hash_table.c revision 848b8605
1/* 2 * Copyright © 2009,2012 Intel Corporation 3 * Copyright © 1988-2004 Keith Packard and Bart Massey. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 * 24 * Except as contained in this notice, the names of the authors 25 * or their institutions shall not be used in advertising or 26 * otherwise to promote the sale, use or other dealings in this 27 * Software without prior written authorization from the 28 * authors. 29 * 30 * Authors: 31 * Eric Anholt <eric@anholt.net> 32 * Keith Packard <keithp@keithp.com> 33 */ 34 35/** 36 * Implements an open-addressing, linear-reprobing hash table. 37 * 38 * For more information, see: 39 * 40 * http://cgit.freedesktop.org/~anholt/hash_table/tree/README 41 */ 42 43#include <stdlib.h> 44#include <string.h> 45 46#include "hash_table.h" 47#include "ralloc.h" 48#include "macros.h" 49 50static const uint32_t deleted_key_value; 51 52/** 53 * From Knuth -- a good choice for hash/rehash values is p, p-2 where 54 * p and p-2 are both prime. These tables are sized to have an extra 10% 55 * free to avoid exponential performance degradation as the hash table fills 56 */ 57static const struct { 58 uint32_t max_entries, size, rehash; 59} hash_sizes[] = { 60 { 2, 5, 3 }, 61 { 4, 7, 5 }, 62 { 8, 13, 11 }, 63 { 16, 19, 17 }, 64 { 32, 43, 41 }, 65 { 64, 73, 71 }, 66 { 128, 151, 149 }, 67 { 256, 283, 281 }, 68 { 512, 571, 569 }, 69 { 1024, 1153, 1151 }, 70 { 2048, 2269, 2267 }, 71 { 4096, 4519, 4517 }, 72 { 8192, 9013, 9011 }, 73 { 16384, 18043, 18041 }, 74 { 32768, 36109, 36107 }, 75 { 65536, 72091, 72089 }, 76 { 131072, 144409, 144407 }, 77 { 262144, 288361, 288359 }, 78 { 524288, 576883, 576881 }, 79 { 1048576, 1153459, 1153457 }, 80 { 2097152, 2307163, 2307161 }, 81 { 4194304, 4613893, 4613891 }, 82 { 8388608, 9227641, 9227639 }, 83 { 16777216, 18455029, 18455027 }, 84 { 33554432, 36911011, 36911009 }, 85 { 67108864, 73819861, 73819859 }, 86 { 134217728, 147639589, 147639587 }, 87 { 268435456, 295279081, 295279079 }, 88 { 536870912, 590559793, 590559791 }, 89 { 1073741824, 1181116273, 1181116271}, 90 { 2147483648ul, 2362232233ul, 2362232231ul} 91}; 92 93static int 94entry_is_free(const struct hash_entry *entry) 95{ 96 return entry->key == NULL; 97} 98 99static int 100entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry) 101{ 102 return entry->key == ht->deleted_key; 103} 104 105static int 106entry_is_present(const struct hash_table *ht, struct hash_entry *entry) 107{ 108 return entry->key != NULL && entry->key != ht->deleted_key; 109} 110 111struct hash_table * 112_mesa_hash_table_create(void *mem_ctx, 113 bool (*key_equals_function)(const void *a, 114 const void *b)) 115{ 116 struct hash_table *ht; 117 118 ht = ralloc(mem_ctx, struct hash_table); 119 if (ht == NULL) 120 return NULL; 121 122 ht->size_index = 0; 123 ht->size = hash_sizes[ht->size_index].size; 124 ht->rehash = hash_sizes[ht->size_index].rehash; 125 ht->max_entries = hash_sizes[ht->size_index].max_entries; 126 ht->key_equals_function = key_equals_function; 127 ht->table = rzalloc_array(ht, struct hash_entry, ht->size); 128 ht->entries = 0; 129 ht->deleted_entries = 0; 130 ht->deleted_key = &deleted_key_value; 131 132 if (ht->table == NULL) { 133 ralloc_free(ht); 134 return NULL; 135 } 136 137 return ht; 138} 139 140/** 141 * Frees the given hash table. 142 * 143 * If delete_function is passed, it gets called on each entry present before 144 * freeing. 145 */ 146void 147_mesa_hash_table_destroy(struct hash_table *ht, 148 void (*delete_function)(struct hash_entry *entry)) 149{ 150 if (!ht) 151 return; 152 153 if (delete_function) { 154 struct hash_entry *entry; 155 156 hash_table_foreach(ht, entry) { 157 delete_function(entry); 158 } 159 } 160 ralloc_free(ht); 161} 162 163/** Sets the value of the key pointer used for deleted entries in the table. 