl_format format = 2134 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER); 2135 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, 2136 format, 2137 cmd_buffer->state.compute.num_workgroups, 2138 12, 1); 2139 bt_map[s] = surface_state.offset + state_offset; 2140 if (need_client_mem_relocs) { 2141 add_surface_reloc(cmd_buffer, surface_state, 2142 cmd_buffer->state.compute.num_workgroups); 2143 } 2144 continue; 2145 } else if (binding->set == ANV_DESCRIPTOR_SET_DESCRIPTORS) { 2146 /* This is a descriptor set buffer so the set index is actually 2147 * given by binding->binding. (Yes, that's confusing.) 2148 */ 2149 struct anv_descriptor_set *set = 2150 pipe_state->descriptors[binding->binding]; 2151 assert(set->desc_mem.alloc_size); 2152 assert(set->desc_surface_state.alloc_size); 2153 bt_map[s] = set->desc_surface_state.offset + state_offset; 2154 add_surface_reloc(cmd_buffer, set->desc_surface_state, 2155 anv_descriptor_set_address(cmd_buffer, set)); 2156 continue; 2157 } 2158 2159 const struct anv_descriptor *desc = 2160 anv_descriptor_for_binding(pipe_state, binding); 2161 2162 switch (desc->type) { 2163 case VK_DESCRIPTOR_TYPE_SAMPLER: 2164 /* Nothing for us to do here */ 2165 continue; 2166 2167 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: 2168 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: { 2169 struct anv_surface_state sstate = 2170 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ? 2171 desc->image_view->planes[binding->plane].general_sampler_surface_state : 2172 desc->image_view->planes[binding->plane].optimal_sampler_surface_state; 2173 surface_state = sstate.state; 2174 assert(surface_state.alloc_size); 2175 if (need_client_mem_relocs) 2176 add_surface_state_relocs(cmd_buffer, sstate); 2177 break; 2178 } 2179 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: 2180 assert(stage == MESA_SHADER_FRAGMENT); 2181 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) { 2182 /* For depth and stencil input attachments, we treat it like any 2183 * old texture that a user may have bound. 2184 */ 2185 struct anv_surface_state sstate = 2186 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ? 2187 desc->image_view->planes[binding->plane].general_sampler_surface_state : 2188 desc->image_view->planes[binding->plane].optimal_sampler_surface_state; 2189 surface_state = sstate.state; 2190 assert(surface_state.alloc_size); 2191 if (need_client_mem_relocs) 2192 add_surface_state_relocs(cmd_buffer, sstate); 2193 } else { 2194 /* For color input attachments, we create the surface state at 2195 * vkBeginRenderPass time so that we can include aux and clear 2196 * color information. 2197 */ 2198 assert(binding->input_attachment_index < subpass->input_count); 2199 const unsigned subpass_att = binding->input_attachment_index; 2200 const unsigned att = subpass->input_attachments[subpass_att].attachment; 2201 surface_state = cmd_buffer->state.attachments[att].input.state; 2202 } 2203 break; 2204 2205 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: { 2206 struct anv_surface_state sstate = (binding->write_only) 2207 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state 2208 : desc->image_view->planes[binding->plane].storage_surface_state; 2209 surface_state = sstate.state; 2210 assert(surface_state.alloc_size); 2211 if (need_client_mem_relocs) 2212 add_surface_state_relocs(cmd_buffer, sstate); 2213 break; 2214 } 2215 2216 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: 2217 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: 2218 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: 2219 surface_state = desc->buffer_view->surface_state; 2220 assert(surface_state.alloc_size); 2221 if (need_client_mem_relocs) { 2222 add_surface_reloc(cmd_buffer, surface_state, 2223 desc->buffer_view->address); 2224 } 2225 break; 2226 2227 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: 2228 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { 2229 /* Compute the offset within the buffer */ 2230 uint32_t dynamic_offset = 2231 dynamic_offset_for_binding(pipe_state, binding); 2232 uint64_t offset = desc->offset + dynamic_offset; 2233 /* Clamp to the buffer size */ 2234 offset = MIN2(offset, desc->buffer->size); 2235 /* Clamp the range to the buffer size */ 2236 uint32_t range = MIN2(desc->range, desc->buffer->size - offset); 2237 2238 struct anv_address address = 2239 anv_address_add(desc->buffer->address, offset); 2240 2241 surface_state = 2242 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64); 2243 enum isl_format format = 2244 anv_isl_format_for_descriptor_type(desc->type); 2245 2246 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, 2247 format, address, range, 1); 2248 if (need_client_mem_relocs) 2249 add_surface_reloc(cmd_buffer, surface_state, address); 2250 break; 2251 } 2252 2253 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: 2254 surface_state = (binding->write_only) 2255 ? desc->buffer_view->writeonly_storage_surface_state 2256 : desc->buffer_view->storage_surface_state; 2257 assert(surface_state.alloc_size); 2258 if (need_client_mem_relocs) { 2259 add_surface_reloc(cmd_buffer, surface_state, 2260 desc->buffer_view->address); 2261 } 2262 break; 2263 2264 default: 2265 assert(!"Invalid descriptor type"); 2266 continue; 2267 } 2268 2269 bt_map[s] = surface_state.offset + state_offset; 2270 } 2271 2272#if GEN_GEN >= 11 2273 /* The PIPE_CONTROL command description says: 2274 * 2275 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message 2276 * points to a different RENDER_SURFACE_STATE, SW must issue a Render 2277 * Target Cache Flush by enabling this bit. When render target flush 2278 * is set due to new association of BTI, PS Scoreboard Stall bit must 2279 * be set in this packet." 2280 * 2281 * FINISHME: Currently we shuffle around the surface states in the binding 2282 * table based on if they are getting used or not. So, we've to do below 2283 * pipe control flush for every binding table upload. Make changes so 2284 * that we do it only when we modify render target surface states. 2285 */ 2286 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 2287 pc.RenderTargetCacheFlushEnable = true; 2288 pc.StallAtPixelScoreboard = true; 2289 } 2290#endif 2291 2292 return VK_SUCCESS; 2293} 2294 2295static VkResult 2296emit_samplers(struct anv_cmd_buffer *cmd_buffer, 2297 gl_shader_stage stage, 2298 struct anv_state *state) 2299{ 2300 struct anv_cmd_pipeline_state *pipe_state = 2301 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base : 2302 &cmd_buffer->state.gfx.base; 2303 struct anv_pipeline *pipeline = pipe_state->pipeline; 2304 2305 if (!anv_pipeline_has_stage(pipeline, stage)) { 2306 *state = (struct anv_state) { 0, }; 2307 return VK_SUCCESS; 2308 } 2309 2310 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map; 2311 if (map->sampler_count == 0) { 2312 *state = (struct anv_state) { 0, }; 2313 return VK_SUCCESS; 2314 } 2315 2316 uint32_t size = map->sampler_count * 16; 2317 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32); 2318 2319 if (state->map == NULL) 2320 return VK_ERROR_OUT_OF_DEVICE_MEMORY; 2321 2322 for (uint32_t s = 0; s < map->sampler_count; s++) { 2323 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s]; 2324 const struct anv_descriptor *desc = 2325 anv_descriptor_for_binding(pipe_state, binding); 2326 2327 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER && 2328 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) 2329 continue; 2330 2331 struct anv_sampler *sampler = desc->sampler; 2332 2333 /* This can happen if we have an unfilled slot since TYPE_SAMPLER 2334 * happens to be zero. 2335 */ 2336 if (sampler == NULL) 2337 continue; 2338 2339 memcpy(state->map + (s * 16), 2340 sampler->state[binding->plane], sizeof(sampler->state[0])); 2341 } 2342 2343 return VK_SUCCESS; 2344} 2345 2346static uint32_t 2347flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer) 2348{ 2349 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; 2350 2351 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty & 2352 pipeline->active_stages; 2353 2354 VkResult result = VK_SUCCESS; 2355 anv_foreach_stage(s, dirty) { 2356 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]); 2357 if (result != VK_SUCCESS) 2358 break; 2359 result = emit_binding_table(cmd_buffer, s, 2360 &cmd_buffer->state.binding_tables[s]); 2361 if (result != VK_SUCCESS) 2362 break; 2363 } 2364 2365 if (result != VK_SUCCESS) { 2366 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY); 2367 2368 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer); 2369 if (result != VK_SUCCESS) 2370 return 0; 2371 2372 /* Re-emit state base addresses so we get the new surface state base 2373 * address before we start emitting binding tables etc. 2374 */ 2375 genX(cmd_buffer_emit_state_base_address)(cmd_buffer); 2376 2377 /* Re-emit all active binding tables */ 2378 dirty |= pipeline->active_stages; 2379 anv_foreach_stage(s, dirty) { 2380 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]); 2381 if (result != VK_SUCCESS) { 2382 anv_batch_set_error(&cmd_buffer->batch, result); 2383 return 0; 2384 } 2385 result = emit_binding_table(cmd_buffer, s, 2386 &cmd_buffer->state.binding_tables[s]); 2387 if (result != VK_SUCCESS) { 2388 anv_batch_set_error(&cmd_buffer->batch, result); 2389 return 0; 2390 } 2391 } 2392 } 2393 2394 cmd_buffer->state.descriptors_dirty &= ~dirty; 2395 2396 return dirty; 2397} 2398 2399static void 2400cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer, 2401 uint32_t stages) 2402{ 2403 static const uint32_t sampler_state_opcodes[] = { 2404 [MESA_SHADER_VERTEX] = 43, 2405 [MESA_SHADER_TESS_CTRL] = 44, /* HS */ 2406 [MESA_SHADER_TESS_EVAL] = 45, /* DS */ 2407 [MESA_SHADER_GEOMETRY] = 46, 2408 [MESA_SHADER_FRAGMENT] = 47, 2409 [MESA_SHADER_COMPUTE] = 0, 2410 }; 2411 2412 static const uint32_t binding_table_opcodes[] = { 2413 [MESA_SHADER_VERTEX] = 38, 2414 [MESA_SHADER_TESS_CTRL] = 39, 2415 [MESA_SHADER_TESS_EVAL] = 40, 2416 [MESA_SHADER_GEOMETRY] = 41, 2417 [MESA_SHADER_FRAGMENT] = 42, 2418 [MESA_SHADER_COMPUTE] = 0, 2419 }; 2420 2421 anv_foreach_stage(s, stages) { 2422 assert(s < ARRAY_SIZE(binding_table_opcodes)); 2423 assert(binding_table_opcodes[s] > 0); 2424 2425 if (cmd_buffer->state.samplers[s].alloc_size > 0) { 2426 anv_batch_emit(&cmd_buffer->batch, 2427 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) { 2428 ssp._3DCommandSubOpcode = sampler_state_opcodes[s]; 2429 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset; 2430 } 2431 } 2432 2433 /* Always emit binding table pointers if we're asked to, since on SKL 2434 * this is what flushes push constants. */ 2435 anv_batch_emit(&cmd_buffer->batch, 2436 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) { 2437 btp._3DCommandSubOpcode = binding_table_opcodes[s]; 2438 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset; 2439 } 2440 } 2441} 2442 2443static void 2444cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer, 2445 VkShaderStageFlags dirty_stages) 2446{ 2447 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; 2448 const struct anv_pipeline *pipeline = gfx_state->base.pipeline; 2449 2450 static const uint32_t push_constant_opcodes[] = { 2451 [MESA_SHADER_VERTEX] = 21, 2452 [MESA_SHADER_TESS_CTRL] = 25, /* HS */ 2453 [MESA_SHADER_TESS_EVAL] = 26, /* DS */ 2454 [MESA_SHADER_GEOMETRY] = 22, 2455 [MESA_SHADER_FRAGMENT] = 23, 2456 [MESA_SHADER_COMPUTE] = 0, 2457 }; 2458 2459 VkShaderStageFlags flushed = 0; 2460 2461 anv_foreach_stage(stage, dirty_stages) { 2462 assert(stage < ARRAY_SIZE(push_constant_opcodes)); 2463 assert(push_constant_opcodes[stage] > 0); 2464 2465 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) { 2466 c._3DCommandSubOpcode = push_constant_opcodes[stage]; 2467 2468 if (anv_pipeline_has_stage(pipeline, stage)) { 2469#if GEN_GEN >= 8 || GEN_IS_HASWELL 2470 const struct brw_stage_prog_data *prog_data = 2471 pipeline->shaders[stage]->prog_data; 2472 const struct anv_pipeline_bind_map *bind_map = 2473 &pipeline->shaders[stage]->bind_map; 2474 2475 /* The Skylake PRM contains the following restriction: 2476 * 2477 * "The driver must ensure The following case does not occur 2478 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with 2479 * buffer 3 read length equal to zero committed followed by a 2480 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to 2481 * zero committed." 