1848b8605Smrg/*
2848b8605Smrg * Mesa 3-D graphics library
3848b8605Smrg *
4848b8605Smrg * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
5848b8605Smrg *
6848b8605Smrg * Permission is hereby granted, free of charge, to any person obtaining a
7848b8605Smrg * copy of this software and associated documentation files (the "Software"),
8848b8605Smrg * to deal in the Software without restriction, including without limitation
9848b8605Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10848b8605Smrg * and/or sell copies of the Software, and to permit persons to whom the
11848b8605Smrg * Software is furnished to do so, subject to the following conditions:
12848b8605Smrg *
13848b8605Smrg * The above copyright notice and this permission notice shall be included
14848b8605Smrg * in all copies or substantial portions of the Software.
15848b8605Smrg *
16848b8605Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17848b8605Smrg * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18848b8605Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19848b8605Smrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20848b8605Smrg * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21848b8605Smrg * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22848b8605Smrg * OTHER DEALINGS IN THE SOFTWARE.
23848b8605Smrg */
24848b8605Smrg
25848b8605Smrg
26848b8605Smrg/**
27848b8605Smrg * \file m_matrix.c
28848b8605Smrg * Matrix operations.
29848b8605Smrg *
30848b8605Smrg * \note
31848b8605Smrg * -# 4x4 transformation matrices are stored in memory in column major order.
32848b8605Smrg * -# Points/vertices are to be thought of as column vectors.
33848b8605Smrg * -# Transformation of a point p by a matrix M is: p' = M * p
34848b8605Smrg */
35848b8605Smrg
36848b8605Smrg
37b8e80941Smrg#include "c99_math.h"
38b8e80941Smrg#include "main/errors.h"
39848b8605Smrg#include "main/glheader.h"
40848b8605Smrg#include "main/imports.h"
41848b8605Smrg#include "main/macros.h"
42848b8605Smrg
43848b8605Smrg#include "m_matrix.h"
44848b8605Smrg
45848b8605Smrg
46848b8605Smrg/**
47848b8605Smrg * \defgroup MatFlags MAT_FLAG_XXX-flags
48848b8605Smrg *
49848b8605Smrg * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
50848b8605Smrg */
51848b8605Smrg/*@{*/
52848b8605Smrg#define MAT_FLAG_IDENTITY       0     /**< is an identity matrix flag.
53848b8605Smrg                                       *   (Not actually used - the identity
54b8e80941Smrg                                       *   matrix is identified by the absence
55848b8605Smrg                                       *   of all other flags.)
56848b8605Smrg                                       */
57848b8605Smrg#define MAT_FLAG_GENERAL        0x1   /**< is a general matrix flag */
58848b8605Smrg#define MAT_FLAG_ROTATION       0x2   /**< is a rotation matrix flag */
59848b8605Smrg#define MAT_FLAG_TRANSLATION    0x4   /**< is a translation matrix flag */
60848b8605Smrg#define MAT_FLAG_UNIFORM_SCALE  0x8   /**< is an uniform scaling matrix flag */
61848b8605Smrg#define MAT_FLAG_GENERAL_SCALE  0x10  /**< is a general scaling matrix flag */
62848b8605Smrg#define MAT_FLAG_GENERAL_3D     0x20  /**< general 3D matrix flag */
63848b8605Smrg#define MAT_FLAG_PERSPECTIVE    0x40  /**< is a perspective proj matrix flag */
64848b8605Smrg#define MAT_FLAG_SINGULAR       0x80  /**< is a singular matrix flag */
65848b8605Smrg#define MAT_DIRTY_TYPE          0x100  /**< matrix type is dirty */
66848b8605Smrg#define MAT_DIRTY_FLAGS         0x200  /**< matrix flags are dirty */
67848b8605Smrg#define MAT_DIRTY_INVERSE       0x400  /**< matrix inverse is dirty */
68848b8605Smrg
69848b8605Smrg/** angle preserving matrix flags mask */
70848b8605Smrg#define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
71848b8605Smrg				    MAT_FLAG_TRANSLATION | \
72848b8605Smrg				    MAT_FLAG_UNIFORM_SCALE)
73848b8605Smrg
74848b8605Smrg/** geometry related matrix flags mask */
75848b8605Smrg#define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
76848b8605Smrg			    MAT_FLAG_ROTATION | \
77848b8605Smrg			    MAT_FLAG_TRANSLATION | \
78848b8605Smrg			    MAT_FLAG_UNIFORM_SCALE | \
79848b8605Smrg			    MAT_FLAG_GENERAL_SCALE | \
80848b8605Smrg			    MAT_FLAG_GENERAL_3D | \
81848b8605Smrg			    MAT_FLAG_PERSPECTIVE | \
82848b8605Smrg	                    MAT_FLAG_SINGULAR)
83848b8605Smrg
84848b8605Smrg/** length preserving matrix flags mask */
85848b8605Smrg#define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
86848b8605Smrg				     MAT_FLAG_TRANSLATION)
87848b8605Smrg
88848b8605Smrg
89848b8605Smrg/** 3D (non-perspective) matrix flags mask */
90848b8605Smrg#define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
91848b8605Smrg		      MAT_FLAG_TRANSLATION | \
92848b8605Smrg		      MAT_FLAG_UNIFORM_SCALE | \
93848b8605Smrg		      MAT_FLAG_GENERAL_SCALE | \
94848b8605Smrg		      MAT_FLAG_GENERAL_3D)
95848b8605Smrg
96848b8605Smrg/** dirty matrix flags mask */
97848b8605Smrg#define MAT_DIRTY          (MAT_DIRTY_TYPE | \
98848b8605Smrg			    MAT_DIRTY_FLAGS | \
99848b8605Smrg			    MAT_DIRTY_INVERSE)
100848b8605Smrg
101848b8605Smrg/*@}*/
102848b8605Smrg
103848b8605Smrg
104848b8605Smrg/**
105848b8605Smrg * Test geometry related matrix flags.
106848b8605Smrg *
107848b8605Smrg * \param mat a pointer to a GLmatrix structure.
108848b8605Smrg * \param a flags mask.
109848b8605Smrg *
110848b8605Smrg * \returns non-zero if all geometry related matrix flags are contained within
111848b8605Smrg * the mask, or zero otherwise.
112848b8605Smrg */
113848b8605Smrg#define TEST_MAT_FLAGS(mat, a)  \
114848b8605Smrg    ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
115848b8605Smrg
116848b8605Smrg
117848b8605Smrg
118848b8605Smrg/**
119848b8605Smrg * Names of the corresponding GLmatrixtype values.
120848b8605Smrg */
121848b8605Smrgstatic const char *types[] = {
122848b8605Smrg   "MATRIX_GENERAL",
123848b8605Smrg   "MATRIX_IDENTITY",
124848b8605Smrg   "MATRIX_3D_NO_ROT",
125848b8605Smrg   "MATRIX_PERSPECTIVE",
126848b8605Smrg   "MATRIX_2D",
127848b8605Smrg   "MATRIX_2D_NO_ROT",
128848b8605Smrg   "MATRIX_3D"
129848b8605Smrg};
130848b8605Smrg
131848b8605Smrg
132848b8605Smrg/**
133848b8605Smrg * Identity matrix.
134848b8605Smrg */
135b8e80941Smrgstatic const GLfloat Identity[16] = {
136848b8605Smrg   1.0, 0.0, 0.0, 0.0,
137848b8605Smrg   0.0, 1.0, 0.0, 0.0,
138848b8605Smrg   0.0, 0.0, 1.0, 0.0,
139848b8605Smrg   0.0, 0.0, 0.0, 1.0
140848b8605Smrg};
141848b8605Smrg
142848b8605Smrg
143848b8605Smrg
144848b8605Smrg/**********************************************************************/
145848b8605Smrg/** \name Matrix multiplication */
146848b8605Smrg/*@{*/
147848b8605Smrg
148848b8605Smrg#define A(row,col)  a[(col<<2)+row]
149848b8605Smrg#define B(row,col)  b[(col<<2)+row]
150848b8605Smrg#define P(row,col)  product[(col<<2)+row]
151848b8605Smrg
152848b8605Smrg/**
153848b8605Smrg * Perform a full 4x4 matrix multiplication.
154848b8605Smrg *
155848b8605Smrg * \param a matrix.
156848b8605Smrg * \param b matrix.
157848b8605Smrg * \param product will receive the product of \p a and \p b.
158848b8605Smrg *
159848b8605Smrg * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
160848b8605Smrg *
161848b8605Smrg * \note KW: 4*16 = 64 multiplications
162848b8605Smrg *
163848b8605Smrg * \author This \c matmul was contributed by Thomas Malik
164848b8605Smrg */
165848b8605Smrgstatic void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
166848b8605Smrg{
167848b8605Smrg   GLint i;
168848b8605Smrg   for (i = 0; i < 4; i++) {
169848b8605Smrg      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
170848b8605Smrg      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
171848b8605Smrg      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
172848b8605Smrg      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
173848b8605Smrg      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
174848b8605Smrg   }
175848b8605Smrg}
176848b8605Smrg
177848b8605Smrg/**
178848b8605Smrg * Multiply two matrices known to occupy only the top three rows, such
179848b8605Smrg * as typical model matrices, and orthogonal matrices.
180848b8605Smrg *
181848b8605Smrg * \param a matrix.
182848b8605Smrg * \param b matrix.
183848b8605Smrg * \param product will receive the product of \p a and \p b.
184848b8605Smrg */
185848b8605Smrgstatic void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
186848b8605Smrg{
187848b8605Smrg   GLint i;
188848b8605Smrg   for (i = 0; i < 3; i++) {
189848b8605Smrg      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
190848b8605Smrg      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
191848b8605Smrg      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
192848b8605Smrg      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
193848b8605Smrg      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
194848b8605Smrg   }
195848b8605Smrg   P(3,0) = 0;
196848b8605Smrg   P(3,1) = 0;
197848b8605Smrg   P(3,2) = 0;
198848b8605Smrg   P(3,3) = 1;
199848b8605Smrg}
200848b8605Smrg
201848b8605Smrg#undef A
202848b8605Smrg#undef B
203848b8605Smrg#undef P
204848b8605Smrg
205848b8605Smrg/**
206848b8605Smrg * Multiply a matrix by an array of floats with known properties.
