1/* 2 * Mesa 3-D graphics library 3 * 4 * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included 14 * in all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26/** 27 * \file m_matrix.c 28 * Matrix operations. 29 * 30 * \note 31 * -# 4x4 transformation matrices are stored in memory in column major order. 32 * -# Points/vertices are to be thought of as column vectors. 33 * -# Transformation of a point p by a matrix M is: p' = M * p 34 */ 35 36 37#include "c99_math.h" 38#include "main/errors.h" 39#include "main/glheader.h" 40#include "main/imports.h" 41#include "main/macros.h" 42 43#include "m_matrix.h" 44 45 46/** 47 * \defgroup MatFlags MAT_FLAG_XXX-flags 48 * 49 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags 50 */ 51/*@{*/ 52#define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag. 53 * (Not actually used - the identity 54 * matrix is identified by the absence 55 * of all other flags.) 56 */ 57#define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */ 58#define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */ 59#define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */ 60#define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */ 61#define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */ 62#define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */ 63#define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */ 64#define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */ 65#define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */ 66#define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */ 67#define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */ 68 69/** angle preserving matrix flags mask */ 70#define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \ 71 MAT_FLAG_TRANSLATION | \ 72 MAT_FLAG_UNIFORM_SCALE) 73 74/** geometry related matrix flags mask */ 75#define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \ 76 MAT_FLAG_ROTATION | \ 77 MAT_FLAG_TRANSLATION | \ 78 MAT_FLAG_UNIFORM_SCALE | \ 79 MAT_FLAG_GENERAL_SCALE | \ 80 MAT_FLAG_GENERAL_3D | \ 81 MAT_FLAG_PERSPECTIVE | \ 82 MAT_FLAG_SINGULAR) 83 84/** length preserving matrix flags mask */ 85#define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \ 86 MAT_FLAG_TRANSLATION) 87 88 89/** 3D (non-perspective) matrix flags mask */ 90#define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \ 91 MAT_FLAG_TRANSLATION | \ 92 MAT_FLAG_UNIFORM_SCALE | \ 93 MAT_FLAG_GENERAL_SCALE | \ 94 MAT_FLAG_GENERAL_3D) 95 96/** dirty matrix flags mask */ 97#define MAT_DIRTY (MAT_DIRTY_TYPE | \ 98 MAT_DIRTY_FLAGS | \ 99 MAT_DIRTY_INVERSE) 100 101/*@}*/ 102 103 104/** 105 * Test geometry related matrix flags. 106 * 107 * \param mat a pointer to a GLmatrix structure. 108 * \param a flags mask. 109 * 110 * \returns non-zero if all geometry related matrix flags are contained within 111 * the mask, or zero otherwise. 112 */ 113#define TEST_MAT_FLAGS(mat, a) \ 114 ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0) 115 116 117 118/** 119 * Names of the corresponding GLmatrixtype values. 120 */ 121static const char *types[] = { 122 "MATRIX_GENERAL", 123 "MATRIX_IDENTITY", 124 "MATRIX_3D_NO_ROT", 125 "MATRIX_PERSPECTIVE", 126 "MATRIX_2D", 127 "MATRIX_2D_NO_ROT", 128 "MATRIX_3D" 129}; 130 131 132/** 133 * Identity matrix. 134 */ 135static const GLfloat Identity[16] = { 136 1.0, 0.0, 0.0, 0.0, 137 0.0, 1.0, 0.0, 0.0, 138 0.0, 0.0, 1.0, 0.0, 139 0.0, 0.0, 0.0, 1.0 140}; 141 142 143 144/**********************************************************************/ 145/** \name Matrix multiplication */ 146/*@{*/ 147 148#define A(row,col) a[(col<<2)+row] 149#define B(row,col) b[(col<<2)+row] 150#define P(row,col) product[(col<<2)+row] 151 152/** 153 * Perform a full 4x4 matrix multiplication. 154 * 155 * \param a matrix. 156 * \param b matrix. 157 * \param product will receive the product of \p a and \p b. 158 * 159 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed. 160 * 161 * \note KW: 4*16 = 64 multiplications 162 * 163 * \author This \c matmul was contributed by Thomas Malik 164 */ 165static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b ) 166{ 167 GLint i; 168 for (i = 0; i < 4; i++) { 169 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); 170 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); 171 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); 172 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); 173 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); 174 } 175} 176 177/** 178 * Multiply two matrices known to occupy only the top three rows, such 179 * as typical model matrices, and orthogonal matrices. 180 * 181 * \param a matrix. 182 * \param b matrix. 183 * \param product will receive the product of \p a and \p b. 184 */ 185static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b ) 186{ 187 GLint i; 188 for (i = 0; i < 3; i++) { 189 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); 190 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0); 191 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1); 192 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2); 193 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3; 194 } 195 P(3,0) = 0; 196 P(3,1) = 0; 197 P(3,2) = 0; 198 P(3,3) = 1; 199} 200 201#undef A 202#undef B 203#undef P 204 205/** 206 * Multiply a matrix by an array of floats with known properties. 207 * 208 * \param mat pointer to a GLmatrix structure containing the left multiplication 209 * matrix, and that will receive the product result. 210 * \param m right multiplication matrix array. 211 * \param flags flags of the matrix \p m. 212 * 213 * Joins both flags and marks the type and inverse as dirty. Calls matmul34() 214 * if both matrices are 3D, or matmul4() otherwise. 