2482 * 2483 * To avoid this, we program the buffers in the highest slots. 2484 * This way, slot 0 is only used if slot 3 is also used. 2485 */ 2486 int n = 3; 2487 2488 for (int i = 3; i >= 0; i--) { 2489 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i]; 2490 if (range->length == 0) 2491 continue; 2492 2493 const unsigned surface = 2494 prog_data->binding_table.ubo_start + range->block; 2495 2496 assert(surface <= bind_map->surface_count); 2497 const struct anv_pipeline_binding *binding = 2498 &bind_map->surface_to_descriptor[surface]; 2499 2500 struct anv_address read_addr; 2501 uint32_t read_len; 2502 if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) { 2503 struct anv_address constant_data = { 2504 .bo = pipeline->device->dynamic_state_pool.block_pool.bo, 2505 .offset = pipeline->shaders[stage]->constant_data.offset, 2506 }; 2507 unsigned constant_data_size = 2508 pipeline->shaders[stage]->constant_data_size; 2509 2510 read_len = MIN2(range->length, 2511 DIV_ROUND_UP(constant_data_size, 32) - range->start); 2512 read_addr = anv_address_add(constant_data, 2513 range->start * 32); 2514 } else if (binding->set == ANV_DESCRIPTOR_SET_DESCRIPTORS) { 2515 /* This is a descriptor set buffer so the set index is 2516 * actually given by binding->binding. (Yes, that's 2517 * confusing.) 2518 */ 2519 struct anv_descriptor_set *set = 2520 gfx_state->base.descriptors[binding->binding]; 2521 struct anv_address desc_buffer_addr = 2522 anv_descriptor_set_address(cmd_buffer, set); 2523 const unsigned desc_buffer_size = set->desc_mem.alloc_size; 2524 2525 read_len = MIN2(range->length, 2526 DIV_ROUND_UP(desc_buffer_size, 32) - range->start); 2527 read_addr = anv_address_add(desc_buffer_addr, 2528 range->start * 32); 2529 } else { 2530 const struct anv_descriptor *desc = 2531 anv_descriptor_for_binding(&gfx_state->base, binding); 2532 2533 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) { 2534 read_len = MIN2(range->length, 2535 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start); 2536 read_addr = anv_address_add(desc->buffer_view->address, 2537 range->start * 32); 2538 } else { 2539 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC); 2540 2541 uint32_t dynamic_offset = 2542 dynamic_offset_for_binding(&gfx_state->base, binding); 2543 uint32_t buf_offset = 2544 MIN2(desc->offset + dynamic_offset, desc->buffer->size); 2545 uint32_t buf_range = 2546 MIN2(desc->range, desc->buffer->size - buf_offset); 2547 2548 read_len = MIN2(range->length, 2549 DIV_ROUND_UP(buf_range, 32) - range->start); 2550 read_addr = anv_address_add(desc->buffer->address, 2551 buf_offset + range->start * 32); 2552 } 2553 } 2554 2555 if (read_len > 0) { 2556 c.ConstantBody.Buffer[n] = read_addr; 2557 c.ConstantBody.ReadLength[n] = read_len; 2558 n--; 2559 } 2560 } 2561 2562 struct anv_state state = 2563 anv_cmd_buffer_push_constants(cmd_buffer, stage); 2564 2565 if (state.alloc_size > 0) { 2566 c.ConstantBody.Buffer[n] = (struct anv_address) { 2567 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, 2568 .offset = state.offset, 2569 }; 2570 c.ConstantBody.ReadLength[n] = 2571 DIV_ROUND_UP(state.alloc_size, 32); 2572 } 2573#else 2574 /* For Ivy Bridge, the push constants packets have a different 2575 * rule that would require us to iterate in the other direction 2576 * and possibly mess around with dynamic state base address. 2577 * Don't bother; just emit regular push constants at n = 0. 2578 */ 2579 struct anv_state state = 2580 anv_cmd_buffer_push_constants(cmd_buffer, stage); 2581 2582 if (state.alloc_size > 0) { 2583 c.ConstantBody.Buffer[0].offset = state.offset, 2584 c.ConstantBody.ReadLength[0] = 2585 DIV_ROUND_UP(state.alloc_size, 32); 2586 } 2587#endif 2588 } 2589 } 2590 2591 flushed |= mesa_to_vk_shader_stage(stage); 2592 } 2593 2594 cmd_buffer->state.push_constants_dirty &= ~flushed; 2595} 2596 2597void 2598genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer) 2599{ 2600 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; 2601 uint32_t *p; 2602 2603 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used; 2604 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) 2605 vb_emit |= pipeline->vb_used; 2606 2607 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0); 2608 2609 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config); 2610 2611 genX(flush_pipeline_select_3d)(cmd_buffer); 2612 2613 if (vb_emit) { 2614 const uint32_t num_buffers = __builtin_popcount(vb_emit); 2615 const uint32_t num_dwords = 1 + num_buffers * 4; 2616 2617 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords, 2618 GENX(3DSTATE_VERTEX_BUFFERS)); 2619 uint32_t vb, i = 0; 2620 for_each_bit(vb, vb_emit) { 2621 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer; 2622 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset; 2623 2624 struct GENX(VERTEX_BUFFER_STATE) state = { 2625 .VertexBufferIndex = vb, 2626 2627 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo), 2628#if GEN_GEN <= 7 2629 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA, 2630 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor, 2631#endif 2632 2633 .AddressModifyEnable = true, 2634 .BufferPitch = pipeline->vb[vb].stride, 2635 .BufferStartingAddress = anv_address_add(buffer->address, offset), 2636 2637#if GEN_GEN >= 8 2638 .BufferSize = buffer->size - offset 2639#else 2640 .EndAddress = anv_address_add(buffer->address, buffer->size - 1), 2641#endif 2642 }; 2643 2644 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state); 2645 i++; 2646 } 2647 } 2648 2649 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit; 2650 2651#if GEN_GEN >= 8 2652 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) { 2653 /* We don't need any per-buffer dirty tracking because you're not 2654 * allowed to bind different XFB buffers while XFB is enabled. 2655 */ 2656 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) { 2657 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx]; 2658 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) { 2659 sob.SOBufferIndex = idx; 2660 2661 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) { 2662 sob.SOBufferEnable = true; 2663 sob.MOCS = cmd_buffer->device->default_mocs, 2664 sob.StreamOffsetWriteEnable = false; 2665 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address, 2666 xfb->offset); 2667 /* Size is in DWords - 1 */ 2668 sob.SurfaceSize = xfb->size / 4 - 1; 2669 } 2670 } 2671 } 2672 2673 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */ 2674 if (GEN_GEN >= 10) 2675 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; 2676 } 2677#endif 2678 2679 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) { 2680 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch); 2681 2682 /* The exact descriptor layout is pulled from the pipeline, so we need 2683 * to re-emit binding tables on every pipeline change. 2684 */ 2685 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages; 2686 2687 /* If the pipeline changed, we may need to re-allocate push constant 2688 * space in the URB. 2689 */ 2690 cmd_buffer_alloc_push_constants(cmd_buffer); 2691 } 2692 2693#if GEN_GEN <= 7 2694 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT || 2695 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) { 2696 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1: 2697 * 2698 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth 2699 * stall needs to be sent just prior to any 3DSTATE_VS, 2700 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS, 2701 * 3DSTATE_BINDING_TABLE_POINTER_VS, 2702 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one 2703 * PIPE_CONTROL needs to be sent before any combination of VS 2704 * associated 3DSTATE." 2705 */ 2706 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 2707 pc.DepthStallEnable = true; 2708 pc.PostSyncOperation = WriteImmediateData; 2709 pc.Address = 2710 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 }; 2711 } 2712 } 2713#endif 2714 2715 /* Render targets live in the same binding table as fragment descriptors */ 2716 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS) 2717 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT; 2718 2719 /* We emit the binding tables and sampler tables first, then emit push 2720 * constants and then finally emit binding table and sampler table 2721 * pointers. It has to happen in this order, since emitting the binding 2722 * tables may change the push constants (in case of storage images). After 2723 * emitting push constants, on SKL+ we have to emit the corresponding 2724 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect. 2725 */ 2726 uint32_t dirty = 0; 2727 if (cmd_buffer->state.descriptors_dirty) 2728 dirty = flush_descriptor_sets(cmd_buffer); 2729 2730 if (dirty || cmd_buffer->state.push_constants_dirty) { 2731 /* Because we're pushing UBOs, we have to push whenever either 2732 * descriptors or push constants is dirty. 2733 */ 2734 dirty |= cmd_buffer->state.push_constants_dirty; 2735 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS; 2736 cmd_buffer_flush_push_constants(cmd_buffer, dirty); 2737 } 2738 2739 if (dirty) 2740 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty); 2741 2742 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) 2743 gen8_cmd_buffer_emit_viewport(cmd_buffer); 2744 2745 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | 2746 ANV_CMD_DIRTY_PIPELINE)) { 2747 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer, 2748 pipeline->depth_clamp_enable); 2749 } 2750 2751 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR | 2752 ANV_CMD_DIRTY_RENDER_TARGETS)) 2753 gen7_cmd_buffer_emit_scissor(cmd_buffer); 2754 2755 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer); 2756 2757 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); 2758} 2759 2760static void 2761emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer, 2762 struct anv_address addr, 2763 uint32_t size, uint32_t index) 2764{ 2765 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5, 2766 GENX(3DSTATE_VERTEX_BUFFERS)); 2767 2768 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1, 2769 &(struct GENX(VERTEX_BUFFER_STATE)) { 2770 .VertexBufferIndex = index, 2771 .AddressModifyEnable = true, 2772 .BufferPitch = 0, 2773 .MOCS = anv_mocs_for_bo(cmd_buffer->device, addr.bo), 2774#if (GEN_GEN >= 8) 2775 .BufferStartingAddress = addr, 2776 .BufferSize = size 2777#else 2778 .BufferStartingAddress = addr, 2779 .EndAddress = anv_address_add(addr, size), 2780#endif 2781 }); 2782} 2783 2784static void 2785emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer, 2786 struct anv_address addr) 2787{ 2788 emit_vertex_bo(cmd_buffer, addr, 8, ANV_SVGS_VB_INDEX); 2789} 2790 2791static void 2792emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer, 2793 uint32_t base_vertex, uint32_t base_instance) 2794{ 2795 struct anv_state id_state = 2796 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4); 2797 2798 ((uint32_t *)id_state.map)[0] = base_vertex; 2799 ((uint32_t *)id_state.map)[1] = base_instance; 2800 2801 struct anv_address addr = { 2802 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, 2803 .offset = id_state.offset, 2804 }; 2805 2806 emit_base_vertex_instance_bo(cmd_buffer, addr); 2807} 2808 2809static void 2810emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index) 2811{ 2812 struct anv_state state = 2813 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4); 2814 2815 ((uint32_t *)state.map)[0] = draw_index; 2816 2817 struct anv_address addr = { 2818 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, 2819 .offset = state.offset, 2820 }; 2821 2822 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX); 2823} 2824 2825void genX(CmdDraw)( 2826 VkCommandBuffer commandBuffer, 2827 uint32_t vertexCount, 2828 uint32_t instanceCount, 2829 uint32_t firstVertex, 2830 uint32_t firstInstance) 2831{ 2832 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 2833 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; 2834 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); 2835 2836 if (anv_batch_has_error(&cmd_buffer->batch)) 2837 return; 2838 2839 genX(cmd_buffer_flush_state)(cmd_buffer); 2840 2841 if (cmd_buffer->state.conditional_render_enabled) 2842 genX(cmd_emit_conditional_render_predicate)(cmd_buffer); 2843 2844 if (vs_prog_data->uses_firstvertex || 2845 vs_prog_data->uses_baseinstance) 2846 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance); 2847 if (vs_prog_data->uses_drawid) 2848 emit_draw_index(cmd_buffer, 0); 2849 2850 /* Our implementation of VK_KHR_multiview uses instancing to draw the 2851 * different views. We need to multiply instanceCount by the view count. 