207848b8605Smrg *
208848b8605Smrg * \param mat pointer to a GLmatrix structure containing the left multiplication
209848b8605Smrg * matrix, and that will receive the product result.
210848b8605Smrg * \param m right multiplication matrix array.
211848b8605Smrg * \param flags flags of the matrix \p m.
212848b8605Smrg *
213848b8605Smrg * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
214848b8605Smrg * if both matrices are 3D, or matmul4() otherwise.
215848b8605Smrg */
216848b8605Smrgstatic void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
217848b8605Smrg{
218848b8605Smrg   mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
219848b8605Smrg
220848b8605Smrg   if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
221848b8605Smrg      matmul34( mat->m, mat->m, m );
222848b8605Smrg   else
223848b8605Smrg      matmul4( mat->m, mat->m, m );
224848b8605Smrg}
225848b8605Smrg
226848b8605Smrg/**
227848b8605Smrg * Matrix multiplication.
228848b8605Smrg *
229848b8605Smrg * \param dest destination matrix.
230848b8605Smrg * \param a left matrix.
231848b8605Smrg * \param b right matrix.
232848b8605Smrg *
233848b8605Smrg * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
234848b8605Smrg * if both matrices are 3D, or matmul4() otherwise.
235848b8605Smrg */
236848b8605Smrgvoid
237848b8605Smrg_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
238848b8605Smrg{
239848b8605Smrg   dest->flags = (a->flags |
240848b8605Smrg		  b->flags |
241848b8605Smrg		  MAT_DIRTY_TYPE |
242848b8605Smrg		  MAT_DIRTY_INVERSE);
243848b8605Smrg
244848b8605Smrg   if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
245848b8605Smrg      matmul34( dest->m, a->m, b->m );
246848b8605Smrg   else
247848b8605Smrg      matmul4( dest->m, a->m, b->m );
248848b8605Smrg}
249848b8605Smrg
250848b8605Smrg/**
251848b8605Smrg * Matrix multiplication.
252848b8605Smrg *
253848b8605Smrg * \param dest left and destination matrix.
254848b8605Smrg * \param m right matrix array.
255848b8605Smrg *
256848b8605Smrg * Marks the matrix flags with general flag, and type and inverse dirty flags.
257848b8605Smrg * Calls matmul4() for the multiplication.
258848b8605Smrg */
259848b8605Smrgvoid
260848b8605Smrg_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
261848b8605Smrg{
262848b8605Smrg   dest->flags |= (MAT_FLAG_GENERAL |
263848b8605Smrg		   MAT_DIRTY_TYPE |
264848b8605Smrg		   MAT_DIRTY_INVERSE |
265848b8605Smrg                   MAT_DIRTY_FLAGS);
266848b8605Smrg
267848b8605Smrg   matmul4( dest->m, dest->m, m );
268848b8605Smrg}
269848b8605Smrg
270848b8605Smrg/*@}*/
271848b8605Smrg
272848b8605Smrg
273848b8605Smrg/**********************************************************************/
274848b8605Smrg/** \name Matrix output */
275848b8605Smrg/*@{*/
276848b8605Smrg
277848b8605Smrg/**
278848b8605Smrg * Print a matrix array.
279848b8605Smrg *
280848b8605Smrg * \param m matrix array.
281848b8605Smrg *
282848b8605Smrg * Called by _math_matrix_print() to print a matrix or its inverse.
283848b8605Smrg */
284848b8605Smrgstatic void print_matrix_floats( const GLfloat m[16] )
285848b8605Smrg{
286848b8605Smrg   int i;
287848b8605Smrg   for (i=0;i<4;i++) {
288848b8605Smrg      _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
289848b8605Smrg   }
290848b8605Smrg}
291848b8605Smrg
292848b8605Smrg/**
293848b8605Smrg * Dumps the contents of a GLmatrix structure.
294848b8605Smrg *
295848b8605Smrg * \param m pointer to the GLmatrix structure.
296848b8605Smrg */
297848b8605Smrgvoid
298848b8605Smrg_math_matrix_print( const GLmatrix *m )
299848b8605Smrg{
300848b8605Smrg   GLfloat prod[16];
301848b8605Smrg
302848b8605Smrg   _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
303848b8605Smrg   print_matrix_floats(m->m);
304848b8605Smrg   _mesa_debug(NULL, "Inverse: \n");
305848b8605Smrg   print_matrix_floats(m->inv);
306848b8605Smrg   matmul4(prod, m->m, m->inv);
307848b8605Smrg   _mesa_debug(NULL, "Mat * Inverse:\n");
308848b8605Smrg   print_matrix_floats(prod);
309848b8605Smrg}
310848b8605Smrg
311848b8605Smrg/*@}*/
312848b8605Smrg
313848b8605Smrg
314848b8605Smrg/**
315848b8605Smrg * References an element of 4x4 matrix.
316848b8605Smrg *
317848b8605Smrg * \param m matrix array.
318848b8605Smrg * \param c column of the desired element.
319848b8605Smrg * \param r row of the desired element.
320848b8605Smrg *
321848b8605Smrg * \return value of the desired element.
322848b8605Smrg *
323848b8605Smrg * Calculate the linear storage index of the element and references it.
324848b8605Smrg */
325848b8605Smrg#define MAT(m,r,c) (m)[(c)*4+(r)]
326848b8605Smrg
327848b8605Smrg
328848b8605Smrg/**********************************************************************/
329848b8605Smrg/** \name Matrix inversion */
330848b8605Smrg/*@{*/
331848b8605Smrg
332848b8605Smrg/**
333848b8605Smrg * Swaps the values of two floating point variables.
334848b8605Smrg *
335848b8605Smrg * Used by invert_matrix_general() to swap the row pointers.
336848b8605Smrg */
337848b8605Smrg#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
338848b8605Smrg
339848b8605Smrg/**
340848b8605Smrg * Compute inverse of 4x4 transformation matrix.
341848b8605Smrg *
342848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be
343848b8605Smrg * stored in the GLmatrix::inv attribute.
344848b8605Smrg *
345848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
346848b8605Smrg *
347848b8605Smrg * \author
348848b8605Smrg * Code contributed by Jacques Leroy jle@star.be
349848b8605Smrg *
350848b8605Smrg * Calculates the inverse matrix by performing the gaussian matrix reduction
351848b8605Smrg * with partial pivoting followed by back/substitution with the loops manually
352848b8605Smrg * unrolled.
353848b8605Smrg */
354848b8605Smrgstatic GLboolean invert_matrix_general( GLmatrix *mat )
355848b8605Smrg{
356848b8605Smrg   const GLfloat *m = mat->m;
357848b8605Smrg   GLfloat *out = mat->inv;
358848b8605Smrg   GLfloat wtmp[4][8];
359848b8605Smrg   GLfloat m0, m1, m2, m3, s;
360848b8605Smrg   GLfloat *r0, *r1, *r2, *r3;
361848b8605Smrg
362848b8605Smrg   r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
363848b8605Smrg
364848b8605Smrg   r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
365848b8605Smrg   r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
366848b8605Smrg   r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
367848b8605Smrg
368848b8605Smrg   r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
369848b8605Smrg   r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
370848b8605Smrg   r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
371848b8605Smrg
372848b8605Smrg   r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
373848b8605Smrg   r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
374848b8605Smrg   r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
375848b8605Smrg
376848b8605Smrg   r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
377848b8605Smrg   r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
378848b8605Smrg   r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
379848b8605Smrg
380848b8605Smrg   /* choose pivot - or die */
381b8e80941Smrg   if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2);
382b8e80941Smrg   if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1);
383b8e80941Smrg   if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0);
384b8e80941Smrg   if (0.0F == r0[0])  return GL_FALSE;
385848b8605Smrg
386848b8605Smrg   /* eliminate first variable     */
387848b8605Smrg   m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
388848b8605Smrg   s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
389848b8605Smrg   s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
390848b8605Smrg   s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
391848b8605Smrg   s = r0[4];
392b8e80941Smrg   if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
393848b8605Smrg   s = r0[5];
394b8e80941Smrg   if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
395848b8605Smrg   s = r0[6];
396b8e80941Smrg   if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
397848b8605Smrg   s = r0[7];
398b8e80941Smrg   if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
399848b8605Smrg
400848b8605Smrg   /* choose pivot - or die */
401b8e80941Smrg   if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2);
402b8e80941Smrg   if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1);
403b8e80941Smrg   if (0.0F == r1[1])  return GL_FALSE;
404848b8605Smrg
405848b8605Smrg   /* eliminate second variable */
406848b8605Smrg   m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
407848b8605Smrg   r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
408848b8605Smrg   r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
409b8e80941Smrg   s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
410b8e80941Smrg   s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
411b8e80941Smrg   s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
412b8e80941Smrg   s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
413848b8605Smrg
414848b8605Smrg   /* choose pivot - or die */
415b8e80941Smrg   if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2);
416b8e80941Smrg   if (0.0F == r2[2])  return GL_FALSE;
417848b8605Smrg
418848b8605Smrg   /* eliminate third variable */
419848b8605Smrg   m3 = r3[2]/r2[2];
420848b8605Smrg   r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
421848b8605Smrg   r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
422848b8605Smrg   r3[7] -= m3 * r2[7];
423848b8605Smrg
424848b8605Smrg   /* last check */
425b8e80941Smrg   if (0.0F == r3[3]) return GL_FALSE;
426848b8605Smrg
427848b8605Smrg   s = 1.0F/r3[3];             /* now back substitute row 3 */
428848b8605Smrg   r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
429848b8605Smrg
430848b8605Smrg   m2 = r2[3];                 /* now back substitute row 2 */
431848b8605Smrg   s  = 1.0F/r2[2];
432848b8605Smrg   r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
433848b8605Smrg   r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
434848b8605Smrg   m1 = r1[3];
435848b8605Smrg   r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
436848b8605Smrg   r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
437848b8605Smrg   m0 = r0[3];
438848b8605Smrg   r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
439848b8605Smrg   r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
440848b8605Smrg
441848b8605Smrg   m1 = r1[2];                 /* now back substitute row 1 */
442848b8605Smrg   s  = 1.0F/r1[1];
443848b8605Smrg   r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
444848b8605Smrg   r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
445848b8605Smrg   m0 = r0[2];
446848b8605Smrg   r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
447848b8605Smrg   r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
448848b8605Smrg
449848b8605Smrg   m0 = r0[1];                 /* now back substitute row 0 */
450848b8605Smrg   s  = 1.0F/r0[0];
451848b8605Smrg   r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
452848b8605Smrg   r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
453848b8605Smrg
454848b8605Smrg   MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
455848b8605Smrg   MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
456848b8605Smrg   MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
457848b8605Smrg   MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
458848b8605Smrg   MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
459848b8605Smrg   MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
460848b8605Smrg   MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
461848b8605Smrg   MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
462848b8605Smrg
463848b8605Smrg   return GL_TRUE;
464848b8605Smrg}
465848b8605Smrg#undef SWAP_ROWS
466848b8605Smrg
467848b8605Smrg/**
468848b8605Smrg * Compute inverse of a general 3d transformation matrix.
