genX_pipeline.c revision b8e80941
1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "anv_private.h"
25
26#include "genxml/gen_macros.h"
27#include "genxml/genX_pack.h"
28
29#include "common/gen_l3_config.h"
30#include "common/gen_sample_positions.h"
31#include "nir/nir_xfb_info.h"
32#include "vk_util.h"
33#include "vk_format_info.h"
34
35static uint32_t
36vertex_element_comp_control(enum isl_format format, unsigned comp)
37{
38   uint8_t bits;
39   switch (comp) {
40   case 0: bits = isl_format_layouts[format].channels.r.bits; break;
41   case 1: bits = isl_format_layouts[format].channels.g.bits; break;
42   case 2: bits = isl_format_layouts[format].channels.b.bits; break;
43   case 3: bits = isl_format_layouts[format].channels.a.bits; break;
44   default: unreachable("Invalid component");
45   }
46
47   /*
48    * Take in account hardware restrictions when dealing with 64-bit floats.
49    *
50    * From Broadwell spec, command reference structures, page 586:
51    *  "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
52    *   64-bit components are stored * in the URB without any conversion. In
53    *   this case, vertex elements must be written as 128 or 256 bits, with
54    *   VFCOMP_STORE_0 being used to pad the output as required. E.g., if
55    *   R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
56    *   Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
57    *   set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
58    *   Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
59    *   a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
60    *   Component 3 to be specified as VFCOMP_STORE_0 in order to output a
61    *   256-bit vertex element."
62    */
63   if (bits) {
64      return VFCOMP_STORE_SRC;
65   } else if (comp >= 2 &&
66              !isl_format_layouts[format].channels.b.bits &&
67              isl_format_layouts[format].channels.r.type == ISL_RAW) {
68      /* When emitting 64-bit attributes, we need to write either 128 or 256
69       * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
70       * VFCOMP_STORE_0 to pad the written chunk */
71      return VFCOMP_NOSTORE;
72   } else if (comp < 3 ||
73              isl_format_layouts[format].channels.r.type == ISL_RAW) {
74      /* Note we need to pad with value 0, not 1, due hardware restrictions
75       * (see comment above) */
76      return VFCOMP_STORE_0;
77   } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
78            isl_format_layouts[format].channels.r.type == ISL_SINT) {
79      assert(comp == 3);
80      return VFCOMP_STORE_1_INT;
81   } else {
82      assert(comp == 3);
83      return VFCOMP_STORE_1_FP;
84   }
85}
86
87static void
88emit_vertex_input(struct anv_pipeline *pipeline,
89                  const VkPipelineVertexInputStateCreateInfo *info)
90{
91   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
92
93   /* Pull inputs_read out of the VS prog data */
94   const uint64_t inputs_read = vs_prog_data->inputs_read;
95   const uint64_t double_inputs_read =
96      vs_prog_data->double_inputs_read & inputs_read;
97   assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
98   const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
99   const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
100   const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
101                                vs_prog_data->uses_instanceid ||
102                                vs_prog_data->uses_firstvertex ||
103                                vs_prog_data->uses_baseinstance;
104
105   uint32_t elem_count = __builtin_popcount(elements) -
106      __builtin_popcount(elements_double) / 2;
107
108   const uint32_t total_elems =
109      MAX2(1, elem_count + needs_svgs_elem + vs_prog_data->uses_drawid);
110
111   uint32_t *p;
112
113   const uint32_t num_dwords = 1 + total_elems * 2;
114   p = anv_batch_emitn(&pipeline->batch, num_dwords,
115                       GENX(3DSTATE_VERTEX_ELEMENTS));
116   if (!p)
117      return;
118
119   for (uint32_t i = 0; i < total_elems; i++) {
120      /* The SKL docs for VERTEX_ELEMENT_STATE say:
121       *
122       *    "All elements must be valid from Element[0] to the last valid
123       *    element. (I.e. if Element[2] is valid then Element[1] and
124       *    Element[0] must also be valid)."
125       *
126       * The SKL docs for 3D_Vertex_Component_Control say:
127       *
128       *    "Don't store this component. (Not valid for Component 0, but can
129       *    be used for Component 1-3)."
130       *
131       * So we can't just leave a vertex element blank and hope for the best.
132       * We have to tell the VF hardware to put something in it; so we just
133       * store a bunch of zero.
134       *
135       * TODO: Compact vertex elements so we never end up with holes.
136       */
137      struct GENX(VERTEX_ELEMENT_STATE) element = {
138         .Valid = true,
139         .Component0Control = VFCOMP_STORE_0,
140         .Component1Control = VFCOMP_STORE_0,
141         .Component2Control = VFCOMP_STORE_0,
142         .Component3Control = VFCOMP_STORE_0,
143      };
144      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
145   }
146
147   for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
148      const VkVertexInputAttributeDescription *desc =
149         &info->pVertexAttributeDescriptions[i];
150      enum isl_format format = anv_get_isl_format(&pipeline->device->info,
151                                                  desc->format,
152                                                  VK_IMAGE_ASPECT_COLOR_BIT,
153                                                  VK_IMAGE_TILING_LINEAR);
154
155      assert(desc->binding < MAX_VBS);
156
157      if ((elements & (1 << desc->location)) == 0)
158         continue; /* Binding unused */
159
160      uint32_t slot =
161         __builtin_popcount(elements & ((1 << desc->location) - 1)) -
162         DIV_ROUND_UP(__builtin_popcount(elements_double &
163                                        ((1 << desc->location) -1)), 2);
164
165      struct GENX(VERTEX_ELEMENT_STATE) element = {
166         .VertexBufferIndex = desc->binding,
167         .Valid = true,
168         .SourceElementFormat = format,
169         .EdgeFlagEnable = false,
170         .SourceElementOffset = desc->offset,
171         .Component0Control = vertex_element_comp_control(format, 0),
172         .Component1Control = vertex_element_comp_control(format, 1),
173         .Component2Control = vertex_element_comp_control(format, 2),
174         .Component3Control = vertex_element_comp_control(format, 3),
175      };
176      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
177
178#if GEN_GEN >= 8
179      /* On Broadwell and later, we have a separate VF_INSTANCING packet
180       * that controls instancing.  On Haswell and prior, that's part of
181       * VERTEX_BUFFER_STATE which we emit later.
182       */
183      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
184         vfi.InstancingEnable = pipeline->vb[desc->binding].instanced;
185         vfi.VertexElementIndex = slot;
186         vfi.InstanceDataStepRate =
187            pipeline->vb[desc->binding].instance_divisor;
188      }
189#endif
190   }
191
192   const uint32_t id_slot = elem_count;
193   if (needs_svgs_elem) {
194      /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
195       *    "Within a VERTEX_ELEMENT_STATE structure, if a Component
196       *    Control field is set to something other than VFCOMP_STORE_SRC,
197       *    no higher-numbered Component Control fields may be set to
198       *    VFCOMP_STORE_SRC"
199       *
200       * This means, that if we have BaseInstance, we need BaseVertex as
201       * well.  Just do all or nothing.
202       */
203      uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
204                            vs_prog_data->uses_baseinstance) ?
205                           VFCOMP_STORE_SRC : VFCOMP_STORE_0;
206
207      struct GENX(VERTEX_ELEMENT_STATE) element = {
208         .VertexBufferIndex = ANV_SVGS_VB_INDEX,
209         .Valid = true,
210         .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
211         .Component0Control = base_ctrl,
212         .Component1Control = base_ctrl,
213#if GEN_GEN >= 8
214         .Component2Control = VFCOMP_STORE_0,
215         .Component3Control = VFCOMP_STORE_0,
216#else
217         .Component2Control = VFCOMP_STORE_VID,
218         .Component3Control = VFCOMP_STORE_IID,
219#endif
220      };
221      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
222   }
223
224#if GEN_GEN >= 8
225   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
226      sgvs.VertexIDEnable              = vs_prog_data->uses_vertexid;
227      sgvs.VertexIDComponentNumber     = 2;
228      sgvs.VertexIDElementOffset       = id_slot;
229      sgvs.InstanceIDEnable            = vs_prog_data->uses_instanceid;
230      sgvs.InstanceIDComponentNumber   = 3;
231      sgvs.InstanceIDElementOffset     = id_slot;
232   }
233#endif
234
235   const uint32_t drawid_slot = elem_count + needs_svgs_elem;
236   if (vs_prog_data->uses_drawid) {
237      struct GENX(VERTEX_ELEMENT_STATE) element = {
238         .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
239         .Valid = true,
240         .SourceElementFormat = ISL_FORMAT_R32_UINT,
241         .Component0Control = VFCOMP_STORE_SRC,
242         .Component1Control = VFCOMP_STORE_0,
243         .Component2Control = VFCOMP_STORE_0,
244         .Component3Control = VFCOMP_STORE_0,
245      };
246      GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
247                                      &p[1 + drawid_slot * 2],
248                                      &element);
249
250#if GEN_GEN >= 8
251      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
252         vfi.VertexElementIndex = drawid_slot;
253      }
254#endif
255   }
256}
257
258void
259genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
260                     const struct gen_l3_config *l3_config,
261                     VkShaderStageFlags active_stages,
262                     const unsigned entry_size[4])
263{
264   const struct gen_device_info *devinfo = &device->info;
265#if GEN_IS_HASWELL
266   const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
267#else
268   const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
269#endif
270
271   const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
272
273   unsigned entries[4];
274   unsigned start[4];
275   gen_get_urb_config(devinfo,
276                      1024 * push_constant_kb, 1024 * urb_size_kb,
277                      active_stages &
278                         VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
279                      active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
280                      entry_size, entries, start);
281
282#if GEN_GEN == 7 && !GEN_IS_HASWELL
283   /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
284    *
285    *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
286    *    needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
287    *    3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
288    *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one PIPE_CONTROL
289    *    needs to be sent before any combination of VS associated 3DSTATE."