164 * 165 * The assumption is that usually keys are actual pointers, so we use a 166 * default value of a pointer to an arbitrary piece of storage in the library. 167 * But in some cases a consumer wants to store some other sort of value in the 168 * table, like a uint32_t, in which case that pointer may conflict with one of 169 * their valid keys. This lets that user select a safe value. 170 * 171 * This must be called before any keys are actually deleted from the table. 172 */ 173void 174_mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key) 175{ 176 ht->deleted_key = deleted_key; 177} 178 179/** 180 * Finds a hash table entry with the given key and hash of that key. 181 * 182 * Returns NULL if no entry is found. Note that the data pointer may be 183 * modified by the user. 184 */ 185struct hash_entry * 186_mesa_hash_table_search(struct hash_table *ht, uint32_t hash, 187 const void *key) 188{ 189 uint32_t start_hash_address = hash % ht->size; 190 uint32_t hash_address = start_hash_address; 191 192 do { 193 uint32_t double_hash; 194 195 struct hash_entry *entry = ht->table + hash_address; 196 197 if (entry_is_free(entry)) { 198 return NULL; 199 } else if (entry_is_present(ht, entry) && entry->hash == hash) { 200 if (ht->key_equals_function(key, entry->key)) { 201 return entry; 202 } 203 } 204 205 double_hash = 1 + hash % ht->rehash; 206 207 hash_address = (hash_address + double_hash) % ht->size; 208 } while (hash_address != start_hash_address); 209 210 return NULL; 211} 212 213static void 214_mesa_hash_table_rehash(struct hash_table *ht, int new_size_index) 215{ 216 struct hash_table old_ht; 217 struct hash_entry *table, *entry; 218 219 if (new_size_index >= ARRAY_SIZE(hash_sizes)) 220 return; 221 222 table = rzalloc_array(ht, struct hash_entry, 223 hash_sizes[new_size_index].size); 224 if (table == NULL) 225 return; 226 227 old_ht = *ht; 228 229 ht->table = table; 230 ht->size_index = new_size_index; 231 ht->size = hash_sizes[ht->size_index].size; 232 ht->rehash = hash_sizes[ht->size_index].rehash; 233 ht->max_entries = hash_sizes[ht->size_index].max_entries; 234 ht->entries = 0; 235 ht->deleted_entries = 0; 236 237 hash_table_foreach(&old_ht, entry) { 238 _mesa_hash_table_insert(ht, entry->hash, 239 entry->key, entry->data); 240 } 241 242 ralloc_free(old_ht.table); 243} 244 245/** 246 * Inserts the key with the given hash into the table. 247 * 248 * Note that insertion may rearrange the table on a resize or rehash, 249 * so previously found hash_entries are no longer valid after this function. 250 */ 251struct hash_entry * 252_mesa_hash_table_insert(struct hash_table *ht, uint32_t hash, 253 const void *key, void *data) 254{ 255 uint32_t start_hash_address, hash_address; 256 257 if (ht->entries >= ht->max_entries) { 258 _mesa_hash_table_rehash(ht, ht->size_index + 1); 259 } else if (ht->deleted_entries + ht->entries >= ht->max_entries) { 260 _mesa_hash_table_rehash(ht, ht->size_index); 261 } 262 263 start_hash_address = hash % ht->size; 264 hash_address = start_hash_address; 265 do { 266 struct hash_entry *entry = ht->table + hash_address; 267 uint32_t double_hash; 268 269 if (!entry_is_present(ht, entry)) { 270 if (entry_is_deleted(ht, entry)) 271 ht->deleted_entries--; 272 entry->hash = hash; 273 entry->key = key; 274 entry->data = data; 275 ht->entries++; 276 return entry; 277 } 278 279 /* Implement replacement when another insert happens 280 * with a matching key. This is a relatively common 281 * feature of hash tables, with the alternative 282 * generally being "insert the new value as well, and 283 * return it first when the key is searched for". 