2852 */ 2853 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass); 2854 2855 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { 2856 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; 2857 prim.VertexAccessType = SEQUENTIAL; 2858 prim.PrimitiveTopologyType = pipeline->topology; 2859 prim.VertexCountPerInstance = vertexCount; 2860 prim.StartVertexLocation = firstVertex; 2861 prim.InstanceCount = instanceCount; 2862 prim.StartInstanceLocation = firstInstance; 2863 prim.BaseVertexLocation = 0; 2864 } 2865} 2866 2867void genX(CmdDrawIndexed)( 2868 VkCommandBuffer commandBuffer, 2869 uint32_t indexCount, 2870 uint32_t instanceCount, 2871 uint32_t firstIndex, 2872 int32_t vertexOffset, 2873 uint32_t firstInstance) 2874{ 2875 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 2876 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; 2877 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); 2878 2879 if (anv_batch_has_error(&cmd_buffer->batch)) 2880 return; 2881 2882 genX(cmd_buffer_flush_state)(cmd_buffer); 2883 2884 if (cmd_buffer->state.conditional_render_enabled) 2885 genX(cmd_emit_conditional_render_predicate)(cmd_buffer); 2886 2887 if (vs_prog_data->uses_firstvertex || 2888 vs_prog_data->uses_baseinstance) 2889 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance); 2890 if (vs_prog_data->uses_drawid) 2891 emit_draw_index(cmd_buffer, 0); 2892 2893 /* Our implementation of VK_KHR_multiview uses instancing to draw the 2894 * different views. We need to multiply instanceCount by the view count. 2895 */ 2896 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass); 2897 2898 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { 2899 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; 2900 prim.VertexAccessType = RANDOM; 2901 prim.PrimitiveTopologyType = pipeline->topology; 2902 prim.VertexCountPerInstance = indexCount; 2903 prim.StartVertexLocation = firstIndex; 2904 prim.InstanceCount = instanceCount; 2905 prim.StartInstanceLocation = firstInstance; 2906 prim.BaseVertexLocation = vertexOffset; 2907 } 2908} 2909 2910/* Auto-Draw / Indirect Registers */ 2911#define GEN7_3DPRIM_END_OFFSET 0x2420 2912#define GEN7_3DPRIM_START_VERTEX 0x2430 2913#define GEN7_3DPRIM_VERTEX_COUNT 0x2434 2914#define GEN7_3DPRIM_INSTANCE_COUNT 0x2438 2915#define GEN7_3DPRIM_START_INSTANCE 0x243C 2916#define GEN7_3DPRIM_BASE_VERTEX 0x2440 2917 2918void genX(CmdDrawIndirectByteCountEXT)( 2919 VkCommandBuffer commandBuffer, 2920 uint32_t instanceCount, 2921 uint32_t firstInstance, 2922 VkBuffer counterBuffer, 2923 VkDeviceSize counterBufferOffset, 2924 uint32_t counterOffset, 2925 uint32_t vertexStride) 2926{ 2927#if GEN_IS_HASWELL || GEN_GEN >= 8 2928 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 2929 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer); 2930 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; 2931 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); 2932 2933 /* firstVertex is always zero for this draw function */ 2934 const uint32_t firstVertex = 0; 2935 2936 if (anv_batch_has_error(&cmd_buffer->batch)) 2937 return; 2938 2939 genX(cmd_buffer_flush_state)(cmd_buffer); 2940 2941 if (vs_prog_data->uses_firstvertex || 2942 vs_prog_data->uses_baseinstance) 2943 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance); 2944 if (vs_prog_data->uses_drawid) 2945 emit_draw_index(cmd_buffer, 0); 2946 2947 /* Our implementation of VK_KHR_multiview uses instancing to draw the 2948 * different views. We need to multiply instanceCount by the view count. 2949 */ 2950 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass); 2951 2952 struct gen_mi_builder b; 2953 gen_mi_builder_init(&b, &cmd_buffer->batch); 2954 struct gen_mi_value count = 2955 gen_mi_mem32(anv_address_add(counter_buffer->address, 2956 counterBufferOffset)); 2957 if (counterOffset) 2958 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset)); 2959 count = gen_mi_udiv32_imm(&b, count, vertexStride); 2960 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count); 2961 2962 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX), 2963 gen_mi_imm(firstVertex)); 2964 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), 2965 gen_mi_imm(instanceCount)); 2966 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE), 2967 gen_mi_imm(firstInstance)); 2968 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0)); 2969 2970 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { 2971 prim.IndirectParameterEnable = true; 2972 prim.VertexAccessType = SEQUENTIAL; 2973 prim.PrimitiveTopologyType = pipeline->topology; 2974 } 2975#endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */ 2976} 2977 2978static void 2979load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer, 2980 struct anv_address addr, 2981 bool indexed) 2982{ 2983 struct gen_mi_builder b; 2984 gen_mi_builder_init(&b, &cmd_buffer->batch); 2985 2986 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), 2987 gen_mi_mem32(anv_address_add(addr, 0))); 2988 2989 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4)); 2990 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass); 2991 if (view_count > 1) { 2992#if GEN_IS_HASWELL || GEN_GEN >= 8 2993 instance_count = gen_mi_imul_imm(&b, instance_count, view_count); 2994#else 2995 anv_finishme("Multiview + indirect draw requires MI_MATH; " 2996 "MI_MATH is not supported on Ivy Bridge"); 2997#endif 2998 } 2999 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count); 3000 3001 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX), 3002 gen_mi_mem32(anv_address_add(addr, 8))); 3003 3004 if (indexed) { 3005 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), 3006 gen_mi_mem32(anv_address_add(addr, 12))); 3007 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE), 3008 gen_mi_mem32(anv_address_add(addr, 16))); 3009 } else { 3010 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE), 3011 gen_mi_mem32(anv_address_add(addr, 12))); 3012 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0)); 3013 } 3014} 3015 3016void genX(CmdDrawIndirect)( 3017 VkCommandBuffer commandBuffer, 3018 VkBuffer _buffer, 3019 VkDeviceSize offset, 3020 uint32_t drawCount, 3021 uint32_t stride) 3022{ 3023 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 3024 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); 3025 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; 3026 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); 3027 3028 if (anv_batch_has_error(&cmd_buffer->batch)) 3029 return; 3030 3031 genX(cmd_buffer_flush_state)(cmd_buffer); 3032 3033 if (cmd_buffer->state.conditional_render_enabled) 3034 genX(cmd_emit_conditional_render_predicate)(cmd_buffer); 3035 3036 for (uint32_t i = 0; i < drawCount; i++) { 3037 struct anv_address draw = anv_address_add(buffer->address, offset); 3038 3039 if (vs_prog_data->uses_firstvertex || 3040 vs_prog_data->uses_baseinstance) 3041 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8)); 3042 if (vs_prog_data->uses_drawid) 3043 emit_draw_index(cmd_buffer, i); 3044 3045 load_indirect_parameters(cmd_buffer, draw, false); 3046 3047 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { 3048 prim.IndirectParameterEnable = true; 3049 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; 3050 prim.VertexAccessType = SEQUENTIAL; 3051 prim.PrimitiveTopologyType = pipeline->topology; 3052 } 3053 3054 offset += stride; 3055 } 3056} 3057 3058void genX(CmdDrawIndexedIndirect)( 3059 VkCommandBuffer commandBuffer, 3060 VkBuffer _buffer, 3061 VkDeviceSize offset, 3062 uint32_t drawCount, 3063 uint32_t stride) 3064{ 3065 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 3066 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); 3067 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline; 3068 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); 3069 3070 if (anv_batch_has_error(&cmd_buffer->batch)) 3071 return; 3072 3073 genX(cmd_buffer_flush_state)(cmd_buffer); 3074 3075 if (cmd_buffer->state.conditional_render_enabled) 3076 genX(cmd_emit_conditional_render_predicate)(cmd_buffer); 3077 3078 for (uint32_t i = 0; i < drawCount; i++) { 3079 struct anv_address draw = anv_address_add(buffer->address, offset); 3080 3081 /* TODO: We need to stomp base vertex to 0 somehow */ 3082 if (vs_prog_data->uses_firstvertex || 3083 vs_prog_data->uses_baseinstance) 3084 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12)); 3085 if (vs_prog_data->uses_drawid) 3086 emit_draw_index(cmd_buffer, i); 3087 3088 load_indirect_parameters(cmd_buffer, draw, true); 3089 3090 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { 3091 prim.IndirectParameterEnable = true; 3092 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; 3093 prim.VertexAccessType = RANDOM; 3094 prim.PrimitiveTopologyType = pipeline->topology; 3095 } 3096 3097 offset += stride; 3098 } 3099} 3100 3101#define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */ 3102 3103static void 3104prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer, 3105 struct anv_address count_address, 3106 const bool conditional_render_enabled) 3107{ 3108 struct gen_mi_builder b; 3109 gen_mi_builder_init(&b, &cmd_buffer->batch); 3110 3111 if (conditional_render_enabled) { 3112#if GEN_GEN >= 8 || GEN_IS_HASWELL 3113 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG), 3114 gen_mi_mem32(count_address)); 3115#endif 3116 } else { 3117 /* Upload the current draw count from the draw parameters buffer to 3118 * MI_PREDICATE_SRC0. 3119 */ 3120 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), 3121 gen_mi_mem32(count_address)); 3122 3123 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0)); 3124 } 3125} 3126 3127static void 3128emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer, 3129 uint32_t draw_index) 3130{ 3131 struct gen_mi_builder b; 3132 gen_mi_builder_init(&b, &cmd_buffer->batch); 3133 3134 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */ 3135 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index)); 3136 3137 if (draw_index == 0) { 3138 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { 3139 mip.LoadOperation = LOAD_LOADINV; 3140 mip.CombineOperation = COMBINE_SET; 3141 mip.CompareOperation = COMPARE_SRCS_EQUAL; 3142 } 3143 } else { 3144 /* While draw_index < draw_count the predicate's result will be 3145 * (draw_index == draw_count) ^ TRUE = TRUE 3146 * When draw_index == draw_count the result is 3147 * (TRUE) ^ TRUE = FALSE 3148 * After this all results will be: 3149 * (FALSE) ^ FALSE = FALSE 3150 */ 3151 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { 3152 mip.LoadOperation = LOAD_LOAD; 3153 mip.CombineOperation = COMBINE_XOR; 3154 mip.CompareOperation = COMPARE_SRCS_EQUAL; 3155 } 3156 } 3157} 3158 3159#if GEN_GEN >= 8 || GEN_IS_HASWELL 3160static void 3161emit_draw_count_predicate_with_conditional_render( 3162 struct anv_cmd_buffer *cmd_buffer, 3163 uint32_t draw_index) 3164{ 3165 struct gen_mi_builder b; 3166 gen_mi_builder_init(&b, &cmd_buffer->batch); 3167 3168 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index), 3169 gen_mi_reg64(TMP_DRAW_COUNT_REG)); 3170 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG)); 3171 3172#if GEN_GEN >= 8 3173 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred); 3174#else 3175 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser 3176 * so we emit MI_PREDICATE to set it. 3177 */ 3178 3179 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred); 3180 