290    */
291   anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
292      pc.DepthStallEnable  = true;
293      pc.PostSyncOperation = WriteImmediateData;
294      pc.Address           = (struct anv_address) { &device->workaround_bo, 0 };
295   }
296#endif
297
298   for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
299      anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
300         urb._3DCommandSubOpcode      += i;
301         urb.VSURBStartingAddress      = start[i];
302         urb.VSURBEntryAllocationSize  = entry_size[i] - 1;
303         urb.VSNumberofURBEntries      = entries[i];
304      }
305   }
306}
307
308static void
309emit_urb_setup(struct anv_pipeline *pipeline)
310{
311   unsigned entry_size[4];
312   for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
313      const struct brw_vue_prog_data *prog_data =
314         !anv_pipeline_has_stage(pipeline, i) ? NULL :
315         (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
316
317      entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
318   }
319
320   genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
321                        pipeline->urb.l3_config,
322                        pipeline->active_stages, entry_size);
323}
324
325static void
326emit_3dstate_sbe(struct anv_pipeline *pipeline)
327{
328   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
329
330   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
331      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
332#if GEN_GEN >= 8
333      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
334#endif
335      return;
336   }
337
338   const struct brw_vue_map *fs_input_map =
339      &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
340
341   struct GENX(3DSTATE_SBE) sbe = {
342      GENX(3DSTATE_SBE_header),
343      .AttributeSwizzleEnable = true,
344      .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
345      .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
346      .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
347   };
348
349#if GEN_GEN >= 9
350   for (unsigned i = 0; i < 32; i++)
351      sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
352#endif
353
354#if GEN_GEN >= 8
355   /* On Broadwell, they broke 3DSTATE_SBE into two packets */
356   struct GENX(3DSTATE_SBE_SWIZ) swiz = {
357      GENX(3DSTATE_SBE_SWIZ_header),
358   };
359#else
360#  define swiz sbe
361#endif
362
363   /* Skip the VUE header and position slots by default */
364   unsigned urb_entry_read_offset = 1;
365   int max_source_attr = 0;
366   for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
367      int input_index = wm_prog_data->urb_setup[attr];
368
369      if (input_index < 0)
370         continue;
371
372      /* gl_Layer is stored in the VUE header */
373      if (attr == VARYING_SLOT_LAYER) {
374         urb_entry_read_offset = 0;
375         continue;
376      }
377
378      if (attr == VARYING_SLOT_PNTC) {
379         sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
380         continue;
381      }
382
383      const int slot = fs_input_map->varying_to_slot[attr];
384
385      if (input_index >= 16)
386         continue;
387
388      if (slot == -1) {
389         /* This attribute does not exist in the VUE--that means that the
390          * vertex shader did not write to it.  It could be that it's a
391          * regular varying read by the fragment shader but not written by
392          * the vertex shader or it's gl_PrimitiveID. In the first case the
393          * value is undefined, in the second it needs to be
394          * gl_PrimitiveID.
395          */
396         swiz.Attribute[input_index].ConstantSource = PRIM_ID;
397         swiz.Attribute[input_index].ComponentOverrideX = true;
398         swiz.Attribute[input_index].ComponentOverrideY = true;
399         swiz.Attribute[input_index].ComponentOverrideZ = true;
400         swiz.Attribute[input_index].ComponentOverrideW = true;
401      } else {
402         /* We have to subtract two slots to accout for the URB entry output
403          * read offset in the VS and GS stages.
404          */
405         const int source_attr = slot - 2 * urb_entry_read_offset;
406         assert(source_attr >= 0 && source_attr < 32);
407         max_source_attr = MAX2(max_source_attr, source_attr);
408         swiz.Attribute[input_index].SourceAttribute = source_attr;
409      }
410   }
411
412   sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
413   sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
414#if GEN_GEN >= 8
415   sbe.ForceVertexURBEntryReadOffset = true;
416   sbe.ForceVertexURBEntryReadLength = true;
417#endif
418
419   uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
420                                        GENX(3DSTATE_SBE_length));
421   if (!dw)
422      return;
423   GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
424
425#if GEN_GEN >= 8
426   dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
427   if (!dw)
428      return;
429   GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
430#endif
431}
432
433static const uint32_t vk_to_gen_cullmode[] = {
434   [VK_CULL_MODE_NONE]                       = CULLMODE_NONE,
435   [VK_CULL_MODE_FRONT_BIT]                  = CULLMODE_FRONT,
436   [VK_CULL_MODE_BACK_BIT]                   = CULLMODE_BACK,
437   [VK_CULL_MODE_FRONT_AND_BACK]             = CULLMODE_BOTH
438};
439
440static const uint32_t vk_to_gen_fillmode[] = {
441   [VK_POLYGON_MODE_FILL]                    = FILL_MODE_SOLID,
442   [VK_POLYGON_MODE_LINE]                    = FILL_MODE_WIREFRAME,
443   [VK_POLYGON_MODE_POINT]                   = FILL_MODE_POINT,
444};
445
446static const uint32_t vk_to_gen_front_face[] = {
447   [VK_FRONT_FACE_COUNTER_CLOCKWISE]         = 1,
448   [VK_FRONT_FACE_CLOCKWISE]                 = 0
449};
450
451static void
452emit_rs_state(struct anv_pipeline *pipeline,
453              const VkPipelineRasterizationStateCreateInfo *rs_info,
454              const VkPipelineMultisampleStateCreateInfo *ms_info,
455              const struct anv_render_pass *pass,
456              const struct anv_subpass *subpass)
457{
458   struct GENX(3DSTATE_SF) sf = {
459      GENX(3DSTATE_SF_header),
460   };
461
462   sf.ViewportTransformEnable = true;
463   sf.StatisticsEnable = true;
464   sf.TriangleStripListProvokingVertexSelect = 0;
465   sf.LineStripListProvokingVertexSelect = 0;
466   sf.TriangleFanProvokingVertexSelect = 1;
467   sf.VertexSubPixelPrecisionSelect = _8Bit;
468
469   const struct brw_vue_prog_data *last_vue_prog_data =
470      anv_pipeline_get_last_vue_prog_data(pipeline);
471
472   if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
473      sf.PointWidthSource = Vertex;
474   } else {
475      sf.PointWidthSource = State;
476      sf.PointWidth = 1.0;
477   }
478
479#if GEN_GEN >= 8
480   struct GENX(3DSTATE_RASTER) raster = {
481      GENX(3DSTATE_RASTER_header),
482   };
483#else
484#  define raster sf
485#endif
486
487   /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
488    * "Multisample Modes State".
489    */
490#if GEN_GEN >= 8
491   raster.DXMultisampleRasterizationEnable = true;
492   /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
493    * computations.  If we ever set this bit to a different value, they will
494    * need to be updated accordingly.
495    */
496   raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
497   raster.ForceMultisampling = false;
498#else
499   raster.MultisampleRasterizationMode =
500      (ms_info && ms_info->rasterizationSamples > 1) ?
501      MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
502#endif
503
504   raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
505   raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
506   raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
507   raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
508   raster.ScissorRectangleEnable = true;
509
510#if GEN_GEN >= 9
511   /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
512   raster.ViewportZFarClipTestEnable = pipeline->depth_clip_enable;
513   raster.ViewportZNearClipTestEnable = pipeline->depth_clip_enable;
514#elif GEN_GEN >= 8
515   raster.ViewportZClipTestEnable = pipeline->depth_clip_enable;
516#endif
517
518   raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
519   raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
520   raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
521
522#if GEN_GEN == 7
523   /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
524    * can get the depth offsets correct.
525    */
526   if (subpass->depth_stencil_attachment) {
527      VkFormat vk_format =
528         pass->attachments[subpass->depth_stencil_attachment->attachment].format;
529      assert(vk_format_is_depth_or_stencil(vk_format));
530      if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
531         enum isl_format isl_format =
532            anv_get_isl_format(&pipeline->device->info, vk_format,
533                               VK_IMAGE_ASPECT_DEPTH_BIT,
534                               VK_IMAGE_TILING_OPTIMAL);
535         sf.DepthBufferSurfaceFormat =
536            isl_format_get_depth_format(isl_format, false);
537      }
538   }
539#endif
540
541#if GEN_GEN >= 8
542   GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
543   GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
544#else
545#  undef raster
546   GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
547#endif
548}
549
550static void
551emit_ms_state(struct anv_pipeline *pipeline,
552              const VkPipelineMultisampleStateCreateInfo *info)
553{
554   uint32_t samples = 1;
555   uint32_t log2_samples = 0;
556
557   /* From the Vulkan 1.0 spec:
558    *    If pSampleMask is NULL, it is treated as if the mask has all bits
559    *    enabled, i.e. no coverage is removed from fragments.
560    *
561    * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
562    */
563#if GEN_GEN >= 8
564   uint32_t sample_mask = 0xffff;
565#else
566   uint32_t sample_mask = 0xff;
567#endif
568
569   if (info) {
570      samples = info->rasterizationSamples;
571      log2_samples = __builtin_ffs(samples) - 1;
572   }
573
574   if (info && info->pSampleMask)
575      sample_mask &= info->pSampleMask[0];
576
577   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
578      ms.NumberofMultisamples       = log2_samples;
579
580      ms.PixelLocation              = CENTER;
581#if GEN_GEN >= 8
582      /* The PRM says that this bit is valid only for DX9:
583       *
584       *    SW can choose to set this bit only for DX9 API. DX10/OGL API's
585       *    should not have any effect by setting or not setting this bit.
