1/* 2 * Copyright © 2018 Valve Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25#include "aco_ir.h" 26 27#include <algorithm> 28#include <map> 29#include <vector> 30 31namespace aco { 32namespace { 33 34struct phi_info_item { 35 Definition def; 36 Operand op; 37}; 38 39struct ssa_elimination_ctx { 40 /* The outer vectors should be indexed by block index. The inner vectors store phi information 41 * for each block. */ 42 std::vector<std::vector<phi_info_item>> logical_phi_info; 43 std::vector<std::vector<phi_info_item>> linear_phi_info; 44 std::vector<bool> empty_blocks; 45 std::vector<bool> blocks_incoming_exec_used; 46 Program* program; 47 48 ssa_elimination_ctx(Program* program_) 49 : logical_phi_info(program_->blocks.size()), linear_phi_info(program_->blocks.size()), 50 empty_blocks(program_->blocks.size(), true), 51 blocks_incoming_exec_used(program_->blocks.size(), true), program(program_) 52 {} 53}; 54 55void 56collect_phi_info(ssa_elimination_ctx& ctx) 57{ 58 for (Block& block : ctx.program->blocks) { 59 for (aco_ptr<Instruction>& phi : block.instructions) { 60 if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi) 61 break; 62 63 for (unsigned i = 0; i < phi->operands.size(); i++) { 64 if (phi->operands[i].isUndefined()) 65 continue; 66 if (phi->operands[i].physReg() == phi->definitions[0].physReg()) 67 continue; 68 69 assert(phi->definitions[0].size() == phi->operands[i].size()); 70 71 std::vector<unsigned>& preds = 72 phi->opcode == aco_opcode::p_phi ? block.logical_preds : block.linear_preds; 73 uint32_t pred_idx = preds[i]; 74 auto& info_vec = phi->opcode == aco_opcode::p_phi ? ctx.logical_phi_info[pred_idx] 75 : ctx.linear_phi_info[pred_idx]; 76 info_vec.push_back({phi->definitions[0], phi->operands[i]}); 77 ctx.empty_blocks[pred_idx] = false; 78 } 79 } 80 } 81} 82 83void 84insert_parallelcopies(ssa_elimination_ctx& ctx) 85{ 86 /* insert the parallelcopies from logical phis before p_logical_end */ 87 for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) { 88 auto& logical_phi_info = ctx.logical_phi_info[block_idx]; 89 if (logical_phi_info.empty()) 90 continue; 91 92 Block& block = ctx.program->blocks[block_idx]; 93 unsigned idx = block.instructions.size() - 1; 94 while (block.instructions[idx]->opcode != aco_opcode::p_logical_end) { 95 assert(idx > 0); 96 idx--; 97 } 98 99 std::vector<aco_ptr<Instruction>>::iterator it = std::next(block.instructions.begin(), idx); 100 aco_ptr<Pseudo_instruction> pc{ 101 create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, 102 logical_phi_info.size(), logical_phi_info.size())}; 103 unsigned i = 0; 104 for (auto& phi_info : logical_phi_info) { 105 pc->definitions[i] = phi_info.def; 106 pc->operands[i] = phi_info.op; 107 i++; 108 } 109 /* this shouldn't be needed since we're only copying vgprs */ 110 pc->tmp_in_scc = false; 111 block.instructions.insert(it, std::move(pc)); 112 } 113 114 /* insert parallelcopies for the linear phis at the end of blocks just before the branch */ 115 for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) { 116 auto& linear_phi_info = ctx.linear_phi_info[block_idx]; 117 if (linear_phi_info.empty()) 118 continue; 119 120 Block& block = ctx.program->blocks[block_idx]; 121 std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.end(); 122 --it; 123 assert((*it)->isBranch()); 124 aco_ptr<Pseudo_instruction> pc{ 125 create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, 126 linear_phi_info.size(), linear_phi_info.size())}; 127 unsigned i = 0; 128 for (auto& phi_info : linear_phi_info) { 129 pc->definitions[i] = phi_info.def; 130 pc->operands[i] = phi_info.op; 131 i++; 132 } 133 pc->tmp_in_scc = block.scc_live_out; 134 pc->scratch_sgpr = block.scratch_sgpr; 135 block.instructions.insert(it, std::move(pc)); 136 } 137} 138 139bool 140is_empty_block(Block* block, bool ignore_exec_writes) 141{ 142 /* check if this block is empty and the exec mask is not needed */ 143 for (aco_ptr<Instruction>& instr : block->instructions) { 144 switch (instr->opcode) { 145 case aco_opcode::p_linear_phi: 146 case aco_opcode::p_phi: 147 case aco_opcode::p_logical_start: 148 case aco_opcode::p_logical_end: 