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0)); 3181 3182 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { 3183 mip.LoadOperation = LOAD_LOADINV; 3184 mip.CombineOperation = COMBINE_SET; 3185 mip.CompareOperation = COMPARE_SRCS_EQUAL; 3186 } 3187#endif 3188} 3189#endif 3190 3191void genX(CmdDrawIndirectCountKHR)( 3192 VkCommandBuffer commandBuffer, 3193 VkBuffer _buffer, 3194 VkDeviceSize offset, 3195 VkBuffer _countBuffer, 3196 VkDeviceSize countBufferOffset, 3197 uint32_t maxDrawCount, 3198 uint32_t stride) 3199{ 3200 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 3201 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); 3202 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer); 3203 struct anv_cmd_state *cmd_state = &cmd_buffer->state; 3204 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline; 3205 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); 3206 3207 if (anv_batch_has_error(&cmd_buffer->batch)) 3208 return; 3209 3210 genX(cmd_buffer_flush_state)(cmd_buffer); 3211 3212 struct anv_address count_address = 3213 anv_address_add(count_buffer->address, countBufferOffset); 3214 3215 prepare_for_draw_count_predicate(cmd_buffer, count_address, 3216 cmd_state->conditional_render_enabled); 3217 3218 for (uint32_t i = 0; i < maxDrawCount; i++) { 3219 struct anv_address draw = anv_address_add(buffer->address, offset); 3220 3221#if GEN_GEN >= 8 || GEN_IS_HASWELL 3222 if (cmd_state->conditional_render_enabled) { 3223 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i); 3224 } else { 3225 emit_draw_count_predicate(cmd_buffer, i); 3226 } 3227#else 3228 emit_draw_count_predicate(cmd_buffer, i); 3229#endif 3230 3231 if (vs_prog_data->uses_firstvertex || 3232 vs_prog_data->uses_baseinstance) 3233 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8)); 3234 if (vs_prog_data->uses_drawid) 3235 emit_draw_index(cmd_buffer, i); 3236 3237 load_indirect_parameters(cmd_buffer, draw, false); 3238 3239 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { 3240 prim.IndirectParameterEnable = true; 3241 prim.PredicateEnable = true; 3242 prim.VertexAccessType = SEQUENTIAL; 3243 prim.PrimitiveTopologyType = pipeline->topology; 3244 } 3245 3246 offset += stride; 3247 } 3248} 3249 3250void genX(CmdDrawIndexedIndirectCountKHR)( 3251 VkCommandBuffer commandBuffer, 3252 VkBuffer _buffer, 3253 VkDeviceSize offset, 3254 VkBuffer _countBuffer, 3255 VkDeviceSize countBufferOffset, 3256 uint32_t maxDrawCount, 3257 uint32_t stride) 3258{ 3259 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 3260 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); 3261 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer); 3262 struct anv_cmd_state *cmd_state = &cmd_buffer->state; 3263 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline; 3264 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); 3265 3266 if (anv_batch_has_error(&cmd_buffer->batch)) 3267 return; 3268 3269 genX(cmd_buffer_flush_state)(cmd_buffer); 3270 3271 struct anv_address count_address = 3272 anv_address_add(count_buffer->address, countBufferOffset); 3273 3274 prepare_for_draw_count_predicate(cmd_buffer, count_address, 3275 cmd_state->conditional_render_enabled); 3276 3277 for (uint32_t i = 0; i < maxDrawCount; i++) { 3278 struct anv_address draw = anv_address_add(buffer->address, offset); 3279 3280#if GEN_GEN >= 8 || GEN_IS_HASWELL 3281 if (cmd_state->conditional_render_enabled) { 3282 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i); 3283 } else { 3284 emit_draw_count_predicate(cmd_buffer, i); 3285 } 3286#else 3287 emit_draw_count_predicate(cmd_buffer, i); 3288#endif 3289 3290 /* TODO: We need to stomp base vertex to 0 somehow */ 3291 if (vs_prog_data->uses_firstvertex || 3292 vs_prog_data->uses_baseinstance) 3293 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12)); 3294 if (vs_prog_data->uses_drawid) 3295 emit_draw_index(cmd_buffer, i); 3296 3297 load_indirect_parameters(cmd_buffer, draw, true); 3298 3299 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { 3300 prim.IndirectParameterEnable = true; 3301 prim.PredicateEnable = true; 3302 prim.VertexAccessType = RANDOM; 3303 prim.PrimitiveTopologyType = pipeline->topology; 3304 } 3305 3306 offset += stride; 3307 } 3308} 3309 3310void genX(CmdBeginTransformFeedbackEXT)( 3311 VkCommandBuffer commandBuffer, 3312 uint32_t firstCounterBuffer, 3313 uint32_t counterBufferCount, 3314 const VkBuffer* pCounterBuffers, 3315 const VkDeviceSize* pCounterBufferOffsets) 3316{ 3317 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 3318 3319 assert(firstCounterBuffer < MAX_XFB_BUFFERS); 3320 assert(counterBufferCount <= MAX_XFB_BUFFERS); 3321 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS); 3322 3323 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET: 3324 * 3325 * "Ssoftware must ensure that no HW stream output operations can be in 3326 * process or otherwise pending at the point that the MI_LOAD/STORE 3327 * commands are processed. This will likely require a pipeline flush." 3328 */ 3329 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; 3330 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); 3331 3332 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) { 3333 /* If we have a counter buffer, this is a resume so we need to load the 3334 * value into the streamout offset register. Otherwise, this is a begin 3335 * and we need to reset it to zero. 3336 */ 3337 if (pCounterBuffers && 3338 idx >= firstCounterBuffer && 3339 idx - firstCounterBuffer < counterBufferCount && 3340 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) { 3341 uint32_t cb_idx = idx - firstCounterBuffer; 3342 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]); 3343 uint64_t offset = pCounterBufferOffsets ? 3344 pCounterBufferOffsets[cb_idx] : 0; 3345 3346 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { 3347 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4; 3348 lrm.MemoryAddress = anv_address_add(counter_buffer->address, 3349 offset); 3350 } 3351 } else { 3352 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) { 3353 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4; 3354 lri.DataDWord = 0; 3355 } 3356 } 3357 } 3358 3359 cmd_buffer->state.xfb_enabled = true; 3360 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE; 3361} 3362 3363void genX(CmdEndTransformFeedbackEXT)( 3364 VkCommandBuffer commandBuffer, 3365 uint32_t firstCounterBuffer, 3366 uint32_t counterBufferCount, 3367 const VkBuffer* pCounterBuffers, 3368 const VkDeviceSize* pCounterBufferOffsets) 3369{ 3370 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 3371 3372 assert(firstCounterBuffer < MAX_XFB_BUFFERS); 3373 assert(counterBufferCount <= MAX_XFB_BUFFERS); 3374 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS); 3375 3376 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET: 3377 * 3378 * "Ssoftware must ensure that no HW stream output operations can be in 3379 * process or otherwise pending at the point that the MI_LOAD/STORE 3380 * commands are processed. This will likely require a pipeline flush." 3381 */ 3382 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; 3383 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); 3384 3385 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) { 3386 unsigned idx = firstCounterBuffer + cb_idx; 3387 3388 /* If we have a counter buffer, this is a resume so we need to load the 3389 * value into the streamout offset register. Otherwise, this is a begin 3390 * and we need to reset it to zero. 3391 */ 3392 if (pCounterBuffers && 3393 cb_idx < counterBufferCount && 3394 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) { 3395 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]); 3396 uint64_t offset = pCounterBufferOffsets ? 3397 pCounterBufferOffsets[cb_idx] : 0; 3398 3399 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) { 3400 srm.MemoryAddress = anv_address_add(counter_buffer->address, 3401 offset); 3402 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4; 3403 } 3404 } 3405 } 3406 3407 cmd_buffer->state.xfb_enabled = false; 3408 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE; 3409} 3410 3411static VkResult 3412flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer) 3413{ 3414 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline; 3415 struct anv_state surfaces = { 0, }, samplers = { 0, }; 3416 VkResult result; 3417 3418 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces); 3419 if (result != VK_SUCCESS) { 3420 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY); 3421 3422 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer); 3423 if (result != VK_SUCCESS) 3424 return result; 3425 3426 /* Re-emit state base addresses so we get the new surface state base 3427 * address before we start emitting binding tables etc. 3428 */ 3429 genX(cmd_buffer_emit_state_base_address)(cmd_buffer); 3430 3431 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces); 3432 if (result != VK_SUCCESS) { 3433 anv_batch_set_error(&cmd_buffer->batch, result); 3434 return result; 3435 } 3436 } 3437 3438 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers); 3439 if (result != VK_SUCCESS) { 3440 anv_batch_set_error(&cmd_buffer->batch, result); 3441 return result; 3442 } 3443 3444 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)]; 3445 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = { 3446 .BindingTablePointer = surfaces.offset, 3447 .SamplerStatePointer = samplers.offset, 3448 }; 3449 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc); 3450 3451 struct anv_state state = 3452 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw, 3453 pipeline->interface_descriptor_data, 3454 GENX(INTERFACE_DESCRIPTOR_DATA_length), 3455 64); 3456 3457 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t); 3458 anv_batch_emit(&cmd_buffer->batch, 3459 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) { 3460 mid.InterfaceDescriptorTotalLength = size; 3461 mid.InterfaceDescriptorDataStartAddress = state.offset; 3462 } 3463 3464 return VK_SUCCESS; 3465} 3466 3467void 3468genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer) 3469{ 3470 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline; 3471 MAYBE_UNUSED VkResult result; 3472 3473 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT); 3474 3475 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config); 3476 3477 genX(flush_pipeline_select_gpgpu)(cmd_buffer); 3478 3479 if (cmd_buffer->state.compute.pipeline_dirty) { 3480 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE: 3481 * 3482 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless 3483 * the only bits that are changed are scoreboard related: Scoreboard 3484 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For 3485 * these scoreboard related states, a MEDIA_STATE_FLUSH is 3486 * sufficient." 