586       */
587      ms.PixelPositionOffsetEnable  = false;
588#else
589
590      switch (samples) {
591      case 1:
592         GEN_SAMPLE_POS_1X(ms.Sample);
593         break;
594      case 2:
595         GEN_SAMPLE_POS_2X(ms.Sample);
596         break;
597      case 4:
598         GEN_SAMPLE_POS_4X(ms.Sample);
599         break;
600      case 8:
601         GEN_SAMPLE_POS_8X(ms.Sample);
602         break;
603      default:
604         break;
605      }
606#endif
607   }
608
609   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
610      sm.SampleMask = sample_mask;
611   }
612}
613
614static const uint32_t vk_to_gen_logic_op[] = {
615   [VK_LOGIC_OP_COPY]                        = LOGICOP_COPY,
616   [VK_LOGIC_OP_CLEAR]                       = LOGICOP_CLEAR,
617   [VK_LOGIC_OP_AND]                         = LOGICOP_AND,
618   [VK_LOGIC_OP_AND_REVERSE]                 = LOGICOP_AND_REVERSE,
619   [VK_LOGIC_OP_AND_INVERTED]                = LOGICOP_AND_INVERTED,
620   [VK_LOGIC_OP_NO_OP]                       = LOGICOP_NOOP,
621   [VK_LOGIC_OP_XOR]                         = LOGICOP_XOR,
622   [VK_LOGIC_OP_OR]                          = LOGICOP_OR,
623   [VK_LOGIC_OP_NOR]                         = LOGICOP_NOR,
624   [VK_LOGIC_OP_EQUIVALENT]                  = LOGICOP_EQUIV,
625   [VK_LOGIC_OP_INVERT]                      = LOGICOP_INVERT,
626   [VK_LOGIC_OP_OR_REVERSE]                  = LOGICOP_OR_REVERSE,
627   [VK_LOGIC_OP_COPY_INVERTED]               = LOGICOP_COPY_INVERTED,
628   [VK_LOGIC_OP_OR_INVERTED]                 = LOGICOP_OR_INVERTED,
629   [VK_LOGIC_OP_NAND]                        = LOGICOP_NAND,
630   [VK_LOGIC_OP_SET]                         = LOGICOP_SET,
631};
632
633static const uint32_t vk_to_gen_blend[] = {
634   [VK_BLEND_FACTOR_ZERO]                    = BLENDFACTOR_ZERO,
635   [VK_BLEND_FACTOR_ONE]                     = BLENDFACTOR_ONE,
636   [VK_BLEND_FACTOR_SRC_COLOR]               = BLENDFACTOR_SRC_COLOR,
637   [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR]     = BLENDFACTOR_INV_SRC_COLOR,
638   [VK_BLEND_FACTOR_DST_COLOR]               = BLENDFACTOR_DST_COLOR,
639   [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR]     = BLENDFACTOR_INV_DST_COLOR,
640   [VK_BLEND_FACTOR_SRC_ALPHA]               = BLENDFACTOR_SRC_ALPHA,
641   [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA]     = BLENDFACTOR_INV_SRC_ALPHA,
642   [VK_BLEND_FACTOR_DST_ALPHA]               = BLENDFACTOR_DST_ALPHA,
643   [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA]     = BLENDFACTOR_INV_DST_ALPHA,
644   [VK_BLEND_FACTOR_CONSTANT_COLOR]          = BLENDFACTOR_CONST_COLOR,
645   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
646   [VK_BLEND_FACTOR_CONSTANT_ALPHA]          = BLENDFACTOR_CONST_ALPHA,
647   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
648   [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE]      = BLENDFACTOR_SRC_ALPHA_SATURATE,
649   [VK_BLEND_FACTOR_SRC1_COLOR]              = BLENDFACTOR_SRC1_COLOR,
650   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR]    = BLENDFACTOR_INV_SRC1_COLOR,
651   [VK_BLEND_FACTOR_SRC1_ALPHA]              = BLENDFACTOR_SRC1_ALPHA,
652   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA]    = BLENDFACTOR_INV_SRC1_ALPHA,
653};
654
655static const uint32_t vk_to_gen_blend_op[] = {
656   [VK_BLEND_OP_ADD]                         = BLENDFUNCTION_ADD,
657   [VK_BLEND_OP_SUBTRACT]                    = BLENDFUNCTION_SUBTRACT,
658   [VK_BLEND_OP_REVERSE_SUBTRACT]            = BLENDFUNCTION_REVERSE_SUBTRACT,
659   [VK_BLEND_OP_MIN]                         = BLENDFUNCTION_MIN,
660   [VK_BLEND_OP_MAX]                         = BLENDFUNCTION_MAX,
661};
662
663static const uint32_t vk_to_gen_compare_op[] = {
664   [VK_COMPARE_OP_NEVER]                        = PREFILTEROPNEVER,
665   [VK_COMPARE_OP_LESS]                         = PREFILTEROPLESS,
666   [VK_COMPARE_OP_EQUAL]                        = PREFILTEROPEQUAL,
667   [VK_COMPARE_OP_LESS_OR_EQUAL]                = PREFILTEROPLEQUAL,
668   [VK_COMPARE_OP_GREATER]                      = PREFILTEROPGREATER,
669   [VK_COMPARE_OP_NOT_EQUAL]                    = PREFILTEROPNOTEQUAL,
670   [VK_COMPARE_OP_GREATER_OR_EQUAL]             = PREFILTEROPGEQUAL,
671   [VK_COMPARE_OP_ALWAYS]                       = PREFILTEROPALWAYS,
672};
673
674static const uint32_t vk_to_gen_stencil_op[] = {
675   [VK_STENCIL_OP_KEEP]                         = STENCILOP_KEEP,
676   [VK_STENCIL_OP_ZERO]                         = STENCILOP_ZERO,
677   [VK_STENCIL_OP_REPLACE]                      = STENCILOP_REPLACE,
678   [VK_STENCIL_OP_INCREMENT_AND_CLAMP]          = STENCILOP_INCRSAT,
679   [VK_STENCIL_OP_DECREMENT_AND_CLAMP]          = STENCILOP_DECRSAT,
680   [VK_STENCIL_OP_INVERT]                       = STENCILOP_INVERT,
681   [VK_STENCIL_OP_INCREMENT_AND_WRAP]           = STENCILOP_INCR,
682   [VK_STENCIL_OP_DECREMENT_AND_WRAP]           = STENCILOP_DECR,
683};
684
685/* This function sanitizes the VkStencilOpState by looking at the compare ops
686 * and trying to determine whether or not a given stencil op can ever actually
687 * occur.  Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
688 * This function returns true if, after sanitation, any of the stencil ops are
689 * set to something other than VK_STENCIL_OP_KEEP.
690 */
691static bool
692sanitize_stencil_face(VkStencilOpState *face,
693                      VkCompareOp depthCompareOp)
694{
695   /* If compareOp is ALWAYS then the stencil test will never fail and failOp
696    * will never happen.  Set failOp to KEEP in this case.
697    */
698   if (face->compareOp == VK_COMPARE_OP_ALWAYS)
699      face->failOp = VK_STENCIL_OP_KEEP;
700
701   /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
702    * or stencil tests will fail and passOp will never happen.
703    */
704   if (face->compareOp == VK_COMPARE_OP_NEVER ||
705       depthCompareOp == VK_COMPARE_OP_NEVER)
706      face->passOp = VK_STENCIL_OP_KEEP;
707
708   /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
709    * stencil test will fail or the depth test will pass.  In either case,
710    * depthFailOp will never happen.
711    */
712   if (face->compareOp == VK_COMPARE_OP_NEVER ||
713       depthCompareOp == VK_COMPARE_OP_ALWAYS)
714      face->depthFailOp = VK_STENCIL_OP_KEEP;
715
716   return face->failOp != VK_STENCIL_OP_KEEP ||
717          face->depthFailOp != VK_STENCIL_OP_KEEP ||
718          face->passOp != VK_STENCIL_OP_KEEP;
719}
720
721/* Intel hardware is fairly sensitive to whether or not depth/stencil writes
722 * are enabled.  In the presence of discards, it's fairly easy to get into the
723 * non-promoted case which means a fairly big performance hit.  From the Iron
724 * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
725 *
726 *    "Non-promoted depth (N) is active whenever the depth test can be done
727 *    early but it cannot determine whether or not to write source depth to
728 *    the depth buffer, therefore the depth write must be performed post pixel
729 *    shader. This includes cases where the pixel shader can kill pixels,
730 *    including via sampler chroma key, as well as cases where the alpha test
731 *    function is enabled, which kills pixels based on a programmable alpha
732 *    test. In this case, even if the depth test fails, the pixel cannot be
733 *    killed if a stencil write is indicated. Whether or not the stencil write
734 *    happens depends on whether or not the pixel is killed later. In these
735 *    cases if stencil test fails and stencil writes are off, the pixels can
736 *    also be killed early. If stencil writes are enabled, the pixels must be
737 *    treated as Computed depth (described above)."
738 *
739 * The same thing as mentioned in the stencil case can happen in the depth
740 * case as well if it thinks it writes depth but, thanks to the depth test
741 * being GL_EQUAL, the write doesn't actually matter.  A little extra work
742 * up-front to try and disable depth and stencil writes can make a big
743 * difference.
744 *
745 * Unfortunately, the way depth and stencil testing is specified, there are
746 * many case where, regardless of depth/stencil writes being enabled, nothing
747 * actually gets written due to some other bit of state being set.  This
748 * function attempts to "sanitize" the depth stencil state and disable writes
749 * and sometimes even testing whenever possible.
750 */
751static void
752sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
753                  bool *stencilWriteEnable,
754                  VkImageAspectFlags ds_aspects)
755{
756   *stencilWriteEnable = state->stencilTestEnable;
757
758   /* If the depth test is disabled, we won't be writing anything. Make sure we
759    * treat the test as always passing later on as well.
760    *
761    * Also, the Vulkan spec requires that if either depth or stencil is not
762    * present, the pipeline is to act as if the test silently passes. In that
763    * case we won't write either.
764    */
765   if (!state->depthTestEnable || !(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
766      state->depthWriteEnable = false;
767      state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
768   }
769
770   if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
771      *stencilWriteEnable = false;
772      state->front.compareOp = VK_COMPARE_OP_ALWAYS;
773      state->back.compareOp = VK_COMPARE_OP_ALWAYS;
774   }
775
776   /* If the stencil test is enabled and always fails, then we will never get
777    * to the depth test so we can just disable the depth test entirely.
778    */
779   if (state->stencilTestEnable &&
780       state->front.compareOp == VK_COMPARE_OP_NEVER &&
781       state->back.compareOp == VK_COMPARE_OP_NEVER) {
782      state->depthTestEnable = false;
783      state->depthWriteEnable = false;
784   }
785
786   /* If depthCompareOp is EQUAL then the value we would be writing to the
787    * depth buffer is the same as the value that's already there so there's no
788    * point in writing it.
789    */
790   if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
791      state->depthWriteEnable = false;
792
793   /* If the stencil ops are such that we don't actually ever modify the
794    * stencil buffer, we should disable writes.
795    */
796   if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
797       !sanitize_stencil_face(&state->back, state->depthCompareOp))
798      *stencilWriteEnable = false;
799
800   /* If the depth test always passes and we never write out depth, that's the
801    * same as if the depth test is disabled entirely.
802    */
803   if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
804       !state->depthWriteEnable)
805      state->depthTestEnable = false;
806
807   /* If the stencil test always passes and we never write out stencil, that's
808    * the same as if the stencil test is disabled entirely.