284 * 285 * Note that the hash table doesn't have a delete 286 * callback. If freeing of old data pointers is 287 * required to avoid memory leaks, perform a search 288 * before inserting. 289 */ 290 if (entry->hash == hash && 291 ht->key_equals_function(key, entry->key)) { 292 entry->key = key; 293 entry->data = data; 294 return entry; 295 } 296 297 298 double_hash = 1 + hash % ht->rehash; 299 300 hash_address = (hash_address + double_hash) % ht->size; 301 } while (hash_address != start_hash_address); 302 303 /* We could hit here if a required resize failed. An unchecked-malloc 304 * application could ignore this result. 305 */ 306 return NULL; 307} 308 309/** 310 * This function deletes the given hash table entry. 311 * 312 * Note that deletion doesn't otherwise modify the table, so an iteration over 313 * the table deleting entries is safe. 314 */ 315void 316_mesa_hash_table_remove(struct hash_table *ht, 317 struct hash_entry *entry) 318{ 319 if (!entry) 320 return; 321 322 entry->key = ht->deleted_key; 323 ht->entries--; 324 ht->deleted_entries++; 325} 326 327/** 328 * This function is an iterator over the hash table. 329 * 330 * Pass in NULL for the first entry, as in the start of a for loop. Note that 331 * an iteration over the table is O(table_size) not O(entries). 332 */ 333struct hash_entry * 334_mesa_hash_table_next_entry(struct hash_table *ht, 335 struct hash_entry *entry) 336{ 337 if (entry == NULL) 338 entry = ht->table; 339 else 340 entry = entry + 1; 341 342 for (; entry != ht->table + ht->size; entry++) { 343 if (entry_is_present(ht, entry)) { 344 return entry; 345 } 346 } 347 348 return NULL; 349} 350 351/** 352 * Returns a random entry from the hash table. 353 * 354 * This may be useful in implementing random replacement (as opposed 355 * to just removing everything) in caches based on this hash table 356 * implementation. @predicate may be used to filter entries, or may 357 * be set to NULL for no filtering. 358 */ 359struct hash_entry * 360_mesa_hash_table_random_entry(struct hash_table *ht, 361 bool (*predicate)(struct hash_entry *entry)) 362{ 363 struct hash_entry *entry; 364 uint32_t i = rand() % ht->size; 365 366 if (ht->entries == 0) 367 return NULL; 368 369 for (entry = ht->table + i; entry != ht->table + ht->size; entry++) { 370 if (entry_is_present(ht, entry) && 371 (!predicate || predicate(entry))) { 372 return entry; 373 } 374 } 375 376 for (entry = ht->table; entry != ht->table + i; entry++) { 377 if (entry_is_present(ht, entry) && 378 (!predicate || predicate(entry))) { 379 return entry; 380 } 381 } 382 383 return NULL; 384} 385 386 387/** 388 * Quick FNV-1 hash implementation based on: 389 * http://www.isthe.com/chongo/tech/comp/fnv/ 390 * 391 * FNV-1 is not be the best hash out there -- Jenkins's lookup3 is supposed to 392 * be quite good, and it probably beats FNV. But FNV has the advantage that 393 * it involves almost no code. For an improvement on both, see Paul 394 * Hsieh's http://www.azillionmonkeys.com/qed/hash.html 395 */ 396uint32_t 397_mesa_hash_data(const void *data, size_t size) 398{ 399 uint32_t hash = 2166136261ul; 400 const uint8_t *bytes = data; 401 402 while (size-- != 0) { 403 hash ^= *bytes; 404 hash = hash * 0x01000193; 405 bytes++; 406 } 407 408 return hash; 409} 410 411/** FNV-1 string hash implementation */ 412uint32_t 413_mesa_hash_string(const char *key) 414{ 415 uint32_t hash = 2166136261ul; 416 417 while (*key != 0) { 418 hash ^= *key; 419 hash = hash * 0x01000193; 420 key++; 421 } 422 423 return hash; 424} 425 426/** 427 * String compare function for use as the comparison callback in 428 * _mesa_hash_table_create(). 429 */ 430bool 431_mesa_key_string_equal(const void *a, const void *b) 432{ 433 return strcmp(a, b) == 0; 434} 435 436bool 437_mesa_key_pointer_equal(const void *a, const void *b) 438{ 439 return a == b; 440} 441