469848b8605Smrg *
470848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be
471848b8605Smrg * stored in the GLmatrix::inv attribute.
472848b8605Smrg *
473848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
474848b8605Smrg *
475848b8605Smrg * \author Adapted from graphics gems II.
476848b8605Smrg *
477848b8605Smrg * Calculates the inverse of the upper left by first calculating its
478848b8605Smrg * determinant and multiplying it to the symmetric adjust matrix of each
479848b8605Smrg * element. Finally deals with the translation part by transforming the
480848b8605Smrg * original translation vector using by the calculated submatrix inverse.
481848b8605Smrg */
482848b8605Smrgstatic GLboolean invert_matrix_3d_general( GLmatrix *mat )
483848b8605Smrg{
484848b8605Smrg   const GLfloat *in = mat->m;
485848b8605Smrg   GLfloat *out = mat->inv;
486848b8605Smrg   GLfloat pos, neg, t;
487848b8605Smrg   GLfloat det;
488848b8605Smrg
489848b8605Smrg   /* Calculate the determinant of upper left 3x3 submatrix and
490848b8605Smrg    * determine if the matrix is singular.
491848b8605Smrg    */
492848b8605Smrg   pos = neg = 0.0;
493848b8605Smrg   t =  MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
494b8e80941Smrg   if (t >= 0.0F) pos += t; else neg += t;
495848b8605Smrg
496848b8605Smrg   t =  MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
497b8e80941Smrg   if (t >= 0.0F) pos += t; else neg += t;
498848b8605Smrg
499848b8605Smrg   t =  MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
500b8e80941Smrg   if (t >= 0.0F) pos += t; else neg += t;
501848b8605Smrg
502848b8605Smrg   t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
503b8e80941Smrg   if (t >= 0.0F) pos += t; else neg += t;
504848b8605Smrg
505848b8605Smrg   t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
506b8e80941Smrg   if (t >= 0.0F) pos += t; else neg += t;
507848b8605Smrg
508848b8605Smrg   t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
509b8e80941Smrg   if (t >= 0.0F) pos += t; else neg += t;
510848b8605Smrg
511848b8605Smrg   det = pos + neg;
512848b8605Smrg
513b8e80941Smrg   if (fabsf(det) < 1e-25F)
514848b8605Smrg      return GL_FALSE;
515848b8605Smrg
516848b8605Smrg   det = 1.0F / det;
517848b8605Smrg   MAT(out,0,0) = (  (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
518848b8605Smrg   MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
519848b8605Smrg   MAT(out,0,2) = (  (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
520848b8605Smrg   MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
521848b8605Smrg   MAT(out,1,1) = (  (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
522848b8605Smrg   MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
523848b8605Smrg   MAT(out,2,0) = (  (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
524848b8605Smrg   MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
525848b8605Smrg   MAT(out,2,2) = (  (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
526848b8605Smrg
527848b8605Smrg   /* Do the translation part */
528848b8605Smrg   MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
529848b8605Smrg		     MAT(in,1,3) * MAT(out,0,1) +
530848b8605Smrg		     MAT(in,2,3) * MAT(out,0,2) );
531848b8605Smrg   MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
532848b8605Smrg		     MAT(in,1,3) * MAT(out,1,1) +
533848b8605Smrg		     MAT(in,2,3) * MAT(out,1,2) );
534848b8605Smrg   MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
535848b8605Smrg		     MAT(in,1,3) * MAT(out,2,1) +
536848b8605Smrg		     MAT(in,2,3) * MAT(out,2,2) );
537848b8605Smrg
538848b8605Smrg   return GL_TRUE;
539848b8605Smrg}
540848b8605Smrg
541848b8605Smrg/**
542848b8605Smrg * Compute inverse of a 3d transformation matrix.
543848b8605Smrg *
544848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be
545848b8605Smrg * stored in the GLmatrix::inv attribute.
546848b8605Smrg *
547848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
548848b8605Smrg *
549848b8605Smrg * If the matrix is not an angle preserving matrix then calls
550848b8605Smrg * invert_matrix_3d_general for the actual calculation. Otherwise calculates
551848b8605Smrg * the inverse matrix analyzing and inverting each of the scaling, rotation and
552848b8605Smrg * translation parts.
553848b8605Smrg */
554848b8605Smrgstatic GLboolean invert_matrix_3d( GLmatrix *mat )
555848b8605Smrg{
556848b8605Smrg   const GLfloat *in = mat->m;
557848b8605Smrg   GLfloat *out = mat->inv;
558848b8605Smrg
559848b8605Smrg   if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
560848b8605Smrg      return invert_matrix_3d_general( mat );
561848b8605Smrg   }
562848b8605Smrg
563848b8605Smrg   if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
564848b8605Smrg      GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
565848b8605Smrg                       MAT(in,0,1) * MAT(in,0,1) +
566848b8605Smrg                       MAT(in,0,2) * MAT(in,0,2));
567848b8605Smrg
568b8e80941Smrg      if (scale == 0.0F)
569848b8605Smrg         return GL_FALSE;
570848b8605Smrg
571848b8605Smrg      scale = 1.0F / scale;
572848b8605Smrg
573848b8605Smrg      /* Transpose and scale the 3 by 3 upper-left submatrix. */
574848b8605Smrg      MAT(out,0,0) = scale * MAT(in,0,0);
575848b8605Smrg      MAT(out,1,0) = scale * MAT(in,0,1);
576848b8605Smrg      MAT(out,2,0) = scale * MAT(in,0,2);
577848b8605Smrg      MAT(out,0,1) = scale * MAT(in,1,0);
578848b8605Smrg      MAT(out,1,1) = scale * MAT(in,1,1);
579848b8605Smrg      MAT(out,2,1) = scale * MAT(in,1,2);
580848b8605Smrg      MAT(out,0,2) = scale * MAT(in,2,0);
581848b8605Smrg      MAT(out,1,2) = scale * MAT(in,2,1);
582848b8605Smrg      MAT(out,2,2) = scale * MAT(in,2,2);
583848b8605Smrg   }
584848b8605Smrg   else if (mat->flags & MAT_FLAG_ROTATION) {
585848b8605Smrg      /* Transpose the 3 by 3 upper-left submatrix. */
586848b8605Smrg      MAT(out,0,0) = MAT(in,0,0);
587848b8605Smrg      MAT(out,1,0) = MAT(in,0,1);
588848b8605Smrg      MAT(out,2,0) = MAT(in,0,2);
589848b8605Smrg      MAT(out,0,1) = MAT(in,1,0);
590848b8605Smrg      MAT(out,1,1) = MAT(in,1,1);
591848b8605Smrg      MAT(out,2,1) = MAT(in,1,2);
592848b8605Smrg      MAT(out,0,2) = MAT(in,2,0);
593848b8605Smrg      MAT(out,1,2) = MAT(in,2,1);
594848b8605Smrg      MAT(out,2,2) = MAT(in,2,2);
595848b8605Smrg   }
596848b8605Smrg   else {
597848b8605Smrg      /* pure translation */
598848b8605Smrg      memcpy( out, Identity, sizeof(Identity) );
599848b8605Smrg      MAT(out,0,3) = - MAT(in,0,3);
600848b8605Smrg      MAT(out,1,3) = - MAT(in,1,3);
601848b8605Smrg      MAT(out,2,3) = - MAT(in,2,3);
602848b8605Smrg      return GL_TRUE;
603848b8605Smrg   }
604848b8605Smrg
605848b8605Smrg   if (mat->flags & MAT_FLAG_TRANSLATION) {
606848b8605Smrg      /* Do the translation part */
607848b8605Smrg      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
608848b8605Smrg			MAT(in,1,3) * MAT(out,0,1) +
609848b8605Smrg			MAT(in,2,3) * MAT(out,0,2) );
610848b8605Smrg      MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
611848b8605Smrg			MAT(in,1,3) * MAT(out,1,1) +
612848b8605Smrg			MAT(in,2,3) * MAT(out,1,2) );
613848b8605Smrg      MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
614848b8605Smrg			MAT(in,1,3) * MAT(out,2,1) +
615848b8605Smrg			MAT(in,2,3) * MAT(out,2,2) );
616848b8605Smrg   }
617848b8605Smrg   else {
618848b8605Smrg      MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
619848b8605Smrg   }
620848b8605Smrg
621848b8605Smrg   return GL_TRUE;
622848b8605Smrg}
623848b8605Smrg
624848b8605Smrg/**
625848b8605Smrg * Compute inverse of an identity transformation matrix.
626848b8605Smrg *
627848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be
628848b8605Smrg * stored in the GLmatrix::inv attribute.
