1/*
2 * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3 * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26/**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32#include <stdio.h>
33#include "main/macros.h"
34#include "main/mtypes.h"
35#include "main/shaderapi.h"
36#include "main/shaderobj.h"
37#include "main/uniforms.h"
38#include "main/glspirv.h"
39#include "compiler/glsl/ast.h"
40#include "compiler/glsl/ir.h"
41#include "compiler/glsl/ir_expression_flattening.h"
42#include "compiler/glsl/ir_visitor.h"
43#include "compiler/glsl/ir_optimization.h"
44#include "compiler/glsl/ir_uniform.h"
45#include "compiler/glsl/glsl_parser_extras.h"
46#include "compiler/glsl_types.h"
47#include "compiler/glsl/linker.h"
48#include "compiler/glsl/program.h"
49#include "compiler/glsl/shader_cache.h"
50#include "compiler/glsl/string_to_uint_map.h"
51#include "program/prog_instruction.h"
52#include "program/prog_optimize.h"
53#include "program/prog_print.h"
54#include "program/program.h"
55#include "program/prog_parameter.h"
56
57
58static int swizzle_for_size(int size);
59
60namespace {
61
62class src_reg;
63class dst_reg;
64
65/**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69class src_reg {
70public:
71   src_reg(gl_register_file file, int index, const glsl_type *type)
72   {
73      this->file = file;
74      this->index = index;
75      if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76	 this->swizzle = swizzle_for_size(type->vector_elements);
77      else
78	 this->swizzle = SWIZZLE_XYZW;
79      this->negate = 0;
80      this->reladdr = NULL;
81   }
82
83   src_reg()
84   {
85      this->file = PROGRAM_UNDEFINED;
86      this->index = 0;
87      this->swizzle = 0;
88      this->negate = 0;
89      this->reladdr = NULL;
90   }
91
92   explicit src_reg(dst_reg reg);
93
94   gl_register_file file; /**< PROGRAM_* from Mesa */
95   int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96   GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97   int negate; /**< NEGATE_XYZW mask from mesa */
98   /** Register index should be offset by the integer in this reg. */
99   src_reg *reladdr;
100};
101
102class dst_reg {
103public:
104   dst_reg(gl_register_file file, int writemask)
105   {
106      this->file = file;
107      this->index = 0;
108      this->writemask = writemask;
109      this->reladdr = NULL;
110   }
111
112   dst_reg()
113   {
114      this->file = PROGRAM_UNDEFINED;
115      this->index = 0;
116      this->writemask = 0;
117      this->reladdr = NULL;
118   }
119
120   explicit dst_reg(src_reg reg);
121
122   gl_register_file file; /**< PROGRAM_* from Mesa */
123   int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124   int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125   /** Register index should be offset by the integer in this reg. */
126   src_reg *reladdr;
127};
128
129} /* anonymous namespace */
130
131src_reg::src_reg(dst_reg reg)
132{
133   this->file = reg.file;
134   this->index = reg.index;
135   this->swizzle = SWIZZLE_XYZW;
136   this->negate = 0;
137   this->reladdr = reg.reladdr;
138}
139
140dst_reg::dst_reg(src_reg reg)
141{
142   this->file = reg.file;
143   this->index = reg.index;
144   this->writemask = WRITEMASK_XYZW;
145   this->reladdr = reg.reladdr;
146}
147
148namespace {
149
150class ir_to_mesa_instruction : public exec_node {
151public:
152   DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153
154   enum prog_opcode op;
155   dst_reg dst;
156   src_reg src[3];
157   /** Pointer to the ir source this tree came from for debugging */
158   ir_instruction *ir;
159   bool saturate;
160   int sampler; /**< sampler index */
161   int tex_target; /**< One of TEXTURE_*_INDEX */
162   GLboolean tex_shadow;
163};
164
165class variable_storage : public exec_node {
166public:
167   variable_storage(ir_variable *var, gl_register_file file, int index)
168      : file(file), index(index), var(var)
169   {
170      /* empty */
171   }
172
173   gl_register_file file;
174   int index;
175   ir_variable *var; /* variable that maps to this, if any */
176};
177
178class function_entry : public exec_node {
179public:
180   ir_function_signature *sig;
181
182   /**
183    * identifier of this function signature used by the program.
184    *
185    * At the point that Mesa instructions for function calls are
186    * generated, we don't know the address of the first instruction of
187    * the function body.  So we make the BranchTarget that is called a
188    * small integer and rewrite them during set_branchtargets().
189    */
190   int sig_id;
191
192   /**
193    * Pointer to first instruction of the function body.
194    *
195    * Set during function body emits after main() is processed.
196    */
197   ir_to_mesa_instruction *bgn_inst;
198
199   /**
200    * Index of the first instruction of the function body in actual
201    * Mesa IR.
202    *
203    * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204    */
205   int inst;
206
207   /** Storage for the return value. */
208   src_reg return_reg;
209};
210
211class ir_to_mesa_visitor : public ir_visitor {
212public:
213   ir_to_mesa_visitor();
214   ~ir_to_mesa_visitor();
215
216   function_entry *current_function;
217
218   struct gl_context *ctx;
219   struct gl_program *prog;
220   struct gl_shader_program *shader_program;
221   struct gl_shader_compiler_options *options;
222
223   int next_temp;
224
225   variable_storage *find_variable_storage(const ir_variable *var);
226
227   src_reg get_temp(const glsl_type *type);
228   void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229
230   src_reg src_reg_for_float(float val);
231
232   /**
233    * \name Visit methods
234    *
235    * As typical for the visitor pattern, there must be one \c visit method for
236    * each concrete subclass of \c ir_instruction.  Virtual base classes within
237    * the hierarchy should not have \c visit methods.
238    */
239   /*@{*/
240   virtual void visit(ir_variable *);
241   virtual void visit(ir_loop *);
242   virtual void visit(ir_loop_jump *);
243   virtual void visit(ir_function_signature *);
244   virtual void visit(ir_function *);
245   virtual void visit(ir_expression *);
246   virtual void visit(ir_swizzle *);
247   virtual void visit(ir_dereference_variable  *);
248   virtual void visit(ir_dereference_array *);
249   virtual void visit(ir_dereference_record *);
250   virtual void visit(ir_assignment *);
251   virtual void visit(ir_constant *);
252   virtual void visit(ir_call *);
253   virtual void visit(ir_return *);
254   virtual void visit(ir_discard *);
255   virtual void visit(ir_texture *);
256   virtual void visit(ir_if *);
257   virtual void visit(ir_emit_vertex *);
258   virtual void visit(ir_end_primitive *);
259   virtual void visit(ir_barrier *);
260   /*@}*/
261
262   src_reg result;
263
264   /** List of variable_storage */
265   exec_list variables;
266
267   /** List of function_entry */
268   exec_list function_signatures;
269   int next_signature_id;
270
271   /** List of ir_to_mesa_instruction */
272   exec_list instructions;
273
274   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
275
276   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
277			        dst_reg dst, src_reg src0);
278
279   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
280			        dst_reg dst, src_reg src0, src_reg src1);
281
282   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283			        dst_reg dst,
284			        src_reg src0, src_reg src1, src_reg src2);
285
286   /**
287    * Emit the correct dot-product instruction for the type of arguments
288    */
289   ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
290				    dst_reg dst,
291				    src_reg src0,
292				    src_reg src1,
293				    unsigned elements);
294
295   void emit_scalar(ir_instruction *ir, enum prog_opcode op,
296		    dst_reg dst, src_reg src0);
297
298   void emit_scalar(ir_instruction *ir, enum prog_opcode op,
299		    dst_reg dst, src_reg src0, src_reg src1);
300
301   bool try_emit_mad(ir_expression *ir,
302			  int mul_operand);
303   bool try_emit_mad_for_and_not(ir_expression *ir,
304				 int mul_operand);
305
306   void emit_swz(ir_expression *ir);
307
308   void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
309                                 dst_reg dst,
310                                 const src_reg &src0, const src_reg &src1);
311
312   inline void emit_sne(ir_expression *ir, dst_reg dst,
313                        const src_reg &src0, const src_reg &src1)
314   {
315      emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
316   }
317
318   inline void emit_seq(ir_expression *ir, dst_reg dst,
319                        const src_reg &src0, const src_reg &src1)
320   {
321      emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
322   }
323
324   bool process_move_condition(ir_rvalue *ir);
325
326   void copy_propagate(void);
327
328   void *mem_ctx;
329};
330
331} /* anonymous namespace */
332
333static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
334
335static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
336
337static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
338
339static int
340swizzle_for_size(int size)
341{
342   static const int size_swizzles[4] = {
343      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
344      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
345      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
346      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
347   };
348
349   assert((size >= 1) && (size <= 4));
350   return size_swizzles[size - 1];
351}
352
353ir_to_mesa_instruction *
354ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
355			 dst_reg dst,
356			 src_reg src0, src_reg src1, src_reg src2)
357{
358   ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
359   int num_reladdr = 0;
360
361   /* If we have to do relative addressing, we want to load the ARL
362    * reg directly for one of the regs, and preload the other reladdr
363    * sources into temps.
364    */
365   num_reladdr += dst.reladdr != NULL;
366   num_reladdr += src0.reladdr != NULL;
367   num_reladdr += src1.reladdr != NULL;
368   num_reladdr += src2.reladdr != NULL;
369
370   reladdr_to_temp(ir, &src2, &num_reladdr);
371   reladdr_to_temp(ir, &src1, &num_reladdr);
372   reladdr_to_temp(ir, &src0, &num_reladdr);
373
374   if (dst.reladdr) {
375      emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
376      num_reladdr--;
377   }
378   assert(num_reladdr == 0);
379
380   inst->op = op;
381   inst->dst = dst;
382   inst->src[0] = src0;
383   inst->src[1] = src1;
384   inst->src[2] = src2;
385   inst->ir = ir;
386
387   this->instructions.push_tail(inst);
388
389   return inst;
390}
391
392
393ir_to_mesa_instruction *
394ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
395			 dst_reg dst, src_reg src0, src_reg src1)
396{
397   return emit(ir, op, dst, src0, src1, undef_src);
398}
399
400ir_to_mesa_instruction *
401ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
402			 dst_reg dst, src_reg src0)
403{
404   assert(dst.writemask != 0);
405   return emit(ir, op, dst, src0, undef_src, undef_src);
406}
407
408ir_to_mesa_instruction *
409ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
410{
411   return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
412}
413
414ir_to_mesa_instruction *
415ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
416			    dst_reg dst, src_reg src0, src_reg src1,
417			    unsigned elements)
418{
419   static const enum prog_opcode dot_opcodes[] = {
420      OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
421   };
422
423   return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
424}
425
426/**
427 * Emits Mesa scalar opcodes to produce unique answers across channels.
428 *
429 * Some Mesa opcodes are scalar-only, like ARB_fp/vp.  The src X
430 * channel determines the result across all channels.  So to do a vec4
431 * of this operation, we want to emit a scalar per source channel used
432 * to produce dest channels.
433 */
434void
435ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
436			        dst_reg dst,
437				src_reg orig_src0, src_reg orig_src1)
438{
439   int i, j;
440   int done_mask = ~dst.writemask;
441
442   /* Mesa RCP is a scalar operation splatting results to all channels,
443    * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
444    * dst channels.
445    */
446   for (i = 0; i < 4; i++) {
447      GLuint this_mask = (1 << i);
448      ir_to_mesa_instruction *inst;
449      src_reg src0 = orig_src0;
450      src_reg src1 = orig_src1;
451
452      if (done_mask & this_mask)
453	 continue;
454
455      GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
456      GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
457      for (j = i + 1; j < 4; j++) {
458	 /* If there is another enabled component in the destination that is
459	  * derived from the same inputs, generate its value on this pass as
460	  * well.
