1/*
2 * Copyright © 2020 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include "aco_ir.h"
26
27#include "aco_builder.h"
28
29#include "util/debug.h"
30
31#include "c11/threads.h"
32
33namespace aco {
34
35uint64_t debug_flags = 0;
36
37static const struct debug_control aco_debug_options[] = {{"validateir", DEBUG_VALIDATE_IR},
38                                                         {"validatera", DEBUG_VALIDATE_RA},
39                                                         {"perfwarn", DEBUG_PERFWARN},
40                                                         {"force-waitcnt", DEBUG_FORCE_WAITCNT},
41                                                         {"novn", DEBUG_NO_VN},
42                                                         {"noopt", DEBUG_NO_OPT},
43                                                         {"nosched", DEBUG_NO_SCHED},
44                                                         {"perfinfo", DEBUG_PERF_INFO},
45                                                         {"liveinfo", DEBUG_LIVE_INFO},
46                                                         {NULL, 0}};
47
48static once_flag init_once_flag = ONCE_FLAG_INIT;
49
50static void
51init_once()
52{
53   debug_flags = parse_debug_string(getenv("ACO_DEBUG"), aco_debug_options);
54
55#ifndef NDEBUG
56   /* enable some flags by default on debug builds */
57   debug_flags |= aco::DEBUG_VALIDATE_IR;
58#endif
59}
60
61void
62init()
63{
64   call_once(&init_once_flag, init_once);
65}
66
67void
68init_program(Program* program, Stage stage, const struct radv_shader_info* info,
69             enum chip_class chip_class, enum radeon_family family, bool wgp_mode,
70             ac_shader_config* config)
71{
72   program->stage = stage;
73   program->config = config;
74   program->info = info;
75   program->chip_class = chip_class;
76   if (family == CHIP_UNKNOWN) {
77      switch (chip_class) {
78      case GFX6: program->family = CHIP_TAHITI; break;
79      case GFX7: program->family = CHIP_BONAIRE; break;
80      case GFX8: program->family = CHIP_POLARIS10; break;
81      case GFX9: program->family = CHIP_VEGA10; break;
82      case GFX10: program->family = CHIP_NAVI10; break;
83      default: program->family = CHIP_UNKNOWN; break;
84      }
85   } else {
86      program->family = family;
87   }
88   program->wave_size = info->wave_size;
89   program->lane_mask = program->wave_size == 32 ? s1 : s2;
90
91   program->dev.lds_encoding_granule = chip_class >= GFX7 ? 512 : 256;
92   program->dev.lds_alloc_granule =
93      chip_class >= GFX10_3 ? 1024 : program->dev.lds_encoding_granule;
94   program->dev.lds_limit = chip_class >= GFX7 ? 65536 : 32768;
95   /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */
96   program->dev.has_16bank_lds = family == CHIP_KABINI || family == CHIP_STONEY;
97
98   program->dev.vgpr_limit = 256;
99   program->dev.physical_vgprs = 256;
100   program->dev.vgpr_alloc_granule = 4;
101
102   if (chip_class >= GFX10) {
103      program->dev.physical_sgprs = 5120; /* doesn't matter as long as it's at least 128 * 40 */
104      program->dev.physical_vgprs = program->wave_size == 32 ? 1024 : 512;
105      program->dev.sgpr_alloc_granule = 128;
106      program->dev.sgpr_limit =
107         108; /* includes VCC, which can be treated as s[106-107] on GFX10+ */
108      if (chip_class >= GFX10_3)
109         program->dev.vgpr_alloc_granule = program->wave_size == 32 ? 16 : 8;
110      else
111         program->dev.vgpr_alloc_granule = program->wave_size == 32 ? 8 : 4;
112   } else if (program->chip_class >= GFX8) {
113      program->dev.physical_sgprs = 800;
114      program->dev.sgpr_alloc_granule = 16;
115      program->dev.sgpr_limit = 102;
