1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file ast_to_hir.c 26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR). 27 * 28 * During the conversion to HIR, the majority of the symantic checking is 29 * preformed on the program. This includes: 30 * 31 * * Symbol table management 32 * * Type checking 33 * * Function binding 34 * 35 * The majority of this work could be done during parsing, and the parser could 36 * probably generate HIR directly. However, this results in frequent changes 37 * to the parser code. Since we do not assume that every system this complier 38 * is built on will have Flex and Bison installed, we have to store the code 39 * generated by these tools in our version control system. In other parts of 40 * the system we've seen problems where a parser was changed but the generated 41 * code was not committed, merge conflicts where created because two developers 42 * had slightly different versions of Bison installed, etc. 43 * 44 * I have also noticed that running Bison generated parsers in GDB is very 45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very 46 * well 'print $1' in GDB. 47 * 48 * As a result, my preference is to put as little C code as possible in the 49 * parser (and lexer) sources. 50 */ 51 52#include "glsl_symbol_table.h" 53#include "glsl_parser_extras.h" 54#include "ast.h" 55#include "compiler/glsl_types.h" 56#include "util/hash_table.h" 57#include "main/mtypes.h" 58#include "main/macros.h" 59#include "main/shaderobj.h" 60#include "ir.h" 61#include "ir_builder.h" 62#include "builtin_functions.h" 63 64using namespace ir_builder; 65 66static void 67detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, 68 exec_list *instructions); 69static void 70verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state); 71 72static void 73remove_per_vertex_blocks(exec_list *instructions, 74 _mesa_glsl_parse_state *state, ir_variable_mode mode); 75 76/** 77 * Visitor class that finds the first instance of any write-only variable that 78 * is ever read, if any 79 */ 80class read_from_write_only_variable_visitor : public ir_hierarchical_visitor 81{ 82public: 83 read_from_write_only_variable_visitor() : found(NULL) 84 { 85 } 86 87 virtual ir_visitor_status visit(ir_dereference_variable *ir) 88 { 89 if (this->in_assignee) 90 return visit_continue; 91 92 ir_variable *var = ir->variable_referenced(); 93 /* We can have memory_write_only set on both images and buffer variables, 94 * but in the former there is a distinction between reads from 95 * the variable itself (write_only) and from the memory they point to 96 * (memory_write_only), while in the case of buffer variables there is 97 * no such distinction, that is why this check here is limited to 98 * buffer variables alone. 99 */ 100 if (!var || var->data.mode != ir_var_shader_storage) 101 return visit_continue; 102 103 if (var->data.memory_write_only) { 104 found = var; 105 return visit_stop; 106 } 107 108 return visit_continue; 109 } 110 111 ir_variable *get_variable() { 112 return found; 113 } 114 115 virtual ir_visitor_status visit_enter(ir_expression *ir) 116 { 117 /* .length() doesn't actually read anything */ 118 if (ir->operation == ir_unop_ssbo_unsized_array_length) 119 return visit_continue_with_parent; 120 121 return visit_continue; 122 } 123 124private: 125 ir_variable *found; 126}; 127 128void 129_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) 130{ 131 _mesa_glsl_initialize_variables(instructions, state); 132 133 state->symbols->separate_function_namespace = state->language_version == 110; 134 135 state->current_function = NULL; 136 137 state->toplevel_ir = instructions; 138 139 state->gs_input_prim_type_specified = false; 140 state->tcs_output_vertices_specified = false; 141 state->cs_input_local_size_specified = false; 142 143 /* Section 4.2 of the GLSL 1.20 specification states: 144 * "The built-in functions are scoped in a scope outside the global scope 145 * users declare global variables in. That is, a shader's global scope, 146 * available for user-defined functions and global variables, is nested 147 * inside the scope containing the built-in functions." 148 * 149 * Since built-in functions like ftransform() access built-in variables, 150 * it follows that those must be in the outer scope as well. 151 * 152 * We push scope here to create this nesting effect...but don't pop. 153 * This way, a shader's globals are still in the symbol table for use 154 * by the linker. 155 */ 156 state->symbols->push_scope(); 157 158 foreach_list_typed (ast_node, ast, link, & state->translation_unit) 159 ast->hir(instructions, state); 160 161 verify_subroutine_associated_funcs(state); 162 detect_recursion_unlinked(state, instructions); 163 detect_conflicting_assignments(state, instructions); 164 165 state->toplevel_ir = NULL; 166 167 /* Move all of the variable declarations to the front of the IR list, and 168 * reverse the order. This has the (intended!) side effect that vertex 169 * shader inputs and fragment shader outputs will appear in the IR in the 170 * same order that they appeared in the shader code. This results in the 171 * locations being assigned in the declared order. Many (arguably buggy) 172 * applications depend on this behavior, and it matches what nearly all 173 * other drivers do. 174 */ 175 foreach_in_list_safe(ir_instruction, node, instructions) { 176 ir_variable *const var = node->as_variable(); 177 178 if (var == NULL) 179 continue; 180 181 var->remove(); 182 instructions->push_head(var); 183 } 184 185 /* Figure out if gl_FragCoord is actually used in fragment shader */ 186 ir_variable *const var = state->symbols->get_variable("gl_FragCoord"); 187 if (var != NULL) 188 state->fs_uses_gl_fragcoord = var->data.used; 189 190 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec: 191 * 192 * If multiple shaders using members of a built-in block belonging to 193 * the same interface are linked together in the same program, they 194 * must all redeclare the built-in block in the same way, as described 195 * in section 4.3.7 "Interface Blocks" for interface block matching, or 196 * a link error will result. 197 * 198 * The phrase "using members of a built-in block" implies that if two 199 * shaders are linked together and one of them *does not use* any members 200 * of the built-in block, then that shader does not need to have a matching 201 * redeclaration of the built-in block. 202 * 203 * This appears to be a clarification to the behaviour established for 204 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL 205 * version. 206 * 207 * The definition of "interface" in section 4.3.7 that applies here is as 208 * follows: 209 * 210 * The boundary between adjacent programmable pipeline stages: This 211 * spans all the outputs in all compilation units of the first stage 212 * and all the inputs in all compilation units of the second stage. 213 * 214 * Therefore this rule applies to both inter- and intra-stage linking. 215 * 216 * The easiest way to implement this is to check whether the shader uses 217 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply 218 * remove all the relevant variable declaration from the IR, so that the 219 * linker won't see them and complain about mismatches. 220 */ 221 remove_per_vertex_blocks(instructions, state, ir_var_shader_in); 222 remove_per_vertex_blocks(instructions, state, ir_var_shader_out); 223 224 /* Check that we don't have reads from write-only variables */ 225 read_from_write_only_variable_visitor v; 226 v.run(instructions); 227 ir_variable *error_var = v.get_variable(); 228 if (error_var) { 229 /* It would be nice to have proper location information, but for that 230 * we would need to check this as we process each kind of AST node 231 */ 232 YYLTYPE loc; 233 memset(&loc, 0, sizeof(loc)); 234 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'", 235 error_var->name); 236 } 237} 238 239 240static ir_expression_operation 241get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from, 242 struct _mesa_glsl_parse_state *state) 243{ 244 switch (to->base_type) { 245 case GLSL_TYPE_FLOAT: 246 switch (from->base_type) { 247 case GLSL_TYPE_INT: return ir_unop_i2f; 248 case GLSL_TYPE_UINT: return ir_unop_u2f; 249 default: return (ir_expression_operation)0; 250 } 251 252 case GLSL_TYPE_UINT: 253 if (!state->has_implicit_int_to_uint_conversion()) 254 return (ir_expression_operation)0; 255 switch (from->base_type) { 256 case GLSL_TYPE_INT: return ir_unop_i2u; 257 default: return (ir_expression_operation)0; 258 } 259 260 case GLSL_TYPE_DOUBLE: 261 if (!state->has_double()) 262 return (ir_expression_operation)0; 263 switch (from->base_type) { 264 case GLSL_TYPE_INT: return ir_unop_i2d; 265 case GLSL_TYPE_UINT: return ir_unop_u2d; 266 case GLSL_TYPE_FLOAT: return ir_unop_f2d; 267 case GLSL_TYPE_INT64: return ir_unop_i642d; 268 case GLSL_TYPE_UINT64: return ir_unop_u642d; 269 default: return (ir_expression_operation)0; 270 } 271 272 case GLSL_TYPE_UINT64: 273 if (!state->has_int64()) 274 return (ir_expression_operation)0; 275 switch (from->base_type) { 276 case GLSL_TYPE_INT: return ir_unop_i2u64; 277 case GLSL_TYPE_UINT: return ir_unop_u2u64; 278 case GLSL_TYPE_INT64: return ir_unop_i642u64; 279 default: return (ir_expression_operation)0; 280 } 281 282 case GLSL_TYPE_INT64: 283 if (!state->has_int64()) 284 return (ir_expression_operation)0; 285 switch (from->base_type) { 286 case GLSL_TYPE_INT: return ir_unop_i2i64; 287 default: return (ir_expression_operation)0; 288 } 289 290 default: return (ir_expression_operation)0; 291 } 292} 293 294 295/** 296 * If a conversion is available, convert one operand to a different type 297 * 298 * The \c from \c ir_rvalue is converted "in place". 299 * 300 * \param to Type that the operand it to be converted to 301 * \param from Operand that is being converted 302 * \param state GLSL compiler state 303 * 304 * \return 305 * If a conversion is possible (or unnecessary), \c true is returned. 306 * Otherwise \c false is returned. 307 */ 308static bool 309apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, 310 struct _mesa_glsl_parse_state *state) 311{ 312 void *ctx = state; 313 if (to->base_type == from->type->base_type) 314 return true; 315 316 /* Prior to GLSL 1.20, there are no implicit conversions */ 317 if (!state->has_implicit_conversions()) 318 return false; 319 320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec: 321 * 322 * "There are no implicit array or structure conversions. For 323 * example, an array of int cannot be implicitly converted to an 324 * array of float. 325 */ 326 if (!to->is_numeric() || !from->type->is_numeric()) 327 return false; 328 329 /* We don't actually want the specific type `to`, we want a type 330 * with the same base type as `to`, but the same vector width as 331 * `from`. 332 */ 333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements, 334 from->type->matrix_columns); 335 336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state); 337 if (op) { 338 from = new(ctx) ir_expression(op, to, from, NULL); 339 return true; 340 } else { 341 return false; 342 } 343} 344 345 346static const struct glsl_type * 347arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 348 bool multiply, 349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 350{ 351 const glsl_type *type_a = value_a->type; 352 const glsl_type *type_b = value_b->type; 353 354 /* From GLSL 1.50 spec, page 56: 355 * 356 * "The arithmetic binary operators add (+), subtract (-), 357 * multiply (*), and divide (/) operate on integer and 358 * floating-point scalars, vectors, and matrices." 359 */ 360 if (!type_a->is_numeric() || !type_b->is_numeric()) { 361 _mesa_glsl_error(loc, state, 362 "operands to arithmetic operators must be numeric"); 363 return glsl_type::error_type; 364 } 365 366 367 /* "If one operand is floating-point based and the other is 368 * not, then the conversions from Section 4.1.10 "Implicit 369 * Conversions" are applied to the non-floating-point-based operand." 370 */ 371 if (!apply_implicit_conversion(type_a, value_b, state) 372 && !apply_implicit_conversion(type_b, value_a, state)) { 373 _mesa_glsl_error(loc, state, 374 "could not implicitly convert operands to " 375 "arithmetic operator"); 376 return glsl_type::error_type; 377 } 378 type_a = value_a->type; 379 type_b = value_b->type; 380 381 /* "If the operands are integer types, they must both be signed or 382 * both be unsigned." 383 * 384 * From this rule and the preceeding conversion it can be inferred that 385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT. 386 * The is_numeric check above already filtered out the case where either 387 * type is not one of these, so now the base types need only be tested for 388 * equality. 389 */ 390 if (type_a->base_type != type_b->base_type) { 391 _mesa_glsl_error(loc, state, 392 "base type mismatch for arithmetic operator"); 393 return glsl_type::error_type; 394 } 395 396 /* "All arithmetic binary operators result in the same fundamental type 397 * (signed integer, unsigned integer, or floating-point) as the 398 * operands they operate on, after operand type conversion. After 399 * conversion, the following cases are valid 400 * 401 * * The two operands are scalars. In this case the operation is 402 * applied, resulting in a scalar." 403 */ 404 if (type_a->is_scalar() && type_b->is_scalar()) 405 return type_a; 406 407 /* "* One operand is a scalar, and the other is a vector or matrix. 408 * In this case, the scalar operation is applied independently to each 409 * component of the vector or matrix, resulting in the same size 410 * vector or matrix." 411 */ 412 if (type_a->is_scalar()) { 413 if (!type_b->is_scalar()) 414 return type_b; 415 } else if (type_b->is_scalar()) { 416 return type_a; 417 } 418 419 /* All of the combinations of <scalar, scalar>, <vector, scalar>, 420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been 421 * handled. 422 */ 423 assert(!type_a->is_scalar()); 424 assert(!type_b->is_scalar()); 425 426 /* "* The two operands are vectors of the same size. In this case, the 427 * operation is done component-wise resulting in the same size 428 * vector." 429 */ 430 if (type_a->is_vector() && type_b->is_vector()) { 431 if (type_a == type_b) { 432 return type_a; 433 } else { 434 _mesa_glsl_error(loc, state, 435 "vector size mismatch for arithmetic operator"); 436 return glsl_type::error_type; 437 } 438 } 439 440 /* All of the combinations of <scalar, scalar>, <vector, scalar>, 441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and 442 * <vector, vector> have been handled. At least one of the operands must 443 * be matrix. Further, since there are no integer matrix types, the base 444 * type of both operands must be float. 445 */ 446 assert(type_a->is_matrix() || type_b->is_matrix()); 447 assert(type_a->is_float() || type_a->is_double()); 448 assert(type_b->is_float() || type_b->is_double()); 449 450 /* "* The operator is add (+), subtract (-), or divide (/), and the 451 * operands are matrices with the same number of rows and the same 452 * number of columns. In this case, the operation is done component- 453 * wise resulting in the same size matrix." 454 * * The operator is multiply (*), where both operands are matrices or 455 * one operand is a vector and the other a matrix. A right vector 456 * operand is treated as a column vector and a left vector operand as a 457 * row vector. In all these cases, it is required that the number of 458 * columns of the left operand is equal to the number of rows of the 459 * right operand. Then, the multiply (*) operation does a linear 460 * algebraic multiply, yielding an object that has the same number of 461 * rows as the left operand and the same number of columns as the right 462 * operand. Section 5.10 "Vector and Matrix Operations" explains in 463 * more detail how vectors and matrices are operated on." 464 */ 465 if (! multiply) { 466 if (type_a == type_b) 467 return type_a; 468 } else { 469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b); 470 471 if (type == glsl_type::error_type) { 472 _mesa_glsl_error(loc, state, 473 "size mismatch for matrix multiplication"); 474 } 475 476 return type; 477 } 478 479 480 /* "All other cases are illegal." 481 */ 482 _mesa_glsl_error(loc, state, "type mismatch"); 483 return glsl_type::error_type; 484} 485 486 487static const struct glsl_type * 488unary_arithmetic_result_type(const struct glsl_type *type, 489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 490{ 491 /* From GLSL 1.50 spec, page 57: 492 * 493 * "The arithmetic unary operators negate (-), post- and pre-increment 494 * and decrement (-- and ++) operate on integer or floating-point 495 * values (including vectors and matrices). All unary operators work 496 * component-wise on their operands. These result with the same type 497 * they operated on." 498 */ 499 if (!type->is_numeric()) { 500 _mesa_glsl_error(loc, state, 501 "operands to arithmetic operators must be numeric"); 502 return glsl_type::error_type; 503 } 504 505 return type; 506} 507 508/** 509 * \brief Return the result type of a bit-logic operation. 510 * 511 * If the given types to the bit-logic operator are invalid, return 512 * glsl_type::error_type. 513 * 514 * \param value_a LHS of bit-logic op 515 * \param value_b RHS of bit-logic op 516 */ 517static const struct glsl_type * 518bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 519 ast_operators op, 520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 521{ 522 const glsl_type *type_a = value_a->type; 523 const glsl_type *type_b = value_b->type; 524 525 if (!state->check_bitwise_operations_allowed(loc)) { 526 return glsl_type::error_type; 527 } 528 529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec: 530 * 531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or 532 * (|). The operands must be of type signed or unsigned integers or 533 * integer vectors." 534 */ 535 if (!type_a->is_integer_32_64()) { 536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer", 537 ast_expression::operator_string(op)); 538 return glsl_type::error_type; 539 } 540 if (!type_b->is_integer_32_64()) { 541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer", 542 ast_expression::operator_string(op)); 543 return glsl_type::error_type; 544 } 545 546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't 547 * make sense for bitwise operations, as they don't operate on floats. 548 * 549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant 550 * here. It wasn't clear whether or not we should apply them to bitwise 551 * operations. However, Khronos has decided that they should in future 552 * language revisions. Applications also rely on this behavior. We opt 553 * to apply them in general, but issue a portability warning. 