215 */ 216static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags ) 217{ 218 mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE); 219 220 if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) 221 matmul34( mat->m, mat->m, m ); 222 else 223 matmul4( mat->m, mat->m, m ); 224} 225 226/** 227 * Matrix multiplication. 228 * 229 * \param dest destination matrix. 230 * \param a left matrix. 231 * \param b right matrix. 232 * 233 * Joins both flags and marks the type and inverse as dirty. Calls matmul34() 234 * if both matrices are 3D, or matmul4() otherwise. 235 */ 236void 237_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b ) 238{ 239 dest->flags = (a->flags | 240 b->flags | 241 MAT_DIRTY_TYPE | 242 MAT_DIRTY_INVERSE); 243 244 if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D)) 245 matmul34( dest->m, a->m, b->m ); 246 else 247 matmul4( dest->m, a->m, b->m ); 248} 249 250/** 251 * Matrix multiplication. 252 * 253 * \param dest left and destination matrix. 254 * \param m right matrix array. 255 * 256 * Marks the matrix flags with general flag, and type and inverse dirty flags. 257 * Calls matmul4() for the multiplication. 258 */ 259void 260_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m ) 261{ 262 dest->flags |= (MAT_FLAG_GENERAL | 263 MAT_DIRTY_TYPE | 264 MAT_DIRTY_INVERSE | 265 MAT_DIRTY_FLAGS); 266 267 matmul4( dest->m, dest->m, m ); 268} 269 270/*@}*/ 271 272 273/**********************************************************************/ 274/** \name Matrix output */ 275/*@{*/ 276 277/** 278 * Print a matrix array. 279 * 280 * \param m matrix array. 281 * 282 * Called by _math_matrix_print() to print a matrix or its inverse. 283 */ 284static void print_matrix_floats( const GLfloat m[16] ) 285{ 286 int i; 287 for (i=0;i<4;i++) { 288 _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] ); 289 } 290} 291 292/** 293 * Dumps the contents of a GLmatrix structure. 294 * 295 * \param m pointer to the GLmatrix structure. 296 */ 297void 298_math_matrix_print( const GLmatrix *m ) 299{ 300 GLfloat prod[16]; 301 302 _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags); 303 print_matrix_floats(m->m); 304 _mesa_debug(NULL, "Inverse: \n"); 305 print_matrix_floats(m->inv); 306 matmul4(prod, m->m, m->inv); 307 _mesa_debug(NULL, "Mat * Inverse:\n"); 308 print_matrix_floats(prod); 309} 310 311/*@}*/ 312 313 314/** 315 * References an element of 4x4 matrix. 316 * 317 * \param m matrix array. 318 * \param c column of the desired element. 319 * \param r row of the desired element. 320 * 321 * \return value of the desired element. 322 * 323 * Calculate the linear storage index of the element and references it. 324 */ 325#define MAT(m,r,c) (m)[(c)*4+(r)] 326 327 328/**********************************************************************/ 329/** \name Matrix inversion */ 330/*@{*/ 331 332/** 333 * Swaps the values of two floating point variables. 334 * 335 * Used by invert_matrix_general() to swap the row pointers. 336 */ 337#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; } 338 339/** 340 * Compute inverse of 4x4 transformation matrix. 341 * 342 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 343 * stored in the GLmatrix::inv attribute. 344 * 345 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 346 * 347 * \author 348 * Code contributed by Jacques Leroy jle@star.be 349 * 350 * Calculates the inverse matrix by performing the gaussian matrix reduction 351 * with partial pivoting followed by back/substitution with the loops manually 352 * unrolled. 353 */ 354static GLboolean invert_matrix_general( GLmatrix *mat ) 355{ 356 const GLfloat *m = mat->m; 357 GLfloat *out = mat->inv; 358 GLfloat wtmp[4][8]; 359 GLfloat m0, m1, m2, m3, s; 360 GLfloat *r0, *r1, *r2, *r3; 361 362 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; 363 364 r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), 365 r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), 366 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, 367 368 r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), 369 r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), 370 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, 371 372 r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), 373 r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), 374 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, 375 376 r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), 377 r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), 378 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; 379 380 /* choose pivot - or die */ 381 if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2); 382 if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1); 383 if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0); 384 if (0.0F == r0[0]) return GL_FALSE; 385 386 /* eliminate first variable */ 387 m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; 388 s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; 389 s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; 390 s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; 391 s = r0[4]; 392 if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } 393 s = r0[5]; 394 if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } 395 s = r0[6]; 396 if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } 397 s = r0[7]; 398 if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } 399 400 /* choose pivot - or die */ 401 if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2); 402 if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1); 403 if (0.0F == r1[1]) return GL_FALSE; 404 405 /* eliminate second variable */ 406 m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; 407 r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; 408 r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; 