461	  */
462	 if (!(done_mask & (1 << j)) &&
463	     GET_SWZ(src0.swizzle, j) == src0_swiz &&
464	     GET_SWZ(src1.swizzle, j) == src1_swiz) {
465	    this_mask |= (1 << j);
466	 }
467      }
468      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
469				   src0_swiz, src0_swiz);
470      src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
471				  src1_swiz, src1_swiz);
472
473      inst = emit(ir, op, dst, src0, src1);
474      inst->dst.writemask = this_mask;
475      done_mask |= this_mask;
476   }
477}
478
479void
480ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
481			        dst_reg dst, src_reg src0)
482{
483   src_reg undef = undef_src;
484
485   undef.swizzle = SWIZZLE_XXXX;
486
487   emit_scalar(ir, op, dst, src0, undef);
488}
489
490src_reg
491ir_to_mesa_visitor::src_reg_for_float(float val)
492{
493   src_reg src(PROGRAM_CONSTANT, -1, NULL);
494
495   src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
496					  (const gl_constant_value *)&val, 1, &src.swizzle);
497
498   return src;
499}
500
501static int
502storage_type_size(const struct glsl_type *type, bool bindless)
503{
504   unsigned int i;
505   int size;
506
507   switch (type->base_type) {
508   case GLSL_TYPE_UINT:
509   case GLSL_TYPE_INT:
510   case GLSL_TYPE_UINT8:
511   case GLSL_TYPE_INT8:
512   case GLSL_TYPE_UINT16:
513   case GLSL_TYPE_INT16:
514   case GLSL_TYPE_FLOAT:
515   case GLSL_TYPE_FLOAT16:
516   case GLSL_TYPE_BOOL:
517      if (type->is_matrix()) {
518	 return type->matrix_columns;
519      } else {
520	 /* Regardless of size of vector, it gets a vec4. This is bad
521	  * packing for things like floats, but otherwise arrays become a
522	  * mess.  Hopefully a later pass over the code can pack scalars
523	  * down if appropriate.
524	  */
525	 return 1;
526      }
527      break;
528   case GLSL_TYPE_DOUBLE:
529      if (type->is_matrix()) {
530         if (type->vector_elements > 2)
531            return type->matrix_columns * 2;
532         else
533            return type->matrix_columns;
534      } else {
535         if (type->vector_elements > 2)
536            return 2;
537         else
538            return 1;
539      }
540      break;
541   case GLSL_TYPE_UINT64:
542   case GLSL_TYPE_INT64:
543      if (type->vector_elements > 2)
544         return 2;
545      else
546         return 1;
547   case GLSL_TYPE_ARRAY:
548      assert(type->length > 0);
549      return storage_type_size(type->fields.array, bindless) * type->length;
550   case GLSL_TYPE_STRUCT:
551      size = 0;
552      for (i = 0; i < type->length; i++) {
553	 size += storage_type_size(type->fields.structure[i].type, bindless);
554      }
555      return size;
556   case GLSL_TYPE_SAMPLER:
557   case GLSL_TYPE_IMAGE:
558      if (!bindless)
559         return 0;
560      /* fall through */
561   case GLSL_TYPE_SUBROUTINE:
562      return 1;
563   case GLSL_TYPE_ATOMIC_UINT:
564   case GLSL_TYPE_VOID:
565   case GLSL_TYPE_ERROR:
566   case GLSL_TYPE_INTERFACE:
567   case GLSL_TYPE_FUNCTION:
568      assert(!"Invalid type in type_size");
569      break;
570   }
571
572   return 0;
573}
574
575static int
576type_size(const struct glsl_type *type)
577{
578   return storage_type_size(type, false);
579}
580
581/**
582 * In the initial pass of codegen, we assign temporary numbers to
583 * intermediate results.  (not SSA -- variable assignments will reuse
584 * storage).  Actual register allocation for the Mesa VM occurs in a
585 * pass over the Mesa IR later.
586 */
587src_reg
588ir_to_mesa_visitor::get_temp(const glsl_type *type)
589{
590   src_reg src;
591
592   src.file = PROGRAM_TEMPORARY;
593   src.index = next_temp;
594   src.reladdr = NULL;
595   next_temp += type_size(type);
596
597   if (type->is_array() || type->is_struct()) {
598      src.swizzle = SWIZZLE_NOOP;
599   } else {
600      src.swizzle = swizzle_for_size(type->vector_elements);
601   }
602   src.negate = 0;
603
604   return src;
605}
606
607variable_storage *
608ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
609{
610   foreach_in_list(variable_storage, entry, &this->variables) {
611      if (entry->var == var)
612	 return entry;
613   }
614
615   return NULL;
616}
617
618void
619ir_to_mesa_visitor::visit(ir_variable *ir)
620{
621   if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
622      unsigned int i;
623      const ir_state_slot *const slots = ir->get_state_slots();
624      assert(slots != NULL);
625
626      /* Check if this statevar's setup in the STATE file exactly
627       * matches how we'll want to reference it as a
628       * struct/array/whatever.  If not, then we need to move it into
629       * temporary storage and hope that it'll get copy-propagated
630       * out.
631       */
632      for (i = 0; i < ir->get_num_state_slots(); i++) {
633	 if (slots[i].swizzle != SWIZZLE_XYZW) {
634	    break;
635	 }
636      }
637
638      variable_storage *storage;
639      dst_reg dst;
640      if (i == ir->get_num_state_slots()) {
641	 /* We'll set the index later. */
642	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
643	 this->variables.push_tail(storage);
644
645	 dst = undef_dst;
646      } else {
647	 /* The variable_storage constructor allocates slots based on the size
648	  * of the type.  However, this had better match the number of state
649	  * elements that we're going to copy into the new temporary.
650	  */
651	 assert((int) ir->get_num_state_slots() == type_size(ir->type));
652
653	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
654						 this->next_temp);
655	 this->variables.push_tail(storage);
656	 this->next_temp += type_size(ir->type);
657
658	 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
659      }
660
661
662      for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
663	 int index = _mesa_add_state_reference(this->prog->Parameters,
664					       slots[i].tokens);
665
666	 if (storage->file == PROGRAM_STATE_VAR) {
667	    if (storage->index == -1) {
668	       storage->index = index;
669	    } else {
670	       assert(index == storage->index + (int)i);
671	    }
672	 } else {
673	    src_reg src(PROGRAM_STATE_VAR, index, NULL);
674	    src.swizzle = slots[i].swizzle;
675	    emit(ir, OPCODE_MOV, dst, src);
676	    /* even a float takes up a whole vec4 reg in a struct/array. */
677	    dst.index++;
678	 }
679      }
680
681      if (storage->file == PROGRAM_TEMPORARY &&
682	  dst.index != storage->index + (int) ir->get_num_state_slots()) {
683	 linker_error(this->shader_program,
684		      "failed to load builtin uniform `%s' "
685		      "(%d/%d regs loaded)\n",
686		      ir->name, dst.index - storage->index,
687		      type_size(ir->type));
688      }
689   }
690}
691
692void
693ir_to_mesa_visitor::visit(ir_loop *ir)
694{
695   emit(NULL, OPCODE_BGNLOOP);
696
697   visit_exec_list(&ir->body_instructions, this);
698
699   emit(NULL, OPCODE_ENDLOOP);
700}
701
702void
703ir_to_mesa_visitor::visit(ir_loop_jump *ir)
704{
705   switch (ir->mode) {
706   case ir_loop_jump::jump_break:
707      emit(NULL, OPCODE_BRK);
708      break;
709   case ir_loop_jump::jump_continue:
710      emit(NULL, OPCODE_CONT);
711      break;
712   }
713}
714
715
716void
717ir_to_mesa_visitor::visit(ir_function_signature *ir)
718{
719   assert(0);
720   (void)ir;
721}
722
723void
724ir_to_mesa_visitor::visit(ir_function *ir)
725{
726   /* Ignore function bodies other than main() -- we shouldn't see calls to
727    * them since they should all be inlined before we get to ir_to_mesa.
728    */
729   if (strcmp(ir->name, "main") == 0) {
730      const ir_function_signature *sig;
731      exec_list empty;
732
733      sig = ir->matching_signature(NULL, &empty, false);
734
735      assert(sig);
736
737      foreach_in_list(ir_instruction, ir, &sig->body) {
738	 ir->accept(this);
739      }
740   }
741}
742
743bool
744ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
745{
746   int nonmul_operand = 1 - mul_operand;
747   src_reg a, b, c;
748
749   ir_expression *expr = ir->operands[mul_operand]->as_expression();
750   if (!expr || expr->operation != ir_binop_mul)
751      return false;
752
753   expr->operands[0]->accept(this);
754   a = this->result;
755   expr->operands[1]->accept(this);
756   b = this->result;
757   ir->operands[nonmul_operand]->accept(this);
758   c = this->result;
759
760   this->result = get_temp(ir->type);
761   emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
762
763   return true;
764}
765
766/**
767 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
768 *
769 * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
770 * implemented using multiplication, and logical-or is implemented using
771 * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
772 * As result, the logical expression (a & !b) can be rewritten as:
773 *
774 *     - a * !b
775 *     - a * (1 - b)
776 *     - (a * 1) - (a * b)
777 *     - a + -(a * b)
778 *     - a + (a * -b)
779 *
780 * This final expression can be implemented as a single MAD(a, -b, a)
781 * instruction.
782 */
783bool
784ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
785{
786   const int other_operand = 1 - try_operand;
787   src_reg a, b;
788
789   ir_expression *expr = ir->operands[try_operand]->as_expression();
790   if (!expr || expr->operation != ir_unop_logic_not)
791      return false;
792
793   ir->operands[other_operand]->accept(this);
794   a = this->result;
795   expr->operands[0]->accept(this);
796   b = this->result;
797
798   b.negate = ~b.negate;
799
800   this->result = get_temp(ir->type);
801   emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
802
803   return true;
804}
805
806void
807ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
808				    src_reg *reg, int *num_reladdr)
809{
810   if (!reg->reladdr)
811      return;
812
813   emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
814
815   if (*num_reladdr != 1) {
816      src_reg temp = get_temp(glsl_type::vec4_type);
817
818      emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
819      *reg = temp;
820   }
821
822   (*num_reladdr)--;
823}
824
825void
826ir_to_mesa_visitor::emit_swz(ir_expression *ir)
827{
828   /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
829    * This means that each of the operands is either an immediate value of -1,
830    * 0, or 1, or is a component from one source register (possibly with
831    * negation).
832    */
833   uint8_t components[4] = { 0 };
834   bool negate[4] = { false };
835   ir_variable *var = NULL;
836
837   for (unsigned i = 0; i < ir->type->vector_elements; i++) {
838      ir_rvalue *op = ir->operands[i];
839
840      assert(op->type->is_scalar());
841
842      while (op != NULL) {
843	 switch (op->ir_type) {
844	 case ir_type_constant: {
845
846	    assert(op->type->is_scalar());
847
848	    const ir_constant *const c = op->as_constant();
849	    if (c->is_one()) {
850	       components[i] = SWIZZLE_ONE;
851	    } else if (c->is_zero()) {
852	       components[i] = SWIZZLE_ZERO;
853	    } else if (c->is_negative_one()) {
854	       components[i] = SWIZZLE_ONE;
855	       negate[i] = true;
856	    } else {
857	       assert(!"SWZ constant must be 0.0 or 1.0.");
858	    }
859
860	    op = NULL;
861	    break;
862	 }
863
864	 case ir_type_dereference_variable: {
865	    ir_dereference_variable *const deref =
866	       (ir_dereference_variable *) op;
867
868	    assert((var == NULL) || (deref->var == var));
869	    components[i] = SWIZZLE_X;
870	    var = deref->var;
871	    op = NULL;
872	    break;
873	 }
874
875	 case ir_type_expression: {
876	    ir_expression *const expr = (ir_expression *) op;
877
878	    assert(expr->operation == ir_unop_neg);
879	    negate[i] = true;
880
881	    op = expr->operands[0];
882	    break;
883	 }
884
885	 case ir_type_swizzle: {
886	    ir_swizzle *const swiz = (ir_swizzle *) op;
887
888	    components[i] = swiz->mask.x;
889	    op = swiz->val;
890	    break;
891	 }
892
893	 default:
894	    assert(!"Should not get here.");
895	    return;
896	 }
897      }
898   }
899
900   assert(var != NULL);
901
902   ir_dereference_variable *const deref =
903      new(mem_ctx) ir_dereference_variable(var);
904
905   this->result.file = PROGRAM_UNDEFINED;
906   deref->accept(this);
907   if (this->result.file == PROGRAM_UNDEFINED) {
908      printf("Failed to get tree for expression operand:\n");
909      deref->print();
910      printf("\n");
911      exit(1);
912   }
913
914   src_reg src;
915
916   src = this->result;
917   src.swizzle = MAKE_SWIZZLE4(components[0],
918			       components[1],
919			       components[2],
920			       components[3]);
921   src.negate = ((unsigned(negate[0]) << 0)
922		 | (unsigned(negate[1]) << 1)
923		 | (unsigned(negate[2]) << 2)
924		 | (unsigned(negate[3]) << 3));
925
926   /* Storage for our result.  Ideally for an assignment we'd be using the
927    * actual storage for the result here, instead.