629848b8605Smrg *
630848b8605Smrg * \return always GL_TRUE.
631848b8605Smrg *
632848b8605Smrg * Simply copies Identity into GLmatrix::inv.
633848b8605Smrg */
634848b8605Smrgstatic GLboolean invert_matrix_identity( GLmatrix *mat )
635848b8605Smrg{
636848b8605Smrg   memcpy( mat->inv, Identity, sizeof(Identity) );
637848b8605Smrg   return GL_TRUE;
638848b8605Smrg}
639848b8605Smrg
640848b8605Smrg/**
641848b8605Smrg * Compute inverse of a no-rotation 3d transformation matrix.
642848b8605Smrg *
643848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be
644848b8605Smrg * stored in the GLmatrix::inv attribute.
645848b8605Smrg *
646848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
647848b8605Smrg *
648848b8605Smrg * Calculates the
649848b8605Smrg */
650848b8605Smrgstatic GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
651848b8605Smrg{
652848b8605Smrg   const GLfloat *in = mat->m;
653848b8605Smrg   GLfloat *out = mat->inv;
654848b8605Smrg
655848b8605Smrg   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
656848b8605Smrg      return GL_FALSE;
657848b8605Smrg
658b8e80941Smrg   memcpy( out, Identity, sizeof(Identity) );
659848b8605Smrg   MAT(out,0,0) = 1.0F / MAT(in,0,0);
660848b8605Smrg   MAT(out,1,1) = 1.0F / MAT(in,1,1);
661848b8605Smrg   MAT(out,2,2) = 1.0F / MAT(in,2,2);
662848b8605Smrg
663848b8605Smrg   if (mat->flags & MAT_FLAG_TRANSLATION) {
664848b8605Smrg      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
665848b8605Smrg      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
666848b8605Smrg      MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
667848b8605Smrg   }
668848b8605Smrg
669848b8605Smrg   return GL_TRUE;
670848b8605Smrg}
671848b8605Smrg
672848b8605Smrg/**
673848b8605Smrg * Compute inverse of a no-rotation 2d transformation matrix.
674848b8605Smrg *
675848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be
676848b8605Smrg * stored in the GLmatrix::inv attribute.
677848b8605Smrg *
678848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
679848b8605Smrg *
680848b8605Smrg * Calculates the inverse matrix by applying the inverse scaling and
681848b8605Smrg * translation to the identity matrix.
682848b8605Smrg */
683848b8605Smrgstatic GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
684848b8605Smrg{
685848b8605Smrg   const GLfloat *in = mat->m;
686848b8605Smrg   GLfloat *out = mat->inv;
687848b8605Smrg
688848b8605Smrg   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
689848b8605Smrg      return GL_FALSE;
690848b8605Smrg
691b8e80941Smrg   memcpy( out, Identity, sizeof(Identity) );
692848b8605Smrg   MAT(out,0,0) = 1.0F / MAT(in,0,0);
693848b8605Smrg   MAT(out,1,1) = 1.0F / MAT(in,1,1);
694848b8605Smrg
695848b8605Smrg   if (mat->flags & MAT_FLAG_TRANSLATION) {
696848b8605Smrg      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
697848b8605Smrg      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
698848b8605Smrg   }
699848b8605Smrg
700848b8605Smrg   return GL_TRUE;
701848b8605Smrg}
702848b8605Smrg
703848b8605Smrg#if 0
704848b8605Smrg/* broken */
705848b8605Smrgstatic GLboolean invert_matrix_perspective( GLmatrix *mat )
706848b8605Smrg{
707848b8605Smrg   const GLfloat *in = mat->m;
708848b8605Smrg   GLfloat *out = mat->inv;
709848b8605Smrg
710848b8605Smrg   if (MAT(in,2,3) == 0)
711848b8605Smrg      return GL_FALSE;
712848b8605Smrg
713b8e80941Smrg   memcpy( out, Identity, sizeof(Identity) );
714848b8605Smrg
715848b8605Smrg   MAT(out,0,0) = 1.0F / MAT(in,0,0);
716848b8605Smrg   MAT(out,1,1) = 1.0F / MAT(in,1,1);
717848b8605Smrg
718848b8605Smrg   MAT(out,0,3) = MAT(in,0,2);
719848b8605Smrg   MAT(out,1,3) = MAT(in,1,2);
720848b8605Smrg
721848b8605Smrg   MAT(out,2,2) = 0;
722848b8605Smrg   MAT(out,2,3) = -1;
723848b8605Smrg
724848b8605Smrg   MAT(out,3,2) = 1.0F / MAT(in,2,3);
725848b8605Smrg   MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
726848b8605Smrg
727848b8605Smrg   return GL_TRUE;
728848b8605Smrg}
729848b8605Smrg#endif
730848b8605Smrg
731848b8605Smrg/**
732848b8605Smrg * Matrix inversion function pointer type.
733848b8605Smrg */
734848b8605Smrgtypedef GLboolean (*inv_mat_func)( GLmatrix *mat );
735848b8605Smrg
736848b8605Smrg/**
737848b8605Smrg * Table of the matrix inversion functions according to the matrix type.
738848b8605Smrg */
739848b8605Smrgstatic inv_mat_func inv_mat_tab[7] = {
740848b8605Smrg   invert_matrix_general,
741848b8605Smrg   invert_matrix_identity,
742848b8605Smrg   invert_matrix_3d_no_rot,
743848b8605Smrg#if 0
744848b8605Smrg   /* Don't use this function for now - it fails when the projection matrix
745848b8605Smrg    * is premultiplied by a translation (ala Chromium's tilesort SPU).
746848b8605Smrg    */
747848b8605Smrg   invert_matrix_perspective,
748848b8605Smrg#else
749848b8605Smrg   invert_matrix_general,
750848b8605Smrg#endif
751848b8605Smrg   invert_matrix_3d,		/* lazy! */
752848b8605Smrg   invert_matrix_2d_no_rot,
753848b8605Smrg   invert_matrix_3d
754848b8605Smrg};
755848b8605Smrg
756848b8605Smrg/**
757848b8605Smrg * Compute inverse of a transformation matrix.
758848b8605Smrg *
759848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be
760848b8605Smrg * stored in the GLmatrix::inv attribute.
761848b8605Smrg *
762848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
763848b8605Smrg *
764848b8605Smrg * Calls the matrix inversion function in inv_mat_tab corresponding to the
765848b8605Smrg * given matrix type.  In case of failure, updates the MAT_FLAG_SINGULAR flag,
766848b8605Smrg * and copies the identity matrix into GLmatrix::inv.
767848b8605Smrg */
768848b8605Smrgstatic GLboolean matrix_invert( GLmatrix *mat )
769848b8605Smrg{
770848b8605Smrg   if (inv_mat_tab[mat->type](mat)) {
771848b8605Smrg      mat->flags &= ~MAT_FLAG_SINGULAR;
772848b8605Smrg      return GL_TRUE;
773848b8605Smrg   } else {
774848b8605Smrg      mat->flags |= MAT_FLAG_SINGULAR;
775848b8605Smrg      memcpy( mat->inv, Identity, sizeof(Identity) );
776848b8605Smrg      return GL_FALSE;
777848b8605Smrg   }
778848b8605Smrg}
779848b8605Smrg
780848b8605Smrg/*@}*/
781848b8605Smrg
782848b8605Smrg
783848b8605Smrg/**********************************************************************/
784848b8605Smrg/** \name Matrix generation */
785848b8605Smrg/*@{*/
786848b8605Smrg
787848b8605Smrg/**
788848b8605Smrg * Generate a 4x4 transformation matrix from glRotate parameters, and
789848b8605Smrg * post-multiply the input matrix by it.
790848b8605Smrg *
791848b8605Smrg * \author
792848b8605Smrg * This function was contributed by Erich Boleyn (erich@uruk.org).
793848b8605Smrg * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
794848b8605Smrg */
795848b8605Smrgvoid
796848b8605Smrg_math_matrix_rotate( GLmatrix *mat,
797848b8605Smrg		     GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
798848b8605Smrg{
799848b8605Smrg   GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
800848b8605Smrg   GLfloat m[16];
801848b8605Smrg   GLboolean optimized;
802848b8605Smrg
803b8e80941Smrg   s = sinf( angle * M_PI / 180.0 );
804b8e80941Smrg   c = cosf( angle * M_PI / 180.0 );
805848b8605Smrg
806b8e80941Smrg   memcpy(m, Identity, sizeof(Identity));
807848b8605Smrg   optimized = GL_FALSE;
808848b8605Smrg
809848b8605Smrg#define M(row,col)  m[col*4+row]
810848b8605Smrg
811848b8605Smrg   if (x == 0.0F) {
812848b8605Smrg      if (y == 0.0F) {
813848b8605Smrg         if (z != 0.0F) {
814848b8605Smrg            optimized = GL_TRUE;
815848b8605Smrg            /* rotate only around z-axis */
816848b8605Smrg            M(0,0) = c;
817848b8605Smrg            M(1,1) = c;
818848b8605Smrg            if (z < 0.0F) {
819848b8605Smrg               M(0,1) = s;
820848b8605Smrg               M(1,0) = -s;
821848b8605Smrg            }
822848b8605Smrg            else {
823848b8605Smrg               M(0,1) = -s;
824848b8605Smrg               M(1,0) = s;
825848b8605Smrg            }
826848b8605Smrg         }
827848b8605Smrg      }
828848b8605Smrg      else if (z == 0.0F) {
829848b8605Smrg         optimized = GL_TRUE;
830848b8605Smrg         /* rotate only around y-axis */
831848b8605Smrg         M(0,0) = c;
832848b8605Smrg         M(2,2) = c;
833848b8605Smrg         if (y < 0.0F) {
834848b8605Smrg            M(0,2) = -s;
835848b8605Smrg            M(2,0) = s;
836848b8605Smrg         }
837848b8605Smrg         else {
838848b8605Smrg            M(0,2) = s;
839848b8605Smrg            M(2,0) = -s;
840848b8605Smrg         }
841848b8605Smrg      }
842848b8605Smrg   }
843848b8605Smrg   else if (y == 0.0F) {
844848b8605Smrg      if (z == 0.0F) {
845848b8605Smrg         optimized = GL_TRUE;
846848b8605Smrg         /* rotate only around x-axis */
847848b8605Smrg         M(1,1) = c;
848848b8605Smrg         M(2,2) = c;
849848b8605Smrg         if (x < 0.0F) {
850848b8605Smrg            M(1,2) = s;
851848b8605Smrg            M(2,1) = -s;
852848b8605Smrg         }
853848b8605Smrg         else {
854848b8605Smrg            M(1,2) = -s;
855848b8605Smrg            M(2,1) = s;
856848b8605Smrg         }
857848b8605Smrg      }
858848b8605Smrg   }
859848b8605Smrg
860848b8605Smrg   if (!optimized) {
861848b8605Smrg      const GLfloat mag = sqrtf(x * x + y * y + z * z);
862848b8605Smrg
863b8e80941Smrg      if (mag <= 1.0e-4F) {
864848b8605Smrg         /* no rotation, leave mat as-is */
865848b8605Smrg         return;
866848b8605Smrg      }
867848b8605Smrg
868848b8605Smrg      x /= mag;
869848b8605Smrg      y /= mag;
870848b8605Smrg      z /= mag;
871848b8605Smrg
872848b8605Smrg
873848b8605Smrg      /*
874848b8605Smrg       *     Arbitrary axis rotation matrix.