409 s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } 410 s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } 411 s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } 412 s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } 413 414 /* choose pivot - or die */ 415 if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2); 416 if (0.0F == r2[2]) return GL_FALSE; 417 418 /* eliminate third variable */ 419 m3 = r3[2]/r2[2]; 420 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], 421 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], 422 r3[7] -= m3 * r2[7]; 423 424 /* last check */ 425 if (0.0F == r3[3]) return GL_FALSE; 426 427 s = 1.0F/r3[3]; /* now back substitute row 3 */ 428 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; 429 430 m2 = r2[3]; /* now back substitute row 2 */ 431 s = 1.0F/r2[2]; 432 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), 433 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); 434 m1 = r1[3]; 435 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, 436 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; 437 m0 = r0[3]; 438 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, 439 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; 440 441 m1 = r1[2]; /* now back substitute row 1 */ 442 s = 1.0F/r1[1]; 443 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), 444 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); 445 m0 = r0[2]; 446 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, 447 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; 448 449 m0 = r0[1]; /* now back substitute row 0 */ 450 s = 1.0F/r0[0]; 451 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), 452 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); 453 454 MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5], 455 MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7], 456 MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5], 457 MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7], 458 MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5], 459 MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7], 460 MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5], 461 MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7]; 462 463 return GL_TRUE; 464} 465#undef SWAP_ROWS 466 467/** 468 * Compute inverse of a general 3d transformation matrix. 469 * 470 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 471 * stored in the GLmatrix::inv attribute. 472 * 473 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 474 * 475 * \author Adapted from graphics gems II. 476 * 477 * Calculates the inverse of the upper left by first calculating its 478 * determinant and multiplying it to the symmetric adjust matrix of each 479 * element. Finally deals with the translation part by transforming the 480 * original translation vector using by the calculated submatrix inverse. 481 */ 482static GLboolean invert_matrix_3d_general( GLmatrix *mat ) 483{ 484 const GLfloat *in = mat->m; 485 GLfloat *out = mat->inv; 486 GLfloat pos, neg, t; 487 GLfloat det; 488 489 /* Calculate the determinant of upper left 3x3 submatrix and 490 * determine if the matrix is singular. 491 */ 492 pos = neg = 0.0; 493 t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2); 494 if (t >= 0.0F) pos += t; else neg += t; 495 496 t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2); 497 if (t >= 0.0F) pos += t; else neg += t; 498 499 t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2); 500 if (t >= 0.0F) pos += t; else neg += t; 501 502 t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2); 503 if (t >= 0.0F) pos += t; else neg += t; 504 505 t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2); 506 if (t >= 0.0F) pos += t; else neg += t; 507 508 t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2); 509 if (t >= 0.0F) pos += t; else neg += t; 510 511 det = pos + neg; 512 513 if (fabsf(det) < 1e-25F) 514 return GL_FALSE; 515 516 det = 1.0F / det; 517 MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det); 518 MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det); 519 MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det); 520 MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det); 521 MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det); 522 MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det); 523 MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det); 524 MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det); 525 MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det); 526 527 /* Do the translation part */ 528 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + 529 MAT(in,1,3) * MAT(out,0,1) + 530 MAT(in,2,3) * MAT(out,0,2) ); 531 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + 532 MAT(in,1,3) * MAT(out,1,1) + 533 MAT(in,2,3) * MAT(out,1,2) ); 534 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + 535 MAT(in,1,3) * MAT(out,2,1) + 536 MAT(in,2,3) * MAT(out,2,2) ); 537 538 return GL_TRUE; 539} 540 541/** 542 * Compute inverse of a 3d transformation matrix. 543 * 544 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 545 * stored in the GLmatrix::inv attribute. 546 * 547 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 548 * 549 * If the matrix is not an angle preserving matrix then calls 550 * invert_matrix_3d_general for the actual calculation. Otherwise calculates 551 * the inverse matrix analyzing and inverting each of the scaling, rotation and 552 * translation parts. 