809    */
810   if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
811       state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
812       !*stencilWriteEnable)
813      state->stencilTestEnable = false;
814}
815
816static void
817emit_ds_state(struct anv_pipeline *pipeline,
818              const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
819              const struct anv_render_pass *pass,
820              const struct anv_subpass *subpass)
821{
822#if GEN_GEN == 7
823#  define depth_stencil_dw pipeline->gen7.depth_stencil_state
824#elif GEN_GEN == 8
825#  define depth_stencil_dw pipeline->gen8.wm_depth_stencil
826#else
827#  define depth_stencil_dw pipeline->gen9.wm_depth_stencil
828#endif
829
830   if (pCreateInfo == NULL) {
831      /* We're going to OR this together with the dynamic state.  We need
832       * to make sure it's initialized to something useful.
833       */
834      pipeline->writes_stencil = false;
835      pipeline->stencil_test_enable = false;
836      pipeline->writes_depth = false;
837      pipeline->depth_test_enable = false;
838      memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
839      return;
840   }
841
842   VkImageAspectFlags ds_aspects = 0;
843   if (subpass->depth_stencil_attachment) {
844      VkFormat depth_stencil_format =
845         pass->attachments[subpass->depth_stencil_attachment->attachment].format;
846      ds_aspects = vk_format_aspects(depth_stencil_format);
847   }
848
849   VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
850   sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
851   pipeline->stencil_test_enable = info.stencilTestEnable;
852   pipeline->writes_depth = info.depthWriteEnable;
853   pipeline->depth_test_enable = info.depthTestEnable;
854
855   /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
856
857#if GEN_GEN <= 7
858   struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
859#else
860   struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
861#endif
862      .DepthTestEnable = info.depthTestEnable,
863      .DepthBufferWriteEnable = info.depthWriteEnable,
864      .DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
865      .DoubleSidedStencilEnable = true,
866
867      .StencilTestEnable = info.stencilTestEnable,
868      .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
869      .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
870      .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
871      .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
872      .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
873      .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
874      .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
875      .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
876   };
877
878#if GEN_GEN <= 7
879   GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
880#else
881   GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
882#endif
883}
884
885MAYBE_UNUSED static bool
886is_dual_src_blend_factor(VkBlendFactor factor)
887{
888   return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
889          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
890          factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
891          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
892}
893
894static void
895emit_cb_state(struct anv_pipeline *pipeline,
896              const VkPipelineColorBlendStateCreateInfo *info,
897              const VkPipelineMultisampleStateCreateInfo *ms_info)
898{
899   struct anv_device *device = pipeline->device;
900   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
901
902   struct GENX(BLEND_STATE) blend_state = {
903#if GEN_GEN >= 8
904      .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
905      .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
906#endif
907   };
908
909   uint32_t surface_count = 0;
910   struct anv_pipeline_bind_map *map;
911   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
912      map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
913      surface_count = map->surface_count;
914   }
915
916   const uint32_t num_dwords = GENX(BLEND_STATE_length) +
917      GENX(BLEND_STATE_ENTRY_length) * surface_count;
918   pipeline->blend_state =
919      anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
920
921   bool has_writeable_rt = false;
922   uint32_t *state_pos = pipeline->blend_state.map;
923   state_pos += GENX(BLEND_STATE_length);
924#if GEN_GEN >= 8
925   struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
926#endif
927   for (unsigned i = 0; i < surface_count; i++) {
928      struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
929
930      /* All color attachments are at the beginning of the binding table */
931      if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
932         break;
933
934      /* We can have at most 8 attachments */
935      assert(i < 8);
936
937      if (info == NULL || binding->index >= info->attachmentCount) {
938         /* Default everything to disabled */
939         struct GENX(BLEND_STATE_ENTRY) entry = {
940            .WriteDisableAlpha = true,
941            .WriteDisableRed = true,
942            .WriteDisableGreen = true,
943            .WriteDisableBlue = true,
944         };
945         GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
946         state_pos += GENX(BLEND_STATE_ENTRY_length);
947         continue;
948      }
949
950      assert(binding->binding == 0);
951      const VkPipelineColorBlendAttachmentState *a =
952         &info->pAttachments[binding->index];
953
954      struct GENX(BLEND_STATE_ENTRY) entry = {
955#if GEN_GEN < 8
956         .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
957         .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
958#endif
959         .LogicOpEnable = info->logicOpEnable,
960         .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
961         .ColorBufferBlendEnable = a->blendEnable,
962         .ColorClampRange = COLORCLAMP_RTFORMAT,
963         .PreBlendColorClampEnable = true,
964         .PostBlendColorClampEnable = true,
965         .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
966         .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
967         .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
968         .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
969         .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
970         .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
971         .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
972         .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
973         .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
974         .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
975      };
976
977      if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
978          a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
979          a->colorBlendOp != a->alphaBlendOp) {
980#if GEN_GEN >= 8
981         blend_state.IndependentAlphaBlendEnable = true;
982#else
983         entry.IndependentAlphaBlendEnable = true;
984#endif
985      }
986
987      /* The Dual Source Blending documentation says:
988       *
989       * "If SRC1 is included in a src/dst blend factor and
990       * a DualSource RT Write message is not used, results
991       * are UNDEFINED. (This reflects the same restriction in DX APIs,
992       * where undefined results are produced if “o1” is not written
993       * by a PS – there are no default values defined)."
994       *
995       * There is no way to gracefully fix this undefined situation
996       * so we just disable the blending to prevent possible issues.
997       */
998      if (!wm_prog_data->dual_src_blend &&
999          (is_dual_src_blend_factor(a->srcColorBlendFactor) ||
1000           is_dual_src_blend_factor(a->dstColorBlendFactor) ||
1001           is_dual_src_blend_factor(a->srcAlphaBlendFactor) ||
1002           is_dual_src_blend_factor(a->dstAlphaBlendFactor))) {
1003         vk_debug_report(&device->instance->debug_report_callbacks,
1004                         VK_DEBUG_REPORT_WARNING_BIT_EXT,
1005                         VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
1006                         (uint64_t)(uintptr_t)device,
1007                         0, 0, "anv",
1008                         "Enabled dual-src blend factors without writing both targets "
1009                         "in the shader.  Disabling blending to avoid GPU hangs.");
1010         entry.ColorBufferBlendEnable = false;
1011      }
1012
1013      if (a->colorWriteMask != 0)
1014         has_writeable_rt = true;
1015
1016      /* Our hardware applies the blend factor prior to the blend function
1017       * regardless of what function is used.  Technically, this means the
1018       * hardware can do MORE than GL or Vulkan specify.  However, it also
1019       * means that, for MIN and MAX, we have to stomp the blend factor to
1020       * ONE to make it a no-op.
1021       */
1022      if (a->colorBlendOp == VK_BLEND_OP_MIN ||
1023          a->colorBlendOp == VK_BLEND_OP_MAX) {
1024         entry.SourceBlendFactor = BLENDFACTOR_ONE;
1025         entry.DestinationBlendFactor = BLENDFACTOR_ONE;
1026      }
1027      if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
1028          a->alphaBlendOp == VK_BLEND_OP_MAX) {
1029         entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
1030         entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
1031      }
1032      GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
1033      state_pos += GENX(BLEND_STATE_ENTRY_length);
1034#if GEN_GEN >= 8
1035      if (i == 0)
1036         bs0 = entry;
1037#endif
1038   }
1039
1040#if GEN_GEN >= 8
1041   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
1042      blend.AlphaToCoverageEnable         = blend_state.AlphaToCoverageEnable;
1043      blend.HasWriteableRT                = has_writeable_rt;
1044      blend.ColorBufferBlendEnable        = bs0.ColorBufferBlendEnable;
1045      blend.SourceAlphaBlendFactor        = bs0.SourceAlphaBlendFactor;
1046      blend.DestinationAlphaBlendFactor   = bs0.DestinationAlphaBlendFactor;
1047      blend.SourceBlendFactor             = bs0.SourceBlendFactor;
1048      blend.DestinationBlendFactor        = bs0.DestinationBlendFactor;
1049      blend.AlphaTestEnable               = false;
1050      blend.IndependentAlphaBlendEnable   =
1051         blend_state.IndependentAlphaBlendEnable;
1052   }
1053#else
1054   (void)has_writeable_rt;
1055#endif
1056
1057   GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
1058
1059   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
1060      bsp.BlendStatePointer      = pipeline->blend_state.offset;
1061#if GEN_GEN >= 8
1062      bsp.BlendStatePointerValid = true;
1063#endif
1064   }
1065}
1066
1067static void
1068emit_3dstate_clip(struct anv_pipeline *pipeline,
1069                  const VkPipelineViewportStateCreateInfo *vp_info,
1070                  const VkPipelineRasterizationStateCreateInfo *rs_info)
1071{
1072   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1073   (void) wm_prog_data;
1074   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
1075      clip.ClipEnable               = true;
1076      clip.StatisticsEnable         = true;
1077      clip.EarlyCullEnable          = true;
1078      clip.APIMode                  = APIMODE_D3D;
1079      clip.ViewportXYClipTestEnable = true;
1080
1081#if GEN_GEN >= 8
1082      clip.VertexSubPixelPrecisionSelect = _8Bit;
1083#endif
1084
1085      clip.ClipMode = CLIPMODE_NORMAL;
1086
1087      clip.TriangleStripListProvokingVertexSelect = 0;
1088      clip.LineStripListProvokingVertexSelect     = 0;
1089      clip.TriangleFanProvokingVertexSelect       = 1;
1090
1091      clip.MinimumPointWidth = 0.125;
1092      clip.MaximumPointWidth = 255.875;
1093
1094      const struct brw_vue_prog_data *last =
1095         anv_pipeline_get_last_vue_prog_data(pipeline);
1096
1097      /* From the Vulkan 1.0.45 spec:
1098       *
1099       *    "If the last active vertex processing stage shader entry point's
1100       *    interface does not include a variable decorated with
1101       *    ViewportIndex, then the first viewport is used."
1102       */
1103      if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
1104         clip.MaximumVPIndex = vp_info->viewportCount - 1;
1105      } else {
1106         clip.MaximumVPIndex = 0;
1107      }
1108
1109      /* From the Vulkan 1.0.45 spec:
1110       *
1111       *    "If the last active vertex processing stage shader entry point's
1112       *    interface does not include a variable decorated with Layer, then
1113       *    the first layer is used."