928    */
929   const src_reg result_src = get_temp(ir->type);
930   dst_reg result_dst = dst_reg(result_src);
931
932   /* Limit writes to the channels that will be used by result_src later.
933    * This does limit this temp's use as a temporary for multi-instruction
934    * sequences.
935    */
936   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
937
938   emit(ir, OPCODE_SWZ, result_dst, src);
939   this->result = result_src;
940}
941
942void
943ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
944                                             enum prog_opcode op,
945                                             dst_reg dst,
946                                             const src_reg &src0,
947                                             const src_reg &src1)
948{
949   src_reg difference;
950   src_reg abs_difference = get_temp(glsl_type::vec4_type);
951   const src_reg zero = src_reg_for_float(0.0);
952
953   /* x == y is equivalent to -abs(x-y) >= 0.  Since all of the code that
954    * consumes the generated IR is pretty dumb, take special care when one
955    * of the operands is zero.
956    *
957    * Similarly, x != y is equivalent to -abs(x-y) < 0.
958    */
959   if (src0.file == zero.file &&
960       src0.index == zero.index &&
961       src0.swizzle == zero.swizzle) {
962      difference = src1;
963   } else if (src1.file == zero.file &&
964              src1.index == zero.index &&
965              src1.swizzle == zero.swizzle) {
966      difference = src0;
967   } else {
968      difference = get_temp(glsl_type::vec4_type);
969
970      src_reg tmp_src = src0;
971      tmp_src.negate = ~tmp_src.negate;
972
973      emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
974   }
975
976   emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
977
978   abs_difference.negate = ~abs_difference.negate;
979   emit(ir, op, dst, abs_difference, zero);
980}
981
982void
983ir_to_mesa_visitor::visit(ir_expression *ir)
984{
985   unsigned int operand;
986   src_reg op[ARRAY_SIZE(ir->operands)];
987   src_reg result_src;
988   dst_reg result_dst;
989
990   /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
991    */
992   if (ir->operation == ir_binop_add) {
993      if (try_emit_mad(ir, 1))
994	 return;
995      if (try_emit_mad(ir, 0))
996	 return;
997   }
998
999   /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1000    */
1001   if (ir->operation == ir_binop_logic_and) {
1002      if (try_emit_mad_for_and_not(ir, 1))
1003	 return;
1004      if (try_emit_mad_for_and_not(ir, 0))
1005	 return;
1006   }
1007
1008   if (ir->operation == ir_quadop_vector) {
1009      this->emit_swz(ir);
1010      return;
1011   }
1012
1013   for (operand = 0; operand < ir->num_operands; operand++) {
1014      this->result.file = PROGRAM_UNDEFINED;
1015      ir->operands[operand]->accept(this);
1016      if (this->result.file == PROGRAM_UNDEFINED) {
1017	 printf("Failed to get tree for expression operand:\n");
1018         ir->operands[operand]->print();
1019         printf("\n");
1020	 exit(1);
1021      }
1022      op[operand] = this->result;
1023
1024      /* Matrix expression operands should have been broken down to vector
1025       * operations already.
1026       */
1027      assert(!ir->operands[operand]->type->is_matrix());
1028   }
1029
1030   int vector_elements = ir->operands[0]->type->vector_elements;
1031   if (ir->operands[1]) {
1032      vector_elements = MAX2(vector_elements,
1033			     ir->operands[1]->type->vector_elements);
1034   }
1035
1036   this->result.file = PROGRAM_UNDEFINED;
1037
1038   /* Storage for our result.  Ideally for an assignment we'd be using
1039    * the actual storage for the result here, instead.
1040    */
1041   result_src = get_temp(ir->type);
1042   /* convenience for the emit functions below. */
1043   result_dst = dst_reg(result_src);
1044   /* Limit writes to the channels that will be used by result_src later.
1045    * This does limit this temp's use as a temporary for multi-instruction
1046    * sequences.
1047    */
1048   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1049
1050   switch (ir->operation) {
1051   case ir_unop_logic_not:
1052      /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1053       * older GPUs implement SEQ using multiple instructions (i915 uses two
1054       * SGE instructions and a MUL instruction).  Since our logic values are
1055       * 0.0 and 1.0, 1-x also implements !x.
1056       */
1057      op[0].negate = ~op[0].negate;
1058      emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1059      break;
1060   case ir_unop_neg:
1061      op[0].negate = ~op[0].negate;
1062      result_src = op[0];
1063      break;
1064   case ir_unop_abs:
1065      emit(ir, OPCODE_ABS, result_dst, op[0]);
1066      break;
1067   case ir_unop_sign:
1068      emit(ir, OPCODE_SSG, result_dst, op[0]);
1069      break;
1070   case ir_unop_rcp:
1071      emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1072      break;
1073
1074   case ir_unop_exp2:
1075      emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1076      break;
1077   case ir_unop_exp:
1078      assert(!"not reached: should be handled by exp_to_exp2");
1079      break;
1080   case ir_unop_log:
1081      assert(!"not reached: should be handled by log_to_log2");
1082      break;
1083   case ir_unop_log2:
1084      emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1085      break;
1086   case ir_unop_sin:
1087      emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1088      break;
1089   case ir_unop_cos:
1090      emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1091      break;
1092
1093   case ir_unop_dFdx:
1094      emit(ir, OPCODE_DDX, result_dst, op[0]);
1095      break;
1096   case ir_unop_dFdy:
1097      emit(ir, OPCODE_DDY, result_dst, op[0]);
1098      break;
1099
1100   case ir_unop_saturate: {
1101      ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1102                                          result_dst, op[0]);
1103      inst->saturate = true;
1104      break;
1105   }
1106   case ir_unop_noise: {
1107      const enum prog_opcode opcode =
1108	 prog_opcode(OPCODE_NOISE1
1109		     + (ir->operands[0]->type->vector_elements) - 1);
1110      assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1111
1112      emit(ir, opcode, result_dst, op[0]);
1113      break;
1114   }
1115
1116   case ir_binop_add:
1117      emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1118      break;
1119   case ir_binop_sub:
1120      emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1121      break;
1122
1123   case ir_binop_mul:
1124      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1125      break;
1126   case ir_binop_div:
1127      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1128      break;
1129   case ir_binop_mod:
1130      /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1131      assert(ir->type->is_integer());
1132      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1133      break;
1134
1135   case ir_binop_less:
1136      emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1137      break;
1138   case ir_binop_gequal:
1139      emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1140      break;
1141   case ir_binop_equal:
1142      emit_seq(ir, result_dst, op[0], op[1]);
1143      break;
1144   case ir_binop_nequal:
1145      emit_sne(ir, result_dst, op[0], op[1]);
1146      break;
1147   case ir_binop_all_equal:
1148      /* "==" operator producing a scalar boolean. */
1149      if (ir->operands[0]->type->is_vector() ||
1150	  ir->operands[1]->type->is_vector()) {
1151	 src_reg temp = get_temp(glsl_type::vec4_type);
1152         emit_sne(ir, dst_reg(temp), op[0], op[1]);
1153
1154	 /* After the dot-product, the value will be an integer on the
1155	  * range [0,4].  Zero becomes 1.0, and positive values become zero.
1156	  */
1157	 emit_dp(ir, result_dst, temp, temp, vector_elements);
1158
1159	 /* Negating the result of the dot-product gives values on the range
1160	  * [-4, 0].  Zero becomes 1.0, and negative values become zero.  This
1161	  * achieved using SGE.
1162	  */
1163	 src_reg sge_src = result_src;
1164	 sge_src.negate = ~sge_src.negate;
1165	 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1166      } else {
1167         emit_seq(ir, result_dst, op[0], op[1]);
1168      }
1169      break;
1170   case ir_binop_any_nequal:
1171      /* "!=" operator producing a scalar boolean. */
1172      if (ir->operands[0]->type->is_vector() ||
1173	  ir->operands[1]->type->is_vector()) {
1174	 src_reg temp = get_temp(glsl_type::vec4_type);
1175         if (ir->operands[0]->type->is_boolean() &&
1176             ir->operands[1]->as_constant() &&
1177             ir->operands[1]->as_constant()->is_zero()) {
1178            temp = op[0];
1179         } else {
1180            emit_sne(ir, dst_reg(temp), op[0], op[1]);
1181         }
1182
1183	 /* After the dot-product, the value will be an integer on the
1184	  * range [0,4].  Zero stays zero, and positive values become 1.0.
1185	  */
1186	 ir_to_mesa_instruction *const dp =
1187	    emit_dp(ir, result_dst, temp, temp, vector_elements);
1188	 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1189	    /* The clamping to [0,1] can be done for free in the fragment
1190	     * shader with a saturate.
1191	     */
1192	    dp->saturate = true;
1193	 } else {
1194	    /* Negating the result of the dot-product gives values on the range
1195	     * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1196	     * achieved using SLT.
1197	     */
1198	    src_reg slt_src = result_src;
1199	    slt_src.negate = ~slt_src.negate;
1200	    emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1201	 }
1202      } else {
1203         emit_sne(ir, result_dst, op[0], op[1]);
1204      }
1205      break;
1206
1207   case ir_binop_logic_xor:
1208      emit_sne(ir, result_dst, op[0], op[1]);
1209      break;
1210
1211   case ir_binop_logic_or: {
1212      if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1213         /* After the addition, the value will be an integer on the
1214          * range [0,2].  Zero stays zero, and positive values become 1.0.
1215          */
1216         ir_to_mesa_instruction *add =
1217            emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1218	 add->saturate = true;
1219      } else {
1220         /* The Boolean arguments are stored as float 0.0 and 1.0.  If either
1221          * value is 1.0, the result of the logcal-or should be 1.0.  If both
1222          * values are 0.0, the result should be 0.0.  This is exactly what
1223          * MAX does.
1224          */
1225         emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1226      }
1227      break;
1228   }
1229
1230   case ir_binop_logic_and:
1231      /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1232      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1233      break;
1234
1235   case ir_binop_dot:
1236      assert(ir->operands[0]->type->is_vector());
1237      assert(ir->operands[0]->type == ir->operands[1]->type);
1238      emit_dp(ir, result_dst, op[0], op[1],
1239	      ir->operands[0]->type->vector_elements);
1240      break;
1241
1242   case ir_unop_sqrt:
1243      /* sqrt(x) = x * rsq(x). */
1244      emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1245      emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1246      /* For incoming channels <= 0, set the result to 0. */
1247      op[0].negate = ~op[0].negate;
1248      emit(ir, OPCODE_CMP, result_dst,
1249			  op[0], result_src, src_reg_for_float(0.0));
1250      break;
1251   case ir_unop_rsq:
1252      emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1253      break;
1254   case ir_unop_i2f:
1255   case ir_unop_u2f:
1256   case ir_unop_b2f:
1257   case ir_unop_b2i:
1258   case ir_unop_i2u:
1259   case ir_unop_u2i:
1260      /* Mesa IR lacks types, ints are stored as truncated floats. */
1261      result_src = op[0];
1262      break;
1263   case ir_unop_f2i:
1264   case ir_unop_f2u:
1265      emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1266      break;
1267   case ir_unop_f2b:
1268   case ir_unop_i2b:
1269      emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1270      break;
1271   case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1272   case ir_unop_bitcast_f2u:
1273   case ir_unop_bitcast_i2f:
1274   case ir_unop_bitcast_u2f:
1275      break;
1276   case ir_unop_trunc:
1277      emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1278      break;
1279   case ir_unop_ceil:
1280      op[0].negate = ~op[0].negate;
1281      emit(ir, OPCODE_FLR, result_dst, op[0]);
1282      result_src.negate = ~result_src.negate;
1283      break;
1284   case ir_unop_floor:
1285      emit(ir, OPCODE_FLR, result_dst, op[0]);
1286      break;
1287   case ir_unop_fract:
1288      emit(ir, OPCODE_FRC, result_dst, op[0]);
1289      break;
1290   case ir_unop_pack_snorm_2x16:
1291   case ir_unop_pack_snorm_4x8:
1292   case ir_unop_pack_unorm_2x16:
1293   case ir_unop_pack_unorm_4x8:
1294   case ir_unop_pack_half_2x16:
1295   case ir_unop_pack_double_2x32:
1296   case ir_unop_unpack_snorm_2x16:
1297   case ir_unop_unpack_snorm_4x8:
1298   case ir_unop_unpack_unorm_2x16:
1299   case ir_unop_unpack_unorm_4x8:
1300   case ir_unop_unpack_half_2x16:
1301   case ir_unop_unpack_double_2x32:
1302   case ir_unop_bitfield_reverse:
1303   case ir_unop_bit_count:
1304   case ir_unop_find_msb:
1305   case ir_unop_find_lsb:
1306   case ir_unop_d2f:
1307   case ir_unop_f2d:
1308   case ir_unop_d2i:
1309   case ir_unop_i2d:
1310   case ir_unop_d2u:
1311   case ir_unop_u2d:
1312   case ir_unop_d2b:
1313   case ir_unop_frexp_sig:
1314   case ir_unop_frexp_exp:
1315      assert(!"not supported");
1316      break;
1317   case ir_binop_min:
1318      emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1319      break;
1320   case ir_binop_max:
1321      emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1322      break;
1323   case ir_binop_pow:
1324      emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1325      break;
1326
1327      /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1328       * hardware backends have no way to avoid Mesa IR generation
1329       * even if they don't use it, we need to emit "something" and
1330       * continue.