149 case aco_opcode::p_branch: break; 150 case aco_opcode::p_parallelcopy: 151 for (unsigned i = 0; i < instr->definitions.size(); i++) { 152 if (ignore_exec_writes && instr->definitions[i].physReg() == exec) 153 continue; 154 if (instr->definitions[i].physReg() != instr->operands[i].physReg()) 155 return false; 156 } 157 break; 158 case aco_opcode::s_andn2_b64: 159 case aco_opcode::s_andn2_b32: 160 if (ignore_exec_writes && instr->definitions[0].physReg() == exec) 161 break; 162 return false; 163 default: return false; 164 } 165 } 166 return true; 167} 168 169void 170try_remove_merge_block(ssa_elimination_ctx& ctx, Block* block) 171{ 172 /* check if the successor is another merge block which restores exec */ 173 // TODO: divergent loops also restore exec 174 if (block->linear_succs.size() != 1 || 175 !(ctx.program->blocks[block->linear_succs[0]].kind & block_kind_merge)) 176 return; 177 178 /* check if this block is empty */ 179 if (!is_empty_block(block, true)) 180 return; 181 182 /* keep the branch instruction and remove the rest */ 183 aco_ptr<Instruction> branch = std::move(block->instructions.back()); 184 block->instructions.clear(); 185 block->instructions.emplace_back(std::move(branch)); 186} 187 188void 189try_remove_invert_block(ssa_elimination_ctx& ctx, Block* block) 190{ 191 assert(block->linear_succs.size() == 2); 192 /* only remove this block if the successor got removed as well */ 193 if (block->linear_succs[0] != block->linear_succs[1]) 194 return; 195 196 /* check if block is otherwise empty */ 197 if (!is_empty_block(block, true)) 198 return; 199 200 unsigned succ_idx = block->linear_succs[0]; 201 assert(block->linear_preds.size() == 2); 202 for (unsigned i = 0; i < 2; i++) { 203 Block* pred = &ctx.program->blocks[block->linear_preds[i]]; 204 pred->linear_succs[0] = succ_idx; 205 ctx.program->blocks[succ_idx].linear_preds[i] = pred->index; 206 207 Pseudo_branch_instruction& branch = pred->instructions.back()->branch(); 208 assert(branch.isBranch()); 209 branch.target[0] = succ_idx; 210 branch.target[1] = succ_idx; 211 } 212 213 block->instructions.clear(); 214 block->linear_preds.clear(); 215 block->linear_succs.clear(); 216} 217 218void 219try_remove_simple_block(ssa_elimination_ctx& ctx, Block* block) 220{ 221 if (!is_empty_block(block, false)) 222 return; 223 224 Block& pred = ctx.program->blocks[block->linear_preds[0]]; 225 Block& succ = ctx.program->blocks[block->linear_succs[0]]; 226 Pseudo_branch_instruction& branch = pred.instructions.back()->branch(); 227 if (branch.opcode == aco_opcode::p_branch) { 228 branch.target[0] = succ.index; 229 branch.target[1] = succ.index; 230 } else if (branch.target[0] == block->index) { 231 branch.target[0] = succ.index; 232 } else if (branch.target[0] == succ.index) { 233 assert(branch.target[1] == block->index); 234 branch.target[1] = succ.index; 235 branch.opcode = aco_opcode::p_branch; 236 } else if (branch.target[1] == block->index) { 237 /* check if there is a fall-through path from block to succ */ 238 bool falls_through = block->index < succ.index; 239 for (unsigned j = block->index + 1; falls_through && j < succ.index; j++) { 240 assert(ctx.program->blocks[j].index == j); 241 if (!ctx.program->blocks[j].instructions.empty()) 242 falls_through = false; 243 } 244 if (falls_through) { 245 branch.target[1] = succ.index; 246 } else { 247 /* check if there is a fall-through path for the alternative target */ 248 if (block->index >= branch.target[0]) 249 return; 250 for (unsigned j = block->index + 1; j < branch.target[0]; j++) { 251 if (!ctx.program->blocks[j].instructions.empty()) 252 return; 253 } 254 255 /* This is a (uniform) break or continue block. The branch condition has to be inverted. */ 256 if (branch.opcode == aco_opcode::p_cbranch_z) 257 branch.opcode = aco_opcode::p_cbranch_nz; 258 else if (branch.opcode == aco_opcode::p_cbranch_nz) 259 branch.opcode = aco_opcode::p_cbranch_z; 260 else 261 assert(false); 262 /* also invert the linear successors */ 263 pred.linear_succs[0] = pred.linear_succs[1]; 264 pred.linear_succs[1] = succ.index; 265 branch.target[1] = branch.target[0]; 266 