554 * 555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405 556 */ 557 if (type_a->base_type != type_b->base_type) { 558 if (!apply_implicit_conversion(type_a, value_b, state) 559 && !apply_implicit_conversion(type_b, value_a, state)) { 560 _mesa_glsl_error(loc, state, 561 "could not implicitly convert operands to " 562 "`%s` operator", 563 ast_expression::operator_string(op)); 564 return glsl_type::error_type; 565 } else { 566 _mesa_glsl_warning(loc, state, 567 "some implementations may not support implicit " 568 "int -> uint conversions for `%s' operators; " 569 "consider casting explicitly for portability", 570 ast_expression::operator_string(op)); 571 } 572 type_a = value_a->type; 573 type_b = value_b->type; 574 } 575 576 /* "The fundamental types of the operands (signed or unsigned) must 577 * match," 578 */ 579 if (type_a->base_type != type_b->base_type) { 580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same " 581 "base type", ast_expression::operator_string(op)); 582 return glsl_type::error_type; 583 } 584 585 /* "The operands cannot be vectors of differing size." */ 586 if (type_a->is_vector() && 587 type_b->is_vector() && 588 type_a->vector_elements != type_b->vector_elements) { 589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of " 590 "different sizes", ast_expression::operator_string(op)); 591 return glsl_type::error_type; 592 } 593 594 /* "If one operand is a scalar and the other a vector, the scalar is 595 * applied component-wise to the vector, resulting in the same type as 596 * the vector. The fundamental types of the operands [...] will be the 597 * resulting fundamental type." 598 */ 599 if (type_a->is_scalar()) 600 return type_b; 601 else 602 return type_a; 603} 604 605static const struct glsl_type * 606modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 608{ 609 const glsl_type *type_a = value_a->type; 610 const glsl_type *type_b = value_b->type; 611 612 if (!state->EXT_gpu_shader4_enable && 613 !state->check_version(130, 300, loc, "operator '%%' is reserved")) { 614 return glsl_type::error_type; 615 } 616 617 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says: 618 * 619 * "The operator modulus (%) operates on signed or unsigned integers or 620 * integer vectors." 621 */ 622 if (!type_a->is_integer_32_64()) { 623 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer"); 624 return glsl_type::error_type; 625 } 626 if (!type_b->is_integer_32_64()) { 627 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer"); 628 return glsl_type::error_type; 629 } 630 631 /* "If the fundamental types in the operands do not match, then the 632 * conversions from section 4.1.10 "Implicit Conversions" are applied 633 * to create matching types." 634 * 635 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit 636 * int -> uint conversion rules. Prior to that, there were no implicit 637 * conversions. So it's harmless to apply them universally - no implicit 638 * conversions will exist. If the types don't match, we'll receive false, 639 * and raise an error, satisfying the GLSL 1.50 spec, page 56: 640 * 641 * "The operand types must both be signed or unsigned." 642 */ 643 if (!apply_implicit_conversion(type_a, value_b, state) && 644 !apply_implicit_conversion(type_b, value_a, state)) { 645 _mesa_glsl_error(loc, state, 646 "could not implicitly convert operands to " 647 "modulus (%%) operator"); 648 return glsl_type::error_type; 649 } 650 type_a = value_a->type; 651 type_b = value_b->type; 652 653 /* "The operands cannot be vectors of differing size. If one operand is 654 * a scalar and the other vector, then the scalar is applied component- 655 * wise to the vector, resulting in the same type as the vector. If both 656 * are vectors of the same size, the result is computed component-wise." 657 */ 658 if (type_a->is_vector()) { 659 if (!type_b->is_vector() 660 || (type_a->vector_elements == type_b->vector_elements)) 661 return type_a; 662 } else 663 return type_b; 664 665 /* "The operator modulus (%) is not defined for any other data types 666 * (non-integer types)." 667 */ 668 _mesa_glsl_error(loc, state, "type mismatch"); 669 return glsl_type::error_type; 670} 671 672 673static const struct glsl_type * 674relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 675 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 676{ 677 const glsl_type *type_a = value_a->type; 678 const glsl_type *type_b = value_b->type; 679 680 /* From GLSL 1.50 spec, page 56: 681 * "The relational operators greater than (>), less than (<), greater 682 * than or equal (>=), and less than or equal (<=) operate only on 683 * scalar integer and scalar floating-point expressions." 684 */ 685 if (!type_a->is_numeric() 686 || !type_b->is_numeric() 687 || !type_a->is_scalar() 688 || !type_b->is_scalar()) { 689 _mesa_glsl_error(loc, state, 690 "operands to relational operators must be scalar and " 691 "numeric"); 692 return glsl_type::error_type; 693 } 694 695 /* "Either the operands' types must match, or the conversions from 696 * Section 4.1.10 "Implicit Conversions" will be applied to the integer 697 * operand, after which the types must match." 698 */ 699 if (!apply_implicit_conversion(type_a, value_b, state) 700 && !apply_implicit_conversion(type_b, value_a, state)) { 701 _mesa_glsl_error(loc, state, 702 "could not implicitly convert operands to " 703 "relational operator"); 704 return glsl_type::error_type; 705 } 706 type_a = value_a->type; 707 type_b = value_b->type; 708 709 if (type_a->base_type != type_b->base_type) { 710 _mesa_glsl_error(loc, state, "base type mismatch"); 711 return glsl_type::error_type; 712 } 713 714 /* "The result is scalar Boolean." 715 */ 716 return glsl_type::bool_type; 717} 718 719/** 720 * \brief Return the result type of a bit-shift operation. 721 * 722 * If the given types to the bit-shift operator are invalid, return 723 * glsl_type::error_type. 724 * 725 * \param type_a Type of LHS of bit-shift op 726 * \param type_b Type of RHS of bit-shift op 727 */ 728static const struct glsl_type * 729shift_result_type(const struct glsl_type *type_a, 730 const struct glsl_type *type_b, 731 ast_operators op, 732 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 733{ 734 if (!state->check_bitwise_operations_allowed(loc)) { 735 return glsl_type::error_type; 736 } 737 738 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec: 739 * 740 * "The shift operators (<<) and (>>). For both operators, the operands 741 * must be signed or unsigned integers or integer vectors. One operand 742 * can be signed while the other is unsigned." 743 */ 744 if (!type_a->is_integer_32_64()) { 745 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or " 746 "integer vector", ast_expression::operator_string(op)); 747 return glsl_type::error_type; 748 749 } 750 if (!type_b->is_integer_32()) { 751 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or " 752 "integer vector", ast_expression::operator_string(op)); 753 return glsl_type::error_type; 754 } 755 756 /* "If the first operand is a scalar, the second operand has to be 757 * a scalar as well." 758 */ 759 if (type_a->is_scalar() && !type_b->is_scalar()) { 760 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the " 761 "second must be scalar as well", 762 ast_expression::operator_string(op)); 763 return glsl_type::error_type; 764 } 765 766 /* If both operands are vectors, check that they have same number of 767 * elements. 768 */ 769 if (type_a->is_vector() && 770 type_b->is_vector() && 771 type_a->vector_elements != type_b->vector_elements) { 772 _mesa_glsl_error(loc, state, "vector operands to operator %s must " 773 "have same number of elements", 774 ast_expression::operator_string(op)); 775 return glsl_type::error_type; 776 } 777 778 /* "In all cases, the resulting type will be the same type as the left 779 * operand." 780 */ 781 return type_a; 782} 783 784/** 785 * Returns the innermost array index expression in an rvalue tree. 786 * This is the largest indexing level -- if an array of blocks, then 787 * it is the block index rather than an indexing expression for an 788 * array-typed member of an array of blocks. 789 */ 790static ir_rvalue * 791find_innermost_array_index(ir_rvalue *rv) 792{ 793 ir_dereference_array *last = NULL; 794 while (rv) { 795 if (rv->as_dereference_array()) { 796 last = rv->as_dereference_array(); 797 rv = last->array; 798 } else if (rv->as_dereference_record()) 799 rv = rv->as_dereference_record()->record; 800 else if (rv->as_swizzle()) 801 rv = rv->as_swizzle()->val; 802 else 803 rv = NULL; 804 } 805 806 if (last) 807 return last->array_index; 808 809 return NULL; 810} 811 812/** 813 * Validates that a value can be assigned to a location with a specified type 814 * 815 * Validates that \c rhs can be assigned to some location. If the types are 816 * not an exact match but an automatic conversion is possible, \c rhs will be 817 * converted. 818 * 819 * \return 820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type. 821 * Otherwise the actual RHS to be assigned will be returned. This may be 822 * \c rhs, or it may be \c rhs after some type conversion. 823 * 824 * \note 825 * In addition to being used for assignments, this function is used to 826 * type-check return values. 827 */ 828static ir_rvalue * 829validate_assignment(struct _mesa_glsl_parse_state *state, 830 YYLTYPE loc, ir_rvalue *lhs, 831 ir_rvalue *rhs, bool is_initializer) 832{ 833 /* If there is already some error in the RHS, just return it. Anything 834 * else will lead to an avalanche of error message back to the user. 835 */ 836 if (rhs->type->is_error()) 837 return rhs; 838 839 /* In the Tessellation Control Shader: 840 * If a per-vertex output variable is used as an l-value, it is an error 841 * if the expression indicating the vertex number is not the identifier 842 * `gl_InvocationID`. 843 */ 844 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) { 845 ir_variable *var = lhs->variable_referenced(); 846 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) { 847 ir_rvalue *index = find_innermost_array_index(lhs); 848 ir_variable *index_var = index ? index->variable_referenced() : NULL; 849 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) { 850 _mesa_glsl_error(&loc, state, 851 "Tessellation control shader outputs can only " 852 "be indexed by gl_InvocationID"); 853 return NULL; 854 } 855 } 856 } 857 858 /* If the types are identical, the assignment can trivially proceed. 859 */ 860 if (rhs->type == lhs->type) 861 return rhs; 862 863 /* If the array element types are the same and the LHS is unsized, 864 * the assignment is okay for initializers embedded in variable 865 * declarations. 866 * 867 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this 868 * is handled by ir_dereference::is_lvalue. 869 */ 870 const glsl_type *lhs_t = lhs->type; 871 const glsl_type *rhs_t = rhs->type; 872 bool unsized_array = false; 873 while(lhs_t->is_array()) { 874 if (rhs_t == lhs_t) 875 break; /* the rest of the inner arrays match so break out early */ 876 if (!rhs_t->is_array()) { 877 unsized_array = false; 878 break; /* number of dimensions mismatch */ 879 } 880 if (lhs_t->length == rhs_t->length) { 881 lhs_t = lhs_t->fields.array; 882 rhs_t = rhs_t->fields.array; 883 continue; 884 } else if (lhs_t->is_unsized_array()) { 885 unsized_array = true; 886 } else { 887 unsized_array = false; 888 break; /* sized array mismatch */ 889 } 890 lhs_t = lhs_t->fields.array; 891 rhs_t = rhs_t->fields.array; 892 } 893 if (unsized_array) { 894 if (is_initializer) { 895 if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type()) 896 return rhs; 897 } else { 898 _mesa_glsl_error(&loc, state, 899 "implicitly sized arrays cannot be assigned"); 900 return NULL; 901 } 902 } 903 904 /* Check for implicit conversion in GLSL 1.20 */ 905 if (apply_implicit_conversion(lhs->type, rhs, state)) { 906 if (rhs->type == lhs->type) 907 return rhs; 908 } 909 910 _mesa_glsl_error(&loc, state, 911 "%s of type %s cannot be assigned to " 912 "variable of type %s", 913 is_initializer ? "initializer" : "value", 914 rhs->type->name, lhs->type->name); 915 916 return NULL; 917} 918 919static void 920mark_whole_array_access(ir_rvalue *access) 921{ 922 ir_dereference_variable *deref = access->as_dereference_variable(); 923 924 if (deref && deref->var) { 925 deref->var->data.max_array_access = deref->type->length - 1; 926 } 927} 928 929static bool 930do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state, 931 const char *non_lvalue_description, 932 ir_rvalue *lhs, ir_rvalue *rhs, 933 ir_rvalue **out_rvalue, bool needs_rvalue, 934 bool is_initializer, 935 YYLTYPE lhs_loc) 936{ 937 void *ctx = state; 938 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error()); 939 940 ir_variable *lhs_var = lhs->variable_referenced(); 941 if (lhs_var) 942 lhs_var->data.assigned = true; 943 944 bool omit_assignment = false; 945 if (!error_emitted) { 946 if (non_lvalue_description != NULL) { 947 _mesa_glsl_error(&lhs_loc, state, 948 "assignment to %s", 949 non_lvalue_description); 950 error_emitted = true; 951 } else if (lhs_var != NULL && (lhs_var->data.read_only || 952 (lhs_var->data.mode == ir_var_shader_storage && 953 lhs_var->data.memory_read_only))) { 954 /* We can have memory_read_only set on both images and buffer variables, 955 * but in the former there is a distinction between assignments to 956 * the variable itself (read_only) and to the memory they point to 957 * (memory_read_only), while in the case of buffer variables there is 958 * no such distinction, that is why this check here is limited to 959 * buffer variables alone. 960 */ 961 962 if (state->ignore_write_to_readonly_var) 963 omit_assignment = true; 964 else { 965 _mesa_glsl_error(&lhs_loc, state, 966 "assignment to read-only variable '%s'", 967 lhs_var->name); 968 error_emitted = true; 969 } 970 } else if (lhs->type->is_array() && 971 !state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120, 972 300, &lhs_loc, 973 "whole array assignment forbidden")) { 974 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: 975 * 976 * "Other binary or unary expressions, non-dereferenced 977 * arrays, function names, swizzles with repeated fields, 978 * and constants cannot be l-values." 979 * 980 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00. 981 */ 982 error_emitted = true; 983 } else if (!lhs->is_lvalue(state)) { 984 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment"); 985 error_emitted = true; 986 } 987 } 988 989 ir_rvalue *new_rhs = 990 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer); 991 if (new_rhs != NULL) { 992 rhs = new_rhs; 993 994 /* If the LHS array was not declared with a size, it takes it size from 995 * the RHS. If the LHS is an l-value and a whole array, it must be a 996 * dereference of a variable. Any other case would require that the LHS 997 * is either not an l-value or not a whole array. 998 */ 999 if (lhs->type->is_unsized_array()) { 1000 ir_dereference *const d = lhs->as_dereference(); 1001 1002 assert(d != NULL); 1003 1004 ir_variable *const var = d->variable_referenced(); 1005 1006 assert(var != NULL); 1007 1008 if (var->data.max_array_access >= rhs->type->array_size()) { 1009 /* FINISHME: This should actually log the location of the RHS. */ 1010 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to " 1011 "previous access", 1012 var->data.max_array_access); 1013 } 1014 1015 var->type = glsl_type::get_array_instance(lhs->type->fields.array, 1016 rhs->type->array_size()); 1017 d->type = var->type; 1018 } 1019 if (lhs->type->is_array()) { 1020 mark_whole_array_access(rhs); 1021 mark_whole_array_access(lhs); 1022 } 1023 } else { 1024 error_emitted = true; 1025 } 1026 1027 if (omit_assignment) { 1028 *out_rvalue = needs_rvalue ? ir_rvalue::error_value(ctx) : NULL; 1029 return error_emitted; 1030 } 1031 1032 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec, 1033 * but not post_inc) need the converted assigned value as an rvalue 1034 * to handle things like: 1035 * 1036 * i = j += 1; 1037 */ 1038 if (needs_rvalue) { 1039 ir_rvalue *rvalue; 1040 if (!error_emitted) { 1041 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp", 1042 ir_var_temporary); 1043 instructions->push_tail(var); 1044 instructions->push_tail(assign(var, rhs)); 1045 1046 ir_dereference_variable *deref_var = 1047 new(ctx) ir_dereference_variable(var); 1048 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var)); 1049 rvalue = new(ctx) ir_dereference_variable(var); 1050 } else { 1051 rvalue = ir_rvalue::error_value(ctx); 1052 } 1053 *out_rvalue = rvalue; 1054 } else { 1055 if (!error_emitted) 1056 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs)); 1057 *out_rvalue = NULL; 1058 } 1059 1060 return error_emitted; 1061} 1062 1063static ir_rvalue * 1064get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue) 1065{ 1066 void *ctx = ralloc_parent(lvalue); 1067 ir_variable *var; 1068 1069 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp", 1070 ir_var_temporary); 1071 instructions->push_tail(var); 1072 1073 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), 1074 lvalue)); 1075 1076 return new(ctx) ir_dereference_variable(var); 1077} 1078 1079 1080ir_rvalue * 1081ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) 1082{ 1083 (void) instructions; 1084 (void) state; 1085 1086 return NULL; 1087} 1088 1089bool 1090ast_node::has_sequence_subexpression() const 1091{ 1092 return false; 1093} 1094 1095void 1096ast_node::set_is_lhs(bool /* new_value */) 1097{ 1098} 1099 1100void 1101ast_function_expression::hir_no_rvalue(exec_list *instructions, 1102 struct _mesa_glsl_parse_state *state) 1103{ 1104 (void)hir(instructions, state); 1105} 1106 1107void 1108ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions, 1109 struct _mesa_glsl_parse_state *state) 1110{ 1111 (void)hir(instructions, state); 1112} 1113 1114static ir_rvalue * 1115do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1) 1116{ 1117 int join_op; 1118 ir_rvalue *cmp = NULL; 1119 1120 if (operation == ir_binop_all_equal) 1121 join_op = ir_binop_logic_and; 1122 else 1123 join_op = ir_binop_logic_or; 1124 1125 switch (op0->type->base_type) { 1126 case GLSL_TYPE_FLOAT: 1127 case GLSL_TYPE_FLOAT16: 1128 case GLSL_TYPE_UINT: 1129 case GLSL_TYPE_INT: 1130 case GLSL_TYPE_BOOL: 1131 case GLSL_TYPE_DOUBLE: 1132 case GLSL_TYPE_UINT64: 1133 case GLSL_TYPE_INT64: 1134 case GLSL_TYPE_UINT16: 1135 case GLSL_TYPE_INT16: 1136 case GLSL_TYPE_UINT8: 1137 case GLSL_TYPE_INT8: 1138 return new(mem_ctx) ir_expression(operation, op0, op1); 1139 1140 case GLSL_TYPE_ARRAY: { 1141 for (unsigned int i = 0; i < op0->type->length; i++) { 1142 ir_rvalue *e0, *e1, *result; 1143 1144 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL), 1145 new(mem_ctx) ir_constant(i)); 1146 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL), 1147 new(mem_ctx) ir_constant(i)); 1148 result = do_comparison(mem_ctx, operation, e0, e1); 1149 1150 if (cmp) { 1151 cmp = new(mem_ctx) ir_expression(join_op, cmp, result); 1152 } else { 1153 cmp = result; 1154 } 1155 } 1156 1157 mark_whole_array_access(op0); 1158 mark_whole_array_access(op1); 1159 break; 1160 } 1161 1162 case GLSL_TYPE_STRUCT: { 1163 for (unsigned int i = 0; i < op0->type->length; i++) { 1164 ir_rvalue *e0, *e1, *result; 1165 const char *field_name = op0->type->fields.structure[i].name; 1166 1167 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL), 1168 field_name); 1169 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL), 1170 field_name); 1171 result = do_comparison(mem_ctx, operation, e0, e1); 1172 1173 if (cmp) { 1174 cmp = new(mem_ctx) ir_expression(join_op, cmp, result); 1175 } else { 1176 cmp = result; 1177 } 1178 } 1179 break; 1180 } 1181 1182 case GLSL_TYPE_ERROR: 1183 case GLSL_TYPE_VOID: 1184 case GLSL_TYPE_SAMPLER: 1185 case GLSL_TYPE_IMAGE: 1186 case GLSL_TYPE_INTERFACE: 1187 case GLSL_TYPE_ATOMIC_UINT: 1188 case GLSL_TYPE_SUBROUTINE: 1189 case GLSL_TYPE_FUNCTION: 1190 /* I assume a comparison of a struct containing a sampler just 1191 * ignores the sampler present in the type. 1192 */ 1193 break; 1194 } 1195 1196 if (cmp == NULL) 1197 cmp = new(mem_ctx) ir_constant(true); 1198 1199 return cmp; 1200} 1201 1202/* For logical operations, we want to ensure that the operands are 1203 * scalar booleans. If it isn't, emit an error and return a constant 1204 * boolean to avoid triggering cascading error messages. 