1331       */
1332   case ir_binop_lshift:
1333   case ir_binop_rshift:
1334   case ir_binop_bit_and:
1335   case ir_binop_bit_xor:
1336   case ir_binop_bit_or:
1337      emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1338      break;
1339
1340   case ir_unop_bit_not:
1341   case ir_unop_round_even:
1342      emit(ir, OPCODE_MOV, result_dst, op[0]);
1343      break;
1344
1345   case ir_binop_ubo_load:
1346      assert(!"not supported");
1347      break;
1348
1349   case ir_triop_lrp:
1350      /* ir_triop_lrp operands are (x, y, a) while
1351       * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1352       */
1353      emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1354      break;
1355
1356   case ir_triop_csel:
1357      /* We assume that boolean true and false are 1.0 and 0.0.  OPCODE_CMP
1358       * selects src1 if src0 is < 0, src2 otherwise.
1359       */
1360      op[0].negate = ~op[0].negate;
1361      emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1362      break;
1363
1364   case ir_binop_vector_extract:
1365   case ir_triop_fma:
1366   case ir_triop_bitfield_extract:
1367   case ir_triop_vector_insert:
1368   case ir_quadop_bitfield_insert:
1369   case ir_binop_ldexp:
1370   case ir_binop_carry:
1371   case ir_binop_borrow:
1372   case ir_binop_imul_high:
1373   case ir_unop_interpolate_at_centroid:
1374   case ir_binop_interpolate_at_offset:
1375   case ir_binop_interpolate_at_sample:
1376   case ir_unop_dFdx_coarse:
1377   case ir_unop_dFdx_fine:
1378   case ir_unop_dFdy_coarse:
1379   case ir_unop_dFdy_fine:
1380   case ir_unop_subroutine_to_int:
1381   case ir_unop_get_buffer_size:
1382   case ir_unop_bitcast_u642d:
1383   case ir_unop_bitcast_i642d:
1384   case ir_unop_bitcast_d2u64:
1385   case ir_unop_bitcast_d2i64:
1386   case ir_unop_i642i:
1387   case ir_unop_u642i:
1388   case ir_unop_i642u:
1389   case ir_unop_u642u:
1390   case ir_unop_i642b:
1391   case ir_unop_i642f:
1392   case ir_unop_u642f:
1393   case ir_unop_i642d:
1394   case ir_unop_u642d:
1395   case ir_unop_i2i64:
1396   case ir_unop_u2i64:
1397   case ir_unop_b2i64:
1398   case ir_unop_f2i64:
1399   case ir_unop_d2i64:
1400   case ir_unop_i2u64:
1401   case ir_unop_u2u64:
1402   case ir_unop_f2u64:
1403   case ir_unop_d2u64:
1404   case ir_unop_u642i64:
1405   case ir_unop_i642u64:
1406   case ir_unop_pack_int_2x32:
1407   case ir_unop_unpack_int_2x32:
1408   case ir_unop_pack_uint_2x32:
1409   case ir_unop_unpack_uint_2x32:
1410   case ir_unop_pack_sampler_2x32:
1411   case ir_unop_unpack_sampler_2x32:
1412   case ir_unop_pack_image_2x32:
1413   case ir_unop_unpack_image_2x32:
1414      assert(!"not supported");
1415      break;
1416
1417   case ir_unop_ssbo_unsized_array_length:
1418   case ir_quadop_vector:
1419      /* This operation should have already been handled.
1420       */
1421      assert(!"Should not get here.");
1422      break;
1423   }
1424
1425   this->result = result_src;
1426}
1427
1428
1429void
1430ir_to_mesa_visitor::visit(ir_swizzle *ir)
1431{
1432   src_reg src;
1433   int i;
1434   int swizzle[4];
1435
1436   /* Note that this is only swizzles in expressions, not those on the left
1437    * hand side of an assignment, which do write masking.  See ir_assignment
1438    * for that.
1439    */
1440
1441   ir->val->accept(this);
1442   src = this->result;
1443   assert(src.file != PROGRAM_UNDEFINED);
1444   assert(ir->type->vector_elements > 0);
1445
1446   for (i = 0; i < 4; i++) {
1447      if (i < ir->type->vector_elements) {
1448	 switch (i) {
1449	 case 0:
1450	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1451	    break;
1452	 case 1:
1453	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1454	    break;
1455	 case 2:
1456	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1457	    break;
1458	 case 3:
1459	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1460	    break;
1461	 }
1462      } else {
1463	 /* If the type is smaller than a vec4, replicate the last
1464	  * channel out.
1465	  */
1466	 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1467      }
1468   }
1469
1470   src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1471
1472   this->result = src;
1473}
1474
1475void
1476ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1477{
1478   variable_storage *entry = find_variable_storage(ir->var);
1479   ir_variable *var = ir->var;
1480
1481   if (!entry) {
1482      switch (var->data.mode) {
1483      case ir_var_uniform:
1484	 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1485					       var->data.param_index);
1486	 this->variables.push_tail(entry);
1487	 break;
1488      case ir_var_shader_in:
1489	 /* The linker assigns locations for varyings and attributes,
1490	  * including deprecated builtins (like gl_Color),
1491	  * user-assigned generic attributes (glBindVertexLocation),
1492	  * and user-defined varyings.
1493	  */
1494	 assert(var->data.location != -1);
1495         entry = new(mem_ctx) variable_storage(var,
1496                                               PROGRAM_INPUT,
1497                                               var->data.location);
1498         break;
1499      case ir_var_shader_out:
1500	 assert(var->data.location != -1);
1501         entry = new(mem_ctx) variable_storage(var,
1502                                               PROGRAM_OUTPUT,
1503                                               var->data.location);
1504	 break;
1505      case ir_var_system_value:
1506         entry = new(mem_ctx) variable_storage(var,
1507                                               PROGRAM_SYSTEM_VALUE,
1508                                               var->data.location);
1509         break;
1510      case ir_var_auto:
1511      case ir_var_temporary:
1512	 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1513					       this->next_temp);
1514	 this->variables.push_tail(entry);
1515
1516	 next_temp += type_size(var->type);
1517	 break;
1518      }
1519
1520      if (!entry) {
1521	 printf("Failed to make storage for %s\n", var->name);
1522	 exit(1);
1523      }
1524   }
1525
1526   this->result = src_reg(entry->file, entry->index, var->type);
1527}
1528
1529void
1530ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1531{
1532   ir_constant *index;
1533   src_reg src;
1534   int element_size = type_size(ir->type);
1535
1536   index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1537
1538   ir->array->accept(this);
1539   src = this->result;
1540
1541   if (index) {
1542      src.index += index->value.i[0] * element_size;
1543   } else {
1544      /* Variable index array dereference.  It eats the "vec4" of the
1545       * base of the array and an index that offsets the Mesa register
1546       * index.
1547       */
1548      ir->array_index->accept(this);
1549
1550      src_reg index_reg;
1551
1552      if (element_size == 1) {
1553	 index_reg = this->result;
1554      } else {
1555	 index_reg = get_temp(glsl_type::float_type);
1556
1557	 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1558	      this->result, src_reg_for_float(element_size));
1559      }
1560
1561      /* If there was already a relative address register involved, add the
1562       * new and the old together to get the new offset.
1563       */
1564      if (src.reladdr != NULL)  {
1565	 src_reg accum_reg = get_temp(glsl_type::float_type);
1566
1567	 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1568	      index_reg, *src.reladdr);
1569
1570	 index_reg = accum_reg;
1571      }
1572
1573      src.reladdr = ralloc(mem_ctx, src_reg);
1574      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1575   }
1576
1577   /* If the type is smaller than a vec4, replicate the last channel out. */
1578   if (ir->type->is_scalar() || ir->type->is_vector())
1579      src.swizzle = swizzle_for_size(ir->type->vector_elements);
1580   else
1581      src.swizzle = SWIZZLE_NOOP;
1582
1583   this->result = src;
1584}
1585
1586void
1587ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1588{
1589   unsigned int i;
1590   const glsl_type *struct_type = ir->record->type;
1591   int offset = 0;
1592
1593   ir->record->accept(this);
1594
1595   assert(ir->field_idx >= 0);
1596   for (i = 0; i < struct_type->length; i++) {
1597      if (i == (unsigned) ir->field_idx)
1598	 break;
1599      offset += type_size(struct_type->fields.structure[i].type);
1600   }
1601
1602   /* If the type is smaller than a vec4, replicate the last channel out. */
1603   if (ir->type->is_scalar() || ir->type->is_vector())
1604      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1605   else
1606      this->result.swizzle = SWIZZLE_NOOP;
1607
1608   this->result.index += offset;
1609}
1610
1611/**
1612 * We want to be careful in assignment setup to hit the actual storage
1613 * instead of potentially using a temporary like we might with the
1614 * ir_dereference handler.
1615 */
1616static dst_reg
1617get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1618{
1619   /* The LHS must be a dereference.  If the LHS is a variable indexed array
1620    * access of a vector, it must be separated into a series conditional moves
1621    * before reaching this point (see ir_vec_index_to_cond_assign).
1622    */
1623   assert(ir->as_dereference());
1624   ir_dereference_array *deref_array = ir->as_dereference_array();
1625   if (deref_array) {
1626      assert(!deref_array->array->type->is_vector());
1627   }
1628
1629   /* Use the rvalue deref handler for the most part.  We'll ignore
1630    * swizzles in it and write swizzles using writemask, though.
1631    */
1632   ir->accept(v);
1633   return dst_reg(v->result);
1634}
1635
1636/* Calculate the sampler index and also calculate the base uniform location
1637 * for struct members.
1638 */
1639static void
1640calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1641                     unsigned *offset, unsigned *array_elements,
1642                     unsigned *location)
1643{
1644   if (deref->ir_type == ir_type_dereference_variable)
1645      return;
1646
1647   switch (deref->ir_type) {
1648   case ir_type_dereference_array: {
1649      ir_dereference_array *deref_arr = deref->as_dereference_array();
1650
1651      void *mem_ctx = ralloc_parent(deref_arr);
1652      ir_constant *array_index =
1653         deref_arr->array_index->constant_expression_value(mem_ctx);
1654
1655      if (!array_index) {
1656	 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1657	  * while GLSL 1.30 requires that the array indices be
1658	  * constant integer expressions.  We don't expect any driver
1659	  * to actually work with a really variable array index, so
1660	  * all that would work would be an unrolled loop counter that ends
1661	  * up being constant above.
