1848b8605Smrg/* 2848b8605Smrg * Mesa 3-D graphics library 3848b8605Smrg * 4848b8605Smrg * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. 5848b8605Smrg * 6848b8605Smrg * Permission is hereby granted, free of charge, to any person obtaining a 7848b8605Smrg * copy of this software and associated documentation files (the "Software"), 8848b8605Smrg * to deal in the Software without restriction, including without limitation 9848b8605Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10848b8605Smrg * and/or sell copies of the Software, and to permit persons to whom the 11848b8605Smrg * Software is furnished to do so, subject to the following conditions: 12848b8605Smrg * 13848b8605Smrg * The above copyright notice and this permission notice shall be included 14848b8605Smrg * in all copies or substantial portions of the Software. 15848b8605Smrg * 16848b8605Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 17848b8605Smrg * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18848b8605Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19848b8605Smrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20848b8605Smrg * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21848b8605Smrg * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22848b8605Smrg * OTHER DEALINGS IN THE SOFTWARE. 23848b8605Smrg */ 24848b8605Smrg 25848b8605Smrg 26848b8605Smrg/** 27848b8605Smrg * \file m_matrix.c 28848b8605Smrg * Matrix operations. 29848b8605Smrg * 30848b8605Smrg * \note 31848b8605Smrg * -# 4x4 transformation matrices are stored in memory in column major order. 32848b8605Smrg * -# Points/vertices are to be thought of as column vectors. 33848b8605Smrg * -# Transformation of a point p by a matrix M is: p' = M * p 34848b8605Smrg */ 35848b8605Smrg 36848b8605Smrg 37b8e80941Smrg#include "c99_math.h" 38b8e80941Smrg#include "main/errors.h" 39848b8605Smrg#include "main/glheader.h" 40848b8605Smrg#include "main/imports.h" 41848b8605Smrg#include "main/macros.h" 42848b8605Smrg 43848b8605Smrg#include "m_matrix.h" 44848b8605Smrg 45848b8605Smrg 46848b8605Smrg/** 47848b8605Smrg * \defgroup MatFlags MAT_FLAG_XXX-flags 48848b8605Smrg * 49848b8605Smrg * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags 50848b8605Smrg */ 51848b8605Smrg/*@{*/ 52848b8605Smrg#define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag. 53848b8605Smrg * (Not actually used - the identity 54b8e80941Smrg * matrix is identified by the absence 55848b8605Smrg * of all other flags.) 56848b8605Smrg */ 57848b8605Smrg#define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */ 58848b8605Smrg#define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */ 59848b8605Smrg#define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */ 60848b8605Smrg#define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */ 61848b8605Smrg#define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */ 62848b8605Smrg#define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */ 63848b8605Smrg#define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */ 64848b8605Smrg#define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */ 65848b8605Smrg#define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */ 66848b8605Smrg#define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */ 67848b8605Smrg#define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */ 68848b8605Smrg 69848b8605Smrg/** angle preserving matrix flags mask */ 70848b8605Smrg#define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \ 71848b8605Smrg MAT_FLAG_TRANSLATION | \ 72848b8605Smrg MAT_FLAG_UNIFORM_SCALE) 73848b8605Smrg 74848b8605Smrg/** geometry related matrix flags mask */ 75848b8605Smrg#define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \ 76848b8605Smrg MAT_FLAG_ROTATION | \ 77848b8605Smrg MAT_FLAG_TRANSLATION | \ 78848b8605Smrg MAT_FLAG_UNIFORM_SCALE | \ 79848b8605Smrg MAT_FLAG_GENERAL_SCALE | \ 80848b8605Smrg MAT_FLAG_GENERAL_3D | \ 81848b8605Smrg MAT_FLAG_PERSPECTIVE | \ 82848b8605Smrg MAT_FLAG_SINGULAR) 83848b8605Smrg 84848b8605Smrg/** length preserving matrix flags mask */ 85848b8605Smrg#define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \ 86848b8605Smrg MAT_FLAG_TRANSLATION) 87848b8605Smrg 88848b8605Smrg 89848b8605Smrg/** 3D (non-perspective) matrix flags mask */ 90848b8605Smrg#define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \ 91848b8605Smrg MAT_FLAG_TRANSLATION | \ 92848b8605Smrg MAT_FLAG_UNIFORM_SCALE | \ 93848b8605Smrg MAT_FLAG_GENERAL_SCALE | \ 94848b8605Smrg MAT_FLAG_GENERAL_3D) 95848b8605Smrg 96848b8605Smrg/** dirty matrix flags mask */ 97848b8605Smrg#define MAT_DIRTY (MAT_DIRTY_TYPE | \ 98848b8605Smrg MAT_DIRTY_FLAGS | \ 99848b8605Smrg MAT_DIRTY_INVERSE) 100848b8605Smrg 101848b8605Smrg/*@}*/ 102848b8605Smrg 103848b8605Smrg 104848b8605Smrg/** 105848b8605Smrg * Test geometry related matrix flags. 106848b8605Smrg * 107848b8605Smrg * \param mat a pointer to a GLmatrix structure. 108848b8605Smrg * \param a flags mask. 109848b8605Smrg * 110848b8605Smrg * \returns non-zero if all geometry related matrix flags are contained within 111848b8605Smrg * the mask, or zero otherwise. 112848b8605Smrg */ 113848b8605Smrg#define TEST_MAT_FLAGS(mat, a) \ 114848b8605Smrg ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0) 115848b8605Smrg 116848b8605Smrg 117848b8605Smrg 118848b8605Smrg/** 119848b8605Smrg * Names of the corresponding GLmatrixtype values. 120848b8605Smrg */ 121848b8605Smrgstatic const char *types[] = { 122848b8605Smrg "MATRIX_GENERAL", 123848b8605Smrg "MATRIX_IDENTITY", 124848b8605Smrg "MATRIX_3D_NO_ROT", 125848b8605Smrg "MATRIX_PERSPECTIVE", 126848b8605Smrg "MATRIX_2D", 127848b8605Smrg "MATRIX_2D_NO_ROT", 128848b8605Smrg "MATRIX_3D" 129848b8605Smrg}; 130848b8605Smrg 131848b8605Smrg 132848b8605Smrg/** 133848b8605Smrg * Identity matrix. 134848b8605Smrg */ 135b8e80941Smrgstatic const GLfloat Identity[16] = { 136848b8605Smrg 1.0, 0.0, 0.0, 0.0, 137848b8605Smrg 0.0, 1.0, 0.0, 0.0, 138848b8605Smrg 0.0, 0.0, 1.0, 0.0, 139848b8605Smrg 0.0, 0.0, 0.0, 1.0 140848b8605Smrg}; 141848b8605Smrg 142848b8605Smrg 143848b8605Smrg 144848b8605Smrg/**********************************************************************/ 145848b8605Smrg/** \name Matrix multiplication */ 146848b8605Smrg/*@{*/ 147848b8605Smrg 148848b8605Smrg#define A(row,col) a[(col<<2)+row] 149848b8605Smrg#define B(row,col) b[(col<<2)+row] 150848b8605Smrg#define P(row,col) product[(col<<2)+row] 151848b8605Smrg 152848b8605Smrg/** 153848b8605Smrg * Perform a full 4x4 matrix multiplication. 154848b8605Smrg * 155848b8605Smrg * \param a matrix. 156848b8605Smrg * \param b matrix. 157848b8605Smrg * \param product will receive the product of \p a and \p b. 158848b8605Smrg * 159848b8605Smrg * \warning Is assumed that \p product != \p b. \p product == \p a is allowed. 160848b8605Smrg * 161848b8605Smrg * \note KW: 4*16 = 64 multiplications 162848b8605Smrg * 163848b8605Smrg * \author This \c matmul was contributed by Thomas Malik 164848b8605Smrg */ 165848b8605Smrgstatic void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b ) 166848b8605Smrg{ 167848b8605Smrg GLint i; 168848b8605Smrg for (i = 0; i < 4; i++) { 169848b8605Smrg const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); 170848b8605Smrg P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); 171848b8605Smrg P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); 172848b8605Smrg P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); 173848b8605Smrg P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); 174848b8605Smrg } 175848b8605Smrg} 176848b8605Smrg 177848b8605Smrg/** 178848b8605Smrg * Multiply two matrices known to occupy only the top three rows, such 179848b8605Smrg * as typical model matrices, and orthogonal matrices. 180848b8605Smrg * 181848b8605Smrg * \param a matrix. 182848b8605Smrg * \param b matrix. 183848b8605Smrg * \param product will receive the product of \p a and \p b. 184848b8605Smrg */ 185848b8605Smrgstatic void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b ) 186848b8605Smrg{ 187848b8605Smrg GLint i; 188848b8605Smrg for (i = 0; i < 3; i++) { 189848b8605Smrg const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); 190848b8605Smrg P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0); 191848b8605Smrg P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1); 192848b8605Smrg P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2); 193848b8605Smrg P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3; 194848b8605Smrg } 195848b8605Smrg P(3,0) = 0; 196848b8605Smrg P(3,1) = 0; 197848b8605Smrg P(3,2) = 0; 198848b8605Smrg P(3,3) = 1; 199848b8605Smrg} 200848b8605Smrg 201848b8605Smrg#undef A 202848b8605Smrg#undef B 203848b8605Smrg#undef P 204848b8605Smrg 205848b8605Smrg/** 206848b8605Smrg * Multiply a matrix by an array of floats with known properties. 