1/* 2 * Mesa 3-D graphics library 3 * 4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included 14 * in all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26/** 27 * \file mipmap.c mipmap generation and teximage resizing functions. 28 */ 29 30#include "errors.h" 31#include "imports.h" 32#include "formats.h" 33#include "glformats.h" 34#include "mipmap.h" 35#include "mtypes.h" 36#include "teximage.h" 37#include "texobj.h" 38#include "texstore.h" 39#include "image.h" 40#include "macros.h" 41#include "util/half_float.h" 42#include "util/format_rgb9e5.h" 43#include "util/format_r11g11b10f.h" 44 45 46/** 47 * Compute the expected number of mipmap levels in the texture given 48 * the width/height/depth of the base image and the GL_TEXTURE_BASE_LEVEL/ 49 * GL_TEXTURE_MAX_LEVEL settings. This will tell us how many mipmap 50 * levels should be generated. 51 */ 52unsigned 53_mesa_compute_num_levels(struct gl_context *ctx, 54 struct gl_texture_object *texObj, 55 GLenum target) 56{ 57 const struct gl_texture_image *baseImage; 58 GLuint numLevels; 59 60 baseImage = _mesa_get_tex_image(ctx, texObj, target, texObj->BaseLevel); 61 62 numLevels = texObj->BaseLevel + baseImage->MaxNumLevels; 63 numLevels = MIN2(numLevels, (GLuint) texObj->MaxLevel + 1); 64 if (texObj->Immutable) 65 numLevels = MIN2(numLevels, texObj->NumLevels); 66 assert(numLevels >= 1); 67 68 return numLevels; 69} 70 71static GLint 72bytes_per_pixel(GLenum datatype, GLuint comps) 73{ 74 GLint b; 75 76 if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA || 77 datatype == GL_UNSIGNED_INT_24_8_MESA) 78 return 4; 79 80 b = _mesa_sizeof_packed_type(datatype); 81 assert(b >= 0); 82 83 if (_mesa_type_is_packed(datatype)) 84 return b; 85 else 86 return b * comps; 87} 88 89 90/** 91 * \name Support macros for do_row and do_row_3d 92 * 93 * The macro madness is here for two reasons. First, it compacts the code 94 * slightly. Second, it makes it much easier to adjust the specifics of the 95 * filter to tune the rounding characteristics. 96 */ 97/*@{*/ 98#define DECLARE_ROW_POINTERS(t, e) \ 99 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \ 100 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \ 101 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \ 102 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \ 103 t(*dst)[e] = (t(*)[e]) dstRow 104 105#define DECLARE_ROW_POINTERS0(t) \ 106 const t *rowA = (const t *) srcRowA; \ 107 const t *rowB = (const t *) srcRowB; \ 108 const t *rowC = (const t *) srcRowC; \ 109 const t *rowD = (const t *) srcRowD; \ 110 t *dst = (t *) dstRow 111 112#define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \ 113 ((unsigned) Aj + (unsigned) Ak \ 114 + (unsigned) Bj + (unsigned) Bk \ 115 + (unsigned) Cj + (unsigned) Ck \ 116 + (unsigned) Dj + (unsigned) Dk \ 117 + 4) >> 3 118 119#define FILTER_3D(e) \ 120 do { \ 121 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \ 122 rowB[j][e], rowB[k][e], \ 123 rowC[j][e], rowC[k][e], \ 124 rowD[j][e], rowD[k][e]); \ 125 } while(0) 126 127#define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \ 128 (Aj + Ak \ 129 + Bj + Bk \ 130 + Cj + Ck \ 131 + Dj + Dk \ 132 + 4) / 8 133 134#define FILTER_3D_SIGNED(e) \ 135 do { \ 136 dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \ 137 rowB[j][e], rowB[k][e], \ 138 rowC[j][e], rowC[k][e], \ 139 rowD[j][e], rowD[k][e]); \ 140 } while(0) 141 142#define FILTER_F_3D(e) \ 143 do { \ 144 dst[i][e] = (rowA[j][e] + rowA[k][e] \ 145 + rowB[j][e] + rowB[k][e] \ 146 + rowC[j][e] + rowC[k][e] \ 147 + rowD[j][e] + rowD[k][e]) * 0.125F; \ 148 } while(0) 149 150#define FILTER_HF_3D(e) \ 151 do { \ 152 const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \ 153 const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \ 154 const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \ 155 const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \ 156 const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \ 157 const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \ 158 const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \ 159 const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \ 160 dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \ 161 * 0.125F); \ 162 } while(0) 163/*@}*/ 164 165 166/** 167 * Average together two rows of a source image to produce a single new 168 * row in the dest image. It's legal for the two source rows to point 169 * to the same data. The source width must be equal to either the 170 * dest width or two times the dest width. 171 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc. 172 * \param comps number of components per pixel (1..4) 173 */ 174static void 175do_row(GLenum datatype, GLuint comps, GLint srcWidth, 176 const GLvoid *srcRowA, const GLvoid *srcRowB, 177 GLint dstWidth, GLvoid *dstRow) 178{ 179 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1; 180 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2; 181 182 assert(comps >= 1); 183 assert(comps <= 4); 184 185 /* This assertion is no longer valid with non-power-of-2 textures 186 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth); 187 */ 188 189 if (datatype == GL_UNSIGNED_BYTE && comps == 4) { 190 GLuint i, j, k; 191 const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA; 192 const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB; 193 GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow; 194 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 195 i++, j += colStride, k += colStride) { 196 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; 197 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; 198 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; 199 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; 200 } 201 } 202 else if (datatype == GL_UNSIGNED_BYTE && comps == 3) { 203 GLuint i, j, k; 204 const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA; 205 const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB; 206 GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow; 207 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 208 i++, j += colStride, k += colStride) { 209 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; 210 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; 211 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; 212 } 213 } 214 else if (datatype == GL_UNSIGNED_BYTE && comps == 2) { 215 GLuint i, j, k; 216 const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA; 217 const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB; 218 GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow; 219 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 220 i++, j += colStride, k += colStride) { 221 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2; 222 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2; 223 } 224 } 225 else if (datatype == GL_UNSIGNED_BYTE && comps == 1) { 226 GLuint i, j, k; 227 const GLubyte *rowA = (const GLubyte *) srcRowA; 228 const GLubyte *rowB = (const GLubyte *) srcRowB; 229 GLubyte *dst = (GLubyte *) dstRow; 230 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 231 i++, j += colStride, k += colStride) { 232 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2; 233 } 234 } 235 236 else if (datatype == GL_BYTE && comps == 4) { 237 GLuint i, j, k; 238 const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA; 239 const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB; 240 GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow; 241 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 242 i++, j += colStride, k += colStride) { 243 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; 244 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; 245 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; 246 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; 247 } 248 } 249 else if (datatype == GL_BYTE && comps == 3) { 250 GLuint i, j, k; 251 const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA; 252 const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB; 253 GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow; 254 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 255 i++, j += colStride, k += colStride) { 256 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; 257 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; 258 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; 259 } 260 } 261 else if (datatype == GL_BYTE && comps == 2) { 262 GLuint i, j, k; 263 const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA; 264 const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB; 265 GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow; 266 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 267 i++, j += colStride, k += colStride) { 268 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; 269 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; 270 } 271 } 272 else if (datatype == GL_BYTE && comps == 1) { 273 GLuint i, j, k; 274 const GLbyte *rowA = (const GLbyte *) srcRowA; 275 const GLbyte *rowB = (const GLbyte *) srcRowB; 276 GLbyte *dst = (GLbyte *) dstRow; 277 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 278 i++, j += colStride, k += colStride) { 279 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4; 280 } 281 } 282 283 else if (datatype == GL_UNSIGNED_SHORT && comps == 4) { 284 GLuint i, j, k; 285 const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA; 286 const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB; 287 GLushort(*dst)[4] = (GLushort(*)[4]) dstRow; 288 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 289 i++, j += colStride, k += colStride) { 290 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; 291 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; 292 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; 293 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; 294 } 295 } 296 else if (datatype == GL_UNSIGNED_SHORT && comps == 3) { 297 GLuint i, j, k; 298 const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA; 299 const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB; 300 GLushort(*dst)[3] = (GLushort(*)[3]) dstRow; 301 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 302 i++, j += colStride, k += colStride) { 303 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; 304 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; 