116      if (family == CHIP_TONGA || family == CHIP_ICELAND)
117         program->dev.sgpr_alloc_granule = 96; /* workaround hardware bug */
118   } else {
119      program->dev.physical_sgprs = 512;
120      program->dev.sgpr_alloc_granule = 8;
121      program->dev.sgpr_limit = 104;
122   }
123
124   program->dev.max_wave64_per_simd = 10;
125   if (program->chip_class >= GFX10_3)
126      program->dev.max_wave64_per_simd = 16;
127   else if (program->chip_class == GFX10)
128      program->dev.max_wave64_per_simd = 20;
129   else if (program->family >= CHIP_POLARIS10 && program->family <= CHIP_VEGAM)
130      program->dev.max_wave64_per_simd = 8;
131
132   program->dev.simd_per_cu = program->chip_class >= GFX10 ? 2 : 4;
133
134   switch (program->family) {
135   /* GFX8 APUs */
136   case CHIP_CARRIZO:
137   case CHIP_STONEY:
138   /* GFX9 APUS */
139   case CHIP_RAVEN:
140   case CHIP_RAVEN2:
141   case CHIP_RENOIR: program->dev.xnack_enabled = true; break;
142   default: break;
143   }
144
145   program->dev.sram_ecc_enabled = program->family == CHIP_ARCTURUS;
146   /* apparently gfx702 also has fast v_fma_f32 but I can't find a family for that */
147   program->dev.has_fast_fma32 = program->chip_class >= GFX9;
148   if (program->family == CHIP_TAHITI || program->family == CHIP_CARRIZO ||
149       program->family == CHIP_HAWAII)
150      program->dev.has_fast_fma32 = true;
151
152   program->wgp_mode = wgp_mode;
153
154   program->progress = CompilationProgress::after_isel;
155
156   program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
157   program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
158   program->next_fp_mode.must_flush_denorms32 = false;
159   program->next_fp_mode.must_flush_denorms16_64 = false;
160   program->next_fp_mode.care_about_round32 = false;
161   program->next_fp_mode.care_about_round16_64 = false;
162   program->next_fp_mode.denorm16_64 = fp_denorm_keep;
163   program->next_fp_mode.denorm32 = 0;
164   program->next_fp_mode.round16_64 = fp_round_ne;
165   program->next_fp_mode.round32 = fp_round_ne;
166}
167
168memory_sync_info
169get_sync_info(const Instruction* instr)
170{
171   switch (instr->format) {
172   case Format::SMEM: return instr->smem().sync;
173   case Format::MUBUF: return instr->mubuf().sync;
174   case Format::MIMG: return instr->mimg().sync;
175   case Format::MTBUF: return instr->mtbuf().sync;
176   case Format::FLAT:
177   case Format::GLOBAL:
178   case Format::SCRATCH: return instr->flatlike().sync;
179   case Format::DS: return instr->ds().sync;
180   default: return memory_sync_info();
181   }
182}
183
184bool
185can_use_SDWA(chip_class chip, const aco_ptr<Instruction>& instr, bool pre_ra)
186{
187   if (!instr->isVALU())
188      return false;
189
190   if (chip < GFX8 || instr->isDPP() || instr->isVOP3P())
191      return false;
192
193   if (instr->isSDWA())
194      return true;
195
196   if (instr->isVOP3()) {
197      VOP3_instruction& vop3 = instr->vop3();
198      if (instr->format == Format::VOP3)
199         return false;
200      if (vop3.clamp && instr->isVOPC() && chip != GFX8)
201         return false;
202      if (vop3.omod && chip < GFX9)
203         return false;
204
205      // TODO: return true if we know we will use vcc
206      if (!pre_ra && instr->definitions.size() >= 2)
207         return false;
208
209      for (unsigned i = 1; i < instr->operands.size(); i++) {
210         if (instr->operands[i].isLiteral())
211            return false;
212         if (chip < GFX9 && !instr->operands[i].isOfType(RegType::vgpr))
213            return false;
214      }
215   }
216
217   if (!instr->definitions.empty() && instr->definitions[0].bytes() > 4 && !instr->isVOPC())
218      return false;
219
