1/************************************************************************** 2 3Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved. 4 5The Weather Channel (TM) funded Tungsten Graphics to develop the 6initial release of the Radeon 8500 driver under the XFree86 license. 7This notice must be preserved. 8 9Permission is hereby granted, free of charge, to any person obtaining 10a copy of this software and associated documentation files (the 11"Software"), to deal in the Software without restriction, including 12without limitation the rights to use, copy, modify, merge, publish, 13distribute, sublicense, and/or sell copies of the Software, and to 14permit persons to whom the Software is furnished to do so, subject to 15the following conditions: 16 17The above copyright notice and this permission notice (including the 18next paragraph) shall be included in all copies or substantial 19portions of the Software. 20 21THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 22EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 23MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 24IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE 25LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 26OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 27WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 28 29**************************************************************************/ 30 31/* 32 * Authors: 33 * Keith Whitwell <keithw@vmware.com> 34 */ 35 36#include "main/glheader.h" 37#include "main/imports.h" 38#include "main/enums.h" 39#include "main/light.h" 40#include "main/framebuffer.h" 41#include "main/fbobject.h" 42#include "main/state.h" 43#include "main/stencil.h" 44#include "main/viewport.h" 45 46#include "swrast/swrast.h" 47#include "vbo/vbo.h" 48#include "tnl/tnl.h" 49#include "tnl/t_pipeline.h" 50#include "swrast_setup/swrast_setup.h" 51#include "drivers/common/meta.h" 52#include "util/bitscan.h" 53 54#include "radeon_common.h" 55#include "radeon_mipmap_tree.h" 56#include "r200_context.h" 57#include "r200_ioctl.h" 58#include "r200_state.h" 59#include "r200_tcl.h" 60#include "r200_tex.h" 61#include "r200_swtcl.h" 62#include "r200_vertprog.h" 63 64#include "util/simple_list.h" 65 66/* ============================================================= 67 * Alpha blending 68 */ 69 70static void r200AlphaFunc( struct gl_context *ctx, GLenum func, GLfloat ref ) 71{ 72 r200ContextPtr rmesa = R200_CONTEXT(ctx); 73 int pp_misc = rmesa->hw.ctx.cmd[CTX_PP_MISC]; 74 GLubyte refByte; 75 76 CLAMPED_FLOAT_TO_UBYTE(refByte, ref); 77 78 R200_STATECHANGE( rmesa, ctx ); 79 80 pp_misc &= ~(R200_ALPHA_TEST_OP_MASK | R200_REF_ALPHA_MASK); 81 pp_misc |= (refByte & R200_REF_ALPHA_MASK); 82 83 switch ( func ) { 84 case GL_NEVER: 85 pp_misc |= R200_ALPHA_TEST_FAIL; 86 break; 87 case GL_LESS: 88 pp_misc |= R200_ALPHA_TEST_LESS; 89 break; 90 case GL_EQUAL: 91 pp_misc |= R200_ALPHA_TEST_EQUAL; 92 break; 93 case GL_LEQUAL: 94 pp_misc |= R200_ALPHA_TEST_LEQUAL; 95 break; 96 case GL_GREATER: 97 pp_misc |= R200_ALPHA_TEST_GREATER; 98 break; 99 case GL_NOTEQUAL: 100 pp_misc |= R200_ALPHA_TEST_NEQUAL; 101 break; 102 case GL_GEQUAL: 103 pp_misc |= R200_ALPHA_TEST_GEQUAL; 104 break; 105 case GL_ALWAYS: 106 pp_misc |= R200_ALPHA_TEST_PASS; 107 break; 108 } 109 110 rmesa->hw.ctx.cmd[CTX_PP_MISC] = pp_misc; 111} 112 113static void r200BlendColor( struct gl_context *ctx, const GLfloat cf[4] ) 114{ 115 GLubyte color[4]; 116 r200ContextPtr rmesa = R200_CONTEXT(ctx); 117 R200_STATECHANGE( rmesa, ctx ); 118 CLAMPED_FLOAT_TO_UBYTE(color[0], cf[0]); 119 CLAMPED_FLOAT_TO_UBYTE(color[1], cf[1]); 120 CLAMPED_FLOAT_TO_UBYTE(color[2], cf[2]); 121 CLAMPED_FLOAT_TO_UBYTE(color[3], cf[3]); 122 rmesa->hw.ctx.cmd[CTX_RB3D_BLENDCOLOR] = radeonPackColor( 4, color[0], color[1], color[2], color[3] ); 123} 124 125/** 126 * Calculate the hardware blend factor setting. This same function is used 127 * for source and destination of both alpha and RGB. 128 * 129 * \returns 130 * The hardware register value for the specified blend factor. This value 131 * will need to be shifted into the correct position for either source or 132 * destination factor. 133 * 134 * \todo 135 * Since the two cases where source and destination are handled differently 136 * are essentially error cases, they should never happen. Determine if these 137 * cases can be removed. 138 */ 139static int blend_factor( GLenum factor, GLboolean is_src ) 140{ 141 int func; 142 143 switch ( factor ) { 144 case GL_ZERO: 145 func = R200_BLEND_GL_ZERO; 146 break; 147 case GL_ONE: 148 func = R200_BLEND_GL_ONE; 149 break; 150 case GL_DST_COLOR: 151 func = R200_BLEND_GL_DST_COLOR; 152 break; 153 case GL_ONE_MINUS_DST_COLOR: 154 func = R200_BLEND_GL_ONE_MINUS_DST_COLOR; 155 break; 156 case GL_SRC_COLOR: 157 func = R200_BLEND_GL_SRC_COLOR; 158 break; 159 case GL_ONE_MINUS_SRC_COLOR: 160 func = R200_BLEND_GL_ONE_MINUS_SRC_COLOR; 161 break; 162 case GL_SRC_ALPHA: 163 func = R200_BLEND_GL_SRC_ALPHA; 164 break; 165 case GL_ONE_MINUS_SRC_ALPHA: 166 func = R200_BLEND_GL_ONE_MINUS_SRC_ALPHA; 167 break; 168 case GL_DST_ALPHA: 169 func = R200_BLEND_GL_DST_ALPHA; 170 break; 171 case GL_ONE_MINUS_DST_ALPHA: 172 func = R200_BLEND_GL_ONE_MINUS_DST_ALPHA; 173 break; 174 case GL_SRC_ALPHA_SATURATE: 175 func = (is_src) ? R200_BLEND_GL_SRC_ALPHA_SATURATE : R200_BLEND_GL_ZERO; 176 break; 177 case GL_CONSTANT_COLOR: 178 func = R200_BLEND_GL_CONST_COLOR; 179 break; 180 case GL_ONE_MINUS_CONSTANT_COLOR: 181 func = R200_BLEND_GL_ONE_MINUS_CONST_COLOR; 182 break; 183 case GL_CONSTANT_ALPHA: 184 func = R200_BLEND_GL_CONST_ALPHA; 185 break; 186 case GL_ONE_MINUS_CONSTANT_ALPHA: 187 func = R200_BLEND_GL_ONE_MINUS_CONST_ALPHA; 188 break; 189 default: 190 func = (is_src) ? R200_BLEND_GL_ONE : R200_BLEND_GL_ZERO; 191 } 192 return func; 193} 194 195/** 196 * Sets both the blend equation and the blend function. 197 * This is done in a single 198 * function because some blend equations (i.e., \c GL_MIN and \c GL_MAX) 199 * change the interpretation of the blend function. 200 * Also, make sure that blend function and blend equation are set to their default 201 * value if color blending is not enabled, since at least blend equations GL_MIN 202 * and GL_FUNC_REVERSE_SUBTRACT will cause wrong results otherwise for 203 * unknown reasons. 204 */ 205static void r200_set_blend_state( struct gl_context * ctx ) 206{ 207 r200ContextPtr rmesa = R200_CONTEXT(ctx); 208 GLuint cntl = rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] & 209 ~(R200_ROP_ENABLE | R200_ALPHA_BLEND_ENABLE | R200_SEPARATE_ALPHA_ENABLE); 210 211 int func = (R200_BLEND_GL_ONE << R200_SRC_BLEND_SHIFT) | 212 (R200_BLEND_GL_ZERO << R200_DST_BLEND_SHIFT); 213 int eqn = R200_COMB_FCN_ADD_CLAMP; 214 int funcA = (R200_BLEND_GL_ONE << R200_SRC_BLEND_SHIFT) | 215 (R200_BLEND_GL_ZERO << R200_DST_BLEND_SHIFT); 216 int eqnA = R200_COMB_FCN_ADD_CLAMP; 217 218 R200_STATECHANGE( rmesa, ctx ); 219 220 if (ctx->Color.ColorLogicOpEnabled) { 221 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] = cntl | R200_ROP_ENABLE; 222 rmesa->hw.ctx.cmd[CTX_RB3D_ABLENDCNTL] = eqn | func; 223 rmesa->hw.ctx.cmd[CTX_RB3D_CBLENDCNTL] = eqn | func; 224 return; 225 } else if (ctx->Color.BlendEnabled) { 226 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] = cntl | R200_ALPHA_BLEND_ENABLE | R200_SEPARATE_ALPHA_ENABLE; 227 } 228 else { 229 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] = cntl; 230 rmesa->hw.ctx.cmd[CTX_RB3D_ABLENDCNTL] = eqn | func; 231 rmesa->hw.ctx.cmd[CTX_RB3D_CBLENDCNTL] = eqn | func; 232 return; 233 } 234 235 func = (blend_factor( ctx->Color.Blend[0].SrcRGB, GL_TRUE ) << R200_SRC_BLEND_SHIFT) | 236 (blend_factor( ctx->Color.Blend[0].DstRGB, GL_FALSE ) << R200_DST_BLEND_SHIFT); 237 238 switch(ctx->Color.Blend[0].EquationRGB) { 239 case GL_FUNC_ADD: 240 eqn = R200_COMB_FCN_ADD_CLAMP; 241 break; 242 243 case GL_FUNC_SUBTRACT: 244 eqn = R200_COMB_FCN_SUB_CLAMP; 245 break; 246 247 case GL_FUNC_REVERSE_SUBTRACT: 248 eqn = R200_COMB_FCN_RSUB_CLAMP; 249 break; 250 251 case GL_MIN: 252 eqn = R200_COMB_FCN_MIN; 253 func = (R200_BLEND_GL_ONE << R200_SRC_BLEND_SHIFT) | 254 (R200_BLEND_GL_ONE << R200_DST_BLEND_SHIFT); 255 break; 256 257 case GL_MAX: 258 eqn = R200_COMB_FCN_MAX; 259 func = (R200_BLEND_GL_ONE << R200_SRC_BLEND_SHIFT) | 260 (R200_BLEND_GL_ONE << R200_DST_BLEND_SHIFT); 261 break; 262 263 default: 264 fprintf( stderr, "[%s:%u] Invalid RGB blend equation (0x%04x).\n", 265 __func__, __LINE__, ctx->Color.Blend[0].EquationRGB ); 266 return; 267 } 268 269 funcA = (blend_factor( ctx->Color.Blend[0].SrcA, GL_TRUE ) << R200_SRC_BLEND_SHIFT) | 270 (blend_factor( ctx->Color.Blend[0].DstA, GL_FALSE ) << R200_DST_BLEND_SHIFT); 271 272 switch(ctx->Color.Blend[0].EquationA) { 273 case GL_FUNC_ADD: 274 eqnA = R200_COMB_FCN_ADD_CLAMP; 275 break; 276 277 case GL_FUNC_SUBTRACT: 278 eqnA = R200_COMB_FCN_SUB_CLAMP; 279 break; 280 281 case GL_FUNC_REVERSE_SUBTRACT: 282 eqnA = R200_COMB_FCN_RSUB_CLAMP; 283 break; 284 285 case GL_MIN: 286 eqnA = R200_COMB_FCN_MIN; 287 funcA = (R200_BLEND_GL_ONE << R200_SRC_BLEND_SHIFT) | 288 (R200_BLEND_GL_ONE << R200_DST_BLEND_SHIFT); 289 break; 290 291 case GL_MAX: 292 eqnA = R200_COMB_FCN_MAX; 293 funcA = (R200_BLEND_GL_ONE << R200_SRC_BLEND_SHIFT) | 294 (R200_BLEND_GL_ONE << R200_DST_BLEND_SHIFT); 295 break; 296 297 default: 298 fprintf( stderr, "[%s:%u] Invalid A blend equation (0x%04x).