305 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; 306 } 307 } 308 else if (datatype == GL_UNSIGNED_SHORT && comps == 2) { 309 GLuint i, j, k; 310 const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA; 311 const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB; 312 GLushort(*dst)[2] = (GLushort(*)[2]) dstRow; 313 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 314 i++, j += colStride, k += colStride) { 315 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; 316 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; 317 } 318 } 319 else if (datatype == GL_UNSIGNED_SHORT && comps == 1) { 320 GLuint i, j, k; 321 const GLushort *rowA = (const GLushort *) srcRowA; 322 const GLushort *rowB = (const GLushort *) srcRowB; 323 GLushort *dst = (GLushort *) dstRow; 324 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 325 i++, j += colStride, k += colStride) { 326 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4; 327 } 328 } 329 330 else if (datatype == GL_SHORT && comps == 4) { 331 GLuint i, j, k; 332 const GLshort(*rowA)[4] = (const GLshort(*)[4]) srcRowA; 333 const GLshort(*rowB)[4] = (const GLshort(*)[4]) srcRowB; 334 GLshort(*dst)[4] = (GLshort(*)[4]) dstRow; 335 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 336 i++, j += colStride, k += colStride) { 337 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; 338 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; 339 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; 340 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; 341 } 342 } 343 else if (datatype == GL_SHORT && comps == 3) { 344 GLuint i, j, k; 345 const GLshort(*rowA)[3] = (const GLshort(*)[3]) srcRowA; 346 const GLshort(*rowB)[3] = (const GLshort(*)[3]) srcRowB; 347 GLshort(*dst)[3] = (GLshort(*)[3]) dstRow; 348 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 349 i++, j += colStride, k += colStride) { 350 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; 351 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; 352 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; 353 } 354 } 355 else if (datatype == GL_SHORT && comps == 2) { 356 GLuint i, j, k; 357 const GLshort(*rowA)[2] = (const GLshort(*)[2]) srcRowA; 358 const GLshort(*rowB)[2] = (const GLshort(*)[2]) srcRowB; 359 GLshort(*dst)[2] = (GLshort(*)[2]) dstRow; 360 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 361 i++, j += colStride, k += colStride) { 362 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; 363 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; 364 } 365 } 366 else if (datatype == GL_SHORT && comps == 1) { 367 GLuint i, j, k; 368 const GLshort *rowA = (const GLshort *) srcRowA; 369 const GLshort *rowB = (const GLshort *) srcRowB; 370 GLshort *dst = (GLshort *) dstRow; 371 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 372 i++, j += colStride, k += colStride) { 373 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4; 374 } 375 } 376 377 else if (datatype == GL_FLOAT && comps == 4) { 378 GLuint i, j, k; 379 const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA; 380 const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB; 381 GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow; 382 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 383 i++, j += colStride, k += colStride) { 384 dst[i][0] = (rowA[j][0] + rowA[k][0] + 385 rowB[j][0] + rowB[k][0]) * 0.25F; 386 dst[i][1] = (rowA[j][1] + rowA[k][1] + 387 rowB[j][1] + rowB[k][1]) * 0.25F; 388 dst[i][2] = (rowA[j][2] + rowA[k][2] + 389 rowB[j][2] + rowB[k][2]) * 0.25F; 390 dst[i][3] = (rowA[j][3] + rowA[k][3] + 391 rowB[j][3] + rowB[k][3]) * 0.25F; 392 } 393 } 394 else if (datatype == GL_FLOAT && comps == 3) { 395 GLuint i, j, k; 396 const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA; 397 const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB; 398 GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow; 399 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 400 i++, j += colStride, k += colStride) { 401 dst[i][0] = (rowA[j][0] + rowA[k][0] + 402 rowB[j][0] + rowB[k][0]) * 0.25F; 403 dst[i][1] = (rowA[j][1] + rowA[k][1] + 404 rowB[j][1] + rowB[k][1]) * 0.25F; 405 dst[i][2] = (rowA[j][2] + rowA[k][2] + 406 rowB[j][2] + rowB[k][2]) * 0.25F; 407 } 408 } 409 else if (datatype == GL_FLOAT && comps == 2) { 410 GLuint i, j, k; 411 const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA; 412 const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB; 413 GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow; 414 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 415 i++, j += colStride, k += colStride) { 416 dst[i][0] = (rowA[j][0] + rowA[k][0] + 417 rowB[j][0] + rowB[k][0]) * 0.25F; 418 dst[i][1] = (rowA[j][1] + rowA[k][1] + 419 rowB[j][1] + rowB[k][1]) * 0.25F; 420 } 421 } 422 else if (datatype == GL_FLOAT && comps == 1) { 423 GLuint i, j, k; 424 const GLfloat *rowA = (const GLfloat *) srcRowA; 425 const GLfloat *rowB = (const GLfloat *) srcRowB; 426 GLfloat *dst = (GLfloat *) dstRow; 427 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 428 i++, j += colStride, k += colStride) { 429 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F; 430 } 431 } 432 433 else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) { 434 GLuint i, j, k, comp; 435 const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA; 436 const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB; 437 GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow; 438 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 439 i++, j += colStride, k += colStride) { 440 for (comp = 0; comp < 4; comp++) { 441 GLfloat aj, ak, bj, bk; 442 aj = _mesa_half_to_float(rowA[j][comp]); 443 ak = _mesa_half_to_float(rowA[k][comp]); 444 bj = _mesa_half_to_float(rowB[j][comp]); 445 bk = _mesa_half_to_float(rowB[k][comp]); 446 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); 447 } 448 } 449 } 450 else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) { 451 GLuint i, j, k, comp; 452 const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA; 453 const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB; 454 GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow; 455 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 456 i++, j += colStride, k += colStride) { 457 for (comp = 0; comp < 3; comp++) { 458 GLfloat aj, ak, bj, bk; 459 aj = _mesa_half_to_float(rowA[j][comp]); 460 ak = _mesa_half_to_float(rowA[k][comp]); 461 bj = _mesa_half_to_float(rowB[j][comp]); 462 bk = _mesa_half_to_float(rowB[k][comp]); 463 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); 464 } 465 } 466 } 467 else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) { 468 GLuint i, j, k, comp; 469 const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA; 470 const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB; 471 GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow; 472 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 473 i++, j += colStride, k += colStride) { 474 for (comp = 0; comp < 2; comp++) { 475 GLfloat aj, ak, bj, bk; 476 aj = _mesa_half_to_float(rowA[j][comp]); 477 ak = _mesa_half_to_float(rowA[k][comp]); 478 bj = _mesa_half_to_float(rowB[j][comp]); 479 bk = _mesa_half_to_float(rowB[k][comp]); 480 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); 481 } 482 } 483 } 484 else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) { 485 GLuint i, j, k; 486 const GLhalfARB *rowA = (const GLhalfARB *) srcRowA; 487 const GLhalfARB *rowB = (const GLhalfARB *) srcRowB; 488 GLhalfARB *dst = (GLhalfARB *) dstRow; 489 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 490 i++, j += colStride, k += colStride) { 491 GLfloat aj, ak, bj, bk; 492 aj = _mesa_half_to_float(rowA[j]); 493 ak = _mesa_half_to_float(rowA[k]); 494 bj = _mesa_half_to_float(rowB[j]); 495 bk = _mesa_half_to_float(rowB[k]); 496 dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); 497 } 498 } 499 500 else if (datatype == GL_UNSIGNED_INT && comps == 1) { 501 GLuint i, j, k; 502 const GLuint *rowA = (const GLuint *) srcRowA; 503 const GLuint *rowB = (const GLuint *) srcRowB; 504 GLuint *dst = (GLuint *) dstRow; 505 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 506 i++, j += colStride, k += colStride) { 507 dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4; 508 } 509 } 510 511 else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) { 512 GLuint i, j, k; 513 const GLushort *rowA = (const GLushort *) srcRowA; 514 const GLushort *rowB = (const GLushort *) srcRowB; 515 GLushort *dst = (GLushort *) dstRow; 516 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 517 i++, j += colStride, k += colStride) { 518 const GLint rowAr0 = rowA[j] & 0x1f; 519 const GLint rowAr1 = rowA[k] & 0x1f; 520 const GLint rowBr0 = rowB[j] & 0x1f; 521 const GLint rowBr1 = rowB[k] & 0x1f; 522 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f; 523 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f; 524 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f; 525 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f; 526 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f; 527 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f; 528 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f; 529 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f; 530 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; 531 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; 532 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; 533 dst[i] = (blue << 11) | (green << 5) | red; 534 } 535 } 536 else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) { 537 GLuint i, j, k; 538 const GLushort *rowA = (const GLushort *) srcRowA; 539 const GLushort *rowB = (const GLushort *) srcRowB; 540 GLushort *dst = (GLushort *) dstRow; 541 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 542 i++, j += colStride, k += colStride) { 543 const GLint rowAr0 = rowA[j] & 0xf; 544 const GLint rowAr1 = rowA[k] & 0xf; 545 const GLint rowBr0 = rowB[j] & 0xf; 546 const GLint rowBr1 = rowB[k] & 0xf; 547 const GLint rowAg0 = (rowA[j] >> 4) & 0xf; 548 const GLint rowAg1 = (rowA[k] >> 4) & 0xf; 549 const GLint rowBg0 = (rowB[j] >> 4) & 0xf; 550 const GLint rowBg1 = (rowB[k] >> 4) & 0xf; 551 const GLint rowAb0 = (rowA[j] >> 8) & 0xf; 552 const GLint rowAb1 = (rowA[k] >> 