1662	  */
1663         ralloc_strcat(&prog->data->InfoLog,
1664		       "warning: Variable sampler array index unsupported.\n"
1665		       "This feature of the language was removed in GLSL 1.20 "
1666		       "and is unlikely to be supported for 1.10 in Mesa.\n");
1667      } else {
1668         *offset += array_index->value.u[0] * *array_elements;
1669      }
1670
1671      *array_elements *= deref_arr->array->type->length;
1672
1673      calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1674                           offset, array_elements, location);
1675      break;
1676   }
1677
1678   case ir_type_dereference_record: {
1679      ir_dereference_record *deref_record = deref->as_dereference_record();
1680      unsigned field_index = deref_record->field_idx;
1681      *location +=
1682         deref_record->record->type->struct_location_offset(field_index);
1683      calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1684                           offset, array_elements, location);
1685      break;
1686   }
1687
1688   default:
1689      unreachable("Invalid deref type");
1690      break;
1691   }
1692}
1693
1694static int
1695get_sampler_uniform_value(class ir_dereference *sampler,
1696                          struct gl_shader_program *shader_program,
1697                          const struct gl_program *prog)
1698{
1699   GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1700   ir_variable *var = sampler->variable_referenced();
1701   unsigned location = var->data.location;
1702   unsigned array_elements = 1;
1703   unsigned offset = 0;
1704
1705   calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1706                        &location);
1707
1708   assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1709   return shader_program->data->UniformStorage[location].opaque[shader].index +
1710          offset;
1711}
1712
1713/**
1714 * Process the condition of a conditional assignment
1715 *
1716 * Examines the condition of a conditional assignment to generate the optimal
1717 * first operand of a \c CMP instruction.  If the condition is a relational
1718 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1719 * used as the source for the \c CMP instruction.  Otherwise the comparison
1720 * is processed to a boolean result, and the boolean result is used as the
1721 * operand to the CMP instruction.
1722 */
1723bool
1724ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1725{
1726   ir_rvalue *src_ir = ir;
1727   bool negate = true;
1728   bool switch_order = false;
1729
1730   ir_expression *const expr = ir->as_expression();
1731   if ((expr != NULL) && (expr->num_operands == 2)) {
1732      bool zero_on_left = false;
1733
1734      if (expr->operands[0]->is_zero()) {
1735	 src_ir = expr->operands[1];
1736	 zero_on_left = true;
1737      } else if (expr->operands[1]->is_zero()) {
1738	 src_ir = expr->operands[0];
1739	 zero_on_left = false;
1740      }
1741
1742      /*      a is -  0  +            -  0  +
1743       * (a <  0)  T  F  F  ( a < 0)  T  F  F
1744       * (0 <  a)  F  F  T  (-a < 0)  F  F  T
1745       * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
1746       * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
1747       *
1748       * Note that exchanging the order of 0 and 'a' in the comparison simply
1749       * means that the value of 'a' should be negated.
1750       */
1751      if (src_ir != ir) {
1752	 switch (expr->operation) {
1753	 case ir_binop_less:
1754	    switch_order = false;
1755	    negate = zero_on_left;
1756	    break;
1757
1758	 case ir_binop_gequal:
1759	    switch_order = true;
1760	    negate = zero_on_left;
1761	    break;
1762
1763	 default:
1764	    /* This isn't the right kind of comparison afterall, so make sure
1765	     * the whole condition is visited.
1766	     */
1767	    src_ir = ir;
1768	    break;
1769	 }
1770      }
1771   }
1772
1773   src_ir->accept(this);
1774
1775   /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1776    * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
1777    * choose which value OPCODE_CMP produces without an extra instruction
1778    * computing the condition.
1779    */
1780   if (negate)
1781      this->result.negate = ~this->result.negate;
1782
1783   return switch_order;
1784}
1785
1786void
1787ir_to_mesa_visitor::visit(ir_assignment *ir)
1788{
1789   dst_reg l;
1790   src_reg r;
1791   int i;
1792
1793   ir->rhs->accept(this);
1794   r = this->result;
1795
1796   l = get_assignment_lhs(ir->lhs, this);
1797
1798   /* FINISHME: This should really set to the correct maximal writemask for each
1799    * FINISHME: component written (in the loops below).  This case can only
1800    * FINISHME: occur for matrices, arrays, and structures.
1801    */
1802   if (ir->write_mask == 0) {
1803      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1804      l.writemask = WRITEMASK_XYZW;
1805   } else if (ir->lhs->type->is_scalar()) {
1806      /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1807       * FINISHME: W component of fragment shader output zero, work correctly.
1808       */
1809      l.writemask = WRITEMASK_XYZW;
1810   } else {
1811      int swizzles[4];
1812      int first_enabled_chan = 0;
1813      int rhs_chan = 0;
1814
1815      assert(ir->lhs->type->is_vector());
1816      l.writemask = ir->write_mask;
1817
1818      for (int i = 0; i < 4; i++) {
1819	 if (l.writemask & (1 << i)) {
1820	    first_enabled_chan = GET_SWZ(r.swizzle, i);
1821	    break;
1822	 }
1823      }
1824
1825      /* Swizzle a small RHS vector into the channels being written.
1826       *
1827       * glsl ir treats write_mask as dictating how many channels are
1828       * present on the RHS while Mesa IR treats write_mask as just
1829       * showing which channels of the vec4 RHS get written.
1830       */
1831      for (int i = 0; i < 4; i++) {
1832	 if (l.writemask & (1 << i))
1833	    swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1834	 else
1835	    swizzles[i] = first_enabled_chan;
1836      }
1837      r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1838				swizzles[2], swizzles[3]);
1839   }
1840
1841   assert(l.file != PROGRAM_UNDEFINED);
1842   assert(r.file != PROGRAM_UNDEFINED);
1843
1844   if (ir->condition) {
1845      const bool switch_order = this->process_move_condition(ir->condition);
1846      src_reg condition = this->result;
1847
1848      for (i = 0; i < type_size(ir->lhs->type); i++) {
1849	 if (switch_order) {
1850	    emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1851	 } else {
1852	    emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1853	 }
1854
1855	 l.index++;
1856	 r.index++;
1857      }
1858   } else {
1859      for (i = 0; i < type_size(ir->lhs->type); i++) {
1860	 emit(ir, OPCODE_MOV, l, r);
1861	 l.index++;
1862	 r.index++;
1863      }
1864   }
1865}
1866
1867
1868void
1869ir_to_mesa_visitor::visit(ir_constant *ir)
1870{
1871   src_reg src;
1872   GLfloat stack_vals[4] = { 0 };
1873   GLfloat *values = stack_vals;
1874   unsigned int i;
1875
1876   /* Unfortunately, 4 floats is all we can get into
1877    * _mesa_add_unnamed_constant.  So, make a temp to store an
1878    * aggregate constant and move each constant value into it.  If we
1879    * get lucky, copy propagation will eliminate the extra moves.
1880    */
1881
1882   if (ir->type->is_struct()) {
1883      src_reg temp_base = get_temp(ir->type);
1884      dst_reg temp = dst_reg(temp_base);
1885
1886      for (i = 0; i < ir->type->length; i++) {
1887         ir_constant *const field_value = ir->get_record_field(i);
1888	 int size = type_size(field_value->type);
1889
1890	 assert(size > 0);
1891
1892	 field_value->accept(this);
1893	 src = this->result;
1894
1895         for (unsigned j = 0; j < (unsigned int)size; j++) {
1896	    emit(ir, OPCODE_MOV, temp, src);
1897
1898	    src.index++;
1899	    temp.index++;
1900	 }
1901      }
1902      this->result = temp_base;
1903      return;
1904   }
1905
1906   if (ir->type->is_array()) {
1907      src_reg temp_base = get_temp(ir->type);
1908      dst_reg temp = dst_reg(temp_base);
1909      int size = type_size(ir->type->fields.array);
1910
1911      assert(size > 0);
1912
1913      for (i = 0; i < ir->type->length; i++) {
1914	 ir->const_elements[i]->accept(this);
1915	 src = this->result;
1916	 for (int j = 0; j < size; j++) {
1917	    emit(ir, OPCODE_MOV, temp, src);
1918
1919	    src.index++;
1920	    temp.index++;
1921	 }
1922      }
1923      this->result = temp_base;
1924      return;
1925   }
1926
1927   if (ir->type->is_matrix()) {
1928      src_reg mat = get_temp(ir->type);
1929      dst_reg mat_column = dst_reg(mat);
1930
1931      for (i = 0; i < ir->type->matrix_columns; i++) {
1932	 assert(ir->type->is_float());
1933	 values = &ir->value.f[i * ir->type->vector_elements];
1934
1935	 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1936	 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1937						(gl_constant_value *) values,
1938						ir->type->vector_elements,
1939						&src.swizzle);
1940	 emit(ir, OPCODE_MOV, mat_column, src);
1941
1942	 mat_column.index++;
1943      }
1944
1945      this->result = mat;
1946      return;
1947   }
1948
1949   src.file = PROGRAM_CONSTANT;
1950   switch (ir->type->base_type) {
1951   case GLSL_TYPE_FLOAT:
1952      values = &ir->value.f[0];
1953      break;
1954   case GLSL_TYPE_UINT:
1955      for (i = 0; i < ir->type->vector_elements; i++) {
1956	 values[i] = ir->value.u[i];
1957      }
1958      break;
1959   case GLSL_TYPE_INT:
1960      for (i = 0; i < ir->type->vector_elements; i++) {
1961	 values[i] = ir->value.i[i];
1962      }
1963      break;
1964   case GLSL_TYPE_BOOL:
1965      for (i = 0; i < ir->type->vector_elements; i++) {
1966	 values[i] = ir->value.b[i];
1967      }
1968      break;
1969   default:
1970      assert(!"Non-float/uint/int/bool constant");
1971   }
1972
1973   this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1974   this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1975						   (gl_constant_value *) values,
1976						   ir->type->vector_elements,
1977						   &this->result.swizzle);
1978}
1979
1980void
1981ir_to_mesa_visitor::visit(ir_call *)
1982{
1983   assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1984}
1985
1986void
1987ir_to_mesa_visitor::visit(ir_texture *ir)
1988{
1989   src_reg result_src, coord, lod_info, projector, dx, dy;
1990   dst_reg result_dst, coord_dst;
1991   ir_to_mesa_instruction *inst = NULL;
1992   prog_opcode opcode = OPCODE_NOP;
1993
1994   if (ir->op == ir_txs)
1995      this->result = src_reg_for_float(0.0);
1996   else
1997      ir->coordinate->accept(this);
1998
1999   /* Put our coords in a temp.  We'll need to modify them for shadow,
2000    * projection, or LOD, so the only case we'd use it as-is is if
2001    * we're doing plain old texturing.  Mesa IR optimization should
2002    * handle cleaning up our mess in that case.
2003    */
2004   coord = get_temp(glsl_type::vec4_type);
2005   coord_dst = dst_reg(coord);
2006   emit(ir, OPCODE_MOV, coord_dst, this->result);
2007
2008   if (ir->projector) {
2009      ir->projector->accept(this);
2010      projector = this->result;
2011   }
2012
2013   /* Storage for our result.  Ideally for an assignment we'd be using
2014    * the actual storage for the result here, instead.
2015    */
2016   result_src = get_temp(glsl_type::vec4_type);
2017   result_dst = dst_reg(result_src);
2018
2019   switch (ir->op) {
2020   case ir_tex:
2021   case ir_txs:
2022      opcode = OPCODE_TEX;
2023      break;
2024   case ir_txb:
2025      opcode = OPCODE_TXB;
2026      ir->lod_info.bias->accept(this);
2027      lod_info = this->result;
2028      break;
2029   case ir_txf:
2030      /* Pretend to be TXL so the sampler, coordinate, lod are available */
2031   case ir_txl:
2032      opcode = OPCODE_TXL;
2033      ir->lod_info.lod->accept(this);
2034      lod_info = this->result;
2035      break;
2036   case ir_txd:
2037      opcode = OPCODE_TXD;
2038      ir->lod_info.grad.dPdx->accept(this);
2039      dx = this->result;
2040      ir->lod_info.grad.dPdy->accept(this);
2041      dy = this->result;
2042      break;
2043   case ir_txf_ms:
2044      assert(!"Unexpected ir_txf_ms opcode");
2045      break;
2046   case ir_lod:
2047      assert(!"Unexpected ir_lod opcode");
2048      break;
2049   case ir_tg4:
2050      assert(!"Unexpected ir_tg4 opcode");
2051      break;
2052   case ir_query_levels:
2053      assert(!"Unexpected ir_query_levels opcode");
2054      break;
2055   case ir_samples_identical:
2056      unreachable("Unexpected ir_samples_identical opcode");
2057   case ir_texture_samples:
2058      unreachable("Unexpected ir_texture_samples opcode");
2059   }
2060
2061   const glsl_type *sampler_type = ir->sampler->type;
2062
2063   if (ir->projector) {
2064      if (opcode == OPCODE_TEX) {
2065	 /* Slot the projector in as the last component of the coord. */
2066	 coord_dst.writemask = WRITEMASK_W;
2067	 emit(ir, OPCODE_MOV, coord_dst, projector);
2068	 coord_dst.writemask = WRITEMASK_XYZW;
2069	 opcode = OPCODE_TXP;
2070      } else {
2071	 src_reg coord_w = coord;
2072	 coord_w.swizzle = SWIZZLE_WWWW;
2073
2074	 /* For the other TEX opcodes there's no projective version
2075	  * since the last slot is taken up by lod info.  Do the
2076	  * projective divide now.