875848b8605Smrg       *
876848b8605Smrg       *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
877848b8605Smrg       *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
878848b8605Smrg       *  (which is about the X-axis), and the two composite transforms
879848b8605Smrg       *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
880848b8605Smrg       *  from the arbitrary axis to the X-axis then back.  They are
881848b8605Smrg       *  all elementary rotations.
882848b8605Smrg       *
883848b8605Smrg       *  Rz' is a rotation about the Z-axis, to bring the axis vector
884848b8605Smrg       *  into the x-z plane.  Then Ry' is applied, rotating about the
885848b8605Smrg       *  Y-axis to bring the axis vector parallel with the X-axis.  The
886848b8605Smrg       *  rotation about the X-axis is then performed.  Ry and Rz are
887848b8605Smrg       *  simply the respective inverse transforms to bring the arbitrary
888848b8605Smrg       *  axis back to its original orientation.  The first transforms
889848b8605Smrg       *  Rz' and Ry' are considered inverses, since the data from the
890848b8605Smrg       *  arbitrary axis gives you info on how to get to it, not how
891848b8605Smrg       *  to get away from it, and an inverse must be applied.
892848b8605Smrg       *
893848b8605Smrg       *  The basic calculation used is to recognize that the arbitrary
894848b8605Smrg       *  axis vector (x, y, z), since it is of unit length, actually
895848b8605Smrg       *  represents the sines and cosines of the angles to rotate the
896848b8605Smrg       *  X-axis to the same orientation, with theta being the angle about
897848b8605Smrg       *  Z and phi the angle about Y (in the order described above)
898848b8605Smrg       *  as follows:
899848b8605Smrg       *
900848b8605Smrg       *  cos ( theta ) = x / sqrt ( 1 - z^2 )
901848b8605Smrg       *  sin ( theta ) = y / sqrt ( 1 - z^2 )
902848b8605Smrg       *
903848b8605Smrg       *  cos ( phi ) = sqrt ( 1 - z^2 )
904848b8605Smrg       *  sin ( phi ) = z
905848b8605Smrg       *
906848b8605Smrg       *  Note that cos ( phi ) can further be inserted to the above
907848b8605Smrg       *  formulas:
908848b8605Smrg       *
909848b8605Smrg       *  cos ( theta ) = x / cos ( phi )
910848b8605Smrg       *  sin ( theta ) = y / sin ( phi )
911848b8605Smrg       *
912848b8605Smrg       *  ...etc.  Because of those relations and the standard trigonometric
913848b8605Smrg       *  relations, it is pssible to reduce the transforms down to what
914848b8605Smrg       *  is used below.  It may be that any primary axis chosen will give the
915848b8605Smrg       *  same results (modulo a sign convention) using thie method.
916848b8605Smrg       *
917848b8605Smrg       *  Particularly nice is to notice that all divisions that might
918848b8605Smrg       *  have caused trouble when parallel to certain planes or
919848b8605Smrg       *  axis go away with care paid to reducing the expressions.
920848b8605Smrg       *  After checking, it does perform correctly under all cases, since
921848b8605Smrg       *  in all the cases of division where the denominator would have
922848b8605Smrg       *  been zero, the numerator would have been zero as well, giving
923848b8605Smrg       *  the expected result.
924848b8605Smrg       */
925848b8605Smrg
926848b8605Smrg      xx = x * x;
927848b8605Smrg      yy = y * y;
928848b8605Smrg      zz = z * z;
929848b8605Smrg      xy = x * y;
930848b8605Smrg      yz = y * z;
931848b8605Smrg      zx = z * x;
932848b8605Smrg      xs = x * s;
933848b8605Smrg      ys = y * s;
934848b8605Smrg      zs = z * s;
935848b8605Smrg      one_c = 1.0F - c;
936848b8605Smrg
937848b8605Smrg      /* We already hold the identity-matrix so we can skip some statements */
938848b8605Smrg      M(0,0) = (one_c * xx) + c;
939848b8605Smrg      M(0,1) = (one_c * xy) - zs;
940848b8605Smrg      M(0,2) = (one_c * zx) + ys;
941848b8605Smrg/*    M(0,3) = 0.0F; */
942848b8605Smrg
943848b8605Smrg      M(1,0) = (one_c * xy) + zs;
944848b8605Smrg      M(1,1) = (one_c * yy) + c;
945848b8605Smrg      M(1,2) = (one_c * yz) - xs;
946848b8605Smrg/*    M(1,3) = 0.0F; */
947848b8605Smrg
948848b8605Smrg      M(2,0) = (one_c * zx) - ys;
949848b8605Smrg      M(2,1) = (one_c * yz) + xs;
950848b8605Smrg      M(2,2) = (one_c * zz) + c;
951848b8605Smrg/*    M(2,3) = 0.0F; */
952848b8605Smrg
953848b8605Smrg/*
954848b8605Smrg      M(3,0) = 0.0F;
955848b8605Smrg      M(3,1) = 0.0F;
956848b8605Smrg      M(3,2) = 0.0F;
957848b8605Smrg      M(3,3) = 1.0F;
958848b8605Smrg*/
959848b8605Smrg   }
960848b8605Smrg#undef M
961848b8605Smrg
962848b8605Smrg   matrix_multf( mat, m, MAT_FLAG_ROTATION );
963848b8605Smrg}
964848b8605Smrg
965848b8605Smrg/**
966848b8605Smrg * Apply a perspective projection matrix.
967848b8605Smrg *
968848b8605Smrg * \param mat matrix to apply the projection.
969848b8605Smrg * \param left left clipping plane coordinate.
970848b8605Smrg * \param right right clipping plane coordinate.
971848b8605Smrg * \param bottom bottom clipping plane coordinate.
972848b8605Smrg * \param top top clipping plane coordinate.
973848b8605Smrg * \param nearval distance to the near clipping plane.
974848b8605Smrg * \param farval distance to the far clipping plane.
975848b8605Smrg *
976848b8605Smrg * Creates the projection matrix and multiplies it with \p mat, marking the
977848b8605Smrg * MAT_FLAG_PERSPECTIVE flag.
978848b8605Smrg */
979848b8605Smrgvoid
980848b8605Smrg_math_matrix_frustum( GLmatrix *mat,
981848b8605Smrg		      GLfloat left, GLfloat right,
982848b8605Smrg		      GLfloat bottom, GLfloat top,
983848b8605Smrg		      GLfloat nearval, GLfloat farval )
984848b8605Smrg{
985848b8605Smrg   GLfloat x, y, a, b, c, d;
986848b8605Smrg   GLfloat m[16];
987848b8605Smrg
988848b8605Smrg   x = (2.0F*nearval) / (right-left);
989848b8605Smrg   y = (2.0F*nearval) / (top-bottom);
990848b8605Smrg   a = (right+left) / (right-left);
991848b8605Smrg   b = (top+bottom) / (top-bottom);
992848b8605Smrg   c = -(farval+nearval) / ( farval-nearval);
993848b8605Smrg   d = -(2.0F*farval*nearval) / (farval-nearval);  /* error? */
994848b8605Smrg
995848b8605Smrg#define M(row,col)  m[col*4+row]
996848b8605Smrg   M(0,0) = x;     M(0,1) = 0.0F;  M(0,2) = a;      M(0,3) = 0.0F;
997848b8605Smrg   M(1,0) = 0.0F;  M(1,1) = y;     M(1,2) = b;      M(1,3) = 0.0F;
998848b8605Smrg   M(2,0) = 0.0F;  M(2,1) = 0.0F;  M(2,2) = c;      M(2,3) = d;
999848b8605Smrg   M(3,0) = 0.0F;  M(3,1) = 0.0F;  M(3,2) = -1.0F;  M(3,3) = 0.0F;
1000848b8605Smrg#undef M
1001848b8605Smrg
1002848b8605Smrg   matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
1003848b8605Smrg}
1004848b8605Smrg
1005848b8605Smrg/**
1006848b8605Smrg * Apply an orthographic projection matrix.
1007848b8605Smrg *
1008848b8605Smrg * \param mat matrix to apply the projection.
1009848b8605Smrg * \param left left clipping plane coordinate.
1010848b8605Smrg * \param right right clipping plane coordinate.
1011848b8605Smrg * \param bottom bottom clipping plane coordinate.
1012848b8605Smrg * \param top top clipping plane coordinate.
1013848b8605Smrg * \param nearval distance to the near clipping plane.
1014848b8605Smrg * \param farval distance to the far clipping plane.