207848b8605Smrg * 208848b8605Smrg * \param mat pointer to a GLmatrix structure containing the left multiplication 209848b8605Smrg * matrix, and that will receive the product result. 210848b8605Smrg * \param m right multiplication matrix array. 211848b8605Smrg * \param flags flags of the matrix \p m. 212848b8605Smrg * 213848b8605Smrg * Joins both flags and marks the type and inverse as dirty. Calls matmul34() 214848b8605Smrg * if both matrices are 3D, or matmul4() otherwise. 215848b8605Smrg */ 216848b8605Smrgstatic void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags ) 217848b8605Smrg{ 218848b8605Smrg mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE); 219848b8605Smrg 220848b8605Smrg if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) 221848b8605Smrg matmul34( mat->m, mat->m, m ); 222848b8605Smrg else 223848b8605Smrg matmul4( mat->m, mat->m, m ); 224848b8605Smrg} 225848b8605Smrg 226848b8605Smrg/** 227848b8605Smrg * Matrix multiplication. 228848b8605Smrg * 229848b8605Smrg * \param dest destination matrix. 230848b8605Smrg * \param a left matrix. 231848b8605Smrg * \param b right matrix. 232848b8605Smrg * 233848b8605Smrg * Joins both flags and marks the type and inverse as dirty. Calls matmul34() 234848b8605Smrg * if both matrices are 3D, or matmul4() otherwise. 235848b8605Smrg */ 236848b8605Smrgvoid 237848b8605Smrg_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b ) 238848b8605Smrg{ 239848b8605Smrg dest->flags = (a->flags | 240848b8605Smrg b->flags | 241848b8605Smrg MAT_DIRTY_TYPE | 242848b8605Smrg MAT_DIRTY_INVERSE); 243848b8605Smrg 244848b8605Smrg if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D)) 245848b8605Smrg matmul34( dest->m, a->m, b->m ); 246848b8605Smrg else 247848b8605Smrg matmul4( dest->m, a->m, b->m ); 248848b8605Smrg} 249848b8605Smrg 250848b8605Smrg/** 251848b8605Smrg * Matrix multiplication. 252848b8605Smrg * 253848b8605Smrg * \param dest left and destination matrix. 254848b8605Smrg * \param m right matrix array. 255848b8605Smrg * 256848b8605Smrg * Marks the matrix flags with general flag, and type and inverse dirty flags. 257848b8605Smrg * Calls matmul4() for the multiplication. 258848b8605Smrg */ 259848b8605Smrgvoid 260848b8605Smrg_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m ) 261848b8605Smrg{ 262848b8605Smrg dest->flags |= (MAT_FLAG_GENERAL | 263848b8605Smrg MAT_DIRTY_TYPE | 264848b8605Smrg MAT_DIRTY_INVERSE | 265848b8605Smrg MAT_DIRTY_FLAGS); 266848b8605Smrg 267848b8605Smrg matmul4( dest->m, dest->m, m ); 268848b8605Smrg} 269848b8605Smrg 270848b8605Smrg/*@}*/ 271848b8605Smrg 272848b8605Smrg 273848b8605Smrg/**********************************************************************/ 274848b8605Smrg/** \name Matrix output */ 275848b8605Smrg/*@{*/ 276848b8605Smrg 277848b8605Smrg/** 278848b8605Smrg * Print a matrix array. 279848b8605Smrg * 280848b8605Smrg * \param m matrix array. 281848b8605Smrg * 282848b8605Smrg * Called by _math_matrix_print() to print a matrix or its inverse. 283848b8605Smrg */ 284848b8605Smrgstatic void print_matrix_floats( const GLfloat m[16] ) 285848b8605Smrg{ 286848b8605Smrg int i; 287848b8605Smrg for (i=0;i<4;i++) { 288848b8605Smrg _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] ); 289848b8605Smrg } 290848b8605Smrg} 291848b8605Smrg 292848b8605Smrg/** 293848b8605Smrg * Dumps the contents of a GLmatrix structure. 294848b8605Smrg * 295848b8605Smrg * \param m pointer to the GLmatrix structure. 296848b8605Smrg */ 297848b8605Smrgvoid 298848b8605Smrg_math_matrix_print( const GLmatrix *m ) 299848b8605Smrg{ 300848b8605Smrg GLfloat prod[16]; 301848b8605Smrg 302848b8605Smrg _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags); 303848b8605Smrg print_matrix_floats(m->m); 304848b8605Smrg _mesa_debug(NULL, "Inverse: \n"); 305848b8605Smrg print_matrix_floats(m->inv); 306848b8605Smrg matmul4(prod, m->m, m->inv); 307848b8605Smrg _mesa_debug(NULL, "Mat * Inverse:\n"); 308848b8605Smrg print_matrix_floats(prod); 309848b8605Smrg} 310848b8605Smrg 311848b8605Smrg/*@}*/ 312848b8605Smrg 313848b8605Smrg 314848b8605Smrg/** 315848b8605Smrg * References an element of 4x4 matrix. 316848b8605Smrg * 317848b8605Smrg * \param m matrix array. 318848b8605Smrg * \param c column of the desired element. 319848b8605Smrg * \param r row of the desired element. 320848b8605Smrg * 321848b8605Smrg * \return value of the desired element. 322848b8605Smrg * 323848b8605Smrg * Calculate the linear storage index of the element and references it. 324848b8605Smrg */ 325848b8605Smrg#define MAT(m,r,c) (m)[(c)*4+(r)] 326848b8605Smrg 327848b8605Smrg 328848b8605Smrg/**********************************************************************/ 329848b8605Smrg/** \name Matrix inversion */ 330848b8605Smrg/*@{*/ 331848b8605Smrg 332848b8605Smrg/** 333848b8605Smrg * Swaps the values of two floating point variables. 334848b8605Smrg * 335848b8605Smrg * Used by invert_matrix_general() to swap the row pointers. 336848b8605Smrg */ 337848b8605Smrg#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; } 338848b8605Smrg 339848b8605Smrg/** 340848b8605Smrg * Compute inverse of 4x4 transformation matrix. 341848b8605Smrg * 342848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 343848b8605Smrg * stored in the GLmatrix::inv attribute. 344848b8605Smrg * 345848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 346848b8605Smrg * 347848b8605Smrg * \author 348848b8605Smrg * Code contributed by Jacques Leroy jle@star.be 349848b8605Smrg * 350848b8605Smrg * Calculates the inverse matrix by performing the gaussian matrix reduction 351848b8605Smrg * with partial pivoting followed by back/substitution with the loops manually 352848b8605Smrg * unrolled. 353848b8605Smrg */ 354848b8605Smrgstatic GLboolean invert_matrix_general( GLmatrix *mat ) 355848b8605Smrg{ 356848b8605Smrg const GLfloat *m = mat->m; 357848b8605Smrg GLfloat *out = mat->inv; 358848b8605Smrg GLfloat wtmp[4][8]; 359848b8605Smrg GLfloat m0, m1, m2, m3, s; 360848b8605Smrg GLfloat *r0, *r1, *r2, *r3; 361848b8605Smrg 362848b8605Smrg r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; 363848b8605Smrg 364848b8605Smrg r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), 365848b8605Smrg r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), 366848b8605Smrg r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, 367848b8605Smrg 368848b8605Smrg r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), 369848b8605Smrg r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), 370848b8605Smrg r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, 371848b8605Smrg 372848b8605Smrg r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), 373848b8605Smrg r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), 374848b8605Smrg r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, 375848b8605Smrg 376848b8605Smrg r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), 377848b8605Smrg r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), 378848b8605Smrg r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; 379848b8605Smrg 380848b8605Smrg /* choose pivot - or die */ 381b8e80941Smrg if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2); 382b8e80941Smrg if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1); 383b8e80941Smrg if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0); 384b8e80941Smrg if (0.0F == r0[0]) return GL_FALSE; 385848b8605Smrg 386848b8605Smrg /* eliminate first variable */ 387848b8605Smrg m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; 388848b8605Smrg s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; 389848b8605Smrg s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; 390848b8605Smrg s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; 391848b8605Smrg s = r0[4]; 392b8e80941Smrg if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } 393848b8605Smrg s = r0[5]; 394b8e80941Smrg