3487 */ 3488 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; 3489 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); 3490 3491 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch); 3492 } 3493 3494 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) || 3495 cmd_buffer->state.compute.pipeline_dirty) { 3496 /* FIXME: figure out descriptors for gen7 */ 3497 result = flush_compute_descriptor_set(cmd_buffer); 3498 if (result != VK_SUCCESS) 3499 return; 3500 3501 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT; 3502 } 3503 3504 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) { 3505 struct anv_state push_state = 3506 anv_cmd_buffer_cs_push_constants(cmd_buffer); 3507 3508 if (push_state.alloc_size) { 3509 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) { 3510 curbe.CURBETotalDataLength = push_state.alloc_size; 3511 curbe.CURBEDataStartAddress = push_state.offset; 3512 } 3513 } 3514 3515 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT; 3516 } 3517 3518 cmd_buffer->state.compute.pipeline_dirty = false; 3519 3520 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); 3521} 3522 3523#if GEN_GEN == 7 3524 3525static VkResult 3526verify_cmd_parser(const struct anv_device *device, 3527 int required_version, 3528 const char *function) 3529{ 3530 if (device->instance->physicalDevice.cmd_parser_version < required_version) { 3531 return vk_errorf(device->instance, device->instance, 3532 VK_ERROR_FEATURE_NOT_PRESENT, 3533 "cmd parser version %d is required for %s", 3534 required_version, function); 3535 } else { 3536 return VK_SUCCESS; 3537 } 3538} 3539 3540#endif 3541 3542static void 3543anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer, 3544 uint32_t baseGroupX, 3545 uint32_t baseGroupY, 3546 uint32_t baseGroupZ) 3547{ 3548 if (anv_batch_has_error(&cmd_buffer->batch)) 3549 return; 3550 3551 struct anv_push_constants *push = 3552 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE]; 3553 if (push->base_work_group_id[0] != baseGroupX || 3554 push->base_work_group_id[1] != baseGroupY || 3555 push->base_work_group_id[2] != baseGroupZ) { 3556 push->base_work_group_id[0] = baseGroupX; 3557 push->base_work_group_id[1] = baseGroupY; 3558 push->base_work_group_id[2] = baseGroupZ; 3559 3560 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; 3561 } 3562} 3563 3564void genX(CmdDispatch)( 3565 VkCommandBuffer commandBuffer, 3566 uint32_t x, 3567 uint32_t y, 3568 uint32_t z) 3569{ 3570 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z); 3571} 3572 3573void genX(CmdDispatchBase)( 3574 VkCommandBuffer commandBuffer, 3575 uint32_t baseGroupX, 3576 uint32_t baseGroupY, 3577 uint32_t baseGroupZ, 3578 uint32_t groupCountX, 3579 uint32_t groupCountY, 3580 uint32_t groupCountZ) 3581{ 3582 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 3583 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline; 3584 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline); 3585 3586 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX, 3587 baseGroupY, baseGroupZ); 3588 3589 if (anv_batch_has_error(&cmd_buffer->batch)) 3590 return; 3591 3592 if (prog_data->uses_num_work_groups) { 3593 struct anv_state state = 3594 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4); 3595 uint32_t *sizes = state.map; 3596 sizes[0] = groupCountX; 3597 sizes[1] = groupCountY; 3598 sizes[2] = groupCountZ; 3599 cmd_buffer->state.compute.num_workgroups = (struct anv_address) { 3600 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, 3601 .offset = state.offset, 3602 }; 3603 } 3604 3605 genX(cmd_buffer_flush_compute_state)(cmd_buffer); 3606 3607 if (cmd_buffer->state.conditional_render_enabled) 3608 genX(cmd_emit_conditional_render_predicate)(cmd_buffer); 3609 3610 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) { 3611 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled; 3612 ggw.SIMDSize = prog_data->simd_size / 16; 3613 ggw.ThreadDepthCounterMaximum = 0; 3614 ggw.ThreadHeightCounterMaximum = 0; 3615 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1; 3616 ggw.ThreadGroupIDXDimension = groupCountX; 3617 ggw.ThreadGroupIDYDimension = groupCountY; 3618 ggw.ThreadGroupIDZDimension = groupCountZ; 3619 ggw.RightExecutionMask = pipeline->cs_right_mask; 3620 ggw.BottomExecutionMask = 0xffffffff; 3621 } 3622 3623 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf); 3624} 3625 3626#define GPGPU_DISPATCHDIMX 0x2500 3627#define GPGPU_DISPATCHDIMY 0x2504 3628#define GPGPU_DISPATCHDIMZ 0x2508 3629 3630void genX(CmdDispatchIndirect)( 3631 VkCommandBuffer commandBuffer, 3632 VkBuffer _buffer, 3633 VkDeviceSize offset) 3634{ 3635 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 3636 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); 3637 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline; 3638 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline); 3639 struct anv_address addr = anv_address_add(buffer->address, offset); 3640 struct anv_batch *batch = &cmd_buffer->batch; 3641 3642 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0); 3643 3644#if GEN_GEN == 7 3645 /* Linux 4.4 added command parser version 5 which allows the GPGPU 3646 * indirect dispatch registers to be written. 3647 */ 3648 if (verify_cmd_parser(cmd_buffer->device, 5, 3649 "vkCmdDispatchIndirect") != VK_SUCCESS) 3650 return; 3651#endif 3652 3653 if (prog_data->uses_num_work_groups) 3654 cmd_buffer->state.compute.num_workgroups = addr; 3655 3656 genX(cmd_buffer_flush_compute_state)(cmd_buffer); 3657 3658 struct gen_mi_builder b; 3659 gen_mi_builder_init(&b, &cmd_buffer->batch); 3660 3661 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0)); 3662 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4)); 3663 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8)); 3664 3665 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x); 3666 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y); 3667 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z); 3668 3669#if GEN_GEN <= 7 3670 /* predicate = (compute_dispatch_indirect_x_size == 0); */ 3671 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x); 3672 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0)); 3673 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { 3674 mip.LoadOperation = LOAD_LOAD; 3675 mip.CombineOperation = COMBINE_SET; 3676 mip.CompareOperation = COMPARE_SRCS_EQUAL; 3677 } 3678 3679 /* predicate |= (compute_dispatch_indirect_y_size == 0); */ 3680 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y); 3681 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { 3682 mip.LoadOperation = LOAD_LOAD; 3683 mip.CombineOperation = COMBINE_OR; 3684 mip.CompareOperation = COMPARE_SRCS_EQUAL; 3685 } 3686 3687 /* predicate |= (compute_dispatch_indirect_z_size == 0); */ 3688 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z); 3689 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { 3690 mip.LoadOperation = LOAD_LOAD; 3691 mip.CombineOperation = COMBINE_OR; 3692 mip.CompareOperation = COMPARE_SRCS_EQUAL; 3693 } 3694 3695 /* predicate = !predicate; */ 3696 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { 3697 mip.LoadOperation = LOAD_LOADINV; 3698 mip.CombineOperation = COMBINE_OR; 3699 mip.CompareOperation = COMPARE_FALSE; 3700 } 3701 3702#if GEN_IS_HASWELL 3703 if (cmd_buffer->state.conditional_render_enabled) { 3704 /* predicate &= !(conditional_rendering_predicate == 0); */ 3705 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), 3706 gen_mi_reg32(ANV_PREDICATE_RESULT_REG)); 3707 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { 3708 mip.LoadOperation = LOAD_LOADINV; 3709 mip.CombineOperation = COMBINE_AND; 3710 mip.CompareOperation = COMPARE_SRCS_EQUAL; 3711 } 3712 } 3713#endif 3714 3715#else /* GEN_GEN > 7 */ 3716 if (cmd_buffer->state.conditional_render_enabled) 3717 genX(cmd_emit_conditional_render_predicate)(cmd_buffer); 3718#endif 3719 3720 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) { 3721 ggw.IndirectParameterEnable = true; 3722 ggw.PredicateEnable = GEN_GEN <= 7 || 3723 cmd_buffer->state.conditional_render_enabled; 3724 ggw.SIMDSize = prog_data->simd_size / 16; 3725 ggw.ThreadDepthCounterMaximum = 0; 3726 ggw.ThreadHeightCounterMaximum = 0; 3727 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1; 3728 ggw.RightExecutionMask = pipeline->cs_right_mask; 3729 ggw.BottomExecutionMask = 0xffffffff; 3730 } 3731 3732 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf); 3733} 3734 3735static void 3736genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer, 3737 uint32_t pipeline) 3738{ 3739 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info; 3740 3741 if (cmd_buffer->state.current_pipeline == pipeline) 3742 return; 3743 3744#if GEN_GEN >= 8 && GEN_GEN < 10 3745 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT: 3746 * 3747 * Software must clear the COLOR_CALC_STATE Valid field in 3748 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT 3749 * with Pipeline Select set to GPGPU. 3750 * 3751 * The internal hardware docs recommend the same workaround for Gen9 3752 * hardware too. 3753 */ 3754 if (pipeline == GPGPU) 3755 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t); 3756#endif 3757 3758#if GEN_GEN == 9 3759 if (pipeline == _3D) { 3760 /* There is a mid-object preemption workaround which requires you to 3761 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However, 3762 * even without preemption, we have issues with geometry flickering when 3763 * GPGPU and 3D are back-to-back and this seems to fix it. We don't 3764 * really know why. 3765 */ 3766 const uint32_t subslices = 3767 MAX2(cmd_buffer->device->instance->physicalDevice.subslice_total, 1); 3768 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) { 3769 vfe.MaximumNumberofThreads = 3770 devinfo->max_cs_threads * subslices - 1; 3771 vfe.NumberofURBEntries = 2; 3772 vfe.URBEntryAllocationSize = 2; 3773 } 3774 } 3775#endif 3776 3777 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction] 3778 * PIPELINE_SELECT [DevBWR+]": 3779 * 3780 * Project: DEVSNB+ 3781 * 3782 * Software must ensure all the write caches are flushed through a 3783 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL 3784 * command to invalidate read only caches prior to programming 3785 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode. 3786 */ 3787 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 3788 pc.RenderTargetCacheFlushEnable = true; 3789 pc.DepthCacheFlushEnable = true; 3790 pc.DCFlushEnable = true; 3791 pc.PostSyncOperation = NoWrite; 3792 pc.CommandStreamerStallEnable = true; 3793 } 3794 3795 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 3796 pc.TextureCacheInvalidationEnable = true; 3797 pc.ConstantCacheInvalidationEnable = true; 3798 pc.StateCacheInvalidationEnable = true; 3799 pc.InstructionCacheInvalidateEnable = true; 3800 pc.PostSyncOperation = NoWrite; 3801 } 3802 3803 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) { 3804#if GEN_GEN >= 9 3805 ps.MaskBits = 3; 3806#endif 3807 ps.PipelineSelection = pipeline; 3808 } 3809 3810#if GEN_GEN == 9 3811 if (devinfo->is_geminilake) { 3812 /* Project: DevGLK 3813 * 3814 * "This chicken bit works around a hardware issue with barrier logic 3815 * encountered when switching between GPGPU and 3D pipelines. To 3816 * workaround the issue, this mode bit should be set after a pipeline 3817 * is selected." 3818 */ 3819 uint32_t scec; 3820 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1), 3821 .GLKBarrierMode = 3822 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU 3823 : GLK_BARRIER_MODE_3D_HULL, 3824 .GLKBarrierModeMask = 1); 3825 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec); 3826 } 3827#endif 3828 3829 cmd_buffer->state.current_pipeline = pipeline; 3830} 3831 3832void 3833genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer) 3834{ 3835 genX(flush_pipeline_select)(cmd_buffer, _3D); 3836} 3837 3838void 3839genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer) 3840{ 3841 genX(flush_pipeline_select)(cmd_buffer, GPGPU); 3842} 3843 3844void 3845genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer) 3846{ 3847 if (GEN_GEN >= 8) 3848 return; 3849 3850 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER: 3851 * 3852 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any 3853 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, 3854 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first 3855 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit 3856 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with 3857 * Depth Flush Bit set, followed by another pipelined depth stall 3858 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise 3859 * guarantee that the pipeline from WM onwards is already flushed (e.g., 3860 * via a preceding MI_FLUSH)." 