2077	  */
2078	 coord_dst.writemask = WRITEMASK_W;
2079	 emit(ir, OPCODE_RCP, coord_dst, projector);
2080
2081	 /* In the case where we have to project the coordinates "by hand,"
2082	  * the shadow comparator value must also be projected.
2083	  */
2084	 src_reg tmp_src = coord;
2085	 if (ir->shadow_comparator) {
2086	    /* Slot the shadow value in as the second to last component of the
2087	     * coord.
2088	     */
2089	    ir->shadow_comparator->accept(this);
2090
2091	    tmp_src = get_temp(glsl_type::vec4_type);
2092	    dst_reg tmp_dst = dst_reg(tmp_src);
2093
2094	    /* Projective division not allowed for array samplers. */
2095	    assert(!sampler_type->sampler_array);
2096
2097	    tmp_dst.writemask = WRITEMASK_Z;
2098	    emit(ir, OPCODE_MOV, tmp_dst, this->result);
2099
2100	    tmp_dst.writemask = WRITEMASK_XY;
2101	    emit(ir, OPCODE_MOV, tmp_dst, coord);
2102	 }
2103
2104	 coord_dst.writemask = WRITEMASK_XYZ;
2105	 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2106
2107	 coord_dst.writemask = WRITEMASK_XYZW;
2108	 coord.swizzle = SWIZZLE_XYZW;
2109      }
2110   }
2111
2112   /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2113    * comparator was put in the correct place (and projected) by the code,
2114    * above, that handles by-hand projection.
2115    */
2116   if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2117      /* Slot the shadow value in as the second to last component of the
2118       * coord.
2119       */
2120      ir->shadow_comparator->accept(this);
2121
2122      /* XXX This will need to be updated for cubemap array samplers. */
2123      if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2124          sampler_type->sampler_array) {
2125         coord_dst.writemask = WRITEMASK_W;
2126      } else {
2127         coord_dst.writemask = WRITEMASK_Z;
2128      }
2129
2130      emit(ir, OPCODE_MOV, coord_dst, this->result);
2131      coord_dst.writemask = WRITEMASK_XYZW;
2132   }
2133
2134   if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2135      /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2136      coord_dst.writemask = WRITEMASK_W;
2137      emit(ir, OPCODE_MOV, coord_dst, lod_info);
2138      coord_dst.writemask = WRITEMASK_XYZW;
2139   }
2140
2141   if (opcode == OPCODE_TXD)
2142      inst = emit(ir, opcode, result_dst, coord, dx, dy);
2143   else
2144      inst = emit(ir, opcode, result_dst, coord);
2145
2146   if (ir->shadow_comparator)
2147      inst->tex_shadow = GL_TRUE;
2148
2149   inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2150                                             prog);
2151
2152   switch (sampler_type->sampler_dimensionality) {
2153   case GLSL_SAMPLER_DIM_1D:
2154      inst->tex_target = (sampler_type->sampler_array)
2155	 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2156      break;
2157   case GLSL_SAMPLER_DIM_2D:
2158      inst->tex_target = (sampler_type->sampler_array)
2159	 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2160      break;
2161   case GLSL_SAMPLER_DIM_3D:
2162      inst->tex_target = TEXTURE_3D_INDEX;
2163      break;
2164   case GLSL_SAMPLER_DIM_CUBE:
2165      inst->tex_target = TEXTURE_CUBE_INDEX;
2166      break;
2167   case GLSL_SAMPLER_DIM_RECT:
2168      inst->tex_target = TEXTURE_RECT_INDEX;
2169      break;
2170   case GLSL_SAMPLER_DIM_BUF:
2171      assert(!"FINISHME: Implement ARB_texture_buffer_object");
2172      break;
2173   case GLSL_SAMPLER_DIM_EXTERNAL:
2174      inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2175      break;
2176   default:
2177      assert(!"Should not get here.");
2178   }
2179
2180   this->result = result_src;
2181}
2182
2183void
2184ir_to_mesa_visitor::visit(ir_return *ir)
2185{
2186   /* Non-void functions should have been inlined.  We may still emit RETs
2187    * from main() unless the EmitNoMainReturn option is set.
2188    */
2189   assert(!ir->get_value());
2190   emit(ir, OPCODE_RET);
2191}
2192
2193void
2194ir_to_mesa_visitor::visit(ir_discard *ir)
2195{
2196   if (!ir->condition)
2197      ir->condition = new(mem_ctx) ir_constant(true);
2198
2199   ir->condition->accept(this);
2200   this->result.negate = ~this->result.negate;
2201   emit(ir, OPCODE_KIL, undef_dst, this->result);
2202}
2203
2204void
2205ir_to_mesa_visitor::visit(ir_if *ir)
2206{
2207   ir_to_mesa_instruction *if_inst;
2208
2209   ir->condition->accept(this);
2210   assert(this->result.file != PROGRAM_UNDEFINED);
2211
2212   if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2213
2214   this->instructions.push_tail(if_inst);
2215
2216   visit_exec_list(&ir->then_instructions, this);
2217
2218   if (!ir->else_instructions.is_empty()) {
2219      emit(ir->condition, OPCODE_ELSE);
2220      visit_exec_list(&ir->else_instructions, this);
2221   }
2222
2223   emit(ir->condition, OPCODE_ENDIF);
2224}
2225
2226void
2227ir_to_mesa_visitor::visit(ir_emit_vertex *)
2228{
2229   assert(!"Geometry shaders not supported.");
2230}
2231
2232void
2233ir_to_mesa_visitor::visit(ir_end_primitive *)
2234{
2235   assert(!"Geometry shaders not supported.");
2236}
2237
2238void
2239ir_to_mesa_visitor::visit(ir_barrier *)
2240{
2241   unreachable("GLSL barrier() not supported.");
2242}
2243
2244ir_to_mesa_visitor::ir_to_mesa_visitor()
2245{
2246   result.file = PROGRAM_UNDEFINED;
2247   next_temp = 1;
2248   next_signature_id = 1;
2249   current_function = NULL;
2250   mem_ctx = ralloc_context(NULL);
2251}
2252
2253ir_to_mesa_visitor::~ir_to_mesa_visitor()
2254{
2255   ralloc_free(mem_ctx);
2256}
2257
2258static struct prog_src_register
2259mesa_src_reg_from_ir_src_reg(src_reg reg)
2260{
2261   struct prog_src_register mesa_reg;
2262
2263   mesa_reg.File = reg.file;
2264   assert(reg.index < (1 << INST_INDEX_BITS));
2265   mesa_reg.Index = reg.index;
2266   mesa_reg.Swizzle = reg.swizzle;
2267   mesa_reg.RelAddr = reg.reladdr != NULL;
2268   mesa_reg.Negate = reg.negate;
2269
2270   return mesa_reg;
2271}
2272
2273static void
2274set_branchtargets(ir_to_mesa_visitor *v,
2275		  struct prog_instruction *mesa_instructions,
2276		  int num_instructions)
2277{
2278   int if_count = 0, loop_count = 0;
2279   int *if_stack, *loop_stack;
2280   int if_stack_pos = 0, loop_stack_pos = 0;
2281   int i, j;
2282
2283   for (i = 0; i < num_instructions; i++) {
2284      switch (mesa_instructions[i].Opcode) {
2285      case OPCODE_IF:
2286	 if_count++;
2287	 break;
2288      case OPCODE_BGNLOOP:
2289	 loop_count++;
2290	 break;
2291      case OPCODE_BRK:
2292      case OPCODE_CONT:
2293	 mesa_instructions[i].BranchTarget = -1;
2294	 break;
2295      default:
2296	 break;
2297      }
2298   }
2299
2300   if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2301   loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2302
2303   for (i = 0; i < num_instructions; i++) {
2304      switch (mesa_instructions[i].Opcode) {
2305      case OPCODE_IF:
2306	 if_stack[if_stack_pos] = i;
2307	 if_stack_pos++;
2308	 break;
2309      case OPCODE_ELSE:
2310	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2311	 if_stack[if_stack_pos - 1] = i;
2312	 break;
2313      case OPCODE_ENDIF:
2314	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2315	 if_stack_pos--;
2316	 break;
2317      case OPCODE_BGNLOOP:
2318	 loop_stack[loop_stack_pos] = i;
2319	 loop_stack_pos++;
2320	 break;
2321      case OPCODE_ENDLOOP:
2322	 loop_stack_pos--;
2323	 /* Rewrite any breaks/conts at this nesting level (haven't
2324	  * already had a BranchTarget assigned) to point to the end
2325	  * of the loop.
2326	  */
2327	 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2328	    if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2329		mesa_instructions[j].Opcode == OPCODE_CONT) {
2330	       if (mesa_instructions[j].BranchTarget == -1) {
2331		  mesa_instructions[j].BranchTarget = i;
2332	       }
2333	    }
2334	 }
2335	 /* The loop ends point at each other. */
2336	 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2337	 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2338	 break;
2339      case OPCODE_CAL:
2340	 foreach_in_list(function_entry, entry, &v->function_signatures) {
2341	    if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2342	       mesa_instructions[i].BranchTarget = entry->inst;
2343	       break;
2344	    }
2345	 }
2346	 break;
2347      default:
2348	 break;
2349      }
2350   }
2351}
2352
2353static void
2354print_program(struct prog_instruction *mesa_instructions,
2355	      ir_instruction **mesa_instruction_annotation,
2356	      int num_instructions)
2357{
2358   ir_instruction *last_ir = NULL;
2359   int i;
2360   int indent = 0;
2361
2362   for (i = 0; i < num_instructions; i++) {
2363      struct prog_instruction *mesa_inst = mesa_instructions + i;
2364      ir_instruction *ir = mesa_instruction_annotation[i];
2365
2366      fprintf(stdout, "%3d: ", i);
2367
2368      if (last_ir != ir && ir) {
2369	 int j;
2370
2371	 for (j = 0; j < indent; j++) {
2372	    fprintf(stdout, " ");
2373	 }
2374	 ir->print();
2375	 printf("\n");
2376	 last_ir = ir;
2377
2378	 fprintf(stdout, "     "); /* line number spacing. */
2379      }
2380
2381      indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2382					    PROG_PRINT_DEBUG, NULL);
2383   }
2384}
2385
2386namespace {
2387
2388class add_uniform_to_shader : public program_resource_visitor {
2389public:
2390   add_uniform_to_shader(struct gl_context *ctx,
2391                         struct gl_shader_program *shader_program,
2392			 struct gl_program_parameter_list *params)
2393      : ctx(ctx), params(params), idx(-1)
2394   {
2395      /* empty */
2396   }
2397
2398   void process(ir_variable *var)
2399   {
2400      this->idx = -1;
2401      this->var = var;
2402      this->program_resource_visitor::process(var,
2403                                         ctx->Const.UseSTD430AsDefaultPacking);
2404      var->data.param_index = this->idx;
2405   }
2406
2407private:
2408   virtual void visit_field(const glsl_type *type, const char *name,
2409                            bool row_major, const glsl_type *record_type,
2410                            const enum glsl_interface_packing packing,
2411                            bool last_field);
2412
2413   struct gl_context *ctx;
2414   struct gl_program_parameter_list *params;
2415   int idx;
2416   ir_variable *var;
2417};
2418
2419} /* anonymous namespace */
2420
2421void
2422add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2423                                   bool /* row_major */,
2424                                   const glsl_type * /* record_type */,
2425                                   const enum glsl_interface_packing,
2426                                   bool /* last_field */)
2427{
2428   /* opaque types don't use storage in the param list unless they are
2429    * bindless samplers or images.