if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } 395848b8605Smrg s = r0[6]; 396b8e80941Smrg if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } 397848b8605Smrg s = r0[7]; 398b8e80941Smrg if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } 399848b8605Smrg 400848b8605Smrg /* choose pivot - or die */ 401b8e80941Smrg if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2); 402b8e80941Smrg if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1); 403b8e80941Smrg if (0.0F == r1[1]) return GL_FALSE; 404848b8605Smrg 405848b8605Smrg /* eliminate second variable */ 406848b8605Smrg m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; 407848b8605Smrg r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; 408848b8605Smrg r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; 409b8e80941Smrg s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } 410b8e80941Smrg s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } 411b8e80941Smrg s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } 412b8e80941Smrg s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } 413848b8605Smrg 414848b8605Smrg /* choose pivot - or die */ 415b8e80941Smrg if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2); 416b8e80941Smrg if (0.0F == r2[2]) return GL_FALSE; 417848b8605Smrg 418848b8605Smrg /* eliminate third variable */ 419848b8605Smrg m3 = r3[2]/r2[2]; 420848b8605Smrg r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], 421848b8605Smrg r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], 422848b8605Smrg r3[7] -= m3 * r2[7]; 423848b8605Smrg 424848b8605Smrg /* last check */ 425b8e80941Smrg if (0.0F == r3[3]) return GL_FALSE; 426848b8605Smrg 427848b8605Smrg s = 1.0F/r3[3]; /* now back substitute row 3 */ 428848b8605Smrg r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; 429848b8605Smrg 430848b8605Smrg m2 = r2[3]; /* now back substitute row 2 */ 431848b8605Smrg s = 1.0F/r2[2]; 432848b8605Smrg r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), 433848b8605Smrg r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); 434848b8605Smrg m1 = r1[3]; 435848b8605Smrg r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, 436848b8605Smrg r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; 437848b8605Smrg m0 = r0[3]; 438848b8605Smrg r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, 439848b8605Smrg r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; 440848b8605Smrg 441848b8605Smrg m1 = r1[2]; /* now back substitute row 1 */ 442848b8605Smrg s = 1.0F/r1[1]; 443848b8605Smrg r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), 444848b8605Smrg r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); 445848b8605Smrg m0 = r0[2]; 446848b8605Smrg r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, 447848b8605Smrg r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; 448848b8605Smrg 449848b8605Smrg m0 = r0[1]; /* now back substitute row 0 */ 450848b8605Smrg s = 1.0F/r0[0]; 451848b8605Smrg r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), 452848b8605Smrg r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); 453848b8605Smrg 454848b8605Smrg MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5], 455848b8605Smrg MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7], 456848b8605Smrg MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5], 457848b8605Smrg MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7], 458848b8605Smrg MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5], 459848b8605Smrg MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7], 460848b8605Smrg MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5], 461848b8605Smrg MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7]; 462848b8605Smrg 463848b8605Smrg return GL_TRUE; 464848b8605Smrg} 465848b8605Smrg#undef SWAP_ROWS 466848b8605Smrg 467848b8605Smrg/** 468848b8605Smrg * Compute inverse of a general 3d transformation matrix. 469848b8605Smrg * 470848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 471848b8605Smrg * stored in the GLmatrix::inv attribute. 472848b8605Smrg * 473848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 474848b8605Smrg * 475848b8605Smrg * \author Adapted from graphics gems II. 476848b8605Smrg * 477848b8605Smrg * Calculates the inverse of the upper left by first calculating its 478848b8605Smrg * determinant and multiplying it to the symmetric adjust matrix of each 479848b8605Smrg * element. Finally deals with the translation part by transforming the 480848b8605Smrg * original translation vector using by the calculated submatrix inverse. 481848b8605Smrg */ 482848b8605Smrgstatic GLboolean invert_matrix_3d_general( GLmatrix *mat ) 483848b8605Smrg{ 484848b8605Smrg const GLfloat *in = mat->m; 485848b8605Smrg GLfloat *out = mat->inv; 486848b8605Smrg GLfloat pos, neg, t; 487848b8605Smrg GLfloat det; 488848b8605Smrg 489848b8605Smrg /* Calculate the determinant of upper left 3x3 submatrix and 490848b8605Smrg * determine if the matrix is singular. 491848b8605Smrg */ 492848b8605Smrg pos = neg = 0.0; 493848b8605Smrg t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2); 494b8e80941Smrg if (t >= 0.0F) pos += t; else neg += t; 495848b8605Smrg 496848b8605Smrg t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2); 497b8e80941Smrg if (t >= 0.0F) pos += t; else neg += t; 498848b8605Smrg 499848b8605Smrg t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2); 500b8e80941Smrg if (t >= 0.0F) pos += t; else neg += t; 501848b8605Smrg 502848b8605Smrg t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2); 503b8e80941Smrg if (t >= 0.0F) pos += t; else neg += t; 504848b8605Smrg 505848b8605Smrg t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2); 506b8e80941Smrg if (t >= 0.0F) pos += t; else neg += t; 507848b8605Smrg 508848b8605Smrg t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2); 509b8e80941Smrg if (t >= 0.0F) pos += t; else neg += t; 510848b8605Smrg 511848b8605Smrg det = pos + neg; 512848b8605Smrg 513b8e80941Smrg if (fabsf(det) < 1e-25F) 514848b8605Smrg return GL_FALSE; 515848b8605Smrg 516848b8605Smrg det = 1.0F / det; 517848b8605Smrg MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det); 518848b8605Smrg MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det); 519848b8605Smrg MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det); 520848b8605Smrg MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det); 521848b8605Smrg MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det); 522848b8605Smrg MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det); 523848b8605Smrg MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det); 524848b8605Smrg MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det); 525848b8605Smrg MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det); 526848b8605Smrg 527848b8605Smrg /* Do the translation part */ 528848b8605Smrg MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + 529848b8605Smrg MAT(in,1,3) * MAT(out,0,1) + 530848b8605Smrg MAT(in,2,3) * MAT(out,0,2) ); 531848b8605Smrg MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + 532848b8605Smrg MAT(in,1,3) * MAT(out,1,1) + 533848b8605Smrg MAT(in,2,3) * MAT(out,1,2) ); 534848b8605Smrg MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + 535848b8605Smrg MAT(in,1,3) * MAT(out,2,1) + 536848b8605Smrg MAT(in,2,3) * MAT(out,2,2) ); 537848b8605Smrg 538848b8605Smrg return GL_TRUE; 539848b8605Smrg} 540848b8605Smrg 541848b8605Smrg/** 542848b8605Smrg * Compute inverse of a 3d transformation matrix. 543848b8605Smrg * 544848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 545848b8605Smrg * stored in the GLmatrix::inv attribute. 546848b8605Smrg * 547848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 548848b8605Smrg * 549848b8605Smrg * If the matrix is not an angle preserving matrix then calls 550848b8605Smrg * invert_matrix_3d_general for the actual calculation. Otherwise calculates 551848b8605Smrg * the inverse matrix analyzing and inverting each of the scaling, rotation and 552848b8605Smrg * translation parts. 