8) & 0xf; 553 const GLint rowBb0 = (rowB[j] >> 8) & 0xf; 554 const GLint rowBb1 = (rowB[k] >> 8) & 0xf; 555 const GLint rowAa0 = (rowA[j] >> 12) & 0xf; 556 const GLint rowAa1 = (rowA[k] >> 12) & 0xf; 557 const GLint rowBa0 = (rowB[j] >> 12) & 0xf; 558 const GLint rowBa1 = (rowB[k] >> 12) & 0xf; 559 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; 560 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; 561 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; 562 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; 563 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red; 564 } 565 } 566 else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) { 567 GLuint i, j, k; 568 const GLushort *rowA = (const GLushort *) srcRowA; 569 const GLushort *rowB = (const GLushort *) srcRowB; 570 GLushort *dst = (GLushort *) dstRow; 571 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 572 i++, j += colStride, k += colStride) { 573 const GLint rowAr0 = rowA[j] & 0x1f; 574 const GLint rowAr1 = rowA[k] & 0x1f; 575 const GLint rowBr0 = rowB[j] & 0x1f; 576 const GLint rowBr1 = rowB[k] & 0x1f; 577 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f; 578 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f; 579 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f; 580 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f; 581 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f; 582 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f; 583 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f; 584 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f; 585 const GLint rowAa0 = (rowA[j] >> 15) & 0x1; 586 const GLint rowAa1 = (rowA[k] >> 15) & 0x1; 587 const GLint rowBa0 = (rowB[j] >> 15) & 0x1; 588 const GLint rowBa1 = (rowB[k] >> 15) & 0x1; 589 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; 590 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; 591 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; 592 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; 593 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red; 594 } 595 } 596 else if (datatype == GL_UNSIGNED_SHORT_5_5_5_1 && comps == 4) { 597 GLuint i, j, k; 598 const GLushort *rowA = (const GLushort *) srcRowA; 599 const GLushort *rowB = (const GLushort *) srcRowB; 600 GLushort *dst = (GLushort *) dstRow; 601 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 602 i++, j += colStride, k += colStride) { 603 const GLint rowAr0 = (rowA[j] >> 11) & 0x1f; 604 const GLint rowAr1 = (rowA[k] >> 11) & 0x1f; 605 const GLint rowBr0 = (rowB[j] >> 11) & 0x1f; 606 const GLint rowBr1 = (rowB[k] >> 11) & 0x1f; 607 const GLint rowAg0 = (rowA[j] >> 6) & 0x1f; 608 const GLint rowAg1 = (rowA[k] >> 6) & 0x1f; 609 const GLint rowBg0 = (rowB[j] >> 6) & 0x1f; 610 const GLint rowBg1 = (rowB[k] >> 6) & 0x1f; 611 const GLint rowAb0 = (rowA[j] >> 1) & 0x1f; 612 const GLint rowAb1 = (rowA[k] >> 1) & 0x1f; 613 const GLint rowBb0 = (rowB[j] >> 1) & 0x1f; 614 const GLint rowBb1 = (rowB[k] >> 1) & 0x1f; 615 const GLint rowAa0 = (rowA[j] & 0x1); 616 const GLint rowAa1 = (rowA[k] & 0x1); 617 const GLint rowBa0 = (rowB[j] & 0x1); 618 const GLint rowBa1 = (rowB[k] & 0x1); 619 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; 620 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; 621 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; 622 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; 623 dst[i] = (red << 11) | (green << 6) | (blue << 1) | alpha; 624 } 625 } 626 627 else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) { 628 GLuint i, j, k; 629 const GLubyte *rowA = (const GLubyte *) srcRowA; 630 const GLubyte *rowB = (const GLubyte *) srcRowB; 631 GLubyte *dst = (GLubyte *) dstRow; 632 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 633 i++, j += colStride, k += colStride) { 634 const GLint rowAr0 = rowA[j] & 0x3; 635 const GLint rowAr1 = rowA[k] & 0x3; 636 const GLint rowBr0 = rowB[j] & 0x3; 637 const GLint rowBr1 = rowB[k] & 0x3; 638 const GLint rowAg0 = (rowA[j] >> 2) & 0x7; 639 const GLint rowAg1 = (rowA[k] >> 2) & 0x7; 640 const GLint rowBg0 = (rowB[j] >> 2) & 0x7; 641 const GLint rowBg1 = (rowB[k] >> 2) & 0x7; 642 const GLint rowAb0 = (rowA[j] >> 5) & 0x7; 643 const GLint rowAb1 = (rowA[k] >> 5) & 0x7; 644 const GLint rowBb0 = (rowB[j] >> 5) & 0x7; 645 const GLint rowBb1 = (rowB[k] >> 5) & 0x7; 646 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; 647 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; 648 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; 649 dst[i] = (blue << 5) | (green << 2) | red; 650 } 651 } 652 653 else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) { 654 GLuint i, j, k; 655 const GLubyte *rowA = (const GLubyte *) srcRowA; 656 const GLubyte *rowB = (const GLubyte *) srcRowB; 657 GLubyte *dst = (GLubyte *) dstRow; 658 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 659 i++, j += colStride, k += colStride) { 660 const GLint rowAr0 = rowA[j] & 0xf; 661 const GLint rowAr1 = rowA[k] & 0xf; 662 const GLint rowBr0 = rowB[j] & 0xf; 663 const GLint rowBr1 = rowB[k] & 0xf; 664 const GLint rowAg0 = (rowA[j] >> 4) & 0xf; 665 const GLint rowAg1 = (rowA[k] >> 4) & 0xf; 666 const GLint rowBg0 = (rowB[j] >> 4) & 0xf; 667 const GLint rowBg1 = (rowB[k] >> 4) & 0xf; 668 const GLint r = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; 669 const GLint g = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; 670 dst[i] = (g << 4) | r; 671 } 672 } 673 674 else if (datatype == GL_UNSIGNED_INT_2_10_10_10_REV && comps == 4) { 675 GLuint i, j, k; 676 const GLuint *rowA = (const GLuint *) srcRowA; 677 const GLuint *rowB = (const GLuint *) srcRowB; 678 GLuint *dst = (GLuint *) dstRow; 679 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 680 i++, j += colStride, k += colStride) { 681 const GLint rowAr0 = rowA[j] & 0x3ff; 682 const GLint rowAr1 = rowA[k] & 0x3ff; 683 const GLint rowBr0 = rowB[j] & 0x3ff; 684 const GLint rowBr1 = rowB[k] & 0x3ff; 685 const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff; 686 const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff; 687 const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff; 688 const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff; 689 const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff; 690 const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff; 691 const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff; 692 const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff; 693 const GLint rowAa0 = (rowA[j] >> 30) & 0x3; 694 const GLint rowAa1 = (rowA[k] >> 30) & 0x3; 695 const GLint rowBa0 = (rowB[j] >> 30) & 0x3; 696 const GLint rowBa1 = (rowB[k] >> 30) & 0x3; 697 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; 698 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; 699 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; 700 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; 701 dst[i] = (alpha << 30) | (blue << 20) | (green << 10) | red; 702 } 703 } 704 705 else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) { 706 GLuint i, j, k; 707 const GLuint *rowA = (const GLuint*) srcRowA; 708 const GLuint *rowB = (const GLuint*) srcRowB; 709 GLuint *dst = (GLuint*)dstRow; 710 GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3]; 711 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 712 i++, j += colStride, k += colStride) { 713 rgb9e5_to_float3(rowA[j], rowAj); 714 rgb9e5_to_float3(rowB[j], rowBj); 715 rgb9e5_to_float3(rowA[k], rowAk); 716 rgb9e5_to_float3(rowB[k], rowBk); 717 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F; 718 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F; 719 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F; 720 dst[i] = float3_to_rgb9e5(res); 721 } 722 } 723 724 else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) { 725 GLuint i, j, k; 726 const GLuint *rowA = (const GLuint*) srcRowA; 727 const GLuint *rowB = (const GLuint*) srcRowB; 728 GLuint *dst = (GLuint*)dstRow; 729 GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3]; 730 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 731 i++, j += colStride, k += colStride) { 732 r11g11b10f_to_float3(rowA[j], rowAj); 733 r11g11b10f_to_float3(rowB[j], rowBj); 734 r11g11b10f_to_float3(rowA[k], rowAk); 735 r11g11b10f_to_float3(rowB[k], rowBk); 736 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F; 737 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F; 738 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F; 739 dst[i] = float3_to_r11g11b10f(res); 740 } 741 } 742 743 else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) { 744 GLuint i, j, k; 745 const GLfloat *rowA = (const GLfloat *) srcRowA; 746 const GLfloat *rowB = (const GLfloat *) srcRowB; 747 GLfloat *dst = (GLfloat *) dstRow; 748 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 749 i++, j += colStride, k += colStride) { 750 dst[i*2] = (rowA[j*2] + rowA[k*2] + rowB[j*2] + rowB[k*2]) * 0.25F; 751 } 752 } 753 754 else if (datatype == GL_UNSIGNED_INT_24_8_MESA && comps == 2) { 755 GLuint i, j, k; 756 const GLuint *rowA = (const GLuint *) srcRowA; 757 const GLuint *rowB = (const GLuint *) srcRowB; 758 GLuint *dst = (GLuint *) dstRow; 759 /* note: averaging stencil values seems weird, but what else? */ 760 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 761 i++, j += colStride, k += colStride) { 762 GLuint z = (((rowA[j] >> 8) + (rowA[k] >> 8) + 763 (rowB[j] >> 8) + (rowB[k] >> 8)) / 4) << 8; 764 GLuint s = ((rowA[j] & 0xff) + (rowA[k] & 0xff) + 765 (rowB[j] & 0xff) + (rowB[k] & 0xff)) / 4; 766 dst[i] = z | s; 767 } 768 } 769 else if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA && comps == 2) { 770 GLuint i, j, k; 771 const GLuint *rowA = (const GLuint *) srcRowA; 772 const GLuint *rowB = (const GLuint *) srcRowB; 773 GLuint *dst = (GLuint *) dstRow; 774 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 775 i++, j += colStride, k += colStride) { 776 GLuint z = ((rowA[j] & 0xffffff) + (rowA[k] & 0xffffff) + 777 (rowB[j] & 0xffffff) + (rowB[k] & 0xffffff)) / 4; 778 GLuint s = (((rowA[j] >> 24) + (rowA[k] >> 24) + 779 (rowB[j] >> 24) + (rowB[k] >> 24)) / 4) << 24; 780 dst[i] = z | s; 781 } 782 } 783 784 else { 785 unreachable("bad format in do_row()"); 786 } 787} 788 789 790/** 791 * Average together four rows of a source image to produce a single new 792 * row in the dest image. It's legal for the two source rows to point 793 * to the same data. The source width must be equal to either the 794 * dest width or two times the dest width. 