\n", 299 __func__, __LINE__, ctx->Color.Blend[0].EquationA ); 300 return; 301 } 302 303 rmesa->hw.ctx.cmd[CTX_RB3D_ABLENDCNTL] = eqnA | funcA; 304 rmesa->hw.ctx.cmd[CTX_RB3D_CBLENDCNTL] = eqn | func; 305 306} 307 308static void r200BlendEquationSeparate( struct gl_context *ctx, 309 GLenum modeRGB, GLenum modeA ) 310{ 311 r200_set_blend_state( ctx ); 312} 313 314static void r200BlendFuncSeparate( struct gl_context *ctx, 315 GLenum sfactorRGB, GLenum dfactorRGB, 316 GLenum sfactorA, GLenum dfactorA ) 317{ 318 r200_set_blend_state( ctx ); 319} 320 321 322/* ============================================================= 323 * Depth testing 324 */ 325 326static void r200DepthFunc( struct gl_context *ctx, GLenum func ) 327{ 328 r200ContextPtr rmesa = R200_CONTEXT(ctx); 329 330 R200_STATECHANGE( rmesa, ctx ); 331 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] &= ~R200_Z_TEST_MASK; 332 333 switch ( ctx->Depth.Func ) { 334 case GL_NEVER: 335 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_Z_TEST_NEVER; 336 break; 337 case GL_LESS: 338 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_Z_TEST_LESS; 339 break; 340 case GL_EQUAL: 341 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_Z_TEST_EQUAL; 342 break; 343 case GL_LEQUAL: 344 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_Z_TEST_LEQUAL; 345 break; 346 case GL_GREATER: 347 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_Z_TEST_GREATER; 348 break; 349 case GL_NOTEQUAL: 350 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_Z_TEST_NEQUAL; 351 break; 352 case GL_GEQUAL: 353 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_Z_TEST_GEQUAL; 354 break; 355 case GL_ALWAYS: 356 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_Z_TEST_ALWAYS; 357 break; 358 } 359} 360 361static void r200DepthMask( struct gl_context *ctx, GLboolean flag ) 362{ 363 r200ContextPtr rmesa = R200_CONTEXT(ctx); 364 R200_STATECHANGE( rmesa, ctx ); 365 366 if ( ctx->Depth.Mask ) { 367 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_Z_WRITE_ENABLE; 368 } else { 369 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] &= ~R200_Z_WRITE_ENABLE; 370 } 371} 372 373 374/* ============================================================= 375 * Fog 376 */ 377 378 379static void r200Fogfv( struct gl_context *ctx, GLenum pname, const GLfloat *param ) 380{ 381 r200ContextPtr rmesa = R200_CONTEXT(ctx); 382 union { int i; float f; } c, d; 383 GLubyte col[4]; 384 GLuint i; 385 386 c.i = rmesa->hw.fog.cmd[FOG_C]; 387 d.i = rmesa->hw.fog.cmd[FOG_D]; 388 389 switch (pname) { 390 case GL_FOG_MODE: 391 if (!ctx->Fog.Enabled) 392 return; 393 R200_STATECHANGE(rmesa, tcl); 394 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] &= ~R200_TCL_FOG_MASK; 395 switch (ctx->Fog.Mode) { 396 case GL_LINEAR: 397 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] |= R200_TCL_FOG_LINEAR; 398 if (ctx->Fog.Start == ctx->Fog.End) { 399 c.f = 1.0F; 400 d.f = 1.0F; 401 } 402 else { 403 c.f = ctx->Fog.End/(ctx->Fog.End-ctx->Fog.Start); 404 d.f = -1.0/(ctx->Fog.End-ctx->Fog.Start); 405 } 406 break; 407 case GL_EXP: 408 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] |= R200_TCL_FOG_EXP; 409 c.f = 0.0; 410 d.f = -ctx->Fog.Density; 411 break; 412 case GL_EXP2: 413 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] |= R200_TCL_FOG_EXP2; 414 c.f = 0.0; 415 d.f = -(ctx->Fog.Density * ctx->Fog.Density); 416 break; 417 default: 418 return; 419 } 420 break; 421 case GL_FOG_DENSITY: 422 switch (ctx->Fog.Mode) { 423 case GL_EXP: 424 c.f = 0.0; 425 d.f = -ctx->Fog.Density; 426 break; 427 case GL_EXP2: 428 c.f = 0.0; 429 d.f = -(ctx->Fog.Density * ctx->Fog.Density); 430 break; 431 default: 432 break; 433 } 434 break; 435 case GL_FOG_START: 436 case GL_FOG_END: 437 if (ctx->Fog.Mode == GL_LINEAR) { 438 if (ctx->Fog.Start == ctx->Fog.End) { 439 c.f = 1.0F; 440 d.f = 1.0F; 441 } else { 442 c.f = ctx->Fog.End/(ctx->Fog.End-ctx->Fog.Start); 443 d.f = -1.0/(ctx->Fog.End-ctx->Fog.Start); 444 } 445 } 446 break; 447 case GL_FOG_COLOR: 448 R200_STATECHANGE( rmesa, ctx ); 449 _mesa_unclamped_float_rgba_to_ubyte(col, ctx->Fog.Color ); 450 i = radeonPackColor( 4, col[0], col[1], col[2], 0 ); 451 rmesa->hw.ctx.cmd[CTX_PP_FOG_COLOR] &= ~R200_FOG_COLOR_MASK; 452 rmesa->hw.ctx.cmd[CTX_PP_FOG_COLOR] |= i; 453 break; 454 case GL_FOG_COORD_SRC: { 455 GLuint out_0 = rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0]; 456 GLuint fog = rmesa->hw.ctx.cmd[CTX_PP_FOG_COLOR]; 457 458 fog &= ~R200_FOG_USE_MASK; 459 if ( ctx->Fog.FogCoordinateSource == GL_FOG_COORD || ctx->VertexProgram.Enabled) { 460 fog |= R200_FOG_USE_VTX_FOG; 461 out_0 |= R200_VTX_DISCRETE_FOG; 462 } 463 else { 464 fog |= R200_FOG_USE_SPEC_ALPHA; 465 out_0 &= ~R200_VTX_DISCRETE_FOG; 466 } 467 468 if ( fog != rmesa->hw.ctx.cmd[CTX_PP_FOG_COLOR] ) { 469 R200_STATECHANGE( rmesa, ctx ); 470 rmesa->hw.ctx.cmd[CTX_PP_FOG_COLOR] = fog; 471 } 472 473 if (out_0 != rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0]) { 474 R200_STATECHANGE( rmesa, vtx ); 475 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0] = out_0; 476 } 477 478 break; 479 } 480 default: 481 return; 482 } 483 484 if (c.i != rmesa->hw.fog.cmd[FOG_C] || d.i != rmesa->hw.fog.cmd[FOG_D]) { 485 R200_STATECHANGE( rmesa, fog ); 486 rmesa->hw.fog.cmd[FOG_C] = c.i; 487 rmesa->hw.fog.cmd[FOG_D] = d.i; 488 } 489} 490 491/* ============================================================= 492 * Culling 493 */ 494 495static void r200CullFace( struct gl_context *ctx, GLenum unused ) 496{ 497 r200ContextPtr rmesa = R200_CONTEXT(ctx); 498 GLuint s = rmesa->hw.set.cmd[SET_SE_CNTL]; 499 GLuint t = rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL]; 500 501 s |= R200_FFACE_SOLID | R200_BFACE_SOLID; 502 t &= ~(R200_CULL_FRONT | R200_CULL_BACK); 503 504 if ( ctx->Polygon.CullFlag ) { 505 switch ( ctx->Polygon.CullFaceMode ) { 506 case GL_FRONT: 507 s &= ~R200_FFACE_SOLID; 508 t |= R200_CULL_FRONT; 509 break; 510 case GL_BACK: 511 s &= ~R200_BFACE_SOLID; 512 t |= R200_CULL_BACK; 513 break; 514 case GL_FRONT_AND_BACK: 515 s &= ~(R200_FFACE_SOLID | R200_BFACE_SOLID); 516 t |= (R200_CULL_FRONT | R200_CULL_BACK); 517 break; 518 } 519 } 520 521 if ( rmesa->hw.set.cmd[SET_SE_CNTL] != s ) { 522 R200_STATECHANGE(rmesa, set ); 523 rmesa->hw.set.cmd[SET_SE_CNTL] = s; 524 } 525 526 if ( rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] != t ) { 527 R200_STATECHANGE(rmesa, tcl ); 528 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] = t; 529 } 530} 531 532static void r200FrontFace( struct gl_context *ctx, GLenum mode ) 533{ 534 r200ContextPtr rmesa = R200_CONTEXT(ctx); 535 int cull_face = (mode == GL_CW) ? R200_FFACE_CULL_CW : R200_FFACE_CULL_CCW; 536 537 R200_STATECHANGE( rmesa, set ); 538 rmesa->hw.set.cmd[SET_SE_CNTL] &= ~R200_FFACE_CULL_DIR_MASK; 539 540 R200_STATECHANGE( rmesa, tcl ); 541 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] &= ~R200_CULL_FRONT_IS_CCW; 542 543 /* Winding is inverted when rendering to FBO */ 544 if (ctx->DrawBuffer && _mesa_is_user_fbo(ctx->DrawBuffer)) 545 cull_face = (mode == GL_CCW) ? R200_FFACE_CULL_CW : R200_FFACE_CULL_CCW; 546 rmesa->hw.set.cmd[SET_SE_CNTL] |= cull_face; 547 548 if ( mode == GL_CCW ) 549 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] |= R200_CULL_FRONT_IS_CCW; 550} 551 552/* ============================================================= 553 * Point state 554 */ 555static void r200PointSize( struct gl_context *ctx, GLfloat size ) 556{ 557 r200ContextPtr rmesa = R200_CONTEXT(ctx); 558 GLfloat *fcmd = (GLfloat *)rmesa->hw.ptp.cmd; 559 560 radeon_print(RADEON_STATE, RADEON_TRACE, 561 "%s(%p) size: %f, fixed point result: %d.%d (%d/16)\n", 562 __func__, ctx, size, 563 ((GLuint)(ctx->Point.Size * 16.0))/16, 564 (((GLuint)(ctx->Point.Size * 16.0))&15)*100/16, 565 ((GLuint)(ctx->Point.Size * 16.0))&15); 566 567 R200_STATECHANGE( rmesa, cst ); 568 R200_STATECHANGE( rmesa, ptp ); 569 rmesa->hw.cst.cmd[CST_RE_POINTSIZE] &= ~0xffff; 570 rmesa->hw.cst.cmd[CST_RE_POINTSIZE] |= ((GLuint)(ctx->Point.Size * 16.0)); 571/* this is the size param of the point size calculation (point size reg value 572 is not used when calculation is active). */ 573 fcmd[PTP_VPORT_SCALE_PTSIZE] = ctx->Point.Size; 574} 575 576static void r200PointParameter( struct gl_context *ctx, GLenum pname, const GLfloat *params) 577{ 578 r200ContextPtr rmesa = R200_CONTEXT(ctx); 579 GLfloat *fcmd = (GLfloat *)rmesa->hw.ptp.cmd; 580 581 switch (pname) { 582 case GL_POINT_SIZE_MIN: 583 /* Can clamp both in tcl and setup - just set both (as does fglrx) */ 584 R200_STATECHANGE( rmesa, lin ); 585 R200_STATECHANGE( rmesa, ptp ); 586 rmesa->hw.lin.cmd[LIN_SE_LINE_WIDTH] &= 0xffff; 587 rmesa->hw.lin.cmd[LIN_SE_LINE_WIDTH] |= (GLuint)(ctx->Point.MinSize * 16.0) << 16; 588 fcmd[PTP_CLAMP_MIN] = ctx->Point.MinSize; 589 break; 590 case GL_POINT_SIZE_MAX: 591 R200_STATECHANGE( rmesa, cst ); 592 R200_STATECHANGE( rmesa, ptp ); 593 rmesa->hw.cst.cmd[CST_RE_POINTSIZE] &= 0xffff; 594 rmesa->hw.cst.cmd[CST_RE_POINTSIZE] |= (GLuint)(ctx->Point.MaxSize * 16.0) << 16; 595 fcmd[PTP_CLAMP_MAX] = ctx->Point.MaxSize; 596 break; 597 case GL_POINT_DISTANCE_ATTENUATION: 598 R200_STATECHANGE( rmesa, vtx ); 599 R200_STATECHANGE( rmesa, spr ); 600 R200_STATECHANGE( rmesa, ptp ); 601 GLfloat *fcmd = (GLfloat *)rmesa->hw.ptp.cmd; 602 rmesa->hw.spr.cmd[SPR_POINT_SPRITE_CNTL] &= 603 ~(R200_PS_MULT_MASK | R200_PS_LIN_ATT_ZERO | R200_PS_SE_SEL_STATE); 604 /* can't rely on ctx->Point._Attenuated here and test for NEW_POINT in 605 r200ValidateState looks like overkill */ 606 if (ctx->Point.Params[0] != 1.0 || 607 ctx->Point.Params[1] != 0.0 || 608 ctx->Point.Params[2] != 0.0 || 609 (ctx->VertexProgram.Enabled && ctx->VertexProgram.PointSizeEnabled)) { 610 /* all we care for vp would be the ps_se_sel_state setting */ 611 fcmd[PTP_ATT_CONST_QUAD] = ctx->Point.Params[2]; 612 fcmd[PTP_ATT_CONST_LIN] = ctx->Point.Params[1]; 613 fcmd[PTP_ATT_CONST_CON] = ctx->Point.Params[0]; 614 rmesa->hw.spr.cmd[SPR_POINT_SPRITE_CNTL] |= R200_PS_MULT_ATTENCONST; 615 if (ctx->Point.Params[1] == 0.0) 616 rmesa->hw.spr.cmd[SPR_POINT_SPRITE_CNTL] |= R200_PS_LIN_ATT_ZERO; 617/* FIXME: setting this here doesn't look quite ok - we only want to do 618 that if we're actually drawing points probably */ 619 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL] |= R200_OUTPUT_PT_SIZE; 620 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0] |= R200_VTX_POINT_SIZE; 621 } 622 else { 623 rmesa->hw.spr.cmd[SPR_POINT_SPRITE_CNTL] |= 624 R200_PS_SE_SEL_STATE | R200_PS_MULT_CONST; 625 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL] &= ~R200_OUTPUT_PT_SIZE; 626 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0] &= ~R200_VTX_POINT_SIZE; 627 } 628 break; 629 case GL_POINT_FADE_THRESHOLD_SIZE: 630 /* don't support multisampling, so doesn't matter. */ 631 break; 632 /* can't do these but don't need them. 633 case GL_POINT_SPRITE_R_MODE_NV: 634 case GL_POINT_SPRITE_COORD_ORIGIN: */ 635 default: 636 fprintf(stderr, "bad pname parameter in r200PointParameter\n"); 637 return; 638 } 639} 640 641/* ============================================================= 642 * Line state 643 */ 644static void r200LineWidth( struct gl_context *ctx, GLfloat widthf ) 645{ 646 r200ContextPtr rmesa = R200_CONTEXT(ctx); 647 648 R200_STATECHANGE( rmesa, lin ); 649 R200_STATECHANGE( rmesa, set ); 650 651 /* Line width is stored in U6.4 format. 