1015848b8605Smrg *
1016848b8605Smrg * Creates the projection matrix and multiplies it with \p mat, marking the
1017848b8605Smrg * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
1018848b8605Smrg */
1019848b8605Smrgvoid
1020848b8605Smrg_math_matrix_ortho( GLmatrix *mat,
1021848b8605Smrg		    GLfloat left, GLfloat right,
1022848b8605Smrg		    GLfloat bottom, GLfloat top,
1023848b8605Smrg		    GLfloat nearval, GLfloat farval )
1024848b8605Smrg{
1025848b8605Smrg   GLfloat m[16];
1026848b8605Smrg
1027848b8605Smrg#define M(row,col)  m[col*4+row]
1028848b8605Smrg   M(0,0) = 2.0F / (right-left);
1029848b8605Smrg   M(0,1) = 0.0F;
1030848b8605Smrg   M(0,2) = 0.0F;
1031848b8605Smrg   M(0,3) = -(right+left) / (right-left);
1032848b8605Smrg
1033848b8605Smrg   M(1,0) = 0.0F;
1034848b8605Smrg   M(1,1) = 2.0F / (top-bottom);
1035848b8605Smrg   M(1,2) = 0.0F;
1036848b8605Smrg   M(1,3) = -(top+bottom) / (top-bottom);
1037848b8605Smrg
1038848b8605Smrg   M(2,0) = 0.0F;
1039848b8605Smrg   M(2,1) = 0.0F;
1040848b8605Smrg   M(2,2) = -2.0F / (farval-nearval);
1041848b8605Smrg   M(2,3) = -(farval+nearval) / (farval-nearval);
1042848b8605Smrg
1043848b8605Smrg   M(3,0) = 0.0F;
1044848b8605Smrg   M(3,1) = 0.0F;
1045848b8605Smrg   M(3,2) = 0.0F;
1046848b8605Smrg   M(3,3) = 1.0F;
1047848b8605Smrg#undef M
1048848b8605Smrg
1049848b8605Smrg   matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
1050848b8605Smrg}
1051848b8605Smrg
1052848b8605Smrg/**
1053848b8605Smrg * Multiply a matrix with a general scaling matrix.
1054848b8605Smrg *
1055848b8605Smrg * \param mat matrix.
1056848b8605Smrg * \param x x axis scale factor.
1057848b8605Smrg * \param y y axis scale factor.
1058848b8605Smrg * \param z z axis scale factor.
1059848b8605Smrg *
1060848b8605Smrg * Multiplies in-place the elements of \p mat by the scale factors. Checks if
1061848b8605Smrg * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
1062848b8605Smrg * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
1063848b8605Smrg * MAT_DIRTY_INVERSE dirty flags.
1064848b8605Smrg */
1065848b8605Smrgvoid
1066848b8605Smrg_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1067848b8605Smrg{
1068848b8605Smrg   GLfloat *m = mat->m;
1069848b8605Smrg   m[0] *= x;   m[4] *= y;   m[8]  *= z;
1070848b8605Smrg   m[1] *= x;   m[5] *= y;   m[9]  *= z;
1071848b8605Smrg   m[2] *= x;   m[6] *= y;   m[10] *= z;
1072848b8605Smrg   m[3] *= x;   m[7] *= y;   m[11] *= z;
1073848b8605Smrg
1074b8e80941Smrg   if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F)
1075848b8605Smrg      mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1076848b8605Smrg   else
1077848b8605Smrg      mat->flags |= MAT_FLAG_GENERAL_SCALE;
1078848b8605Smrg
1079848b8605Smrg   mat->flags |= (MAT_DIRTY_TYPE |
1080848b8605Smrg		  MAT_DIRTY_INVERSE);
1081848b8605Smrg}
1082848b8605Smrg
1083848b8605Smrg/**
1084848b8605Smrg * Multiply a matrix with a translation matrix.
1085848b8605Smrg *
1086848b8605Smrg * \param mat matrix.
1087848b8605Smrg * \param x translation vector x coordinate.
1088848b8605Smrg * \param y translation vector y coordinate.
1089848b8605Smrg * \param z translation vector z coordinate.
1090848b8605Smrg *
1091848b8605Smrg * Adds the translation coordinates to the elements of \p mat in-place.  Marks
1092848b8605Smrg * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1093848b8605Smrg * dirty flags.
1094848b8605Smrg */
1095848b8605Smrgvoid
1096848b8605Smrg_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1097848b8605Smrg{
1098848b8605Smrg   GLfloat *m = mat->m;
1099848b8605Smrg   m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
1100848b8605Smrg   m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
1101848b8605Smrg   m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1102848b8605Smrg   m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1103848b8605Smrg
1104848b8605Smrg   mat->flags |= (MAT_FLAG_TRANSLATION |
1105848b8605Smrg		  MAT_DIRTY_TYPE |
1106848b8605Smrg		  MAT_DIRTY_INVERSE);
1107848b8605Smrg}
1108848b8605Smrg
1109848b8605Smrg
1110848b8605Smrg/**
1111848b8605Smrg * Set matrix to do viewport and depthrange mapping.
1112848b8605Smrg * Transforms Normalized Device Coords to window/Z values.
1113848b8605Smrg */
1114848b8605Smrgvoid
1115b8e80941Smrg_math_matrix_viewport(GLmatrix *m, const float scale[3],
1116b8e80941Smrg                      const float translate[3], double depthMax)
1117848b8605Smrg{
1118b8e80941Smrg   m->m[MAT_SX] = scale[0];
1119b8e80941Smrg   m->m[MAT_TX] = translate[0];
1120b8e80941Smrg   m->m[MAT_SY] = scale[1];
1121b8e80941Smrg   m->m[MAT_TY] = translate[1];
1122b8e80941Smrg   m->m[MAT_SZ] = depthMax*scale[2];
1123b8e80941Smrg   m->m[MAT_TZ] = depthMax*translate[2];
1124848b8605Smrg   m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1125848b8605Smrg   m->type = MATRIX_3D_NO_ROT;
1126848b8605Smrg}
1127848b8605Smrg
1128848b8605Smrg
1129848b8605Smrg/**
1130848b8605Smrg * Set a matrix to the identity matrix.
1131848b8605Smrg *
1132848b8605Smrg * \param mat matrix.
1133848b8605Smrg *
1134848b8605Smrg * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1135848b8605Smrg * Sets the matrix type to identity, and clear the dirty flags.
1136848b8605Smrg */
1137848b8605Smrgvoid
1138848b8605Smrg_math_matrix_set_identity( GLmatrix *mat )
1139848b8605Smrg{
1140b8e80941Smrg   memcpy( mat->m, Identity, sizeof(Identity) );
1141b8e80941Smrg   memcpy( mat->inv, Identity, sizeof(Identity) );
1142848b8605Smrg
1143848b8605Smrg   mat->type = MATRIX_IDENTITY;
1144848b8605Smrg   mat->flags &= ~(MAT_DIRTY_FLAGS|
1145848b8605Smrg		   MAT_DIRTY_TYPE|
1146848b8605Smrg		   MAT_DIRTY_INVERSE);
1147848b8605Smrg}
1148848b8605Smrg
1149848b8605Smrg/*@}*/
1150848b8605Smrg
1151848b8605Smrg
1152848b8605Smrg/**********************************************************************/
1153848b8605Smrg/** \name Matrix analysis */
1154848b8605Smrg/*@{*/
1155848b8605Smrg
1156848b8605Smrg#define ZERO(x) (1<<x)
1157848b8605Smrg#define ONE(x)  (1<<(x+16))
1158848b8605Smrg
1159848b8605Smrg#define MASK_NO_TRX      (ZERO(12) | ZERO(13) | ZERO(14))
1160848b8605Smrg#define MASK_NO_2D_SCALE ( ONE(0)  | ONE(5))
1161848b8605Smrg
1162848b8605Smrg#define MASK_IDENTITY    ( ONE(0)  | ZERO(4)  | ZERO(8)  | ZERO(12) |\
1163848b8605Smrg			  ZERO(1)  |  ONE(5)  | ZERO(9)  | ZERO(13) |\
1164848b8605Smrg			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1165848b8605Smrg			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1166848b8605Smrg
1167848b8605Smrg#define MASK_2D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1168848b8605Smrg			  ZERO(1)  |            ZERO(9)  |           \
1169848b8605Smrg			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1170848b8605Smrg			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1171848b8605Smrg
1172848b8605Smrg#define MASK_2D          (                      ZERO(8)  |           \
1173848b8605Smrg			                        ZERO(9)  |           \
1174848b8605Smrg			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1175848b8605Smrg			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1176848b8605Smrg
1177848b8605Smrg
1178848b8605Smrg#define MASK_3D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1179848b8605Smrg			  ZERO(1)  |            ZERO(9)  |           \
1180848b8605Smrg			  ZERO(2)  | ZERO(6)  |                      \
1181848b8605Smrg			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1182848b8605Smrg
1183848b8605Smrg#define MASK_3D          (                                           \
1184848b8605Smrg			                                             \
1185848b8605Smrg			                                             \
1186848b8605Smrg			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1187848b8605Smrg
1188848b8605Smrg
1189848b8605Smrg#define MASK_PERSPECTIVE (           ZERO(4)  |            ZERO(12) |\
1190848b8605Smrg			  ZERO(1)  |                       ZERO(13) |\
1191848b8605Smrg			  ZERO(2)  | ZERO(6)  |                      \
1192848b8605Smrg			  ZERO(3)  | ZERO(7)  |            ZERO(15) )
1193848b8605Smrg
1194848b8605Smrg#define SQ(x) ((x)*(x))
1195848b8605Smrg
1196848b8605Smrg/**
1197848b8605Smrg * Determine type and flags from scratch.
1198848b8605Smrg *
1199848b8605Smrg * \param mat matrix.
1200848b8605Smrg *
1201848b8605Smrg * This is expensive enough to only want to do it once.