553848b8605Smrg */ 554848b8605Smrgstatic GLboolean invert_matrix_3d( GLmatrix *mat ) 555848b8605Smrg{ 556848b8605Smrg const GLfloat *in = mat->m; 557848b8605Smrg GLfloat *out = mat->inv; 558848b8605Smrg 559848b8605Smrg if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) { 560848b8605Smrg return invert_matrix_3d_general( mat ); 561848b8605Smrg } 562848b8605Smrg 563848b8605Smrg if (mat->flags & MAT_FLAG_UNIFORM_SCALE) { 564848b8605Smrg GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) + 565848b8605Smrg MAT(in,0,1) * MAT(in,0,1) + 566848b8605Smrg MAT(in,0,2) * MAT(in,0,2)); 567848b8605Smrg 568b8e80941Smrg if (scale == 0.0F) 569848b8605Smrg return GL_FALSE; 570848b8605Smrg 571848b8605Smrg scale = 1.0F / scale; 572848b8605Smrg 573848b8605Smrg /* Transpose and scale the 3 by 3 upper-left submatrix. */ 574848b8605Smrg MAT(out,0,0) = scale * MAT(in,0,0); 575848b8605Smrg MAT(out,1,0) = scale * MAT(in,0,1); 576848b8605Smrg MAT(out,2,0) = scale * MAT(in,0,2); 577848b8605Smrg MAT(out,0,1) = scale * MAT(in,1,0); 578848b8605Smrg MAT(out,1,1) = scale * MAT(in,1,1); 579848b8605Smrg MAT(out,2,1) = scale * MAT(in,1,2); 580848b8605Smrg MAT(out,0,2) = scale * MAT(in,2,0); 581848b8605Smrg MAT(out,1,2) = scale * MAT(in,2,1); 582848b8605Smrg MAT(out,2,2) = scale * MAT(in,2,2); 583848b8605Smrg } 584848b8605Smrg else if (mat->flags & MAT_FLAG_ROTATION) { 585848b8605Smrg /* Transpose the 3 by 3 upper-left submatrix. */ 586848b8605Smrg MAT(out,0,0) = MAT(in,0,0); 587848b8605Smrg MAT(out,1,0) = MAT(in,0,1); 588848b8605Smrg MAT(out,2,0) = MAT(in,0,2); 589848b8605Smrg MAT(out,0,1) = MAT(in,1,0); 590848b8605Smrg MAT(out,1,1) = MAT(in,1,1); 591848b8605Smrg MAT(out,2,1) = MAT(in,1,2); 592848b8605Smrg MAT(out,0,2) = MAT(in,2,0); 593848b8605Smrg MAT(out,1,2) = MAT(in,2,1); 594848b8605Smrg MAT(out,2,2) = MAT(in,2,2); 595848b8605Smrg } 596848b8605Smrg else { 597848b8605Smrg /* pure translation */ 598848b8605Smrg memcpy( out, Identity, sizeof(Identity) ); 599848b8605Smrg MAT(out,0,3) = - MAT(in,0,3); 600848b8605Smrg MAT(out,1,3) = - MAT(in,1,3); 601848b8605Smrg MAT(out,2,3) = - MAT(in,2,3); 602848b8605Smrg return GL_TRUE; 603848b8605Smrg } 604848b8605Smrg 605848b8605Smrg if (mat->flags & MAT_FLAG_TRANSLATION) { 606848b8605Smrg /* Do the translation part */ 607848b8605Smrg MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + 608848b8605Smrg MAT(in,1,3) * MAT(out,0,1) + 609848b8605Smrg MAT(in,2,3) * MAT(out,0,2) ); 610848b8605Smrg MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + 611848b8605Smrg MAT(in,1,3) * MAT(out,1,1) + 612848b8605Smrg MAT(in,2,3) * MAT(out,1,2) ); 613848b8605Smrg MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + 614848b8605Smrg MAT(in,1,3) * MAT(out,2,1) + 615848b8605Smrg MAT(in,2,3) * MAT(out,2,2) ); 616848b8605Smrg } 617848b8605Smrg else { 618848b8605Smrg MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0; 619848b8605Smrg } 620848b8605Smrg 621848b8605Smrg return GL_TRUE; 622848b8605Smrg} 623848b8605Smrg 624848b8605Smrg/** 625848b8605Smrg * Compute inverse of an identity transformation matrix. 626848b8605Smrg * 627848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 628848b8605Smrg * stored in the GLmatrix::inv attribute. 629848b8605Smrg * 630848b8605Smrg * \return always GL_TRUE. 631848b8605Smrg * 632848b8605Smrg * Simply copies Identity into GLmatrix::inv. 633848b8605Smrg */ 634848b8605Smrgstatic GLboolean invert_matrix_identity( GLmatrix *mat ) 635848b8605Smrg{ 636848b8605Smrg memcpy( mat->inv, Identity, sizeof(Identity) ); 637848b8605Smrg return GL_TRUE; 638848b8605Smrg} 639848b8605Smrg 640848b8605Smrg/** 641848b8605Smrg * Compute inverse of a no-rotation 3d transformation matrix. 642848b8605Smrg * 643848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 644848b8605Smrg * stored in the GLmatrix::inv attribute. 645848b8605Smrg * 646848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 647848b8605Smrg * 648848b8605Smrg * Calculates the 649848b8605Smrg */ 650848b8605Smrgstatic GLboolean invert_matrix_3d_no_rot( GLmatrix *mat ) 651848b8605Smrg{ 652848b8605Smrg const GLfloat *in = mat->m; 653848b8605Smrg GLfloat *out = mat->inv; 654848b8605Smrg 655848b8605Smrg if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 ) 656848b8605Smrg return GL_FALSE; 657848b8605Smrg 658b8e80941Smrg memcpy( out, Identity, sizeof(Identity) ); 659848b8605Smrg MAT(out,0,0) = 1.0F / MAT(in,0,0); 660848b8605Smrg MAT(out,1,1) = 1.0F / MAT(in,1,1); 661848b8605Smrg MAT(out,2,2) = 1.0F / MAT(in,2,2); 662848b8605Smrg 663848b8605Smrg if (mat->flags & MAT_FLAG_TRANSLATION) { 664848b8605Smrg MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); 665848b8605Smrg MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); 666848b8605Smrg MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2)); 667848b8605Smrg } 668848b8605Smrg 669848b8605Smrg return GL_TRUE; 670848b8605Smrg} 671848b8605Smrg 672848b8605Smrg/** 673848b8605Smrg * Compute inverse of a no-rotation 2d transformation matrix. 674848b8605Smrg * 675848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 676848b8605Smrg * stored in the GLmatrix::inv attribute. 677848b8605Smrg * 678848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 679848b8605Smrg * 680848b8605Smrg * Calculates the inverse matrix by applying the inverse scaling and 681848b8605Smrg * translation to the identity matrix. 682848b8605Smrg */ 683848b8605Smrgstatic GLboolean invert_matrix_2d_no_rot( GLmatrix *mat ) 684848b8605Smrg{ 685848b8605Smrg const GLfloat *in = mat->m; 686848b8605Smrg GLfloat *out = mat->inv; 687848b8605Smrg 688848b8605Smrg if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0) 689848b8605Smrg return GL_FALSE; 690848b8605Smrg 691b8e80941Smrg memcpy( out, Identity, sizeof(Identity) ); 692848b8605Smrg MAT(out,0,0) = 1.0F / MAT(in,0,0); 693848b8605Smrg MAT(out,1,1) = 1.0F / MAT(in,1,1); 694848b8605Smrg 695848b8605Smrg if (mat->flags & MAT_FLAG_TRANSLATION) { 696848b8605Smrg MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); 697848b8605Smrg MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); 698848b8605Smrg } 699848b8605Smrg 700848b8605Smrg return GL_TRUE; 701848b8605Smrg} 702848b8605Smrg 703848b8605Smrg#if 0 704848b8605Smrg/* broken */ 705848b8605Smrgstatic GLboolean invert_matrix_perspective( GLmatrix *mat ) 706848b8605Smrg{ 707848b8605Smrg const GLfloat *in = mat->m; 708848b8605Smrg GLfloat *out = mat->inv; 709848b8605Smrg 710848b8605Smrg if (MAT(in,2,3) == 0) 711848b8605Smrg return GL_FALSE; 712848b8605Smrg 713b8e80941Smrg memcpy( out, Identity, sizeof(Identity) ); 714848b8605Smrg 715848b8605Smrg MAT(out,0,0) = 1.0F / MAT(in,0,0); 716848b8605Smrg MAT(out,1,1) = 1.0F / MAT(in,1,1); 717848b8605Smrg 718848b8605Smrg MAT(out,0,3) = MAT(in,0,2); 719848b8605Smrg MAT(out,1,3) = MAT(in,1,2); 720848b8605Smrg 721848b8605Smrg MAT(out,2,2) = 0; 722848b8605Smrg MAT(out,2,3) = -1; 723848b8605Smrg 724848b8605Smrg MAT(out,3,2) = 1.0F / MAT(in,2,3); 725848b8605Smrg MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2); 726848b8605Smrg 727848b8605Smrg return GL_TRUE; 728848b8605Smrg} 729848b8605Smrg#endif 730848b8605Smrg 731848b8605Smrg/** 732848b8605Smrg * Matrix inversion function pointer type. 733848b8605Smrg */ 734848b8605Smrgtypedef GLboolean (*inv_mat_func)( GLmatrix *mat ); 735848b8605Smrg 736848b8605Smrg/** 737848b8605Smrg * Table of the matrix inversion functions according to the matrix type. 738848b8605Smrg */ 739848b8605Smrgstatic inv_mat_func inv_mat_tab[7] = { 740848b8605Smrg invert_matrix_general, 741848b8605Smrg invert_matrix_identity, 742848b8605Smrg invert_matrix_3d_no_rot, 743848b8605Smrg#if 0 744848b8605Smrg /* Don't use this function for now - it fails when the projection matrix 745848b8605Smrg * is premultiplied by a translation (ala Chromium's tilesort SPU). 746848b8605Smrg */ 747848b8605Smrg invert_matrix_perspective, 748848b8605Smrg#else 749848b8605Smrg invert_matrix_general, 750848b8605Smrg#endif 751848b8605Smrg invert_matrix_3d, /* lazy! */ 752848b8605Smrg invert_matrix_2d_no_rot, 753848b8605Smrg invert_matrix_3d 754848b8605Smrg}; 755848b8605Smrg 756848b8605Smrg/** 757848b8605Smrg * Compute inverse of a transformation matrix. 758848b8605Smrg * 759848b8605Smrg * \param mat pointer to a GLmatrix structure. The matrix inverse will be 760848b8605Smrg * stored in the GLmatrix::inv attribute. 