3861 */ 3862 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { 3863 pipe.DepthStallEnable = true; 3864 } 3865 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { 3866 pipe.DepthCacheFlushEnable = true; 3867 } 3868 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { 3869 pipe.DepthStallEnable = true; 3870 } 3871} 3872 3873static void 3874cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer) 3875{ 3876 struct anv_device *device = cmd_buffer->device; 3877 const struct anv_image_view *iview = 3878 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer); 3879 const struct anv_image *image = iview ? iview->image : NULL; 3880 3881 /* FIXME: Width and Height are wrong */ 3882 3883 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer); 3884 3885 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch, 3886 device->isl_dev.ds.size / 4); 3887 if (dw == NULL) 3888 return; 3889 3890 struct isl_depth_stencil_hiz_emit_info info = { }; 3891 3892 if (iview) 3893 info.view = &iview->planes[0].isl; 3894 3895 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) { 3896 uint32_t depth_plane = 3897 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT); 3898 const struct anv_surface *surface = &image->planes[depth_plane].surface; 3899 3900 info.depth_surf = &surface->isl; 3901 3902 info.depth_address = 3903 anv_batch_emit_reloc(&cmd_buffer->batch, 3904 dw + device->isl_dev.ds.depth_offset / 4, 3905 image->planes[depth_plane].address.bo, 3906 image->planes[depth_plane].address.offset + 3907 surface->offset); 3908 info.mocs = 3909 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo); 3910 3911 const uint32_t ds = 3912 cmd_buffer->state.subpass->depth_stencil_attachment->attachment; 3913 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage; 3914 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) { 3915 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl; 3916 3917 info.hiz_address = 3918 anv_batch_emit_reloc(&cmd_buffer->batch, 3919 dw + device->isl_dev.ds.hiz_offset / 4, 3920 image->planes[depth_plane].address.bo, 3921 image->planes[depth_plane].address.offset + 3922 image->planes[depth_plane].aux_surface.offset); 3923 3924 info.depth_clear_value = ANV_HZ_FC_VAL; 3925 } 3926 } 3927 3928 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) { 3929 uint32_t stencil_plane = 3930 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT); 3931 const struct anv_surface *surface = &image->planes[stencil_plane].surface; 3932 3933 info.stencil_surf = &surface->isl; 3934 3935 info.stencil_address = 3936 anv_batch_emit_reloc(&cmd_buffer->batch, 3937 dw + device->isl_dev.ds.stencil_offset / 4, 3938 image->planes[stencil_plane].address.bo, 3939 image->planes[stencil_plane].address.offset + 3940 surface->offset); 3941 info.mocs = 3942 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo); 3943 } 3944 3945 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info); 3946 3947 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ; 3948} 3949 3950/** 3951 * This ANDs the view mask of the current subpass with the pending clear 3952 * views in the attachment to get the mask of views active in the subpass 3953 * that still need to be cleared. 3954 */ 3955static inline uint32_t 3956get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state, 3957 const struct anv_attachment_state *att_state) 3958{ 3959 return cmd_state->subpass->view_mask & att_state->pending_clear_views; 3960} 3961 3962static inline bool 3963do_first_layer_clear(const struct anv_cmd_state *cmd_state, 3964 const struct anv_attachment_state *att_state) 3965{ 3966 if (!cmd_state->subpass->view_mask) 3967 return true; 3968 3969 uint32_t pending_clear_mask = 3970 get_multiview_subpass_clear_mask(cmd_state, att_state); 3971 3972 return pending_clear_mask & 1; 3973} 3974 3975static inline bool 3976current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state, 3977 uint32_t att_idx) 3978{ 3979 const uint32_t last_subpass_idx = 3980 cmd_state->pass->attachments[att_idx].last_subpass_idx; 3981 const struct anv_subpass *last_subpass = 3982 &cmd_state->pass->subpasses[last_subpass_idx]; 3983 return last_subpass == cmd_state->subpass; 3984} 3985 3986static void 3987cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer, 3988 uint32_t subpass_id) 3989{ 3990 struct anv_cmd_state *cmd_state = &cmd_buffer->state; 3991 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id]; 3992 cmd_state->subpass = subpass; 3993 3994 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS; 3995 3996 /* Our implementation of VK_KHR_multiview uses instancing to draw the 3997 * different views. If the client asks for instancing, we need to use the 3998 * Instance Data Step Rate to ensure that we repeat the client's 3999 * per-instance data once for each view. Since this bit is in 4000 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top 4001 * of each subpass. 4002 */ 4003 if (GEN_GEN == 7) 4004 cmd_buffer->state.gfx.vb_dirty |= ~0; 4005 4006 /* It is possible to start a render pass with an old pipeline. Because the 4007 * render pass and subpass index are both baked into the pipeline, this is 4008 * highly unlikely. In order to do so, it requires that you have a render 4009 * pass with a single subpass and that you use that render pass twice 4010 * back-to-back and use the same pipeline at the start of the second render 4011 * pass as at the end of the first. In order to avoid unpredictable issues 4012 * with this edge case, we just dirty the pipeline at the start of every 4013 * subpass. 4014 */ 4015 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE; 4016 4017 /* Accumulate any subpass flushes that need to happen before the subpass */ 4018 cmd_buffer->state.pending_pipe_bits |= 4019 cmd_buffer->state.pass->subpass_flushes[subpass_id]; 4020 4021 VkRect2D render_area = cmd_buffer->state.render_area; 4022 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; 4023 4024 bool is_multiview = subpass->view_mask != 0; 4025 4026 for (uint32_t i = 0; i < subpass->attachment_count; ++i) { 4027 const uint32_t a = subpass->attachments[i].attachment; 4028 if (a == VK_ATTACHMENT_UNUSED) 4029 continue; 4030 4031 assert(a < cmd_state->pass->attachment_count); 4032 struct anv_attachment_state *att_state = &cmd_state->attachments[a]; 4033 4034 struct anv_image_view *iview = fb->attachments[a]; 4035 const struct anv_image *image = iview->image; 4036 4037 /* A resolve is necessary before use as an input attachment if the clear 4038 * color or auxiliary buffer usage isn't supported by the sampler. 4039 */ 4040 const bool input_needs_resolve = 4041 (att_state->fast_clear && !att_state->clear_color_is_zero_one) || 4042 att_state->input_aux_usage != att_state->aux_usage; 4043 4044 VkImageLayout target_layout; 4045 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV && 4046 !input_needs_resolve) { 4047 /* Layout transitions before the final only help to enable sampling 4048 * as an input attachment. If the input attachment supports sampling 4049 * using the auxiliary surface, we can skip such transitions by 4050 * making the target layout one that is CCS-aware. 4051 */ 4052 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; 4053 } else { 4054 target_layout = subpass->attachments[i].layout; 4055 } 4056 4057 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { 4058 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); 4059 4060 uint32_t base_layer, layer_count; 4061 if (image->type == VK_IMAGE_TYPE_3D) { 4062 base_layer = 0; 4063 layer_count = anv_minify(iview->image->extent.depth, 4064 iview->planes[0].isl.base_level); 4065 } else { 4066 base_layer = iview->planes[0].isl.base_array_layer; 4067 layer_count = fb->layers; 4068 } 4069 4070 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, 4071 iview->planes[0].isl.base_level, 1, 4072 base_layer, layer_count, 4073 att_state->current_layout, target_layout); 4074 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { 4075 transition_depth_buffer(cmd_buffer, image, 4076 att_state->current_layout, target_layout); 4077 att_state->aux_usage = 4078 anv_layout_to_aux_usage(&cmd_buffer->device->info, image, 4079 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout); 4080 } 4081 att_state->current_layout = target_layout; 4082 4083 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) { 4084 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT); 4085 4086 /* Multi-planar images are not supported as attachments */ 4087 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); 4088 assert(image->n_planes == 1); 4089 4090 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer; 4091 uint32_t clear_layer_count = fb->layers; 4092 4093 if (att_state->fast_clear && 4094 do_first_layer_clear(cmd_state, att_state)) { 4095 /* We only support fast-clears on the first layer */ 4096 assert(iview->planes[0].isl.base_level == 0); 4097 assert(iview->planes[0].isl.base_array_layer == 0); 4098 4099 union isl_color_value clear_color = {}; 4100 anv_clear_color_from_att_state(&clear_color, att_state, iview); 4101 if (iview->image->samples == 1) { 4102 anv_image_ccs_op(cmd_buffer, image, 4103 iview->planes[0].isl.format, 4104 VK_IMAGE_ASPECT_COLOR_BIT, 4105 0, 0, 1, ISL_AUX_OP_FAST_CLEAR, 4106 &clear_color, 4107 false); 4108 } else { 4109 anv_image_mcs_op(cmd_buffer, image, 4110 iview->planes[0].isl.format, 4111 VK_IMAGE_ASPECT_COLOR_BIT, 4112 0, 1, ISL_AUX_OP_FAST_CLEAR, 4113 &clear_color, 4114 false); 4115 } 4116 base_clear_layer++; 4117 clear_layer_count--; 4118 if (is_multiview) 4119 att_state->pending_clear_views &= ~1; 4120 4121 if (att_state->clear_color_is_zero) { 4122 /* This image has the auxiliary buffer enabled. We can mark the 4123 * subresource as not needing a resolve because the clear color 4124 * will match what's in every RENDER_SURFACE_STATE object when 4125 * it's being used for sampling. 4126 */ 4127 set_image_fast_clear_state(cmd_buffer, iview->image, 4128 VK_IMAGE_ASPECT_COLOR_BIT, 4129 ANV_FAST_CLEAR_DEFAULT_VALUE); 4130 } else { 4131 set_image_fast_clear_state(cmd_buffer, iview->image, 4132 VK_IMAGE_ASPECT_COLOR_BIT, 4133 ANV_FAST_CLEAR_ANY); 4134 } 4135 } 4136 4137 /* From the VkFramebufferCreateInfo spec: 4138 * 4139 * "If the render pass uses multiview, then layers must be one and each 4140 * attachment requires a number of layers that is greater than the 4141 * maximum bit index set in the view mask in the subpasses in which it 4142 * is used." 4143 * 4144 * So if multiview is active we ignore the number of layers in the 4145 * framebuffer and instead we honor the view mask from the subpass. 4146 */ 4147 if (is_multiview) { 4148 assert(image->n_planes == 1); 4149 uint32_t pending_clear_mask = 4150 get_multiview_subpass_clear_mask(cmd_state, att_state); 4151 4152 uint32_t layer_idx; 4153 for_each_bit(layer_idx, pending_clear_mask) { 4154 uint32_t layer = 4155 iview->planes[0].isl.base_array_layer + layer_idx; 4156 4157 anv_image_clear_color(cmd_buffer, image, 4158 VK_IMAGE_ASPECT_COLOR_BIT, 4159 att_state->aux_usage, 4160 iview->planes[0].isl.format, 4161 iview->planes[0].isl.swizzle, 4162 iview->planes[0].isl.base_level, 4163 layer, 1, 4164 render_area, 4165 vk_to_isl_color(att_state->clear_value.color)); 4166 } 4167 4168 att_state->pending_clear_views &= ~pending_clear_mask; 4169 } else if (clear_layer_count > 0) { 4170 assert(image->n_planes == 1); 4171 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, 4172 att_state->aux_usage, 4173 iview->planes[0].isl.format, 4174 iview->planes[0].isl.swizzle, 4175 iview->planes[0].isl.base_level, 4176 base_clear_layer, clear_layer_count, 4177 render_area, 4178 vk_to_isl_color(att_state->clear_value.color)); 4179 } 4180 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | 4181 VK_IMAGE_ASPECT_STENCIL_BIT)) { 4182 if (att_state->fast_clear && !is_multiview) { 4183 /* We currently only support HiZ for single-layer images */ 4184 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { 4185 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ); 4186 assert(iview->planes[0].isl.base_level == 0); 4187 assert(iview->planes[0].isl.base_array_layer == 0); 4188 assert(fb->layers == 1); 4189 } 4190 4191 anv_image_hiz_clear(cmd_buffer, image, 4192 att_state->pending_clear_aspects, 4193 iview->planes[0].isl.base_level, 4194 iview->planes[0].isl.base_array_layer, 4195 fb->layers, render_area, 4196 att_state->clear_value.depthStencil.stencil); 4197 } else if (is_multiview) { 4198 uint32_t pending_clear_mask = 4199 get_multiview_subpass_clear_mask(cmd_state, att_state); 4200 4201 uint32_t layer_idx; 4202 for_each_bit(layer_idx, pending_clear_mask) { 4203 uint32_t layer = 4204 iview->planes[0].isl.base_array_layer + layer_idx; 4205 4206 anv_image_clear_depth_stencil(cmd_buffer, image, 4207 att_state->pending_clear_aspects, 4208 att_state->aux_usage, 4209 iview->planes[0].isl.base_level, 4210 layer, 1, 4211 render_area, 