220   if (!instr->operands.empty()) {
221      if (instr->operands[0].isLiteral())
222         return false;
223      if (chip < GFX9 && !instr->operands[0].isOfType(RegType::vgpr))
224         return false;
225      if (instr->operands[0].bytes() > 4)
226         return false;
227      if (instr->operands.size() > 1 && instr->operands[1].bytes() > 4)
228         return false;
229   }
230
231   bool is_mac = instr->opcode == aco_opcode::v_mac_f32 || instr->opcode == aco_opcode::v_mac_f16 ||
232                 instr->opcode == aco_opcode::v_fmac_f32 || instr->opcode == aco_opcode::v_fmac_f16;
233
234   if (chip != GFX8 && is_mac)
235      return false;
236
237   // TODO: return true if we know we will use vcc
238   if (!pre_ra && instr->isVOPC() && chip == GFX8)
239      return false;
240   if (!pre_ra && instr->operands.size() >= 3 && !is_mac)
241      return false;
242
243   return instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 &&
244          instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 &&
245          instr->opcode != aco_opcode::v_readfirstlane_b32 &&
246          instr->opcode != aco_opcode::v_clrexcp && instr->opcode != aco_opcode::v_swap_b32;
247}
248
249/* updates "instr" and returns the old instruction (or NULL if no update was needed) */
250aco_ptr<Instruction>
251convert_to_SDWA(chip_class chip, aco_ptr<Instruction>& instr)
252{
253   if (instr->isSDWA())
254      return NULL;
255
256   aco_ptr<Instruction> tmp = std::move(instr);
257   Format format =
258      (Format)(((uint16_t)tmp->format & ~(uint16_t)Format::VOP3) | (uint16_t)Format::SDWA);
259   instr.reset(create_instruction<SDWA_instruction>(tmp->opcode, format, tmp->operands.size(),
260                                                    tmp->definitions.size()));
261   std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
262   std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(), instr->definitions.begin());
263
264   SDWA_instruction& sdwa = instr->sdwa();
265
266   if (tmp->isVOP3()) {
267      VOP3_instruction& vop3 = tmp->vop3();
268      memcpy(sdwa.neg, vop3.neg, sizeof(sdwa.neg));
269      memcpy(sdwa.abs, vop3.abs, sizeof(sdwa.abs));
270      sdwa.omod = vop3.omod;
271      sdwa.clamp = vop3.clamp;
272   }
273
274   for (unsigned i = 0; i < instr->operands.size(); i++) {
275      /* SDWA only uses operands 0 and 1. */
276      if (i >= 2)
277         break;
278
279      sdwa.sel[i] = SubdwordSel(instr->operands[i].bytes(), 0, false);
280   }
281
282   sdwa.dst_sel = SubdwordSel(instr->definitions[0].bytes(), 0, false);
283
284   if (instr->definitions[0].getTemp().type() == RegType::sgpr && chip == GFX8)
285      instr->definitions[0].setFixed(vcc);
286   if (instr->definitions.size() >= 2)
287      instr->definitions[1].setFixed(vcc);
288   if (instr->operands.size() >= 3)
289      instr->operands[2].setFixed(vcc);
290
291   return tmp;
292}
293
294bool
295can_use_DPP(const aco_ptr<Instruction>& instr, bool pre_ra)
296{
297   assert(instr->isVALU() && !instr->operands.empty());
298
299   if (instr->isDPP())
300      return true;
301
302   if (instr->operands.size() && instr->operands[0].isLiteral())
303      return false;
304
305   if (instr->isSDWA())
306      return false;
307
308   if (!pre_ra && (instr->isVOPC() || instr->definitions.size() > 1) &&
309       instr->definitions.back().physReg() != vcc)
310      return false;
311
312   if (!pre_ra && instr->operands.size() >= 3 && instr->operands[2].physReg() != vcc)
313      return false;
314
315   if (instr->isVOP3()) {
316      const VOP3_instruction* vop3 = &instr->vop3();
317      if (vop3->clamp || vop3->omod || vop3->opsel)
318         return false;
319      if (instr->format == Format::VOP3)