761848b8605Smrg * 762848b8605Smrg * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 763848b8605Smrg * 764848b8605Smrg * Calls the matrix inversion function in inv_mat_tab corresponding to the 765848b8605Smrg * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag, 766848b8605Smrg * and copies the identity matrix into GLmatrix::inv. 767848b8605Smrg */ 768848b8605Smrgstatic GLboolean matrix_invert( GLmatrix *mat ) 769848b8605Smrg{ 770848b8605Smrg if (inv_mat_tab[mat->type](mat)) { 771848b8605Smrg mat->flags &= ~MAT_FLAG_SINGULAR; 772848b8605Smrg return GL_TRUE; 773848b8605Smrg } else { 774848b8605Smrg mat->flags |= MAT_FLAG_SINGULAR; 775848b8605Smrg memcpy( mat->inv, Identity, sizeof(Identity) ); 776848b8605Smrg return GL_FALSE; 777848b8605Smrg } 778848b8605Smrg} 779848b8605Smrg 780848b8605Smrg/*@}*/ 781848b8605Smrg 782848b8605Smrg 783848b8605Smrg/**********************************************************************/ 784848b8605Smrg/** \name Matrix generation */ 785848b8605Smrg/*@{*/ 786848b8605Smrg 787848b8605Smrg/** 788848b8605Smrg * Generate a 4x4 transformation matrix from glRotate parameters, and 789848b8605Smrg * post-multiply the input matrix by it. 790848b8605Smrg * 791848b8605Smrg * \author 792848b8605Smrg * This function was contributed by Erich Boleyn (erich@uruk.org). 793848b8605Smrg * Optimizations contributed by Rudolf Opalla (rudi@khm.de). 794848b8605Smrg */ 795848b8605Smrgvoid 796848b8605Smrg_math_matrix_rotate( GLmatrix *mat, 797848b8605Smrg GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) 798848b8605Smrg{ 799848b8605Smrg GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c; 800848b8605Smrg GLfloat m[16]; 801848b8605Smrg GLboolean optimized; 802848b8605Smrg 803b8e80941Smrg s = sinf( angle * M_PI / 180.0 ); 804b8e80941Smrg c = cosf( angle * M_PI / 180.0 ); 805848b8605Smrg 806b8e80941Smrg memcpy(m, Identity, sizeof(Identity)); 807848b8605Smrg optimized = GL_FALSE; 808848b8605Smrg 809848b8605Smrg#define M(row,col) m[col*4+row] 810848b8605Smrg 811848b8605Smrg if (x == 0.0F) { 812848b8605Smrg if (y == 0.0F) { 813848b8605Smrg if (z != 0.0F) { 814848b8605Smrg optimized = GL_TRUE; 815848b8605Smrg /* rotate only around z-axis */ 816848b8605Smrg M(0,0) = c; 817848b8605Smrg M(1,1) = c; 818848b8605Smrg if (z < 0.0F) { 819848b8605Smrg M(0,1) = s; 820848b8605Smrg M(1,0) = -s; 821848b8605Smrg } 822848b8605Smrg else { 823848b8605Smrg M(0,1) = -s; 824848b8605Smrg M(1,0) = s; 825848b8605Smrg } 826848b8605Smrg } 827848b8605Smrg } 828848b8605Smrg else if (z == 0.0F) { 829848b8605Smrg optimized = GL_TRUE; 830848b8605Smrg /* rotate only around y-axis */ 831848b8605Smrg M(0,0) = c; 832848b8605Smrg M(2,2) = c; 833848b8605Smrg if (y < 0.0F) { 834848b8605Smrg M(0,2) = -s; 835848b8605Smrg M(2,0) = s; 836848b8605Smrg } 837848b8605Smrg else { 838848b8605Smrg M(0,2) = s; 839848b8605Smrg M(2,0) = -s; 840848b8605Smrg } 841848b8605Smrg } 842848b8605Smrg } 843848b8605Smrg else if (y == 0.0F) { 844848b8605Smrg if (z == 0.0F) { 845848b8605Smrg optimized = GL_TRUE; 846848b8605Smrg /* rotate only around x-axis */ 847848b8605Smrg M(1,1) = c; 848848b8605Smrg M(2,2) = c; 849848b8605Smrg if (x < 0.0F) { 850848b8605Smrg M(1,2) = s; 851848b8605Smrg M(2,1) = -s; 852848b8605Smrg } 853848b8605Smrg else { 854848b8605Smrg M(1,2) = -s; 855848b8605Smrg M(2,1) = s; 856848b8605Smrg } 857848b8605Smrg } 858848b8605Smrg } 859848b8605Smrg 860848b8605Smrg if (!optimized) { 861848b8605Smrg const GLfloat mag = sqrtf(x * x + y * y + z * z); 862848b8605Smrg 863b8e80941Smrg if (mag <= 1.0e-4F) { 864848b8605Smrg /* no rotation, leave mat as-is */ 865848b8605Smrg return; 866848b8605Smrg } 867848b8605Smrg 868848b8605Smrg x /= mag; 869848b8605Smrg y /= mag; 870848b8605Smrg z /= mag; 871848b8605Smrg 872848b8605Smrg 873848b8605Smrg /* 874848b8605Smrg * Arbitrary axis rotation matrix. 875848b8605Smrg * 876848b8605Smrg * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied 877848b8605Smrg * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation 878848b8605Smrg * (which is about the X-axis), and the two composite transforms 879848b8605Smrg * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary 880848b8605Smrg * from the arbitrary axis to the X-axis then back. They are 881848b8605Smrg * all elementary rotations. 882848b8605Smrg * 883848b8605Smrg * Rz' is a rotation about the Z-axis, to bring the axis vector 884848b8605Smrg * into the x-z plane. Then Ry' is applied, rotating about the 885848b8605Smrg * Y-axis to bring the axis vector parallel with the X-axis. The 886848b8605Smrg * rotation about the X-axis is then performed. Ry and Rz are 887848b8605Smrg * simply the respective inverse transforms to bring the arbitrary 888848b8605Smrg * axis back to its original orientation. The first transforms 889848b8605Smrg * Rz' and Ry' are considered inverses, since the data from the 890848b8605Smrg * arbitrary axis gives you info on how to get to it, not how 891848b8605Smrg * to get away from it, and an inverse must be applied. 892848b8605Smrg * 893848b8605Smrg * The basic calculation used is to recognize that the arbitrary 894848b8605Smrg * axis vector (x, y, z), since it is of unit length, actually 895848b8605Smrg * represents the sines and cosines of the angles to rotate the 896848b8605Smrg * X-axis to the same orientation, with theta being the angle about 897848b8605Smrg * Z and phi the angle about Y (in the order described above) 898848b8605Smrg * as follows: 899848b8605Smrg * 900848b8605Smrg * cos ( theta ) = x / sqrt ( 1 - z^2 ) 901848b8605Smrg * sin ( theta ) = y / sqrt ( 1 - z^2 ) 902848b8605Smrg * 903848b8605Smrg * cos ( phi ) = sqrt ( 1 - z^2 ) 904848b8605Smrg * sin ( phi ) = z 905848b8605Smrg * 906848b8605Smrg * Note that cos ( phi ) can further be inserted to the above 907848b8605Smrg * formulas: 908848b8605Smrg * 909848b8605Smrg * cos ( theta ) = x / cos ( phi ) 910848b8605Smrg * sin ( theta ) = y / sin ( phi ) 911848b8605Smrg * 912848b8605Smrg * ...etc. Because of those relations and the standard trigonometric 913848b8605Smrg * relations, it is pssible to reduce the transforms down to what 914848b8605Smrg * is used below. It may be that any primary axis chosen will give the 915848b8605Smrg * same results (modulo a sign convention) using thie method. 916848b8605Smrg * 917848b8605Smrg * Particularly nice is to notice that all divisions that might 918848b8605Smrg * have caused trouble when parallel to certain planes or 919848b8605Smrg * axis go away with care paid to reducing the expressions. 920848b8605Smrg * After checking, it does perform correctly under all cases, since 921848b8605Smrg * in all the cases of division where the denominator would have 922848b8605Smrg * been zero, the numerator would have been zero as well, giving 923848b8605Smrg * the expected result. 924848b8605Smrg */ 925848b8605Smrg 926848b8605Smrg xx = x * x; 927848b8605Smrg yy = y * y; 928848b8605Smrg zz = z * z; 929848b8605Smrg xy = x * y; 930848b8605Smrg yz = y * z; 931848b8605Smrg zx = z * x; 932848b8605Smrg xs = x * s; 933848b8605Smrg ys = y * s; 934848b8605Smrg zs = z * s; 935848b8605Smrg one_c = 1.0F - c; 936848b8605Smrg 937848b8605Smrg /* We already hold the identity-matrix so we can skip some statements */ 938848b8605Smrg M(0,0) = (one_c * xx) + c; 939848b8605Smrg M(0,1) = (one_c * xy) - zs; 940848b8605Smrg M(0,2) = (one_c * zx) + ys; 941848b8605Smrg/* M(0,3) = 0.0F; */ 942848b8605Smrg 943848b8605Smrg M(1,0) = (one_c * xy) + zs; 944848b8605Smrg M(1,1) = (one_c * yy) + c; 945848b8605Smrg M(1,2) = (one_c * yz) - xs; 946848b8605Smrg/* M(1,3) = 0.0F; */ 947848b8605Smrg 948848b8605Smrg M(2,0) = (one_c * zx) - ys; 949848b8605Smrg M(2,1) = (one_c * yz) + xs; 950848b8605Smrg M(2,2) = (one_c * zz) + c; 951848b8605Smrg/* M(2,3) = 0.0F; */ 952848b8605Smrg 953848b8605Smrg/* 954848b8605Smrg M(3,0) = 0.0F; 955848b8605Smrg M(3,1) = 0.0F; 956848b8605Smrg M(3,2) = 0.0F; 957848b8605Smrg M(3,3) = 1.0F; 958848b8605Smrg*/ 959848b8605Smrg } 960848b8605Smrg#undef M 961848b8605Smrg 962848b8605Smrg matrix_multf( mat, m, MAT_FLAG_ROTATION ); 963848b8605Smrg} 964848b8605Smrg 965848b8605Smrg/** 966848b8605Smrg * Apply a perspective projection matrix. 967848b8605Smrg * 968848b8605Smrg * \param mat matrix to apply the projection. 969848b8605Smrg * \param left left clipping plane coordinate. 970848b8605Smrg * \param right right clipping plane coordinate. 971848b8605Smrg * \param bottom bottom clipping plane coordinate. 972848b8605Smrg * \param top top clipping plane coordinate. 973848b8605Smrg * \param nearval distance to the near clipping plane. 974848b8605Smrg * \param farval distance to the far clipping plane. 