1202848b8605Smrg */
1203848b8605Smrgstatic void analyse_from_scratch( GLmatrix *mat )
1204848b8605Smrg{
1205848b8605Smrg   const GLfloat *m = mat->m;
1206848b8605Smrg   GLuint mask = 0;
1207848b8605Smrg   GLuint i;
1208848b8605Smrg
1209848b8605Smrg   for (i = 0 ; i < 16 ; i++) {
1210b8e80941Smrg      if (m[i] == 0.0F) mask |= (1<<i);
1211848b8605Smrg   }
1212848b8605Smrg
1213848b8605Smrg   if (m[0] == 1.0F) mask |= (1<<16);
1214848b8605Smrg   if (m[5] == 1.0F) mask |= (1<<21);
1215848b8605Smrg   if (m[10] == 1.0F) mask |= (1<<26);
1216848b8605Smrg   if (m[15] == 1.0F) mask |= (1<<31);
1217848b8605Smrg
1218848b8605Smrg   mat->flags &= ~MAT_FLAGS_GEOMETRY;
1219848b8605Smrg
1220848b8605Smrg   /* Check for translation - no-one really cares
1221848b8605Smrg    */
1222848b8605Smrg   if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1223848b8605Smrg      mat->flags |= MAT_FLAG_TRANSLATION;
1224848b8605Smrg
1225848b8605Smrg   /* Do the real work
1226848b8605Smrg    */
1227848b8605Smrg   if (mask == (GLuint) MASK_IDENTITY) {
1228848b8605Smrg      mat->type = MATRIX_IDENTITY;
1229848b8605Smrg   }
1230848b8605Smrg   else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1231848b8605Smrg      mat->type = MATRIX_2D_NO_ROT;
1232848b8605Smrg
1233848b8605Smrg      if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1234848b8605Smrg	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1235848b8605Smrg   }
1236848b8605Smrg   else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1237848b8605Smrg      GLfloat mm = DOT2(m, m);
1238848b8605Smrg      GLfloat m4m4 = DOT2(m+4,m+4);
1239848b8605Smrg      GLfloat mm4 = DOT2(m,m+4);
1240848b8605Smrg
1241848b8605Smrg      mat->type = MATRIX_2D;
1242848b8605Smrg
1243848b8605Smrg      /* Check for scale */
1244b8e80941Smrg      if (SQ(mm-1) > SQ(1e-6F) ||
1245b8e80941Smrg	  SQ(m4m4-1) > SQ(1e-6F))
1246848b8605Smrg	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1247848b8605Smrg
1248848b8605Smrg      /* Check for rotation */
1249b8e80941Smrg      if (SQ(mm4) > SQ(1e-6F))
1250848b8605Smrg	 mat->flags |= MAT_FLAG_GENERAL_3D;
1251848b8605Smrg      else
1252848b8605Smrg	 mat->flags |= MAT_FLAG_ROTATION;
1253848b8605Smrg
1254848b8605Smrg   }
1255848b8605Smrg   else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1256848b8605Smrg      mat->type = MATRIX_3D_NO_ROT;
1257848b8605Smrg
1258848b8605Smrg      /* Check for scale */
1259b8e80941Smrg      if (SQ(m[0]-m[5]) < SQ(1e-6F) &&
1260b8e80941Smrg	  SQ(m[0]-m[10]) < SQ(1e-6F)) {
1261b8e80941Smrg	 if (SQ(m[0]-1.0F) > SQ(1e-6F)) {
1262848b8605Smrg	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1263848b8605Smrg         }
1264848b8605Smrg      }
1265848b8605Smrg      else {
1266848b8605Smrg	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1267848b8605Smrg      }
1268848b8605Smrg   }
1269848b8605Smrg   else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1270848b8605Smrg      GLfloat c1 = DOT3(m,m);
1271848b8605Smrg      GLfloat c2 = DOT3(m+4,m+4);
1272848b8605Smrg      GLfloat c3 = DOT3(m+8,m+8);
1273848b8605Smrg      GLfloat d1 = DOT3(m, m+4);
1274848b8605Smrg      GLfloat cp[3];
1275848b8605Smrg
1276848b8605Smrg      mat->type = MATRIX_3D;
1277848b8605Smrg
1278848b8605Smrg      /* Check for scale */
1279b8e80941Smrg      if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) {
1280b8e80941Smrg	 if (SQ(c1-1.0F) > SQ(1e-6F))
1281848b8605Smrg	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1282848b8605Smrg	 /* else no scale at all */
1283848b8605Smrg      }
1284848b8605Smrg      else {
1285848b8605Smrg	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1286848b8605Smrg      }
1287848b8605Smrg
1288848b8605Smrg      /* Check for rotation */
1289b8e80941Smrg      if (SQ(d1) < SQ(1e-6F)) {
1290848b8605Smrg	 CROSS3( cp, m, m+4 );
1291848b8605Smrg	 SUB_3V( cp, cp, (m+8) );
1292b8e80941Smrg	 if (LEN_SQUARED_3FV(cp) < SQ(1e-6F))
1293848b8605Smrg	    mat->flags |= MAT_FLAG_ROTATION;
1294848b8605Smrg	 else
1295848b8605Smrg	    mat->flags |= MAT_FLAG_GENERAL_3D;
1296848b8605Smrg      }
1297848b8605Smrg      else {
1298848b8605Smrg	 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1299848b8605Smrg      }
1300848b8605Smrg   }
1301848b8605Smrg   else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1302848b8605Smrg      mat->type = MATRIX_PERSPECTIVE;
1303848b8605Smrg      mat->flags |= MAT_FLAG_GENERAL;
1304848b8605Smrg   }
1305848b8605Smrg   else {
1306848b8605Smrg      mat->type = MATRIX_GENERAL;
1307848b8605Smrg      mat->flags |= MAT_FLAG_GENERAL;
1308848b8605Smrg   }
1309848b8605Smrg}
1310848b8605Smrg
1311848b8605Smrg/**
1312848b8605Smrg * Analyze a matrix given that its flags are accurate.
1313848b8605Smrg *
1314848b8605Smrg * This is the more common operation, hopefully.
1315848b8605Smrg */
1316848b8605Smrgstatic void analyse_from_flags( GLmatrix *mat )
1317848b8605Smrg{
1318848b8605Smrg   const GLfloat *m = mat->m;
1319848b8605Smrg
1320848b8605Smrg   if (TEST_MAT_FLAGS(mat, 0)) {
1321848b8605Smrg      mat->type = MATRIX_IDENTITY;
1322848b8605Smrg   }
1323848b8605Smrg   else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1324848b8605Smrg				 MAT_FLAG_UNIFORM_SCALE |
1325848b8605Smrg				 MAT_FLAG_GENERAL_SCALE))) {
1326848b8605Smrg      if ( m[10]==1.0F && m[14]==0.0F ) {
1327848b8605Smrg	 mat->type = MATRIX_2D_NO_ROT;
1328848b8605Smrg      }
1329848b8605Smrg      else {
1330848b8605Smrg	 mat->type = MATRIX_3D_NO_ROT;
1331848b8605Smrg      }
1332848b8605Smrg   }
1333848b8605Smrg   else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1334848b8605Smrg      if (                                 m[ 8]==0.0F
1335848b8605Smrg            &&                             m[ 9]==0.0F
1336848b8605Smrg            && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1337848b8605Smrg	 mat->type = MATRIX_2D;
1338848b8605Smrg      }
1339848b8605Smrg      else {
1340848b8605Smrg	 mat->type = MATRIX_3D;
1341848b8605Smrg      }
1342848b8605Smrg   }
1343848b8605Smrg   else if (                 m[4]==0.0F                 && m[12]==0.0F
1344848b8605Smrg            && m[1]==0.0F                               && m[13]==0.0F
1345848b8605Smrg            && m[2]==0.0F && m[6]==0.0F
1346848b8605Smrg            && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1347848b8605Smrg      mat->type = MATRIX_PERSPECTIVE;
1348848b8605Smrg   }
1349848b8605Smrg   else {
1350848b8605Smrg      mat->type = MATRIX_GENERAL;
1351848b8605Smrg   }
1352848b8605Smrg}
1353848b8605Smrg
1354848b8605Smrg/**
1355848b8605Smrg * Analyze and update a matrix.
1356848b8605Smrg *
1357848b8605Smrg * \param mat matrix.
1358848b8605Smrg *
1359848b8605Smrg * If the matrix type is dirty then calls either analyse_from_scratch() or
1360848b8605Smrg * analyse_from_flags() to determine its type, according to whether the flags
1361848b8605Smrg * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1362848b8605Smrg * then calls matrix_invert(). Finally clears the dirty flags.
1363848b8605Smrg */
1364848b8605Smrgvoid
1365848b8605Smrg_math_matrix_analyse( GLmatrix *mat )
1366848b8605Smrg{
1367848b8605Smrg   if (mat->flags & MAT_DIRTY_TYPE) {
1368848b8605Smrg      if (mat->flags & MAT_DIRTY_FLAGS)
1369848b8605Smrg	 analyse_from_scratch( mat );
1370848b8605Smrg      else
1371848b8605Smrg	 analyse_from_flags( mat );
1372848b8605Smrg   }
1373848b8605Smrg
1374848b8605Smrg   if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
1375848b8605Smrg      matrix_invert( mat );
1376848b8605Smrg      mat->flags &= ~MAT_DIRTY_INVERSE;
1377848b8605Smrg   }
1378848b8605Smrg
1379848b8605Smrg   mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1380848b8605Smrg}
1381848b8605Smrg
1382848b8605Smrg/*@}*/
1383848b8605Smrg
1384848b8605Smrg
1385848b8605Smrg/**
1386848b8605Smrg * Test if the given matrix preserves vector lengths.
1387848b8605Smrg */
1388848b8605SmrgGLboolean
1389848b8605Smrg_math_matrix_is_length_preserving( const GLmatrix *m )
1390848b8605Smrg{
1391848b8605Smrg   return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1392848b8605Smrg}
1393848b8605Smrg
1394848b8605Smrg
1395848b8605Smrg/**
1396848b8605Smrg * Test if the given matrix does any rotation.