320         return false;
321      if (instr->operands.size() > 1 && !instr->operands[1].isOfType(RegType::vgpr))
322         return false;
323   }
324
325   /* there are more cases but those all take 64-bit inputs */
326   return instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 &&
327          instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 &&
328          instr->opcode != aco_opcode::v_readfirstlane_b32 &&
329          instr->opcode != aco_opcode::v_cvt_f64_i32 &&
330          instr->opcode != aco_opcode::v_cvt_f64_f32 && instr->opcode != aco_opcode::v_cvt_f64_u32;
331}
332
333aco_ptr<Instruction>
334convert_to_DPP(aco_ptr<Instruction>& instr)
335{
336   if (instr->isDPP())
337      return NULL;
338
339   aco_ptr<Instruction> tmp = std::move(instr);
340   Format format =
341      (Format)(((uint32_t)tmp->format & ~(uint32_t)Format::VOP3) | (uint32_t)Format::DPP);
342   instr.reset(create_instruction<DPP_instruction>(tmp->opcode, format, tmp->operands.size(),
343                                                   tmp->definitions.size()));
344   std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
345   for (unsigned i = 0; i < instr->definitions.size(); i++)
346      instr->definitions[i] = tmp->definitions[i];
347
348   DPP_instruction* dpp = &instr->dpp();
349   dpp->dpp_ctrl = dpp_quad_perm(0, 1, 2, 3);
350   dpp->row_mask = 0xf;
351   dpp->bank_mask = 0xf;
352
353   if (tmp->isVOP3()) {
354      const VOP3_instruction* vop3 = &tmp->vop3();
355      memcpy(dpp->neg, vop3->neg, sizeof(dpp->neg));
356      memcpy(dpp->abs, vop3->abs, sizeof(dpp->abs));
357   }
358
359   if (instr->isVOPC() || instr->definitions.size() > 1)
360      instr->definitions.back().setFixed(vcc);
361
362   if (instr->operands.size() >= 3)
363      instr->operands[2].setFixed(vcc);
364
365   return tmp;
366}
367
368bool
369can_use_opsel(chip_class chip, aco_opcode op, int idx, bool high)
370{
371   /* opsel is only GFX9+ */
372   if ((high || idx == -1) && chip < GFX9)
373      return false;
374
375   switch (op) {
376   case aco_opcode::v_div_fixup_f16:
377   case aco_opcode::v_fma_f16:
378   case aco_opcode::v_mad_f16:
379   case aco_opcode::v_mad_u16:
380   case aco_opcode::v_mad_i16:
381   case aco_opcode::v_med3_f16:
382   case aco_opcode::v_med3_i16:
383   case aco_opcode::v_med3_u16:
384   case aco_opcode::v_min3_f16:
385   case aco_opcode::v_min3_i16:
386   case aco_opcode::v_min3_u16:
387   case aco_opcode::v_max3_f16:
388   case aco_opcode::v_max3_i16:
389   case aco_opcode::v_max3_u16:
390   case aco_opcode::v_max_u16_e64:
391   case aco_opcode::v_max_i16_e64:
392   case aco_opcode::v_min_u16_e64:
393   case aco_opcode::v_min_i16_e64:
394   case aco_opcode::v_add_i16:
395   case aco_opcode::v_sub_i16:
396   case aco_opcode::v_add_u16_e64:
397   case aco_opcode::v_sub_u16_e64:
398   case aco_opcode::v_lshlrev_b16_e64:
399   case aco_opcode::v_lshrrev_b16_e64:
400   case aco_opcode::v_ashrrev_i16_e64:
401   case aco_opcode::v_mul_lo_u16_e64: return true;
402   case aco_opcode::v_pack_b32_f16:
403   case aco_opcode::v_cvt_pknorm_i16_f16:
404   case aco_opcode::v_cvt_pknorm_u16_f16: return idx != -1;
405   case aco_opcode::v_mad_u32_u16:
406   case aco_opcode::v_mad_i32_i16: return idx >= 0 && idx < 2;
407   default: return false;
408   }
409}
410
411bool
412instr_is_16bit(chip_class chip, aco_opcode op)
413{
414   /* partial register writes are GFX9+, only */
415   if (chip < GFX9)
416      return false;
417
418   switch (op) {
419   /* VOP3 */
420   case aco_opcode::v_mad_f16:
421   case aco_opcode::v_mad_u16:
422   case aco_opcode::v_mad_i16:
423   case aco_opcode::v_fma_f16:
424   case aco_opcode::v_div_fixup_f16:
425   case aco_opcode::v_interp_p2_f16:
426   case aco_opcode::v_fma_mixlo_f16:
427   /* VOP2 */
428   case aco_opcode::v_mac_f16:
429   case aco_opcode::v_madak_f16:
430   case aco_opcode::v_madmk_f16: return chip >= GFX9;
431   case aco_opcode::v_add_f16:
432   case aco_opcode::v_sub_f16:
433   case aco_opcode::v_subrev_f16:
434   case aco_opcode::v_mul_f16:
435   case aco_opcode::v_max_f16:
436   case aco_opcode::v_min_f16:
437   case aco_opcode::v_ldexp_f16:
438   case aco_opcode::v_fmac_f16:
439   case aco_opcode::v_fmamk_f16:
440   case aco_opcode::v_fmaak_f16:
441   /* VOP1 */
442   case aco_opcode::v_cvt_f16_f32:
443   case aco_opcode::v_cvt_f16_u16:
444   case aco_opcode::v_cvt_f16_i16:
445   case aco_opcode::v_rcp_f16:
446   case aco_opcode::v_sqrt_f16:
447   case aco_opcode::v_rsq_f16:
448   case aco_opcode::v_log_f16:
449   case aco_opcode::v_exp_f16:
450   case aco_opcode::v_frexp_mant_f16:
451   case aco_opcode::v_frexp_exp_i16_f16:
452   case aco_opcode::v_floor_f16:
453   case aco_opcode::v_ceil_f16:
454   case aco_opcode::v_trunc_f16:
455   case aco_opcode::v_rndne_f16:
456   case aco_opcode::v_fract_f16:
457   case aco_opcode::v_sin_f16:
458   case aco_opcode::v_cos_f16: return chip >= GFX10;
459   // TODO: confirm whether these write 16 or 32 bit on GFX10+
460   // case aco_opcode::v_cvt_u16_f16:
461   // case aco_opcode::v_cvt_i16_f16:
462   // case aco_opcode::p_cvt_f16_f32_rtne:
463   // case aco_opcode::v_cvt_norm_i16_f16:
464   // case aco_opcode::v_cvt_norm_u16_f16:
465   /* on GFX10, all opsel instructions preserve the high bits */
466   default: return chip >= GFX10 && can_use_opsel(chip, op, -1, false);
467   }
468}
469
470uint32_t
471get_reduction_identity(ReduceOp op, unsigned idx)
472{
473   switch (op) {
474   case iadd8:
475   case iadd16:
476   case iadd32:
477   case iadd64:
478   case fadd16:
479   case fadd32:
480   case fadd64:
481   case ior8:
482   case ior16:
483   case ior32:
484   case ior64:
485   case ixor8:
486   case ixor16:
487   case ixor32:
488   case ixor64:
489   case umax8:
490   case umax16:
491   case umax32:
492   case umax64: return 0;
493   case imul8:
494   case imul16:
495   case imul32:
496   case imul64: return idx ? 0 : 1;
497   case fmul16: return 0x3c00u;                /* 1.0 */
498   case fmul32: return 0x3f800000u;            /* 1.0 */
499   case fmul64: return idx ? 0x3ff00000u : 0u; /* 1.0 */
500   case imin8: return INT8_MAX;
501   case imin16: return INT16_MAX;
502   case imin32: return INT32_MAX;
503   case imin64: return idx ? 0x7fffffffu : 0xffffffffu;
504   case imax8: return INT8_MIN;
505   case imax16: return INT16_MIN;
506   case imax32: return INT32_MIN;
507   case imax64: return idx ? 0x80000000u : 0;
508   case umin8:
509   case umin16:
510   case iand8:
511   case iand16: return 0xffffffffu;
512   case umin32:
513   case umin64:
514   case iand32:
515   case iand64: return 0xffffffffu;
516   case fmin16: return 0x7c00u;                /* infinity */
517   case fmin32: return 0x7f800000u;            /* infinity */
518   case fmin64: return idx ? 0x7ff00000u : 0u; /* infinity */
519   case fmax16: return 0xfc00u;                /* negative infinity */
520   case fmax32: return 0xff800000u;            /* negative infinity */
521   case fmax64: return idx ? 0xfff00000u : 0u; /* negative infinity */
522   default: unreachable("Invalid reduction operation"); break;
523   }
524   return 0;
525}
526
527bool
528needs_exec_mask(const Instruction* instr)
529{
530   if (instr->isVALU()) {
531      return instr->opcode != aco_opcode::v_readlane_b32 &&
532             instr->opcode != aco_opcode::v_readlane_b32_e64 &&
533             instr->opcode != aco_opcode::v_writelane_b32 &&
534             instr->opcode != aco_opcode::v_writelane_b32_e64;