553 */ 554static GLboolean invert_matrix_3d( GLmatrix *mat ) 555{ 556 const GLfloat *in = mat->m; 557 GLfloat *out = mat->inv; 558 559 if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) { 560 return invert_matrix_3d_general( mat ); 561 } 562 563 if (mat->flags & MAT_FLAG_UNIFORM_SCALE) { 564 GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) + 565 MAT(in,0,1) * MAT(in,0,1) + 566 MAT(in,0,2) * MAT(in,0,2)); 567 568 if (scale == 0.0F) 569 return GL_FALSE; 570 571 scale = 1.0F / scale; 572 573 /* Transpose and scale the 3 by 3 upper-left submatrix. */ 574 MAT(out,0,0) = scale * MAT(in,0,0); 575 MAT(out,1,0) = scale * MAT(in,0,1); 576 MAT(out,2,0) = scale * MAT(in,0,2); 577 MAT(out,0,1) = scale * MAT(in,1,0); 578 MAT(out,1,1) = scale * MAT(in,1,1); 579 MAT(out,2,1) = scale * MAT(in,1,2); 580 MAT(out,0,2) = scale * MAT(in,2,0); 581 MAT(out,1,2) = scale * MAT(in,2,1); 582 MAT(out,2,2) = scale * MAT(in,2,2); 583 } 584 else if (mat->flags & MAT_FLAG_ROTATION) { 585 /* Transpose the 3 by 3 upper-left submatrix. */ 586 MAT(out,0,0) = MAT(in,0,0); 587 MAT(out,1,0) = MAT(in,0,1); 588 MAT(out,2,0) = MAT(in,0,2); 589 MAT(out,0,1) = MAT(in,1,0); 590 MAT(out,1,1) = MAT(in,1,1); 591 MAT(out,2,1) = MAT(in,1,2); 592 MAT(out,0,2) = MAT(in,2,0); 593 MAT(out,1,2) = MAT(in,2,1); 594 MAT(out,2,2) = MAT(in,2,2); 595 } 596 else { 597 /* pure translation */ 598 memcpy( out, Identity, sizeof(Identity) ); 599 MAT(out,0,3) = - MAT(in,0,3); 600 MAT(out,1,3) = - MAT(in,1,3); 601 MAT(out,2,3) = - MAT(in,2,3); 602 return GL_TRUE; 603 } 604 605 if (mat->flags & MAT_FLAG_TRANSLATION) { 606 /* Do the translation part */ 607 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + 608 MAT(in,1,3) * MAT(out,0,1) + 609 MAT(in,2,3) * MAT(out,0,2) ); 610 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + 611 MAT(in,1,3) * MAT(out,1,1) + 612 MAT(in,2,3) * MAT(out,1,2) ); 613 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + 614 MAT(in,1,3) * MAT(out,2,1) + 615 MAT(in,2,3) * MAT(out,2,2) ); 616 } 617 else { 618 MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0; 619 } 620 621 return GL_TRUE; 622} 623 624/** 625 * Compute inverse of an identity transformation matrix. 626 * 627 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 628 * stored in the GLmatrix::inv attribute. 629 * 630 * \return always GL_TRUE. 631 * 632 * Simply copies Identity into GLmatrix::inv. 633 */ 634static GLboolean invert_matrix_identity( GLmatrix *mat ) 635{ 636 memcpy( mat->inv, Identity, sizeof(Identity) ); 637 return GL_TRUE; 638} 639 640/** 641 * Compute inverse of a no-rotation 3d transformation matrix. 642 * 643 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 644 * stored in the GLmatrix::inv attribute. 645 * 646 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 647 * 648 * Calculates the 649 */ 650static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat ) 651{ 652 const GLfloat *in = mat->m; 653 GLfloat *out = mat->inv; 654 655 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 ) 656 return GL_FALSE; 657 658 memcpy( out, Identity, sizeof(Identity) ); 659 MAT(out,0,0) = 1.0F / MAT(in,0,0); 660 MAT(out,1,1) = 1.0F / MAT(in,1,1); 661 MAT(out,2,2) = 1.0F / MAT(in,2,2); 662 663 if (mat->flags & MAT_FLAG_TRANSLATION) { 664 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); 665 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); 666 MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2)); 667 } 668 669 return GL_TRUE; 670} 671 672/** 673 * Compute inverse of a no-rotation 2d transformation matrix. 674 * 675 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 676 * stored in the GLmatrix::inv attribute. 677 * 678 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 679 * 680 * Calculates the inverse matrix by applying the inverse scaling and 681 * translation to the identity matrix. 682 */ 683static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat ) 684{ 685 const GLfloat *in = mat->m; 686 GLfloat *out = mat->inv; 687 688 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0) 689 return GL_FALSE; 690 691 memcpy( out, Identity, sizeof(Identity) ); 692 MAT(out,0,0) = 1.0F / MAT(in,0,0); 693 MAT(out,1,1) = 1.0F / MAT(in,1,1); 694 695 if (mat->flags & MAT_FLAG_TRANSLATION) { 696 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); 697 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); 698 } 699 700 return GL_TRUE; 701} 702 703#if 0 704/* broken */ 705static GLboolean invert_matrix_perspective( GLmatrix *mat ) 706{ 707 const GLfloat *in = mat->m; 708 GLfloat *out = mat->inv; 709 710 if (MAT(in,2,3) == 0) 711 return GL_FALSE; 712 713 memcpy( out, Identity, sizeof(Identity) ); 714 715 MAT(out,0,0) = 1.0F / MAT(in,0,0); 716 MAT(out,1,1) = 1.0F / MAT(in,1,1); 717 718 MAT(out,0,3) = MAT(in,0,2); 719 MAT(out,1,3) = MAT(in,1,2); 720 721 MAT(out,2,2) = 0; 722 MAT(out,2,3) = -1; 723 724 MAT(out,3,2) = 1.0F / MAT(in,2,3); 725 MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2); 726 727 return GL_TRUE; 728} 729#endif 730 731/** 732 * Matrix inversion function pointer type. 733 */ 734typedef GLboolean (*inv_mat_func)( GLmatrix *mat ); 735 736/** 737 * Table of the matrix inversion functions according to the matrix type. 738 */ 739static inv_mat_func inv_mat_tab[7] = { 740 invert_matrix_general, 741 invert_matrix_identity, 742 invert_matrix_3d_no_rot, 743#if 0 744 /* Don't use this function for now - it fails when the projection matrix 745 * is premultiplied by a translation (ala Chromium's tilesort SPU). 746 */ 747 invert_matrix_perspective, 748#else 749 invert_matrix_general, 750#endif 751 invert_matrix_3d, /* lazy! */ 752 invert_matrix_2d_no_rot, 753 invert_matrix_3d 754}; 755 756/** 757 * Compute inverse of a transformation matrix. 758 * 759 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 760 * stored in the GLmatrix::inv attribute. 