1397848b8605Smrg * (or perhaps if the upper-left 3x3 is non-identity)
1398848b8605Smrg */
1399848b8605SmrgGLboolean
1400848b8605Smrg_math_matrix_has_rotation( const GLmatrix *m )
1401848b8605Smrg{
1402848b8605Smrg   if (m->flags & (MAT_FLAG_GENERAL |
1403848b8605Smrg                   MAT_FLAG_ROTATION |
1404848b8605Smrg                   MAT_FLAG_GENERAL_3D |
1405848b8605Smrg                   MAT_FLAG_PERSPECTIVE))
1406848b8605Smrg      return GL_TRUE;
1407848b8605Smrg   else
1408848b8605Smrg      return GL_FALSE;
1409848b8605Smrg}
1410848b8605Smrg
1411848b8605Smrg
1412848b8605SmrgGLboolean
1413848b8605Smrg_math_matrix_is_general_scale( const GLmatrix *m )
1414848b8605Smrg{
1415848b8605Smrg   return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1416848b8605Smrg}
1417848b8605Smrg
1418848b8605Smrg
1419848b8605SmrgGLboolean
1420848b8605Smrg_math_matrix_is_dirty( const GLmatrix *m )
1421848b8605Smrg{
1422848b8605Smrg   return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1423848b8605Smrg}
1424848b8605Smrg
1425848b8605Smrg
1426848b8605Smrg/**********************************************************************/
1427848b8605Smrg/** \name Matrix setup */
1428848b8605Smrg/*@{*/
1429848b8605Smrg
1430848b8605Smrg/**
1431848b8605Smrg * Copy a matrix.
1432848b8605Smrg *
1433848b8605Smrg * \param to destination matrix.
1434848b8605Smrg * \param from source matrix.
1435848b8605Smrg *
1436848b8605Smrg * Copies all fields in GLmatrix, creating an inverse array if necessary.
1437848b8605Smrg */
1438848b8605Smrgvoid
1439848b8605Smrg_math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1440848b8605Smrg{
1441b8e80941Smrg   memcpy(to->m, from->m, 16 * sizeof(GLfloat));
1442848b8605Smrg   memcpy(to->inv, from->inv, 16 * sizeof(GLfloat));
1443848b8605Smrg   to->flags = from->flags;
1444848b8605Smrg   to->type = from->type;
1445848b8605Smrg}
1446848b8605Smrg
1447848b8605Smrg/**
1448848b8605Smrg * Loads a matrix array into GLmatrix.
1449848b8605Smrg *
1450848b8605Smrg * \param m matrix array.
1451848b8605Smrg * \param mat matrix.
1452848b8605Smrg *
1453848b8605Smrg * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1454848b8605Smrg * flags.
1455848b8605Smrg */
1456848b8605Smrgvoid
1457848b8605Smrg_math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1458848b8605Smrg{
1459848b8605Smrg   memcpy( mat->m, m, 16*sizeof(GLfloat) );
1460848b8605Smrg   mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1461848b8605Smrg}
1462848b8605Smrg
1463848b8605Smrg/**
1464848b8605Smrg * Matrix constructor.
1465848b8605Smrg *
1466848b8605Smrg * \param m matrix.
1467848b8605Smrg *
1468848b8605Smrg * Initialize the GLmatrix fields.
1469848b8605Smrg */
1470848b8605Smrgvoid
1471848b8605Smrg_math_matrix_ctr( GLmatrix *m )
1472848b8605Smrg{
1473848b8605Smrg   m->m = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1474848b8605Smrg   if (m->m)
1475848b8605Smrg      memcpy( m->m, Identity, sizeof(Identity) );
1476848b8605Smrg   m->inv = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1477848b8605Smrg   if (m->inv)
1478848b8605Smrg      memcpy( m->inv, Identity, sizeof(Identity) );
1479848b8605Smrg   m->type = MATRIX_IDENTITY;
1480848b8605Smrg   m->flags = 0;
1481848b8605Smrg}
1482848b8605Smrg
1483848b8605Smrg/**
1484848b8605Smrg * Matrix destructor.
1485848b8605Smrg *
1486848b8605Smrg * \param m matrix.
1487848b8605Smrg *
1488848b8605Smrg * Frees the data in a GLmatrix.
1489848b8605Smrg */
1490848b8605Smrgvoid
1491848b8605Smrg_math_matrix_dtr( GLmatrix *m )
1492848b8605Smrg{
1493848b8605Smrg   _mesa_align_free( m->m );
1494848b8605Smrg   m->m = NULL;
1495848b8605Smrg
1496848b8605Smrg   _mesa_align_free( m->inv );
1497848b8605Smrg   m->inv = NULL;
1498848b8605Smrg}
1499848b8605Smrg
1500848b8605Smrg/*@}*/
1501848b8605Smrg
1502848b8605Smrg
1503848b8605Smrg/**********************************************************************/
1504848b8605Smrg/** \name Matrix transpose */
1505848b8605Smrg/*@{*/
1506848b8605Smrg
1507848b8605Smrg/**
1508848b8605Smrg * Transpose a GLfloat matrix.
1509848b8605Smrg *
1510848b8605Smrg * \param to destination array.
1511848b8605Smrg * \param from source array.
1512848b8605Smrg */
1513848b8605Smrgvoid
1514848b8605Smrg_math_transposef( GLfloat to[16], const GLfloat from[16] )
1515848b8605Smrg{
1516848b8605Smrg   to[0] = from[0];
1517848b8605Smrg   to[1] = from[4];
1518848b8605Smrg   to[2] = from[8];
1519848b8605Smrg   to[3] = from[12];
1520848b8605Smrg   to[4] = from[1];
1521848b8605Smrg   to[5] = from[5];
1522848b8605Smrg   to[6] = from[9];
1523848b8605Smrg   to[7] = from[13];
1524848b8605Smrg   to[8] = from[2];
1525848b8605Smrg   to[9] = from[6];
1526848b8605Smrg   to[10] = from[10];
1527848b8605Smrg   to[11] = from[14];
1528848b8605Smrg   to[12] = from[3];
1529848b8605Smrg   to[13] = from[7];
1530848b8605Smrg   to[14] = from[11];
1531848b8605Smrg   to[15] = from[15];
1532848b8605Smrg}
1533848b8605Smrg
1534848b8605Smrg/**
1535848b8605Smrg * Transpose a GLdouble matrix.
1536848b8605Smrg *
1537848b8605Smrg * \param to destination array.
1538848b8605Smrg * \param from source array.
1539848b8605Smrg */
1540848b8605Smrgvoid
1541848b8605Smrg_math_transposed( GLdouble to[16], const GLdouble from[16] )
1542848b8605Smrg{
1543848b8605Smrg   to[0] = from[0];
1544848b8605Smrg   to[1] = from[4];
1545848b8605Smrg   to[2] = from[8];
1546848b8605Smrg   to[3] = from[12];
1547848b8605Smrg   to[4] = from[1];
1548848b8605Smrg   to[5] = from[5];
1549848b8605Smrg   to[6] = from[9];
1550848b8605Smrg   to[7] = from[13];
1551848b8605Smrg   to[8] = from[2];
1552848b8605Smrg   to[9] = from[6];
1553848b8605Smrg   to[10] = from[10];
1554848b8605Smrg   to[11] = from[14];
1555848b8605Smrg   to[12] = from[3];
1556848b8605Smrg   to[13] = from[7];
1557848b8605Smrg   to[14] = from[11];
1558848b8605Smrg   to[15] = from[15];
1559848b8605Smrg}
1560848b8605Smrg
1561848b8605Smrg/**
1562848b8605Smrg * Transpose a GLdouble matrix and convert to GLfloat.
1563848b8605Smrg *
1564848b8605Smrg * \param to destination array.
1565848b8605Smrg * \param from source array.
1566848b8605Smrg */
1567848b8605Smrgvoid
1568848b8605Smrg_math_transposefd( GLfloat to[16], const GLdouble from[16] )
1569848b8605Smrg{
1570848b8605Smrg   to[0] = (GLfloat) from[0];
1571848b8605Smrg   to[1] = (GLfloat) from[4];
1572848b8605Smrg   to[2] = (GLfloat) from[8];
1573848b8605Smrg   to[3] = (GLfloat) from[12];
1574848b8605Smrg   to[4] = (GLfloat) from[1];
1575848b8605Smrg   to[5] = (GLfloat) from[5];
1576848b8605Smrg   to[6] = (GLfloat) from[9];
1577848b8605Smrg   to[7] = (GLfloat) from[13];
1578848b8605Smrg   to[8] = (GLfloat) from[2];
1579848b8605Smrg   to[9] = (GLfloat) from[6];
1580848b8605Smrg   to[10] = (GLfloat) from[10];
1581848b8605Smrg   to[11] = (GLfloat) from[14];
1582848b8605Smrg   to[12] = (GLfloat) from[3];
1583848b8605Smrg   to[13] = (GLfloat) from[7];
1584848b8605Smrg   to[14] = (GLfloat) from[11];
1585848b8605Smrg   to[15] = (GLfloat) from[15];
1586848b8605Smrg}
1587848b8605Smrg
1588848b8605Smrg/*@}*/
1589848b8605Smrg
1590848b8605Smrg
1591848b8605Smrg/**
1592848b8605Smrg * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix.  This
1593848b8605Smrg * function is used for transforming clipping plane equations and spotlight
1594848b8605Smrg * directions.
1595848b8605Smrg * Mathematically,  u = v * m.
1596848b8605Smrg * Input:  v - input vector
1597848b8605Smrg *         m - transformation matrix
1598848b8605Smrg * Output:  u - transformed vector
1599848b8605Smrg */
1600848b8605Smrgvoid
1601848b8605Smrg_mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1602848b8605Smrg{
1603848b8605Smrg   const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1604848b8605Smrg#define M(row,col)  m[row + col*4]
1605848b8605Smrg   u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1606848b8605Smrg   u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1607848b8605Smrg   u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1608848b8605Smrg   u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1609848b8605Smrg#undef M
1610848b8605Smrg}
1611