652 * Same min/max limits for AA, non-AA lines. 653 */ 654 rmesa->hw.lin.cmd[LIN_SE_LINE_WIDTH] &= ~0xffff; 655 rmesa->hw.lin.cmd[LIN_SE_LINE_WIDTH] |= (GLuint) 656 (CLAMP(widthf, ctx->Const.MinLineWidth, ctx->Const.MaxLineWidth) * 16.0); 657 658 if ( widthf > 1.0 ) { 659 rmesa->hw.set.cmd[SET_SE_CNTL] |= R200_WIDELINE_ENABLE; 660 } else { 661 rmesa->hw.set.cmd[SET_SE_CNTL] &= ~R200_WIDELINE_ENABLE; 662 } 663} 664 665static void r200LineStipple( struct gl_context *ctx, GLint factor, GLushort pattern ) 666{ 667 r200ContextPtr rmesa = R200_CONTEXT(ctx); 668 669 R200_STATECHANGE( rmesa, lin ); 670 rmesa->hw.lin.cmd[LIN_RE_LINE_PATTERN] = 671 ((((GLuint)factor & 0xff) << 16) | ((GLuint)pattern)); 672} 673 674 675/* ============================================================= 676 * Masks 677 */ 678static void r200ColorMask( struct gl_context *ctx, 679 GLboolean r, GLboolean g, 680 GLboolean b, GLboolean a ) 681{ 682 r200ContextPtr rmesa = R200_CONTEXT(ctx); 683 GLuint mask; 684 struct radeon_renderbuffer *rrb; 685 GLuint flag = rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] & ~R200_PLANE_MASK_ENABLE; 686 687 rrb = radeon_get_colorbuffer(&rmesa->radeon); 688 if (!rrb) 689 return; 690 mask = radeonPackColor( rrb->cpp, 691 GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 0)*0xFF, 692 GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 1)*0xFF, 693 GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 2)*0xFF, 694 GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 3)*0xFF ); 695 696 697 if (!(r && g && b && a)) 698 flag |= R200_PLANE_MASK_ENABLE; 699 700 if ( rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] != flag ) { 701 R200_STATECHANGE( rmesa, ctx ); 702 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] = flag; 703 } 704 705 if ( rmesa->hw.msk.cmd[MSK_RB3D_PLANEMASK] != mask ) { 706 R200_STATECHANGE( rmesa, msk ); 707 rmesa->hw.msk.cmd[MSK_RB3D_PLANEMASK] = mask; 708 } 709} 710 711 712/* ============================================================= 713 * Polygon state 714 */ 715 716static void r200PolygonOffset( struct gl_context *ctx, 717 GLfloat factor, GLfloat units, GLfloat clamp ) 718{ 719 r200ContextPtr rmesa = R200_CONTEXT(ctx); 720 const GLfloat depthScale = 1.0F / ctx->DrawBuffer->_DepthMaxF; 721 float_ui32_type constant = { units * depthScale }; 722 float_ui32_type factoru = { factor }; 723 724/* factor *= 2; */ 725/* constant *= 2; */ 726 727/* fprintf(stderr, "%s f:%f u:%f\n", __func__, factor, constant); */ 728 729 R200_STATECHANGE( rmesa, zbs ); 730 rmesa->hw.zbs.cmd[ZBS_SE_ZBIAS_FACTOR] = factoru.ui32; 731 rmesa->hw.zbs.cmd[ZBS_SE_ZBIAS_CONSTANT] = constant.ui32; 732} 733 734static void r200PolygonMode( struct gl_context *ctx, GLenum face, GLenum mode ) 735{ 736 r200ContextPtr rmesa = R200_CONTEXT(ctx); 737 GLboolean unfilled = (ctx->Polygon.FrontMode != GL_FILL || 738 ctx->Polygon.BackMode != GL_FILL); 739 740 /* Can't generally do unfilled via tcl, but some good special 741 * cases work. 742 */ 743 TCL_FALLBACK( ctx, R200_TCL_FALLBACK_UNFILLED, unfilled); 744 if (rmesa->radeon.TclFallback) { 745 r200ChooseRenderState( ctx ); 746 r200ChooseVertexState( ctx ); 747 } 748} 749 750 751/* ============================================================= 752 * Rendering attributes 753 * 754 * We really don't want to recalculate all this every time we bind a 755 * texture. These things shouldn't change all that often, so it makes 756 * sense to break them out of the core texture state update routines. 757 */ 758 759/* Examine lighting and texture state to determine if separate specular 760 * should be enabled. 761 */ 762static void r200UpdateSpecular( struct gl_context *ctx ) 763{ 764 r200ContextPtr rmesa = R200_CONTEXT(ctx); 765 uint32_t p = rmesa->hw.ctx.cmd[CTX_PP_CNTL]; 766 767 R200_STATECHANGE( rmesa, tcl ); 768 R200_STATECHANGE( rmesa, vtx ); 769 770 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0] &= ~(3<<R200_VTX_COLOR_0_SHIFT); 771 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0] &= ~(3<<R200_VTX_COLOR_1_SHIFT); 772 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL] &= ~R200_OUTPUT_COLOR_0; 773 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL] &= ~R200_OUTPUT_COLOR_1; 774 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] &= ~R200_LIGHTING_ENABLE; 775 776 p &= ~R200_SPECULAR_ENABLE; 777 778 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] |= R200_DIFFUSE_SPECULAR_COMBINE; 779 780 781 if (ctx->Light.Enabled && 782 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR) { 783 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0] |= 784 ((R200_VTX_FP_RGBA << R200_VTX_COLOR_0_SHIFT) | 785 (R200_VTX_FP_RGBA << R200_VTX_COLOR_1_SHIFT)); 786 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL] |= R200_OUTPUT_COLOR_0; 787 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL] |= R200_OUTPUT_COLOR_1; 788 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] |= R200_LIGHTING_ENABLE; 789 p |= R200_SPECULAR_ENABLE; 790 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] &= 791 ~R200_DIFFUSE_SPECULAR_COMBINE; 792 } 793 else if (ctx->Light.Enabled) { 794 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0] |= 795 ((R200_VTX_FP_RGBA << R200_VTX_COLOR_0_SHIFT)); 796 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL] |= R200_OUTPUT_COLOR_0; 797 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] |= R200_LIGHTING_ENABLE; 798 } else if (ctx->Fog.ColorSumEnabled ) { 799 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0] |= 800 ((R200_VTX_FP_RGBA << R200_VTX_COLOR_0_SHIFT) | 801 (R200_VTX_FP_RGBA << R200_VTX_COLOR_1_SHIFT)); 802 p |= R200_SPECULAR_ENABLE; 803 } else { 804 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0] |= 805 ((R200_VTX_FP_RGBA << R200_VTX_COLOR_0_SHIFT)); 806 } 807 808 if (ctx->Fog.Enabled) { 809 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_VTXFMT_0] |= 810 ((R200_VTX_FP_RGBA << R200_VTX_COLOR_1_SHIFT)); 811 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL] |= R200_OUTPUT_COLOR_1; 812 } 813 814 if ( rmesa->hw.ctx.cmd[CTX_PP_CNTL] != p ) { 815 R200_STATECHANGE( rmesa, ctx ); 816 rmesa->hw.ctx.cmd[CTX_PP_CNTL] = p; 817 } 818 819 /* Update vertex/render formats 820 */ 821 if (rmesa->radeon.TclFallback) { 822 r200ChooseRenderState( ctx ); 823 r200ChooseVertexState( ctx ); 824 } 825} 826 827 828/* ============================================================= 829 * Materials 830 */ 831 832 833/* Update on colormaterial, material emmissive/ambient, 834 * lightmodel.globalambient 835 */ 836static void update_global_ambient( struct gl_context *ctx ) 837{ 838 r200ContextPtr rmesa = R200_CONTEXT(ctx); 839 float *fcmd = (float *)R200_DB_STATE( glt ); 840 841 /* Need to do more if both emmissive & ambient are PREMULT: 842 * I believe this is not nessary when using source_material. This condition thus 843 * will never happen currently, and the function has no dependencies on materials now 844 */ 845 if ((rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_1] & 846 ((3 << R200_FRONT_EMISSIVE_SOURCE_SHIFT) | 847 (3 << R200_FRONT_AMBIENT_SOURCE_SHIFT))) == 0) 848 { 849 COPY_3V( &fcmd[GLT_RED], 850 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION]); 851 ACC_SCALE_3V( &fcmd[GLT_RED], 852 ctx->Light.Model.Ambient, 853 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT]); 854 } 855 else 856 { 857 COPY_3V( &fcmd[GLT_RED], ctx->Light.Model.Ambient ); 858 } 859 860 R200_DB_STATECHANGE(rmesa, &rmesa->hw.glt); 861} 862 863/* Update on change to 864 * - light[p].colors 865 * - light[p].enabled 866 */ 867static void update_light_colors( struct gl_context *ctx, GLuint p ) 868{ 869 struct gl_light *l = &ctx->Light.Light[p]; 870 871/* fprintf(stderr, "%s\n", __func__); */ 872 873 if (l->Enabled) { 874 r200ContextPtr rmesa = R200_CONTEXT(ctx); 875 float *fcmd = (float *)R200_DB_STATE( lit[p] ); 876 877 COPY_4V( &fcmd[LIT_AMBIENT_RED], l->Ambient ); 878 COPY_4V( &fcmd[LIT_DIFFUSE_RED], l->Diffuse ); 879 COPY_4V( &fcmd[LIT_SPECULAR_RED], l->Specular ); 880 881 R200_DB_STATECHANGE( rmesa, &rmesa->hw.lit[p] ); 882 } 883} 884 885static void r200ColorMaterial( struct gl_context *ctx, GLenum face, GLenum mode ) 886{ 887 r200ContextPtr rmesa = R200_CONTEXT(ctx); 888 GLuint light_model_ctl1 = rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_1]; 889 light_model_ctl1 &= ~((0xf << R200_FRONT_EMISSIVE_SOURCE_SHIFT) | 890 (0xf << R200_FRONT_AMBIENT_SOURCE_SHIFT) | 891 (0xf << R200_FRONT_DIFFUSE_SOURCE_SHIFT) | 892 (0xf << R200_FRONT_SPECULAR_SOURCE_SHIFT) | 893 (0xf << R200_BACK_EMISSIVE_SOURCE_SHIFT) | 894 (0xf << R200_BACK_AMBIENT_SOURCE_SHIFT) | 895 (0xf << R200_BACK_DIFFUSE_SOURCE_SHIFT) | 896 (0xf << R200_BACK_SPECULAR_SOURCE_SHIFT)); 897 898 if (ctx->Light.ColorMaterialEnabled) { 899 GLuint mask = ctx->Light._ColorMaterialBitmask; 900 901 if (mask & MAT_BIT_FRONT_EMISSION) { 902 light_model_ctl1 |= (R200_LM1_SOURCE_VERTEX_COLOR_0 << 903 R200_FRONT_EMISSIVE_SOURCE_SHIFT); 904 } 905 else 906 light_model_ctl1 |= (R200_LM1_SOURCE_MATERIAL_0 << 907 R200_FRONT_EMISSIVE_SOURCE_SHIFT); 908 909 if (mask & MAT_BIT_FRONT_AMBIENT) { 910 light_model_ctl1 |= (R200_LM1_SOURCE_VERTEX_COLOR_0 << 911 R200_FRONT_AMBIENT_SOURCE_SHIFT); 912 } 913 else 914 light_model_ctl1 |= (R200_LM1_SOURCE_MATERIAL_0 << 915 R200_FRONT_AMBIENT_SOURCE_SHIFT); 916 917 if (mask & MAT_BIT_FRONT_DIFFUSE) { 918 light_model_ctl1 |= (R200_LM1_SOURCE_VERTEX_COLOR_0 << 919 R200_FRONT_DIFFUSE_SOURCE_SHIFT); 920 } 921 else 922 light_model_ctl1 |= (R200_LM1_SOURCE_MATERIAL_0 << 923 R200_FRONT_DIFFUSE_SOURCE_SHIFT); 924 925 if (mask & MAT_BIT_FRONT_SPECULAR) { 926 light_model_ctl1 |= (R200_LM1_SOURCE_VERTEX_COLOR_0 << 927 R200_FRONT_SPECULAR_SOURCE_SHIFT); 928 } 929 else { 930 light_model_ctl1 |= (R200_LM1_SOURCE_MATERIAL_0 << 931 R200_FRONT_SPECULAR_SOURCE_SHIFT); 932 } 933 934 if (mask & MAT_BIT_BACK_EMISSION) { 935 light_model_ctl1 |= (R200_LM1_SOURCE_VERTEX_COLOR_0 << 936 R200_BACK_EMISSIVE_SOURCE_SHIFT); 937 } 938 939 else light_model_ctl1 |= (R200_LM1_SOURCE_MATERIAL_1 << 940 R200_BACK_EMISSIVE_SOURCE_SHIFT); 941 942 if (mask & MAT_BIT_BACK_AMBIENT) { 943 light_model_ctl1 |= (R200_LM1_SOURCE_VERTEX_COLOR_0 << 944 R200_BACK_AMBIENT_SOURCE_SHIFT); 945 } 946 else light_model_ctl1 |= (R200_LM1_SOURCE_MATERIAL_1 << 947 R200_BACK_AMBIENT_SOURCE_SHIFT); 948 949 if (mask & MAT_BIT_BACK_DIFFUSE) { 950 light_model_ctl1 |= (R200_LM1_SOURCE_VERTEX_COLOR_0 << 951 R200_BACK_DIFFUSE_SOURCE_SHIFT); 952 } 953 else light_model_ctl1 |= (R200_LM1_SOURCE_MATERIAL_1 << 954 R200_BACK_DIFFUSE_SOURCE_SHIFT); 955 956 if (mask & MAT_BIT_BACK_SPECULAR) { 957 light_model_ctl1 |= (R200_LM1_SOURCE_VERTEX_COLOR_0 << 958 R200_BACK_SPECULAR_SOURCE_SHIFT); 959 } 960 else { 961 light_model_ctl1 |= (R200_LM1_SOURCE_MATERIAL_1 << 962 R200_BACK_SPECULAR_SOURCE_SHIFT); 963 } 964 } 965 else { 966 /* Default to SOURCE_MATERIAL: 967 */ 968 light_model_ctl1 |= 969 (R200_LM1_SOURCE_MATERIAL_0 << R200_FRONT_EMISSIVE_SOURCE_SHIFT) | 970 (R200_LM1_SOURCE_MATERIAL_0 << R200_FRONT_AMBIENT_SOURCE_SHIFT) | 971 (R200_LM1_SOURCE_MATERIAL_0 << R200_FRONT_DIFFUSE_SOURCE_SHIFT) | 972 (R200_LM1_SOURCE_MATERIAL_0 << R200_FRONT_SPECULAR_SOURCE_SHIFT) | 973 (R200_LM1_SOURCE_MATERIAL_1 << R200_BACK_EMISSIVE_SOURCE_SHIFT) | 974 (R200_LM1_SOURCE_MATERIAL_1 << R200_BACK_AMBIENT_SOURCE_SHIFT) | 975 (R200_LM1_SOURCE_MATERIAL_1 << R200_BACK_DIFFUSE_SOURCE_SHIFT) | 976 (R200_LM1_SOURCE_MATERIAL_1 << R200_BACK_SPECULAR_SOURCE_SHIFT); 977 } 978 979 if (light_model_ctl1 != rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_1]) { 980 R200_STATECHANGE( rmesa, tcl ); 981 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_1] = light_model_ctl1; 982 } 983 984 985} 986 987void r200UpdateMaterial( struct gl_context *ctx ) 988{ 989 r200ContextPtr rmesa = R200_CONTEXT(ctx); 990 GLfloat (*mat)[4] = ctx->Light.Material.Attrib; 991 GLfloat *fcmd = (GLfloat *)R200_DB_STATE( mtl[0] ); 992 GLfloat *fcmd2 = (GLfloat *)R200_DB_STATE( mtl[1] ); 993 GLuint mask = ~0; 994 995 /* Might be possible and faster to update everything unconditionally? */ 996 if (ctx->Light.ColorMaterialEnabled) 997 mask &= ~ctx->Light._ColorMaterialBitmask; 998 999 if (R200_DEBUG & RADEON_STATE) 1000 fprintf(stderr, "%s\n", __func__); 1001 1002 if (mask & MAT_BIT_FRONT_EMISSION) { 1003 fcmd[MTL_EMMISSIVE_RED] = mat[MAT_ATTRIB_FRONT_EMISSION][0]; 1004 fcmd[MTL_EMMISSIVE_GREEN] = mat[MAT_ATTRIB_FRONT_EMISSION][1]; 1005 fcmd[MTL_EMMISSIVE_BLUE] = mat[MAT_ATTRIB_FRONT_EMISSION][2]; 1006 fcmd[MTL_EMMISSIVE_ALPHA] = mat[MAT_ATTRIB_FRONT_EMISSION][3]; 1007 } 1008 if (mask & MAT_BIT_FRONT_AMBIENT) { 1009 fcmd[MTL_AMBIENT_RED] = mat[MAT_ATTRIB_FRONT_AMBIENT][0]; 1010 fcmd[MTL_AMBIENT_GREEN] = mat[MAT_ATTRIB_FRONT_AMBIENT][1]; 1011 fcmd[MTL_AMBIENT_BLUE] = mat[MAT_ATTRIB_FRONT_AMBIENT][2]; 1012 fcmd[MTL_AMBIENT_ALPHA] = mat[MAT_ATTRIB_FRONT_AMBIENT][3]; 1013 } 1014 if (mask & MAT_BIT_FRONT_DIFFUSE) { 1015 fcmd[MTL_DIFFUSE_RED] = mat[MAT_ATTRIB_FRONT_DIFFUSE][0]; 1016 fcmd[MTL_DIFFUSE_GREEN] = mat[MAT_ATTRIB_FRONT_DIFFUSE][1]; 1017 fcmd[MTL_DIFFUSE_BLUE] = mat[MAT_ATTRIB_FRONT_DIFFUSE][2]; 1018 fcmd[MTL_DIFFUSE_ALPHA] = mat[MAT_ATTRIB_FRONT_DIFFUSE][3]; 1019 } 1020 if (mask & MAT_BIT_FRONT_SPECULAR) { 1021 fcmd[MTL_SPECULAR_RED] = mat[MAT_ATTRIB_FRONT_SPECULAR][0]; 1022 fcmd[MTL_SPECULAR_GREEN] = mat[MAT_ATTRIB_FRONT_SPECULAR][1]; 1023 fcmd[MTL_SPECULAR_BLUE] = mat[MAT_ATTRIB_FRONT_SPECULAR][2]; 1024 fcmd[MTL_SPECULAR_ALPHA] = mat[MAT_ATTRIB_FRONT_SPECULAR][3]; 1025 } 1026 if (mask & MAT_BIT_FRONT_SHININESS) { 1027 fcmd[MTL_SHININESS] = mat[MAT_ATTRIB_FRONT_SHININESS][0]; 1028 } 1029 1030 if (mask & MAT_BIT_BACK_EMISSION) { 1031 fcmd2[MTL_EMMISSIVE_RED] = mat[MAT_ATTRIB_BACK_EMISSION][0]; 1032 fcmd2[MTL_EMMISSIVE_GREEN] = mat[MAT_ATTRIB_BACK_EMISSION][1]; 1033 fcmd2[MTL_EMMISSIVE_BLUE] = mat[MAT_ATTRIB_BACK_EMISSION][2]; 1034 fcmd2[MTL_EMMISSIVE_ALPHA] = mat[MAT_ATTRIB_BACK_EMISSION][3]; 1035 } 1036 if (mask & MAT_BIT_BACK_AMBIENT) { 1037 fcmd2[MTL_AMBIENT_RED] = mat[MAT_ATTRIB_BACK_AMBIENT][0]; 1038 fcmd2[MTL_AMBIENT_GREEN] = mat[MAT_ATTRIB_BACK_AMBIENT][1]; 1039 fcmd2[MTL_AMBIENT_BLUE] = mat[MAT_ATTRIB_BACK_AMBIENT][2]; 1040 fcmd2[MTL_AMBIENT_ALPHA] = mat[MAT_ATTRIB_BACK_AMBIENT][3]; 1041 } 1042 if (mask & MAT_BIT_BACK_DIFFUSE) { 1043 fcmd2[MTL_DIFFUSE_RED] = mat[MAT_ATTRIB_BACK_DIFFUSE][0]; 1044 fcmd2[MTL_DIFFUSE_GREEN] = mat[MAT_ATTRIB_BACK_DIFFUSE][1]; 1045 fcmd2[MTL_DIFFUSE_BLUE] = mat[MAT_ATTRIB_BACK_DIFFUSE][2]; 1046 fcmd2[MTL_DIFFUSE_ALPHA] = mat[MAT_ATTRIB_BACK_DIFFUSE][3]; 1047 } 1048 if (mask & MAT_BIT_BACK_SPECULAR) { 1049 fcmd2[MTL_SPECULAR_RED] = mat[MAT_ATTRIB_BACK_SPECULAR][0]; 1050 fcmd2[MTL_SPECULAR_GREEN] = mat[MAT_ATTRIB_BACK_SPECULAR][1]; 1051 fcmd2[MTL_SPECULAR_BLUE] = mat[MAT_ATTRIB_BACK_SPECULAR][2]; 1052 fcmd2[MTL_SPECULAR_ALPHA] = mat[MAT_ATTRIB_BACK_SPECULAR][3]; 1053 } 1054 if (mask & MAT_BIT_BACK_SHININESS) { 1055 fcmd2[MTL_SHININESS] = mat[MAT_ATTRIB_BACK_SHININESS][0]; 1056 } 1057 1058 R200_DB_STATECHANGE( rmesa, &rmesa->hw.mtl[0] ); 1059 R200_DB_STATECHANGE( rmesa, &rmesa->hw.mtl[1] ); 1060 1061 /* currently material changes cannot trigger a global ambient change, I believe this is correct 1062 update_global_ambient( ctx ); */ 1063} 1064 1065/* _NEW_LIGHT 1066 * _NEW_MODELVIEW 1067 * _MESA_NEW_NEED_EYE_COORDS 1068 * 1069 * Uses derived state from mesa: 1070 * _VP_inf_norm 1071 * _h_inf_norm 1072 * _Position 1073 * _NormSpotDirection 1074 * _ModelViewInvScale 1075 * _NeedEyeCoords 1076 * _EyeZDir 1077 * 1078 * which are calculated in light.c and are correct for the current 1079 * lighting space (model or eye), hence dependencies on _NEW_MODELVIEW 1080 * and _MESA_NEW_NEED_EYE_COORDS. 1081 */ 1082static void update_light( struct gl_context *ctx ) 1083{ 1084 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1085 1086 /* Have to check these, or have an automatic shortcircuit mechanism 1087 * to remove noop statechanges. (Or just do a better job on the 1088 * front end). 1089 */ 1090 { 1091 GLuint tmp = rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0]; 1092 1093 if (ctx->_NeedEyeCoords) 1094 tmp &= ~R200_LIGHT_IN_MODELSPACE; 1095 else 1096 tmp |= R200_LIGHT_IN_MODELSPACE; 1097 1098 if (tmp != rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0]) 1099 { 1100 R200_STATECHANGE( rmesa, tcl ); 1101 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] = tmp; 1102 } 1103 } 1104 1105 { 1106 GLfloat *fcmd = (GLfloat *)R200_DB_STATE( eye ); 1107 fcmd[EYE_X] = ctx->_EyeZDir[0]; 1108 fcmd[EYE_Y] = ctx->_EyeZDir[1]; 1109 fcmd[EYE_Z] = - ctx->_EyeZDir[2]; 1110 fcmd[EYE_RESCALE_FACTOR] = ctx->_ModelViewInvScale; 1111 R200_DB_STATECHANGE( rmesa, &rmesa->hw.eye ); 1112 } 1113 1114 1115 1116 if (ctx->Light.Enabled) { 1117 GLbitfield mask = ctx->Light._EnabledLights; 1118 while (mask) { 1119 const int p = u_bit_scan(&mask); 1120 struct gl_light *l = &ctx->Light.Light[p]; 1121 GLfloat *fcmd = (GLfloat *)R200_DB_STATE( lit[p] ); 1122 1123 if (l->EyePosition[3] == 0.0) { 1124 COPY_3FV( &fcmd[LIT_POSITION_X], l->_VP_inf_norm ); 1125 COPY_3FV( &fcmd[LIT_DIRECTION_X], l->_h_inf_norm ); 1126 fcmd[LIT_POSITION_W] = 0; 1127 fcmd[LIT_DIRECTION_W] = 0; 1128 } else { 1129 COPY_4V( &fcmd[LIT_POSITION_X], l->_Position ); 1130 fcmd[LIT_DIRECTION_X] = -l->_NormSpotDirection[0]; 1131 fcmd[LIT_DIRECTION_Y] = -l->_NormSpotDirection[1]; 1132 fcmd[LIT_DIRECTION_Z] = -l->_NormSpotDirection[2]; 1133 fcmd[LIT_DIRECTION_W] = 0; 1134 } 1135 1136 R200_DB_STATECHANGE( rmesa, &rmesa->hw.lit[p] ); 1137 } 1138 } 1139} 1140 1141static void r200Lightfv( struct gl_context *ctx, GLenum light, 1142 GLenum pname, const GLfloat *params ) 1143{ 1144 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1145 GLint p = light - GL_LIGHT0; 1146 struct gl_light *l = &ctx->Light.Light[p]; 1147 GLfloat *fcmd = (GLfloat *)rmesa->hw.lit[p].cmd; 1148 1149 1150 switch (pname) { 1151 case GL_AMBIENT: 1152 case GL_DIFFUSE: 1153 case GL_SPECULAR: 1154 update_light_colors( ctx, p ); 1155 break; 1156 1157 case GL_SPOT_DIRECTION: 1158 /* picked up in update_light */ 1159 break; 1160 1161 case GL_POSITION: { 1162 /* positions picked up in update_light, but can do flag here */ 1163 GLuint flag = (p&1)? R200_LIGHT_1_IS_LOCAL : R200_LIGHT_0_IS_LOCAL; 1164 GLuint idx = TCL_PER_LIGHT_CTL_0 + p/2; 1165 1166 R200_STATECHANGE(rmesa, tcl); 1167 if (l->EyePosition[3] != 0.0F) 1168 rmesa->hw.tcl.cmd[idx] |= flag; 1169 else 1170 rmesa->hw.tcl.cmd[idx] &= ~flag; 1171 break; 1172 } 1173 1174 case GL_SPOT_EXPONENT: 1175 R200_STATECHANGE(rmesa, lit[p]); 1176 fcmd[LIT_SPOT_EXPONENT] = params[0]; 1177 break; 1178 1179 case GL_SPOT_CUTOFF: { 1180 GLuint flag = (p&1) ? R200_LIGHT_1_IS_SPOT : R200_LIGHT_0_IS_SPOT; 1181 GLuint idx = TCL_PER_LIGHT_CTL_0 + p/2; 1182 1183 R200_STATECHANGE(rmesa, lit[p]); 1184 