1205 */ 1206static ir_rvalue * 1207get_scalar_boolean_operand(exec_list *instructions, 1208 struct _mesa_glsl_parse_state *state, 1209 ast_expression *parent_expr, 1210 int operand, 1211 const char *operand_name, 1212 bool *error_emitted) 1213{ 1214 ast_expression *expr = parent_expr->subexpressions[operand]; 1215 void *ctx = state; 1216 ir_rvalue *val = expr->hir(instructions, state); 1217 1218 if (val->type->is_boolean() && val->type->is_scalar()) 1219 return val; 1220 1221 if (!*error_emitted) { 1222 YYLTYPE loc = expr->get_location(); 1223 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean", 1224 operand_name, 1225 parent_expr->operator_string(parent_expr->oper)); 1226 *error_emitted = true; 1227 } 1228 1229 return new(ctx) ir_constant(true); 1230} 1231 1232/** 1233 * If name refers to a builtin array whose maximum allowed size is less than 1234 * size, report an error and return true. Otherwise return false. 1235 */ 1236void 1237check_builtin_array_max_size(const char *name, unsigned size, 1238 YYLTYPE loc, struct _mesa_glsl_parse_state *state) 1239{ 1240 if ((strcmp("gl_TexCoord", name) == 0) 1241 && (size > state->Const.MaxTextureCoords)) { 1242 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec: 1243 * 1244 * "The size [of gl_TexCoord] can be at most 1245 * gl_MaxTextureCoords." 1246 */ 1247 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot " 1248 "be larger than gl_MaxTextureCoords (%u)", 1249 state->Const.MaxTextureCoords); 1250 } else if (strcmp("gl_ClipDistance", name) == 0) { 1251 state->clip_dist_size = size; 1252 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) { 1253 /* From section 7.1 (Vertex Shader Special Variables) of the 1254 * GLSL 1.30 spec: 1255 * 1256 * "The gl_ClipDistance array is predeclared as unsized and 1257 * must be sized by the shader either redeclaring it with a 1258 * size or indexing it only with integral constant 1259 * expressions. ... The size can be at most 1260 * gl_MaxClipDistances." 1261 */ 1262 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot " 1263 "be larger than gl_MaxClipDistances (%u)", 1264 state->Const.MaxClipPlanes); 1265 } 1266 } else if (strcmp("gl_CullDistance", name) == 0) { 1267 state->cull_dist_size = size; 1268 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) { 1269 /* From the ARB_cull_distance spec: 1270 * 1271 * "The gl_CullDistance array is predeclared as unsized and 1272 * must be sized by the shader either redeclaring it with 1273 * a size or indexing it only with integral constant 1274 * expressions. The size determines the number and set of 1275 * enabled cull distances and can be at most 1276 * gl_MaxCullDistances." 1277 */ 1278 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot " 1279 "be larger than gl_MaxCullDistances (%u)", 1280 state->Const.MaxClipPlanes); 1281 } 1282 } 1283} 1284 1285/** 1286 * Create the constant 1, of a which is appropriate for incrementing and 1287 * decrementing values of the given GLSL type. For example, if type is vec4, 1288 * this creates a constant value of 1.0 having type float. 1289 * 1290 * If the given type is invalid for increment and decrement operators, return 1291 * a floating point 1--the error will be detected later. 1292 */ 1293static ir_rvalue * 1294constant_one_for_inc_dec(void *ctx, const glsl_type *type) 1295{ 1296 switch (type->base_type) { 1297 case GLSL_TYPE_UINT: 1298 return new(ctx) ir_constant((unsigned) 1); 1299 case GLSL_TYPE_INT: 1300 return new(ctx) ir_constant(1); 1301 case GLSL_TYPE_UINT64: 1302 return new(ctx) ir_constant((uint64_t) 1); 1303 case GLSL_TYPE_INT64: 1304 return new(ctx) ir_constant((int64_t) 1); 1305 default: 1306 case GLSL_TYPE_FLOAT: 1307 return new(ctx) ir_constant(1.0f); 1308 } 1309} 1310 1311ir_rvalue * 1312ast_expression::hir(exec_list *instructions, 1313 struct _mesa_glsl_parse_state *state) 1314{ 1315 return do_hir(instructions, state, true); 1316} 1317 1318void 1319ast_expression::hir_no_rvalue(exec_list *instructions, 1320 struct _mesa_glsl_parse_state *state) 1321{ 1322 do_hir(instructions, state, false); 1323} 1324 1325void 1326ast_expression::set_is_lhs(bool new_value) 1327{ 1328 /* is_lhs is tracked only to print "variable used uninitialized" warnings, 1329 * if we lack an identifier we can just skip it. 1330 */ 1331 if (this->primary_expression.identifier == NULL) 1332 return; 1333 1334 this->is_lhs = new_value; 1335 1336 /* We need to go through the subexpressions tree to cover cases like 1337 * ast_field_selection 1338 */ 1339 if (this->subexpressions[0] != NULL) 1340 this->subexpressions[0]->set_is_lhs(new_value); 1341} 1342 1343ir_rvalue * 1344ast_expression::do_hir(exec_list *instructions, 1345 struct _mesa_glsl_parse_state *state, 1346 bool needs_rvalue) 1347{ 1348 void *ctx = state; 1349 static const int operations[AST_NUM_OPERATORS] = { 1350 -1, /* ast_assign doesn't convert to ir_expression. */ 1351 -1, /* ast_plus doesn't convert to ir_expression. */ 1352 ir_unop_neg, 1353 ir_binop_add, 1354 ir_binop_sub, 1355 ir_binop_mul, 1356 ir_binop_div, 1357 ir_binop_mod, 1358 ir_binop_lshift, 1359 ir_binop_rshift, 1360 ir_binop_less, 1361 ir_binop_less, /* This is correct. See the ast_greater case below. */ 1362 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */ 1363 ir_binop_gequal, 1364 ir_binop_all_equal, 1365 ir_binop_any_nequal, 1366 ir_binop_bit_and, 1367 ir_binop_bit_xor, 1368 ir_binop_bit_or, 1369 ir_unop_bit_not, 1370 ir_binop_logic_and, 1371 ir_binop_logic_xor, 1372 ir_binop_logic_or, 1373 ir_unop_logic_not, 1374 1375 /* Note: The following block of expression types actually convert 1376 * to multiple IR instructions. 1377 */ 1378 ir_binop_mul, /* ast_mul_assign */ 1379 ir_binop_div, /* ast_div_assign */ 1380 ir_binop_mod, /* ast_mod_assign */ 1381 ir_binop_add, /* ast_add_assign */ 1382 ir_binop_sub, /* ast_sub_assign */ 1383 ir_binop_lshift, /* ast_ls_assign */ 1384 ir_binop_rshift, /* ast_rs_assign */ 1385 ir_binop_bit_and, /* ast_and_assign */ 1386 ir_binop_bit_xor, /* ast_xor_assign */ 1387 ir_binop_bit_or, /* ast_or_assign */ 1388 1389 -1, /* ast_conditional doesn't convert to ir_expression. */ 1390 ir_binop_add, /* ast_pre_inc. */ 1391 ir_binop_sub, /* ast_pre_dec. */ 1392 ir_binop_add, /* ast_post_inc. */ 1393 ir_binop_sub, /* ast_post_dec. */ 1394 -1, /* ast_field_selection doesn't conv to ir_expression. */ 1395 -1, /* ast_array_index doesn't convert to ir_expression. */ 1396 -1, /* ast_function_call doesn't conv to ir_expression. */ 1397 -1, /* ast_identifier doesn't convert to ir_expression. */ 1398 -1, /* ast_int_constant doesn't convert to ir_expression. */ 1399 -1, /* ast_uint_constant doesn't conv to ir_expression. */ 1400 -1, /* ast_float_constant doesn't conv to ir_expression. */ 1401 -1, /* ast_bool_constant doesn't conv to ir_expression. */ 1402 -1, /* ast_sequence doesn't convert to ir_expression. */ 1403 -1, /* ast_aggregate shouldn't ever even get here. */ 1404 }; 1405 ir_rvalue *result = NULL; 1406 ir_rvalue *op[3]; 1407 const struct glsl_type *type, *orig_type; 1408 bool error_emitted = false; 1409 YYLTYPE loc; 1410 1411 loc = this->get_location(); 1412 1413 switch (this->oper) { 1414 case ast_aggregate: 1415 unreachable("ast_aggregate: Should never get here."); 1416 1417 case ast_assign: { 1418 this->subexpressions[0]->set_is_lhs(true); 1419 op[0] = this->subexpressions[0]->hir(instructions, state); 1420 op[1] = this->subexpressions[1]->hir(instructions, state); 1421 1422 error_emitted = 1423 do_assignment(instructions, state, 1424 this->subexpressions[0]->non_lvalue_description, 1425 op[0], op[1], &result, needs_rvalue, false, 1426 this->subexpressions[0]->get_location()); 1427 break; 1428 } 1429 1430 case ast_plus: 1431 op[0] = this->subexpressions[0]->hir(instructions, state); 1432 1433 type = unary_arithmetic_result_type(op[0]->type, state, & loc); 1434 1435 error_emitted = type->is_error(); 1436 1437 result = op[0]; 1438 break; 1439 1440 case ast_neg: 1441 op[0] = this->subexpressions[0]->hir(instructions, state); 1442 1443 type = unary_arithmetic_result_type(op[0]->type, state, & loc); 1444 1445 error_emitted = type->is_error(); 1446 1447 result = new(ctx) ir_expression(operations[this->oper], type, 1448 op[0], NULL); 1449 break; 1450 1451 case ast_add: 1452 case ast_sub: 1453 case ast_mul: 1454 case ast_div: 1455 op[0] = this->subexpressions[0]->hir(instructions, state); 1456 op[1] = this->subexpressions[1]->hir(instructions, state); 1457 1458 type = arithmetic_result_type(op[0], op[1], 1459 (this->oper == ast_mul), 1460 state, & loc); 1461 error_emitted = type->is_error(); 1462 1463 result = new(ctx) ir_expression(operations[this->oper], type, 1464 op[0], op[1]); 1465 break; 1466 1467 case ast_mod: 1468 op[0] = this->subexpressions[0]->hir(instructions, state); 1469 op[1] = this->subexpressions[1]->hir(instructions, state); 1470 1471 type = modulus_result_type(op[0], op[1], state, &loc); 1472 1473 assert(operations[this->oper] == ir_binop_mod); 1474 1475 result = new(ctx) ir_expression(operations[this->oper], type, 1476 op[0], op[1]); 1477 error_emitted = type->is_error(); 1478 break; 1479 1480 case ast_lshift: 1481 case ast_rshift: 1482 if (!state->check_bitwise_operations_allowed(&loc)) { 1483 error_emitted = true; 1484 } 1485 1486 op[0] = this->subexpressions[0]->hir(instructions, state); 1487 op[1] = this->subexpressions[1]->hir(instructions, state); 1488 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, 1489 &loc); 1490 result = new(ctx) ir_expression(operations[this->oper], type, 1491 op[0], op[1]); 1492 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1493 break; 1494 1495 case ast_less: 1496 case ast_greater: 1497 case ast_lequal: 1498 case ast_gequal: 1499 op[0] = this->subexpressions[0]->hir(instructions, state); 1500 op[1] = this->subexpressions[1]->hir(instructions, state); 1501 1502 type = relational_result_type(op[0], op[1], state, & loc); 1503 1504 /* The relational operators must either generate an error or result 1505 * in a scalar boolean. See page 57 of the GLSL 1.50 spec. 1506 */ 1507 assert(type->is_error() 1508 || (type->is_boolean() && type->is_scalar())); 1509 1510 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap 1511 * the arguments and use < or >=. 1512 */ 1513 if (this->oper == ast_greater || this->oper == ast_lequal) { 1514 ir_rvalue *const tmp = op[0]; 1515 op[0] = op[1]; 1516 op[1] = tmp; 1517 } 1518 1519 result = new(ctx) ir_expression(operations[this->oper], type, 1520 op[0], op[1]); 1521 error_emitted = type->is_error(); 1522 break; 1523 1524 case ast_nequal: 1525 case ast_equal: 1526 op[0] = this->subexpressions[0]->hir(instructions, state); 1527 op[1] = this->subexpressions[1]->hir(instructions, state); 1528 1529 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec: 1530 * 1531 * "The equality operators equal (==), and not equal (!=) 1532 * operate on all types. They result in a scalar Boolean. If 1533 * the operand types do not match, then there must be a 1534 * conversion from Section 4.1.10 "Implicit Conversions" 1535 * applied to one operand that can make them match, in which 1536 * case this conversion is done." 1537 */ 1538 1539 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) { 1540 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: " 1541 "no operation `%1$s' exists that takes a left-hand " 1542 "operand of type 'void' or a right operand of type " 1543 "'void'", (this->oper == ast_equal) ? "==" : "!="); 1544 error_emitted = true; 1545 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state) 1546 && !apply_implicit_conversion(op[1]->type, op[0], state)) 1547 || (op[0]->type != op[1]->type)) { 1548 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same " 1549 "type", (this->oper == ast_equal) ? "==" : "!="); 1550 error_emitted = true; 1551 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) && 1552 !state->check_version(120, 300, &loc, 1553 "array comparisons forbidden")) { 1554 error_emitted = true; 1555 } else if ((op[0]->type->contains_subroutine() || 1556 op[1]->type->contains_subroutine())) { 1557 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden"); 1558 error_emitted = true; 1559 } else if ((op[0]->type->contains_opaque() || 1560 op[1]->type->contains_opaque())) { 1561 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden"); 1562 error_emitted = true; 1563 } 1564 1565 if (error_emitted) { 1566 result = new(ctx) ir_constant(false); 1567 } else { 1568 result = do_comparison(ctx, operations[this->oper], op[0], op[1]); 1569 assert(result->type == glsl_type::bool_type); 1570 } 1571 break; 1572 1573 case ast_bit_and: 1574 case ast_bit_xor: 1575 case ast_bit_or: 1576 op[0] = this->subexpressions[0]->hir(instructions, state); 1577 op[1] = this->subexpressions[1]->hir(instructions, state); 1578 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); 1579 result = new(ctx) ir_expression(operations[this->oper], type, 1580 op[0], op[1]); 1581 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1582 break; 1583 1584 case ast_bit_not: 1585 op[0] = this->subexpressions[0]->hir(instructions, state); 1586 1587 if (!state->check_bitwise_operations_allowed(&loc)) { 1588 error_emitted = true; 1589 } 1590 1591 if (!op[0]->type->is_integer_32_64()) { 1592 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer"); 1593 error_emitted = true; 1594 } 1595 1596 type = error_emitted ? glsl_type::error_type : op[0]->type; 1597 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL); 1598 break; 1599 1600 case ast_logic_and: { 1601 exec_list rhs_instructions; 1602 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1603 "LHS", &error_emitted); 1604 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, 1605 "RHS", &error_emitted); 1606 1607 if (rhs_instructions.is_empty()) { 1608 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]); 1609 } else { 1610 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, 1611 "and_tmp", 1612 ir_var_temporary); 1613 instructions->push_tail(tmp); 1614 1615 ir_if *const stmt = new(ctx) ir_if(op[0]); 1616 instructions->push_tail(stmt); 1617 1618 stmt->then_instructions.append_list(&rhs_instructions); 1619 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); 1620 ir_assignment *const then_assign = 1621 new(ctx) ir_assignment(then_deref, op[1]); 1622 stmt->then_instructions.push_tail(then_assign); 1623 1624 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); 1625 ir_assignment *const else_assign = 1626 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false)); 1627 stmt->else_instructions.push_tail(else_assign); 1628 1629 result = new(ctx) ir_dereference_variable(tmp); 1630 } 1631 break; 1632 } 1633 1634 case ast_logic_or: { 1635 exec_list rhs_instructions; 1636 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1637 "LHS", &error_emitted); 1638 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1, 1639 "RHS", &error_emitted); 1640 1641 if (rhs_instructions.is_empty()) { 1642 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]); 1643 } else { 1644 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, 1645 "or_tmp", 1646 ir_var_temporary); 1647 instructions->push_tail(tmp); 1648 1649 ir_if *const stmt = new(ctx) ir_if(op[0]); 1650 instructions->push_tail(stmt); 1651 1652 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); 1653 ir_assignment *const then_assign = 1654 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true)); 1655 stmt->then_instructions.push_tail(then_assign); 1656 1657 stmt->else_instructions.append_list(&rhs_instructions); 1658 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); 1659 ir_assignment *const else_assign = 1660 new(ctx) ir_assignment(else_deref, op[1]); 1661 stmt->else_instructions.push_tail(else_assign); 1662 1663 result = new(ctx) ir_dereference_variable(tmp); 1664 } 1665 break; 1666 } 1667 1668 case ast_logic_xor: 1669 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: 1670 * 1671 * "The logical binary operators and (&&), or ( | | ), and 1672 * exclusive or (^^). They operate only on two Boolean 1673 * expressions and result in a Boolean expression." 1674 */ 1675 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS", 1676 &error_emitted); 1677 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS", 1678 &error_emitted); 1679 1680 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, 1681 op[0], op[1]); 1682 break; 1683 1684 case ast_logic_not: 1685 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1686 "operand", &error_emitted); 1687 1688 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, 1689 op[0], NULL); 1690 break; 1691 1692 case ast_mul_assign: 1693 case ast_div_assign: 1694 case ast_add_assign: 1695 case ast_sub_assign: { 1696 this->subexpressions[0]->set_is_lhs(true); 1697 op[0] = this->subexpressions[0]->hir(instructions, state); 1698 op[1] = this->subexpressions[1]->hir(instructions, state); 1699 1700 orig_type = op[0]->type; 1701 1702 /* Break out if operand types were not parsed successfully. */ 1703 if ((op[0]->type == glsl_type::error_type || 1704 op[1]->type == glsl_type::error_type)) { 1705 error_emitted = true; 1706 result = ir_rvalue::error_value(ctx); 1707 break; 1708 } 1709 1710 type = arithmetic_result_type(op[0], op[1], 1711 (this->oper == ast_mul_assign), 1712 state, & loc); 1713 1714 if (type != orig_type) { 1715 _mesa_glsl_error(& loc, state, 1716 "could not implicitly convert " 1717 "%s to %s", type->name, orig_type->name); 1718 type = glsl_type::error_type; 1719 } 1720 1721 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1722 op[0], op[1]); 1723 1724 error_emitted = 1725 do_assignment(instructions, state, 1726 this->subexpressions[0]->non_lvalue_description, 1727 op[0]->clone(ctx, NULL), temp_rhs, 1728 &result, needs_rvalue, false, 1729 this->subexpressions[0]->get_location()); 1730 1731 /* GLSL 1.10 does not allow array assignment. However, we don't have to 1732 * explicitly test for this because none of the binary expression 1733 * operators allow array operands either. 