1114       */
1115      clip.ForceZeroRTAIndexEnable =
1116         !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
1117
1118#if GEN_GEN == 7
1119      clip.FrontWinding            = vk_to_gen_front_face[rs_info->frontFace];
1120      clip.CullMode                = vk_to_gen_cullmode[rs_info->cullMode];
1121      clip.ViewportZClipTestEnable = pipeline->depth_clip_enable;
1122      clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
1123      clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
1124#else
1125      clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
1126         (wm_prog_data->barycentric_interp_modes &
1127          BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0 : 0;
1128#endif
1129   }
1130}
1131
1132static void
1133emit_3dstate_streamout(struct anv_pipeline *pipeline,
1134                       const VkPipelineRasterizationStateCreateInfo *rs_info)
1135{
1136#if GEN_GEN >= 8
1137   const struct brw_vue_prog_data *prog_data =
1138      anv_pipeline_get_last_vue_prog_data(pipeline);
1139   const struct brw_vue_map *vue_map = &prog_data->vue_map;
1140#endif
1141
1142   nir_xfb_info *xfb_info;
1143   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1144      xfb_info = pipeline->shaders[MESA_SHADER_GEOMETRY]->xfb_info;
1145   else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1146      xfb_info = pipeline->shaders[MESA_SHADER_TESS_EVAL]->xfb_info;
1147   else
1148      xfb_info = pipeline->shaders[MESA_SHADER_VERTEX]->xfb_info;
1149
1150   pipeline->xfb_used = xfb_info ? xfb_info->buffers_written : 0;
1151
1152   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
1153      so.RenderingDisable = rs_info->rasterizerDiscardEnable;
1154
1155#if GEN_GEN >= 8
1156      if (xfb_info) {
1157         so.SOFunctionEnable = true;
1158         so.SOStatisticsEnable = true;
1159
1160         const VkPipelineRasterizationStateStreamCreateInfoEXT *stream_info =
1161            vk_find_struct_const(rs_info, PIPELINE_RASTERIZATION_STATE_STREAM_CREATE_INFO_EXT);
1162         so.RenderStreamSelect = stream_info ?
1163                                 stream_info->rasterizationStream : 0;
1164
1165         so.Buffer0SurfacePitch = xfb_info->buffers[0].stride;
1166         so.Buffer1SurfacePitch = xfb_info->buffers[1].stride;
1167         so.Buffer2SurfacePitch = xfb_info->buffers[2].stride;
1168         so.Buffer3SurfacePitch = xfb_info->buffers[3].stride;
1169
1170         int urb_entry_read_offset = 0;
1171         int urb_entry_read_length =
1172            (prog_data->vue_map.num_slots + 1) / 2 - urb_entry_read_offset;
1173
1174         /* We always read the whole vertex.  This could be reduced at some
1175          * point by reading less and offsetting the register index in the
1176          * SO_DECLs.
1177          */
1178         so.Stream0VertexReadOffset = urb_entry_read_offset;
1179         so.Stream0VertexReadLength = urb_entry_read_length - 1;
1180         so.Stream1VertexReadOffset = urb_entry_read_offset;
1181         so.Stream1VertexReadLength = urb_entry_read_length - 1;
1182         so.Stream2VertexReadOffset = urb_entry_read_offset;
1183         so.Stream2VertexReadLength = urb_entry_read_length - 1;
1184         so.Stream3VertexReadOffset = urb_entry_read_offset;
1185         so.Stream3VertexReadLength = urb_entry_read_length - 1;
1186      }
1187#endif /* GEN_GEN >= 8 */
1188   }
1189
1190#if GEN_GEN >= 8
1191   if (xfb_info) {
1192      struct GENX(SO_DECL) so_decl[MAX_XFB_STREAMS][128];
1193      int next_offset[MAX_XFB_BUFFERS] = {0, 0, 0, 0};
1194      int decls[MAX_XFB_STREAMS] = {0, 0, 0, 0};
1195
1196      memset(so_decl, 0, sizeof(so_decl));
1197
1198      for (unsigned i = 0; i < xfb_info->output_count; i++) {
1199         const nir_xfb_output_info *output = &xfb_info->outputs[i];
1200         unsigned buffer = output->buffer;
1201         unsigned stream = xfb_info->buffer_to_stream[buffer];
1202
1203         /* Our hardware is unusual in that it requires us to program SO_DECLs
1204          * for fake "hole" components, rather than simply taking the offset
1205          * for each real varying.  Each hole can have size 1, 2, 3, or 4; we
1206          * program as many size = 4 holes as we can, then a final hole to
1207          * accommodate the final 1, 2, or 3 remaining.
1208          */
1209         int hole_dwords = (output->offset - next_offset[buffer]) / 4;
1210         while (hole_dwords > 0) {
1211            so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1212               .HoleFlag = 1,
1213               .OutputBufferSlot = buffer,
1214               .ComponentMask = (1 << MIN2(hole_dwords, 4)) - 1,
1215            };
1216            hole_dwords -= 4;
1217         }
1218
1219         int varying = output->location;
1220         uint8_t component_mask = output->component_mask;
1221         /* VARYING_SLOT_PSIZ contains three scalar fields packed together:
1222          * - VARYING_SLOT_LAYER    in VARYING_SLOT_PSIZ.y
1223          * - VARYING_SLOT_VIEWPORT in VARYING_SLOT_PSIZ.z
1224          * - VARYING_SLOT_PSIZ     in VARYING_SLOT_PSIZ.w
1225          */
1226         if (varying == VARYING_SLOT_LAYER) {
1227            varying = VARYING_SLOT_PSIZ;
1228            component_mask = 1 << 1; // SO_DECL_COMPMASK_Y
1229         } else if (varying == VARYING_SLOT_VIEWPORT) {
1230            varying = VARYING_SLOT_PSIZ;
1231            component_mask = 1 << 2; // SO_DECL_COMPMASK_Z
1232         } else if (varying == VARYING_SLOT_PSIZ) {
1233            component_mask = 1 << 3; // SO_DECL_COMPMASK_W
1234         }
1235
1236         next_offset[buffer] = output->offset +
1237                               __builtin_popcount(component_mask) * 4;
1238
1239         so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1240            .OutputBufferSlot = buffer,
1241            .RegisterIndex = vue_map->varying_to_slot[varying],
1242            .ComponentMask = component_mask,
1243         };
1244      }
1245
1246      int max_decls = 0;
1247      for (unsigned s = 0; s < MAX_XFB_STREAMS; s++)
1248         max_decls = MAX2(max_decls, decls[s]);
1249
1250      uint8_t sbs[MAX_XFB_STREAMS] = { };
1251      for (unsigned b = 0; b < MAX_XFB_BUFFERS; b++) {
1252         if (xfb_info->buffers_written & (1 << b))
1253            sbs[xfb_info->buffer_to_stream[b]] |= 1 << b;
1254      }
1255
1256      uint32_t *dw = anv_batch_emitn(&pipeline->batch, 3 + 2 * max_decls,
1257                                     GENX(3DSTATE_SO_DECL_LIST),
1258                                     .StreamtoBufferSelects0 = sbs[0],
1259                                     .StreamtoBufferSelects1 = sbs[1],
1260                                     .StreamtoBufferSelects2 = sbs[2],
1261                                     .StreamtoBufferSelects3 = sbs[3],
1262                                     .NumEntries0 = decls[0],
1263                                     .NumEntries1 = decls[1],
1264                                     .NumEntries2 = decls[2],
1265                                     .NumEntries3 = decls[3]);
1266
1267      for (int i = 0; i < max_decls; i++) {
1268         GENX(SO_DECL_ENTRY_pack)(NULL, dw + 3 + i * 2,
1269            &(struct GENX(SO_DECL_ENTRY)) {
1270               .Stream0Decl = so_decl[0][i],
1271               .Stream1Decl = so_decl[1][i],
1272               .Stream2Decl = so_decl[2][i],
1273               .Stream3Decl = so_decl[3][i],
1274            });
1275      }
1276   }
1277#endif /* GEN_GEN >= 8 */
1278}
1279
1280static uint32_t
1281get_sampler_count(const struct anv_shader_bin *bin)
1282{
1283   uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
1284
1285   /* We can potentially have way more than 32 samplers and that's ok.
1286    * However, the 3DSTATE_XS packets only have 3 bits to specify how
1287    * many to pre-fetch and all values above 4 are marked reserved.
1288    */
1289   return MIN2(count_by_4, 4);
1290}
1291
1292static uint32_t
1293get_binding_table_entry_count(const struct anv_shader_bin *bin)
1294{
1295   return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
1296}
1297
1298static struct anv_address
1299get_scratch_address(struct anv_pipeline *pipeline,
1300                    gl_shader_stage stage,
1301                    const struct anv_shader_bin *bin)
1302{
1303   return (struct anv_address) {
1304      .bo = anv_scratch_pool_alloc(pipeline->device,
1305                                   &pipeline->device->scratch_pool,
1306                                   stage, bin->prog_data->total_scratch),
1307      .offset = 0,
1308   };
1309}
1310
1311static uint32_t
1312get_scratch_space(const struct anv_shader_bin *bin)
1313{
1314   return ffs(bin->prog_data->total_scratch / 2048);
1315}
1316
1317static void
1318emit_3dstate_vs(struct anv_pipeline *pipeline)
1319{
1320   const struct gen_device_info *devinfo = &pipeline->device->info;
1321   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1322   const struct anv_shader_bin *vs_bin =
1323      pipeline->shaders[MESA_SHADER_VERTEX];
1324
1325   assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
1326
1327   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
1328      vs.Enable               = true;
1329      vs.StatisticsEnable     = true;
1330      vs.KernelStartPointer   = vs_bin->kernel.offset;
1331#if GEN_GEN >= 8
1332      vs.SIMD8DispatchEnable  =
1333         vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
1334#endif
1335
1336      assert(!vs_prog_data->base.base.use_alt_mode);
1337#if GEN_GEN < 11
1338      vs.SingleVertexDispatch       = false;
1339#endif
1340      vs.VectorMaskEnable           = false;
1341      /* WA_1606682166:
1342       * Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes.
1343       * Disable the Sampler state prefetch functionality in the SARB by
1344       * programming 0xB000[30] to '1'.