fcmd[LIT_SPOT_CUTOFF] = l->_CosCutoff; 1185 1186 R200_STATECHANGE(rmesa, tcl); 1187 if (l->SpotCutoff != 180.0F) 1188 rmesa->hw.tcl.cmd[idx] |= flag; 1189 else 1190 rmesa->hw.tcl.cmd[idx] &= ~flag; 1191 1192 break; 1193 } 1194 1195 case GL_CONSTANT_ATTENUATION: 1196 R200_STATECHANGE(rmesa, lit[p]); 1197 fcmd[LIT_ATTEN_CONST] = params[0]; 1198 if ( params[0] == 0.0 ) 1199 fcmd[LIT_ATTEN_CONST_INV] = FLT_MAX; 1200 else 1201 fcmd[LIT_ATTEN_CONST_INV] = 1.0 / params[0]; 1202 break; 1203 case GL_LINEAR_ATTENUATION: 1204 R200_STATECHANGE(rmesa, lit[p]); 1205 fcmd[LIT_ATTEN_LINEAR] = params[0]; 1206 break; 1207 case GL_QUADRATIC_ATTENUATION: 1208 R200_STATECHANGE(rmesa, lit[p]); 1209 fcmd[LIT_ATTEN_QUADRATIC] = params[0]; 1210 break; 1211 default: 1212 return; 1213 } 1214 1215 /* Set RANGE_ATTEN only when needed */ 1216 switch (pname) { 1217 case GL_POSITION: 1218 case GL_CONSTANT_ATTENUATION: 1219 case GL_LINEAR_ATTENUATION: 1220 case GL_QUADRATIC_ATTENUATION: { 1221 GLuint *icmd = (GLuint *)R200_DB_STATE( tcl ); 1222 GLuint idx = TCL_PER_LIGHT_CTL_0 + p/2; 1223 GLuint atten_flag = ( p&1 ) ? R200_LIGHT_1_ENABLE_RANGE_ATTEN 1224 : R200_LIGHT_0_ENABLE_RANGE_ATTEN; 1225 GLuint atten_const_flag = ( p&1 ) ? R200_LIGHT_1_CONSTANT_RANGE_ATTEN 1226 : R200_LIGHT_0_CONSTANT_RANGE_ATTEN; 1227 1228 if ( l->EyePosition[3] == 0.0F || 1229 ( ( fcmd[LIT_ATTEN_CONST] == 0.0 || fcmd[LIT_ATTEN_CONST] == 1.0 ) && 1230 fcmd[LIT_ATTEN_QUADRATIC] == 0.0 && fcmd[LIT_ATTEN_LINEAR] == 0.0 ) ) { 1231 /* Disable attenuation */ 1232 icmd[idx] &= ~atten_flag; 1233 } else { 1234 if ( fcmd[LIT_ATTEN_QUADRATIC] == 0.0 && fcmd[LIT_ATTEN_LINEAR] == 0.0 ) { 1235 /* Enable only constant portion of attenuation calculation */ 1236 icmd[idx] |= ( atten_flag | atten_const_flag ); 1237 } else { 1238 /* Enable full attenuation calculation */ 1239 icmd[idx] &= ~atten_const_flag; 1240 icmd[idx] |= atten_flag; 1241 } 1242 } 1243 1244 R200_DB_STATECHANGE( rmesa, &rmesa->hw.tcl ); 1245 break; 1246 } 1247 default: 1248 break; 1249 } 1250} 1251 1252static void r200UpdateLocalViewer ( struct gl_context *ctx ) 1253{ 1254/* It looks like for the texgen modes GL_SPHERE_MAP, GL_NORMAL_MAP and 1255 GL_REFLECTION_MAP we need R200_LOCAL_VIEWER set (fglrx does exactly that 1256 for these and only these modes). This means specular highlights may turn out 1257 wrong in some cases when lighting is enabled but GL_LIGHT_MODEL_LOCAL_VIEWER 1258 is not set, though it seems to happen rarely and the effect seems quite 1259 subtle. May need TCL fallback to fix it completely, though I'm not sure 1260 how you'd identify the cases where the specular highlights indeed will 1261 be wrong. Don't know if fglrx does something special in that case. 1262*/ 1263 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1264 R200_STATECHANGE( rmesa, tcl ); 1265 if (ctx->Light.Model.LocalViewer || 1266 ctx->Texture._GenFlags & TEXGEN_NEED_NORMALS) 1267 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] |= R200_LOCAL_VIEWER; 1268 else 1269 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] &= ~R200_LOCAL_VIEWER; 1270} 1271 1272static void r200LightModelfv( struct gl_context *ctx, GLenum pname, 1273 const GLfloat *param ) 1274{ 1275 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1276 1277 switch (pname) { 1278 case GL_LIGHT_MODEL_AMBIENT: 1279 update_global_ambient( ctx ); 1280 break; 1281 1282 case GL_LIGHT_MODEL_LOCAL_VIEWER: 1283 r200UpdateLocalViewer( ctx ); 1284 break; 1285 1286 case GL_LIGHT_MODEL_TWO_SIDE: 1287 R200_STATECHANGE( rmesa, tcl ); 1288 if (ctx->Light.Model.TwoSide) 1289 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] |= R200_LIGHT_TWOSIDE; 1290 else 1291 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] &= ~(R200_LIGHT_TWOSIDE); 1292 if (rmesa->radeon.TclFallback) { 1293 r200ChooseRenderState( ctx ); 1294 r200ChooseVertexState( ctx ); 1295 } 1296 break; 1297 1298 case GL_LIGHT_MODEL_COLOR_CONTROL: 1299 r200UpdateSpecular(ctx); 1300 break; 1301 1302 default: 1303 break; 1304 } 1305} 1306 1307static void r200ShadeModel( struct gl_context *ctx, GLenum mode ) 1308{ 1309 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1310 GLuint s = rmesa->hw.set.cmd[SET_SE_CNTL]; 1311 1312 s &= ~(R200_DIFFUSE_SHADE_MASK | 1313 R200_ALPHA_SHADE_MASK | 1314 R200_SPECULAR_SHADE_MASK | 1315 R200_FOG_SHADE_MASK | 1316 R200_DISC_FOG_SHADE_MASK); 1317 1318 switch ( mode ) { 1319 case GL_FLAT: 1320 s |= (R200_DIFFUSE_SHADE_FLAT | 1321 R200_ALPHA_SHADE_FLAT | 1322 R200_SPECULAR_SHADE_FLAT | 1323 R200_FOG_SHADE_FLAT | 1324 R200_DISC_FOG_SHADE_FLAT); 1325 break; 1326 case GL_SMOOTH: 1327 s |= (R200_DIFFUSE_SHADE_GOURAUD | 1328 R200_ALPHA_SHADE_GOURAUD | 1329 R200_SPECULAR_SHADE_GOURAUD | 1330 R200_FOG_SHADE_GOURAUD | 1331 R200_DISC_FOG_SHADE_GOURAUD); 1332 break; 1333 default: 1334 return; 1335 } 1336 1337 if ( rmesa->hw.set.cmd[SET_SE_CNTL] != s ) { 1338 R200_STATECHANGE( rmesa, set ); 1339 rmesa->hw.set.cmd[SET_SE_CNTL] = s; 1340 } 1341} 1342 1343 1344/* ============================================================= 1345 * User clip planes 1346 */ 1347 1348static void r200ClipPlane( struct gl_context *ctx, GLenum plane, const GLfloat *eq ) 1349{ 1350 GLint p = (GLint) plane - (GLint) GL_CLIP_PLANE0; 1351 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1352 GLint *ip = (GLint *)ctx->Transform._ClipUserPlane[p]; 1353 1354 R200_STATECHANGE( rmesa, ucp[p] ); 1355 rmesa->hw.ucp[p].cmd[UCP_X] = ip[0]; 1356 rmesa->hw.ucp[p].cmd[UCP_Y] = ip[1]; 1357 rmesa->hw.ucp[p].cmd[UCP_Z] = ip[2]; 1358 rmesa->hw.ucp[p].cmd[UCP_W] = ip[3]; 1359} 1360 1361static void r200UpdateClipPlanes( struct gl_context *ctx ) 1362{ 1363 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1364 GLbitfield mask = ctx->Transform.ClipPlanesEnabled; 1365 1366 while (mask) { 1367 const int p = u_bit_scan(&mask); 1368 GLint *ip = (GLint *)ctx->Transform._ClipUserPlane[p]; 1369 1370 R200_STATECHANGE( rmesa, ucp[p] ); 1371 rmesa->hw.ucp[p].cmd[UCP_X] = ip[0]; 1372 rmesa->hw.ucp[p].cmd[UCP_Y] = ip[1]; 1373 rmesa->hw.ucp[p].cmd[UCP_Z] = ip[2]; 1374 rmesa->hw.ucp[p].cmd[UCP_W] = ip[3]; 1375 } 1376} 1377 1378 1379/* ============================================================= 1380 * Stencil 1381 */ 1382 1383static void 1384r200StencilFuncSeparate( struct gl_context *ctx, GLenum face, GLenum func, 1385 GLint ref, GLuint mask ) 1386{ 1387 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1388 GLuint refmask = ((_mesa_get_stencil_ref(ctx, 0) << R200_STENCIL_REF_SHIFT) | 1389 ((ctx->Stencil.ValueMask[0] & 0xff) << R200_STENCIL_MASK_SHIFT)); 1390 1391 R200_STATECHANGE( rmesa, ctx ); 1392 R200_STATECHANGE( rmesa, msk ); 1393 1394 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] &= ~R200_STENCIL_TEST_MASK; 1395 rmesa->hw.msk.cmd[MSK_RB3D_STENCILREFMASK] &= ~(R200_STENCIL_REF_MASK| 1396 R200_STENCIL_VALUE_MASK); 1397 1398 switch ( ctx->Stencil.Function[0] ) { 1399 case GL_NEVER: 1400 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_TEST_NEVER; 1401 break; 1402 case GL_LESS: 1403 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_TEST_LESS; 1404 break; 1405 case GL_EQUAL: 1406 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_TEST_EQUAL; 1407 break; 1408 case GL_LEQUAL: 1409 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_TEST_LEQUAL; 1410 break; 1411 case GL_GREATER: 1412 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_TEST_GREATER; 1413 break; 1414 case GL_NOTEQUAL: 1415 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_TEST_NEQUAL; 1416 break; 1417 case GL_GEQUAL: 1418 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_TEST_GEQUAL; 1419 break; 1420 case GL_ALWAYS: 1421 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_TEST_ALWAYS; 1422 break; 1423 } 1424 1425 rmesa->hw.msk.cmd[MSK_RB3D_STENCILREFMASK] |= refmask; 1426} 1427 1428static void 1429r200StencilMaskSeparate( struct gl_context *ctx, GLenum face, GLuint mask ) 1430{ 1431 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1432 1433 R200_STATECHANGE( rmesa, msk ); 1434 rmesa->hw.msk.cmd[MSK_RB3D_STENCILREFMASK] &= ~R200_STENCIL_WRITE_MASK; 1435 rmesa->hw.msk.cmd[MSK_RB3D_STENCILREFMASK] |= 1436 ((ctx->Stencil.WriteMask[0] & 0xff) << R200_STENCIL_WRITEMASK_SHIFT); 1437} 1438 1439static void 1440r200StencilOpSeparate( struct gl_context *ctx, GLenum face, GLenum fail, 1441 GLenum zfail, GLenum zpass ) 1442{ 1443 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1444 1445 R200_STATECHANGE( rmesa, ctx ); 1446 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] &= ~(R200_STENCIL_FAIL_MASK | 1447 R200_STENCIL_ZFAIL_MASK | 1448 R200_STENCIL_ZPASS_MASK); 1449 1450 switch ( ctx->Stencil.FailFunc[0] ) { 1451 case GL_KEEP: 1452 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_FAIL_KEEP; 1453 break; 1454 case GL_ZERO: 1455 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_FAIL_ZERO; 1456 break; 1457 case GL_REPLACE: 1458 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_FAIL_REPLACE; 1459 break; 1460 case GL_INCR: 1461 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_FAIL_INC; 1462 break; 1463 case GL_DECR: 1464 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_FAIL_DEC; 1465 break; 1466 case GL_INCR_WRAP_EXT: 1467 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_FAIL_INC_WRAP; 1468 break; 1469 case GL_DECR_WRAP_EXT: 1470 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_FAIL_DEC_WRAP; 1471 break; 1472 case GL_INVERT: 1473 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_FAIL_INVERT; 1474 break; 1475 } 1476 1477 switch ( ctx->Stencil.ZFailFunc[0] ) { 1478 case GL_KEEP: 1479 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZFAIL_KEEP; 1480 break; 1481 case GL_ZERO: 1482 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZFAIL_ZERO; 1483 break; 1484 case GL_REPLACE: 1485 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZFAIL_REPLACE; 1486 break; 1487 case GL_INCR: 1488 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZFAIL_INC; 