795 * 796 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT, 797 * \c GL_FLOAT, etc. 798 * \param comps number of components per pixel (1..4) 799 * \param srcWidth Width of a row in the source data 800 * \param srcRowA Pointer to one of the rows of source data 801 * \param srcRowB Pointer to one of the rows of source data 802 * \param srcRowC Pointer to one of the rows of source data 803 * \param srcRowD Pointer to one of the rows of source data 804 * \param dstWidth Width of a row in the destination data 805 * \param srcRowA Pointer to the row of destination data 806 */ 807static void 808do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth, 809 const GLvoid *srcRowA, const GLvoid *srcRowB, 810 const GLvoid *srcRowC, const GLvoid *srcRowD, 811 GLint dstWidth, GLvoid *dstRow) 812{ 813 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1; 814 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2; 815 GLuint i, j, k; 816 817 assert(comps >= 1); 818 assert(comps <= 4); 819 820 if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) { 821 DECLARE_ROW_POINTERS(GLubyte, 4); 822 823 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 824 i++, j += colStride, k += colStride) { 825 FILTER_3D(0); 826 FILTER_3D(1); 827 FILTER_3D(2); 828 FILTER_3D(3); 829 } 830 } 831 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) { 832 DECLARE_ROW_POINTERS(GLubyte, 3); 833 834 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 835 i++, j += colStride, k += colStride) { 836 FILTER_3D(0); 837 FILTER_3D(1); 838 FILTER_3D(2); 839 } 840 } 841 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) { 842 DECLARE_ROW_POINTERS(GLubyte, 2); 843 844 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 845 i++, j += colStride, k += colStride) { 846 FILTER_3D(0); 847 FILTER_3D(1); 848 } 849 } 850 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) { 851 DECLARE_ROW_POINTERS(GLubyte, 1); 852 853 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 854 i++, j += colStride, k += colStride) { 855 FILTER_3D(0); 856 } 857 } 858 else if ((datatype == GL_BYTE) && (comps == 4)) { 859 DECLARE_ROW_POINTERS(GLbyte, 4); 860 861 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 862 i++, j += colStride, k += colStride) { 863 FILTER_3D_SIGNED(0); 864 FILTER_3D_SIGNED(1); 865 FILTER_3D_SIGNED(2); 866 FILTER_3D_SIGNED(3); 867 } 868 } 869 else if ((datatype == GL_BYTE) && (comps == 3)) { 870 DECLARE_ROW_POINTERS(GLbyte, 3); 871 872 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 873 i++, j += colStride, k += colStride) { 874 FILTER_3D_SIGNED(0); 875 FILTER_3D_SIGNED(1); 876 FILTER_3D_SIGNED(2); 877 } 878 } 879 else if ((datatype == GL_BYTE) && (comps == 2)) { 880 DECLARE_ROW_POINTERS(GLbyte, 2); 881 882 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 883 i++, j += colStride, k += colStride) { 884 FILTER_3D_SIGNED(0); 885 FILTER_3D_SIGNED(1); 886 } 887 } 888 else if ((datatype == GL_BYTE) && (comps == 1)) { 889 DECLARE_ROW_POINTERS(GLbyte, 1); 890 891 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 892 i++, j += colStride, k += colStride) { 893 FILTER_3D_SIGNED(0); 894 } 895 } 896 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) { 897 DECLARE_ROW_POINTERS(GLushort, 4); 898 899 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 900 i++, j += colStride, k += colStride) { 901 FILTER_3D(0); 902 FILTER_3D(1); 903 FILTER_3D(2); 904 FILTER_3D(3); 905 } 906 } 907 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) { 908 DECLARE_ROW_POINTERS(GLushort, 3); 909 910 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 911 i++, j += colStride, k += colStride) { 912 FILTER_3D(0); 913 FILTER_3D(1); 914 FILTER_3D(2); 915 } 916 } 917 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) { 918 DECLARE_ROW_POINTERS(GLushort, 2); 919 920 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 921 i++, j += colStride, k += colStride) { 922 FILTER_3D(0); 923 FILTER_3D(1); 924 } 925 } 926 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) { 927 DECLARE_ROW_POINTERS(GLushort, 1); 928 929 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 930 i++, j += colStride, k += colStride) { 931 FILTER_3D(0); 932 } 933 } 934 else if ((datatype == GL_SHORT) && (comps == 4)) { 935 DECLARE_ROW_POINTERS(GLshort, 4); 936 937 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 938 i++, j += colStride, k += colStride) { 939 FILTER_3D(0); 940 FILTER_3D(1); 941 FILTER_3D(2); 942 FILTER_3D(3); 943 } 944 } 945 else if ((datatype == GL_SHORT) && (comps == 3)) { 946 DECLARE_ROW_POINTERS(GLshort, 3); 947 948 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 949 i++, j += colStride, k += colStride) { 950 FILTER_3D(0); 951 FILTER_3D(1); 952 FILTER_3D(2); 953 } 954 } 955 else if ((datatype == GL_SHORT) && (comps == 2)) { 956 DECLARE_ROW_POINTERS(GLshort, 2); 957 958 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 959 i++, j += colStride, k += colStride) { 960 FILTER_3D(0); 961 FILTER_3D(1); 962 } 963 } 964 else if ((datatype == GL_SHORT) && (comps == 1)) { 965 DECLARE_ROW_POINTERS(GLshort, 1); 966 967 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 968 i++, j += colStride, k += colStride) { 969 FILTER_3D(0); 970 } 971 } 972 else if ((datatype == GL_FLOAT) && (comps == 4)) { 973 DECLARE_ROW_POINTERS(GLfloat, 4); 974 975 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 976 i++, j += colStride, k += colStride) { 977 FILTER_F_3D(0); 978 FILTER_F_3D(1); 979 FILTER_F_3D(2); 980 FILTER_F_3D(3); 981 } 982 } 983 else if ((datatype == GL_FLOAT) && (comps == 3)) { 984 DECLARE_ROW_POINTERS(GLfloat, 3); 985 986 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 987 i++, j += colStride, k += colStride) { 988 FILTER_F_3D(0); 989 FILTER_F_3D(1); 990 FILTER_F_3D(2); 991 } 992 } 993 else if ((datatype == GL_FLOAT) && (comps == 2)) { 994 DECLARE_ROW_POINTERS(GLfloat, 2); 995 996 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 997 i++, j += colStride, k += colStride) { 998 FILTER_F_3D(0); 999 FILTER_F_3D(1); 1000 } 1001 } 1002 else if ((datatype == GL_FLOAT) && (comps == 1)) { 1003 DECLARE_ROW_POINTERS(GLfloat, 1); 1004 1005 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1006 i++, j += colStride, k += colStride) { 1007 FILTER_F_3D(0); 1008 } 1009 } 1010 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) { 1011 DECLARE_ROW_POINTERS(GLhalfARB, 4); 1012 1013 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1014 i++, j += colStride, k += colStride) { 1015 FILTER_HF_3D(0); 1016 FILTER_HF_3D(1); 1017 FILTER_HF_3D(2); 1018 FILTER_HF_3D(3); 1019 } 1020 } 1021 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) { 1022 DECLARE_ROW_POINTERS(GLhalfARB, 3); 1023 1024 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1025 i++, j += colStride, k += colStride) { 1026 FILTER_HF_3D(0); 1027 FILTER_HF_3D(1); 1028 FILTER_HF_3D(2); 1029 } 1030 } 1031 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) { 1032 DECLARE_ROW_POINTERS(GLhalfARB, 2); 1033 1034 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1035 i++, j += colStride, k += colStride) { 1036 FILTER_HF_3D(0); 1037 FILTER_HF_3D(1); 1038 } 1039 } 1040 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) { 1041 DECLARE_ROW_POINTERS(GLhalfARB, 1); 1042 1043 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1044 i++, j += colStride, k += colStride) { 1045 FILTER_HF_3D(0); 1046 } 1047 } 1048 else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) { 1049 const GLuint *rowA = (const GLuint *) srcRowA; 1050 const GLuint *rowB = (const GLuint *) srcRowB; 1051 const GLuint *rowC = (const GLuint *) srcRowC; 1052 const GLuint *rowD = (const GLuint *) srcRowD; 1053 GLfloat *dst = (GLfloat *) dstRow; 1054 1055 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1056 i++, j += colStride, k += colStride) { 1057 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k]) 1058 + ((uint64_t) rowB[j] + (uint64_t) rowB[k]) 1059 + ((uint64_t) rowC[j] + (uint64_t) rowC[k]) 1060 + ((uint64_t) rowD[j] + (uint64_t) rowD[k])); 1061 dst[i] = (GLfloat)((double) tmp * 0.125); 1062 } 1063 } 1064 else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) { 1065 DECLARE_ROW_POINTERS0(GLushort); 1066 1067 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1068 i++, j += colStride, k += colStride) { 1069 const GLint rowAr0 = rowA[j] & 0x1f; 1070 const GLint rowAr1 = rowA[k] & 0x1f; 1071 const GLint rowBr0 = rowB[j] & 0x1f; 1072 const GLint rowBr1 = rowB[k] & 0x1f; 1073 const GLint rowCr0 = rowC[j] & 0x1f; 1074 const GLint rowCr1 = rowC[k] & 0x1f; 1075 const GLint rowDr0 = rowD[j] & 0x1f; 1076 const GLint rowDr1 = rowD[k] & 0x1f; 1077 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f; 1078 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f; 1079 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f; 1080 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f; 1081 const GLint rowCg0 = (rowC[j] >> 5) & 0x3f; 1082 const GLint rowCg1 = (rowC[k] >> 5) & 0x3f; 1083 const GLint rowDg0 = (rowD[j] >> 5) & 0x3f; 1084 const GLint rowDg1 = (rowD[k] >> 5) & 0x3f; 1085 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f; 1086 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f; 1087 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f; 1088 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f; 1089 const GLint rowCb0 = (rowC[j] >> 11) & 0x1f; 1090 const GLint rowCb1 = (rowC[k] >> 11) & 0x1f; 1091 const GLint rowDb0 = (rowD[j] >> 11) & 0x1f; 1092 const GLint rowDb1 = (rowD[k] >> 11) & 0x1f; 1093 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, 1094 rowCr0, rowCr1, rowDr0, rowDr1); 1095 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, 1096 rowCg0, rowCg1, rowDg0, rowDg1); 1097 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, 1098 rowCb0, rowCb1, rowDb0, rowDb1); 1099 dst[i] = (b << 11) | (g << 5) | r; 1100 } 1101 } 1102 else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) { 1103 DECLARE_ROW_POINTERS0(GLushort); 1104 1105 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1106 i++, j += colStride, k += colStride) { 1107 const GLint rowAr0 = rowA[j] & 0xf; 1108 const GLint rowAr1 = rowA[k] & 0xf; 1109 const GLint rowBr0 = rowB[j] & 0xf; 1110 const GLint rowBr1 = rowB[k] & 0xf; 1111 const GLint rowCr0 = rowC[j] & 0xf; 1112 const GLint rowCr1 = rowC[k] & 0xf; 1113 const GLint rowDr0 = rowD[j] & 0xf; 1114 const GLint rowDr1 = rowD[k] & 0xf; 1115 const GLint rowAg0 = (rowA[j] >> 4) & 0xf; 1116 const GLint rowAg1 = (rowA[k] >> 4) & 0xf; 1117 const GLint rowBg0 = (rowB[j] >> 4) & 0xf; 1118 const GLint rowBg1 = (rowB[k] >> 4) & 0xf; 1119 const GLint rowCg0 = (rowC[j] >> 4) & 0xf; 1120 const GLint rowCg1 = (rowC[k] >> 4) & 0xf; 1121 const GLint rowDg0 = (rowD[j] >> 4) & 0xf; 1122 const GLint rowDg1 = (rowD[k] >> 4) & 0xf; 1123 const GLint rowAb0 = (rowA[j] >> 8) & 0xf; 1124 const GLint rowAb1 = (rowA[k] >> 8) & 0xf; 1125 const GLint rowBb0 = (rowB[j] >> 8) & 0xf; 1126 const GLint rowBb1 = (rowB[k] >> 8) & 0xf; 1127 const GLint rowCb0 = (rowC[j] >> 8) & 0xf; 1128 const GLint rowCb1 = (rowC[k] >> 8) & 0xf; 1129 const GLint rowDb0 = (rowD[j] >> 8) & 0xf; 1130 const GLint rowDb1 = (rowD[k] >> 8) & 0xf; 1131 const GLint rowAa0 = (rowA[j] >> 12) & 0xf; 1132 const GLint rowAa1 = (rowA[k] >> 12) & 0xf; 1133 const GLint rowBa0 = (rowB[j] >> 12) & 0xf; 1134 const GLint rowBa1 = (rowB[k] >> 12) & 0xf; 1135 const GLint rowCa0 = (rowC[j] >> 12) & 0xf; 1136 const GLint rowCa1 = (rowC[k] >> 12) & 0xf; 1137 const GLint rowDa0 = (rowD[j] >> 12) & 0xf; 1138 const GLint rowDa1 = (rowD[k] >> 12) & 0xf; 1139 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, 1140 rowCr0, rowCr1, rowDr0, rowDr1); 1141 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, 1142 rowCg0, rowCg1, rowDg0, rowDg1); 1143 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, 1144 rowCb0, rowCb1, rowDb0, rowDb1); 1145 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1, 1146 rowCa0, rowCa1, rowDa0, rowDa1); 1147 1148 dst[i] = (a << 12) | (b << 8) | (g << 4) | r; 1149 } 1150 } 1151 else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) { 1152 DECLARE_ROW_POINTERS0(GLushort); 1153 1154 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1155 i++, j += colStride, k += colStride) { 1156 const GLint rowAr0 = rowA[j] & 0x1f; 1157 const GLint rowAr1 = rowA[k] & 0x1f; 1158 const GLint rowBr0 = rowB[j] & 0x1f; 1159 const GLint rowBr1 = rowB[k] & 0x1f; 1160 const GLint rowCr0 = rowC[j] & 0x1f; 1161 const GLint rowCr1 = rowC[k] & 0x1f; 1162 const GLint rowDr0 = rowD[j] & 0x1f; 1163 const GLint rowDr1 = rowD[k] & 0x1f; 1164 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f; 1165 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f; 1166 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f; 1167 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f; 1168 const GLint rowCg0 = (rowC[j] >> 5) & 0x1f; 1169 const GLint rowCg1 = (rowC[k] >> 5) & 0x1f; 1170 const GLint rowDg0 = (rowD[j] >> 5) & 0x1f; 1171 const GLint rowDg1 = (rowD[k] >> 5) & 0x1f; 1172 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f; 1173 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f; 1174 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f; 1175 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f; 1176 const GLint rowCb0 = (rowC[j] >> 10) & 0x1f; 1177 const GLint rowCb1 = (rowC[k] >> 10) & 0x1f; 1178 const GLint rowDb0 = (rowD[j] >> 10) & 0x1f; 1179 const GLint rowDb1 = (rowD[k] >> 10) & 0x1f; 1180 const GLint rowAa0 = (rowA[j] >> 15) & 0x1; 1181 const GLint rowAa1 = (rowA[k] >> 15) & 0x1; 1182 const GLint rowBa0 = (rowB[j] >> 15) & 0x1; 1183 const GLint rowBa1 = (rowB[k] >> 15) & 0x1; 1184 const GLint rowCa0 = (rowC[j] >> 15) & 0x1; 1185 const GLint rowCa1 = (rowC[k] >> 15) & 0x1; 1186 const GLint rowDa0 = (rowD[j] >> 15) & 0x1; 1187 const GLint rowDa1 = (rowD[k] >> 15) & 0x1; 1188 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, 1189 rowCr0, rowCr1, rowDr0, rowDr1); 1190 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, 1191 rowCg0, rowCg1, rowDg0, rowDg1); 1192 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, 1193 rowCb0, rowCb1, rowDb0, rowDb1); 1194 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1, 1195 rowCa0, rowCa1, rowDa0, rowDa1); 1196 1197 dst[i] = (a << 15) | (b << 10) | (g << 5) | r; 1198 } 1199 } 1200 else if ((datatype == GL_UNSIGNED_SHORT_5_5_5_1) && (comps == 4)) { 1201 DECLARE_ROW_POINTERS0(GLushort); 1202 1203 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1204 i++, j += colStride, k += colStride) { 1205 const GLint rowAr0 = (rowA[j] >> 11) & 0x1f; 1206 const GLint rowAr1 = (rowA[k] >> 11) & 0x1f; 1207 const GLint rowBr0 = (rowB[j] >> 11) & 0x1f; 1208 const GLint rowBr1 = (rowB[k] >> 11) & 0x1f; 1209 const GLint rowCr0 = (rowC[j] >> 11) & 0x1f; 1210 const GLint rowCr1 = (rowC[k] >> 11) & 0x1f; 1211 const GLint rowDr0 = (rowD[j] >> 11) & 0x1f; 1212 const GLint rowDr1 = (rowD[k] >> 11) & 0x1f; 1213 const GLint rowAg0 = (rowA[j] >> 6) & 0x1f; 1214 const GLint rowAg1 = (rowA[k] >> 6) & 0x1f; 1215 const GLint rowBg0 = (rowB[j] >> 6) & 0x1f; 1216 const GLint rowBg1 = (rowB[k] >> 6) & 0x1f; 1217 const GLint rowCg0 = (rowC[j] >> 6) & 0x1f; 1218 const GLint rowCg1 = (rowC[k] >> 6) & 0x1f; 1219 const GLint rowDg0 = (rowD[j] >> 6) & 0x1f; 1220 const GLint rowDg1 = (rowD[k] >> 6) & 0x1f; 1221 const GLint rowAb0 = (rowA[j] >> 1) & 0x1f; 1222 const GLint rowAb1 = (rowA[k] >> 1) & 0x1f; 1223 const GLint rowBb0 = (rowB[j] >> 1) & 0x1f; 1224 const GLint rowBb1 = (rowB[k] >> 1) & 0x1f; 1225 const GLint rowCb0 = (rowC[j] >> 1) & 0x1f; 1226 const GLint rowCb1 = (rowC[k] >> 1) & 0x1f; 1227 const GLint rowDb0 = (rowD[j] >> 1) & 0x1f; 1228 const GLint rowDb1 = (rowD[k] >> 1) & 0x1f; 1229 const GLint rowAa0 = (rowA[j] & 0x1); 1230 const GLint rowAa1 = (rowA[k] & 0x1); 1231 const GLint rowBa0 = (rowB[j] & 0x1); 1232 const GLint rowBa1 = (rowB[k] & 0x1); 1233 const GLint rowCa0 = (rowC[j] & 0x1); 1234 const GLint rowCa1 = (rowC[k] & 0x1); 1235 const GLint rowDa0 = (rowD[j] & 0x1); 1236 const GLint rowDa1 = (rowD[k] & 0x1); 1237 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, 1238 rowCr0, rowCr1, rowDr0, rowDr1); 1239 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, 1240 rowCg0, rowCg1, rowDg0, rowDg1); 1241 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, 1242 rowCb0, rowCb1, rowDb0, rowDb1); 1243 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1, 1244 rowCa0, rowCa1, rowDa0, rowDa1); 1245 1246 dst[i] = (r << 11) | (g << 6) | (b << 1) | a; 1247 } 1248 } 1249 else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) { 1250 DECLARE_ROW_POINTERS0(GLubyte); 1251 1252 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1253 i++, j += colStride, k += colStride) { 1254 const GLint rowAr0 = rowA[j] & 0x3; 1255 const GLint rowAr1 = rowA[k] & 0x3; 1256 const GLint rowBr0 = rowB[j] & 0x3; 1257 const GLint rowBr1 = rowB[k] & 0x3; 1258 const GLint rowCr0 = rowC[j] & 0x3; 1259 const GLint rowCr1 = rowC[k] & 0x3; 1260 const GLint rowDr0 = rowD[j] & 0x3; 1261 const GLint rowDr1 = rowD[k] & 0x3; 1262 const GLint rowAg0 = (rowA[j] >> 2) & 0x7; 1263 const GLint rowAg1 = (rowA[k] >> 2) & 0x7; 1264 const GLint rowBg0 = (rowB[j] >> 2) & 0x7; 1265 const GLint rowBg1 = (rowB[k] >> 2) & 0x7; 1266 const GLint rowCg0 = (rowC[j] >> 2) & 0x7; 1267 const GLint rowCg1 = (rowC[k] >> 2) & 0x7; 1268 const GLint rowDg0 = (rowD[j] >> 2) & 0x7; 1269 const GLint rowDg1 = (rowD[k] >> 2) & 0x7; 1270 const GLint rowAb0 = (rowA[j] >> 5) & 0x7; 1271 const GLint rowAb1 = (rowA[k] >> 5) & 0x7; 1272 const GLint rowBb0 = (rowB[j] >> 5) & 0x7; 1273 const GLint rowBb1 = (rowB[k] >> 5) & 0x7; 1274 const GLint rowCb0 = (rowC[j] >> 5) & 0x7; 1275 const GLint rowCb1 = (rowC[k] >> 5) & 0x7; 1276 const GLint rowDb0 = (rowD[j] >> 5) & 0x7; 1277 const GLint rowDb1 = (rowD[k] >> 5) & 0x7; 1278 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, 1279 rowCr0, rowCr1, rowDr0, rowDr1); 1280 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, 1281 rowCg0, rowCg1, rowDg0, rowDg1); 1282 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, 1283 rowCb0, rowCb1, rowDb0, rowDb1); 1284 dst[i] = (b << 5) | (g << 2) | r; 1285 } 1286 } 1287 else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) { 1288 DECLARE_ROW_POINTERS0(GLubyte); 1289 1290 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1291 i++, j += colStride, k += colStride) { 1292 const GLint rowAr0 = rowA[j] & 0xf; 1293 const GLint rowAr1 = rowA[k] & 0xf; 1294 const GLint rowBr0 = rowB[j] & 0xf; 1295 const GLint rowBr1 = rowB[k] & 0xf; 1296 const GLint rowCr0 = rowC[j] & 0xf; 1297 const GLint rowCr1 = rowC[k] & 0xf; 1298 const GLint rowDr0 = rowD[j] & 0xf; 1299 const GLint rowDr1 = rowD[k] & 0xf; 1300 const GLint rowAg0 = (rowA[j] >> 4) & 0xf; 1301 const GLint rowAg1 = (rowA[k] >> 4) & 0xf; 1302 const GLint rowBg0 = (rowB[j] >> 4) & 0xf; 1303 const GLint rowBg1 = (rowB[k] >> 4) & 0xf; 1304 const GLint rowCg0 = (rowC[j] >> 4) & 0xf; 1305 const GLint rowCg1 = (rowC[k] >> 4) & 0xf; 1306 const GLint rowDg0 = (rowD[j] >> 4) & 0xf; 1307 const GLint rowDg1 = (rowD[k] >> 4) & 0xf; 1308 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, 1309 rowCr0, rowCr1, rowDr0, rowDr1); 1310 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, 1311 rowCg0, rowCg1, rowDg0, rowDg1); 1312 dst[i] = (g << 4) | r; 1313 } 1314 } 1315 else if ((datatype == GL_UNSIGNED_INT_2_10_10_10_REV) && (comps == 4)) { 1316 DECLARE_ROW_POINTERS0(GLuint); 1317 1318 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1319 i++, j += colStride, k += colStride) { 1320 const GLint rowAr0 = rowA[j] & 0x3ff; 1321 const GLint rowAr1 = rowA[k] & 0x3ff; 1322 const GLint rowBr0 = rowB[j] & 0x3ff; 1323 const GLint rowBr1 = rowB[k] & 0x3ff; 1324 const GLint rowCr0 = rowC[j] & 0x3ff; 1325 const GLint rowCr1 = rowC[k] & 0x3ff; 1326 const GLint rowDr0 = rowD[j] & 0x3ff; 1327 const GLint rowDr1 = rowD[k] & 0x3ff; 1328 const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff; 1329 const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff; 1330 const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff; 1331 const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff; 1332 const GLint rowCg0 = (rowC[j] >> 10) & 0x3ff; 1333 const GLint rowCg1 = (rowC[k] >> 10) & 0x3ff; 1334 const GLint rowDg0 = (rowD[j] >> 10) & 0x3ff; 1335 const GLint rowDg1 = (rowD[k] >> 10) & 0x3ff; 1336 const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff; 1337 