1734 */ 1735 1736 break; 1737 } 1738 1739 case ast_mod_assign: { 1740 this->subexpressions[0]->set_is_lhs(true); 1741 op[0] = this->subexpressions[0]->hir(instructions, state); 1742 op[1] = this->subexpressions[1]->hir(instructions, state); 1743 1744 /* Break out if operand types were not parsed successfully. */ 1745 if ((op[0]->type == glsl_type::error_type || 1746 op[1]->type == glsl_type::error_type)) { 1747 error_emitted = true; 1748 result = ir_rvalue::error_value(ctx); 1749 break; 1750 } 1751 1752 orig_type = op[0]->type; 1753 type = modulus_result_type(op[0], op[1], state, &loc); 1754 1755 if (type != orig_type) { 1756 _mesa_glsl_error(& loc, state, 1757 "could not implicitly convert " 1758 "%s to %s", type->name, orig_type->name); 1759 type = glsl_type::error_type; 1760 } 1761 1762 assert(operations[this->oper] == ir_binop_mod); 1763 1764 ir_rvalue *temp_rhs; 1765 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1766 op[0], op[1]); 1767 1768 error_emitted = 1769 do_assignment(instructions, state, 1770 this->subexpressions[0]->non_lvalue_description, 1771 op[0]->clone(ctx, NULL), temp_rhs, 1772 &result, needs_rvalue, false, 1773 this->subexpressions[0]->get_location()); 1774 break; 1775 } 1776 1777 case ast_ls_assign: 1778 case ast_rs_assign: { 1779 this->subexpressions[0]->set_is_lhs(true); 1780 op[0] = this->subexpressions[0]->hir(instructions, state); 1781 op[1] = this->subexpressions[1]->hir(instructions, state); 1782 1783 /* Break out if operand types were not parsed successfully. */ 1784 if ((op[0]->type == glsl_type::error_type || 1785 op[1]->type == glsl_type::error_type)) { 1786 error_emitted = true; 1787 result = ir_rvalue::error_value(ctx); 1788 break; 1789 } 1790 1791 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, 1792 &loc); 1793 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], 1794 type, op[0], op[1]); 1795 error_emitted = 1796 do_assignment(instructions, state, 1797 this->subexpressions[0]->non_lvalue_description, 1798 op[0]->clone(ctx, NULL), temp_rhs, 1799 &result, needs_rvalue, false, 1800 this->subexpressions[0]->get_location()); 1801 break; 1802 } 1803 1804 case ast_and_assign: 1805 case ast_xor_assign: 1806 case ast_or_assign: { 1807 this->subexpressions[0]->set_is_lhs(true); 1808 op[0] = this->subexpressions[0]->hir(instructions, state); 1809 op[1] = this->subexpressions[1]->hir(instructions, state); 1810 1811 /* Break out if operand types were not parsed successfully. */ 1812 if ((op[0]->type == glsl_type::error_type || 1813 op[1]->type == glsl_type::error_type)) { 1814 error_emitted = true; 1815 result = ir_rvalue::error_value(ctx); 1816 break; 1817 } 1818 1819 orig_type = op[0]->type; 1820 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc); 1821 1822 if (type != orig_type) { 1823 _mesa_glsl_error(& loc, state, 1824 "could not implicitly convert " 1825 "%s to %s", type->name, orig_type->name); 1826 type = glsl_type::error_type; 1827 } 1828 1829 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], 1830 type, op[0], op[1]); 1831 error_emitted = 1832 do_assignment(instructions, state, 1833 this->subexpressions[0]->non_lvalue_description, 1834 op[0]->clone(ctx, NULL), temp_rhs, 1835 &result, needs_rvalue, false, 1836 this->subexpressions[0]->get_location()); 1837 break; 1838 } 1839 1840 case ast_conditional: { 1841 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: 1842 * 1843 * "The ternary selection operator (?:). It operates on three 1844 * expressions (exp1 ? exp2 : exp3). This operator evaluates the 1845 * first expression, which must result in a scalar Boolean." 1846 */ 1847 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, 1848 "condition", &error_emitted); 1849 1850 /* The :? operator is implemented by generating an anonymous temporary 1851 * followed by an if-statement. The last instruction in each branch of 1852 * the if-statement assigns a value to the anonymous temporary. This 1853 * temporary is the r-value of the expression. 1854 */ 1855 exec_list then_instructions; 1856 exec_list else_instructions; 1857 1858 op[1] = this->subexpressions[1]->hir(&then_instructions, state); 1859 op[2] = this->subexpressions[2]->hir(&else_instructions, state); 1860 1861 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: 1862 * 1863 * "The second and third expressions can be any type, as 1864 * long their types match, or there is a conversion in 1865 * Section 4.1.10 "Implicit Conversions" that can be applied 1866 * to one of the expressions to make their types match. This 1867 * resulting matching type is the type of the entire 1868 * expression." 1869 */ 1870 if ((!apply_implicit_conversion(op[1]->type, op[2], state) 1871 && !apply_implicit_conversion(op[2]->type, op[1], state)) 1872 || (op[1]->type != op[2]->type)) { 1873 YYLTYPE loc = this->subexpressions[1]->get_location(); 1874 1875 _mesa_glsl_error(& loc, state, "second and third operands of ?: " 1876 "operator must have matching types"); 1877 error_emitted = true; 1878 type = glsl_type::error_type; 1879 } else { 1880 type = op[1]->type; 1881 } 1882 1883 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: 1884 * 1885 * "The second and third expressions must be the same type, but can 1886 * be of any type other than an array." 1887 */ 1888 if (type->is_array() && 1889 !state->check_version(120, 300, &loc, 1890 "second and third operands of ?: operator " 1891 "cannot be arrays")) { 1892 error_emitted = true; 1893 } 1894 1895 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types): 1896 * 1897 * "Except for array indexing, structure member selection, and 1898 * parentheses, opaque variables are not allowed to be operands in 1899 * expressions; such use results in a compile-time error." 1900 */ 1901 if (type->contains_opaque()) { 1902 if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) { 1903 _mesa_glsl_error(&loc, state, "variables of type %s cannot be " 1904 "operands of the ?: operator", type->name); 1905 error_emitted = true; 1906 } 1907 } 1908 1909 ir_constant *cond_val = op[0]->constant_expression_value(ctx); 1910 1911 if (then_instructions.is_empty() 1912 && else_instructions.is_empty() 1913 && cond_val != NULL) { 1914 result = cond_val->value.b[0] ? op[1] : op[2]; 1915 } else { 1916 /* The copy to conditional_tmp reads the whole array. */ 1917 if (type->is_array()) { 1918 mark_whole_array_access(op[1]); 1919 mark_whole_array_access(op[2]); 1920 } 1921 1922 ir_variable *const tmp = 1923 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary); 1924 instructions->push_tail(tmp); 1925 1926 ir_if *const stmt = new(ctx) ir_if(op[0]); 1927 instructions->push_tail(stmt); 1928 1929 then_instructions.move_nodes_to(& stmt->then_instructions); 1930 ir_dereference *const then_deref = 1931 new(ctx) ir_dereference_variable(tmp); 1932 ir_assignment *const then_assign = 1933 new(ctx) ir_assignment(then_deref, op[1]); 1934 stmt->then_instructions.push_tail(then_assign); 1935 1936 else_instructions.move_nodes_to(& stmt->else_instructions); 1937 ir_dereference *const else_deref = 1938 new(ctx) ir_dereference_variable(tmp); 1939 ir_assignment *const else_assign = 1940 new(ctx) ir_assignment(else_deref, op[2]); 1941 stmt->else_instructions.push_tail(else_assign); 1942 1943 result = new(ctx) ir_dereference_variable(tmp); 1944 } 1945 break; 1946 } 1947 1948 case ast_pre_inc: 1949 case ast_pre_dec: { 1950 this->non_lvalue_description = (this->oper == ast_pre_inc) 1951 ? "pre-increment operation" : "pre-decrement operation"; 1952 1953 op[0] = this->subexpressions[0]->hir(instructions, state); 1954 op[1] = constant_one_for_inc_dec(ctx, op[0]->type); 1955 1956 type = arithmetic_result_type(op[0], op[1], false, state, & loc); 1957 1958 ir_rvalue *temp_rhs; 1959 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1960 op[0], op[1]); 1961 1962 error_emitted = 1963 do_assignment(instructions, state, 1964 this->subexpressions[0]->non_lvalue_description, 1965 op[0]->clone(ctx, NULL), temp_rhs, 1966 &result, needs_rvalue, false, 1967 this->subexpressions[0]->get_location()); 1968 break; 1969 } 1970 1971 case ast_post_inc: 1972 case ast_post_dec: { 1973 this->non_lvalue_description = (this->oper == ast_post_inc) 1974 ? "post-increment operation" : "post-decrement operation"; 1975 op[0] = this->subexpressions[0]->hir(instructions, state); 1976 op[1] = constant_one_for_inc_dec(ctx, op[0]->type); 1977 1978 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1979 1980 if (error_emitted) { 1981 result = ir_rvalue::error_value(ctx); 1982 break; 1983 } 1984 1985 type = arithmetic_result_type(op[0], op[1], false, state, & loc); 1986 1987 ir_rvalue *temp_rhs; 1988 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1989 op[0], op[1]); 1990 1991 /* Get a temporary of a copy of the lvalue before it's modified. 1992 * This may get thrown away later. 1993 */ 1994 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL)); 1995 1996 ir_rvalue *junk_rvalue; 1997 error_emitted = 1998 do_assignment(instructions, state, 1999 this->subexpressions[0]->non_lvalue_description, 2000 op[0]->clone(ctx, NULL), temp_rhs, 2001 &junk_rvalue, false, false, 2002 this->subexpressions[0]->get_location()); 2003 2004 break; 2005 } 2006 2007 case ast_field_selection: 2008 result = _mesa_ast_field_selection_to_hir(this, instructions, state); 2009 break; 2010 2011 case ast_array_index: { 2012 YYLTYPE index_loc = subexpressions[1]->get_location(); 2013 2014 /* Getting if an array is being used uninitialized is beyond what we get 2015 * from ir_value.data.assigned. Setting is_lhs as true would force to 2016 * not raise a uninitialized warning when using an array 2017 */ 2018 subexpressions[0]->set_is_lhs(true); 2019 op[0] = subexpressions[0]->hir(instructions, state); 2020 op[1] = subexpressions[1]->hir(instructions, state); 2021 2022 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1], 2023 loc, index_loc); 2024 2025 if (result->type->is_error()) 2026 error_emitted = true; 2027 2028 break; 2029 } 2030 2031 case ast_unsized_array_dim: 2032 unreachable("ast_unsized_array_dim: Should never get here."); 2033 2034 case ast_function_call: 2035 /* Should *NEVER* get here. ast_function_call should always be handled 2036 * by ast_function_expression::hir. 2037 */ 2038 unreachable("ast_function_call: handled elsewhere "); 2039 2040 case ast_identifier: { 2041 /* ast_identifier can appear several places in a full abstract syntax 2042 * tree. This particular use must be at location specified in the grammar 2043 * as 'variable_identifier'. 2044 */ 2045 ir_variable *var = 2046 state->symbols->get_variable(this->primary_expression.identifier); 2047 2048 if (var == NULL) { 2049 /* the identifier might be a subroutine name */ 2050 char *sub_name; 2051 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier); 2052 var = state->symbols->get_variable(sub_name); 2053 ralloc_free(sub_name); 2054 } 2055 2056 if (var != NULL) { 2057 var->data.used = true; 2058 result = new(ctx) ir_dereference_variable(var); 2059 2060 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out) 2061 && !this->is_lhs 2062 && result->variable_referenced()->data.assigned != true 2063 && !is_gl_identifier(var->name)) { 2064 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", 2065 this->primary_expression.identifier); 2066 } 2067 2068 /* From the EXT_shader_framebuffer_fetch spec: 2069 * 2070 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been 2071 * enabled in addition, it's an error to use gl_LastFragData if it 2072 * hasn't been explicitly redeclared with layout(noncoherent)." 2073 */ 2074 if (var->data.fb_fetch_output && var->data.memory_coherent && 2075 !state->EXT_shader_framebuffer_fetch_enable) { 2076 _mesa_glsl_error(&loc, state, 2077 "invalid use of framebuffer fetch output not " 2078 "qualified with layout(noncoherent)"); 2079 } 2080 2081 } else { 2082 _mesa_glsl_error(& loc, state, "`%s' undeclared", 2083 this->primary_expression.identifier); 2084 2085 result = ir_rvalue::error_value(ctx); 2086 error_emitted = true; 2087 } 2088 break; 2089 } 2090 2091 case ast_int_constant: 2092 result = new(ctx) ir_constant(this->primary_expression.int_constant); 2093 break; 2094 2095 case ast_uint_constant: 2096 result = new(ctx) ir_constant(this->primary_expression.uint_constant); 2097 break; 2098 2099 case ast_float_constant: 2100 result = new(ctx) ir_constant(this->primary_expression.float_constant); 2101 break; 2102 2103 case ast_bool_constant: 2104 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant)); 2105 break; 2106 2107 case ast_double_constant: 2108 result = new(ctx) ir_constant(this->primary_expression.double_constant); 2109 break; 2110 2111 case ast_uint64_constant: 2112 result = new(ctx) ir_constant(this->primary_expression.uint64_constant); 2113 break; 2114 2115 case ast_int64_constant: 2116 result = new(ctx) ir_constant(this->primary_expression.int64_constant); 2117 break; 2118 2119 case ast_sequence: { 2120 /* It should not be possible to generate a sequence in the AST without 2121 * any expressions in it. 2122 */ 2123 assert(!this->expressions.is_empty()); 2124 2125 /* The r-value of a sequence is the last expression in the sequence. If 2126 * the other expressions in the sequence do not have side-effects (and 2127 * therefore add instructions to the instruction list), they get dropped 2128 * on the floor. 2129 */ 2130 exec_node *previous_tail = NULL; 2131 YYLTYPE previous_operand_loc = loc; 2132 2133 foreach_list_typed (ast_node, ast, link, &this->expressions) { 2134 /* If one of the operands of comma operator does not generate any 2135 * code, we want to emit a warning. At each pass through the loop 2136 * previous_tail will point to the last instruction in the stream 2137 * *before* processing the previous operand. Naturally, 2138 * instructions->get_tail_raw() will point to the last instruction in 2139 * the stream *after* processing the previous operand. If the two 2140 * pointers match, then the previous operand had no effect. 2141 * 2142 * The warning behavior here differs slightly from GCC. GCC will 2143 * only emit a warning if none of the left-hand operands have an 2144 * effect. However, it will emit a warning for each. I believe that 2145 * there are some cases in C (especially with GCC extensions) where 2146 * it is useful to have an intermediate step in a sequence have no 2147 * effect, but I don't think these cases exist in GLSL. Either way, 2148 * it would be a giant hassle to replicate that behavior. 2149 */ 2150 if (previous_tail == instructions->get_tail_raw()) { 2151 _mesa_glsl_warning(&previous_operand_loc, state, 2152 "left-hand operand of comma expression has " 2153 "no effect"); 2154 } 2155 2156 /* The tail is directly accessed instead of using the get_tail() 2157 * method for performance reasons. get_tail() has extra code to 2158 * return NULL when the list is empty. We don't care about that 2159 * here, so using get_tail_raw() is fine. 2160 */ 2161 previous_tail = instructions->get_tail_raw(); 2162 previous_operand_loc = ast->get_location(); 2163 2164 result = ast->hir(instructions, state); 2165 } 2166 2167 /* Any errors should have already been emitted in the loop above. 2168 */ 2169 error_emitted = true; 2170 break; 2171 } 2172 } 2173 type = NULL; /* use result->type, not type. */ 2174 assert(error_emitted || (result != NULL || !needs_rvalue)); 2175 2176 if (result && result->type->is_error() && !error_emitted) 2177 _mesa_glsl_error(& loc, state, "type mismatch"); 2178 2179 return result; 2180} 2181 2182bool 2183ast_expression::has_sequence_subexpression() const 2184{ 2185 switch (this->oper) { 2186 case ast_plus: 2187 case ast_neg: 2188 case ast_bit_not: 2189 case ast_logic_not: 2190 case ast_pre_inc: 2191 case ast_pre_dec: 2192 case ast_post_inc: 2193 case ast_post_dec: 2194 return this->subexpressions[0]->has_sequence_subexpression(); 2195 2196 case ast_assign: 2197 case ast_add: 2198 case ast_sub: 2199 case ast_mul: 2200 case ast_div: 2201 case ast_mod: 2202 case ast_lshift: 2203 case ast_rshift: 2204 case ast_less: 2205 case ast_greater: 2206 case ast_lequal: 2207 case ast_gequal: 2208 case ast_nequal: 2209 case ast_equal: 2210 case ast_bit_and: 2211 case ast_bit_xor: 2212 case ast_bit_or: 2213 case ast_logic_and: 2214 case ast_logic_or: 2215 case ast_logic_xor: 2216 case ast_array_index: 2217 case ast_mul_assign: 2218 case ast_div_assign: 2219 case ast_add_assign: 2220 case ast_sub_assign: 2221 case ast_mod_assign: 2222 case ast_ls_assign: 2223 case ast_rs_assign: 2224 case ast_and_assign: 2225 case ast_xor_assign: 2226 case ast_or_assign: 2227 return this->subexpressions[0]->has_sequence_subexpression() || 2228 this->subexpressions[1]->has_sequence_subexpression(); 2229 2230 case ast_conditional: 2231 return this->subexpressions[0]->has_sequence_subexpression() || 2232 this->subexpressions[1]->has_sequence_subexpression() || 2233 this->subexpressions[2]->has_sequence_subexpression(); 2234 2235 case ast_sequence: 2236 return true; 2237 2238 case ast_field_selection: 2239 case ast_identifier: 2240 case ast_int_constant: 2241 case ast_uint_constant: 2242 case ast_float_constant: 2243 case ast_bool_constant: 2244 case ast_double_constant: 2245 case ast_int64_constant: 2246 case ast_uint64_constant: 2247 return false; 2248 2249 case ast_aggregate: 2250 return false; 2251 2252 case ast_function_call: 2253 unreachable("should be handled by ast_function_expression::hir"); 2254 2255 case ast_unsized_array_dim: 2256 unreachable("ast_unsized_array_dim: Should never get here."); 2257 } 2258 2259 return false; 2260} 2261 2262ir_rvalue * 2263ast_expression_statement::hir(exec_list *instructions, 2264 struct _mesa_glsl_parse_state *state) 2265{ 2266 /* It is possible to have expression statements that don't have an 2267 * expression. This is the solitary semicolon: 2268 * 2269 * for (i = 0; i < 5; i++) 2270 * ; 2271 * 2272 * In this case the expression will be NULL. Test for NULL and don't do 2273 * anything in that case. 2274 */ 2275 if (expression != NULL) 2276 expression->hir_no_rvalue(instructions, state); 2277 2278 /* Statements do not have r-values. 2279 */ 2280 return NULL; 2281} 2282 2283 2284ir_rvalue * 2285ast_compound_statement::hir(exec_list *instructions, 2286 struct _mesa_glsl_parse_state *state) 2287{ 2288 if (new_scope) 2289 state->symbols->push_scope(); 2290 2291 foreach_list_typed (ast_node, ast, link, &this->statements) 2292 ast->hir(instructions, state); 2293 2294 if (new_scope) 2295 state->symbols->pop_scope(); 2296 2297 /* Compound statements do not have r-values. 2298 */ 2299 return NULL; 2300} 2301 2302/** 2303 * Evaluate the given exec_node (which should be an ast_node representing 2304 * a single array dimension) and return its integer value. 2305 */ 2306static unsigned 2307process_array_size(exec_node *node, 2308 struct _mesa_glsl_parse_state *state) 2309{ 2310 void *mem_ctx = state; 2311 2312 exec_list dummy_instructions; 2313 2314 ast_node *array_size = exec_node_data(ast_node, node, link); 2315 2316 /** 2317 * Dimensions other than the outermost dimension can by unsized if they 2318 * are immediately sized by a constructor or initializer. 