4212 att_state->clear_value.depthStencil.depth, 4213 att_state->clear_value.depthStencil.stencil); 4214 } 4215 4216 att_state->pending_clear_views &= ~pending_clear_mask; 4217 } else { 4218 anv_image_clear_depth_stencil(cmd_buffer, image, 4219 att_state->pending_clear_aspects, 4220 att_state->aux_usage, 4221 iview->planes[0].isl.base_level, 4222 iview->planes[0].isl.base_array_layer, 4223 fb->layers, render_area, 4224 att_state->clear_value.depthStencil.depth, 4225 att_state->clear_value.depthStencil.stencil); 4226 } 4227 } else { 4228 assert(att_state->pending_clear_aspects == 0); 4229 } 4230 4231 if (GEN_GEN < 10 && 4232 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && 4233 image->planes[0].aux_surface.isl.size_B > 0 && 4234 iview->planes[0].isl.base_level == 0 && 4235 iview->planes[0].isl.base_array_layer == 0) { 4236 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) { 4237 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state, 4238 image, VK_IMAGE_ASPECT_COLOR_BIT, 4239 false /* copy to ss */); 4240 } 4241 4242 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) && 4243 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) { 4244 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state, 4245 image, VK_IMAGE_ASPECT_COLOR_BIT, 4246 false /* copy to ss */); 4247 } 4248 } 4249 4250 if (subpass->attachments[i].usage == 4251 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) { 4252 /* We assume that if we're starting a subpass, we're going to do some 4253 * rendering so we may end up with compressed data. 4254 */ 4255 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image, 4256 VK_IMAGE_ASPECT_COLOR_BIT, 4257 att_state->aux_usage, 4258 iview->planes[0].isl.base_level, 4259 iview->planes[0].isl.base_array_layer, 4260 fb->layers); 4261 } else if (subpass->attachments[i].usage == 4262 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { 4263 /* We may be writing depth or stencil so we need to mark the surface. 4264 * Unfortunately, there's no way to know at this point whether the 4265 * depth or stencil tests used will actually write to the surface. 4266 * 4267 * Even though stencil may be plane 1, it always shares a base_level 4268 * with depth. 4269 */ 4270 const struct isl_view *ds_view = &iview->planes[0].isl; 4271 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) { 4272 genX(cmd_buffer_mark_image_written)(cmd_buffer, image, 4273 VK_IMAGE_ASPECT_DEPTH_BIT, 4274 att_state->aux_usage, 4275 ds_view->base_level, 4276 ds_view->base_array_layer, 4277 fb->layers); 4278 } 4279 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) { 4280 /* Even though stencil may be plane 1, it always shares a 4281 * base_level with depth. 4282 */ 4283 genX(cmd_buffer_mark_image_written)(cmd_buffer, image, 4284 VK_IMAGE_ASPECT_STENCIL_BIT, 4285 ISL_AUX_USAGE_NONE, 4286 ds_view->base_level, 4287 ds_view->base_array_layer, 4288 fb->layers); 4289 } 4290 } 4291 4292 /* If multiview is enabled, then we are only done clearing when we no 4293 * longer have pending layers to clear, or when we have processed the 4294 * last subpass that uses this attachment. 4295 */ 4296 if (!is_multiview || 4297 att_state->pending_clear_views == 0 || 4298 current_subpass_is_last_for_attachment(cmd_state, a)) { 4299 att_state->pending_clear_aspects = 0; 4300 } 4301 4302 att_state->pending_load_aspects = 0; 4303 } 4304 4305 cmd_buffer_emit_depth_stencil(cmd_buffer); 4306} 4307 4308static enum blorp_filter 4309vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode) 4310{ 4311 switch (vk_mode) { 4312 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR: 4313 return BLORP_FILTER_SAMPLE_0; 4314 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR: 4315 return BLORP_FILTER_AVERAGE; 4316 case VK_RESOLVE_MODE_MIN_BIT_KHR: 4317 return BLORP_FILTER_MIN_SAMPLE; 4318 case VK_RESOLVE_MODE_MAX_BIT_KHR: 4319 return BLORP_FILTER_MAX_SAMPLE; 4320 default: 4321 return BLORP_FILTER_NONE; 4322 } 4323} 4324 4325static void 4326cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer) 4327{ 4328 struct anv_cmd_state *cmd_state = &cmd_buffer->state; 4329 struct anv_subpass *subpass = cmd_state->subpass; 4330 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state); 4331 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; 4332 4333 if (subpass->has_color_resolve) { 4334 /* We are about to do some MSAA resolves. We need to flush so that the 4335 * result of writes to the MSAA color attachments show up in the sampler 4336 * when we blit to the single-sampled resolve target. 4337 */ 4338 cmd_buffer->state.pending_pipe_bits |= 4339 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | 4340 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT; 4341 4342 for (uint32_t i = 0; i < subpass->color_count; ++i) { 4343 uint32_t src_att = subpass->color_attachments[i].attachment; 4344 uint32_t dst_att = subpass->resolve_attachments[i].attachment; 4345 4346 if (dst_att == VK_ATTACHMENT_UNUSED) 4347 continue; 4348 4349 assert(src_att < cmd_buffer->state.pass->attachment_count); 4350 assert(dst_att < cmd_buffer->state.pass->attachment_count); 4351 4352 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) { 4353 /* From the Vulkan 1.0 spec: 4354 * 4355 * If the first use of an attachment in a render pass is as a 4356 * resolve attachment, then the loadOp is effectively ignored 4357 * as the resolve is guaranteed to overwrite all pixels in the 4358 * render area. 4359 */ 4360 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0; 4361 } 4362 4363 struct anv_image_view *src_iview = fb->attachments[src_att]; 4364 struct anv_image_view *dst_iview = fb->attachments[dst_att]; 4365 4366 const VkRect2D render_area = cmd_buffer->state.render_area; 4367 4368 enum isl_aux_usage src_aux_usage = 4369 cmd_buffer->state.attachments[src_att].aux_usage; 4370 enum isl_aux_usage dst_aux_usage = 4371 cmd_buffer->state.attachments[dst_att].aux_usage; 4372 4373 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT && 4374 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT); 4375 4376 anv_image_msaa_resolve(cmd_buffer, 4377 src_iview->image, src_aux_usage, 4378 src_iview->planes[0].isl.base_level, 4379 src_iview->planes[0].isl.base_array_layer, 4380 dst_iview->image, dst_aux_usage, 4381 dst_iview->planes[0].isl.base_level, 4382 dst_iview->planes[0].isl.base_array_layer, 4383 VK_IMAGE_ASPECT_COLOR_BIT, 4384 render_area.offset.x, render_area.offset.y, 4385 render_area.offset.x, render_area.offset.y, 4386 render_area.extent.width, 4387 render_area.extent.height, 4388 fb->layers, BLORP_FILTER_NONE); 4389 } 4390 } 4391 4392 if (subpass->ds_resolve_attachment) { 4393 /* We are about to do some MSAA resolves. We need to flush so that the 4394 * result of writes to the MSAA depth attachments show up in the sampler 4395 * when we blit to the single-sampled resolve target. 4396 */ 4397 cmd_buffer->state.pending_pipe_bits |= 4398 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | 4399 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT; 4400 4401 uint32_t src_att = subpass->depth_stencil_attachment->attachment; 4402 uint32_t dst_att = subpass->ds_resolve_attachment->attachment; 4403 4404 assert(src_att < cmd_buffer->state.pass->attachment_count); 4405 assert(dst_att < cmd_buffer->state.pass->attachment_count); 4406 4407 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) { 4408 /* From the Vulkan 1.0 spec: 4409 * 4410 * If the first use of an attachment in a render pass is as a 4411 * resolve attachment, then the loadOp is effectively ignored 4412 * as the resolve is guaranteed to overwrite all pixels in the 4413 * render area. 4414 */ 4415 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0; 4416 } 4417 4418 struct anv_image_view *src_iview = fb->attachments[src_att]; 4419 struct anv_image_view *dst_iview = fb->attachments[dst_att]; 4420 4421 const VkRect2D render_area = cmd_buffer->state.render_area; 4422 4423 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && 4424 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) { 4425 4426 struct anv_attachment_state *src_state = 4427 &cmd_state->attachments[src_att]; 4428 struct anv_attachment_state *dst_state = 4429 &cmd_state->attachments[dst_att]; 4430 4431 /* MSAA resolves sample from the source attachment. Transition the 4432 * depth attachment first to get rid of any HiZ that we may not be 4433 * able to handle. 4434 */ 4435 transition_depth_buffer(cmd_buffer, src_iview->image, 4436 src_state->current_layout, 4437 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); 4438 src_state->aux_usage = 4439 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image, 4440 VK_IMAGE_ASPECT_DEPTH_BIT, 4441 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); 4442 src_state->current_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; 4443 4444 /* MSAA resolves write to the resolve attachment as if it were any 4445 * other transfer op. Transition the resolve attachment accordingly. 4446 */ 4447 VkImageLayout dst_initial_layout = dst_state->current_layout; 4448 4449 /* If our render area is the entire size of the image, we're going to 4450 * blow it all away so we can claim the initial layout is UNDEFINED 4451 * and we'll get a HiZ ambiguate instead of a resolve. 4452 */ 4453 if (dst_iview->image->type != VK_IMAGE_TYPE_3D && 4454 render_area.offset.x == 0 && render_area.offset.y == 0 && 4455 render_area.extent.width == dst_iview->extent.width && 4456 render_area.extent.height == dst_iview->extent.height) 4457 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED; 4458 4459 transition_depth_buffer(cmd_buffer, dst_iview->image, 4460 dst_initial_layout, 4461 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); 4462 dst_state->aux_usage = 4463 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image, 4464 VK_IMAGE_ASPECT_DEPTH_BIT, 4465 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); 4466 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; 4467 4468 enum blorp_filter filter = 4469 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode); 4470 4471 anv_image_msaa_resolve(cmd_buffer, 4472 src_iview->image, src_state->aux_usage, 4473 src_iview->planes[0].isl.base_level, 4474 src_iview->planes[0].isl.base_array_layer, 4475 dst_iview->image, dst_state->aux_usage, 4476 dst_iview->planes[0].isl.base_level, 4477 dst_iview->planes[0].isl.base_array_layer, 4478 VK_IMAGE_ASPECT_DEPTH_BIT, 4479 render_area.offset.x, render_area.offset.y, 4480 render_area.offset.x, render_area.offset.y, 4481 render_area.extent.width, 4482 render_area.extent.height, 4483 fb->layers, filter); 4484 } 4485 4486 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && 4487 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) { 4488 4489 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE; 4490 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE; 4491 4492 enum blorp_filter filter = 4493 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode); 4494 4495 anv_image_msaa_resolve(cmd_buffer, 4496 src_iview->image, src_aux_usage, 4497 src_iview->planes[0].isl.base_level, 4498 src_iview->planes[0].isl.base_array_layer, 4499 dst_iview->image, dst_aux_usage, 4500 dst_iview->planes[0].isl.base_level, 4501 dst_iview->planes[0].isl.base_array_layer, 4502 VK_IMAGE_ASPECT_STENCIL_BIT, 4503 render_area.offset.x, render_area.offset.y, 4504 render_area.offset.x, render_area.offset.y, 4505 render_area.extent.width, 4506 render_area.extent.height, 4507 fb->layers, filter); 4508 } 4509 } 4510 4511 for (uint32_t i = 0; i < subpass->attachment_count; ++i) { 4512 const uint32_t a = subpass->attachments[i].attachment; 4513 if (a == VK_ATTACHMENT_UNUSED) 4514 continue; 4515 4516 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id) 4517 continue; 4518 4519 assert(a < cmd_state->pass->attachment_count); 4520 struct anv_attachment_state *att_state = &cmd_state->attachments[a]; 4521 struct anv_image_view *iview = fb->attachments[a]; 4522 const struct anv_image *image = iview->image; 4523 4524 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && 4525 image->vk_format != iview->vk_format) { 4526 enum anv_fast_clear_type fast_clear_type = 4527 anv_layout_to_fast_clear_type(&cmd_buffer->device->info, 4528 image, VK_IMAGE_ASPECT_COLOR_BIT, 4529 att_state->current_layout); 4530 4531 /* If any clear color was used, flush it down the aux surfaces. If we 4532 * don't do it now using the view's format we might use the clear 4533 * color incorrectly in the following resolves (for example with an 4534 * SRGB view & a UNORM image). 