2430    */
2431   if (type->contains_opaque() && !var->data.bindless)
2432      return;
2433
2434   /* Add the uniform to the param list */
2435   assert(_mesa_lookup_parameter_index(params, name) < 0);
2436   int index = _mesa_lookup_parameter_index(params, name);
2437
2438   unsigned num_params = type->arrays_of_arrays_size();
2439   num_params = MAX2(num_params, 1);
2440   num_params *= type->without_array()->matrix_columns;
2441
2442   bool is_dual_slot = type->without_array()->is_dual_slot();
2443   if (is_dual_slot)
2444      num_params *= 2;
2445
2446   _mesa_reserve_parameter_storage(params, num_params);
2447   index = params->NumParameters;
2448
2449   if (ctx->Const.PackedDriverUniformStorage) {
2450      for (unsigned i = 0; i < num_params; i++) {
2451         unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
2452         unsigned comps = type->without_array()->vector_elements * dmul;
2453         if (is_dual_slot) {
2454            if (i & 0x1)
2455               comps -= 4;
2456            else
2457               comps = 4;
2458         }
2459
2460         _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2461                             type->gl_type, NULL, NULL, false);
2462      }
2463   } else {
2464      for (unsigned i = 0; i < num_params; i++) {
2465         _mesa_add_parameter(params, PROGRAM_UNIFORM, name, 4,
2466                             type->gl_type, NULL, NULL, true);
2467      }
2468   }
2469
2470   /* The first part of the uniform that's processed determines the base
2471    * location of the whole uniform (for structures).
2472    */
2473   if (this->idx < 0)
2474      this->idx = index;
2475}
2476
2477/**
2478 * Generate the program parameters list for the user uniforms in a shader
2479 *
2480 * \param shader_program Linked shader program.  This is only used to
2481 *                       emit possible link errors to the info log.
2482 * \param sh             Shader whose uniforms are to be processed.
2483 * \param params         Parameter list to be filled in.
2484 */
2485void
2486_mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2487                                            struct gl_shader_program
2488					    *shader_program,
2489					    struct gl_linked_shader *sh,
2490					    struct gl_program_parameter_list
2491					    *params)
2492{
2493   add_uniform_to_shader add(ctx, shader_program, params);
2494
2495   foreach_in_list(ir_instruction, node, sh->ir) {
2496      ir_variable *var = node->as_variable();
2497
2498      if ((var == NULL) || (var->data.mode != ir_var_uniform)
2499	  || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2500	 continue;
2501
2502      add.process(var);
2503   }
2504}
2505
2506void
2507_mesa_associate_uniform_storage(struct gl_context *ctx,
2508                                struct gl_shader_program *shader_program,
2509                                struct gl_program *prog)
2510{
2511   struct gl_program_parameter_list *params = prog->Parameters;
2512   gl_shader_stage shader_type = prog->info.stage;
2513
2514   /* After adding each uniform to the parameter list, connect the storage for
2515    * the parameter with the tracking structure used by the API for the
2516    * uniform.
2517    */
2518   unsigned last_location = unsigned(~0);
2519   for (unsigned i = 0; i < params->NumParameters; i++) {
2520      if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2521         continue;
2522
2523      unsigned location;
2524      const bool found =
2525         shader_program->UniformHash->get(location, params->Parameters[i].Name);
2526      assert(found);
2527
2528      if (!found)
2529         continue;
2530
2531      struct gl_uniform_storage *storage =
2532         &shader_program->data->UniformStorage[location];
2533
2534      /* Do not associate any uniform storage to built-in uniforms */
2535      if (storage->builtin)
2536         continue;
2537
2538      if (location != last_location) {
2539         enum gl_uniform_driver_format format = uniform_native;
2540         unsigned columns = 0;
2541
2542         int dmul;
2543         if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm) {
2544            dmul = storage->type->vector_elements * sizeof(float);
2545         } else {
2546            dmul = 4 * sizeof(float);
2547         }
2548
2549         switch (storage->type->base_type) {
2550         case GLSL_TYPE_UINT64:
2551            if (storage->type->vector_elements > 2)
2552               dmul *= 2;
2553            /* fallthrough */
2554         case GLSL_TYPE_UINT:
2555         case GLSL_TYPE_UINT16:
2556         case GLSL_TYPE_UINT8:
2557            assert(ctx->Const.NativeIntegers);
2558            format = uniform_native;
2559            columns = 1;
2560            break;
2561         case GLSL_TYPE_INT64:
2562            if (storage->type->vector_elements > 2)
2563               dmul *= 2;
2564            /* fallthrough */
2565         case GLSL_TYPE_INT:
2566         case GLSL_TYPE_INT16:
2567         case GLSL_TYPE_INT8:
2568            format =
2569               (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2570            columns = 1;
2571            break;
2572         case GLSL_TYPE_DOUBLE:
2573            if (storage->type->vector_elements > 2)
2574               dmul *= 2;
2575            /* fallthrough */
2576         case GLSL_TYPE_FLOAT:
2577         case GLSL_TYPE_FLOAT16:
2578            format = uniform_native;
2579            columns = storage->type->matrix_columns;
2580            break;
2581         case GLSL_TYPE_BOOL:
2582            format = uniform_native;
2583            columns = 1;
2584            break;
2585         case GLSL_TYPE_SAMPLER:
2586         case GLSL_TYPE_IMAGE:
2587         case GLSL_TYPE_SUBROUTINE:
2588            format = uniform_native;
2589            columns = 1;
2590            break;
2591         case GLSL_TYPE_ATOMIC_UINT:
2592         case GLSL_TYPE_ARRAY:
2593         case GLSL_TYPE_VOID:
2594         case GLSL_TYPE_STRUCT:
2595         case GLSL_TYPE_ERROR:
2596         case GLSL_TYPE_INTERFACE:
2597         case GLSL_TYPE_FUNCTION:
2598            assert(!"Should not get here.");
2599            break;
2600         }
2601
2602         unsigned pvo = params->ParameterValueOffset[i];
2603         _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2604                                             format,
2605                                             &params->ParameterValues[pvo]);
2606
2607         /* When a bindless sampler/image is bound to a texture/image unit, we
2608          * have to overwrite the constant value by the resident handle
2609          * directly in the constant buffer before the next draw. One solution
2610          * is to keep track a pointer to the base of the data.
2611          */
2612         if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2613                                      prog->sh.NumBindlessImages)) {
2614            unsigned array_elements = MAX2(1, storage->array_elements);
2615
2616            for (unsigned j = 0; j < array_elements; ++j) {
2617               unsigned unit = storage->opaque[shader_type].index + j;
2618
2619               if (storage->type->without_array()->is_sampler()) {
2620                  assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2621                  prog->sh.BindlessSamplers[unit].data =
2622                     &params->ParameterValues[pvo] + 4 * j;
2623               } else if (storage->type->without_array()->is_image()) {
2624                  assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2625                  prog->sh.BindlessImages[unit].data =
2626                     &params->ParameterValues[pvo] + 4 * j;
2627               }
2628            }
2629         }
2630
2631         /* After attaching the driver's storage to the uniform, propagate any
2632          * data from the linker's backing store.  This will cause values from
2633          * initializers in the source code to be copied over.
2634          */
2635         unsigned array_elements = MAX2(1, storage->array_elements);
2636         if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm &&
2637             (storage->is_bindless || !storage->type->contains_opaque())) {
2638            const int dmul = storage->type->is_64bit() ? 2 : 1;
2639            const unsigned components =
2640               storage->type->vector_elements *
2641               storage->type->matrix_columns;
2642
2643            for (unsigned s = 0; s < storage->num_driver_storage; s++) {
2644               gl_constant_value *uni_storage = (gl_constant_value *)
2645                  storage->driver_storage[s].data;
2646               memcpy(uni_storage, storage->storage,
2647                      sizeof(storage->storage[0]) * components *
2648                      array_elements * dmul);
2649            }
2650         } else {
2651            _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2652                                                       array_elements);
2653         }
2654
2655	      last_location = location;
2656      }
2657   }
2658}
2659
2660/*
2661 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2662 * channels for copy propagation and updates following instructions to
2663 * use the original versions.
2664 *
2665 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2666 * will occur.  As an example, a TXP production before this pass:
2667 *
2668 * 0: MOV TEMP[1], INPUT[4].xyyy;
2669 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2670 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2671 *
2672 * and after:
2673 *
2674 * 0: MOV TEMP[1], INPUT[4].xyyy;
2675 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2676 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2677 *
2678 * which allows for dead code elimination on TEMP[1]'s writes.
2679 */
2680void
2681ir_to_mesa_visitor::copy_propagate(void)
2682{
2683   ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2684						    ir_to_mesa_instruction *,
2685						    this->next_temp * 4);
2686   int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2687   int level = 0;
2688
2689   foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2690      assert(inst->dst.file != PROGRAM_TEMPORARY
2691	     || inst->dst.index < this->next_temp);
2692
2693      /* First, do any copy propagation possible into the src regs. */
2694      for (int r = 0; r < 3; r++) {
2695	 ir_to_mesa_instruction *first = NULL;
2696	 bool good = true;
2697	 int acp_base = inst->src[r].index * 4;
2698
2699	 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2700	     inst->src[r].reladdr)
2701	    continue;
2702
2703	 /* See if we can find entries in the ACP consisting of MOVs
2704	  * from the same src register for all the swizzled channels
2705	  * of this src register reference.
2706	  */
2707	 for (int i = 0; i < 4; i++) {
2708	    int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2709	    ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2710
2711	    if (!copy_chan) {
2712	       good = false;
2713	       break;
2714	    }
2715
2716	    assert(acp_level[acp_base + src_chan] <= level);
2717
2718	    if (!first) {
2719	       first = copy_chan;
2720	    } else {
2721	       if (first->src[0].file != copy_chan->src[0].file ||
2722		   first->src[0].index != copy_chan->src[0].index) {
2723		  good = false;
2724		  break;
2725	       }
2726	    }
2727	 }
2728
2729	 if (good) {
2730	    /* We've now validated that we can copy-propagate to
2731	     * replace this src register reference.  Do it.
2732	     */
2733	    inst->src[r].file = first->src[0].file;
2734	    inst->src[r].index = first->src[0].index;
2735
2736	    int swizzle = 0;
2737	    for (int i = 0; i < 4; i++) {
2738	       int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2739	       ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2740	       swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2741			   (3 * i));
2742	    }
2743	    inst->src[r].swizzle = swizzle;
2744	 }
2745      }
2746
2747      switch (inst->op) {
2748      case OPCODE_BGNLOOP:
2749      case OPCODE_ENDLOOP:
2750	 /* End of a basic block, clear the ACP entirely. */
2751	 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2752	 break;
2753
2754      case OPCODE_IF:
2755	 ++level;
2756	 break;
2757
2758      case OPCODE_ENDIF:
2759      case OPCODE_ELSE:
2760	 /* Clear all channels written inside the block from the ACP, but
2761	  * leaving those that were not touched.
2762	  */
2763	 for (int r = 0; r < this->next_temp; r++) {
2764	    for (int c = 0; c < 4; c++) {
2765	       if (!acp[4 * r + c])
2766		  continue;
2767
2768	       if (acp_level[4 * r + c] >= level)
2769		  acp[4 * r + c] = NULL;
2770	    }
2771	 }
2772	 if (inst->op == OPCODE_ENDIF)
2773	    --level;
2774	 break;
2775
2776      default:
2777	 /* Continuing the block, clear any written channels from
2778	  * the ACP.
2779	  */
2780	 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2781	    /* Any temporary might be written, so no copy propagation
2782	     * across this instruction.
2783	     */
2784	    memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2785	 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2786		    inst->dst.reladdr) {
2787	    /* Any output might be written, so no copy propagation
2788	     * from outputs across this instruction.