2319 */ 2320 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim) 2321 return 0; 2322 2323 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state); 2324 YYLTYPE loc = array_size->get_location(); 2325 2326 if (ir == NULL) { 2327 _mesa_glsl_error(& loc, state, 2328 "array size could not be resolved"); 2329 return 0; 2330 } 2331 2332 if (!ir->type->is_integer_32()) { 2333 _mesa_glsl_error(& loc, state, 2334 "array size must be integer type"); 2335 return 0; 2336 } 2337 2338 if (!ir->type->is_scalar()) { 2339 _mesa_glsl_error(& loc, state, 2340 "array size must be scalar type"); 2341 return 0; 2342 } 2343 2344 ir_constant *const size = ir->constant_expression_value(mem_ctx); 2345 if (size == NULL || 2346 (state->is_version(120, 300) && 2347 array_size->has_sequence_subexpression())) { 2348 _mesa_glsl_error(& loc, state, "array size must be a " 2349 "constant valued expression"); 2350 return 0; 2351 } 2352 2353 if (size->value.i[0] <= 0) { 2354 _mesa_glsl_error(& loc, state, "array size must be > 0"); 2355 return 0; 2356 } 2357 2358 assert(size->type == ir->type); 2359 2360 /* If the array size is const (and we've verified that 2361 * it is) then no instructions should have been emitted 2362 * when we converted it to HIR. If they were emitted, 2363 * then either the array size isn't const after all, or 2364 * we are emitting unnecessary instructions. 2365 */ 2366 assert(dummy_instructions.is_empty()); 2367 2368 return size->value.u[0]; 2369} 2370 2371static const glsl_type * 2372process_array_type(YYLTYPE *loc, const glsl_type *base, 2373 ast_array_specifier *array_specifier, 2374 struct _mesa_glsl_parse_state *state) 2375{ 2376 const glsl_type *array_type = base; 2377 2378 if (array_specifier != NULL) { 2379 if (base->is_array()) { 2380 2381 /* From page 19 (page 25) of the GLSL 1.20 spec: 2382 * 2383 * "Only one-dimensional arrays may be declared." 2384 */ 2385 if (!state->check_arrays_of_arrays_allowed(loc)) { 2386 return glsl_type::error_type; 2387 } 2388 } 2389 2390 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw(); 2391 !node->is_head_sentinel(); node = node->prev) { 2392 unsigned array_size = process_array_size(node, state); 2393 array_type = glsl_type::get_array_instance(array_type, array_size); 2394 } 2395 } 2396 2397 return array_type; 2398} 2399 2400static bool 2401precision_qualifier_allowed(const glsl_type *type) 2402{ 2403 /* Precision qualifiers apply to floating point, integer and opaque 2404 * types. 2405 * 2406 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says: 2407 * "Any floating point or any integer declaration can have the type 2408 * preceded by one of these precision qualifiers [...] Literal 2409 * constants do not have precision qualifiers. Neither do Boolean 2410 * variables. 2411 * 2412 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30 2413 * spec also says: 2414 * 2415 * "Precision qualifiers are added for code portability with OpenGL 2416 * ES, not for functionality. They have the same syntax as in OpenGL 2417 * ES." 2418 * 2419 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says: 2420 * 2421 * "uniform lowp sampler2D sampler; 2422 * highp vec2 coord; 2423 * ... 2424 * lowp vec4 col = texture2D (sampler, coord); 2425 * // texture2D returns lowp" 2426 * 2427 * From this, we infer that GLSL 1.30 (and later) should allow precision 2428 * qualifiers on sampler types just like float and integer types. 2429 */ 2430 const glsl_type *const t = type->without_array(); 2431 2432 return (t->is_float() || t->is_integer_32() || t->contains_opaque()) && 2433 !t->is_struct(); 2434} 2435 2436const glsl_type * 2437ast_type_specifier::glsl_type(const char **name, 2438 struct _mesa_glsl_parse_state *state) const 2439{ 2440 const struct glsl_type *type; 2441 2442 if (this->type != NULL) 2443 type = this->type; 2444 else if (structure) 2445 type = structure->type; 2446 else 2447 type = state->symbols->get_type(this->type_name); 2448 *name = this->type_name; 2449 2450 YYLTYPE loc = this->get_location(); 2451 type = process_array_type(&loc, type, this->array_specifier, state); 2452 2453 return type; 2454} 2455 2456/** 2457 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers: 2458 * 2459 * "The precision statement 2460 * 2461 * precision precision-qualifier type; 2462 * 2463 * can be used to establish a default precision qualifier. The type field can 2464 * be either int or float or any of the sampler types, (...) If type is float, 2465 * the directive applies to non-precision-qualified floating point type 2466 * (scalar, vector, and matrix) declarations. If type is int, the directive 2467 * applies to all non-precision-qualified integer type (scalar, vector, signed, 2468 * and unsigned) declarations." 2469 * 2470 * We use the symbol table to keep the values of the default precisions for 2471 * each 'type' in each scope and we use the 'type' string from the precision 2472 * statement as key in the symbol table. When we want to retrieve the default 2473 * precision associated with a given glsl_type we need to know the type string 2474 * associated with it. This is what this function returns. 2475 */ 2476static const char * 2477get_type_name_for_precision_qualifier(const glsl_type *type) 2478{ 2479 switch (type->base_type) { 2480 case GLSL_TYPE_FLOAT: 2481 return "float"; 2482 case GLSL_TYPE_UINT: 2483 case GLSL_TYPE_INT: 2484 return "int"; 2485 case GLSL_TYPE_ATOMIC_UINT: 2486 return "atomic_uint"; 2487 case GLSL_TYPE_IMAGE: 2488 FALLTHROUGH; 2489 case GLSL_TYPE_SAMPLER: { 2490 const unsigned type_idx = 2491 type->sampler_array + 2 * type->sampler_shadow; 2492 const unsigned offset = type->is_sampler() ? 0 : 4; 2493 assert(type_idx < 4); 2494 switch (type->sampled_type) { 2495 case GLSL_TYPE_FLOAT: 2496 switch (type->sampler_dimensionality) { 2497 case GLSL_SAMPLER_DIM_1D: { 2498 assert(type->is_sampler()); 2499 static const char *const names[4] = { 2500 "sampler1D", "sampler1DArray", 2501 "sampler1DShadow", "sampler1DArrayShadow" 2502 }; 2503 return names[type_idx]; 2504 } 2505 case GLSL_SAMPLER_DIM_2D: { 2506 static const char *const names[8] = { 2507 "sampler2D", "sampler2DArray", 2508 "sampler2DShadow", "sampler2DArrayShadow", 2509 "image2D", "image2DArray", NULL, NULL 2510 }; 2511 return names[offset + type_idx]; 2512 } 2513 case GLSL_SAMPLER_DIM_3D: { 2514 static const char *const names[8] = { 2515 "sampler3D", NULL, NULL, NULL, 2516 "image3D", NULL, NULL, NULL 2517 }; 2518 return names[offset + type_idx]; 2519 } 2520 case GLSL_SAMPLER_DIM_CUBE: { 2521 static const char *const names[8] = { 2522 "samplerCube", "samplerCubeArray", 2523 "samplerCubeShadow", "samplerCubeArrayShadow", 2524 "imageCube", NULL, NULL, NULL 2525 }; 2526 return names[offset + type_idx]; 2527 } 2528 case GLSL_SAMPLER_DIM_MS: { 2529 assert(type->is_sampler()); 2530 static const char *const names[4] = { 2531 "sampler2DMS", "sampler2DMSArray", NULL, NULL 2532 }; 2533 return names[type_idx]; 2534 } 2535 case GLSL_SAMPLER_DIM_RECT: { 2536 assert(type->is_sampler()); 2537 static const char *const names[4] = { 2538 "samplerRect", NULL, "samplerRectShadow", NULL 2539 }; 2540 return names[type_idx]; 2541 } 2542 case GLSL_SAMPLER_DIM_BUF: { 2543 static const char *const names[8] = { 2544 "samplerBuffer", NULL, NULL, NULL, 2545 "imageBuffer", NULL, NULL, NULL 2546 }; 2547 return names[offset + type_idx]; 2548 } 2549 case GLSL_SAMPLER_DIM_EXTERNAL: { 2550 assert(type->is_sampler()); 2551 static const char *const names[4] = { 2552 "samplerExternalOES", NULL, NULL, NULL 2553 }; 2554 return names[type_idx]; 2555 } 2556 default: 2557 unreachable("Unsupported sampler/image dimensionality"); 2558 } /* sampler/image float dimensionality */ 2559 break; 2560 case GLSL_TYPE_INT: 2561 switch (type->sampler_dimensionality) { 2562 case GLSL_SAMPLER_DIM_1D: { 2563 assert(type->is_sampler()); 2564 static const char *const names[4] = { 2565 "isampler1D", "isampler1DArray", NULL, NULL 2566 }; 2567 return names[type_idx]; 2568 } 2569 case GLSL_SAMPLER_DIM_2D: { 2570 static const char *const names[8] = { 2571 "isampler2D", "isampler2DArray", NULL, NULL, 2572 "iimage2D", "iimage2DArray", NULL, NULL 2573 }; 2574 return names[offset + type_idx]; 2575 } 2576 case GLSL_SAMPLER_DIM_3D: { 2577 static const char *const names[8] = { 2578 "isampler3D", NULL, NULL, NULL, 2579 "iimage3D", NULL, NULL, NULL 2580 }; 2581 return names[offset + type_idx]; 2582 } 2583 case GLSL_SAMPLER_DIM_CUBE: { 2584 static const char *const names[8] = { 2585 "isamplerCube", "isamplerCubeArray", NULL, NULL, 2586 "iimageCube", NULL, NULL, NULL 2587 }; 2588 return names[offset + type_idx]; 2589 } 2590 case GLSL_SAMPLER_DIM_MS: { 2591 assert(type->is_sampler()); 2592 static const char *const names[4] = { 2593 "isampler2DMS", "isampler2DMSArray", NULL, NULL 2594 }; 2595 return names[type_idx]; 2596 } 2597 case GLSL_SAMPLER_DIM_RECT: { 2598 assert(type->is_sampler()); 2599 static const char *const names[4] = { 2600 "isamplerRect", NULL, "isamplerRectShadow", NULL 2601 }; 2602 return names[type_idx]; 2603 } 2604 case GLSL_SAMPLER_DIM_BUF: { 2605 static const char *const names[8] = { 2606 "isamplerBuffer", NULL, NULL, NULL, 2607 "iimageBuffer", NULL, NULL, NULL 2608 }; 2609 return names[offset + type_idx]; 2610 } 2611 default: 2612 unreachable("Unsupported isampler/iimage dimensionality"); 2613 } /* sampler/image int dimensionality */ 2614 break; 2615 case GLSL_TYPE_UINT: 2616 switch (type->sampler_dimensionality) { 2617 case GLSL_SAMPLER_DIM_1D: { 2618 assert(type->is_sampler()); 2619 static const char *const names[4] = { 2620 "usampler1D", "usampler1DArray", NULL, NULL 2621 }; 2622 return names[type_idx]; 2623 } 2624 case GLSL_SAMPLER_DIM_2D: { 2625 static const char *const names[8] = { 2626 "usampler2D", "usampler2DArray", NULL, NULL, 2627 "uimage2D", "uimage2DArray", NULL, NULL 2628 }; 2629 return names[offset + type_idx]; 2630 } 2631 case GLSL_SAMPLER_DIM_3D: { 2632 static const char *const names[8] = { 2633 "usampler3D", NULL, NULL, NULL, 2634 "uimage3D", NULL, NULL, NULL 2635 }; 2636 return names[offset + type_idx]; 2637 } 2638 case GLSL_SAMPLER_DIM_CUBE: { 2639 static const char *const names[8] = { 2640 "usamplerCube", "usamplerCubeArray", NULL, NULL, 2641 "uimageCube", NULL, NULL, NULL 2642 }; 2643 return names[offset + type_idx]; 2644 } 2645 case GLSL_SAMPLER_DIM_MS: { 2646 assert(type->is_sampler()); 2647 static const char *const names[4] = { 2648 "usampler2DMS", "usampler2DMSArray", NULL, NULL 2649 }; 2650 return names[type_idx]; 2651 } 2652 case GLSL_SAMPLER_DIM_RECT: { 2653 assert(type->is_sampler()); 2654 static const char *const names[4] = { 2655 "usamplerRect", NULL, "usamplerRectShadow", NULL 2656 }; 2657 return names[type_idx]; 2658 } 2659 case GLSL_SAMPLER_DIM_BUF: { 2660 static const char *const names[8] = { 2661 "usamplerBuffer", NULL, NULL, NULL, 2662 "uimageBuffer", NULL, NULL, NULL 2663 }; 2664 return names[offset + type_idx]; 2665 } 2666 default: 2667 unreachable("Unsupported usampler/uimage dimensionality"); 2668 } /* sampler/image uint dimensionality */ 2669 break; 2670 default: 2671 unreachable("Unsupported sampler/image type"); 2672 } /* sampler/image type */ 2673 break; 2674 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */ 2675 break; 2676 default: 2677 unreachable("Unsupported type"); 2678 } /* base type */ 2679} 2680 2681static unsigned 2682select_gles_precision(unsigned qual_precision, 2683 const glsl_type *type, 2684 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 2685{ 2686 /* Precision qualifiers do not have any meaning in Desktop GLSL. 2687 * In GLES we take the precision from the type qualifier if present, 2688 * otherwise, if the type of the variable allows precision qualifiers at 2689 * all, we look for the default precision qualifier for that type in the 2690 * current scope. 2691 */ 2692 assert(state->es_shader); 2693 2694 unsigned precision = GLSL_PRECISION_NONE; 2695 if (qual_precision) { 2696 precision = qual_precision; 2697 } else if (precision_qualifier_allowed(type)) { 2698 const char *type_name = 2699 get_type_name_for_precision_qualifier(type->without_array()); 2700 assert(type_name != NULL); 2701 2702 precision = 2703 state->symbols->get_default_precision_qualifier(type_name); 2704 if (precision == ast_precision_none) { 2705 _mesa_glsl_error(loc, state, 2706 "No precision specified in this scope for type `%s'", 2707 type->name); 2708 } 2709 } 2710 2711 2712 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says: 2713 * 2714 * "The default precision of all atomic types is highp. It is an error to 2715 * declare an atomic type with a different precision or to specify the 2716 * default precision for an atomic type to be lowp or mediump." 2717 */ 2718 if (type->is_atomic_uint() && precision != ast_precision_high) { 2719 _mesa_glsl_error(loc, state, 2720 "atomic_uint can only have highp precision qualifier"); 2721 } 2722 2723 return precision; 2724} 2725 2726const glsl_type * 2727ast_fully_specified_type::glsl_type(const char **name, 2728 struct _mesa_glsl_parse_state *state) const 2729{ 2730 return this->specifier->glsl_type(name, state); 2731} 2732 2733/** 2734 * Determine whether a toplevel variable declaration declares a varying. This 2735 * function operates by examining the variable's mode and the shader target, 2736 * so it correctly identifies linkage variables regardless of whether they are 2737 * declared using the deprecated "varying" syntax or the new "in/out" syntax. 2738 * 2739 * Passing a non-toplevel variable declaration (e.g. a function parameter) to 2740 * this function will produce undefined results. 2741 */ 2742static bool 2743is_varying_var(ir_variable *var, gl_shader_stage target) 2744{ 2745 switch (target) { 2746 case MESA_SHADER_VERTEX: 2747 return var->data.mode == ir_var_shader_out; 2748 case MESA_SHADER_FRAGMENT: 2749 return var->data.mode == ir_var_shader_in || 2750 (var->data.mode == ir_var_system_value && 2751 var->data.location == SYSTEM_VALUE_FRAG_COORD); 2752 default: 2753 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in; 2754 } 2755} 2756 2757static bool 2758is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state) 2759{ 2760 if (is_varying_var(var, state->stage)) 2761 return true; 2762 2763 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec: 2764 * "Only variables output from a vertex shader can be candidates 2765 * for invariance". 2766 */ 2767 if (!state->is_version(130, 100)) 2768 return false; 2769 2770 /* 2771 * Later specs remove this language - so allowed invariant 2772 * on fragment shader outputs as well. 2773 */ 2774 if (state->stage == MESA_SHADER_FRAGMENT && 2775 var->data.mode == ir_var_shader_out) 2776 return true; 2777 return false; 2778} 2779 2780static void 2781validate_component_layout_for_type(struct _mesa_glsl_parse_state *state, 2782 YYLTYPE *loc, const glsl_type *type, 2783 unsigned qual_component) 2784{ 2785 type = type->without_array(); 2786 unsigned components = type->component_slots(); 2787 2788 if (type->is_matrix() || type->is_struct()) { 2789 _mesa_glsl_error(loc, state, "component layout qualifier " 2790 "cannot be applied to a matrix, a structure, " 2791 "a block, or an array containing any of these."); 2792 } else if (components > 4 && type->is_64bit()) { 2793 _mesa_glsl_error(loc, state, "component layout qualifier " 2794 "cannot be applied to dvec%u.", 2795 components / 2); 2796 } else if (qual_component != 0 && (qual_component + components - 1) > 3) { 2797 _mesa_glsl_error(loc, state, "component overflow (%u > 3)", 2798 (qual_component + components - 1)); 2799 } else if (qual_component == 1 && type->is_64bit()) { 2800 /* We don't bother checking for 3 as it should be caught by the 2801 * overflow check above. 2802 */ 2803 _mesa_glsl_error(loc, state, "doubles cannot begin at component 1 or 3"); 2804 } 2805} 2806 2807/** 2808 * Matrix layout qualifiers are only allowed on certain types 2809 */ 2810static void 2811validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state, 2812 YYLTYPE *loc, 2813 const glsl_type *type, 2814 ir_variable *var) 2815{ 2816 if (var && !var->is_in_buffer_block()) { 2817 /* Layout qualifiers may only apply to interface blocks and fields in 2818 * them. 2819 */ 2820 _mesa_glsl_error(loc, state, 2821 "uniform block layout qualifiers row_major and " 2822 "column_major may not be applied to variables " 2823 "outside of uniform blocks"); 2824 } else if (!type->without_array()->is_matrix()) { 2825 /* The OpenGL ES 3.0 conformance tests did not originally allow 2826 * matrix layout qualifiers on non-matrices. However, the OpenGL 2827 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were 2828 * amended to specifically allow these layouts on all types. Emit 2829 * a warning so that people know their code may not be portable. 2830 */ 2831 _mesa_glsl_warning(loc, state, 2832 "uniform block layout qualifiers row_major and " 2833 "column_major applied to non-matrix types may " 2834 "be rejected by older compilers"); 2835 } 2836} 2837 2838static bool 2839validate_xfb_buffer_qualifier(YYLTYPE *loc, 2840 struct _mesa_glsl_parse_state *state, 2841 unsigned xfb_buffer) { 2842 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) { 2843 _mesa_glsl_error(loc, state, 2844 "invalid xfb_buffer specified %d is larger than " 2845 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).", 2846 xfb_buffer, 2847 state->Const.MaxTransformFeedbackBuffers - 1); 2848 return false; 2849 } 2850 2851 return true; 2852} 2853 2854/* From the ARB_enhanced_layouts spec: 2855 * 2856 * "Variables and block members qualified with *xfb_offset* can be 2857 * scalars, vectors, matrices, structures, and (sized) arrays of these. 2858 * The offset must be a multiple of the size of the first component of 2859 * the first qualified variable or block member, or a compile-time error 2860 * results. Further, if applied to an aggregate containing a double, 2861 * the offset must also be a multiple of 8, and the space taken in the 2862 * buffer will be a multiple of 8. 2863 */ 2864static bool 2865validate_xfb_offset_qualifier(YYLTYPE *loc, 2866 struct _mesa_glsl_parse_state *state, 2867 int xfb_offset, const glsl_type *type, 2868 unsigned component_size) { 2869 const glsl_type *t_without_array = type->without_array(); 2870 2871 if (xfb_offset != -1 && type->is_unsized_array()) { 2872 _mesa_glsl_error(loc, state, 2873 "xfb_offset can't be used with unsized arrays."); 2874 return false; 2875 } 2876 2877 /* Make sure nested structs don't contain unsized arrays, and validate 2878 * any xfb_offsets on interface members. 2879 */ 2880 if (t_without_array->is_struct() || t_without_array->is_interface()) 2881 for (unsigned int i = 0; i < t_without_array->length; i++) { 2882 const glsl_type *member_t = t_without_array->fields.structure[i].type; 2883 2884 /* When the interface block doesn't have an xfb_offset qualifier then 2885 * we apply the component size rules at the member level. 