761 * 762 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 763 * 764 * Calls the matrix inversion function in inv_mat_tab corresponding to the 765 * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag, 766 * and copies the identity matrix into GLmatrix::inv. 767 */ 768static GLboolean matrix_invert( GLmatrix *mat ) 769{ 770 if (inv_mat_tab[mat->type](mat)) { 771 mat->flags &= ~MAT_FLAG_SINGULAR; 772 return GL_TRUE; 773 } else { 774 mat->flags |= MAT_FLAG_SINGULAR; 775 memcpy( mat->inv, Identity, sizeof(Identity) ); 776 return GL_FALSE; 777 } 778} 779 780/*@}*/ 781 782 783/**********************************************************************/ 784/** \name Matrix generation */ 785/*@{*/ 786 787/** 788 * Generate a 4x4 transformation matrix from glRotate parameters, and 789 * post-multiply the input matrix by it. 790 * 791 * \author 792 * This function was contributed by Erich Boleyn (erich@uruk.org). 793 * Optimizations contributed by Rudolf Opalla (rudi@khm.de). 794 */ 795void 796_math_matrix_rotate( GLmatrix *mat, 797 GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) 798{ 799 GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c; 800 GLfloat m[16]; 801 GLboolean optimized; 802 803 s = sinf( angle * M_PI / 180.0 ); 804 c = cosf( angle * M_PI / 180.0 ); 805 806 memcpy(m, Identity, sizeof(Identity)); 807 optimized = GL_FALSE; 808 809#define M(row,col) m[col*4+row] 810 811 if (x == 0.0F) { 812 if (y == 0.0F) { 813 if (z != 0.0F) { 814 optimized = GL_TRUE; 815 /* rotate only around z-axis */ 816 M(0,0) = c; 817 M(1,1) = c; 818 if (z < 0.0F) { 819 M(0,1) = s; 820 M(1,0) = -s; 821 } 822 else { 823 M(0,1) = -s; 824 M(1,0) = s; 825 } 826 } 827 } 828 else if (z == 0.0F) { 829 optimized = GL_TRUE; 830 /* rotate only around y-axis */ 831 M(0,0) = c; 832 M(2,2) = c; 833 if (y < 0.0F) { 834 M(0,2) = -s; 835 M(2,0) = s; 836 } 837 else { 838 M(0,2) = s; 839 M(2,0) = -s; 840 } 841 } 842 } 843 else if (y == 0.0F) { 844 if (z == 0.0F) { 845 optimized = GL_TRUE; 846 /* rotate only around x-axis */ 847 M(1,1) = c; 848 M(2,2) = c; 849 if (x < 0.0F) { 850 M(1,2) = s; 851 M(2,1) = -s; 852 } 853 else { 854 M(1,2) = -s; 855 M(2,1) = s; 856 } 857 } 858 } 859 860 if (!optimized) { 861 const GLfloat mag = sqrtf(x * x + y * y + z * z); 862 863 if (mag <= 1.0e-4F) { 864 /* no rotation, leave mat as-is */ 865 return; 866 } 867 868 x /= mag; 869 y /= mag; 870 z /= mag; 871 872 873 /* 874 * Arbitrary axis rotation matrix. 875 * 876 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied 877 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation 878 * (which is about the X-axis), and the two composite transforms 879 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary 880 * from the arbitrary axis to the X-axis then back. They are 881 * all elementary rotations. 882 * 883 * Rz' is a rotation about the Z-axis, to bring the axis vector 884 * into the x-z plane. Then Ry' is applied, rotating about the 885 * Y-axis to bring the axis vector parallel with the X-axis. The 886 * rotation about the X-axis is then performed. Ry and Rz are 887 * simply the respective inverse transforms to bring the arbitrary 888 * axis back to its original orientation. The first transforms 889 * Rz' and Ry' are considered inverses, since the data from the 890 * arbitrary axis gives you info on how to get to it, not how 891 * to get away from it, and an inverse must be applied. 892 * 893 * The basic calculation used is to recognize that the arbitrary 894 * axis vector (x, y, z), since it is of unit length, actually 895 * represents the sines and cosines of the angles to rotate the 896 * X-axis to the same orientation, with theta being the angle about 897 * Z and phi the angle about Y (in the order described above) 898 * as follows: 899 * 900 * cos ( theta ) = x / sqrt ( 1 - z^2 ) 901 * sin ( theta ) = y / sqrt ( 1 - z^2 ) 902 * 903 * cos ( phi ) = sqrt ( 1 - z^2 ) 904 * sin ( phi ) = z 905 * 906 * Note that cos ( phi ) can further be inserted to the above 907 * formulas: 908 * 909 * cos ( theta ) = x / cos ( phi ) 910 * sin ( theta ) = y / sin ( phi ) 911 * 912 * ...etc. Because of those relations and the standard trigonometric 913 * relations, it is pssible to reduce the transforms down to what 914 * is used below. It may be that any primary axis chosen will give the 915 * same results (modulo a sign convention) using thie method. 916 * 917 * Particularly nice is to notice that all divisions that might 918 * have caused trouble when parallel to certain planes or 919 * axis go away with care paid to reducing the expressions. 920 * After checking, it does perform correctly under all cases, since 921 * in all the cases of division where the denominator would have 922 * been zero, the numerator would have been zero as well, giving 923 * the expected result. 924 */ 925 926 xx = x * x; 927 yy = y * y; 928 zz = z * z; 929 xy = x * y; 930 yz = y * z; 931 zx = z * x; 932 xs = x * s; 933 ys = y * s; 934 zs = z * s; 935 one_c = 1.0F - c; 936 937 /* We already hold the identity-matrix so we can skip some statements */ 938 M(0,0) = (one_c * xx) + c; 939 M(0,1) = (one_c * xy) - zs; 940 M(0,2) = (one_c * zx) + ys; 941/* M(0,3) = 0.0F; */ 942 943 M(1,0) = (one_c * xy) + zs; 944 M(1,1) = (one_c * yy) + c; 945 M(1,2) = (one_c * yz) - xs; 946/* M(1,3) = 0.0F; */ 947 948 M(2,0) = (one_c * zx) - ys; 949 M(2,1) = (one_c * yz) + xs; 950 M(2,2) = (one_c * zz) + c; 951/* M(2,3) = 0.0F; */ 952 953/* 954 M(3,0) = 0.0F; 955 M(3,1) = 0.0F; 956 M(3,2) = 0.0F; 957 M(3,3) = 1.0F; 958*/ 959 } 960#undef M 961 962 matrix_multf( mat, m, MAT_FLAG_ROTATION ); 963} 964 965/** 966 * Apply a perspective projection matrix. 967 * 968 * \param mat matrix to apply the projection. 969 * \param left left clipping plane coordinate. 970 * \param right right clipping plane coordinate. 971 * \param bottom bottom clipping plane coordinate. 972 * \param top top clipping plane coordinate. 973 * \param nearval distance to the near clipping plane. 974 * \param farval distance to the far clipping plane. 