535   }
536
537   if (instr->isVMEM() || instr->isFlatLike())
538      return true;
539
540   if (instr->isSALU() || instr->isBranch() || instr->isSMEM() || instr->isBarrier())
541      return instr->reads_exec();
542
543   if (instr->isPseudo()) {
544      switch (instr->opcode) {
545      case aco_opcode::p_create_vector:
546      case aco_opcode::p_extract_vector:
547      case aco_opcode::p_split_vector:
548      case aco_opcode::p_phi:
549      case aco_opcode::p_parallelcopy:
550         for (Definition def : instr->definitions) {
551            if (def.getTemp().type() == RegType::vgpr)
552               return true;
553         }
554         return instr->reads_exec();
555      case aco_opcode::p_spill:
556      case aco_opcode::p_reload:
557      case aco_opcode::p_logical_start:
558      case aco_opcode::p_logical_end:
559      case aco_opcode::p_startpgm: return instr->reads_exec();
560      default: break;
561      }
562   }
563
564   return true;
565}
566
567struct CmpInfo {
568   aco_opcode ordered;
569   aco_opcode unordered;
570   aco_opcode ordered_swapped;
571   aco_opcode unordered_swapped;
572   aco_opcode inverse;
573   aco_opcode f32;
574   unsigned size;
575};
576
577ALWAYS_INLINE bool
578get_cmp_info(aco_opcode op, CmpInfo* info)
579{
580   info->ordered = aco_opcode::num_opcodes;
581   info->unordered = aco_opcode::num_opcodes;
582   info->ordered_swapped = aco_opcode::num_opcodes;
583   info->unordered_swapped = aco_opcode::num_opcodes;
584   switch (op) {
585      // clang-format off
586#define CMP2(ord, unord, ord_swap, unord_swap, sz)                                                 \
587   case aco_opcode::v_cmp_##ord##_f##sz:                                                           \
588   case aco_opcode::v_cmp_n##unord##_f##sz:                                                        \
589      info->ordered = aco_opcode::v_cmp_##ord##_f##sz;                                             \
590      info->unordered = aco_opcode::v_cmp_n##unord##_f##sz;                                        \
591      info->ordered_swapped = aco_opcode::v_cmp_##ord_swap##_f##sz;                                \
592      info->unordered_swapped = aco_opcode::v_cmp_n##unord_swap##_f##sz;                           \
593      info->inverse = op == aco_opcode::v_cmp_n##unord##_f##sz ? aco_opcode::v_cmp_##unord##_f##sz \
594                                                               : aco_opcode::v_cmp_n##ord##_f##sz; \
595      info->f32 = op == aco_opcode::v_cmp_##ord##_f##sz ? aco_opcode::v_cmp_##ord##_f32            \
596                                                        : aco_opcode::v_cmp_n##unord##_f32;        \
597      info->size = sz;                                                                             \
598      return true;
599#define CMP(ord, unord, ord_swap, unord_swap)                                                      \
600   CMP2(ord, unord, ord_swap, unord_swap, 16)                                                      \
601   CMP2(ord, unord, ord_swap, unord_swap, 32)                                                      \
602   CMP2(ord, unord, ord_swap, unord_swap, 64)
603      CMP(lt, /*n*/ge, gt, /*n*/le)
604      CMP(eq, /*n*/lg, eq, /*n*/lg)
605      CMP(le, /*n*/gt, ge, /*n*/lt)
606      CMP(gt, /*n*/le, lt, /*n*/le)
607      CMP(lg, /*n*/eq, lg, /*n*/eq)
608      CMP(ge, /*n*/lt, le, /*n*/gt)
609#undef CMP
610#undef CMP2
611#define ORD_TEST(sz)                                                                               \
612   case aco_opcode::v_cmp_u_f##sz:                                                                 \
613      info->f32 = aco_opcode::v_cmp_u_f32;                                                         \