1345       */
1346      vs.SamplerCount               = GEN_GEN == 11 ? 0 : get_sampler_count(vs_bin);
1347     /* Gen 11 workarounds table #2056 WABTPPrefetchDisable suggests to
1348      * disable prefetching of binding tables on A0 and B0 steppings.
1349      * TODO: Revisit this WA on newer steppings.
1350      */
1351      vs.BindingTableEntryCount     = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(vs_bin);
1352      vs.FloatingPointMode          = IEEE754;
1353      vs.IllegalOpcodeExceptionEnable = false;
1354      vs.SoftwareExceptionEnable    = false;
1355      vs.MaximumNumberofThreads     = devinfo->max_vs_threads - 1;
1356
1357      if (GEN_GEN == 9 && devinfo->gt == 4 &&
1358          anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1359         /* On Sky Lake GT4, we have experienced some hangs related to the VS
1360          * cache and tessellation.  It is unknown exactly what is happening
1361          * but the Haswell docs for the "VS Reference Count Full Force Miss
1362          * Enable" field of the "Thread Mode" register refer to a HSW bug in
1363          * which the VUE handle reference count would overflow resulting in
1364          * internal reference counting bugs.  My (Jason's) best guess is that
1365          * this bug cropped back up on SKL GT4 when we suddenly had more
1366          * threads in play than any previous gen9 hardware.
1367          *
1368          * What we do know for sure is that setting this bit when
1369          * tessellation shaders are in use fixes a GPU hang in Batman: Arkham
1370          * City when playing with DXVK (https://bugs.freedesktop.org/107280).
1371          * Disabling the vertex cache with tessellation shaders should only
1372          * have a minor performance impact as the tessellation shaders are
1373          * likely generating and processing far more geometry than the vertex
1374          * stage.
1375          */
1376         vs.VertexCacheDisable = true;
1377      }
1378
1379      vs.VertexURBEntryReadLength      = vs_prog_data->base.urb_read_length;
1380      vs.VertexURBEntryReadOffset      = 0;
1381      vs.DispatchGRFStartRegisterForURBData =
1382         vs_prog_data->base.base.dispatch_grf_start_reg;
1383
1384#if GEN_GEN >= 8
1385      vs.UserClipDistanceClipTestEnableBitmask =
1386         vs_prog_data->base.clip_distance_mask;
1387      vs.UserClipDistanceCullTestEnableBitmask =
1388         vs_prog_data->base.cull_distance_mask;
1389#endif
1390
1391      vs.PerThreadScratchSpace   = get_scratch_space(vs_bin);
1392      vs.ScratchSpaceBasePointer =
1393         get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
1394   }
1395}
1396
1397static void
1398emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline,
1399                      const VkPipelineTessellationStateCreateInfo *tess_info)
1400{
1401   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1402      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
1403      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
1404      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
1405      return;
1406   }
1407
1408   const struct gen_device_info *devinfo = &pipeline->device->info;
1409   const struct anv_shader_bin *tcs_bin =
1410      pipeline->shaders[MESA_SHADER_TESS_CTRL];
1411   const struct anv_shader_bin *tes_bin =
1412      pipeline->shaders[MESA_SHADER_TESS_EVAL];
1413
1414   const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1415   const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1416
1417   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
1418      hs.Enable = true;
1419      hs.StatisticsEnable = true;
1420      hs.KernelStartPointer = tcs_bin->kernel.offset;
1421      /* WA_1606682166 */
1422      hs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(tcs_bin);
1423      /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1424      hs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tcs_bin);
1425      hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1426      hs.IncludeVertexHandles = true;
1427      hs.InstanceCount = tcs_prog_data->instances - 1;
1428
1429      hs.VertexURBEntryReadLength = 0;
1430      hs.VertexURBEntryReadOffset = 0;
1431      hs.DispatchGRFStartRegisterForURBData =
1432         tcs_prog_data->base.base.dispatch_grf_start_reg;
1433
1434      hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1435      hs.ScratchSpaceBasePointer =
1436         get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
1437   }
1438
1439   const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state =
1440      tess_info ? vk_find_struct_const(tess_info, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO) : NULL;
1441
1442   VkTessellationDomainOrigin uv_origin =
1443      domain_origin_state ? domain_origin_state->domainOrigin :
1444                            VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
1445
1446   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
1447      te.Partitioning = tes_prog_data->partitioning;
1448
1449      if (uv_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT) {
1450         te.OutputTopology = tes_prog_data->output_topology;
1451      } else {
1452         /* When the origin is upper-left, we have to flip the winding order */
1453         if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
1454            te.OutputTopology = OUTPUT_TRI_CW;
1455         } else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
1456            te.OutputTopology = OUTPUT_TRI_CCW;
1457         } else {
1458            te.OutputTopology = tes_prog_data->output_topology;
1459         }
1460      }
1461
1462      te.TEDomain = tes_prog_data->domain;
1463      te.TEEnable = true;
1464      te.MaximumTessellationFactorOdd = 63.0;
1465      te.MaximumTessellationFactorNotOdd = 64.0;
1466   }
1467
1468   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
1469      ds.Enable = true;
1470      ds.StatisticsEnable = true;
1471      ds.KernelStartPointer = tes_bin->kernel.offset;
1472      /* WA_1606682166 */
1473      ds.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(tes_bin);
1474      /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1475      ds.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tes_bin);
1476      ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1477
1478      ds.ComputeWCoordinateEnable =
1479         tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1480
1481      ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1482      ds.PatchURBEntryReadOffset = 0;
1483      ds.DispatchGRFStartRegisterForURBData =
1484         tes_prog_data->base.base.dispatch_grf_start_reg;
1485
1486#if GEN_GEN >= 8
1487#if GEN_GEN < 11
1488      ds.DispatchMode =
1489         tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1490            DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1491            DISPATCH_MODE_SIMD4X2;
1492#else
1493      assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
1494      ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
1495#endif
1496
1497      ds.UserClipDistanceClipTestEnableBitmask =
1498         tes_prog_data->base.clip_distance_mask;
1499      ds.UserClipDistanceCullTestEnableBitmask =
1500         tes_prog_data->base.cull_distance_mask;
1501#endif
1502
1503      ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1504      ds.ScratchSpaceBasePointer =
1505         get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
1506   }
1507}
1508
1509static void
1510emit_3dstate_gs(struct anv_pipeline *pipeline)
1511{
1512   const struct gen_device_info *devinfo = &pipeline->device->info;
1513   const struct anv_shader_bin *gs_bin =
1514      pipeline->shaders[MESA_SHADER_GEOMETRY];
1515
1516   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1517      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
1518      return;
1519   }
1520
1521   const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1522
1523   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
1524      gs.Enable                  = true;
1525      gs.StatisticsEnable        = true;
1526      gs.KernelStartPointer      = gs_bin->kernel.offset;
1527      gs.DispatchMode            = gs_prog_data->base.dispatch_mode;
1528
1529      gs.SingleProgramFlow       = false;
1530      gs.VectorMaskEnable        = false;
1531      /* WA_1606682166 */
1532      gs.SamplerCount            = GEN_GEN == 11 ? 0 : get_sampler_count(gs_bin);
1533      /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1534      gs.BindingTableEntryCount  = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(gs_bin);
1535      gs.IncludeVertexHandles    = gs_prog_data->base.include_vue_handles;
1536      gs.IncludePrimitiveID      = gs_prog_data->include_primitive_id;
1537
1538      if (GEN_GEN == 8) {
1539         /* Broadwell is weird.  It needs us to divide by 2. */
1540         gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1541      } else {
1542         gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1543      }
1544
1545      gs.OutputVertexSize        = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1546      gs.OutputTopology          = gs_prog_data->output_topology;
1547      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1548      gs.ControlDataFormat       = gs_prog_data->control_data_format;
1549      gs.ControlDataHeaderSize   = gs_prog_data->control_data_header_size_hwords;
1550      gs.InstanceControl         = MAX2(gs_prog_data->invocations, 1) - 1;
1551      gs.ReorderMode             = TRAILING;
1552
1553#if GEN_GEN >= 8
1554      gs.ExpectedVertexCount     = gs_prog_data->vertices_in;
1555      gs.StaticOutput            = gs_prog_data->static_vertex_count >= 0;
1556      gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1557                                   gs_prog_data->static_vertex_count : 0;
1558#endif
1559
1560      gs.VertexURBEntryReadOffset = 0;
1561      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1562      gs.DispatchGRFStartRegisterForURBData =
1563         gs_prog_data->base.base.dispatch_grf_start_reg;
1564
1565#if GEN_GEN >= 8
1566      gs.UserClipDistanceClipTestEnableBitmask =
1567         gs_prog_data->base.clip_distance_mask;
1568      gs.UserClipDistanceCullTestEnableBitmask =
1569         gs_prog_data->base.cull_distance_mask;
1570#endif
1571
1572      gs.PerThreadScratchSpace   = get_scratch_space(gs_bin);
1573      gs.ScratchSpaceBasePointer =
1574         get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
1575   }
1576}
1577
1578static bool
1579has_color_buffer_write_enabled(const struct anv_pipeline *pipeline,
1580                               const VkPipelineColorBlendStateCreateInfo *blend)
1581{
1582   const struct anv_shader_bin *shader_bin =
1583      pipeline->shaders[MESA_SHADER_FRAGMENT];
1584   if (!shader_bin)
1585      return false;
1586
1587   const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
1588   for (int i = 0; i < bind_map->surface_count; i++) {
1589      struct anv_pipeline_binding *binding = &bind_map->surface_to_descriptor[i];
1590
1591      if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1592         continue;
1593
1594      if (binding->index == UINT32_MAX)
1595         continue;
1596
1597      if (blend && blend->pAttachments[binding->index].colorWriteMask != 0)
1598         return true;
1599   }
1600
1601   return false;
1602}
1603
1604static void
1605emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
1606                const VkPipelineColorBlendStateCreateInfo *blend,
1607                const VkPipelineMultisampleStateCreateInfo *multisample)
1608{
1609   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1610
1611   MAYBE_UNUSED uint32_t samples =
1612      multisample ? multisample->rasterizationSamples : 1;
1613
1614   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
1615      wm.StatisticsEnable                    = true;
1616      wm.LineEndCapAntialiasingRegionWidth   = _05pixels;
1617      wm.LineAntialiasingRegionWidth         = _10pixels;
1618      wm.PointRasterizationRule              = RASTRULE_UPPER_RIGHT;
1619
1620      if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1621         if (wm_prog_data->early_fragment_tests) {
1622            wm.EarlyDepthStencilControl         = EDSC_PREPS;
1623         } else if (wm_prog_data->has_side_effects) {
1624            wm.EarlyDepthStencilControl         = EDSC_PSEXEC;
1625         } else {
1626            wm.EarlyDepthStencilControl         = EDSC_NORMAL;
1627         }
1628
1629#if GEN_GEN >= 8
1630         /* Gen8 hardware tries to compute ThreadDispatchEnable for us but
1631          * doesn't take into account KillPixels when no depth or stencil
1632          * writes are enabled.  In order for occlusion queries to work
1633          * correctly with no attachments, we need to force-enable PS thread
1634          * dispatch.
