1/************************************************************************** 2 * 3 * Copyright 2008 VMware, Inc. 4 * All Rights Reserved. 5 * 6 **************************************************************************/ 7 8 9/** 10 * Code to implement GL_OES_query_matrix. See the spec at: 11 * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt 12 */ 13 14 15#include <stdlib.h> 16#include "c99_math.h" 17#include "glheader.h" 18#include "querymatrix.h" 19#include "main/get.h" 20#include "util/macros.h" 21 22 23/** 24 * This is from the GL_OES_query_matrix extension specification: 25 * 26 * GLbitfield glQueryMatrixxOES( GLfixed mantissa[16], 27 * GLint exponent[16] ) 28 * mantissa[16] contains the contents of the current matrix in GLfixed 29 * format. exponent[16] contains the unbiased exponents applied to the 30 * matrix components, so that the internal representation of component i 31 * is close to mantissa[i] * 2^exponent[i]. The function returns a status 32 * word which is zero if all the components are valid. If 33 * status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf). 34 * The implementations are not required to keep track of overflows. In 35 * that case, the invalid bits are never set. 36 */ 37 38#define INT_TO_FIXED(x) ((GLfixed) ((x) << 16)) 39#define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0)) 40 41 42GLbitfield GLAPIENTRY 43_mesa_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]) 44{ 45 GLfloat matrix[16]; 46 GLint tmp; 47 GLenum currentMode = GL_FALSE; 48 GLenum desiredMatrix = GL_FALSE; 49 /* The bitfield returns 1 for each component that is invalid (i.e. 50 * NaN or Inf). In case of error, everything is invalid. 51 */ 52 GLbitfield rv; 53 unsigned i, bit; 54 55 /* This data structure defines the mapping between the current matrix 56 * mode and the desired matrix identifier. 57 */ 58 static const struct { 59 GLenum currentMode; 60 GLenum desiredMatrix; 61 } modes[] = { 62 {GL_MODELVIEW, GL_MODELVIEW_MATRIX}, 63 {GL_PROJECTION, GL_PROJECTION_MATRIX}, 64 {GL_TEXTURE, GL_TEXTURE_MATRIX}, 65 }; 66 67 /* Call Mesa to get the current matrix in floating-point form. First, 68 * we have to figure out what the current matrix mode is. 69 */ 70 _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp); 71 currentMode = (GLenum) tmp; 72 73 /* The mode is either GL_FALSE, if for some reason we failed to query 74 * the mode, or a given mode from the above table. Search for the 75 * returned mode to get the desired matrix; if we don't find it, 76 * we can return immediately, as _mesa_GetInteger() will have 77 * logged the necessary error already. 78 */ 79 for (i = 0; i < ARRAY_SIZE(modes); i++) { 80 if (modes[i].currentMode == currentMode) { 81 desiredMatrix = modes[i].desiredMatrix; 82 break; 83 } 84 } 85 if (desiredMatrix == GL_FALSE) { 86 /* Early error means all values are invalid. */ 87 return 0xffff; 88 } 89 90 /* Now pull the matrix itself. */ 91 _mesa_GetFloatv(desiredMatrix, matrix); 92 93 rv = 0; 94 for (i = 0, bit = 1; i < 16; i++, bit<<=1) { 95 float normalizedFraction; 96 int exp; 97 98 switch (fpclassify(matrix[i])) { 99 case FP_SUBNORMAL: 100 case FP_NORMAL: 101 case FP_ZERO: 102 /* A "subnormal" or denormalized number is too small to be 103 * represented in normal format; but despite that it's a 104 * valid floating point number. FP_ZERO and FP_NORMAL 105 * are both valid as well. We should be fine treating 106 * these three cases as legitimate floating-point numbers. 107 */ 108 normalizedFraction = (GLfloat)frexp(matrix[i], &exp); 109 mantissa[i] = FLOAT_TO_FIXED(normalizedFraction); 110 exponent[i] = (GLint) exp; 111 break; 112 113 case FP_NAN: 114 /* If the entry is not-a-number or an infinity, then the 115 * matrix component is invalid. The invalid flag for 116 * the component is already set; might as well set the 117 * other return values to known values. We'll set 118 * distinct values so that a savvy end user could determine 119 * whether the matrix component was a NaN or an infinity, 120 * but this is more useful for debugging than anything else 121 * since the standard doesn't specify any such magic 122 * values to return. 123 */ 124 mantissa[i] = INT_TO_FIXED(0); 125 exponent[i] = (GLint) 0; 126 rv |= bit; 127 break; 128 129 case FP_INFINITE: 130 /* Return +/- 1 based on whether it's a positive or 131 * negative infinity. 132 */ 133 if (matrix[i] > 0) { 134 mantissa[i] = INT_TO_FIXED(1); 135 } 136 else { 137 mantissa[i] = -INT_TO_FIXED(1); 138 } 139 exponent[i] = (GLint) 0; 140 rv |= bit; 141 break; 142 143 default: 144 /* We should never get here; but here's a catching case 145 * in case fpclassify() is returnings something unexpected. 146 */ 147 mantissa[i] = INT_TO_FIXED(2); 148 exponent[i] = (GLint) 0; 149 rv |= bit; 150 break; 151 } 152 153 } /* for each component */ 154 155 /* All done */ 156 return rv; 157} 158