1489 break; 1490 case GL_DECR: 1491 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZFAIL_DEC; 1492 break; 1493 case GL_INCR_WRAP_EXT: 1494 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZFAIL_INC_WRAP; 1495 break; 1496 case GL_DECR_WRAP_EXT: 1497 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZFAIL_DEC_WRAP; 1498 break; 1499 case GL_INVERT: 1500 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZFAIL_INVERT; 1501 break; 1502 } 1503 1504 switch ( ctx->Stencil.ZPassFunc[0] ) { 1505 case GL_KEEP: 1506 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZPASS_KEEP; 1507 break; 1508 case GL_ZERO: 1509 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZPASS_ZERO; 1510 break; 1511 case GL_REPLACE: 1512 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZPASS_REPLACE; 1513 break; 1514 case GL_INCR: 1515 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZPASS_INC; 1516 break; 1517 case GL_DECR: 1518 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZPASS_DEC; 1519 break; 1520 case GL_INCR_WRAP_EXT: 1521 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZPASS_INC_WRAP; 1522 break; 1523 case GL_DECR_WRAP_EXT: 1524 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZPASS_DEC_WRAP; 1525 break; 1526 case GL_INVERT: 1527 rmesa->hw.ctx.cmd[CTX_RB3D_ZSTENCILCNTL] |= R200_STENCIL_ZPASS_INVERT; 1528 break; 1529 } 1530} 1531 1532 1533/* ============================================================= 1534 * Window position and viewport transformation 1535 */ 1536 1537/** 1538 * Called when window size or position changes or viewport or depth range 1539 * state is changed. We update the hardware viewport state here. 1540 */ 1541void r200UpdateWindow( struct gl_context *ctx ) 1542{ 1543 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1544 __DRIdrawable *dPriv = radeon_get_drawable(&rmesa->radeon); 1545 GLfloat xoffset = 0; 1546 GLfloat yoffset = dPriv ? (GLfloat) dPriv->h : 0; 1547 const GLboolean render_to_fbo = (ctx->DrawBuffer ? _mesa_is_user_fbo(ctx->DrawBuffer) : 0); 1548 float scale[3], translate[3]; 1549 GLfloat y_scale, y_bias; 1550 1551 if (render_to_fbo) { 1552 y_scale = 1.0; 1553 y_bias = 0; 1554 } else { 1555 y_scale = -1.0; 1556 y_bias = yoffset; 1557 } 1558 1559 _mesa_get_viewport_xform(ctx, 0, scale, translate); 1560 float_ui32_type sx = { scale[0] }; 1561 float_ui32_type sy = { scale[1] * y_scale }; 1562 float_ui32_type sz = { scale[2] }; 1563 float_ui32_type tx = { translate[0] + xoffset }; 1564 float_ui32_type ty = { (translate[1] * y_scale) + y_bias }; 1565 float_ui32_type tz = { translate[2] }; 1566 1567 R200_STATECHANGE( rmesa, vpt ); 1568 1569 rmesa->hw.vpt.cmd[VPT_SE_VPORT_XSCALE] = sx.ui32; 1570 rmesa->hw.vpt.cmd[VPT_SE_VPORT_XOFFSET] = tx.ui32; 1571 rmesa->hw.vpt.cmd[VPT_SE_VPORT_YSCALE] = sy.ui32; 1572 rmesa->hw.vpt.cmd[VPT_SE_VPORT_YOFFSET] = ty.ui32; 1573 rmesa->hw.vpt.cmd[VPT_SE_VPORT_ZSCALE] = sz.ui32; 1574 rmesa->hw.vpt.cmd[VPT_SE_VPORT_ZOFFSET] = tz.ui32; 1575} 1576 1577void r200_vtbl_update_scissor( struct gl_context *ctx ) 1578{ 1579 r200ContextPtr r200 = R200_CONTEXT(ctx); 1580 unsigned x1, y1, x2, y2; 1581 struct radeon_renderbuffer *rrb; 1582 1583 R200_SET_STATE(r200, set, SET_RE_CNTL, R200_SCISSOR_ENABLE | r200->hw.set.cmd[SET_RE_CNTL]); 1584 1585 if (r200->radeon.state.scissor.enabled) { 1586 x1 = r200->radeon.state.scissor.rect.x1; 1587 y1 = r200->radeon.state.scissor.rect.y1; 1588 x2 = r200->radeon.state.scissor.rect.x2; 1589 y2 = r200->radeon.state.scissor.rect.y2; 1590 } else { 1591 rrb = radeon_get_colorbuffer(&r200->radeon); 1592 x1 = 0; 1593 y1 = 0; 1594 x2 = rrb->base.Base.Width - 1; 1595 y2 = rrb->base.Base.Height - 1; 1596 } 1597 1598 R200_SET_STATE(r200, sci, SCI_XY_1, x1 | (y1 << 16)); 1599 R200_SET_STATE(r200, sci, SCI_XY_2, x2 | (y2 << 16)); 1600} 1601 1602 1603static void r200Viewport(struct gl_context *ctx) 1604{ 1605 /* Don't pipeline viewport changes, conflict with window offset 1606 * setting below. Could apply deltas to rescue pipelined viewport 1607 * values, or keep the originals hanging around. 1608 */ 1609 r200UpdateWindow( ctx ); 1610 1611 radeon_viewport(ctx); 1612} 1613 1614static void r200DepthRange(struct gl_context *ctx) 1615{ 1616 r200UpdateWindow( ctx ); 1617} 1618 1619/* ============================================================= 1620 * Miscellaneous 1621 */ 1622 1623static void r200RenderMode( struct gl_context *ctx, GLenum mode ) 1624{ 1625 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1626 FALLBACK( rmesa, R200_FALLBACK_RENDER_MODE, (mode != GL_RENDER) ); 1627} 1628 1629static void r200LogicOpCode(struct gl_context *ctx, enum gl_logicop_mode opcode) 1630{ 1631 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1632 1633 assert((unsigned) opcode <= 15); 1634 1635 R200_STATECHANGE( rmesa, msk ); 1636 rmesa->hw.msk.cmd[MSK_RB3D_ROPCNTL] = opcode; 1637} 1638 1639/* ============================================================= 1640 * State enable/disable 1641 */ 1642 1643static void r200Enable( struct gl_context *ctx, GLenum cap, GLboolean state ) 1644{ 1645 r200ContextPtr rmesa = R200_CONTEXT(ctx); 1646 GLuint p, flag; 1647 1648 if ( R200_DEBUG & RADEON_STATE ) 1649 fprintf( stderr, "%s( %s = %s )\n", __func__, 1650 _mesa_enum_to_string( cap ), 1651 state ? "GL_TRUE" : "GL_FALSE" ); 1652 1653 switch ( cap ) { 1654 /* Fast track this one... 1655 */ 1656 case GL_TEXTURE_1D: 1657 case GL_TEXTURE_2D: 1658 case GL_TEXTURE_3D: 1659 break; 1660 1661 case GL_ALPHA_TEST: 1662 R200_STATECHANGE( rmesa, ctx ); 1663 if (state) { 1664 rmesa->hw.ctx.cmd[CTX_PP_CNTL] |= R200_ALPHA_TEST_ENABLE; 1665 } else { 1666 rmesa->hw.ctx.cmd[CTX_PP_CNTL] &= ~R200_ALPHA_TEST_ENABLE; 1667 } 1668 break; 1669 1670 case GL_BLEND: 1671 case GL_COLOR_LOGIC_OP: 1672 r200_set_blend_state( ctx ); 1673 break; 1674 1675 case GL_CLIP_PLANE0: 1676 case GL_CLIP_PLANE1: 1677 case GL_CLIP_PLANE2: 1678 case GL_CLIP_PLANE3: 1679 case GL_CLIP_PLANE4: 1680 case GL_CLIP_PLANE5: 1681 p = cap-GL_CLIP_PLANE0; 1682 R200_STATECHANGE( rmesa, tcl ); 1683 if (state) { 1684 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] |= (R200_UCP_ENABLE_0<<p); 1685 r200ClipPlane( ctx, cap, NULL ); 1686 } 1687 else { 1688 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] &= ~(R200_UCP_ENABLE_0<<p); 1689 } 1690 break; 1691 1692 case GL_COLOR_MATERIAL: 1693 r200ColorMaterial( ctx, 0, 0 ); 1694 r200UpdateMaterial( ctx ); 1695 break; 1696 1697 case GL_CULL_FACE: 1698 r200CullFace( ctx, 0 ); 1699 break; 1700 1701 case GL_DEPTH_TEST: 1702 R200_STATECHANGE(rmesa, ctx ); 1703 if ( state ) { 1704 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] |= R200_Z_ENABLE; 1705 } else { 1706 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] &= ~R200_Z_ENABLE; 1707 } 1708 break; 1709 1710 case GL_DITHER: 1711 R200_STATECHANGE(rmesa, ctx ); 1712 if ( state ) { 1713 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] |= R200_DITHER_ENABLE; 1714 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] &= ~rmesa->radeon.state.color.roundEnable; 1715 } else { 1716 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] &= ~R200_DITHER_ENABLE; 1717 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] |= rmesa->radeon.state.color.roundEnable; 1718 } 1719 break; 1720 1721 case GL_FOG: 1722 R200_STATECHANGE(rmesa, ctx ); 1723 if ( state ) { 1724 rmesa->hw.ctx.cmd[CTX_PP_CNTL] |= R200_FOG_ENABLE; 1725 r200Fogfv( ctx, GL_FOG_MODE, NULL ); 1726 } else { 1727 rmesa->hw.ctx.cmd[CTX_PP_CNTL] &= ~R200_FOG_ENABLE; 1728 R200_STATECHANGE(rmesa, tcl); 1729 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] &= ~R200_TCL_FOG_MASK; 1730 } 1731 r200UpdateSpecular( ctx ); /* for PK_SPEC */ 1732 if (rmesa->radeon.TclFallback) 1733 r200ChooseVertexState( ctx ); 1734 _mesa_allow_light_in_model( ctx, !state ); 1735 break; 1736 1737 case GL_LIGHT0: 1738 case GL_LIGHT1: 1739 case GL_LIGHT2: 1740 case GL_LIGHT3: 1741 case GL_LIGHT4: 1742 case GL_LIGHT5: 1743 case GL_LIGHT6: 1744 case GL_LIGHT7: 1745 R200_STATECHANGE(rmesa, tcl); 1746 p = cap - GL_LIGHT0; 1747 if (p&1) 1748 flag = (R200_LIGHT_1_ENABLE | 1749 R200_LIGHT_1_ENABLE_AMBIENT | 1750 R200_LIGHT_1_ENABLE_SPECULAR); 1751 else 1752 flag = (R200_LIGHT_0_ENABLE | 1753 R200_LIGHT_0_ENABLE_AMBIENT | 1754 R200_LIGHT_0_ENABLE_SPECULAR); 1755 1756 if (state) 1757 rmesa->hw.tcl.cmd[p/2 + TCL_PER_LIGHT_CTL_0] |= flag; 1758 else 1759 rmesa->hw.tcl.cmd[p/2 + TCL_PER_LIGHT_CTL_0] &= ~flag; 1760 1761 /* 1762 */ 1763 update_light_colors( ctx, p ); 1764 break; 1765 1766 case GL_LIGHTING: 1767 r200UpdateSpecular(ctx); 1768 /* for reflection map fixup - might set recheck_texgen for all units too */ 1769 rmesa->radeon.NewGLState |= _NEW_TEXTURE; 1770 break; 1771 1772 case GL_LINE_SMOOTH: 1773 R200_STATECHANGE( rmesa, ctx ); 1774 if ( state ) { 1775 rmesa->hw.ctx.cmd[CTX_PP_CNTL] |= R200_ANTI_ALIAS_LINE; 1776 } else { 1777 rmesa->hw.ctx.cmd[CTX_PP_CNTL] &= ~R200_ANTI_ALIAS_LINE; 1778 } 1779 break; 1780 1781 case GL_LINE_STIPPLE: 1782 R200_STATECHANGE( rmesa, set ); 1783 if ( state ) { 1784 rmesa->hw.set.cmd[SET_RE_CNTL] |= R200_PATTERN_ENABLE; 1785 } else { 1786 rmesa->hw.set.cmd[SET_RE_CNTL] &= ~R200_PATTERN_ENABLE; 1787 } 1788 break; 1789 1790 case GL_NORMALIZE: 1791 R200_STATECHANGE( rmesa, tcl ); 1792 if ( state ) { 1793 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] |= R200_NORMALIZE_NORMALS; 1794 } else { 1795 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] &= ~R200_NORMALIZE_NORMALS; 1796 } 1797 break; 1798 1799 /* Pointsize registers on r200 only work for point sprites, and point smooth 1800 * doesn't work for point sprites (and isn't needed for 1.0 sized aa points). 1801 * In any case, setting pointmin == pointsizemax == 1.0 for aa points 1802 * is enough to satisfy conform. 