975848b8605Smrg * 976848b8605Smrg * Creates the projection matrix and multiplies it with \p mat, marking the 977848b8605Smrg * MAT_FLAG_PERSPECTIVE flag. 978848b8605Smrg */ 979848b8605Smrgvoid 980848b8605Smrg_math_matrix_frustum( GLmatrix *mat, 981848b8605Smrg GLfloat left, GLfloat right, 982848b8605Smrg GLfloat bottom, GLfloat top, 983848b8605Smrg GLfloat nearval, GLfloat farval ) 984848b8605Smrg{ 985848b8605Smrg GLfloat x, y, a, b, c, d; 986848b8605Smrg GLfloat m[16]; 987848b8605Smrg 988848b8605Smrg x = (2.0F*nearval) / (right-left); 989848b8605Smrg y = (2.0F*nearval) / (top-bottom); 990848b8605Smrg a = (right+left) / (right-left); 991848b8605Smrg b = (top+bottom) / (top-bottom); 992848b8605Smrg c = -(farval+nearval) / ( farval-nearval); 993848b8605Smrg d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */ 994848b8605Smrg 995848b8605Smrg#define M(row,col) m[col*4+row] 996848b8605Smrg M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F; 997848b8605Smrg M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F; 998848b8605Smrg M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d; 999848b8605Smrg M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F; 1000848b8605Smrg#undef M 1001848b8605Smrg 1002848b8605Smrg matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE ); 1003848b8605Smrg} 1004848b8605Smrg 1005848b8605Smrg/** 1006848b8605Smrg * Apply an orthographic projection matrix. 1007848b8605Smrg * 1008848b8605Smrg * \param mat matrix to apply the projection. 1009848b8605Smrg * \param left left clipping plane coordinate. 1010848b8605Smrg * \param right right clipping plane coordinate. 1011848b8605Smrg * \param bottom bottom clipping plane coordinate. 1012848b8605Smrg * \param top top clipping plane coordinate. 1013848b8605Smrg * \param nearval distance to the near clipping plane. 1014848b8605Smrg * \param farval distance to the far clipping plane. 1015848b8605Smrg * 1016848b8605Smrg * Creates the projection matrix and multiplies it with \p mat, marking the 1017848b8605Smrg * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags. 1018848b8605Smrg */ 1019848b8605Smrgvoid 1020848b8605Smrg_math_matrix_ortho( GLmatrix *mat, 1021848b8605Smrg GLfloat left, GLfloat right, 1022848b8605Smrg GLfloat bottom, GLfloat top, 1023848b8605Smrg GLfloat nearval, GLfloat farval ) 1024848b8605Smrg{ 1025848b8605Smrg GLfloat m[16]; 1026848b8605Smrg 1027848b8605Smrg#define M(row,col) m[col*4+row] 1028848b8605Smrg M(0,0) = 2.0F / (right-left); 1029848b8605Smrg M(0,1) = 0.0F; 1030848b8605Smrg M(0,2) = 0.0F; 1031848b8605Smrg M(0,3) = -(right+left) / (right-left); 1032848b8605Smrg 1033848b8605Smrg M(1,0) = 0.0F; 1034848b8605Smrg M(1,1) = 2.0F / (top-bottom); 1035848b8605Smrg M(1,2) = 0.0F; 1036848b8605Smrg M(1,3) = -(top+bottom) / (top-bottom); 1037848b8605Smrg 1038848b8605Smrg M(2,0) = 0.0F; 1039848b8605Smrg M(2,1) = 0.0F; 1040848b8605Smrg M(2,2) = -2.0F / (farval-nearval); 1041848b8605Smrg M(2,3) = -(farval+nearval) / (farval-nearval); 1042848b8605Smrg 1043848b8605Smrg M(3,0) = 0.0F; 1044848b8605Smrg M(3,1) = 0.0F; 1045848b8605Smrg M(3,2) = 0.0F; 1046848b8605Smrg M(3,3) = 1.0F; 1047848b8605Smrg#undef M 1048848b8605Smrg 1049848b8605Smrg matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION)); 1050848b8605Smrg} 1051848b8605Smrg 1052848b8605Smrg/** 1053848b8605Smrg * Multiply a matrix with a general scaling matrix. 1054848b8605Smrg * 1055848b8605Smrg * \param mat matrix. 1056848b8605Smrg * \param x x axis scale factor. 1057848b8605Smrg * \param y y axis scale factor. 1058848b8605Smrg * \param z z axis scale factor. 1059848b8605Smrg * 1060848b8605Smrg * Multiplies in-place the elements of \p mat by the scale factors. Checks if 1061848b8605Smrg * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE 1062848b8605Smrg * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and 1063848b8605Smrg * MAT_DIRTY_INVERSE dirty flags. 1064848b8605Smrg */ 1065848b8605Smrgvoid 1066848b8605Smrg_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) 1067848b8605Smrg{ 1068848b8605Smrg GLfloat *m = mat->m; 1069848b8605Smrg m[0] *= x; m[4] *= y; m[8] *= z; 1070848b8605Smrg m[1] *= x; m[5] *= y; m[9] *= z; 1071848b8605Smrg m[2] *= x; m[6] *= y; m[10] *= z; 1072848b8605Smrg m[3] *= x; m[7] *= y; m[11] *= z; 1073848b8605Smrg 1074b8e80941Smrg if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F) 1075848b8605Smrg mat->flags |= MAT_FLAG_UNIFORM_SCALE; 1076848b8605Smrg else 1077848b8605Smrg mat->flags |= MAT_FLAG_GENERAL_SCALE; 1078848b8605Smrg 1079848b8605Smrg mat->flags |= (MAT_DIRTY_TYPE | 1080848b8605Smrg MAT_DIRTY_INVERSE); 1081848b8605Smrg} 1082848b8605Smrg 1083848b8605Smrg/** 1084848b8605Smrg * Multiply a matrix with a translation matrix. 1085848b8605Smrg * 1086848b8605Smrg * \param mat matrix. 1087848b8605Smrg * \param x translation vector x coordinate. 1088848b8605Smrg * \param y translation vector y coordinate. 1089848b8605Smrg * \param z translation vector z coordinate. 1090848b8605Smrg * 1091848b8605Smrg * Adds the translation coordinates to the elements of \p mat in-place. Marks 1092848b8605Smrg * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE 1093848b8605Smrg * dirty flags. 1094848b8605Smrg */ 1095848b8605Smrgvoid 1096848b8605Smrg_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) 1097848b8605Smrg{ 1098848b8605Smrg GLfloat *m = mat->m; 1099848b8605Smrg m[12] = m[0] * x + m[4] * y + m[8] * z + m[12]; 1100848b8605Smrg m[13] = m[1] * x + m[5] * y + m[9] * z + m[13]; 1101848b8605Smrg m[14] = m[2] * x + m[6] * y + m[10] * z + m[14]; 1102848b8605Smrg m[15] = m[3] * x + m[7] * y + m[11] * z + m[15]; 1103848b8605Smrg 1104848b8605Smrg mat->flags |= (MAT_FLAG_TRANSLATION | 1105848b8605Smrg MAT_DIRTY_TYPE | 1106848b8605Smrg MAT_DIRTY_INVERSE); 1107848b8605Smrg} 1108848b8605Smrg 1109848b8605Smrg 1110848b8605Smrg/** 1111848b8605Smrg * Set matrix to do viewport and depthrange mapping. 1112848b8605Smrg * Transforms Normalized Device Coords to window/Z values. 1113848b8605Smrg */ 1114848b8605Smrgvoid 1115b8e80941Smrg_math_matrix_viewport(GLmatrix *m, const float scale[3], 1116b8e80941Smrg const float translate[3], double depthMax) 1117848b8605Smrg{ 1118b8e80941Smrg m->m[MAT_SX] = scale[0]; 1119b8e80941Smrg m->m[MAT_TX] = translate[0]; 1120b8e80941Smrg m->m[MAT_SY] = scale[1]; 1121b8e80941Smrg m->m[MAT_TY] = translate[1]; 1122b8e80941Smrg m->m[MAT_SZ] = depthMax*scale[2]; 1123b8e80941Smrg m->m[MAT_TZ] = depthMax*translate[2]; 1124848b8605Smrg m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION; 1125848b8605Smrg m->type = MATRIX_3D_NO_ROT; 1126848b8605Smrg} 1127848b8605Smrg 1128848b8605Smrg 1129848b8605Smrg/** 1130848b8605Smrg * Set a matrix to the identity matrix. 1131848b8605Smrg * 1132848b8605Smrg * \param mat matrix. 1133848b8605Smrg * 1134848b8605Smrg * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL. 1135848b8605Smrg * Sets the matrix type to identity, and clear the dirty flags. 1136848b8605Smrg */ 1137848b8605Smrgvoid 1138848b8605Smrg_math_matrix_set_identity( GLmatrix *mat ) 1139848b8605Smrg{ 1140b8e80941Smrg memcpy( mat->m, Identity, sizeof(Identity) ); 1141b8e80941Smrg memcpy( mat->inv, Identity, sizeof(Identity) ); 1142848b8605Smrg 1143848b8605Smrg mat->type = MATRIX_IDENTITY; 1144848b8605Smrg mat->flags &= ~(MAT_DIRTY_FLAGS| 1145848b8605Smrg MAT_DIRTY_TYPE| 1146848b8605Smrg MAT_DIRTY_INVERSE); 1147848b8605Smrg} 1148848b8605Smrg 1149848b8605Smrg/*@}*/ 1150848b8605Smrg 1151848b8605Smrg 1152848b8605Smrg/**********************************************************************/ 1153848b8605Smrg/** \name Matrix analysis */ 1154848b8605Smrg/*@{*/ 1155848b8605Smrg 1156848b8605Smrg#define ZERO(x) (1<<x) 1157848b8605Smrg#define ONE(x) (1<<(x+16)) 1158848b8605Smrg 1159848b8605Smrg#define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14)) 1160848b8605Smrg#define MASK_NO_2D_SCALE ( ONE(0) | ONE(5)) 1161848b8605Smrg 1162848b8605Smrg#define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\ 1163848b8605Smrg ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\ 1164848b8605Smrg ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1165848b8605Smrg ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1166848b8605Smrg 1167848b8605Smrg#define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \ 1168848b8605Smrg ZERO(1) | ZERO(9) | \ 1169848b8605Smrg ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1170848b8605Smrg ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1171848b8605Smrg 1172848b8605Smrg#define MASK_2D ( ZERO(8) | \ 1173848b8605Smrg ZERO(9) | \ 1174848b8605Smrg ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1175848b8605Smrg ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1176848b8605Smrg 1177848b8605Smrg 1178848b8605Smrg#define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \ 1179848b8605Smrg ZERO(1) | ZERO(9) | \ 1180848b8605Smrg ZERO(2) | ZERO(6) | \ 1181848b8605Smrg ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1182848b8605Smrg 1183848b8605Smrg#define MASK_3D ( \ 1184848b8605Smrg \ 1185848b8605Smrg \ 1186848b8605Smrg ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1187848b8605Smrg 1188848b8605Smrg 1189848b8605Smrg#define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\ 1190848b8605Smrg ZERO(1) | ZERO(13) |\ 1191848b8605Smrg ZERO(2) | ZERO(6) | \ 1192848b8605Smrg ZERO(3) | ZERO(7) | ZERO(15) ) 1193848b8605Smrg 1194848b8605Smrg#define SQ(x) ((x)*(x)) 1195848b8605Smrg 1196848b8605Smrg/** 1197848b8605Smrg * Determine type and flags from scratch. 