const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff; 1338 const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff; 1339 const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff; 1340 const GLint rowCb0 = (rowC[j] >> 20) & 0x3ff; 1341 const GLint rowCb1 = (rowC[k] >> 20) & 0x3ff; 1342 const GLint rowDb0 = (rowD[j] >> 20) & 0x3ff; 1343 const GLint rowDb1 = (rowD[k] >> 20) & 0x3ff; 1344 const GLint rowAa0 = (rowA[j] >> 30) & 0x3; 1345 const GLint rowAa1 = (rowA[k] >> 30) & 0x3; 1346 const GLint rowBa0 = (rowB[j] >> 30) & 0x3; 1347 const GLint rowBa1 = (rowB[k] >> 30) & 0x3; 1348 const GLint rowCa0 = (rowC[j] >> 30) & 0x3; 1349 const GLint rowCa1 = (rowC[k] >> 30) & 0x3; 1350 const GLint rowDa0 = (rowD[j] >> 30) & 0x3; 1351 const GLint rowDa1 = (rowD[k] >> 30) & 0x3; 1352 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, 1353 rowCr0, rowCr1, rowDr0, rowDr1); 1354 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, 1355 rowCg0, rowCg1, rowDg0, rowDg1); 1356 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, 1357 rowCb0, rowCb1, rowDb0, rowDb1); 1358 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1, 1359 rowCa0, rowCa1, rowDa0, rowDa1); 1360 1361 dst[i] = (a << 30) | (b << 20) | (g << 10) | r; 1362 } 1363 } 1364 1365 else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) { 1366 DECLARE_ROW_POINTERS0(GLuint); 1367 1368 GLfloat res[3]; 1369 GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3]; 1370 GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3]; 1371 1372 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1373 i++, j += colStride, k += colStride) { 1374 rgb9e5_to_float3(rowA[j], rowAj); 1375 rgb9e5_to_float3(rowB[j], rowBj); 1376 rgb9e5_to_float3(rowC[j], rowCj); 1377 rgb9e5_to_float3(rowD[j], rowDj); 1378 rgb9e5_to_float3(rowA[k], rowAk); 1379 rgb9e5_to_float3(rowB[k], rowBk); 1380 rgb9e5_to_float3(rowC[k], rowCk); 1381 rgb9e5_to_float3(rowD[k], rowDk); 1382 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] + 1383 rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F; 1384 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] + 1385 rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F; 1386 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] + 1387 rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F; 1388 dst[i] = float3_to_rgb9e5(res); 1389 } 1390 } 1391 1392 else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) { 1393 DECLARE_ROW_POINTERS0(GLuint); 1394 1395 GLfloat res[3]; 1396 GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3]; 1397 GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3]; 1398 1399 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1400 i++, j += colStride, k += colStride) { 1401 r11g11b10f_to_float3(rowA[j], rowAj); 1402 r11g11b10f_to_float3(rowB[j], rowBj); 1403 r11g11b10f_to_float3(rowC[j], rowCj); 1404 r11g11b10f_to_float3(rowD[j], rowDj); 1405 r11g11b10f_to_float3(rowA[k], rowAk); 1406 r11g11b10f_to_float3(rowB[k], rowBk); 1407 r11g11b10f_to_float3(rowC[k], rowCk); 1408 r11g11b10f_to_float3(rowD[k], rowDk); 1409 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] + 1410 rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F; 1411 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] + 1412 rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F; 1413 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] + 1414 rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F; 1415 dst[i] = float3_to_r11g11b10f(res); 1416 } 1417 } 1418 1419 else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) { 1420 DECLARE_ROW_POINTERS(GLfloat, 2); 1421 1422 for (i = j = 0, k = k0; i < (GLuint) dstWidth; 1423 i++, j += colStride, k += colStride) { 1424 FILTER_F_3D(0); 1425 } 1426 } 1427 1428 else { 1429 unreachable("bad format in do_row()"); 1430 } 1431} 1432 1433 1434/* 1435 * These functions generate a 1/2-size mipmap image from a source image. 1436 * Texture borders are handled by copying or averaging the source image's 1437 * border texels, depending on the scale-down factor. 1438 */ 1439 1440static void 1441make_1d_mipmap(GLenum datatype, GLuint comps, GLint border, 1442 GLint srcWidth, const GLubyte *srcPtr, 1443 GLint dstWidth, GLubyte *dstPtr) 1444{ 1445 const GLint bpt = bytes_per_pixel(datatype, comps); 1446 const GLubyte *src; 1447 GLubyte *dst; 1448 1449 /* skip the border pixel, if any */ 1450 src = srcPtr + border * bpt; 1451 dst = dstPtr + border * bpt; 1452 1453 /* we just duplicate the input row, kind of hack, saves code */ 1454 do_row(datatype, comps, srcWidth - 2 * border, src, src, 1455 dstWidth - 2 * border, dst); 1456 1457 if (border) { 1458 /* copy left-most pixel from source */ 1459 assert(dstPtr); 1460 assert(srcPtr); 1461 memcpy(dstPtr, srcPtr, bpt); 1462 /* copy right-most pixel from source */ 1463 memcpy(dstPtr + (dstWidth - 1) * bpt, 1464 srcPtr + (srcWidth - 1) * bpt, 1465 bpt); 1466 } 1467} 1468 1469 1470static void 1471make_2d_mipmap(GLenum datatype, GLuint comps, GLint border, 1472 GLint srcWidth, GLint srcHeight, 1473 const GLubyte *srcPtr, GLint srcRowStride, 1474 GLint dstWidth, GLint dstHeight, 1475 GLubyte *dstPtr, GLint dstRowStride) 1476{ 1477 const GLint bpt = bytes_per_pixel(datatype, comps); 1478 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */ 1479 const GLint dstWidthNB = dstWidth - 2 * border; 1480 const GLint dstHeightNB = dstHeight - 2 * border; 1481 const GLubyte *srcA, *srcB; 1482 GLubyte *dst; 1483 GLint row, srcRowStep; 1484 1485 /* Compute src and dst pointers, skipping any border */ 1486 srcA = srcPtr + border * ((srcWidth + 1) * bpt); 1487 if (srcHeight > 1 && srcHeight > dstHeight) { 1488 /* sample from two source rows */ 1489 srcB = srcA + srcRowStride; 1490 srcRowStep = 2; 1491 } 1492 else { 1493 /* sample from one source row */ 1494 srcB = srcA; 1495 srcRowStep = 1; 1496 } 1497 1498 dst = dstPtr + border * ((dstWidth + 1) * bpt); 1499 1500 for (row = 0; row < dstHeightNB; row++) { 1501 do_row(datatype, comps, srcWidthNB, srcA, srcB, 1502 dstWidthNB, dst); 1503 srcA += srcRowStep * srcRowStride; 1504 srcB += srcRowStep * srcRowStride; 1505 dst += dstRowStride; 1506 } 1507 1508 /* This is ugly but probably won't be used much */ 1509 if (border > 0) { 1510 /* fill in dest border */ 1511 /* lower-left border pixel */ 1512 assert(dstPtr); 1513 assert(srcPtr); 1514 memcpy(dstPtr, srcPtr, bpt); 1515 /* lower-right border pixel */ 1516 memcpy(dstPtr + (dstWidth - 1) * bpt, 1517 srcPtr + (srcWidth - 1) * bpt, bpt); 1518 /* upper-left border pixel */ 1519 memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt, 1520 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt); 1521 /* upper-right border pixel */ 1522 memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt, 1523 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt); 1524 /* lower border */ 1525 do_row(datatype, comps, srcWidthNB, 1526 srcPtr + bpt, 1527 srcPtr + bpt, 1528 dstWidthNB, dstPtr + bpt); 1529 /* upper border */ 1530 do_row(datatype, comps, srcWidthNB, 1531 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt, 1532 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt, 1533 dstWidthNB, 1534 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt); 1535 /* left and right borders */ 1536 if (srcHeight == dstHeight) { 1537 /* copy border pixel from src to dst */ 1538 for (row = 1; row < srcHeight; row++) { 1539 memcpy(dstPtr + dstWidth * row * bpt, 1540 srcPtr + srcWidth * row * bpt, bpt); 1541 memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt, 1542 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt); 1543 } 1544 } 1545 else { 1546 /* average two src pixels each dest pixel */ 1547 for (row = 0; row < dstHeightNB; row += 2) { 1548 do_row(datatype, comps, 1, 1549 srcPtr + (srcWidth * (row * 2 + 1)) * bpt, 1550 srcPtr + (srcWidth * (row * 2 + 2)) * bpt, 1551 1, dstPtr + (dstWidth * row + 1) * bpt); 1552 do_row(datatype, comps, 1, 1553 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt, 1554 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt, 1555 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt); 1556 } 1557 } 1558 } 1559} 1560 1561 1562static void 1563make_3d_mipmap(GLenum datatype, GLuint comps, GLint border, 1564 GLint srcWidth, GLint srcHeight, GLint srcDepth, 1565 const GLubyte **srcPtr, GLint srcRowStride, 1566 GLint dstWidth, GLint dstHeight, GLint dstDepth, 1567 GLubyte **dstPtr, GLint dstRowStride) 1568{ 1569 const GLint bpt = bytes_per_pixel(datatype, comps); 1570 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */ 1571 const GLint srcDepthNB = srcDepth - 2 * border; 1572 const GLint dstWidthNB = dstWidth - 2 * border; 1573 const GLint dstHeightNB = dstHeight - 2 * border; 1574 const GLint dstDepthNB = dstDepth - 2 * border; 1575 GLint img, row; 1576 GLint bytesPerSrcImage, bytesPerDstImage; 1577 GLint srcImageOffset, srcRowOffset; 1578 1579 (void) srcDepthNB; /* silence warnings */ 1580 1581 bytesPerSrcImage = srcRowStride * srcHeight * bpt; 1582 bytesPerDstImage = dstRowStride * dstHeight * bpt; 1583 1584 /* Offset between adjacent src images to be averaged together */ 1585 srcImageOffset = (srcDepth == dstDepth) ? 0 : 1; 1586 1587 /* Offset between adjacent src rows to be averaged together */ 1588 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride; 1589 1590 /* 1591 * Need to average together up to 8 src pixels for each dest pixel. 1592 * Break that down into 3 operations: 1593 * 1. take two rows from source image and average them together. 1594 * 2. take two rows from next source image and average them together. 