1635          *
1636          * The BDW docs are pretty clear that that this bit isn't validated
1637          * and probably shouldn't be used in production:
1638          *
1639          *    "This must always be set to Normal. This field should not be
1640          *    tested for functional validation."
1641          *
1642          * Unfortunately, however, the other mechanism we have for doing this
1643          * is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW.
1644          * Given two bad options, we choose the one which works.
1645          */
1646         if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
1647             !has_color_buffer_write_enabled(pipeline, blend))
1648            wm.ForceThreadDispatchEnable = ForceON;
1649#endif
1650
1651         wm.BarycentricInterpolationMode =
1652            wm_prog_data->barycentric_interp_modes;
1653
1654#if GEN_GEN < 8
1655         wm.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
1656         wm.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
1657         wm.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
1658         wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1659
1660         /* If the subpass has a depth or stencil self-dependency, then we
1661          * need to force the hardware to do the depth/stencil write *after*
1662          * fragment shader execution.  Otherwise, the writes may hit memory
1663          * before we get around to fetching from the input attachment and we
1664          * may get the depth or stencil value from the current draw rather
1665          * than the previous one.
1666          */
1667         wm.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
1668                                            wm_prog_data->uses_kill;
1669
1670         if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
1671             wm_prog_data->has_side_effects ||
1672             wm.PixelShaderKillsPixel ||
1673             has_color_buffer_write_enabled(pipeline, blend))
1674            wm.ThreadDispatchEnable = true;
1675
1676         if (samples > 1) {
1677            wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1678            if (wm_prog_data->persample_dispatch) {
1679               wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1680            } else {
1681               wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1682            }
1683         } else {
1684            wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1685            wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1686         }
1687#endif
1688      }
1689   }
1690}
1691
1692static void
1693emit_3dstate_ps(struct anv_pipeline *pipeline,
1694                const VkPipelineColorBlendStateCreateInfo *blend,
1695                const VkPipelineMultisampleStateCreateInfo *multisample)
1696{
1697   MAYBE_UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
1698   const struct anv_shader_bin *fs_bin =
1699      pipeline->shaders[MESA_SHADER_FRAGMENT];
1700
1701   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1702      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1703#if GEN_GEN == 7
1704         /* Even if no fragments are ever dispatched, gen7 hardware hangs if
1705          * we don't at least set the maximum number of threads.
1706          */
1707         ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1708#endif
1709      }
1710      return;
1711   }
1712
1713   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1714
1715#if GEN_GEN < 8
1716   /* The hardware wedges if you have this bit set but don't turn on any dual
1717    * source blend factors.
1718    */
1719   bool dual_src_blend = false;
1720   if (wm_prog_data->dual_src_blend && blend) {
1721      for (uint32_t i = 0; i < blend->attachmentCount; i++) {
1722         const VkPipelineColorBlendAttachmentState *bstate =
1723            &blend->pAttachments[i];
1724
1725         if (bstate->blendEnable &&
1726             (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
1727              is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
1728              is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
1729              is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
1730            dual_src_blend = true;
1731            break;
1732         }
1733      }
1734   }
1735#endif
1736
1737   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1738      ps._8PixelDispatchEnable      = wm_prog_data->dispatch_8;
1739      ps._16PixelDispatchEnable     = wm_prog_data->dispatch_16;
1740      ps._32PixelDispatchEnable     = wm_prog_data->dispatch_32;
1741
1742      /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
1743       *
1744       *    "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
1745       *    Dispatch must not be enabled for PER_PIXEL dispatch mode."
1746       *
1747       * Since 16x MSAA is first introduced on SKL, we don't need to apply
1748       * the workaround on any older hardware.
1749       */
1750      if (GEN_GEN >= 9 && !wm_prog_data->persample_dispatch &&
1751          multisample && multisample->rasterizationSamples == 16) {
1752         assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
1753         ps._32PixelDispatchEnable = false;
1754      }
1755
1756      ps.KernelStartPointer0 = fs_bin->kernel.offset +
1757                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
1758      ps.KernelStartPointer1 = fs_bin->kernel.offset +
1759                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
1760      ps.KernelStartPointer2 = fs_bin->kernel.offset +
1761                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
1762
1763      ps.SingleProgramFlow          = false;
1764      ps.VectorMaskEnable           = GEN_GEN >= 8;
1765      /* WA_1606682166 */
1766      ps.SamplerCount               = GEN_GEN == 11 ? 0 : get_sampler_count(fs_bin);
1767      /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1768      ps.BindingTableEntryCount     = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(fs_bin);
1769      ps.PushConstantEnable         = wm_prog_data->base.nr_params > 0 ||
1770                                      wm_prog_data->base.ubo_ranges[0].length;
1771      ps.PositionXYOffsetSelect     = wm_prog_data->uses_pos_offset ?
1772                                      POSOFFSET_SAMPLE: POSOFFSET_NONE;
1773#if GEN_GEN < 8
1774      ps.AttributeEnable            = wm_prog_data->num_varying_inputs > 0;
1775      ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1776      ps.DualSourceBlendEnable      = dual_src_blend;
1777#endif
1778
1779#if GEN_IS_HASWELL
1780      /* Haswell requires the sample mask to be set in this packet as well
1781       * as in 3DSTATE_SAMPLE_MASK; the values should match.
1782       */
1783      ps.SampleMask                 = 0xff;
1784#endif
1785
1786#if GEN_GEN >= 9
1787      ps.MaximumNumberofThreadsPerPSD  = 64 - 1;
1788#elif GEN_GEN >= 8
1789      ps.MaximumNumberofThreadsPerPSD  = 64 - 2;
1790#else
1791      ps.MaximumNumberofThreads        = devinfo->max_wm_threads - 1;
1792#endif
1793
1794      ps.DispatchGRFStartRegisterForConstantSetupData0 =
1795         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
1796      ps.DispatchGRFStartRegisterForConstantSetupData1 =
1797         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
1798      ps.DispatchGRFStartRegisterForConstantSetupData2 =
1799         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
1800
1801      ps.PerThreadScratchSpace   = get_scratch_space(fs_bin);
1802      ps.ScratchSpaceBasePointer =
1803         get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
1804   }
1805}
1806
1807#if GEN_GEN >= 8
1808static void
1809emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
1810                      struct anv_subpass *subpass,
1811                      const VkPipelineColorBlendStateCreateInfo *blend)
1812{
1813   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1814
1815   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1816      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
1817      return;
1818   }
1819
1820   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
1821      ps.PixelShaderValid              = true;
1822      ps.AttributeEnable               = wm_prog_data->num_varying_inputs > 0;
1823      ps.oMaskPresenttoRenderTarget    = wm_prog_data->uses_omask;
1824      ps.PixelShaderIsPerSample        = wm_prog_data->persample_dispatch;
1825      ps.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
1826      ps.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
1827      ps.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
1828
1829      /* If the subpass has a depth or stencil self-dependency, then we need
1830       * to force the hardware to do the depth/stencil write *after* fragment
1831       * shader execution.  Otherwise, the writes may hit memory before we get
1832       * around to fetching from the input attachment and we may get the depth
1833       * or stencil value from the current draw rather than the previous one.
1834       */
1835      ps.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
1836                                         wm_prog_data->uses_kill;
1837
1838#if GEN_GEN >= 9
1839      ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
1840      ps.PixelShaderPullsBary    = wm_prog_data->pulls_bary;
1841
1842      ps.InputCoverageMaskState  = ICMS_NONE;
1843      if (wm_prog_data->uses_sample_mask) {
1844         if (wm_prog_data->post_depth_coverage)
1845            ps.InputCoverageMaskState  = ICMS_DEPTH_COVERAGE;
1846         else
1847            ps.InputCoverageMaskState  = ICMS_INNER_CONSERVATIVE;
1848      }
1849#else
1850      ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1851#endif
1852   }
1853}
1854
1855static void
1856emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
1857{
1858   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
1859      vft.PrimitiveTopologyType = pipeline->topology;
1860   }
1861}
1862#endif
1863
1864static void
1865emit_3dstate_vf_statistics(struct anv_pipeline *pipeline)
1866{
1867   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
1868      vfs.StatisticsEnable = true;
1869   }
1870}
1871
1872static void
1873compute_kill_pixel(struct anv_pipeline *pipeline,
1874                   const VkPipelineMultisampleStateCreateInfo *ms_info,
1875                   const struct anv_subpass *subpass)
1876{
1877   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1878      pipeline->kill_pixel = false;
1879      return;
1880   }
1881
1882   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1883
1884   /* This computes the KillPixel portion of the computation for whether or
1885    * not we want to enable the PMA fix on gen8 or gen9.  It's given by this
1886    * chunk of the giant formula:
1887    *
1888    *    (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1889    *     3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1890    *     3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1891    *     3DSTATE_PS_BLEND::AlphaTestEnable ||
1892    *     3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1893    *
1894    * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
1895    * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
1896    * of an alpha test.