1198848b8605Smrg * 1199848b8605Smrg * \param mat matrix. 1200848b8605Smrg * 1201848b8605Smrg * This is expensive enough to only want to do it once. 1202848b8605Smrg */ 1203848b8605Smrgstatic void analyse_from_scratch( GLmatrix *mat ) 1204848b8605Smrg{ 1205848b8605Smrg const GLfloat *m = mat->m; 1206848b8605Smrg GLuint mask = 0; 1207848b8605Smrg GLuint i; 1208848b8605Smrg 1209848b8605Smrg for (i = 0 ; i < 16 ; i++) { 1210b8e80941Smrg if (m[i] == 0.0F) mask |= (1<<i); 1211848b8605Smrg } 1212848b8605Smrg 1213848b8605Smrg if (m[0] == 1.0F) mask |= (1<<16); 1214848b8605Smrg if (m[5] == 1.0F) mask |= (1<<21); 1215848b8605Smrg if (m[10] == 1.0F) mask |= (1<<26); 1216848b8605Smrg if (m[15] == 1.0F) mask |= (1<<31); 1217848b8605Smrg 1218848b8605Smrg mat->flags &= ~MAT_FLAGS_GEOMETRY; 1219848b8605Smrg 1220848b8605Smrg /* Check for translation - no-one really cares 1221848b8605Smrg */ 1222848b8605Smrg if ((mask & MASK_NO_TRX) != MASK_NO_TRX) 1223848b8605Smrg mat->flags |= MAT_FLAG_TRANSLATION; 1224848b8605Smrg 1225848b8605Smrg /* Do the real work 1226848b8605Smrg */ 1227848b8605Smrg if (mask == (GLuint) MASK_IDENTITY) { 1228848b8605Smrg mat->type = MATRIX_IDENTITY; 1229848b8605Smrg } 1230848b8605Smrg else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) { 1231848b8605Smrg mat->type = MATRIX_2D_NO_ROT; 1232848b8605Smrg 1233848b8605Smrg if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE) 1234848b8605Smrg mat->flags |= MAT_FLAG_GENERAL_SCALE; 1235848b8605Smrg } 1236848b8605Smrg else if ((mask & MASK_2D) == (GLuint) MASK_2D) { 1237848b8605Smrg GLfloat mm = DOT2(m, m); 1238848b8605Smrg GLfloat m4m4 = DOT2(m+4,m+4); 1239848b8605Smrg GLfloat mm4 = DOT2(m,m+4); 1240848b8605Smrg 1241848b8605Smrg mat->type = MATRIX_2D; 1242848b8605Smrg 1243848b8605Smrg /* Check for scale */ 1244b8e80941Smrg if (SQ(mm-1) > SQ(1e-6F) || 1245b8e80941Smrg SQ(m4m4-1) > SQ(1e-6F)) 1246848b8605Smrg mat->flags |= MAT_FLAG_GENERAL_SCALE; 1247848b8605Smrg 1248848b8605Smrg /* Check for rotation */ 1249b8e80941Smrg if (SQ(mm4) > SQ(1e-6F)) 1250848b8605Smrg mat->flags |= MAT_FLAG_GENERAL_3D; 1251848b8605Smrg else 1252848b8605Smrg mat->flags |= MAT_FLAG_ROTATION; 1253848b8605Smrg 1254848b8605Smrg } 1255848b8605Smrg else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) { 1256848b8605Smrg mat->type = MATRIX_3D_NO_ROT; 1257848b8605Smrg 1258848b8605Smrg /* Check for scale */ 1259b8e80941Smrg if (SQ(m[0]-m[5]) < SQ(1e-6F) && 1260b8e80941Smrg SQ(m[0]-m[10]) < SQ(1e-6F)) { 1261b8e80941Smrg if (SQ(m[0]-1.0F) > SQ(1e-6F)) { 1262848b8605Smrg mat->flags |= MAT_FLAG_UNIFORM_SCALE; 1263848b8605Smrg } 1264848b8605Smrg } 1265848b8605Smrg else { 1266848b8605Smrg mat->flags |= MAT_FLAG_GENERAL_SCALE; 1267848b8605Smrg } 1268848b8605Smrg } 1269848b8605Smrg else if ((mask & MASK_3D) == (GLuint) MASK_3D) { 1270848b8605Smrg GLfloat c1 = DOT3(m,m); 1271848b8605Smrg GLfloat c2 = DOT3(m+4,m+4); 1272848b8605Smrg GLfloat c3 = DOT3(m+8,m+8); 1273848b8605Smrg GLfloat d1 = DOT3(m, m+4); 1274848b8605Smrg GLfloat cp[3]; 1275848b8605Smrg 1276848b8605Smrg mat->type = MATRIX_3D; 1277848b8605Smrg 1278848b8605Smrg /* Check for scale */ 1279b8e80941Smrg if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) { 1280b8e80941Smrg if (SQ(c1-1.0F) > SQ(1e-6F)) 1281848b8605Smrg mat->flags |= MAT_FLAG_UNIFORM_SCALE; 1282848b8605Smrg /* else no scale at all */ 1283848b8605Smrg } 1284848b8605Smrg else { 1285848b8605Smrg mat->flags |= MAT_FLAG_GENERAL_SCALE; 1286848b8605Smrg } 1287848b8605Smrg 1288848b8605Smrg /* Check for rotation */ 1289b8e80941Smrg if (SQ(d1) < SQ(1e-6F)) { 1290848b8605Smrg CROSS3( cp, m, m+4 ); 1291848b8605Smrg SUB_3V( cp, cp, (m+8) ); 1292b8e80941Smrg if (LEN_SQUARED_3FV(cp) < SQ(1e-6F)) 1293848b8605Smrg mat->flags |= MAT_FLAG_ROTATION; 1294848b8605Smrg else 1295848b8605Smrg mat->flags |= MAT_FLAG_GENERAL_3D; 1296848b8605Smrg } 1297848b8605Smrg else { 1298848b8605Smrg mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */ 1299848b8605Smrg } 1300848b8605Smrg } 1301848b8605Smrg else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) { 1302848b8605Smrg mat->type = MATRIX_PERSPECTIVE; 1303848b8605Smrg mat->flags |= MAT_FLAG_GENERAL; 1304848b8605Smrg } 1305848b8605Smrg else { 1306848b8605Smrg mat->type = MATRIX_GENERAL; 1307848b8605Smrg mat->flags |= MAT_FLAG_GENERAL; 1308848b8605Smrg } 1309848b8605Smrg} 1310848b8605Smrg 1311848b8605Smrg/** 1312848b8605Smrg * Analyze a matrix given that its flags are accurate. 1313848b8605Smrg * 1314848b8605Smrg * This is the more common operation, hopefully. 1315848b8605Smrg */ 1316848b8605Smrgstatic void analyse_from_flags( GLmatrix *mat ) 1317848b8605Smrg{ 1318848b8605Smrg const GLfloat *m = mat->m; 1319848b8605Smrg 1320848b8605Smrg if (TEST_MAT_FLAGS(mat, 0)) { 1321848b8605Smrg mat->type = MATRIX_IDENTITY; 1322848b8605Smrg } 1323848b8605Smrg else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION | 1324848b8605Smrg MAT_FLAG_UNIFORM_SCALE | 1325848b8605Smrg MAT_FLAG_GENERAL_SCALE))) { 1326848b8605Smrg if ( m[10]==1.0F && m[14]==0.0F ) { 1327848b8605Smrg mat->type = MATRIX_2D_NO_ROT; 1328848b8605Smrg } 1329848b8605Smrg else { 1330848b8605Smrg mat->type = MATRIX_3D_NO_ROT; 1331848b8605Smrg } 1332848b8605Smrg } 1333848b8605Smrg else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) { 1334848b8605Smrg if ( m[ 8]==0.0F 1335848b8605Smrg && m[ 9]==0.0F 1336848b8605Smrg && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) { 1337848b8605Smrg mat->type = MATRIX_2D; 1338848b8605Smrg } 1339848b8605Smrg else { 1340848b8605Smrg mat->type = MATRIX_3D; 1341848b8605Smrg } 1342848b8605Smrg } 1343848b8605Smrg else if ( m[4]==0.0F && m[12]==0.0F 1344848b8605Smrg && m[1]==0.0F && m[13]==0.0F 1345848b8605Smrg && m[2]==0.0F && m[6]==0.0F 1346848b8605Smrg && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) { 1347848b8605Smrg mat->type = MATRIX_PERSPECTIVE; 1348848b8605Smrg } 1349848b8605Smrg else { 1350848b8605Smrg mat->type = MATRIX_GENERAL; 1351848b8605Smrg } 1352848b8605Smrg} 1353848b8605Smrg 1354848b8605Smrg/** 1355848b8605Smrg * Analyze and update a matrix. 1356848b8605Smrg * 1357848b8605Smrg * \param mat matrix. 1358848b8605Smrg * 1359848b8605Smrg * If the matrix type is dirty then calls either analyse_from_scratch() or 1360848b8605Smrg * analyse_from_flags() to determine its type, according to whether the flags 1361848b8605Smrg * are dirty or not, respectively. If the matrix has an inverse and it's dirty 1362848b8605Smrg * then calls matrix_invert(). Finally clears the dirty flags. 1363848b8605Smrg */ 1364848b8605Smrgvoid 1365848b8605Smrg_math_matrix_analyse( GLmatrix *mat ) 1366848b8605Smrg{ 1367848b8605Smrg if (mat->flags & MAT_DIRTY_TYPE) { 1368848b8605Smrg if (mat->flags & MAT_DIRTY_FLAGS) 1369848b8605Smrg analyse_from_scratch( mat ); 1370848b8605Smrg else 1371848b8605Smrg analyse_from_flags( mat ); 1372848b8605Smrg } 1373848b8605Smrg 1374848b8605Smrg if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) { 1375848b8605Smrg matrix_invert( mat ); 1376848b8605Smrg mat->flags &= ~MAT_DIRTY_INVERSE; 1377848b8605Smrg } 1378848b8605Smrg 1379848b8605Smrg mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE); 1380848b8605Smrg} 1381848b8605Smrg 1382848b8605Smrg/*@}*/ 1383848b8605Smrg 1384848b8605Smrg 1385848b8605Smrg/** 1386848b8605Smrg * Test if the given matrix preserves vector lengths. 