1595 * 3. take the two averaged rows and average them for the final dst row. 1596 */ 1597 1598 /* 1599 printf("mip3d %d x %d x %d -> %d x %d x %d\n", 1600 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth); 1601 */ 1602 1603 for (img = 0; img < dstDepthNB; img++) { 1604 /* first source image pointer, skipping border */ 1605 const GLubyte *imgSrcA = srcPtr[img * 2 + border] 1606 + srcRowStride * border + bpt * border; 1607 /* second source image pointer, skipping border */ 1608 const GLubyte *imgSrcB = srcPtr[img * 2 + srcImageOffset + border] 1609 + srcRowStride * border + bpt * border; 1610 1611 /* address of the dest image, skipping border */ 1612 GLubyte *imgDst = dstPtr[img + border] 1613 + dstRowStride * border + bpt * border; 1614 1615 /* setup the four source row pointers and the dest row pointer */ 1616 const GLubyte *srcImgARowA = imgSrcA; 1617 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset; 1618 const GLubyte *srcImgBRowA = imgSrcB; 1619 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset; 1620 GLubyte *dstImgRow = imgDst; 1621 1622 for (row = 0; row < dstHeightNB; row++) { 1623 do_row_3D(datatype, comps, srcWidthNB, 1624 srcImgARowA, srcImgARowB, 1625 srcImgBRowA, srcImgBRowB, 1626 dstWidthNB, dstImgRow); 1627 1628 /* advance to next rows */ 1629 srcImgARowA += srcRowStride + srcRowOffset; 1630 srcImgARowB += srcRowStride + srcRowOffset; 1631 srcImgBRowA += srcRowStride + srcRowOffset; 1632 srcImgBRowB += srcRowStride + srcRowOffset; 1633 dstImgRow += dstRowStride; 1634 } 1635 } 1636 1637 1638 /* Luckily we can leverage the make_2d_mipmap() function here! */ 1639 if (border > 0) { 1640 /* do front border image */ 1641 make_2d_mipmap(datatype, comps, 1, 1642 srcWidth, srcHeight, srcPtr[0], srcRowStride, 1643 dstWidth, dstHeight, dstPtr[0], dstRowStride); 1644 /* do back border image */ 1645 make_2d_mipmap(datatype, comps, 1, 1646 srcWidth, srcHeight, srcPtr[srcDepth - 1], srcRowStride, 1647 dstWidth, dstHeight, dstPtr[dstDepth - 1], dstRowStride); 1648 1649 /* do four remaining border edges that span the image slices */ 1650 if (srcDepth == dstDepth) { 1651 /* just copy border pixels from src to dst */ 1652 for (img = 0; img < dstDepthNB; img++) { 1653 const GLubyte *src; 1654 GLubyte *dst; 1655 1656 /* do border along [img][row=0][col=0] */ 1657 src = srcPtr[img * 2]; 1658 dst = dstPtr[img]; 1659 memcpy(dst, src, bpt); 1660 1661 /* do border along [img][row=dstHeight-1][col=0] */ 1662 src = srcPtr[img * 2] + (srcHeight - 1) * srcRowStride; 1663 dst = dstPtr[img] + (dstHeight - 1) * dstRowStride; 1664 memcpy(dst, src, bpt); 1665 1666 /* do border along [img][row=0][col=dstWidth-1] */ 1667 src = srcPtr[img * 2] + (srcWidth - 1) * bpt; 1668 dst = dstPtr[img] + (dstWidth - 1) * bpt; 1669 memcpy(dst, src, bpt); 1670 1671 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */ 1672 src = srcPtr[img * 2] + (bytesPerSrcImage - bpt); 1673 dst = dstPtr[img] + (bytesPerDstImage - bpt); 1674 memcpy(dst, src, bpt); 1675 } 1676 } 1677 else { 1678 /* average border pixels from adjacent src image pairs */ 1679 assert(srcDepthNB == 2 * dstDepthNB); 1680 for (img = 0; img < dstDepthNB; img++) { 1681 const GLubyte *srcA, *srcB; 1682 GLubyte *dst; 1683 1684 /* do border along [img][row=0][col=0] */ 1685 srcA = srcPtr[img * 2 + 0]; 1686 srcB = srcPtr[img * 2 + srcImageOffset]; 1687 dst = dstPtr[img]; 1688 do_row(datatype, comps, 1, srcA, srcB, 1, dst); 1689 1690 /* do border along [img][row=dstHeight-1][col=0] */ 1691 srcA = srcPtr[img * 2 + 0] 1692 + (srcHeight - 1) * srcRowStride; 1693 srcB = srcPtr[img * 2 + srcImageOffset] 1694 + (srcHeight - 1) * srcRowStride; 1695 dst = dstPtr[img] + (dstHeight - 1) * dstRowStride; 1696 do_row(datatype, comps, 1, srcA, srcB, 1, dst); 1697 1698 /* do border along [img][row=0][col=dstWidth-1] */ 1699 srcA = srcPtr[img * 2 + 0] + (srcWidth - 1) * bpt; 1700 srcB = srcPtr[img * 2 + srcImageOffset] + (srcWidth - 1) * bpt; 1701 dst = dstPtr[img] + (dstWidth - 1) * bpt; 1702 do_row(datatype, comps, 1, srcA, srcB, 1, dst); 1703 1704 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */ 1705 srcA = srcPtr[img * 2 + 0] + (bytesPerSrcImage - bpt); 1706 srcB = srcPtr[img * 2 + srcImageOffset] + (bytesPerSrcImage - bpt); 1707 dst = dstPtr[img] + (bytesPerDstImage - bpt); 1708 do_row(datatype, comps, 1, srcA, srcB, 1, dst); 1709 } 1710 } 1711 } 1712} 1713 1714 1715/** 1716 * Down-sample a texture image to produce the next lower mipmap level. 1717 * \param comps components per texel (1, 2, 3 or 4) 1718 * \param srcData array[slice] of pointers to source image slices 1719 * \param dstData array[slice] of pointers to dest image slices 1720 * \param srcRowStride stride between source rows, in bytes 1721 * \param dstRowStride stride between destination rows, in bytes 1722 */ 1723void 1724_mesa_generate_mipmap_level(GLenum target, 1725 GLenum datatype, GLuint comps, 1726 GLint border, 1727 GLint srcWidth, GLint srcHeight, GLint srcDepth, 1728 const GLubyte **srcData, 1729 GLint srcRowStride, 1730 GLint dstWidth, GLint dstHeight, GLint dstDepth, 1731 GLubyte **dstData, 1732 GLint dstRowStride) 1733{ 1734 int i; 1735 1736 switch (target) { 1737 case GL_TEXTURE_1D: 1738 make_1d_mipmap(datatype, comps, border, 1739 srcWidth, srcData[0], 1740 dstWidth, dstData[0]); 1741 break; 1742 case GL_TEXTURE_2D: 1743 case GL_TEXTURE_CUBE_MAP_POSITIVE_X: 1744 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X: 1745 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y: 1746 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y: 1747 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z: 1748 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z: 1749 make_2d_mipmap(datatype, comps, border, 1750 srcWidth, srcHeight, srcData[0], srcRowStride, 1751 dstWidth, dstHeight, dstData[0], dstRowStride); 1752 break; 1753 case GL_TEXTURE_3D: 1754 make_3d_mipmap(datatype, comps, border, 1755 srcWidth, srcHeight, srcDepth, 1756 srcData, srcRowStride, 1757 dstWidth, dstHeight, dstDepth, 1758 dstData, dstRowStride); 1759 break; 1760 case GL_TEXTURE_1D_ARRAY_EXT: 1761 assert(srcHeight == 1); 1762 assert(dstHeight == 1); 1763 for (i = 0; i < dstDepth; i++) { 1764 make_1d_mipmap(datatype, comps, border, 1765 srcWidth, srcData[i], 1766 dstWidth, dstData[i]); 1767 } 1768 break; 1769 case GL_TEXTURE_2D_ARRAY_EXT: 1770 case GL_TEXTURE_CUBE_MAP_ARRAY: 1771 for (i = 0; i < dstDepth; i++) { 1772 make_2d_mipmap(datatype, comps, border, 1773 srcWidth, srcHeight, srcData[i], srcRowStride, 1774 dstWidth, dstHeight, dstData[i], dstRowStride); 1775 } 1776 break; 1777 case GL_TEXTURE_RECTANGLE_NV: 1778 case GL_TEXTURE_EXTERNAL_OES: 1779 /* no mipmaps, do nothing */ 1780 break; 1781 default: 1782 unreachable("bad tex target in _mesa_generate_mipmaps"); 1783 } 1784} 1785 1786 1787/** 1788 * compute next (level+1) image size 1789 * \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size) 1790 */ 1791GLboolean 1792_mesa_next_mipmap_level_size(GLenum target, GLint border, 1793 GLint srcWidth, GLint srcHeight, GLint srcDepth, 1794 GLint *dstWidth, GLint *dstHeight, GLint *dstDepth) 1795{ 1796 if (srcWidth - 2 * border > 1) { 1797 *dstWidth = (srcWidth - 2 * border) / 2 + 2 * border; 1798 } 1799 else { 1800 *dstWidth = srcWidth; /* can't go smaller */ 1801 } 1802 1803 if ((srcHeight - 2 * border > 1) && 1804 target != GL_TEXTURE_1D_ARRAY_EXT && 1805 target != GL_PROXY_TEXTURE_1D_ARRAY_EXT) { 1806 *dstHeight = (srcHeight - 2 * border) / 2 + 2 * border; 1807 } 1808 else { 1809 *dstHeight = srcHeight; /* can't go smaller */ 1810 } 1811 1812 if ((srcDepth - 2 * border > 1) && 1813 target != GL_TEXTURE_2D_ARRAY_EXT && 1814 target != GL_PROXY_TEXTURE_2D_ARRAY_EXT && 1815 target != GL_TEXTURE_CUBE_MAP_ARRAY && 1816 target != GL_PROXY_TEXTURE_CUBE_MAP_ARRAY) { 1817 *dstDepth = (srcDepth - 2 * border) / 2 + 2 * border; 1818 } 1819 else { 1820 *dstDepth = srcDepth; /* can't go smaller */ 1821 } 1822 1823 if (*dstWidth == srcWidth && 1824 *dstHeight == srcHeight && 1825 *dstDepth == srcDepth) { 1826 return GL_FALSE; 1827 } 1828 else { 1829 return GL_TRUE; 1830 } 1831} 1832 1833 1834/** 1835 * Helper function for mipmap generation. 1836 * Make sure the specified destination mipmap level is the right size/format 1837 * for mipmap generation. If not, (re) allocate it. 1838 * \return GL_TRUE if successful, GL_FALSE if mipmap generation should stop 1839 */ 1840static GLboolean 1841prepare_mipmap_level(struct gl_context *ctx, 1842 struct gl_texture_object *texObj, GLuint level, 1843 GLsizei width, GLsizei height, GLsizei depth, 1844 GLsizei border, GLenum intFormat, mesa_format format) 1845{ 1846 const GLuint numFaces = _mesa_num_tex_faces(texObj->Target); 1847 GLuint face; 1848 1849 if (texObj->Immutable) { 1850 /* The texture was created with glTexStorage() so the number/size of 1851 * mipmap levels is fixed and the storage for all images is already 1852 * allocated. 1853 */ 1854 if (!texObj->Image[0][level]) { 1855 /* No more levels to create - we're done */ 1856 return GL_FALSE; 1857 } 1858 else { 1859 /* Nothing to do - the texture memory must have already been 1860 * allocated to the right size so we're all set. 1861 */ 1862 return GL_TRUE; 1863 } 1864 } 1865 1866 for (face = 0; face < numFaces; face++) { 1867 struct gl_texture_image *dstImage; 1868 const GLenum target = _mesa_cube_face_target(texObj->Target, face); 1869 1870 dstImage = _mesa_get_tex_image(ctx, texObj, target, level); 1871 if (!dstImage) { 1872 /* out of memory */ 1873 return GL_FALSE; 1874 } 1875 1876 if (dstImage->Width != width || 1877 dstImage->Height != height || 1878 dstImage->Depth != depth || 1879 dstImage->Border != border || 1880 dstImage->InternalFormat != intFormat || 1881 dstImage->TexFormat != format) { 1882 /* need to (re)allocate image */ 1883 ctx->Driver.FreeTextureImageBuffer(ctx, dstImage); 1884 1885 _mesa_init_teximage_fields(ctx, dstImage, 1886 width, height, depth, 1887 border, intFormat, format); 1888 1889 ctx->Driver.AllocTextureImageBuffer(ctx, dstImage); 1890 1891 /* in case the mipmap level is part of an FBO: */ 1892 _mesa_update_fbo_texture(ctx, texObj, face, level); 1893 1894 ctx->NewState |= _NEW_TEXTURE_OBJECT; 1895 } 1896 } 1897 1898 return GL_TRUE; 1899} 1900 1901 1902/** 1903 * Prepare all mipmap levels beyond 'baseLevel' for mipmap generation. 1904 * When finished, all the gl_texture_image structures for the smaller 1905 * mipmap levels will be consistent with the base level (in terms of 1906 * dimensions, format, etc). 1907 */ 1908void 1909_mesa_prepare_mipmap_levels(struct gl_context *ctx, 1910 struct gl_texture_object *texObj, 1911 unsigned baseLevel, unsigned maxLevel) 1912{ 1913 const struct gl_texture_image *baseImage = 1914 _mesa_select_tex_image(texObj, texObj->Target, baseLevel); 1915 const GLint border = 0; 1916 GLint width = baseImage->Width; 1917 GLint height = baseImage->Height; 1918 GLint depth = baseImage->Depth; 1919 const GLenum intFormat = baseImage->InternalFormat; 1920 const mesa_format texFormat = baseImage->TexFormat; 1921 GLint newWidth, newHeight, newDepth; 1922 1923 /* Prepare baseLevel + 1, baseLevel + 2, ... */ 1924 for (unsigned level = baseLevel + 1; level <= maxLevel; level++) { 1925 if (!