975 * 976 * Creates the projection matrix and multiplies it with \p mat, marking the 977 * MAT_FLAG_PERSPECTIVE flag. 978 */ 979void 980_math_matrix_frustum( GLmatrix *mat, 981 GLfloat left, GLfloat right, 982 GLfloat bottom, GLfloat top, 983 GLfloat nearval, GLfloat farval ) 984{ 985 GLfloat x, y, a, b, c, d; 986 GLfloat m[16]; 987 988 x = (2.0F*nearval) / (right-left); 989 y = (2.0F*nearval) / (top-bottom); 990 a = (right+left) / (right-left); 991 b = (top+bottom) / (top-bottom); 992 c = -(farval+nearval) / ( farval-nearval); 993 d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */ 994 995#define M(row,col) m[col*4+row] 996 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F; 997 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F; 998 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d; 999 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F; 1000#undef M 1001 1002 matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE ); 1003} 1004 1005/** 1006 * Apply an orthographic projection matrix. 1007 * 1008 * \param mat matrix to apply the projection. 1009 * \param left left clipping plane coordinate. 1010 * \param right right clipping plane coordinate. 1011 * \param bottom bottom clipping plane coordinate. 1012 * \param top top clipping plane coordinate. 1013 * \param nearval distance to the near clipping plane. 1014 * \param farval distance to the far clipping plane. 1015 * 1016 * Creates the projection matrix and multiplies it with \p mat, marking the 1017 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags. 1018 */ 1019void 1020_math_matrix_ortho( GLmatrix *mat, 1021 GLfloat left, GLfloat right, 1022 GLfloat bottom, GLfloat top, 1023 GLfloat nearval, GLfloat farval ) 1024{ 1025 GLfloat m[16]; 1026 1027#define M(row,col) m[col*4+row] 1028 M(0,0) = 2.0F / (right-left); 1029 M(0,1) = 0.0F; 1030 M(0,2) = 0.0F; 1031 M(0,3) = -(right+left) / (right-left); 1032 1033 M(1,0) = 0.0F; 1034 M(1,1) = 2.0F / (top-bottom); 1035 M(1,2) = 0.0F; 1036 M(1,3) = -(top+bottom) / (top-bottom); 1037 1038 M(2,0) = 0.0F; 1039 M(2,1) = 0.0F; 1040 M(2,2) = -2.0F / (farval-nearval); 1041 M(2,3) = -(farval+nearval) / (farval-nearval); 1042 1043 M(3,0) = 0.0F; 1044 M(3,1) = 0.0F; 1045 M(3,2) = 0.0F; 1046 M(3,3) = 1.0F; 1047#undef M 1048 1049 matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION)); 1050} 1051 1052/** 1053 * Multiply a matrix with a general scaling matrix. 1054 * 1055 * \param mat matrix. 1056 * \param x x axis scale factor. 1057 * \param y y axis scale factor. 1058 * \param z z axis scale factor. 1059 * 1060 * Multiplies in-place the elements of \p mat by the scale factors. Checks if 1061 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE 1062 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and 1063 * MAT_DIRTY_INVERSE dirty flags. 1064 */ 1065void 1066_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) 1067{ 1068 GLfloat *m = mat->m; 1069 m[0] *= x; m[4] *= y; m[8] *= z; 1070 m[1] *= x; m[5] *= y; m[9] *= z; 1071 m[2] *= x; m[6] *= y; m[10] *= z; 1072 m[3] *= x; m[7] *= y; m[11] *= z; 1073 1074 if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F) 1075 mat->flags |= MAT_FLAG_UNIFORM_SCALE; 1076 else 1077 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1078 1079 mat->flags |= (MAT_DIRTY_TYPE | 1080 MAT_DIRTY_INVERSE); 1081} 1082 1083/** 1084 * Multiply a matrix with a translation matrix. 1085 * 1086 * \param mat matrix. 1087 * \param x translation vector x coordinate. 1088 * \param y translation vector y coordinate. 1089 * \param z translation vector z coordinate. 1090 * 1091 * Adds the translation coordinates to the elements of \p mat in-place. Marks 1092 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE 1093 * dirty flags. 1094 */ 1095void 1096_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) 1097{ 1098 GLfloat *m = mat->m; 1099 m[12] = m[0] * x + m[4] * y + m[8] * z + m[12]; 1100 m[13] = m[1] * x + m[5] * y + m[9] * z + m[13]; 1101 m[14] = m[2] * x + m[6] * y + m[10] * z + m[14]; 1102 m[15] = m[3] * x + m[7] * y + m[11] * z + m[15]; 1103 1104 mat->flags |= (MAT_FLAG_TRANSLATION | 1105 MAT_DIRTY_TYPE | 1106 MAT_DIRTY_INVERSE); 1107} 1108 1109 1110/** 1111 * Set matrix to do viewport and depthrange mapping. 1112 * Transforms Normalized Device Coords to window/Z values. 1113 */ 1114void 1115_math_matrix_viewport(GLmatrix *m, const float scale[3], 1116 const float translate[3], double depthMax) 1117{ 1118 m->m[MAT_SX] = scale[0]; 1119 m->m[MAT_TX] = translate[0]; 1120 m->m[MAT_SY] = scale[1]; 1121 m->m[MAT_TY] = translate[1]; 1122 m->m[MAT_SZ] = depthMax*scale[2]; 1123 m->m[MAT_TZ] = depthMax*translate[2]; 1124 m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION; 1125 m->type = MATRIX_3D_NO_ROT; 1126} 1127 1128 1129/** 1130 * Set a matrix to the identity matrix. 1131 * 1132 * \param mat matrix. 1133 * 1134 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL. 1135 * Sets the matrix type to identity, and clear the dirty flags. 