1803 */ 1804 case GL_POINT_SMOOTH: 1805 break; 1806 1807 /* These don't really do anything, as we don't use the 3vtx 1808 * primitives yet. 1809 */ 1810#if 0 1811 case GL_POLYGON_OFFSET_POINT: 1812 R200_STATECHANGE( rmesa, set ); 1813 if ( state ) { 1814 rmesa->hw.set.cmd[SET_SE_CNTL] |= R200_ZBIAS_ENABLE_POINT; 1815 } else { 1816 rmesa->hw.set.cmd[SET_SE_CNTL] &= ~R200_ZBIAS_ENABLE_POINT; 1817 } 1818 break; 1819 1820 case GL_POLYGON_OFFSET_LINE: 1821 R200_STATECHANGE( rmesa, set ); 1822 if ( state ) { 1823 rmesa->hw.set.cmd[SET_SE_CNTL] |= R200_ZBIAS_ENABLE_LINE; 1824 } else { 1825 rmesa->hw.set.cmd[SET_SE_CNTL] &= ~R200_ZBIAS_ENABLE_LINE; 1826 } 1827 break; 1828#endif 1829 1830 case GL_POINT_SPRITE_ARB: 1831 R200_STATECHANGE( rmesa, spr ); 1832 if ( state ) { 1833 rmesa->hw.spr.cmd[SPR_POINT_SPRITE_CNTL] |= R200_PS_GEN_TEX_MASK & 1834 (ctx->Point.CoordReplace << R200_PS_GEN_TEX_0_SHIFT); 1835 } else { 1836 rmesa->hw.spr.cmd[SPR_POINT_SPRITE_CNTL] &= ~R200_PS_GEN_TEX_MASK; 1837 } 1838 break; 1839 1840 case GL_POLYGON_OFFSET_FILL: 1841 R200_STATECHANGE( rmesa, set ); 1842 if ( state ) { 1843 rmesa->hw.set.cmd[SET_SE_CNTL] |= R200_ZBIAS_ENABLE_TRI; 1844 } else { 1845 rmesa->hw.set.cmd[SET_SE_CNTL] &= ~R200_ZBIAS_ENABLE_TRI; 1846 } 1847 break; 1848 1849 case GL_POLYGON_SMOOTH: 1850 R200_STATECHANGE( rmesa, ctx ); 1851 if ( state ) { 1852 rmesa->hw.ctx.cmd[CTX_PP_CNTL] |= R200_ANTI_ALIAS_POLY; 1853 } else { 1854 rmesa->hw.ctx.cmd[CTX_PP_CNTL] &= ~R200_ANTI_ALIAS_POLY; 1855 } 1856 break; 1857 1858 case GL_POLYGON_STIPPLE: 1859 R200_STATECHANGE(rmesa, set ); 1860 if ( state ) { 1861 rmesa->hw.set.cmd[SET_RE_CNTL] |= R200_STIPPLE_ENABLE; 1862 } else { 1863 rmesa->hw.set.cmd[SET_RE_CNTL] &= ~R200_STIPPLE_ENABLE; 1864 } 1865 break; 1866 1867 case GL_RESCALE_NORMAL_EXT: { 1868 GLboolean tmp = ctx->_NeedEyeCoords ? state : !state; 1869 R200_STATECHANGE( rmesa, tcl ); 1870 if ( tmp ) { 1871 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] |= R200_RESCALE_NORMALS; 1872 } else { 1873 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] &= ~R200_RESCALE_NORMALS; 1874 } 1875 break; 1876 } 1877 1878 case GL_SCISSOR_TEST: 1879 radeon_firevertices(&rmesa->radeon); 1880 rmesa->radeon.state.scissor.enabled = state; 1881 radeonUpdateScissor( ctx ); 1882 break; 1883 1884 case GL_STENCIL_TEST: 1885 { 1886 GLboolean hw_stencil = GL_FALSE; 1887 if (ctx->DrawBuffer) { 1888 struct radeon_renderbuffer *rrbStencil 1889 = radeon_get_renderbuffer(ctx->DrawBuffer, BUFFER_STENCIL); 1890 hw_stencil = (rrbStencil && rrbStencil->bo); 1891 } 1892 1893 if (hw_stencil) { 1894 R200_STATECHANGE( rmesa, ctx ); 1895 if ( state ) { 1896 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] |= R200_STENCIL_ENABLE; 1897 } else { 1898 rmesa->hw.ctx.cmd[CTX_RB3D_CNTL] &= ~R200_STENCIL_ENABLE; 1899 } 1900 } else { 1901 FALLBACK( rmesa, R200_FALLBACK_STENCIL, state ); 1902 } 1903 } 1904 break; 1905 1906 case GL_TEXTURE_GEN_Q: 1907 case GL_TEXTURE_GEN_R: 1908 case GL_TEXTURE_GEN_S: 1909 case GL_TEXTURE_GEN_T: 1910 /* Picked up in r200UpdateTextureState. 1911 */ 1912 rmesa->recheck_texgen[ctx->Texture.CurrentUnit] = GL_TRUE; 1913 break; 1914 1915 case GL_COLOR_SUM_EXT: 1916 r200UpdateSpecular ( ctx ); 1917 break; 1918 1919 case GL_VERTEX_PROGRAM_ARB: 1920 if (!state) { 1921 GLuint i; 1922 rmesa->curr_vp_hw = NULL; 1923 R200_STATECHANGE( rmesa, vap ); 1924 rmesa->hw.vap.cmd[VAP_SE_VAP_CNTL] &= ~R200_VAP_PROG_VTX_SHADER_ENABLE; 1925 /* mark all tcl atoms (tcl vector state got overwritten) dirty 1926 not sure about tcl scalar state - we need at least grd 1927 with vert progs too. 1928 ucp looks like it doesn't get overwritten (may even work 1929 with vp for pos-invariant progs if we're lucky) */ 1930 R200_STATECHANGE( rmesa, mtl[0] ); 1931 R200_STATECHANGE( rmesa, mtl[1] ); 1932 R200_STATECHANGE( rmesa, fog ); 1933 R200_STATECHANGE( rmesa, glt ); 1934 R200_STATECHANGE( rmesa, eye ); 1935 for (i = R200_MTX_MV; i <= R200_MTX_TEX5; i++) { 1936 R200_STATECHANGE( rmesa, mat[i] ); 1937 } 1938 for (i = 0 ; i < 8; i++) { 1939 R200_STATECHANGE( rmesa, lit[i] ); 1940 } 1941 R200_STATECHANGE( rmesa, tcl ); 1942 for (i = 0; i <= ctx->Const.MaxClipPlanes; i++) { 1943 if (ctx->Transform.ClipPlanesEnabled & (1 << i)) { 1944 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] |= (R200_UCP_ENABLE_0 << i); 1945 } 1946/* else { 1947 rmesa->hw.tcl.cmd[TCL_UCP_VERT_BLEND_CTL] &= ~(R200_UCP_ENABLE_0 << i); 1948 }*/ 1949 } 1950 /* ugly. Need to call everything which might change compsel. */ 1951 r200UpdateSpecular( ctx ); 1952#if 0 1953 /* shouldn't be necessary, as it's picked up anyway in r200ValidateState (_NEW_PROGRAM), 1954 but without it doom3 locks up at always the same places. Why? */ 1955 /* FIXME: This can (and should) be replaced by a call to the TCL_STATE_FLUSH reg before 1956 accessing VAP_SE_VAP_CNTL. Requires drm changes (done). Remove after some time... */ 1957 r200UpdateTextureState( ctx ); 1958 /* if we call r200UpdateTextureState we need the code below because we are calling it with 1959 non-current derived enabled values which may revert the state atoms for frag progs even when 1960 they already got disabled... ugh 1961 Should really figure out why we need to call r200UpdateTextureState in the first place */ 1962 GLuint unit; 1963 for (unit = 0; unit < R200_MAX_TEXTURE_UNITS; unit++) { 1964 R200_STATECHANGE( rmesa, pix[unit] ); 1965 R200_STATECHANGE( rmesa, tex[unit] ); 1966 rmesa->hw.tex[unit].cmd[TEX_PP_TXFORMAT] &= 1967 ~(R200_TXFORMAT_ST_ROUTE_MASK | R200_TXFORMAT_LOOKUP_DISABLE); 1968 rmesa->hw.tex[unit].cmd[TEX_PP_TXFORMAT] |= unit << R200_TXFORMAT_ST_ROUTE_SHIFT; 1969 /* need to guard this with drmSupportsFragmentShader? Should never get here if 1970 we don't announce ATI_fs, right? */ 1971 rmesa->hw.tex[unit].cmd[TEX_PP_TXMULTI_CTL] = 0; 1972 } 1973 R200_STATECHANGE( rmesa, cst ); 1974 R200_STATECHANGE( rmesa, tf ); 1975 rmesa->hw.cst.cmd[CST_PP_CNTL_X] = 0; 1976#endif 1977 } 1978 else { 1979 /* picked up later */ 1980 } 1981 /* call functions which change hw state based on ARB_vp enabled or not. */ 1982 r200PointParameter( ctx, GL_POINT_DISTANCE_ATTENUATION, NULL ); 1983 r200Fogfv( ctx, GL_FOG_COORD_SRC, NULL ); 1984 break; 1985 1986 case GL_VERTEX_PROGRAM_POINT_SIZE_ARB: 1987 r200PointParameter( ctx, GL_POINT_DISTANCE_ATTENUATION, NULL ); 1988 break; 1989 1990 case GL_FRAGMENT_SHADER_ATI: 1991 if ( !state ) { 1992 /* restore normal tex env colors and make sure tex env combine will get updated 1993 mark env atoms dirty (as their data was overwritten by afs even 1994 if they didn't change) and restore tex coord routing */ 1995 GLuint unit; 1996 for (unit = 0; unit < R200_MAX_TEXTURE_UNITS; unit++) { 1997 R200_STATECHANGE( rmesa, pix[unit] ); 1998 R200_STATECHANGE( rmesa, tex[unit] ); 1999 rmesa->hw.tex[unit].cmd[TEX_PP_TXFORMAT] &= 2000 ~(R200_TXFORMAT_ST_ROUTE_MASK | R200_TXFORMAT_LOOKUP_DISABLE); 2001 rmesa->hw.tex[unit].cmd[TEX_PP_TXFORMAT] |= unit << R200_TXFORMAT_ST_ROUTE_SHIFT; 2002 rmesa->hw.tex[unit].cmd[TEX_PP_TXMULTI_CTL] = 0; 2003 } 2004 R200_STATECHANGE( rmesa, cst ); 2005 R200_STATECHANGE( rmesa, tf ); 2006 rmesa->hw.cst.cmd[CST_PP_CNTL_X] = 0; 2007 } 2008 else { 2009 /* need to mark this dirty as pix/tf atoms have overwritten the data 2010 even if the data in the atoms didn't change */ 2011 R200_STATECHANGE( rmesa, atf ); 2012 R200_STATECHANGE( rmesa, afs[1] ); 2013 /* everything else picked up in r200UpdateTextureState hopefully */ 2014 } 2015 break; 2016 default: 2017 return; 2018 } 2019} 2020 2021 2022void r200LightingSpaceChange( struct gl_context *ctx ) 2023{ 2024 r200ContextPtr rmesa = R200_CONTEXT(ctx); 2025 GLboolean tmp; 2026 2027 if (R200_DEBUG & RADEON_STATE) 2028 fprintf(stderr, "%s %d BEFORE %x\n", __func__, ctx->_NeedEyeCoords, 2029 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0]); 2030 2031 if (ctx->_NeedEyeCoords) 2032 tmp = ctx->Transform.RescaleNormals; 2033 else 2034 tmp = !ctx->Transform.RescaleNormals; 2035 2036 R200_STATECHANGE( rmesa, tcl ); 2037 if ( tmp ) { 2038 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] |= R200_RESCALE_NORMALS; 2039 } else { 2040 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0] &= ~R200_RESCALE_NORMALS; 2041 } 2042 2043 if (R200_DEBUG & RADEON_STATE) 2044 fprintf(stderr, "%s %d AFTER %x\n", __func__, ctx->_NeedEyeCoords, 2045 rmesa->hw.tcl.cmd[TCL_LIGHT_MODEL_CTL_0]); 2046} 2047 2048/* ============================================================= 2049 * Deferred state management - matrices, textures, other? 2050 */ 2051 2052 2053 2054 2055static void upload_matrix( r200ContextPtr rmesa, GLfloat *src, int idx ) 2056{ 2057 float *dest = ((float *)R200_DB_STATE( mat[idx] ))+MAT_ELT_0; 2058 int i; 2059 2060 2061 for (i = 0 ; i < 4 ; i++) { 2062 *dest++ = src[i]; 2063 *dest++ = src[i+4]; 2064 *dest++ = src[i+8]; 2065 *dest++ = src[i+12]; 2066 } 2067 2068 R200_DB_STATECHANGE( rmesa, &rmesa->hw.mat[idx] ); 2069} 2070 2071static void upload_matrix_t( r200ContextPtr rmesa, const GLfloat *src, int idx ) 2072{ 2073 float *dest = ((float *)R200_DB_STATE( mat[idx] ))+MAT_ELT_0; 2074 memcpy(dest, src, 16*sizeof(float)); 2075 R200_DB_STATECHANGE( rmesa, &rmesa->hw.mat[idx] ); 2076} 2077 2078 2079static void update_texturematrix( struct gl_context *ctx ) 2080{ 2081 r200ContextPtr rmesa = R200_CONTEXT( ctx ); 2082 GLuint tpc = rmesa->hw.tcg.cmd[TCG_TEX_PROC_CTL_0]; 2083 GLuint compsel = rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL]; 2084 int unit; 2085 2086 if (R200_DEBUG & RADEON_STATE) 2087 fprintf(stderr, "%s before COMPSEL: %x\n", __func__, 2088 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL]); 2089 2090 rmesa->TexMatEnabled = 0; 2091 rmesa->TexMatCompSel = 0; 2092 2093 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++) { 2094 if (!ctx->Texture.Unit[unit]._Current) 2095 continue; 2096 2097 if (ctx->TextureMatrixStack[unit].Top->type != MATRIX_IDENTITY) { 2098 rmesa->TexMatEnabled |= (R200_TEXGEN_TEXMAT_0_ENABLE| 2099 R200_TEXMAT_0_ENABLE) << unit; 2100 2101 rmesa->TexMatCompSel |= R200_OUTPUT_TEX_0 << unit; 2102 2103 if (rmesa->TexGenEnabled & (R200_TEXMAT_0_ENABLE << unit)) { 2104 /* Need to preconcatenate any active texgen 2105 * obj/eyeplane matrices: 2106 */ 2107 _math_matrix_mul_matrix( &rmesa->tmpmat, 2108 ctx->TextureMatrixStack[unit].Top, 2109 &rmesa->TexGenMatrix[unit] ); 2110 upload_matrix( rmesa, rmesa->tmpmat.m, R200_MTX_TEX0+unit ); 2111 } 2112 else { 2113 upload_matrix( rmesa, ctx->TextureMatrixStack[unit].Top->m, 2114 R200_MTX_TEX0+unit ); 2115 } 2116 } 2117 else if (rmesa->TexGenEnabled & (R200_TEXMAT_0_ENABLE << unit)) { 2118 upload_matrix( rmesa, rmesa->TexGenMatrix[unit].m, 2119 R200_MTX_TEX0+unit ); 2120 } 2121 } 2122 2123 tpc = (rmesa->TexMatEnabled | rmesa->TexGenEnabled); 2124 if (tpc != rmesa->hw.tcg.cmd[TCG_TEX_PROC_CTL_0]) { 2125 R200_STATECHANGE(rmesa, tcg); 2126 rmesa->hw.tcg.cmd[TCG_TEX_PROC_CTL_0] = tpc; 2127 } 2128 2129 compsel &= ~R200_OUTPUT_TEX_MASK; 2130 compsel |= rmesa->TexMatCompSel | rmesa->TexGenCompSel; 2131 if (compsel != rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL]) { 2132 R200_STATECHANGE(rmesa, vtx); 2133 rmesa->hw.vtx.cmd[VTX_TCL_OUTPUT_COMPSEL] = compsel; 2134 } 2135} 2136 2137GLboolean r200ValidateBuffers(struct gl_context *ctx) 2138{ 2139 r200ContextPtr rmesa = R200_CONTEXT(ctx); 2140 struct radeon_renderbuffer *rrb; 2141 struct radeon_dma_bo *dma_bo; 2142 int i, ret; 2143 2144 if (RADEON_DEBUG & RADEON_IOCTL) 2145 fprintf(stderr, "%s\n", __func__); 2146 radeon_cs_space_reset_bos(rmesa->radeon.cmdbuf.cs); 2147 2148 rrb = radeon_get_colorbuffer(&rmesa->radeon); 2149 /* color buffer */ 2150 if (rrb && rrb->bo) { 2151 radeon_cs_space_add_persistent_bo(rmesa->radeon.cmdbuf.cs, rrb->bo, 2152 0, RADEON_GEM_DOMAIN_VRAM); 2153 } 2154 2155 /* depth buffer */ 2156 rrb = radeon_get_depthbuffer(&rmesa->radeon); 2157 /* color buffer */ 2158 if (rrb && rrb->bo) { 2159 radeon_cs_space_add_persistent_bo(rmesa->radeon.cmdbuf.cs, rrb->bo, 2160 0, RADEON_GEM_DOMAIN_VRAM); 2161 } 2162 2163 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; ++i) { 2164 radeonTexObj *t; 2165 2166 if (!ctx->Texture.Unit[i]._Current) 2167 continue; 2168 2169 t = radeon_tex_obj(ctx->Texture.Unit[i]._Current); 2170 if (t->image_override && t->bo) 2171 radeon_cs_space_add_persistent_bo(rmesa->radeon.cmdbuf.cs, t->bo, 2172 RADEON_GEM_DOMAIN_GTT | RADEON_GEM_DOMAIN_VRAM, 0); 2173 else if (t->mt->bo) 2174 radeon_cs_space_add_persistent_bo(rmesa->radeon.cmdbuf.cs, t->mt->bo, 2175 RADEON_GEM_DOMAIN_GTT | RADEON_GEM_DOMAIN_VRAM, 0); 2176 } 2177 2178 dma_bo = first_elem(&rmesa->radeon.dma.reserved); 2179 { 2180 ret = radeon_cs_space_check_with_bo(rmesa->radeon.cmdbuf.cs, dma_bo->bo, RADEON_GEM_DOMAIN_GTT, 0); 2181 if (ret) 2182 return GL_FALSE; 2183 } 2184 return GL_TRUE; 2185} 2186 2187GLboolean r200ValidateState( struct gl_context *ctx ) 2188{ 2189 r200ContextPtr rmesa = R200_CONTEXT(ctx); 2190 GLuint new_state = rmesa->radeon.NewGLState; 2191 2192 if (new_state & _NEW_BUFFERS) { 2193 _mesa_update_framebuffer(ctx, ctx->ReadBuffer, ctx->DrawBuffer); 2194 /* this updates the DrawBuffer's Width/Height if it's a FBO */ 2195 _mesa_update_draw_buffer_bounds(ctx, ctx->DrawBuffer); 2196 2197 R200_STATECHANGE(rmesa, ctx); 2198 } 2199 2200 if (new_state & (_NEW_TEXTURE | _NEW_PROGRAM | _NEW_PROGRAM_CONSTANTS)) { 2201 r200UpdateTextureState( ctx ); 2202 new_state |= rmesa->radeon.NewGLState; /* may add TEXTURE_MATRIX */ 2203 r200UpdateLocalViewer( ctx ); 2204 } 2205 2206 /* we need to do a space check here */ 2207 if (!r200ValidateBuffers(ctx)) 2208 return GL_FALSE; 2209 2210/* FIXME: don't really need most of these when vertex progs are enabled */ 2211 2212 /* Need an event driven matrix update? 2213 */ 2214 if (new_state & (_NEW_MODELVIEW|_NEW_PROJECTION)) 2215 upload_matrix( rmesa, ctx->_ModelProjectMatrix.m, R200_MTX_MVP ); 2216 2217 /* Need these for lighting (shouldn't upload otherwise) 2218 */ 2219 if (new_state & (_NEW_MODELVIEW)) { 2220 upload_matrix( rmesa, ctx->ModelviewMatrixStack.Top->m, R200_MTX_MV ); 2221 upload_matrix_t( rmesa, ctx->ModelviewMatrixStack.Top->inv, R200_MTX_IMV ); 2222 } 2223 2224 /* Does this need to be triggered on eg. modelview for 2225 * texgen-derived objplane/eyeplane matrices? 2226 */ 2227 if (new_state & (_NEW_TEXTURE|_NEW_TEXTURE_MATRIX)) { 2228 update_texturematrix( ctx ); 2229 } 2230 2231 if (new_state & (_NEW_LIGHT|_NEW_MODELVIEW|_MESA_NEW_NEED_EYE_COORDS)) { 2232 update_light( ctx ); 2233 } 2234 2235 /* emit all active clip planes if projection matrix changes. 2236 */ 2237 if (new_state & (_NEW_PROJECTION)) { 2238 if (ctx->Transform.ClipPlanesEnabled) 2239 r200UpdateClipPlanes( ctx ); 2240 } 2241 2242 if (new_state & (_NEW_PROGRAM| 2243 _NEW_PROGRAM_CONSTANTS | 2244 /* need to test for pretty much anything due to possible parameter bindings */ 2245 _NEW_MODELVIEW|_NEW_PROJECTION|_NEW_TRANSFORM| 2246 _NEW_LIGHT|_NEW_TEXTURE|_NEW_TEXTURE_MATRIX| 2247 _NEW_FOG|_NEW_POINT|_NEW_TRACK_MATRIX)) { 2248 if (_mesa_arb_vertex_program_enabled(ctx)) { 2249 r200SetupVertexProg( ctx ); 2250 } 2251 else TCL_FALLBACK(ctx, R200_TCL_FALLBACK_VERTEX_PROGRAM, 0); 2252 } 2253 2254 rmesa->radeon.NewGLState = 0; 2255 return GL_TRUE; 2256} 2257 2258 2259static void r200InvalidateState(struct gl_context *ctx) 2260{ 2261 GLuint new_state = ctx->NewState; 2262 2263 r200ContextPtr rmesa = R200_CONTEXT(ctx); 2264 2265 if (new_state & (_NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT)) 2266 _mesa_update_draw_buffer_bounds(ctx, ctx->DrawBuffer); 2267 2268 _swrast_InvalidateState( ctx, new_state ); 2269 _swsetup_InvalidateState( ctx, new_state ); 2270 _tnl_InvalidateState( ctx, new_state ); 2271 R200_CONTEXT(ctx)->radeon.NewGLState |= new_state; 2272 2273 if (new_state & _NEW_PROGRAM) 2274 rmesa->curr_vp_hw = NULL; 2275} 2276 2277/* A hack. The r200 can actually cope just fine with materials 2278 * between begin/ends, so fix this. 2279 * Should map to inputs just like the generic vertex arrays for vertex progs. 2280 * In theory there could still be too many and we'd still need a fallback. 2281 */ 2282static GLboolean check_material( struct gl_context *ctx ) 2283{ 2284 TNLcontext *tnl = TNL_CONTEXT(ctx); 2285 GLint i; 2286 2287 for (i = _TNL_ATTRIB_MAT_FRONT_AMBIENT; 2288 i < _TNL_ATTRIB_MAT_BACK_INDEXES; 2289 i++) 2290 if (tnl->vb.AttribPtr[i] && 2291 tnl->vb.AttribPtr[i]->stride) 2292 return GL_TRUE; 2293 2294 return GL_FALSE; 2295} 2296 2297static void r200WrapRunPipeline( struct gl_context *ctx ) 2298{ 2299 r200ContextPtr rmesa = R200_CONTEXT(ctx); 2300 GLboolean has_material; 2301 2302 if (0) 2303 fprintf(stderr, "%s, newstate: %x\n", __func__, rmesa->radeon.NewGLState); 2304 2305 /* Validate state: 2306 */ 2307 if (rmesa->radeon.NewGLState) 2308 if (!r200ValidateState( ctx )) 2309 FALLBACK(rmesa, RADEON_FALLBACK_TEXTURE, GL_TRUE); 2310 2311 has_material = !_mesa_arb_vertex_program_enabled(ctx) && 2312 ctx->Light.Enabled && check_material( ctx ); 2313 2314 if (has_material) { 2315 TCL_FALLBACK( ctx, R200_TCL_FALLBACK_MATERIAL, GL_TRUE ); 2316 } 2317 2318 /* Run the pipeline. 2319 */ 2320 _tnl_run_pipeline( ctx ); 2321 2322 if (has_material) { 2323 TCL_FALLBACK( ctx, R200_TCL_FALLBACK_MATERIAL, GL_FALSE ); 2324 } 2325} 2326 2327 2328static void r200PolygonStipple( struct gl_context *ctx, const GLubyte *mask ) 2329{ 2330 r200ContextPtr r200 = R200_CONTEXT(ctx); 2331 GLint i; 2332 2333 radeon_firevertices(&r200->radeon); 2334 2335 radeon_print(RADEON_STATE, RADEON_TRACE, 2336 "%s(%p) first 32 bits are %x.\n", 2337 __func__, 2338 ctx, 2339 *(uint32_t*)mask); 2340 2341 R200_STATECHANGE(r200, stp); 2342 2343 /* Must flip pattern upside down. 2344 */ 2345 for ( i = 31 ; i >= 0; i--) { 2346 r200->hw.stp.cmd[3 + i] = ((GLuint *) mask)[i]; 2347 } 2348} 2349/* Initialize the driver's state functions. 2350 */ 2351void r200InitStateFuncs( radeonContextPtr radeon, struct dd_function_table *functions ) 2352{ 2353 functions->UpdateState = r200InvalidateState; 2354 functions->LightingSpaceChange = r200LightingSpaceChange; 2355 2356 functions->DrawBuffer = radeonDrawBuffer; 2357 functions->ReadBuffer = radeonReadBuffer; 2358 2359 functions->CopyPixels = _mesa_meta_CopyPixels; 2360 functions->DrawPixels = _mesa_meta_DrawPixels; 2361 functions->ReadPixels = radeonReadPixels; 2362 2363 functions->AlphaFunc = r200AlphaFunc; 2364 functions->BlendColor = r200BlendColor; 2365 functions->BlendEquationSeparate = r200BlendEquationSeparate; 2366 functions->BlendFuncSeparate = r200BlendFuncSeparate; 2367 functions->ClipPlane = r200ClipPlane; 2368 functions->ColorMask = r200ColorMask; 2369 functions->CullFace = r200CullFace; 2370 functions->DepthFunc = r200DepthFunc; 2371 functions->DepthMask = r200DepthMask; 2372 functions->DepthRange = r200DepthRange; 2373 functions->Enable = r200Enable; 2374 functions->Fogfv = r200Fogfv; 2375 functions->FrontFace = r200FrontFace; 2376 functions->LightModelfv = r200LightModelfv; 2377 functions->Lightfv = r200Lightfv; 2378 functions->LineStipple = r200LineStipple; 2379 functions->LineWidth = r200LineWidth; 2380 functions->LogicOpcode = r200LogicOpCode; 2381 functions->PolygonMode = r200PolygonMode; 2382 functions->PolygonOffset = r200PolygonOffset; 2383 functions->PolygonStipple = r200PolygonStipple; 2384 functions->PointParameterfv = r200PointParameter; 2385 functions->PointSize = r200PointSize; 2386 functions->RenderMode = r200RenderMode; 2387 functions->Scissor = radeonScissor; 2388 functions->ShadeModel = r200ShadeModel; 2389 functions->StencilFuncSeparate = r200StencilFuncSeparate; 2390 functions->StencilMaskSeparate = r200StencilMaskSeparate; 2391 functions->StencilOpSeparate = r200StencilOpSeparate; 2392 functions->Viewport = r200Viewport; 2393} 2394 2395 2396void r200InitTnlFuncs( struct gl_context *ctx ) 2397{ 2398 TNL_CONTEXT(ctx)->Driver.NotifyMaterialChange = r200UpdateMaterial; 2399 TNL_CONTEXT(ctx)->Driver.RunPipeline = r200WrapRunPipeline; 2400} 2401