2886 */ 2887 if (xfb_offset == -1) 2888 component_size = member_t->contains_double() ? 8 : 4; 2889 2890 int xfb_offset = t_without_array->fields.structure[i].offset; 2891 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t, 2892 component_size); 2893 } 2894 2895 /* Nested structs or interface block without offset may not have had an 2896 * offset applied yet so return. 2897 */ 2898 if (xfb_offset == -1) { 2899 return true; 2900 } 2901 2902 if (xfb_offset % component_size) { 2903 _mesa_glsl_error(loc, state, 2904 "invalid qualifier xfb_offset=%d must be a multiple " 2905 "of the first component size of the first qualified " 2906 "variable or block member. Or double if an aggregate " 2907 "that contains a double (%d).", 2908 xfb_offset, component_size); 2909 return false; 2910 } 2911 2912 return true; 2913} 2914 2915static bool 2916validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state, 2917 unsigned stream) 2918{ 2919 if (stream >= state->ctx->Const.MaxVertexStreams) { 2920 _mesa_glsl_error(loc, state, 2921 "invalid stream specified %d is larger than " 2922 "MAX_VERTEX_STREAMS - 1 (%d).", 2923 stream, state->ctx->Const.MaxVertexStreams - 1); 2924 return false; 2925 } 2926 2927 return true; 2928} 2929 2930static void 2931apply_explicit_binding(struct _mesa_glsl_parse_state *state, 2932 YYLTYPE *loc, 2933 ir_variable *var, 2934 const glsl_type *type, 2935 const ast_type_qualifier *qual) 2936{ 2937 if (!qual->flags.q.uniform && !qual->flags.q.buffer) { 2938 _mesa_glsl_error(loc, state, 2939 "the \"binding\" qualifier only applies to uniforms and " 2940 "shader storage buffer objects"); 2941 return; 2942 } 2943 2944 unsigned qual_binding; 2945 if (!process_qualifier_constant(state, loc, "binding", qual->binding, 2946 &qual_binding)) { 2947 return; 2948 } 2949 2950 const struct gl_context *const ctx = state->ctx; 2951 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1; 2952 unsigned max_index = qual_binding + elements - 1; 2953 const glsl_type *base_type = type->without_array(); 2954 2955 if (base_type->is_interface()) { 2956 /* UBOs. From page 60 of the GLSL 4.20 specification: 2957 * "If the binding point for any uniform block instance is less than zero, 2958 * or greater than or equal to the implementation-dependent maximum 2959 * number of uniform buffer bindings, a compilation error will occur. 2960 * When the binding identifier is used with a uniform block instanced as 2961 * an array of size N, all elements of the array from binding through 2962 * binding + N – 1 must be within this range." 2963 * 2964 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS. 2965 */ 2966 if (qual->flags.q.uniform && 2967 max_index >= ctx->Const.MaxUniformBufferBindings) { 2968 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds " 2969 "the maximum number of UBO binding points (%d)", 2970 qual_binding, elements, 2971 ctx->Const.MaxUniformBufferBindings); 2972 return; 2973 } 2974 2975 /* SSBOs. From page 67 of the GLSL 4.30 specification: 2976 * "If the binding point for any uniform or shader storage block instance 2977 * is less than zero, or greater than or equal to the 2978 * implementation-dependent maximum number of uniform buffer bindings, a 2979 * compile-time error will occur. When the binding identifier is used 2980 * with a uniform or shader storage block instanced as an array of size 2981 * N, all elements of the array from binding through binding + N – 1 must 2982 * be within this range." 2983 */ 2984 if (qual->flags.q.buffer && 2985 max_index >= ctx->Const.MaxShaderStorageBufferBindings) { 2986 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds " 2987 "the maximum number of SSBO binding points (%d)", 2988 qual_binding, elements, 2989 ctx->Const.MaxShaderStorageBufferBindings); 2990 return; 2991 } 2992 } else if (base_type->is_sampler()) { 2993 /* Samplers. From page 63 of the GLSL 4.20 specification: 2994 * "If the binding is less than zero, or greater than or equal to the 2995 * implementation-dependent maximum supported number of units, a 2996 * compilation error will occur. When the binding identifier is used 2997 * with an array of size N, all elements of the array from binding 2998 * through binding + N - 1 must be within this range." 2999 */ 3000 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits; 3001 3002 if (max_index >= limit) { 3003 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers " 3004 "exceeds the maximum number of texture image units " 3005 "(%u)", qual_binding, elements, limit); 3006 3007 return; 3008 } 3009 } else if (base_type->contains_atomic()) { 3010 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS); 3011 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) { 3012 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the " 3013 "maximum number of atomic counter buffer bindings " 3014 "(%u)", qual_binding, 3015 ctx->Const.MaxAtomicBufferBindings); 3016 3017 return; 3018 } 3019 } else if ((state->is_version(420, 310) || 3020 state->ARB_shading_language_420pack_enable) && 3021 base_type->is_image()) { 3022 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS); 3023 if (max_index >= ctx->Const.MaxImageUnits) { 3024 _mesa_glsl_error(loc, state, "Image binding %d exceeds the " 3025 "maximum number of image units (%d)", max_index, 3026 ctx->Const.MaxImageUnits); 3027 return; 3028 } 3029 3030 } else { 3031 _mesa_glsl_error(loc, state, 3032 "the \"binding\" qualifier only applies to uniform " 3033 "blocks, storage blocks, opaque variables, or arrays " 3034 "thereof"); 3035 return; 3036 } 3037 3038 var->data.explicit_binding = true; 3039 var->data.binding = qual_binding; 3040 3041 return; 3042} 3043 3044static void 3045validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state, 3046 YYLTYPE *loc, 3047 const glsl_interp_mode interpolation, 3048 const struct glsl_type *var_type, 3049 ir_variable_mode mode) 3050{ 3051 if (state->stage != MESA_SHADER_FRAGMENT || 3052 interpolation == INTERP_MODE_FLAT || 3053 mode != ir_var_shader_in) 3054 return; 3055 3056 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES, 3057 * so must integer vertex outputs. 3058 * 3059 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec: 3060 * "Fragment shader inputs that are signed or unsigned integers or 3061 * integer vectors must be qualified with the interpolation qualifier 3062 * flat." 3063 * 3064 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec: 3065 * "Fragment shader inputs that are, or contain, signed or unsigned 3066 * integers or integer vectors must be qualified with the 3067 * interpolation qualifier flat." 3068 * 3069 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec: 3070 * "Vertex shader outputs that are, or contain, signed or unsigned 3071 * integers or integer vectors must be qualified with the 3072 * interpolation qualifier flat." 3073 * 3074 * Note that prior to GLSL 1.50, this requirement applied to vertex 3075 * outputs rather than fragment inputs. That creates problems in the 3076 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all 3077 * desktop GL shaders. For GLSL ES shaders, we follow the spec and 3078 * apply the restriction to both vertex outputs and fragment inputs. 3079 * 3080 * Note also that the desktop GLSL specs are missing the text "or 3081 * contain"; this is presumably an oversight, since there is no 3082 * reasonable way to interpolate a fragment shader input that contains 3083 * an integer. See Khronos bug #15671. 3084 */ 3085 if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable) 3086 && var_type->contains_integer()) { 3087 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3088 "an integer, then it must be qualified with 'flat'"); 3089 } 3090 3091 /* Double fragment inputs must be qualified with 'flat'. 3092 * 3093 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec: 3094 * "This extension does not support interpolation of double-precision 3095 * values; doubles used as fragment shader inputs must be qualified as 3096 * "flat"." 3097 * 3098 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec: 3099 * "Fragment shader inputs that are signed or unsigned integers, integer 3100 * vectors, or any double-precision floating-point type must be 3101 * qualified with the interpolation qualifier flat." 3102 * 3103 * Note that the GLSL specs are missing the text "or contain"; this is 3104 * presumably an oversight. See Khronos bug #15671. 3105 * 3106 * The 'double' type does not exist in GLSL ES so far. 3107 */ 3108 if (state->has_double() 3109 && var_type->contains_double()) { 3110 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3111 "a double, then it must be qualified with 'flat'"); 3112 } 3113 3114 /* Bindless sampler/image fragment inputs must be qualified with 'flat'. 3115 * 3116 * From section 4.3.4 of the ARB_bindless_texture spec: 3117 * 3118 * "(modify last paragraph, p. 35, allowing samplers and images as 3119 * fragment shader inputs) ... Fragment inputs can only be signed and 3120 * unsigned integers and integer vectors, floating point scalars, 3121 * floating-point vectors, matrices, sampler and image types, or arrays 3122 * or structures of these. Fragment shader inputs that are signed or 3123 * unsigned integers, integer vectors, or any double-precision floating- 3124 * point type, or any sampler or image type must be qualified with the 3125 * interpolation qualifier "flat"." 3126 */ 3127 if (state->has_bindless() 3128 && (var_type->contains_sampler() || var_type->contains_image())) { 3129 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) " 3130 "a bindless sampler (or image), then it must be " 3131 "qualified with 'flat'"); 3132 } 3133} 3134 3135static void 3136validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state, 3137 YYLTYPE *loc, 3138 const glsl_interp_mode interpolation, 3139 const struct ast_type_qualifier *qual, 3140 const struct glsl_type *var_type, 3141 ir_variable_mode mode) 3142{ 3143 /* Interpolation qualifiers can only apply to shader inputs or outputs, but 3144 * not to vertex shader inputs nor fragment shader outputs. 3145 * 3146 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: 3147 * "Outputs from a vertex shader (out) and inputs to a fragment 3148 * shader (in) can be further qualified with one or more of these 3149 * interpolation qualifiers" 3150 * ... 3151 * "These interpolation qualifiers may only precede the qualifiers in, 3152 * centroid in, out, or centroid out in a declaration. They do not apply 3153 * to the deprecated storage qualifiers varying or centroid 3154 * varying. They also do not apply to inputs into a vertex shader or 3155 * outputs from a fragment shader." 3156 * 3157 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec: 3158 * "Outputs from a shader (out) and inputs to a shader (in) can be 3159 * further qualified with one of these interpolation qualifiers." 3160 * ... 3161 * "These interpolation qualifiers may only precede the qualifiers 3162 * in, centroid in, out, or centroid out in a declaration. They do 3163 * not apply to inputs into a vertex shader or outputs from a 3164 * fragment shader." 3165 */ 3166 if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable) 3167 && interpolation != INTERP_MODE_NONE) { 3168 const char *i = interpolation_string(interpolation); 3169 if (mode != ir_var_shader_in && mode != ir_var_shader_out) 3170 _mesa_glsl_error(loc, state, 3171 "interpolation qualifier `%s' can only be applied to " 3172 "shader inputs or outputs.", i); 3173 3174 switch (state->stage) { 3175 case MESA_SHADER_VERTEX: 3176 if (mode == ir_var_shader_in) { 3177 _mesa_glsl_error(loc, state, 3178 "interpolation qualifier '%s' cannot be applied to " 3179 "vertex shader inputs", i); 3180 } 3181 break; 3182 case MESA_SHADER_FRAGMENT: 3183 if (mode == ir_var_shader_out) { 3184 _mesa_glsl_error(loc, state, 3185 "interpolation qualifier '%s' cannot be applied to " 3186 "fragment shader outputs", i); 3187 } 3188 break; 3189 default: 3190 break; 3191 } 3192 } 3193 3194 /* Interpolation qualifiers cannot be applied to 'centroid' and 3195 * 'centroid varying'. 3196 * 3197 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec: 3198 * "interpolation qualifiers may only precede the qualifiers in, 3199 * centroid in, out, or centroid out in a declaration. They do not apply 3200 * to the deprecated storage qualifiers varying or centroid varying." 3201 * 3202 * These deprecated storage qualifiers do not exist in GLSL ES 3.00. 3203 * 3204 * GL_EXT_gpu_shader4 allows this. 3205 */ 3206 if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable 3207 && interpolation != INTERP_MODE_NONE 3208 && qual->flags.q.varying) { 3209 3210 const char *i = interpolation_string(interpolation); 3211 const char *s; 3212 if (qual->flags.q.centroid) 3213 s = "centroid varying"; 3214 else 3215 s = "varying"; 3216 3217 _mesa_glsl_error(loc, state, 3218 "qualifier '%s' cannot be applied to the " 3219 "deprecated storage qualifier '%s'", i, s); 3220 } 3221 3222 validate_fragment_flat_interpolation_input(state, loc, interpolation, 3223 var_type, mode); 3224} 3225 3226static glsl_interp_mode 3227interpret_interpolation_qualifier(const struct ast_type_qualifier *qual, 3228 const struct glsl_type *var_type, 3229 ir_variable_mode mode, 3230 struct _mesa_glsl_parse_state *state, 3231 YYLTYPE *loc) 3232{ 3233 glsl_interp_mode interpolation; 3234 if (qual->flags.q.flat) 3235 interpolation = INTERP_MODE_FLAT; 3236 else if (qual->flags.q.noperspective) 3237 interpolation = INTERP_MODE_NOPERSPECTIVE; 3238 else if (qual->flags.q.smooth) 3239 interpolation = INTERP_MODE_SMOOTH; 3240 else 3241 interpolation = INTERP_MODE_NONE; 3242 3243 validate_interpolation_qualifier(state, loc, 3244 interpolation, 3245 qual, var_type, mode); 3246 3247 return interpolation; 3248} 3249 3250 3251static void 3252apply_explicit_location(const struct ast_type_qualifier *qual, 3253 ir_variable *var, 3254 struct _mesa_glsl_parse_state *state, 3255 YYLTYPE *loc) 3256{ 3257 bool fail = false; 3258 3259 unsigned qual_location; 3260 if (!process_qualifier_constant(state, loc, "location", qual->location, 3261 &qual_location)) { 3262 return; 3263 } 3264 3265 /* Checks for GL_ARB_explicit_uniform_location. */ 3266 if (qual->flags.q.uniform) { 3267 if (!state->check_explicit_uniform_location_allowed(loc, var)) 3268 return; 3269 3270 const struct gl_context *const ctx = state->ctx; 3271 unsigned max_loc = qual_location + var->type->uniform_locations() - 1; 3272 3273 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) { 3274 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s " 3275 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name, 3276 ctx->Const.MaxUserAssignableUniformLocations); 3277 return; 3278 } 3279 3280 var->data.explicit_location = true; 3281 var->data.location = qual_location; 3282 return; 3283 } 3284 3285 /* Between GL_ARB_explicit_attrib_location an 3286 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader 3287 * stage can be assigned explicit locations. The checking here associates 3288 * the correct extension with the correct stage's input / output: 3289 * 3290 * input output 3291 * ----- ------ 3292 * vertex explicit_loc sso 3293 * tess control sso sso 3294 * tess eval sso sso 3295 * geometry sso sso 3296 * fragment sso explicit_loc 3297 */ 3298 switch (state->stage) { 3299 case MESA_SHADER_VERTEX: 3300 if (var->data.mode == ir_var_shader_in) { 3301 if (!state->check_explicit_attrib_location_allowed(loc, var)) 3302 return; 3303 3304 break; 3305 } 3306 3307 if (var->data.mode == ir_var_shader_out) { 3308 if (!state->check_separate_shader_objects_allowed(loc, var)) 3309 return; 3310 3311 break; 3312 } 3313 3314 fail = true; 3315 break; 3316 3317 case MESA_SHADER_TESS_CTRL: 3318 case MESA_SHADER_TESS_EVAL: 3319 case MESA_SHADER_GEOMETRY: 3320 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) { 3321 if (!state->check_separate_shader_objects_allowed(loc, var)) 3322 return; 3323 3324 break; 3325 } 3326 3327 fail = true; 3328 break; 3329 3330 case MESA_SHADER_FRAGMENT: 3331 if (var->data.mode == ir_var_shader_in) { 3332 if (!state->check_separate_shader_objects_allowed(loc, var)) 3333 return; 3334 3335 break; 3336 } 3337 3338 if (var->data.mode == ir_var_shader_out) { 3339 if (!state->check_explicit_attrib_location_allowed(loc, var)) 3340 return; 3341 3342 break; 3343 } 3344 3345 fail = true; 3346 break; 3347 3348 case MESA_SHADER_COMPUTE: 3349 _mesa_glsl_error(loc, state, 3350 "compute shader variables cannot be given " 3351 "explicit locations"); 3352 return; 3353 default: 3354 fail = true; 3355 break; 3356 }; 3357 3358 if (fail) { 3359 _mesa_glsl_error(loc, state, 3360 "%s cannot be given an explicit location in %s shader", 3361 mode_string(var), 3362 _mesa_shader_stage_to_string(state->stage)); 3363 } else { 3364 var->data.explicit_location = true; 3365 3366 switch (state->stage) { 3367 case MESA_SHADER_VERTEX: 3368 var->data.location = (var->data.mode == ir_var_shader_in) 3369 ? (qual_location + VERT_ATTRIB_GENERIC0) 3370 : (qual_location + VARYING_SLOT_VAR0); 3371 break; 3372 3373 case MESA_SHADER_TESS_CTRL: 3374 case MESA_SHADER_TESS_EVAL: 3375 case MESA_SHADER_GEOMETRY: 3376 if (var->data.patch) 3377 var->data.location = qual_location + VARYING_SLOT_PATCH0; 3378 else 3379 var->data.location = qual_location + VARYING_SLOT_VAR0; 3380 break; 3381 3382 case MESA_SHADER_FRAGMENT: 3383 var->data.location = (var->data.mode == ir_var_shader_out) 3384 ? (qual_location + FRAG_RESULT_DATA0) 3385 : (qual_location + VARYING_SLOT_VAR0); 3386 break; 3387 default: 3388 assert(!"Unexpected shader type"); 3389 break; 3390 } 3391 3392 /* Check if index was set for the uniform instead of the function */ 3393 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) { 3394 _mesa_glsl_error(loc, state, "an index qualifier can only be " 3395 "used with subroutine functions"); 3396 return; 3397 } 3398 3399 unsigned qual_index; 3400 if (qual->flags.q.explicit_index && 3401 process_qualifier_constant(state, loc, "index", qual->index, 3402 &qual_index)) { 3403 /* From the GLSL 4.30 specification, section 4.4.2 (Output 3404 * Layout Qualifiers): 3405 * 3406 * "It is also a compile-time error if a fragment shader 3407 * sets a layout index to less than 0 or greater than 1." 3408 * 3409 * Older specifications don't mandate a behavior; we take 3410 * this as a clarification and always generate the error. 3411 */ 3412 if (qual_index > 1) { 3413 _mesa_glsl_error(loc, state, 3414 "explicit index may only be 0 or 1"); 3415 } else { 3416 var->data.explicit_index = true; 3417 var->data.index = qual_index; 3418 } 3419 } 3420 } 3421} 3422 3423static bool 3424validate_storage_for_sampler_image_types(ir_variable *var, 3425 struct _mesa_glsl_parse_state *state, 3426 YYLTYPE *loc) 3427{ 3428 /* From section 4.1.7 of the GLSL 4.40 spec: 3429 * 3430 * "[Opaque types] can only be declared as function 3431 * parameters or uniform-qualified variables." 