1897    */
1898   pipeline->kill_pixel =
1899      subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
1900      wm_prog_data->uses_omask ||
1901      (ms_info && ms_info->alphaToCoverageEnable);
1902}
1903
1904static VkResult
1905genX(graphics_pipeline_create)(
1906    VkDevice                                    _device,
1907    struct anv_pipeline_cache *                 cache,
1908    const VkGraphicsPipelineCreateInfo*         pCreateInfo,
1909    const VkAllocationCallbacks*                pAllocator,
1910    VkPipeline*                                 pPipeline)
1911{
1912   ANV_FROM_HANDLE(anv_device, device, _device);
1913   ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
1914   struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1915   struct anv_pipeline *pipeline;
1916   VkResult result;
1917
1918   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1919
1920   /* Use the default pipeline cache if none is specified */
1921   if (cache == NULL && device->instance->pipeline_cache_enabled)
1922      cache = &device->default_pipeline_cache;
1923
1924   pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1925                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1926   if (pipeline == NULL)
1927      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1928
1929   result = anv_pipeline_init(pipeline, device, cache,
1930                              pCreateInfo, pAllocator);
1931   if (result != VK_SUCCESS) {
1932      vk_free2(&device->alloc, pAllocator, pipeline);
1933      return result;
1934   }
1935
1936   assert(pCreateInfo->pVertexInputState);
1937   emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
1938   assert(pCreateInfo->pRasterizationState);
1939   emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
1940                 pCreateInfo->pMultisampleState, pass, subpass);
1941   emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
1942   emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
1943   emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
1944                           pCreateInfo->pMultisampleState);
1945   compute_kill_pixel(pipeline, pCreateInfo->pMultisampleState, subpass);
1946
1947   emit_urb_setup(pipeline);
1948
1949   emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
1950                     pCreateInfo->pRasterizationState);
1951   emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
1952
1953#if 0
1954   /* From gen7_vs_state.c */
1955
1956   /**
1957    * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
1958    * Geometry > Geometry Shader > State:
1959    *
1960    *     "Note: Because of corruption in IVB:GT2, software needs to flush the
1961    *     whole fixed function pipeline when the GS enable changes value in
1962    *     the 3DSTATE_GS."
1963    *
1964    * The hardware architects have clarified that in this context "flush the
1965    * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
1966    * Stall" bit set.
1967    */
1968   if (!device->info.is_haswell && !device->info.is_baytrail)
1969      gen7_emit_vs_workaround_flush(brw);
1970#endif
1971
1972   emit_3dstate_vs(pipeline);
1973   emit_3dstate_hs_te_ds(pipeline, pCreateInfo->pTessellationState);
1974   emit_3dstate_gs(pipeline);
1975   emit_3dstate_sbe(pipeline);
1976   emit_3dstate_wm(pipeline, subpass, pCreateInfo->pColorBlendState,
1977                   pCreateInfo->pMultisampleState);
1978   emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState,
1979                   pCreateInfo->pMultisampleState);
1980#if GEN_GEN >= 8
1981   emit_3dstate_ps_extra(pipeline, subpass, pCreateInfo->pColorBlendState);
1982   emit_3dstate_vf_topology(pipeline);
1983#endif
1984   emit_3dstate_vf_statistics(pipeline);
1985
1986   *pPipeline = anv_pipeline_to_handle(pipeline);
1987
1988   return pipeline->batch.status;
1989}
1990
1991static VkResult
1992compute_pipeline_create(
1993    VkDevice                                    _device,
1994    struct anv_pipeline_cache *                 cache,
1995    const VkComputePipelineCreateInfo*          pCreateInfo,
1996    const VkAllocationCallbacks*                pAllocator,
1997    VkPipeline*                                 pPipeline)
1998{
1999   ANV_FROM_HANDLE(anv_device, device, _device);
2000   const struct anv_physical_device *physical_device =
2001      &device->instance->physicalDevice;
2002   const struct gen_device_info *devinfo = &physical_device->info;
2003   struct anv_pipeline *pipeline;
2004   VkResult result;
2005
2006   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
2007
2008   /* Use the default pipeline cache if none is specified */
2009   if (cache == NULL && device->instance->pipeline_cache_enabled)
2010      cache = &device->default_pipeline_cache;
2011
2012   pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
2013                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2014   if (pipeline == NULL)
2015      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2016
2017   pipeline->device = device;
2018
2019   pipeline->blend_state.map = NULL;
2020
2021   result = anv_reloc_list_init(&pipeline->batch_relocs,
2022                                pAllocator ? pAllocator : &device->alloc);
2023   if (result != VK_SUCCESS) {
2024      vk_free2(&device->alloc, pAllocator, pipeline);
2025      return result;
2026   }
2027   pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
2028   pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
2029   pipeline->batch.relocs = &pipeline->batch_relocs;
2030   pipeline->batch.status = VK_SUCCESS;
2031
2032   /* When we free the pipeline, we detect stages based on the NULL status
2033    * of various prog_data pointers.  Make them NULL by default.
2034    */
2035   memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
2036
2037   pipeline->needs_data_cache = false;
2038
2039   assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
2040   pipeline->active_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
2041   ANV_FROM_HANDLE(anv_shader_module, module,  pCreateInfo->stage.module);
2042   result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
2043                                    pCreateInfo->stage.pName,
2044                                    pCreateInfo->stage.pSpecializationInfo);
2045   if (result != VK_SUCCESS) {
2046      vk_free2(&device->alloc, pAllocator, pipeline);
2047      return result;
2048   }
2049
2050   const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
2051
2052   anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
2053
2054   uint32_t group_size = cs_prog_data->local_size[0] *
2055      cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
2056   uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
2057
2058   if (remainder > 0)
2059      pipeline->cs_right_mask = ~0u >> (32 - remainder);
2060   else
2061      pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
2062
2063   const uint32_t vfe_curbe_allocation =
2064      ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
2065            cs_prog_data->push.cross_thread.regs, 2);
2066
2067   const uint32_t subslices = MAX2(physical_device->subslice_total, 1);
2068
2069   const struct anv_shader_bin *cs_bin =
2070      pipeline->shaders[MESA_SHADER_COMPUTE];
2071
2072   anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
2073#if GEN_GEN > 7
2074      vfe.StackSize              = 0;
2075#else
2076      vfe.GPGPUMode              = true;
2077#endif
2078      vfe.MaximumNumberofThreads =
2079         devinfo->max_cs_threads * subslices - 1;
2080      vfe.NumberofURBEntries     = GEN_GEN <= 7 ? 0 : 2;
2081#if GEN_GEN < 11
2082      vfe.ResetGatewayTimer      = true;
2083#endif
2084#if GEN_GEN <= 8
2085      vfe.BypassGatewayControl   = true;
2086#endif
2087      vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
2088      vfe.CURBEAllocationSize    = vfe_curbe_allocation;
2089
2090      if (cs_bin->prog_data->total_scratch) {
2091         if (GEN_GEN >= 8) {
2092            /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
2093             * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
2094             */
2095            vfe.PerThreadScratchSpace =
2096               ffs(cs_bin->prog_data->total_scratch) - 11;
2097         } else if (GEN_IS_HASWELL) {
2098            /* Haswell's Per Thread Scratch Space is in the range [0, 10]
2099             * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
2100             */
2101            vfe.PerThreadScratchSpace =
2102               ffs(cs_bin->prog_data->total_scratch) - 12;
2103         } else {
2104            /* IVB and BYT use the range [0, 11] to mean [1kB, 12kB]
2105             * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
2106             */
2107            vfe.PerThreadScratchSpace =
2108               cs_bin->prog_data->total_scratch / 1024 - 1;
2109         }
2110         vfe.ScratchSpaceBasePointer =
2111            get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
2112      }
2113   }
2114
2115   struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2116      .KernelStartPointer     = cs_bin->kernel.offset,
2117      /* WA_1606682166 */
2118      .SamplerCount           = GEN_GEN == 11 ? 0 : get_sampler_count(cs_bin),
2119      /* Gen 11 workarounds table #2056 WABTPPrefetchDisable
2120       *
2121       * We add 1 because the CS indirect parameters buffer isn't accounted
2122       * for in bind_map.surface_count.
2123       */
2124      .BindingTableEntryCount = GEN_GEN == 11 ? 0 : 1 + MIN2(cs_bin->bind_map.surface_count, 30),
2125      .BarrierEnable          = cs_prog_data->uses_barrier,
2126      .SharedLocalMemorySize  =
2127         encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
2128
2129#if !GEN_IS_HASWELL
2130      .ConstantURBEntryReadOffset = 0,
2131#endif
2132      .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
2133#if GEN_GEN >= 8 || GEN_IS_HASWELL
2134      .CrossThreadConstantDataReadLength =
2135         cs_prog_data->push.cross_thread.regs,
2136#endif
2137
2138      .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
2139   };
2140   GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
2141                                        pipeline->interface_descriptor_data,
2142                                        &desc);
2143
2144   *pPipeline = anv_pipeline_to_handle(pipeline);
2145
2146   return pipeline->batch.status;
2147}
2148
2149VkResult genX(CreateGraphicsPipelines)(
2150    VkDevice                                    _device,
2151    VkPipelineCache                             pipelineCache,
2152    uint32_t                                    count,
2153    const VkGraphicsPipelineCreateInfo*         pCreateInfos,
2154    const VkAllocationCallbacks*                pAllocator,
2155    VkPipeline*                                 pPipelines)
2156{
2157   ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2158
2159   VkResult result = VK_SUCCESS;
2160
2161   unsigned i;
2162   for (i = 0; i < count; i++) {
2163      result = genX(graphics_pipeline_create)(_device,
2164                                              pipeline_cache,
2165                                              &pCreateInfos[i],
2166                                              pAllocator, &pPipelines[i]);
2167
2168      /* Bail out on the first error as it is not obvious what error should be
2169       * report upon 2 different failures. */
2170      if (result != VK_SUCCESS)
2171         break;
2172   }
2173
2174   for (; i < count; i++)
2175      pPipelines[i] = VK_NULL_HANDLE;
2176
2177   return result;
2178}
2179
2180VkResult genX(CreateComputePipelines)(
2181    VkDevice                                    _device,
2182    VkPipelineCache                             pipelineCache,
2183    uint32_t                                    count,
2184    const VkComputePipelineCreateInfo*          pCreateInfos,
2185    const VkAllocationCallbacks*                pAllocator,
2186    VkPipeline*                                 pPipelines)
2187{
2188   ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2189
2190   VkResult result = VK_SUCCESS;
2191
2192   unsigned i;
2193   for (i = 0; i < count; i++) {
2194      result = compute_pipeline_create(_device, pipeline_cache,
2195                                       &pCreateInfos[i],
2196                                       pAllocator, &pPipelines[i]);
2197
2198      /* Bail out on the first error as it is not obvious what error should be
2199       * report upon 2 different failures. */
2200      if (result != VK_SUCCESS)
2201         break;
2202   }
2203
2204   for (; i < count; i++)
2205      pPipelines[i] = VK_NULL_HANDLE;
2206
2207   return result;
2208}
2209