4535 */ 4536 if (fast_clear_type != ANV_FAST_CLEAR_NONE) { 4537 anv_perf_warn(cmd_buffer->device->instance, fb, 4538 "Doing a partial resolve to get rid of clear color at the " 4539 "end of a renderpass due to an image/view format mismatch"); 4540 4541 uint32_t base_layer, layer_count; 4542 if (image->type == VK_IMAGE_TYPE_3D) { 4543 base_layer = 0; 4544 layer_count = anv_minify(iview->image->extent.depth, 4545 iview->planes[0].isl.base_level); 4546 } else { 4547 base_layer = iview->planes[0].isl.base_array_layer; 4548 layer_count = fb->layers; 4549 } 4550 4551 for (uint32_t a = 0; a < layer_count; a++) { 4552 uint32_t array_layer = base_layer + a; 4553 if (image->samples == 1) { 4554 anv_cmd_predicated_ccs_resolve(cmd_buffer, image, 4555 iview->planes[0].isl.format, 4556 VK_IMAGE_ASPECT_COLOR_BIT, 4557 iview->planes[0].isl.base_level, 4558 array_layer, 4559 ISL_AUX_OP_PARTIAL_RESOLVE, 4560 ANV_FAST_CLEAR_NONE); 4561 } else { 4562 anv_cmd_predicated_mcs_resolve(cmd_buffer, image, 4563 iview->planes[0].isl.format, 4564 VK_IMAGE_ASPECT_COLOR_BIT, 4565 base_layer, 4566 ISL_AUX_OP_PARTIAL_RESOLVE, 4567 ANV_FAST_CLEAR_NONE); 4568 } 4569 } 4570 } 4571 } 4572 4573 /* Transition the image into the final layout for this render pass */ 4574 VkImageLayout target_layout = 4575 cmd_state->pass->attachments[a].final_layout; 4576 4577 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { 4578 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); 4579 4580 uint32_t base_layer, layer_count; 4581 if (image->type == VK_IMAGE_TYPE_3D) { 4582 base_layer = 0; 4583 layer_count = anv_minify(iview->image->extent.depth, 4584 iview->planes[0].isl.base_level); 4585 } else { 4586 base_layer = iview->planes[0].isl.base_array_layer; 4587 layer_count = fb->layers; 4588 } 4589 4590 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, 4591 iview->planes[0].isl.base_level, 1, 4592 base_layer, layer_count, 4593 att_state->current_layout, target_layout); 4594 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { 4595 transition_depth_buffer(cmd_buffer, image, 4596 att_state->current_layout, target_layout); 4597 } 4598 } 4599 4600 /* Accumulate any subpass flushes that need to happen after the subpass. 4601 * Yes, they do get accumulated twice in the NextSubpass case but since 4602 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up 4603 * ORing the bits in twice so it's harmless. 4604 */ 4605 cmd_buffer->state.pending_pipe_bits |= 4606 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1]; 4607} 4608 4609void genX(CmdBeginRenderPass)( 4610 VkCommandBuffer commandBuffer, 4611 const VkRenderPassBeginInfo* pRenderPassBegin, 4612 VkSubpassContents contents) 4613{ 4614 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 4615 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass); 4616 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer); 4617 4618 cmd_buffer->state.framebuffer = framebuffer; 4619 cmd_buffer->state.pass = pass; 4620 cmd_buffer->state.render_area = pRenderPassBegin->renderArea; 4621 VkResult result = 4622 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin); 4623 4624 /* If we failed to setup the attachments we should not try to go further */ 4625 if (result != VK_SUCCESS) { 4626 assert(anv_batch_has_error(&cmd_buffer->batch)); 4627 return; 4628 } 4629 4630 genX(flush_pipeline_select_3d)(cmd_buffer); 4631 4632 cmd_buffer_begin_subpass(cmd_buffer, 0); 4633} 4634 4635void genX(CmdBeginRenderPass2KHR)( 4636 VkCommandBuffer commandBuffer, 4637 const VkRenderPassBeginInfo* pRenderPassBeginInfo, 4638 const VkSubpassBeginInfoKHR* pSubpassBeginInfo) 4639{ 4640 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo, 4641 pSubpassBeginInfo->contents); 4642} 4643 4644void genX(CmdNextSubpass)( 4645 VkCommandBuffer commandBuffer, 4646 VkSubpassContents contents) 4647{ 4648 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 4649 4650 if (anv_batch_has_error(&cmd_buffer->batch)) 4651 return; 4652 4653 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); 4654 4655 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state); 4656 cmd_buffer_end_subpass(cmd_buffer); 4657 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1); 4658} 4659 4660void genX(CmdNextSubpass2KHR)( 4661 VkCommandBuffer commandBuffer, 4662 const VkSubpassBeginInfoKHR* pSubpassBeginInfo, 4663 const VkSubpassEndInfoKHR* pSubpassEndInfo) 4664{ 4665 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents); 4666} 4667 4668void genX(CmdEndRenderPass)( 4669 VkCommandBuffer commandBuffer) 4670{ 4671 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 4672 4673 if (anv_batch_has_error(&cmd_buffer->batch)) 4674 return; 4675 4676 cmd_buffer_end_subpass(cmd_buffer); 4677 4678 cmd_buffer->state.hiz_enabled = false; 4679 4680#ifndef NDEBUG 4681 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer); 4682#endif 4683 4684 /* Remove references to render pass specific state. This enables us to 4685 * detect whether or not we're in a renderpass. 4686 */ 4687 cmd_buffer->state.framebuffer = NULL; 4688 cmd_buffer->state.pass = NULL; 4689 cmd_buffer->state.subpass = NULL; 4690} 4691 4692void genX(CmdEndRenderPass2KHR)( 4693 VkCommandBuffer commandBuffer, 4694 const VkSubpassEndInfoKHR* pSubpassEndInfo) 4695{ 4696 genX(CmdEndRenderPass)(commandBuffer); 4697} 4698 4699void 4700genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer) 4701{ 4702#if GEN_GEN >= 8 || GEN_IS_HASWELL 4703 struct gen_mi_builder b; 4704 gen_mi_builder_init(&b, &cmd_buffer->batch); 4705 4706 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), 4707 gen_mi_reg32(ANV_PREDICATE_RESULT_REG)); 4708 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0)); 4709 4710 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { 4711 mip.LoadOperation = LOAD_LOADINV; 4712 mip.CombineOperation = COMBINE_SET; 4713 mip.CompareOperation = COMPARE_SRCS_EQUAL; 4714 } 4715#endif 4716} 4717 4718#if GEN_GEN >= 8 || GEN_IS_HASWELL 4719void genX(CmdBeginConditionalRenderingEXT)( 4720 VkCommandBuffer commandBuffer, 4721 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin) 4722{ 4723 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 4724 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer); 4725 struct anv_cmd_state *cmd_state = &cmd_buffer->state; 4726 struct anv_address value_address = 4727 anv_address_add(buffer->address, pConditionalRenderingBegin->offset); 4728 4729 const bool isInverted = pConditionalRenderingBegin->flags & 4730 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT; 4731 4732 cmd_state->conditional_render_enabled = true; 4733 4734 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); 4735 4736 struct gen_mi_builder b; 4737 gen_mi_builder_init(&b, &cmd_buffer->batch); 4738 4739 /* Section 19.4 of the Vulkan 1.1.85 spec says: 4740 * 4741 * If the value of the predicate in buffer memory changes 4742 * while conditional rendering is active, the rendering commands 4743 * may be discarded in an implementation-dependent way. 4744 * Some implementations may latch the value of the predicate 4745 * upon beginning conditional rendering while others 4746 * may read it before every rendering command. 4747 * 4748 * So it's perfectly fine to read a value from the buffer once. 4749 */ 4750 struct gen_mi_value value = gen_mi_mem32(value_address); 4751 4752 /* Precompute predicate result, it is necessary to support secondary 4753 * command buffers since it is unknown if conditional rendering is 4754 * inverted when populating them. 4755 */ 4756 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG), 4757 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) : 4758 gen_mi_ult(&b, gen_mi_imm(0), value)); 4759} 4760 4761void genX(CmdEndConditionalRenderingEXT)( 4762 VkCommandBuffer commandBuffer) 4763{ 4764 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 4765 struct anv_cmd_state *cmd_state = &cmd_buffer->state; 4766 4767 cmd_state->conditional_render_enabled = false; 4768} 4769#endif 4770 4771/* Set of stage bits for which are pipelined, i.e. they get queued by the 4772 * command streamer for later execution. 4773 */ 4774#define ANV_PIPELINE_STAGE_PIPELINED_BITS \ 4775 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \ 4776 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \ 4777 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \ 4778 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \ 4779 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \ 4780 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \ 4781 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \ 4782 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \ 4783 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \ 4784 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \ 4785 VK_PIPELINE_STAGE_TRANSFER_BIT | \ 4786 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \ 4787 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \ 4788 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT) 4789 4790void genX(CmdSetEvent)( 4791 VkCommandBuffer commandBuffer, 4792 VkEvent _event, 4793 VkPipelineStageFlags stageMask) 4794{ 4795 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 4796 ANV_FROM_HANDLE(anv_event, event, _event); 4797 4798 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 4799 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) { 4800 pc.StallAtPixelScoreboard = true; 4801 pc.CommandStreamerStallEnable = true; 4802 } 4803 4804 pc.DestinationAddressType = DAT_PPGTT, 4805 pc.PostSyncOperation = WriteImmediateData, 4806 pc.Address = (struct anv_address) { 4807 cmd_buffer->device->dynamic_state_pool.block_pool.bo, 4808 event->state.offset 4809 }; 4810 pc.ImmediateData = VK_EVENT_SET; 4811 } 4812} 4813 4814void genX(CmdResetEvent)( 4815 VkCommandBuffer commandBuffer, 4816 VkEvent _event, 4817 VkPipelineStageFlags stageMask) 4818{ 4819 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 4820 ANV_FROM_HANDLE(anv_event, event, _event); 4821 4822 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { 4823 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) { 4824 pc.StallAtPixelScoreboard = true; 4825 pc.CommandStreamerStallEnable = true; 4826 } 4827 4828 pc.DestinationAddressType = DAT_PPGTT; 4829 pc.PostSyncOperation = WriteImmediateData; 4830 pc.Address = (struct anv_address) { 4831 cmd_buffer->device->dynamic_state_pool.block_pool.bo, 4832 event->state.offset 4833 }; 4834 pc.ImmediateData = VK_EVENT_RESET; 4835 } 4836} 4837 4838void genX(CmdWaitEvents)( 4839 VkCommandBuffer commandBuffer, 4840 uint32_t eventCount, 4841 const VkEvent* pEvents, 4842 VkPipelineStageFlags srcStageMask, 4843 VkPipelineStageFlags destStageMask, 4844 uint32_t memoryBarrierCount, 4845 const VkMemoryBarrier* pMemoryBarriers, 4846 uint32_t bufferMemoryBarrierCount, 4847 const VkBufferMemoryBarrier* pBufferMemoryBarriers, 4848 uint32_t imageMemoryBarrierCount, 4849 const VkImageMemoryBarrier* pImageMemoryBarriers) 4850{ 4851#if GEN_GEN >= 8 4852 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); 4853 4854 for (uint32_t i = 0; i < eventCount; i++) { 4855 ANV_FROM_HANDLE(anv_event, event, pEvents[i]); 4856 4857 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) { 4858 sem.WaitMode = PollingMode, 4859 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD, 4860 sem.SemaphoreDataDword = VK_EVENT_SET, 4861 sem.SemaphoreAddress = (struct anv_address) { 4862 cmd_buffer->device->dynamic_state_pool.block_pool.bo, 4863 event->state.offset 4864 }; 4865 } 4866 } 4867#else 4868 anv_finishme("Implement events on gen7"); 4869#endif 4870 4871 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask, 4872 false, /* byRegion */ 4873 memoryBarrierCount, pMemoryBarriers, 4874 bufferMemoryBarrierCount, pBufferMemoryBarriers, 4875 imageMemoryBarrierCount, pImageMemoryBarriers); 4876} 4877