2789	     */
2790	    for (int r = 0; r < this->next_temp; r++) {
2791	       for (int c = 0; c < 4; c++) {
2792		  if (!acp[4 * r + c])
2793		     continue;
2794
2795		  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2796		     acp[4 * r + c] = NULL;
2797	       }
2798	    }
2799	 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2800		    inst->dst.file == PROGRAM_OUTPUT) {
2801	    /* Clear where it's used as dst. */
2802	    if (inst->dst.file == PROGRAM_TEMPORARY) {
2803	       for (int c = 0; c < 4; c++) {
2804		  if (inst->dst.writemask & (1 << c)) {
2805		     acp[4 * inst->dst.index + c] = NULL;
2806		  }
2807	       }
2808	    }
2809
2810	    /* Clear where it's used as src. */
2811	    for (int r = 0; r < this->next_temp; r++) {
2812	       for (int c = 0; c < 4; c++) {
2813		  if (!acp[4 * r + c])
2814		     continue;
2815
2816		  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2817
2818		  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2819		      acp[4 * r + c]->src[0].index == inst->dst.index &&
2820		      inst->dst.writemask & (1 << src_chan))
2821		  {
2822		     acp[4 * r + c] = NULL;
2823		  }
2824	       }
2825	    }
2826	 }
2827	 break;
2828      }
2829
2830      /* If this is a copy, add it to the ACP. */
2831      if (inst->op == OPCODE_MOV &&
2832	  inst->dst.file == PROGRAM_TEMPORARY &&
2833	  !(inst->dst.file == inst->src[0].file &&
2834	    inst->dst.index == inst->src[0].index) &&
2835	  !inst->dst.reladdr &&
2836	  !inst->saturate &&
2837	  !inst->src[0].reladdr &&
2838	  !inst->src[0].negate) {
2839	 for (int i = 0; i < 4; i++) {
2840	    if (inst->dst.writemask & (1 << i)) {
2841	       acp[4 * inst->dst.index + i] = inst;
2842	       acp_level[4 * inst->dst.index + i] = level;
2843	    }
2844	 }
2845      }
2846   }
2847
2848   ralloc_free(acp_level);
2849   ralloc_free(acp);
2850}
2851
2852
2853/**
2854 * Convert a shader's GLSL IR into a Mesa gl_program.
2855 */
2856static struct gl_program *
2857get_mesa_program(struct gl_context *ctx,
2858                 struct gl_shader_program *shader_program,
2859		 struct gl_linked_shader *shader)
2860{
2861   ir_to_mesa_visitor v;
2862   struct prog_instruction *mesa_instructions, *mesa_inst;
2863   ir_instruction **mesa_instruction_annotation;
2864   int i;
2865   struct gl_program *prog;
2866   GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2867   const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2868   struct gl_shader_compiler_options *options =
2869         &ctx->Const.ShaderCompilerOptions[shader->Stage];
2870
2871   validate_ir_tree(shader->ir);
2872
2873   prog = shader->Program;
2874   prog->Parameters = _mesa_new_parameter_list();
2875   v.ctx = ctx;
2876   v.prog = prog;
2877   v.shader_program = shader_program;
2878   v.options = options;
2879
2880   _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2881					       prog->Parameters);
2882
2883   /* Emit Mesa IR for main(). */
2884   visit_exec_list(shader->ir, &v);
2885   v.emit(NULL, OPCODE_END);
2886
2887   prog->arb.NumTemporaries = v.next_temp;
2888
2889   unsigned num_instructions = v.instructions.length();
2890
2891   mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2892                                     num_instructions);
2893   mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2894					      num_instructions);
2895
2896   v.copy_propagate();
2897
2898   /* Convert ir_mesa_instructions into prog_instructions.
2899    */
2900   mesa_inst = mesa_instructions;
2901   i = 0;
2902   foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2903      mesa_inst->Opcode = inst->op;
2904      if (inst->saturate)
2905	 mesa_inst->Saturate = GL_TRUE;
2906      mesa_inst->DstReg.File = inst->dst.file;
2907      mesa_inst->DstReg.Index = inst->dst.index;
2908      mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2909      mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2910      mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2911      mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2912      mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2913      mesa_inst->TexSrcUnit = inst->sampler;
2914      mesa_inst->TexSrcTarget = inst->tex_target;
2915      mesa_inst->TexShadow = inst->tex_shadow;
2916      mesa_instruction_annotation[i] = inst->ir;
2917
2918      /* Set IndirectRegisterFiles. */
2919      if (mesa_inst->DstReg.RelAddr)
2920         prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2921
2922      /* Update program's bitmask of indirectly accessed register files */
2923      for (unsigned src = 0; src < 3; src++)
2924         if (mesa_inst->SrcReg[src].RelAddr)
2925            prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2926
2927      switch (mesa_inst->Opcode) {
2928      case OPCODE_IF:
2929	 if (options->MaxIfDepth == 0) {
2930	    linker_warning(shader_program,
2931			   "Couldn't flatten if-statement.  "
2932			   "This will likely result in software "
2933			   "rasterization.\n");
2934	 }
2935	 break;
2936      case OPCODE_BGNLOOP:
2937	 if (options->EmitNoLoops) {
2938	    linker_warning(shader_program,
2939			   "Couldn't unroll loop.  "
2940			   "This will likely result in software "
2941			   "rasterization.\n");
2942	 }
2943	 break;
2944      case OPCODE_CONT:
2945	 if (options->EmitNoCont) {
2946	    linker_warning(shader_program,
2947			   "Couldn't lower continue-statement.  "
2948			   "This will likely result in software "
2949			   "rasterization.\n");
2950	 }
2951	 break;
2952      case OPCODE_ARL:
2953         prog->arb.NumAddressRegs = 1;
2954	 break;
2955      default:
2956	 break;
2957      }
2958
2959      mesa_inst++;
2960      i++;
2961
2962      if (!shader_program->data->LinkStatus)
2963         break;
2964   }
2965
2966   if (!shader_program->data->LinkStatus) {
2967      goto fail_exit;
2968   }
2969
2970   set_branchtargets(&v, mesa_instructions, num_instructions);
2971
2972   if (ctx->_Shader->Flags & GLSL_DUMP) {
2973      fprintf(stderr, "\n");
2974      fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2975	      shader_program->Name);
2976      _mesa_print_ir(stderr, shader->ir, NULL);
2977      fprintf(stderr, "\n");
2978      fprintf(stderr, "\n");
2979      fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2980	      shader_program->Name);
2981      print_program(mesa_instructions, mesa_instruction_annotation,
2982		    num_instructions);
2983      fflush(stderr);
2984   }
2985
2986   prog->arb.Instructions = mesa_instructions;
2987   prog->arb.NumInstructions = num_instructions;
2988
2989   /* Setting this to NULL prevents a possible double free in the fail_exit
2990    * path (far below).
2991    */
2992   mesa_instructions = NULL;
2993
2994   do_set_program_inouts(shader->ir, prog, shader->Stage);
2995
2996   prog->ShadowSamplers = shader->shadow_samplers;
2997   prog->ExternalSamplersUsed = gl_external_samplers(prog);
2998   _mesa_update_shader_textures_used(shader_program, prog);
2999
3000   /* Set the gl_FragDepth layout. */
3001   if (target == GL_FRAGMENT_PROGRAM_ARB) {
3002      prog->info.fs.depth_layout = shader_program->FragDepthLayout;
3003   }
3004
3005   _mesa_optimize_program(prog, prog);
3006
3007   /* This has to be done last.  Any operation that can cause
3008    * prog->ParameterValues to get reallocated (e.g., anything that adds a
3009    * program constant) has to happen before creating this linkage.
3010    */
3011   _mesa_associate_uniform_storage(ctx, shader_program, prog);
3012   if (!shader_program->data->LinkStatus) {
3013      goto fail_exit;
3014   }
3015
3016   return prog;
3017
3018fail_exit:
3019   ralloc_free(mesa_instructions);
3020   _mesa_reference_program(ctx, &shader->Program, NULL);
3021   return NULL;
3022}
3023
3024extern "C" {
3025
3026/**
3027 * Link a shader.
3028 * Called via ctx->Driver.LinkShader()
3029 * This actually involves converting GLSL IR into Mesa gl_programs with
3030 * code lowering and other optimizations.
3031 */
3032GLboolean
3033_mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3034{
3035   assert(prog->data->LinkStatus);
3036
3037   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3038      if (prog->_LinkedShaders[i] == NULL)
3039	 continue;
3040
3041      bool progress;
3042      exec_list *ir = prog->_LinkedShaders[i]->ir;
3043      const struct gl_shader_compiler_options *options =
3044            &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3045
3046      do {
3047	 progress = false;
3048
3049	 /* Lowering */
3050	 do_mat_op_to_vec(ir);
3051	 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3052				 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3053				 | MUL64_TO_MUL_AND_MUL_HIGH
3054				 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3055
3056	 progress = do_common_optimization(ir, true, true,
3057                                           options, ctx->Const.NativeIntegers)
3058	   || progress;
3059
3060	 progress = lower_quadop_vector(ir, true) || progress;
3061
3062	 if (options->MaxIfDepth == 0)
3063	    progress = lower_discard(ir) || progress;
3064
3065	 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3066                                            options->MaxIfDepth) || progress;
3067
3068         progress = lower_noise(ir) || progress;
3069
3070	 /* If there are forms of indirect addressing that the driver
3071	  * cannot handle, perform the lowering pass.
3072	  */
3073	 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3074	     || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3075	   progress =
3076	     lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3077						 options->EmitNoIndirectInput,
3078						 options->EmitNoIndirectOutput,
3079						 options->EmitNoIndirectTemp,
3080						 options->EmitNoIndirectUniform)
3081	     || progress;
3082
3083	 progress = do_vec_index_to_cond_assign(ir) || progress;
3084         progress = lower_vector_insert(ir, true) || progress;
3085      } while (progress);
3086
3087      validate_ir_tree(ir);
3088   }
3089
3090   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3091      struct gl_program *linked_prog;
3092
3093      if (prog->_LinkedShaders[i] == NULL)
3094	 continue;
3095
3096      linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3097
3098      if (linked_prog) {
3099         _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3100
3101         if (!ctx->Driver.ProgramStringNotify(ctx,
3102                                              _mesa_shader_stage_to_program(i),
3103                                              linked_prog)) {
3104            _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3105                                    NULL);
3106            return GL_FALSE;
3107         }
3108      }
3109   }
3110
3111   build_program_resource_list(ctx, prog);
3112   return prog->data->LinkStatus;
3113}
3114
3115/**
3116 * Link a GLSL shader program.  Called via glLinkProgram().
3117 */
3118void
3119_mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3120{
3121   unsigned int i;
3122   bool spirv = false;
3123
3124   _mesa_clear_shader_program_data(ctx, prog);
3125
3126   prog->data = _mesa_create_shader_program_data();
3127
3128   prog->data->LinkStatus = LINKING_SUCCESS;
3129
3130   for (i = 0; i < prog->NumShaders; i++) {
3131      if (!prog->Shaders[i]->CompileStatus) {
3132	 linker_error(prog, "linking with uncompiled/unspecialized shader");
3133      }
3134
3135      if (!i) {
3136         spirv = (prog->Shaders[i]->spirv_data != NULL);
3137      } else if (spirv && !prog->Shaders[i]->spirv_data) {
3138         /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of
3139          * reasons LinkProgram can fail:
3140          *
3141          *    "All the shader objects attached to <program> do not have the
3142          *     same value for the SPIR_V_BINARY_ARB state."
3143          */
3144         linker_error(prog,
3145                      "not all attached shaders have the same "
3146                      "SPIR_V_BINARY_ARB state");
3147      }
3148   }
3149   prog->data->spirv = spirv;
3150
3151   if (prog->data->LinkStatus) {
3152      if (!spirv)
3153         link_shaders(ctx, prog);
3154      else
3155         _mesa_spirv_link_shaders(ctx, prog);
3156   }
3157
3158   /* If LinkStatus is LINKING_SUCCESS, then reset sampler validated to true.
3159    * Validation happens via the LinkShader call below. If LinkStatus is
3160    * LINKING_SKIPPED, then SamplersValidated will have been restored from the
3161    * shader cache.
3162    */
3163   if (prog->data->LinkStatus == LINKING_SUCCESS) {
3164      prog->SamplersValidated = GL_TRUE;
3165   }
3166
3167   if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) {
3168      prog->data->LinkStatus = LINKING_FAILURE;
3169   }
3170
3171   /* Return early if we are loading the shader from on-disk cache */
3172   if (prog->data->LinkStatus == LINKING_SKIPPED)
3173      return;
3174
3175   if (ctx->_Shader->Flags & GLSL_DUMP) {
3176      if (!prog->data->LinkStatus) {
3177	 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3178      }
3179
3180      if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3181	 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3182         fprintf(stderr, "%s\n", prog->data->InfoLog);
3183      }
3184   }
3185
3186#ifdef ENABLE_SHADER_CACHE
3187   if (prog->data->LinkStatus)
3188      shader_cache_write_program_metadata(ctx, prog);
3189#endif
3190}
3191
3192} /* extern "C" */
3193