_mesa_next_mipmap_level_size(texObj->Target, border, 1926 width, height, depth, 1927 &newWidth, &newHeight, &newDepth)) { 1928 /* all done */ 1929 break; 1930 } 1931 1932 if (!prepare_mipmap_level(ctx, texObj, level, 1933 newWidth, newHeight, newDepth, 1934 border, intFormat, texFormat)) { 1935 break; 1936 } 1937 1938 width = newWidth; 1939 height = newHeight; 1940 depth = newDepth; 1941 } 1942} 1943 1944 1945static void 1946generate_mipmap_uncompressed(struct gl_context *ctx, GLenum target, 1947 struct gl_texture_object *texObj, 1948 const struct gl_texture_image *srcImage, 1949 GLuint maxLevel) 1950{ 1951 GLuint level; 1952 GLenum datatype; 1953 GLuint comps; 1954 1955 _mesa_uncompressed_format_to_type_and_comps(srcImage->TexFormat, &datatype, &comps); 1956 1957 for (level = texObj->BaseLevel; level < maxLevel; level++) { 1958 /* generate image[level+1] from image[level] */ 1959 struct gl_texture_image *srcImage, *dstImage; 1960 GLint srcRowStride, dstRowStride; 1961 GLint srcWidth, srcHeight, srcDepth; 1962 GLint dstWidth, dstHeight, dstDepth; 1963 GLint border; 1964 GLint slice; 1965 GLubyte **srcMaps, **dstMaps; 1966 GLboolean success = GL_TRUE; 1967 1968 /* get src image parameters */ 1969 srcImage = _mesa_select_tex_image(texObj, target, level); 1970 assert(srcImage); 1971 srcWidth = srcImage->Width; 1972 srcHeight = srcImage->Height; 1973 srcDepth = srcImage->Depth; 1974 border = srcImage->Border; 1975 1976 /* get dest gl_texture_image */ 1977 dstImage = _mesa_select_tex_image(texObj, target, level + 1); 1978 if (!dstImage) { 1979 break; 1980 } 1981 dstWidth = dstImage->Width; 1982 dstHeight = dstImage->Height; 1983 dstDepth = dstImage->Depth; 1984 1985 if (target == GL_TEXTURE_1D_ARRAY) { 1986 srcDepth = srcHeight; 1987 dstDepth = dstHeight; 1988 srcHeight = 1; 1989 dstHeight = 1; 1990 } 1991 1992 /* Map src texture image slices */ 1993 srcMaps = calloc(srcDepth, sizeof(GLubyte *)); 1994 if (srcMaps) { 1995 for (slice = 0; slice < srcDepth; slice++) { 1996 ctx->Driver.MapTextureImage(ctx, srcImage, slice, 1997 0, 0, srcWidth, srcHeight, 1998 GL_MAP_READ_BIT, 1999 &srcMaps[slice], &srcRowStride); 2000 if (!srcMaps[slice]) { 2001 success = GL_FALSE; 2002 break; 2003 } 2004 } 2005 } 2006 else { 2007 success = GL_FALSE; 2008 } 2009 2010 /* Map dst texture image slices */ 2011 dstMaps = calloc(dstDepth, sizeof(GLubyte *)); 2012 if (dstMaps) { 2013 for (slice = 0; slice < dstDepth; slice++) { 2014 ctx->Driver.MapTextureImage(ctx, dstImage, slice, 2015 0, 0, dstWidth, dstHeight, 2016 GL_MAP_WRITE_BIT, 2017 &dstMaps[slice], &dstRowStride); 2018 if (!dstMaps[slice]) { 2019 success = GL_FALSE; 2020 break; 2021 } 2022 } 2023 } 2024 else { 2025 success = GL_FALSE; 2026 } 2027 2028 if (success) { 2029 /* generate one mipmap level (for 1D/2D/3D/array/etc texture) */ 2030 _mesa_generate_mipmap_level(target, datatype, comps, border, 2031 srcWidth, srcHeight, srcDepth, 2032 (const GLubyte **) srcMaps, srcRowStride, 2033 dstWidth, dstHeight, dstDepth, 2034 dstMaps, dstRowStride); 2035 } 2036 2037 /* Unmap src image slices */ 2038 if (srcMaps) { 2039 for (slice = 0; slice < srcDepth; slice++) { 2040 if (srcMaps[slice]) { 2041 ctx->Driver.UnmapTextureImage(ctx, srcImage, slice); 2042 } 2043 } 2044 free(srcMaps); 2045 } 2046 2047 /* Unmap dst image slices */ 2048 if (dstMaps) { 2049 for (slice = 0; slice < dstDepth; slice++) { 2050 if (dstMaps[slice]) { 2051 ctx->Driver.UnmapTextureImage(ctx, dstImage, slice); 2052 } 2053 } 2054 free(dstMaps); 2055 } 2056 2057 if (!success) { 2058 _mesa_error(ctx, GL_OUT_OF_MEMORY, "mipmap generation"); 2059 break; 2060 } 2061 } /* loop over mipmap levels */ 2062} 2063 2064 2065static void 2066generate_mipmap_compressed(struct gl_context *ctx, GLenum target, 2067 struct gl_texture_object *texObj, 2068 struct gl_texture_image *srcImage, 2069 GLuint maxLevel) 2070{ 2071 GLuint level; 2072 mesa_format temp_format; 2073 GLint components; 2074 GLuint temp_src_row_stride, temp_src_img_stride; /* in bytes */ 2075 GLubyte *temp_src = NULL, *temp_dst = NULL; 2076 GLenum temp_datatype; 2077 GLenum temp_base_format; 2078 GLubyte **temp_src_slices = NULL, **temp_dst_slices = NULL; 2079 2080 /* only two types of compressed textures at this time */ 2081 assert(texObj->Target == GL_TEXTURE_2D || 2082 texObj->Target == GL_TEXTURE_2D_ARRAY || 2083 texObj->Target == GL_TEXTURE_CUBE_MAP || 2084 texObj->Target == GL_TEXTURE_CUBE_MAP_ARRAY); 2085 2086 /* 2087 * Choose a format for the temporary, uncompressed base image. 2088 * Then, get number of components, choose temporary image datatype, 2089 * and get base format. 2090 */ 2091 temp_format = _mesa_get_uncompressed_format(srcImage->TexFormat); 2092 2093 components = _mesa_format_num_components(temp_format); 2094 2095 switch (_mesa_get_format_datatype(srcImage->TexFormat)) { 2096 case GL_FLOAT: 2097 temp_datatype = GL_FLOAT; 2098 break; 2099 case GL_SIGNED_NORMALIZED: 2100 /* Revisit this if we get compressed formats with >8 bits per component */ 2101 temp_datatype = GL_BYTE; 2102 break; 2103 default: 2104 temp_datatype = GL_UNSIGNED_BYTE; 2105 } 2106 2107 temp_base_format = _mesa_get_format_base_format(temp_format); 2108 2109 2110 /* allocate storage for the temporary, uncompressed image */ 2111 temp_src_row_stride = _mesa_format_row_stride(temp_format, srcImage->Width); 2112 temp_src_img_stride = _mesa_format_image_size(temp_format, srcImage->Width, 2113 srcImage->Height, 1); 2114 temp_src = malloc(temp_src_img_stride * srcImage->Depth); 2115 2116 /* Allocate storage for arrays of slice pointers */ 2117 temp_src_slices = malloc(srcImage->Depth * sizeof(GLubyte *)); 2118 temp_dst_slices = malloc(srcImage->Depth * sizeof(GLubyte *)); 2119 2120 if (!temp_src || !temp_src_slices || !temp_dst_slices) { 2121 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps"); 2122 goto end; 2123 } 2124 2125 /* decompress base image to the temporary src buffer */ 2126 { 2127 /* save pixel packing mode */ 2128 struct gl_pixelstore_attrib save = ctx->Pack; 2129 /* use default/tight packing parameters */ 2130 ctx->Pack = ctx->DefaultPacking; 2131 2132 /* Get the uncompressed image */ 2133 assert(srcImage->Level == texObj->BaseLevel); 2134 ctx->Driver.GetTexSubImage(ctx, 2135 0, 0, 0, 2136 srcImage->Width, srcImage->Height, 2137 srcImage->Depth, 2138 temp_base_format, temp_datatype, 2139 temp_src, srcImage); 2140 /* restore packing mode */ 2141 ctx->Pack = save; 2142 } 2143 2144 for (level = texObj->BaseLevel; level < maxLevel; level++) { 2145 /* generate image[level+1] from image[level] */ 2146 const struct gl_texture_image *srcImage; 2147 struct gl_texture_image *dstImage; 2148 GLint srcWidth, srcHeight, srcDepth; 2149 GLint dstWidth, dstHeight, dstDepth; 2150 GLint border; 2151 GLuint temp_dst_row_stride, temp_dst_img_stride; /* in bytes */ 2152 GLint i; 2153 2154 /* get src image parameters */ 2155 srcImage = _mesa_select_tex_image(texObj, target, level); 2156 assert(srcImage); 2157 srcWidth = srcImage->Width; 2158 srcHeight = srcImage->Height; 2159 srcDepth = srcImage->Depth; 2160 border = srcImage->Border; 2161 2162 /* get dest gl_texture_image */ 2163 dstImage = _mesa_select_tex_image(texObj, target, level + 1); 2164 if (!dstImage) { 2165 break; 2166 } 2167 dstWidth = dstImage->Width; 2168 dstHeight = dstImage->Height; 2169 dstDepth = dstImage->Depth; 2170 2171 /* Compute dst image strides and alloc memory on first iteration */ 2172 temp_dst_row_stride = _mesa_format_row_stride(temp_format, dstWidth); 2173 temp_dst_img_stride = _mesa_format_image_size(temp_format, dstWidth, 2174 dstHeight, 1); 2175 if (!temp_dst) { 2176 temp_dst = malloc(temp_dst_img_stride * dstDepth); 2177 if (!temp_dst) { 2178 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps"); 2179 goto end; 2180 } 2181 } 2182 2183 /* for 2D arrays, setup array[depth] of slice pointers */ 2184 for (i = 0; i < srcDepth; i++) { 2185 temp_src_slices[i] = temp_src + temp_src_img_stride * i; 2186 } 2187 for (i = 0; i < dstDepth; i++) { 2188 temp_dst_slices[i] = temp_dst + temp_dst_img_stride * i; 2189 } 2190 2191 /* Rescale src image to dest image. 2192 * This will loop over the slices of a 2D array. 2193 */ 2194 _mesa_generate_mipmap_level(target, temp_datatype, components, border, 2195 srcWidth, srcHeight, srcDepth, 2196 (const GLubyte **) temp_src_slices, 2197 temp_src_row_stride, 2198 dstWidth, dstHeight, dstDepth, 2199 temp_dst_slices, temp_dst_row_stride); 2200 2201 /* The image space was allocated above so use glTexSubImage now */ 2202 ctx->Driver.TexSubImage(ctx, 2, dstImage, 2203 0, 0, 0, dstWidth, dstHeight, dstDepth, 2204 temp_base_format, temp_datatype, 2205 temp_dst, &ctx->DefaultPacking); 2206 2207 /* swap src and dest pointers */ 2208 { 2209 GLubyte *temp = temp_src; 2210 temp_src = temp_dst; 2211 temp_dst = temp; 2212 temp_src_row_stride = temp_dst_row_stride; 2213 temp_src_img_stride = temp_dst_img_stride; 2214 } 2215 } /* loop over mipmap levels */ 2216 2217end: 2218 free(temp_src); 2219 free(temp_dst); 2220 free(temp_src_slices); 2221 free(temp_dst_slices); 2222} 2223 2224/** 2225 * Automatic mipmap generation. 2226 * This is the fallback/default function for ctx->Driver.GenerateMipmap(). 2227 * Generate a complete set of mipmaps from texObj's BaseLevel image. 2228 * Stop at texObj's MaxLevel or when we get to the 1x1 texture. 2229 * For cube maps, target will be one of 2230 * GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP. 2231 */ 2232void 2233_mesa_generate_mipmap(struct gl_context *ctx, GLenum target, 2234 struct gl_texture_object *texObj) 2235{ 2236 struct gl_texture_image *srcImage; 2237 GLint maxLevel; 2238 2239 assert(texObj); 2240 srcImage = _mesa_select_tex_image(texObj, target, texObj->BaseLevel); 2241 assert(srcImage); 2242 2243 maxLevel = _mesa_max_texture_levels(ctx, texObj->Target) - 1; 2244 assert(maxLevel >= 0); /* bad target */ 2245 2246 maxLevel = MIN2(maxLevel, texObj->MaxLevel); 2247 2248 _mesa_prepare_mipmap_levels(ctx, texObj, texObj->BaseLevel, maxLevel); 2249 2250 if (_mesa_is_format_compressed(srcImage->TexFormat)) { 2251 generate_mipmap_compressed(ctx, target, texObj, srcImage, maxLevel); 2252 } else { 2253 generate_mipmap_uncompressed(ctx, target, texObj, srcImage, maxLevel); 2254 } 2255} 2256