3432 * 3433 * From section 4.1.7 of the ARB_bindless_texture spec: 3434 * 3435 * "Samplers may be declared as shader inputs and outputs, as uniform 3436 * variables, as temporary variables, and as function parameters." 3437 * 3438 * From section 4.1.X of the ARB_bindless_texture spec: 3439 * 3440 * "Images may be declared as shader inputs and outputs, as uniform 3441 * variables, as temporary variables, and as function parameters." 3442 */ 3443 if (state->has_bindless()) { 3444 if (var->data.mode != ir_var_auto && 3445 var->data.mode != ir_var_uniform && 3446 var->data.mode != ir_var_shader_in && 3447 var->data.mode != ir_var_shader_out && 3448 var->data.mode != ir_var_function_in && 3449 var->data.mode != ir_var_function_out && 3450 var->data.mode != ir_var_function_inout) { 3451 _mesa_glsl_error(loc, state, "bindless image/sampler variables may " 3452 "only be declared as shader inputs and outputs, as " 3453 "uniform variables, as temporary variables and as " 3454 "function parameters"); 3455 return false; 3456 } 3457 } else { 3458 if (var->data.mode != ir_var_uniform && 3459 var->data.mode != ir_var_function_in) { 3460 _mesa_glsl_error(loc, state, "image/sampler variables may only be " 3461 "declared as function parameters or " 3462 "uniform-qualified global variables"); 3463 return false; 3464 } 3465 } 3466 return true; 3467} 3468 3469static bool 3470validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state, 3471 YYLTYPE *loc, 3472 const struct ast_type_qualifier *qual, 3473 const glsl_type *type) 3474{ 3475 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec: 3476 * 3477 * "Memory qualifiers are only supported in the declarations of image 3478 * variables, buffer variables, and shader storage blocks; it is an error 3479 * to use such qualifiers in any other declarations. 3480 */ 3481 if (!type->is_image() && !qual->flags.q.buffer) { 3482 if (qual->flags.q.read_only || 3483 qual->flags.q.write_only || 3484 qual->flags.q.coherent || 3485 qual->flags.q._volatile || 3486 qual->flags.q.restrict_flag) { 3487 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied " 3488 "in the declarations of image variables, buffer " 3489 "variables, and shader storage blocks"); 3490 return false; 3491 } 3492 } 3493 return true; 3494} 3495 3496static bool 3497validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state, 3498 YYLTYPE *loc, 3499 const struct ast_type_qualifier *qual, 3500 const glsl_type *type) 3501{ 3502 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec: 3503 * 3504 * "Format layout qualifiers can be used on image variable declarations 3505 * (those declared with a basic type having “image ” in its keyword)." 3506 */ 3507 if (!type->is_image() && qual->flags.q.explicit_image_format) { 3508 _mesa_glsl_error(loc, state, "format layout qualifiers may only be " 3509 "applied to images"); 3510 return false; 3511 } 3512 return true; 3513} 3514 3515static void 3516apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual, 3517 ir_variable *var, 3518 struct _mesa_glsl_parse_state *state, 3519 YYLTYPE *loc) 3520{ 3521 const glsl_type *base_type = var->type->without_array(); 3522 3523 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) || 3524 !validate_memory_qualifier_for_type(state, loc, qual, base_type)) 3525 return; 3526 3527 if (!base_type->is_image()) 3528 return; 3529 3530 if (!validate_storage_for_sampler_image_types(var, state, loc)) 3531 return; 3532 3533 var->data.memory_read_only |= qual->flags.q.read_only; 3534 var->data.memory_write_only |= qual->flags.q.write_only; 3535 var->data.memory_coherent |= qual->flags.q.coherent; 3536 var->data.memory_volatile |= qual->flags.q._volatile; 3537 var->data.memory_restrict |= qual->flags.q.restrict_flag; 3538 3539 if (qual->flags.q.explicit_image_format) { 3540 if (var->data.mode == ir_var_function_in) { 3541 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on " 3542 "image function parameters"); 3543 } 3544 3545 if (qual->image_base_type != base_type->sampled_type) { 3546 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base " 3547 "data type of the image"); 3548 } 3549 3550 var->data.image_format = qual->image_format; 3551 } else if (state->has_image_load_formatted()) { 3552 if (var->data.mode == ir_var_uniform && 3553 state->EXT_shader_image_load_formatted_warn) { 3554 _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used"); 3555 } 3556 } else { 3557 if (var->data.mode == ir_var_uniform) { 3558 if (state->es_shader || 3559 !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) { 3560 _mesa_glsl_error(loc, state, "all image uniforms must have a " 3561 "format layout qualifier"); 3562 } else if (!qual->flags.q.write_only) { 3563 _mesa_glsl_error(loc, state, "image uniforms not qualified with " 3564 "`writeonly' must have a format layout qualifier"); 3565 } 3566 } 3567 var->data.image_format = PIPE_FORMAT_NONE; 3568 } 3569 3570 /* From page 70 of the GLSL ES 3.1 specification: 3571 * 3572 * "Except for image variables qualified with the format qualifiers r32f, 3573 * r32i, and r32ui, image variables must specify either memory qualifier 3574 * readonly or the memory qualifier writeonly." 3575 */ 3576 if (state->es_shader && 3577 var->data.image_format != PIPE_FORMAT_R32_FLOAT && 3578 var->data.image_format != PIPE_FORMAT_R32_SINT && 3579 var->data.image_format != PIPE_FORMAT_R32_UINT && 3580 !var->data.memory_read_only && 3581 !var->data.memory_write_only) { 3582 _mesa_glsl_error(loc, state, "image variables of format other than r32f, " 3583 "r32i or r32ui must be qualified `readonly' or " 3584 "`writeonly'"); 3585 } 3586} 3587 3588static inline const char* 3589get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer) 3590{ 3591 if (origin_upper_left && pixel_center_integer) 3592 return "origin_upper_left, pixel_center_integer"; 3593 else if (origin_upper_left) 3594 return "origin_upper_left"; 3595 else if (pixel_center_integer) 3596 return "pixel_center_integer"; 3597 else 3598 return " "; 3599} 3600 3601static inline bool 3602is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state, 3603 const struct ast_type_qualifier *qual) 3604{ 3605 /* If gl_FragCoord was previously declared, and the qualifiers were 3606 * different in any way, return true. 3607 */ 3608 if (state->fs_redeclares_gl_fragcoord) { 3609 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer 3610 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left); 3611 } 3612 3613 return false; 3614} 3615 3616static inline bool 3617is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state, 3618 const struct ast_type_qualifier *qual) 3619{ 3620 if (state->redeclares_gl_layer) { 3621 return state->layer_viewport_relative != qual->flags.q.viewport_relative; 3622 } 3623 return false; 3624} 3625 3626static inline void 3627validate_array_dimensions(const glsl_type *t, 3628 struct _mesa_glsl_parse_state *state, 3629 YYLTYPE *loc) { 3630 if (t->is_array()) { 3631 t = t->fields.array; 3632 while (t->is_array()) { 3633 if (t->is_unsized_array()) { 3634 _mesa_glsl_error(loc, state, 3635 "only the outermost array dimension can " 3636 "be unsized", 3637 t->name); 3638 break; 3639 } 3640 t = t->fields.array; 3641 } 3642 } 3643} 3644 3645static void 3646apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual, 3647 ir_variable *var, 3648 struct _mesa_glsl_parse_state *state, 3649 YYLTYPE *loc) 3650{ 3651 bool has_local_qualifiers = qual->flags.q.bindless_sampler || 3652 qual->flags.q.bindless_image || 3653 qual->flags.q.bound_sampler || 3654 qual->flags.q.bound_image; 3655 3656 /* The ARB_bindless_texture spec says: 3657 * 3658 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30 3659 * spec" 3660 * 3661 * "If these layout qualifiers are applied to other types of default block 3662 * uniforms, or variables with non-uniform storage, a compile-time error 3663 * will be generated." 3664 */ 3665 if (has_local_qualifiers && !qual->flags.q.uniform) { 3666 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers " 3667 "can only be applied to default block uniforms or " 3668 "variables with uniform storage"); 3669 return; 3670 } 3671 3672 /* The ARB_bindless_texture spec doesn't state anything in this situation, 3673 * but it makes sense to only allow bindless_sampler/bound_sampler for 3674 * sampler types, and respectively bindless_image/bound_image for image 3675 * types. 3676 */ 3677 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) && 3678 !var->type->contains_sampler()) { 3679 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only " 3680 "be applied to sampler types"); 3681 return; 3682 } 3683 3684 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) && 3685 !var->type->contains_image()) { 3686 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be " 3687 "applied to image types"); 3688 return; 3689 } 3690 3691 /* The bindless_sampler/bindless_image (and respectively 3692 * bound_sampler/bound_image) layout qualifiers can be set at global and at 3693 * local scope. 3694 */ 3695 if (var->type->contains_sampler() || var->type->contains_image()) { 3696 var->data.bindless = qual->flags.q.bindless_sampler || 3697 qual->flags.q.bindless_image || 3698 state->bindless_sampler_specified || 3699 state->bindless_image_specified; 3700 3701 var->data.bound = qual->flags.q.bound_sampler || 3702 qual->flags.q.bound_image || 3703 state->bound_sampler_specified || 3704 state->bound_image_specified; 3705 } 3706} 3707 3708static void 3709apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual, 3710 ir_variable *var, 3711 struct _mesa_glsl_parse_state *state, 3712 YYLTYPE *loc) 3713{ 3714 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) { 3715 3716 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says: 3717 * 3718 * "Within any shader, the first redeclarations of gl_FragCoord 3719 * must appear before any use of gl_FragCoord." 3720 * 3721 * Generate a compiler error if above condition is not met by the 3722 * fragment shader. 3723 */ 3724 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord"); 3725 if (earlier != NULL && 3726 earlier->data.used && 3727 !state->fs_redeclares_gl_fragcoord) { 3728 _mesa_glsl_error(loc, state, 3729 "gl_FragCoord used before its first redeclaration " 3730 "in fragment shader"); 3731 } 3732 3733 /* Make sure all gl_FragCoord redeclarations specify the same layout 3734 * qualifiers. 3735 */ 3736 if (is_conflicting_fragcoord_redeclaration(state, qual)) { 3737 const char *const qual_string = 3738 get_layout_qualifier_string(qual->flags.q.origin_upper_left, 3739 qual->flags.q.pixel_center_integer); 3740 3741 const char *const state_string = 3742 get_layout_qualifier_string(state->fs_origin_upper_left, 3743 state->fs_pixel_center_integer); 3744 3745 _mesa_glsl_error(loc, state, 3746 "gl_FragCoord redeclared with different layout " 3747 "qualifiers (%s) and (%s) ", 3748 state_string, 3749 qual_string); 3750 } 3751 state->fs_origin_upper_left = qual->flags.q.origin_upper_left; 3752 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer; 3753 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers = 3754 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer; 3755 state->fs_redeclares_gl_fragcoord = 3756 state->fs_origin_upper_left || 3757 state->fs_pixel_center_integer || 3758 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers; 3759 } 3760 3761 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer) 3762 && (strcmp(var->name, "gl_FragCoord") != 0)) { 3763 const char *const qual_string = (qual->flags.q.origin_upper_left) 3764 ? "origin_upper_left" : "pixel_center_integer"; 3765 3766 _mesa_glsl_error(loc, state, 3767 "layout qualifier `%s' can only be applied to " 3768 "fragment shader input `gl_FragCoord'", 3769 qual_string); 3770 } 3771 3772 if (qual->flags.q.explicit_location) { 3773 apply_explicit_location(qual, var, state, loc); 3774 3775 if (qual->flags.q.explicit_component) { 3776 unsigned qual_component; 3777 if (process_qualifier_constant(state, loc, "component", 3778 qual->component, &qual_component)) { 3779 validate_component_layout_for_type(state, loc, var->type, 3780 qual_component); 3781 var->data.explicit_component = true; 3782 var->data.location_frac = qual_component; 3783 } 3784 } 3785 } else if (qual->flags.q.explicit_index) { 3786 if (!qual->subroutine_list) 3787 _mesa_glsl_error(loc, state, 3788 "explicit index requires explicit location"); 3789 } else if (qual->flags.q.explicit_component) { 3790 _mesa_glsl_error(loc, state, 3791 "explicit component requires explicit location"); 3792 } 3793 3794 if (qual->flags.q.explicit_binding) { 3795 apply_explicit_binding(state, loc, var, var->type, qual); 3796 } 3797 3798 if (state->stage == MESA_SHADER_GEOMETRY && 3799 qual->flags.q.out && qual->flags.q.stream) { 3800 unsigned qual_stream; 3801 if (process_qualifier_constant(state, loc, "stream", qual->stream, 3802 &qual_stream) && 3803 validate_stream_qualifier(loc, state, qual_stream)) { 3804 var->data.stream = qual_stream; 3805 } 3806 } 3807 3808 if (qual->flags.q.out && qual->flags.q.xfb_buffer) { 3809 unsigned qual_xfb_buffer; 3810 if (process_qualifier_constant(state, loc, "xfb_buffer", 3811 qual->xfb_buffer, &qual_xfb_buffer) && 3812 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) { 3813 var->data.xfb_buffer = qual_xfb_buffer; 3814 if (qual->flags.q.explicit_xfb_buffer) 3815 var->data.explicit_xfb_buffer = true; 3816 } 3817 } 3818 3819 if (qual->flags.q.explicit_xfb_offset) { 3820 unsigned qual_xfb_offset; 3821 unsigned component_size = var->type->contains_double() ? 8 : 4; 3822 3823 if (process_qualifier_constant(state, loc, "xfb_offset", 3824 qual->offset, &qual_xfb_offset) && 3825 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset, 3826 var->type, component_size)) { 3827 var->data.offset = qual_xfb_offset; 3828 var->data.explicit_xfb_offset = true; 3829 } 3830 } 3831 3832 if (qual->flags.q.explicit_xfb_stride) { 3833 unsigned qual_xfb_stride; 3834 if (process_qualifier_constant(state, loc, "xfb_stride", 3835 qual->xfb_stride, &qual_xfb_stride)) { 3836 var->data.xfb_stride = qual_xfb_stride; 3837 var->data.explicit_xfb_stride = true; 3838 } 3839 } 3840 3841 if (var->type->contains_atomic()) { 3842 if (var->data.mode == ir_var_uniform) { 3843 if (var->data.explicit_binding) { 3844 unsigned *offset = 3845 &state->atomic_counter_offsets[var->data.binding]; 3846 3847 if (*offset % ATOMIC_COUNTER_SIZE) 3848 _mesa_glsl_error(loc, state, 3849 "misaligned atomic counter offset"); 3850 3851 var->data.offset = *offset; 3852 *offset += var->type->atomic_size(); 3853 3854 } else { 3855 _mesa_glsl_error(loc, state, 3856 "atomic counters require explicit binding point"); 3857 } 3858 } else if (var->data.mode != ir_var_function_in) { 3859 _mesa_glsl_error(loc, state, "atomic counters may only be declared as " 3860 "function parameters or uniform-qualified " 3861 "global variables"); 3862 } 3863 } 3864 3865 if (var->type->contains_sampler() && 3866 !validate_storage_for_sampler_image_types(var, state, loc)) 3867 return; 3868 3869 /* Is the 'layout' keyword used with parameters that allow relaxed checking. 3870 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some 3871 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable 3872 * allowed the layout qualifier to be used with 'varying' and 'attribute'. 3873 * These extensions and all following extensions that add the 'layout' 3874 * keyword have been modified to require the use of 'in' or 'out'. 3875 * 3876 * The following extension do not allow the deprecated keywords: 3877 * 3878 * GL_AMD_conservative_depth 3879 * GL_ARB_conservative_depth 3880 * GL_ARB_gpu_shader5 3881 * GL_ARB_separate_shader_objects 3882 * GL_ARB_tessellation_shader 3883 * GL_ARB_transform_feedback3 3884 * GL_ARB_uniform_buffer_object 3885 * 3886 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5 3887 * allow layout with the deprecated keywords. 3888 */ 3889 const bool relaxed_layout_qualifier_checking = 3890 state->ARB_fragment_coord_conventions_enable; 3891 3892 const bool uses_deprecated_qualifier = qual->flags.q.attribute 3893 || qual->flags.q.varying; 3894 if (qual->has_layout() && uses_deprecated_qualifier) { 3895 if (relaxed_layout_qualifier_checking) { 3896 _mesa_glsl_warning(loc, state, 3897 "`layout' qualifier may not be used with " 3898 "`attribute' or `varying'"); 3899 } else { 3900 _mesa_glsl_error(loc, state, 3901 "`layout' qualifier may not be used with " 3902 "`attribute' or `varying'"); 3903 } 3904 } 3905 3906 /* Layout qualifiers for gl_FragDepth, which are enabled by extension 3907 * AMD_conservative_depth. 3908 */ 3909 if (qual->flags.q.depth_type 3910 && !state->is_version(420, 0) 3911 && !state->AMD_conservative_depth_enable 3912 && !state->ARB_conservative_depth_enable) { 3913 _mesa_glsl_error(loc, state, 3914 "extension GL_AMD_conservative_depth or " 3915 "GL_ARB_conservative_depth must be enabled " 3916 "to use depth layout qualifiers"); 3917 } else if (qual->flags.q.depth_type 3918 && strcmp(var->name, "gl_FragDepth") != 0) { 3919 _mesa_glsl_error(loc, state, 3920 "depth layout qualifiers can be applied only to " 3921 "gl_FragDepth"); 3922 } 3923 3924 switch (qual->depth_type) { 3925 case ast_depth_any: 3926 var->data.depth_layout = ir_depth_layout_any; 3927 break; 3928 case ast_depth_greater: 3929 var->data.depth_layout = ir_depth_layout_greater; 3930 break; 3931 case ast_depth_less: 3932 var->data.depth_layout = ir_depth_layout_less; 3933 break; 3934 case ast_depth_unchanged: 3935 var->data.depth_layout = ir_depth_layout_unchanged; 3936 break; 3937 default: 3938 var->data.depth_layout = ir_depth_layout_none; 3939 break; 3940 } 3941 3942 if (qual->flags.q.std140 || 3943 qual->flags.q.std430 || 3944 qual->flags.q.packed || 3945 qual->flags.q.shared) { 3946 _mesa_glsl_error(loc, state, 3947 "uniform and shader storage block layout qualifiers " 3948 "std140, std430, packed, and shared can only be " 3949 "applied to uniform or shader storage blocks, not " 3950 "members"); 3951 } 3952 3953 if (qual->flags.q.row_major || qual->flags.q.column_major) { 3954 validate_matrix_layout_for_type(state, loc, var->type, var); 3955 } 3956 3957 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader 3958 * Inputs): 3959 * 3960 * "Fragment shaders also allow the following layout qualifier on in only 3961 * (not with variable declarations) 3962 * layout-qualifier-id 3963 * early_fragment_tests 3964 * [...]" 