1387848b8605Smrg */ 1388848b8605SmrgGLboolean 1389848b8605Smrg_math_matrix_is_length_preserving( const GLmatrix *m ) 1390848b8605Smrg{ 1391848b8605Smrg return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING); 1392848b8605Smrg} 1393848b8605Smrg 1394848b8605Smrg 1395848b8605Smrg/** 1396848b8605Smrg * Test if the given matrix does any rotation. 1397848b8605Smrg * (or perhaps if the upper-left 3x3 is non-identity) 1398848b8605Smrg */ 1399848b8605SmrgGLboolean 1400848b8605Smrg_math_matrix_has_rotation( const GLmatrix *m ) 1401848b8605Smrg{ 1402848b8605Smrg if (m->flags & (MAT_FLAG_GENERAL | 1403848b8605Smrg MAT_FLAG_ROTATION | 1404848b8605Smrg MAT_FLAG_GENERAL_3D | 1405848b8605Smrg MAT_FLAG_PERSPECTIVE)) 1406848b8605Smrg return GL_TRUE; 1407848b8605Smrg else 1408848b8605Smrg return GL_FALSE; 1409848b8605Smrg} 1410848b8605Smrg 1411848b8605Smrg 1412848b8605SmrgGLboolean 1413848b8605Smrg_math_matrix_is_general_scale( const GLmatrix *m ) 1414848b8605Smrg{ 1415848b8605Smrg return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE; 1416848b8605Smrg} 1417848b8605Smrg 1418848b8605Smrg 1419848b8605SmrgGLboolean 1420848b8605Smrg_math_matrix_is_dirty( const GLmatrix *m ) 1421848b8605Smrg{ 1422848b8605Smrg return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE; 1423848b8605Smrg} 1424848b8605Smrg 1425848b8605Smrg 1426848b8605Smrg/**********************************************************************/ 1427848b8605Smrg/** \name Matrix setup */ 1428848b8605Smrg/*@{*/ 1429848b8605Smrg 1430848b8605Smrg/** 1431848b8605Smrg * Copy a matrix. 1432848b8605Smrg * 1433848b8605Smrg * \param to destination matrix. 1434848b8605Smrg * \param from source matrix. 1435848b8605Smrg * 1436848b8605Smrg * Copies all fields in GLmatrix, creating an inverse array if necessary. 1437848b8605Smrg */ 1438848b8605Smrgvoid 1439848b8605Smrg_math_matrix_copy( GLmatrix *to, const GLmatrix *from ) 1440848b8605Smrg{ 1441b8e80941Smrg memcpy(to->m, from->m, 16 * sizeof(GLfloat)); 1442848b8605Smrg memcpy(to->inv, from->inv, 16 * sizeof(GLfloat)); 1443848b8605Smrg to->flags = from->flags; 1444848b8605Smrg to->type = from->type; 1445848b8605Smrg} 1446848b8605Smrg 1447848b8605Smrg/** 1448848b8605Smrg * Loads a matrix array into GLmatrix. 1449848b8605Smrg * 1450848b8605Smrg * \param m matrix array. 1451848b8605Smrg * \param mat matrix. 1452848b8605Smrg * 1453848b8605Smrg * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY 1454848b8605Smrg * flags. 1455848b8605Smrg */ 1456848b8605Smrgvoid 1457848b8605Smrg_math_matrix_loadf( GLmatrix *mat, const GLfloat *m ) 1458848b8605Smrg{ 1459848b8605Smrg memcpy( mat->m, m, 16*sizeof(GLfloat) ); 1460848b8605Smrg mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY); 1461848b8605Smrg} 1462848b8605Smrg 1463848b8605Smrg/** 1464848b8605Smrg * Matrix constructor. 1465848b8605Smrg * 1466848b8605Smrg * \param m matrix. 1467848b8605Smrg * 1468848b8605Smrg * Initialize the GLmatrix fields. 1469848b8605Smrg */ 1470848b8605Smrgvoid 1471848b8605Smrg_math_matrix_ctr( GLmatrix *m ) 1472848b8605Smrg{ 1473848b8605Smrg m->m = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 ); 1474848b8605Smrg if (m->m) 1475848b8605Smrg memcpy( m->m, Identity, sizeof(Identity) ); 1476848b8605Smrg m->inv = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 ); 1477848b8605Smrg if (m->inv) 1478848b8605Smrg memcpy( m->inv, Identity, sizeof(Identity) ); 1479848b8605Smrg m->type = MATRIX_IDENTITY; 1480848b8605Smrg m->flags = 0; 1481848b8605Smrg} 1482848b8605Smrg 1483848b8605Smrg/** 1484848b8605Smrg * Matrix destructor. 1485848b8605Smrg * 1486848b8605Smrg * \param m matrix. 1487848b8605Smrg * 1488848b8605Smrg * Frees the data in a GLmatrix. 1489848b8605Smrg */ 1490848b8605Smrgvoid 1491848b8605Smrg_math_matrix_dtr( GLmatrix *m ) 1492848b8605Smrg{ 1493848b8605Smrg _mesa_align_free( m->m ); 1494848b8605Smrg m->m = NULL; 1495848b8605Smrg 1496848b8605Smrg _mesa_align_free( m->inv ); 1497848b8605Smrg m->inv = NULL; 1498848b8605Smrg} 1499848b8605Smrg 1500848b8605Smrg/*@}*/ 1501848b8605Smrg 1502848b8605Smrg 1503848b8605Smrg/**********************************************************************/ 1504848b8605Smrg/** \name Matrix transpose */ 1505848b8605Smrg/*@{*/ 1506848b8605Smrg 1507848b8605Smrg/** 1508848b8605Smrg * Transpose a GLfloat matrix. 1509848b8605Smrg * 1510848b8605Smrg * \param to destination array. 1511848b8605Smrg * \param from source array. 1512848b8605Smrg */ 1513848b8605Smrgvoid 1514848b8605Smrg_math_transposef( GLfloat to[16], const GLfloat from[16] ) 1515848b8605Smrg{ 1516848b8605Smrg to[0] = from[0]; 1517848b8605Smrg to[1] = from[4]; 1518848b8605Smrg to[2] = from[8]; 1519848b8605Smrg to[3] = from[12]; 1520848b8605Smrg to[4] = from[1]; 1521848b8605Smrg to[5] = from[5]; 1522848b8605Smrg to[6] = from[9]; 1523848b8605Smrg to[7] = from[13]; 1524848b8605Smrg to[8] = from[2]; 1525848b8605Smrg to[9] = from[6]; 1526848b8605Smrg to[10] = from[10]; 1527848b8605Smrg to[11] = from[14]; 1528848b8605Smrg to[12] = from[3]; 1529848b8605Smrg to[13] = from[7]; 1530848b8605Smrg to[14] = from[11]; 1531848b8605Smrg to[15] = from[15]; 1532848b8605Smrg} 1533848b8605Smrg 1534848b8605Smrg/** 1535848b8605Smrg * Transpose a GLdouble matrix. 1536848b8605Smrg * 1537848b8605Smrg * \param to destination array. 1538848b8605Smrg * \param from source array. 1539848b8605Smrg */ 1540848b8605Smrgvoid 1541848b8605Smrg_math_transposed( GLdouble to[16], const GLdouble from[16] ) 1542848b8605Smrg{ 1543848b8605Smrg to[0] = from[0]; 1544848b8605Smrg to[1] = from[4]; 1545848b8605Smrg to[2] = from[8]; 1546848b8605Smrg to[3] = from[12]; 1547848b8605Smrg to[4] = from[1]; 1548848b8605Smrg to[5] = from[5]; 1549848b8605Smrg to[6] = from[9]; 1550848b8605Smrg to[7] = from[13]; 1551848b8605Smrg to[8] = from[2]; 1552848b8605Smrg to[9] = from[6]; 1553848b8605Smrg to[10] = from[10]; 1554848b8605Smrg to[11] = from[14]; 1555848b8605Smrg to[12] = from[3]; 1556848b8605Smrg to[13] = from[7]; 1557848b8605Smrg to[14] = from[11]; 1558848b8605Smrg to[15] = from[15]; 1559848b8605Smrg} 1560848b8605Smrg 1561848b8605Smrg/** 1562848b8605Smrg * Transpose a GLdouble matrix and convert to GLfloat. 1563848b8605Smrg * 1564848b8605Smrg * \param to destination array. 1565848b8605Smrg * \param from source array. 1566848b8605Smrg */ 1567848b8605Smrgvoid 1568848b8605Smrg_math_transposefd( GLfloat to[16], const GLdouble from[16] ) 1569848b8605Smrg{ 1570848b8605Smrg to[0] = (GLfloat) from[0]; 1571848b8605Smrg to[1] = (GLfloat) from[4]; 1572848b8605Smrg to[2] = (GLfloat) from[8]; 1573848b8605Smrg to[3] = (GLfloat) from[12]; 1574848b8605Smrg to[4] = (GLfloat) from[1]; 1575848b8605Smrg to[5] = (GLfloat) from[5]; 1576848b8605Smrg to[6] = (GLfloat) from[9]; 1577848b8605Smrg to[7] = (GLfloat) from[13]; 1578848b8605Smrg to[8] = (GLfloat) from[2]; 1579848b8605Smrg to[9] = (GLfloat) from[6]; 1580848b8605Smrg to[10] = (GLfloat) from[10]; 1581848b8605Smrg to[11] = (GLfloat) from[14]; 1582848b8605Smrg to[12] = (GLfloat) from[3]; 1583848b8605Smrg to[13] = (GLfloat) from[7]; 1584848b8605Smrg to[14] = (GLfloat) from[11]; 1585848b8605Smrg to[15] = (GLfloat) from[15]; 1586848b8605Smrg} 1587848b8605Smrg 1588848b8605Smrg/*@}*/ 1589848b8605Smrg 1590848b8605Smrg 1591848b8605Smrg/** 1592848b8605Smrg * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This 1593848b8605Smrg * function is used for transforming clipping plane equations and spotlight 1594848b8605Smrg * directions. 1595848b8605Smrg * Mathematically, u = v * m. 1596848b8605Smrg * Input: v - input vector 1597848b8605Smrg * m - transformation matrix 1598848b8605Smrg * Output: u - transformed vector 1599848b8605Smrg */ 1600848b8605Smrgvoid 1601848b8605Smrg_mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] ) 1602848b8605Smrg{ 1603848b8605Smrg const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3]; 1604848b8605Smrg#define M(row,col) m[row + col*4] 1605848b8605Smrg u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0); 1606848b8605Smrg u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1); 1607848b8605Smrg u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2); 1608848b8605Smrg u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3); 1609848b8605Smrg#undef M 1610848b8605Smrg} 1611