branch.target[0] = succ.index; 267 } 268 } else { 269 assert(false); 270 } 271 272 if (branch.target[0] == branch.target[1]) 273 branch.opcode = aco_opcode::p_branch; 274 275 for (unsigned i = 0; i < pred.linear_succs.size(); i++) 276 if (pred.linear_succs[i] == block->index) 277 pred.linear_succs[i] = succ.index; 278 279 for (unsigned i = 0; i < succ.linear_preds.size(); i++) 280 if (succ.linear_preds[i] == block->index) 281 succ.linear_preds[i] = pred.index; 282 283 block->instructions.clear(); 284 block->linear_preds.clear(); 285 block->linear_succs.clear(); 286} 287 288bool 289instr_writes_exec(Instruction* instr) 290{ 291 for (Definition& def : instr->definitions) 292 if (def.physReg() == exec || def.physReg() == exec_hi) 293 return true; 294 295 return false; 296} 297 298void 299eliminate_useless_exec_writes_in_block(ssa_elimination_ctx& ctx, Block& block) 300{ 301 /* Check if any successor needs the outgoing exec mask from the current block. */ 302 303 bool exec_write_used; 304 305 if (!ctx.logical_phi_info[block.index].empty()) { 306 exec_write_used = true; 307 } else { 308 bool copy_to_exec = false; 309 bool copy_from_exec = false; 310 311 for (const auto& successor_phi_info : ctx.linear_phi_info[block.index]) { 312 copy_to_exec |= successor_phi_info.def.physReg() == exec; 313 copy_from_exec |= successor_phi_info.op.physReg() == exec; 314 } 315 316 if (copy_from_exec) 317 exec_write_used = true; 318 else if (copy_to_exec) 319 exec_write_used = false; 320 else 321 /* blocks_incoming_exec_used is initialized to true, so this is correct even for loops. */ 322 exec_write_used = 323 std::any_of(block.linear_succs.begin(), block.linear_succs.end(), 324 [&ctx](int succ_idx) { return ctx.blocks_incoming_exec_used[succ_idx]; }); 325 } 326 327 /* Go through all instructions and eliminate useless exec writes. */ 328 329 for (int i = block.instructions.size() - 1; i >= 0; --i) { 330 aco_ptr<Instruction>& instr = block.instructions[i]; 331 332 /* We already take information from phis into account before the loop, so let's just break on 333 * phis. */ 334 if (instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi) 335 break; 336 337 /* See if the current instruction needs or writes exec. */ 338 bool needs_exec = needs_exec_mask(instr.get()); 339 bool writes_exec = instr_writes_exec(instr.get()); 340 341 /* See if we found an unused exec write. */ 342 if (writes_exec && !exec_write_used) { 343 instr.reset(); 344 continue; 345 } 346 347 /* For a newly encountered exec write, clear the used flag. */ 348 if (writes_exec) 349 exec_write_used = false; 350 351 /* If the current instruction needs exec, mark it as used. */ 352 exec_write_used |= needs_exec; 353 } 354 355 /* Remember if the current block needs an incoming exec mask from its predecessors. */ 356 ctx.blocks_incoming_exec_used[block.index] = exec_write_used; 357 358 /* Cleanup: remove deleted instructions from the vector. */ 359 auto new_end = std::remove(block.instructions.begin(), block.instructions.end(), nullptr); 360 block.instructions.resize(new_end - block.instructions.begin()); 361} 362 363void 364jump_threading(ssa_elimination_ctx& ctx) 365{ 366 for (int i = ctx.program->blocks.size() - 1; i >= 0; i--) { 367 Block* block = &ctx.program->blocks[i]; 368 eliminate_useless_exec_writes_in_block(ctx, *block); 369 370 if (!ctx.empty_blocks[i]) 371 continue; 372 373 if (block->kind & block_kind_invert) { 374 try_remove_invert_block(ctx, block); 375 continue; 376 } 377 378 if (block->linear_succs.size() > 1) 379 continue; 380 381 if (block->kind & block_kind_merge || block->kind & block_kind_loop_exit) 382 try_remove_merge_block(ctx, block); 383 384 if (block->linear_preds.size() == 1) 385 try_remove_simple_block(ctx, block); 386 } 387} 388 389} /* end namespace */ 390 391void 392ssa_elimination(Program* program) 393{ 394 ssa_elimination_ctx ctx(program); 395 396 /* Collect information about every phi-instruction */ 397 collect_phi_info(ctx); 398 399 /* eliminate empty blocks */ 400 jump_threading(ctx); 401 402 /* insert parallelcopies from SSA elimination */ 403 insert_parallelcopies(ctx); 404} 405} // namespace aco 406