1136 */ 1137void 1138_math_matrix_set_identity( GLmatrix *mat ) 1139{ 1140 memcpy( mat->m, Identity, sizeof(Identity) ); 1141 memcpy( mat->inv, Identity, sizeof(Identity) ); 1142 1143 mat->type = MATRIX_IDENTITY; 1144 mat->flags &= ~(MAT_DIRTY_FLAGS| 1145 MAT_DIRTY_TYPE| 1146 MAT_DIRTY_INVERSE); 1147} 1148 1149/*@}*/ 1150 1151 1152/**********************************************************************/ 1153/** \name Matrix analysis */ 1154/*@{*/ 1155 1156#define ZERO(x) (1<<x) 1157#define ONE(x) (1<<(x+16)) 1158 1159#define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14)) 1160#define MASK_NO_2D_SCALE ( ONE(0) | ONE(5)) 1161 1162#define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\ 1163 ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\ 1164 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1165 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1166 1167#define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \ 1168 ZERO(1) | ZERO(9) | \ 1169 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1170 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1171 1172#define MASK_2D ( ZERO(8) | \ 1173 ZERO(9) | \ 1174 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1175 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1176 1177 1178#define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \ 1179 ZERO(1) | ZERO(9) | \ 1180 ZERO(2) | ZERO(6) | \ 1181 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1182 1183#define MASK_3D ( \ 1184 \ 1185 \ 1186 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1187 1188 1189#define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\ 1190 ZERO(1) | ZERO(13) |\ 1191 ZERO(2) | ZERO(6) | \ 1192 ZERO(3) | ZERO(7) | ZERO(15) ) 1193 1194#define SQ(x) ((x)*(x)) 1195 1196/** 1197 * Determine type and flags from scratch. 1198 * 1199 * \param mat matrix. 1200 * 1201 * This is expensive enough to only want to do it once. 1202 */ 1203static void analyse_from_scratch( GLmatrix *mat ) 1204{ 1205 const GLfloat *m = mat->m; 1206 GLuint mask = 0; 1207 GLuint i; 1208 1209 for (i = 0 ; i < 16 ; i++) { 1210 if (m[i] == 0.0F) mask |= (1<<i); 1211 } 1212 1213 if (m[0] == 1.0F) mask |= (1<<16); 1214 if (m[5] == 1.0F) mask |= (1<<21); 1215 if (m[10] == 1.0F) mask |= (1<<26); 1216 if (m[15] == 1.0F) mask |= (1<<31); 1217 1218 mat->flags &= ~MAT_FLAGS_GEOMETRY; 1219 1220 /* Check for translation - no-one really cares 1221 */ 1222 if ((mask & MASK_NO_TRX) != MASK_NO_TRX) 1223 mat->flags |= MAT_FLAG_TRANSLATION; 1224 1225 /* Do the real work 1226 */ 1227 if (mask == (GLuint) MASK_IDENTITY) { 1228 mat->type = MATRIX_IDENTITY; 1229 } 1230 else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) { 1231 mat->type = MATRIX_2D_NO_ROT; 1232 1233 if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE) 1234 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1235 } 1236 else if ((mask & MASK_2D) == (GLuint) MASK_2D) { 1237 GLfloat mm = DOT2(m, m); 1238 GLfloat m4m4 = DOT2(m+4,m+4); 1239 GLfloat mm4 = DOT2(m,m+4); 1240 1241 mat->type = MATRIX_2D; 1242 1243 /* Check for scale */ 1244 if (SQ(mm-1) > SQ(1e-6F) || 1245 SQ(m4m4-1) > SQ(1e-6F)) 1246 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1247 1248 /* Check for rotation */ 1249 if (SQ(mm4) > SQ(1e-6F)) 1250 mat->flags |= MAT_FLAG_GENERAL_3D; 1251 else 1252 mat->flags |= MAT_FLAG_ROTATION; 1253 1254 } 1255 else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) { 1256 mat->type = MATRIX_3D_NO_ROT; 1257 1258 /* Check for scale */ 1259 if (SQ(m[0]-m[5]) < SQ(1e-6F) && 1260 SQ(m[0]-m[10]) < SQ(1e-6F)) { 1261 if (SQ(m[0]-1.0F) > SQ(1e-6F)) { 1262 mat->flags |= MAT_FLAG_UNIFORM_SCALE; 1263 } 1264 } 1265 else { 1266 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1267 } 1268 } 1269 else if ((mask & MASK_3D) == (GLuint) MASK_3D) { 1270 GLfloat c1 = DOT3(m,m); 1271 GLfloat c2 = DOT3(m+4,m+4); 1272 GLfloat c3 = DOT3(m+8,m+8); 1273 GLfloat d1 = DOT3(m, m+4); 1274 GLfloat cp[3]; 1275 1276 mat->type = MATRIX_3D; 1277 1278 /* Check for scale */ 1279 if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) { 1280 if (SQ(c1-1.0F) > SQ(1e-6F)) 1281 mat->flags |= MAT_FLAG_UNIFORM_SCALE; 1282 /* else no scale at all */ 1283 } 1284 else { 1285 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1286 } 1287 1288 /* Check for rotation */ 1289 if (SQ(d1) < SQ(1e-6F)) { 1290 CROSS3( cp, m, m+4 ); 1291 SUB_3V( cp, cp, (m+8) ); 1292 if (LEN_SQUARED_3FV(cp) < SQ(1e-6F)) 1293 mat->flags |= MAT_FLAG_ROTATION; 1294 else 1295 mat->flags |= MAT_FLAG_GENERAL_3D; 1296 } 1297 else { 1298 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */ 1299 } 1300 } 1301 else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) { 1302 mat->type = MATRIX_PERSPECTIVE; 1303 mat->flags |= MAT_FLAG_GENERAL; 1304 } 1305 else { 1306 mat->type = MATRIX_GENERAL; 1307 mat->flags |= MAT_FLAG_GENERAL; 1308 } 1309} 1310 1311/** 1312 * Analyze a matrix given that its flags are accurate. 1313 * 1314 * This is the more common operation, hopefully. 1315 */ 1316static void analyse_from_flags( GLmatrix *mat ) 1317{ 1318 const GLfloat *m = mat->m; 1319 1320 if (TEST_MAT_FLAGS(mat, 0)) { 1321 mat->type = MATRIX_IDENTITY; 1322 } 1323 else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION | 1324 MAT_FLAG_UNIFORM_SCALE | 1325 MAT_FLAG_GENERAL_SCALE))) { 1326 if ( m[10]==1.0F && m[14]==0.0F ) { 1327 mat->type = MATRIX_2D_NO_ROT; 1328 } 1329 else { 1330 mat->type = MATRIX_3D_NO_ROT; 1331 } 1332 } 1333 else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) { 1334 if ( m[ 8]==0.0F 1335 && m[ 9]==0.0F 1336 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) { 1337 mat->type = MATRIX_2D; 1338 } 1339 else { 1340 mat->type = MATRIX_3D; 1341 } 1342 } 1343 else if ( m[4]==0.0F && m[12]==0.0F 1344 && m[1]==0.0F && m[13]==0.0F 1345 && m[2]==0.0F && m[6]==0.0F 1346 && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) { 1347 mat->type = MATRIX_PERSPECTIVE; 1348 } 1349 else { 1350 mat->type = MATRIX_GENERAL; 1351 } 1352} 1353 1354/** 1355 * Analyze and update a matrix. 1356 * 1357 * \param mat matrix. 1358 * 1359 * If the matrix type is dirty then calls either analyse_from_scratch() or 1360 * analyse_from_flags() to determine its type, according to whether the flags 1361 * are dirty or not, respectively. If the matrix has an inverse and it's dirty 1362 * then calls matrix_invert(). Finally clears the dirty flags. 