614      info->inverse = aco_opcode::v_cmp_o_f##sz;                                                   \
615      info->size = sz;                                                                             \
616      return true;                                                                                 \
617   case aco_opcode::v_cmp_o_f##sz:                                                                 \
618      info->f32 = aco_opcode::v_cmp_o_f32;                                                         \
619      info->inverse = aco_opcode::v_cmp_u_f##sz;                                                   \
620      info->size = sz;                                                                             \
621      return true;
622      ORD_TEST(16)
623      ORD_TEST(32)
624      ORD_TEST(64)
625#undef ORD_TEST
626      // clang-format on
627   default: return false;
628   }
629}
630
631aco_opcode
632get_ordered(aco_opcode op)
633{
634   CmpInfo info;
635   return get_cmp_info(op, &info) ? info.ordered : aco_opcode::num_opcodes;
636}
637
638aco_opcode
639get_unordered(aco_opcode op)
640{
641   CmpInfo info;
642   return get_cmp_info(op, &info) ? info.unordered : aco_opcode::num_opcodes;
643}
644
645aco_opcode
646get_inverse(aco_opcode op)
647{
648   CmpInfo info;
649   return get_cmp_info(op, &info) ? info.inverse : aco_opcode::num_opcodes;
650}
651
652aco_opcode
653get_f32_cmp(aco_opcode op)
654{
655   CmpInfo info;
656   return get_cmp_info(op, &info) ? info.f32 : aco_opcode::num_opcodes;
657}
658
659unsigned
660get_cmp_bitsize(aco_opcode op)
661{
662   CmpInfo info;
663   return get_cmp_info(op, &info) ? info.size : 0;
664}
665
666bool
667is_cmp(aco_opcode op)
668{
669   CmpInfo info;
670   return get_cmp_info(op, &info) && info.ordered != aco_opcode::num_opcodes;
671}
672
673bool
674can_swap_operands(aco_ptr<Instruction>& instr, aco_opcode* new_op)
675{
676   if (instr->isDPP())
677      return false;
678
679   if (instr->operands[0].isConstant() ||
680       (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
681      return false;
682
683   switch (instr->opcode) {
684   case aco_opcode::v_add_u32:
685   case aco_opcode::v_add_co_u32:
686   case aco_opcode::v_add_co_u32_e64:
687   case aco_opcode::v_add_i32:
688   case aco_opcode::v_add_f16:
689   case aco_opcode::v_add_f32:
690   case aco_opcode::v_mul_f16:
691   case aco_opcode::v_mul_f32:
692   case aco_opcode::v_or_b32:
693   case aco_opcode::v_and_b32:
694   case aco_opcode::v_xor_b32:
695   case aco_opcode::v_max_f16:
696   case aco_opcode::v_max_f32:
697   case aco_opcode::v_min_f16:
698   case aco_opcode::v_min_f32:
699   case aco_opcode::v_max_i32:
700   case aco_opcode::v_min_i32:
701   case aco_opcode::v_max_u32:
702   case aco_opcode::v_min_u32:
703   case aco_opcode::v_max_i16:
704   case aco_opcode::v_min_i16:
705   case aco_opcode::v_max_u16:
706   case aco_opcode::v_min_u16:
707   case aco_opcode::v_max_i16_e64:
708   case aco_opcode::v_min_i16_e64:
709   case aco_opcode::v_max_u16_e64:
710   case aco_opcode::v_min_u16_e64: *new_op = instr->opcode; return true;
711   case aco_opcode::v_sub_f16: *new_op = aco_opcode::v_subrev_f16; return true;
712   case aco_opcode::v_sub_f32: *new_op = aco_opcode::v_subrev_f32; return true;
713   case aco_opcode::v_sub_co_u32: *new_op = aco_opcode::v_subrev_co_u32; return true;
714   case aco_opcode::v_sub_u16: *new_op = aco_opcode::v_subrev_u16; return true;
715   case aco_opcode::v_sub_u32: *new_op = aco_opcode::v_subrev_u32; return true;
716   default: {
717      CmpInfo info;
718      get_cmp_info(instr->opcode, &info);
719      if (info.ordered == instr->opcode) {
720         *new_op = info.ordered_swapped;
721         return true;