1363 */ 1364void 1365_math_matrix_analyse( GLmatrix *mat ) 1366{ 1367 if (mat->flags & MAT_DIRTY_TYPE) { 1368 if (mat->flags & MAT_DIRTY_FLAGS) 1369 analyse_from_scratch( mat ); 1370 else 1371 analyse_from_flags( mat ); 1372 } 1373 1374 if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) { 1375 matrix_invert( mat ); 1376 mat->flags &= ~MAT_DIRTY_INVERSE; 1377 } 1378 1379 mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE); 1380} 1381 1382/*@}*/ 1383 1384 1385/** 1386 * Test if the given matrix preserves vector lengths. 1387 */ 1388GLboolean 1389_math_matrix_is_length_preserving( const GLmatrix *m ) 1390{ 1391 return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING); 1392} 1393 1394 1395/** 1396 * Test if the given matrix does any rotation. 1397 * (or perhaps if the upper-left 3x3 is non-identity) 1398 */ 1399GLboolean 1400_math_matrix_has_rotation( const GLmatrix *m ) 1401{ 1402 if (m->flags & (MAT_FLAG_GENERAL | 1403 MAT_FLAG_ROTATION | 1404 MAT_FLAG_GENERAL_3D | 1405 MAT_FLAG_PERSPECTIVE)) 1406 return GL_TRUE; 1407 else 1408 return GL_FALSE; 1409} 1410 1411 1412GLboolean 1413_math_matrix_is_general_scale( const GLmatrix *m ) 1414{ 1415 return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE; 1416} 1417 1418 1419GLboolean 1420_math_matrix_is_dirty( const GLmatrix *m ) 1421{ 1422 return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE; 1423} 1424 1425 1426/**********************************************************************/ 1427/** \name Matrix setup */ 1428/*@{*/ 1429 1430/** 1431 * Copy a matrix. 1432 * 1433 * \param to destination matrix. 1434 * \param from source matrix. 1435 * 1436 * Copies all fields in GLmatrix, creating an inverse array if necessary. 1437 */ 1438void 1439_math_matrix_copy( GLmatrix *to, const GLmatrix *from ) 1440{ 1441 memcpy(to->m, from->m, 16 * sizeof(GLfloat)); 1442 memcpy(to->inv, from->inv, 16 * sizeof(GLfloat)); 1443 to->flags = from->flags; 1444 to->type = from->type; 1445} 1446 1447/** 1448 * Loads a matrix array into GLmatrix. 1449 * 1450 * \param m matrix array. 1451 * \param mat matrix. 1452 * 1453 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY 1454 * flags. 1455 */ 1456void 1457_math_matrix_loadf( GLmatrix *mat, const GLfloat *m ) 1458{ 1459 memcpy( mat->m, m, 16*sizeof(GLfloat) ); 1460 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY); 1461} 1462 1463/** 1464 * Matrix constructor. 1465 * 1466 * \param m matrix. 1467 * 1468 * Initialize the GLmatrix fields. 1469 */ 1470void 1471_math_matrix_ctr( GLmatrix *m ) 1472{ 1473 m->m = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 ); 1474 if (m->m) 1475 memcpy( m->m, Identity, sizeof(Identity) ); 1476 m->inv = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 ); 1477 if (m->inv) 1478 memcpy( m->inv, Identity, sizeof(Identity) ); 1479 m->type = MATRIX_IDENTITY; 1480 m->flags = 0; 1481} 1482 1483/** 1484 * Matrix destructor. 1485 * 1486 * \param m matrix. 1487 * 1488 * Frees the data in a GLmatrix. 1489 */ 1490void 1491_math_matrix_dtr( GLmatrix *m ) 1492{ 1493 _mesa_align_free( m->m ); 1494 m->m = NULL; 1495 1496 _mesa_align_free( m->inv ); 1497 m->inv = NULL; 1498} 1499 1500/*@}*/ 1501 1502 1503/**********************************************************************/ 1504/** \name Matrix transpose */ 1505/*@{*/ 1506 1507/** 1508 * Transpose a GLfloat matrix. 1509 * 1510 * \param to destination array. 1511 * \param from source array. 1512 */ 1513void 1514_math_transposef( GLfloat to[16], const GLfloat from[16] ) 1515{ 1516 to[0] = from[0]; 1517 to[1] = from[4]; 1518 to[2] = from[8]; 1519 to[3] = from[12]; 1520 to[4] = from[1]; 1521 to[5] = from[5]; 1522 to[6] = from[9]; 1523 to[7] = from[13]; 1524 to[8] = from[2]; 1525 to[9] = from[6]; 1526 to[10] = from[10]; 1527 to[11] = from[14]; 1528 to[12] = from[3]; 1529 to[13] = from[7]; 1530 to[14] = from[11]; 1531 to[15] = from[15]; 1532} 1533 1534/** 1535 * Transpose a GLdouble matrix. 1536 * 1537 * \param to destination array. 1538 * \param from source array. 1539 */ 1540void 1541_math_transposed( GLdouble to[16], const GLdouble from[16] ) 1542{ 1543 to[0] = from[0]; 1544 to[1] = from[4]; 1545 to[2] = from[8]; 1546 to[3] = from[12]; 1547 to[4] = from[1]; 1548 to[5] = from[5]; 1549 to[6] = from[9]; 1550 to[7] = from[13]; 1551 to[8] = from[2]; 1552 to[9] = from[6]; 1553 to[10] = from[10]; 1554 to[11] = from[14]; 1555 to[12] = from[3]; 1556 to[13] = from[7]; 1557 to[14] = from[11]; 1558 to[15] = from[15]; 1559} 1560 1561/** 1562 * Transpose a GLdouble matrix and convert to GLfloat. 1563 * 1564 * \param to destination array. 1565 * \param from source array. 1566 */ 1567void 1568_math_transposefd( GLfloat to[16], const GLdouble from[16] ) 1569{ 1570 to[0] = (GLfloat) from[0]; 1571 to[1] = (GLfloat) from[4]; 1572 to[2] = (GLfloat) from[8]; 1573 to[3] = (GLfloat) from[12]; 1574 to[4] = (GLfloat) from[1]; 1575 to[5] = (GLfloat) from[5]; 1576 to[6] = (GLfloat) from[9]; 1577 to[7] = (GLfloat) from[13]; 1578 to[8] = (GLfloat) from[2]; 1579 to[9] = (GLfloat) from[6]; 1580 to[10] = (GLfloat) from[10]; 1581 to[11] = (GLfloat) from[14]; 1582 to[12] = (GLfloat) from[3]; 1583 to[13] = (GLfloat) from[7]; 1584 to[14] = (GLfloat) from[11]; 1585 to[15] = (GLfloat) from[15]; 1586} 1587 1588/*@}*/ 1589 1590 1591/** 1592 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This 1593 * function is used for transforming clipping plane equations and spotlight 1594 * directions. 1595 * Mathematically, u = v * m. 1596 * Input: v - input vector 1597 * m - transformation matrix 1598 * Output: u - transformed vector 1599 */ 1600void 1601_mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] ) 1602{ 1603 const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3]; 1604#define M(row,col) m[row + col*4] 1605 u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0); 1606 u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1); 1607 u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2); 1608 u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3); 1609#undef M 1610} 1611