722      }
723      if (info.unordered == instr->opcode) {
724         *new_op = info.unordered_swapped;
725         return true;
726      }
727      return false;
728   }
729   }
730}
731
732wait_imm::wait_imm() : vm(unset_counter), exp(unset_counter), lgkm(unset_counter), vs(unset_counter)
733{}
734wait_imm::wait_imm(uint16_t vm_, uint16_t exp_, uint16_t lgkm_, uint16_t vs_)
735    : vm(vm_), exp(exp_), lgkm(lgkm_), vs(vs_)
736{}
737
738wait_imm::wait_imm(enum chip_class chip, uint16_t packed) : vs(unset_counter)
739{
740   vm = packed & 0xf;
741   if (chip >= GFX9)
742      vm |= (packed >> 10) & 0x30;
743
744   exp = (packed >> 4) & 0x7;
745
746   lgkm = (packed >> 8) & 0xf;
747   if (chip >= GFX10)
748      lgkm |= (packed >> 8) & 0x30;
749}
750
751uint16_t
752wait_imm::pack(enum chip_class chip) const
753{
754   uint16_t imm = 0;
755   assert(exp == unset_counter || exp <= 0x7);
756   switch (chip) {
757   case GFX10:
758   case GFX10_3:
759      assert(lgkm == unset_counter || lgkm <= 0x3f);
760      assert(vm == unset_counter || vm <= 0x3f);
761      imm = ((vm & 0x30) << 10) | ((lgkm & 0x3f) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
762      break;
763   case GFX9:
764      assert(lgkm == unset_counter || lgkm <= 0xf);
765      assert(vm == unset_counter || vm <= 0x3f);
766      imm = ((vm & 0x30) << 10) | ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
767      break;
768   default:
769      assert(lgkm == unset_counter || lgkm <= 0xf);
770      assert(vm == unset_counter || vm <= 0xf);
771      imm = ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
772      break;
773   }
774   if (chip < GFX9 && vm == wait_imm::unset_counter)
775      imm |= 0xc000; /* should have no effect on pre-GFX9 and now we won't have to worry about the
776                        architecture when interpreting the immediate */
777   if (chip < GFX10 && lgkm == wait_imm::unset_counter)
778      imm |= 0x3000; /* should have no effect on pre-GFX10 and now we won't have to worry about the
779                        architecture when interpreting the immediate */
780   return imm;
781}
782
783bool
784wait_imm::combine(const wait_imm& other)
785{
786   bool changed = other.vm < vm || other.exp < exp || other.lgkm < lgkm || other.vs < vs;
787   vm = std::min(vm, other.vm);
788   exp = std::min(exp, other.exp);
789   lgkm = std::min(lgkm, other.lgkm);
790   vs = std::min(vs, other.vs);
791   return changed;
792}
793
794bool
795wait_imm::empty() const
796{
797   return vm == unset_counter && exp == unset_counter && lgkm == unset_counter &&
798          vs == unset_counter;
799}
800
801bool
802should_form_clause(const Instruction* a, const Instruction* b)
803{
804   /* Vertex attribute loads from the same binding likely load from similar addresses */
805   unsigned a_vtx_binding =
806      a->isMUBUF() ? a->mubuf().vtx_binding : (a->isMTBUF() ? a->mtbuf().vtx_binding : 0);
807   unsigned b_vtx_binding =
808      b->isMUBUF() ? b->mubuf().vtx_binding : (b->isMTBUF() ? b->mtbuf().vtx_binding : 0);
809   if (a_vtx_binding && a_vtx_binding == b_vtx_binding)
810      return true;
811
812   if (a->format != b->format)
813      return false;
814
815   /* Assume loads which don't use descriptors might load from similar addresses. */
816   if (a->isFlatLike())
817      return true;
818   if (a->isSMEM() && a->operands[0].bytes() == 8 && b->operands[0].bytes() == 8)
819      return true;
820
821   /* If they load from the same descriptor, assume they might load from similar
822    * addresses.
823    */
824   if (a->isVMEM() || a->isSMEM())
825      return a->operands[0].tempId() == b->operands[0].tempId();
826
827   return false;
828}
829
830} // namespace aco
831