3965 */ 3966 if (qual->flags.q.early_fragment_tests) { 3967 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only " 3968 "valid in fragment shader input layout declaration."); 3969 } 3970 3971 if (qual->flags.q.inner_coverage) { 3972 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only " 3973 "valid in fragment shader input layout declaration."); 3974 } 3975 3976 if (qual->flags.q.post_depth_coverage) { 3977 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only " 3978 "valid in fragment shader input layout declaration."); 3979 } 3980 3981 if (state->has_bindless()) 3982 apply_bindless_qualifier_to_variable(qual, var, state, loc); 3983 3984 if (qual->flags.q.pixel_interlock_ordered || 3985 qual->flags.q.pixel_interlock_unordered || 3986 qual->flags.q.sample_interlock_ordered || 3987 qual->flags.q.sample_interlock_unordered) { 3988 _mesa_glsl_error(loc, state, "interlock layout qualifiers: " 3989 "pixel_interlock_ordered, pixel_interlock_unordered, " 3990 "sample_interlock_ordered and sample_interlock_unordered, " 3991 "only valid in fragment shader input layout declaration."); 3992 } 3993 3994 if (var->name != NULL && strcmp(var->name, "gl_Layer") == 0) { 3995 if (is_conflicting_layer_redeclaration(state, qual)) { 3996 _mesa_glsl_error(loc, state, "gl_Layer redeclaration with " 3997 "different viewport_relative setting than earlier"); 3998 } 3999 state->redeclares_gl_layer = true; 4000 if (qual->flags.q.viewport_relative) { 4001 state->layer_viewport_relative = true; 4002 } 4003 } else if (qual->flags.q.viewport_relative) { 4004 _mesa_glsl_error(loc, state, 4005 "viewport_relative qualifier " 4006 "can only be applied to gl_Layer."); 4007 } 4008} 4009 4010static void 4011apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual, 4012 ir_variable *var, 4013 struct _mesa_glsl_parse_state *state, 4014 YYLTYPE *loc, 4015 bool is_parameter) 4016{ 4017 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i)); 4018 4019 if (qual->flags.q.invariant) { 4020 if (var->data.used) { 4021 _mesa_glsl_error(loc, state, 4022 "variable `%s' may not be redeclared " 4023 "`invariant' after being used", 4024 var->name); 4025 } else { 4026 var->data.explicit_invariant = true; 4027 var->data.invariant = true; 4028 } 4029 } 4030 4031 if (qual->flags.q.precise) { 4032 if (var->data.used) { 4033 _mesa_glsl_error(loc, state, 4034 "variable `%s' may not be redeclared " 4035 "`precise' after being used", 4036 var->name); 4037 } else { 4038 var->data.precise = 1; 4039 } 4040 } 4041 4042 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) { 4043 _mesa_glsl_error(loc, state, 4044 "`subroutine' may only be applied to uniforms, " 4045 "subroutine type declarations, or function definitions"); 4046 } 4047 4048 if (qual->flags.q.constant || qual->flags.q.attribute 4049 || qual->flags.q.uniform 4050 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) 4051 var->data.read_only = 1; 4052 4053 if (qual->flags.q.centroid) 4054 var->data.centroid = 1; 4055 4056 if (qual->flags.q.sample) 4057 var->data.sample = 1; 4058 4059 /* Precision qualifiers do not hold any meaning in Desktop GLSL */ 4060 if (state->es_shader) { 4061 var->data.precision = 4062 select_gles_precision(qual->precision, var->type, state, loc); 4063 } 4064 4065 if (qual->flags.q.patch) 4066 var->data.patch = 1; 4067 4068 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) { 4069 var->type = glsl_type::error_type; 4070 _mesa_glsl_error(loc, state, 4071 "`attribute' variables may not be declared in the " 4072 "%s shader", 4073 _mesa_shader_stage_to_string(state->stage)); 4074 } 4075 4076 /* Disallow layout qualifiers which may only appear on layout declarations. */ 4077 if (qual->flags.q.prim_type) { 4078 _mesa_glsl_error(loc, state, 4079 "Primitive type may only be specified on GS input or output " 4080 "layout declaration, not on variables."); 4081 } 4082 4083 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says: 4084 * 4085 * "However, the const qualifier cannot be used with out or inout." 4086 * 4087 * The same section of the GLSL 4.40 spec further clarifies this saying: 4088 * 4089 * "The const qualifier cannot be used with out or inout, or a 4090 * compile-time error results." 4091 */ 4092 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) { 4093 _mesa_glsl_error(loc, state, 4094 "`const' may not be applied to `out' or `inout' " 4095 "function parameters"); 4096 } 4097 4098 /* If there is no qualifier that changes the mode of the variable, leave 4099 * the setting alone. 4100 */ 4101 assert(var->data.mode != ir_var_temporary); 4102 if (qual->flags.q.in && qual->flags.q.out) 4103 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out; 4104 else if (qual->flags.q.in) 4105 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in; 4106 else if (qual->flags.q.attribute 4107 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT))) 4108 var->data.mode = ir_var_shader_in; 4109 else if (qual->flags.q.out) 4110 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out; 4111 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX)) 4112 var->data.mode = ir_var_shader_out; 4113 else if (qual->flags.q.uniform) 4114 var->data.mode = ir_var_uniform; 4115 else if (qual->flags.q.buffer) 4116 var->data.mode = ir_var_shader_storage; 4117 else if (qual->flags.q.shared_storage) 4118 var->data.mode = ir_var_shader_shared; 4119 4120 if (!is_parameter && state->has_framebuffer_fetch() && 4121 state->stage == MESA_SHADER_FRAGMENT) { 4122 if (state->is_version(130, 300)) 4123 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out; 4124 else 4125 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0); 4126 } 4127 4128 if (var->data.fb_fetch_output) { 4129 var->data.assigned = true; 4130 var->data.memory_coherent = !qual->flags.q.non_coherent; 4131 4132 /* From the EXT_shader_framebuffer_fetch spec: 4133 * 4134 * "It is an error to declare an inout fragment output not qualified 4135 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch 4136 * extension hasn't been enabled." 4137 */ 4138 if (var->data.memory_coherent && 4139 !state->EXT_shader_framebuffer_fetch_enable) 4140 _mesa_glsl_error(loc, state, 4141 "invalid declaration of framebuffer fetch output not " 4142 "qualified with layout(noncoherent)"); 4143 4144 } else { 4145 /* From the EXT_shader_framebuffer_fetch spec: 4146 * 4147 * "Fragment outputs declared inout may specify the following layout 4148 * qualifier: [...] noncoherent" 4149 */ 4150 if (qual->flags.q.non_coherent) 4151 _mesa_glsl_error(loc, state, 4152 "invalid layout(noncoherent) qualifier not part of " 4153 "framebuffer fetch output declaration"); 4154 } 4155 4156 if (!is_parameter && is_varying_var(var, state->stage)) { 4157 /* User-defined ins/outs are not permitted in compute shaders. */ 4158 if (state->stage == MESA_SHADER_COMPUTE) { 4159 _mesa_glsl_error(loc, state, 4160 "user-defined input and output variables are not " 4161 "permitted in compute shaders"); 4162 } 4163 4164 /* This variable is being used to link data between shader stages (in 4165 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type 4166 * that is allowed for such purposes. 4167 * 4168 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec: 4169 * 4170 * "The varying qualifier can be used only with the data types 4171 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of 4172 * these." 4173 * 4174 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From 4175 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec: 4176 * 4177 * "Fragment inputs can only be signed and unsigned integers and 4178 * integer vectors, float, floating-point vectors, matrices, or 4179 * arrays of these. Structures cannot be input. 4180 * 4181 * Similar text exists in the section on vertex shader outputs. 4182 * 4183 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES 4184 * 3.00 spec allows structs as well. Varying structs are also allowed 4185 * in GLSL 1.50. 4186 * 4187 * From section 4.3.4 of the ARB_bindless_texture spec: 4188 * 4189 * "(modify third paragraph of the section to allow sampler and image 4190 * types) ... Vertex shader inputs can only be float, 4191 * single-precision floating-point scalars, single-precision 4192 * floating-point vectors, matrices, signed and unsigned integers 4193 * and integer vectors, sampler and image types." 4194 * 4195 * From section 4.3.6 of the ARB_bindless_texture spec: 4196 * 4197 * "Output variables can only be floating-point scalars, 4198 * floating-point vectors, matrices, signed or unsigned integers or 4199 * integer vectors, sampler or image types, or arrays or structures 4200 * of any these." 4201 */ 4202 switch (var->type->without_array()->base_type) { 4203 case GLSL_TYPE_FLOAT: 4204 /* Ok in all GLSL versions */ 4205 break; 4206 case GLSL_TYPE_UINT: 4207 case GLSL_TYPE_INT: 4208 if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable) 4209 break; 4210 _mesa_glsl_error(loc, state, 4211 "varying variables must be of base type float in %s", 4212 state->get_version_string()); 4213 break; 4214 case GLSL_TYPE_STRUCT: 4215 if (state->is_version(150, 300)) 4216 break; 4217 _mesa_glsl_error(loc, state, 4218 "varying variables may not be of type struct"); 4219 break; 4220 case GLSL_TYPE_DOUBLE: 4221 case GLSL_TYPE_UINT64: 4222 case GLSL_TYPE_INT64: 4223 break; 4224 case GLSL_TYPE_SAMPLER: 4225 case GLSL_TYPE_IMAGE: 4226 if (state->has_bindless()) 4227 break; 4228 FALLTHROUGH; 4229 default: 4230 _mesa_glsl_error(loc, state, "illegal type for a varying variable"); 4231 break; 4232 } 4233 } 4234 4235 if (state->all_invariant && var->data.mode == ir_var_shader_out) { 4236 var->data.explicit_invariant = true; 4237 var->data.invariant = true; 4238 } 4239 4240 var->data.interpolation = 4241 interpret_interpolation_qualifier(qual, var->type, 4242 (ir_variable_mode) var->data.mode, 4243 state, loc); 4244 4245 /* Does the declaration use the deprecated 'attribute' or 'varying' 4246 * keywords? 4247 */ 4248 const bool uses_deprecated_qualifier = qual->flags.q.attribute 4249 || qual->flags.q.varying; 4250 4251 4252 /* Validate auxiliary storage qualifiers */ 4253 4254 /* From section 4.3.4 of the GLSL 1.30 spec: 4255 * "It is an error to use centroid in in a vertex shader." 4256 * 4257 * From section 4.3.4 of the GLSL ES 3.00 spec: 4258 * "It is an error to use centroid in or interpolation qualifiers in 4259 * a vertex shader input." 4260 */ 4261 4262 /* Section 4.3.6 of the GLSL 1.30 specification states: 4263 * "It is an error to use centroid out in a fragment shader." 4264 * 4265 * The GL_ARB_shading_language_420pack extension specification states: 4266 * "It is an error to use auxiliary storage qualifiers or interpolation 4267 * qualifiers on an output in a fragment shader." 4268 */ 4269 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) { 4270 _mesa_glsl_error(loc, state, 4271 "sample qualifier may only be used on `in` or `out` " 4272 "variables between shader stages"); 4273 } 4274 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) { 4275 _mesa_glsl_error(loc, state, 4276 "centroid qualifier may only be used with `in', " 4277 "`out' or `varying' variables between shader stages"); 4278 } 4279 4280 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) { 4281 _mesa_glsl_error(loc, state, 4282 "the shared storage qualifiers can only be used with " 4283 "compute shaders"); 4284 } 4285 4286 apply_image_qualifier_to_variable(qual, var, state, loc); 4287} 4288 4289/** 4290 * Get the variable that is being redeclared by this declaration or if it 4291 * does not exist, the current declared variable. 4292 * 4293 * Semantic checks to verify the validity of the redeclaration are also 4294 * performed. If semantic checks fail, compilation error will be emitted via 4295 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned. 4296 * 4297 * \returns 4298 * A pointer to an existing variable in the current scope if the declaration 4299 * is a redeclaration, current variable otherwise. \c is_declared boolean 4300 * will return \c true if the declaration is a redeclaration, \c false 4301 * otherwise. 4302 */ 4303static ir_variable * 4304get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc, 4305 struct _mesa_glsl_parse_state *state, 4306 bool allow_all_redeclarations, 4307 bool *is_redeclaration) 4308{ 4309 ir_variable *var = *var_ptr; 4310 4311 /* Check if this declaration is actually a re-declaration, either to 4312 * resize an array or add qualifiers to an existing variable. 4313 * 4314 * This is allowed for variables in the current scope, or when at 4315 * global scope (for built-ins in the implicit outer scope). 4316 */ 4317 ir_variable *earlier = state->symbols->get_variable(var->name); 4318 if (earlier == NULL || 4319 (state->current_function != NULL && 4320 !state->symbols->name_declared_this_scope(var->name))) { 4321 *is_redeclaration = false; 4322 return var; 4323 } 4324 4325 *is_redeclaration = true; 4326 4327 if (earlier->data.how_declared == ir_var_declared_implicitly) { 4328 /* Verify that the redeclaration of a built-in does not change the 4329 * storage qualifier. There are a couple special cases. 4330 * 4331 * 1. Some built-in variables that are defined as 'in' in the 4332 * specification are implemented as system values. Allow 4333 * ir_var_system_value -> ir_var_shader_in. 4334 * 4335 * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the 4336 * specification requires that redeclarations omit any qualifier. 4337 * Allow ir_var_shader_out -> ir_var_auto for this one variable. 4338 */ 4339 if (earlier->data.mode != var->data.mode && 4340 !(earlier->data.mode == ir_var_system_value && 4341 var->data.mode == ir_var_shader_in) && 4342 !(strcmp(var->name, "gl_LastFragData") == 0 && 4343 var->data.mode == ir_var_auto)) { 4344 _mesa_glsl_error(&loc, state, 4345 "redeclaration cannot change qualification of `%s'", 4346 var->name); 4347 } 4348 } 4349 4350 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec, 4351 * 4352 * "It is legal to declare an array without a size and then 4353 * later re-declare the same name as an array of the same 4354 * type and specify a size." 4355 */ 4356 if (earlier->type->is_unsized_array() && var->type->is_array() 4357 && (var->type->fields.array == earlier->type->fields.array)) { 4358 const int size = var->type->array_size(); 4359 check_builtin_array_max_size(var->name, size, loc, state); 4360 if ((size > 0) && (size <= earlier->data.max_array_access)) { 4361 _mesa_glsl_error(& loc, state, "array size must be > %u due to " 4362 "previous access", 4363 earlier->data.max_array_access); 4364 } 4365 4366 earlier->type = var->type; 4367 delete var; 4368 var = NULL; 4369 *var_ptr = NULL; 4370 } else if (earlier->type != var->type) { 4371 _mesa_glsl_error(&loc, state, 4372 "redeclaration of `%s' has incorrect type", 4373 var->name); 4374 } else if ((state->ARB_fragment_coord_conventions_enable || 4375 state->is_version(150, 0)) 4376 && strcmp(var->name, "gl_FragCoord") == 0) { 4377 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout 4378 * qualifiers. 4379 * 4380 * We don't really need to do anything here, just allow the 4381 * redeclaration. Any error on the gl_FragCoord is handled on the ast 4382 * level at apply_layout_qualifier_to_variable using the 4383 * ast_type_qualifier and _mesa_glsl_parse_state, or later at 4384 * linker.cpp. 4385 */ 4386 /* According to section 4.3.7 of the GLSL 1.30 spec, 4387 * the following built-in varaibles can be redeclared with an 4388 * interpolation qualifier: 4389 * * gl_FrontColor 4390 * * gl_BackColor 4391 * * gl_FrontSecondaryColor 4392 * * gl_BackSecondaryColor 4393 * * gl_Color 4394 * * gl_SecondaryColor 4395 */ 4396 } else if (state->is_version(130, 0) 4397 && (strcmp(var->name, "gl_FrontColor") == 0 4398 || strcmp(var->name, "gl_BackColor") == 0 4399 || strcmp(var->name, "gl_FrontSecondaryColor") == 0 4400 || strcmp(var->name, "gl_BackSecondaryColor") == 0 4401 || strcmp(var->name, "gl_Color") == 0 4402 || strcmp(var->name, "gl_SecondaryColor") == 0)) { 4403 earlier->data.interpolation = var->data.interpolation; 4404 4405 /* Layout qualifiers for gl_FragDepth. */ 4406 } else if ((state->is_version(420, 0) || 4407 state->AMD_conservative_depth_enable || 4408 state->ARB_conservative_depth_enable) 4409 && strcmp(var->name, "gl_FragDepth") == 0) { 4410 4411 /** From the AMD_conservative_depth spec: 4412 * Within any shader, the first redeclarations of gl_FragDepth 4413 * must appear before any use of gl_FragDepth. 4414 */ 4415 if (earlier->data.used) { 4416 _mesa_glsl_error(&loc, state, 4417 "the first redeclaration of gl_FragDepth " 4418 "must appear before any use of gl_FragDepth"); 4419 } 4420 4421 /* Prevent inconsistent redeclaration of depth layout qualifier. */ 4422 if (earlier->data.depth_layout != ir_depth_layout_none 4423 && earlier->data.depth_layout != var->data.depth_layout) { 4424 _mesa_glsl_error(&loc, state, 4425 "gl_FragDepth: depth layout is declared here " 4426 "as '%s, but it was previously declared as " 4427 "'%s'", 4428 depth_layout_string(var->data.depth_layout), 4429 depth_layout_string(earlier->data.depth_layout)); 4430 } 4431 4432 earlier->data.depth_layout = var->data.depth_layout; 4433 4434 } else if (state->has_framebuffer_fetch() && 4435 strcmp(var->name, "gl_LastFragData") == 0 && 4436 var->data.mode == ir_var_auto) { 4437 /* According to the EXT_shader_framebuffer_fetch spec: 4438 * 4439 * "By default, gl_LastFragData is declared with the mediump precision 4440 * qualifier. This can be changed by redeclaring the corresponding 4441 * variables with the desired precision qualifier." 4442 * 4443 * "Fragment shaders may specify the following layout qualifier only for 4444 * redeclaring the built-in gl_LastFragData array [...]: noncoherent" 4445 */ 4446 earlier->data.precision = var->data.precision; 4447 earlier->data.memory_coherent = var->data.memory_coherent; 4448 4449 } else if (state->NV_viewport_array2_enable && 4450 strcmp(var->name, "gl_Layer") == 0 && 4451 earlier->data.how_declared == ir_var_declared_implicitly) { 4452 /* No need to do anything, just allow it. Qualifier is stored in state */ 4453 4454 } else if (state->is_version(0, 300) && 4455 state->has_separate_shader_objects() && 4456 (strcmp(var->name, "gl_Position") == 0 || 4457 strcmp(var->name, "gl_PointSize") == 0)) { 4458 4459 /* EXT_separate_shader_objects spec says: 4460 * 4461 * "The following vertex shader outputs may be redeclared 4462 * at global scope to specify a built-in output interface, 4463 * with or without special qualifiers: 4464 * 4465 * gl_Position 4466 * gl_PointSize 4467 * 4468 * When compiling shaders using either of the above variables, 4469 * both such variables must be redeclared prior to use." 4470 */ 4471 if (earlier->data.used) { 4472 _mesa_glsl_error(&loc, state, "the first redeclaration of " 4473 "%s must appear before any use", var->name); 4474 } 4475 } else if ((earlier->data.how_declared == ir_var_declared_implicitly && 4476 state->allow_builtin_variable_redeclaration) || 4477 allow_all_redeclarations) { 4478 /* Allow verbatim redeclarations of built-in variables. Not explicitly 4479 * valid, but some applications do it. 4480 */ 4481 } else { 4482 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); 4483 } 4484 4485 return earlier; 4486} 4487 4488/** 4489 * Generate the IR for an initializer in a variable declaration 4490 */ 4491static ir_rvalue * 4492process_initializer(ir_variable *var, ast_declaration *decl, 4493 ast_fully_specified_type *type, 4494 exec_list *initializer_instructions, 4495 struct _mesa_glsl_parse_state *state) 4496{ 4497 void *mem_ctx = state; 4498 ir_rvalue *result = NULL; 4499 4500 YYLTYPE initializer_loc = decl->initializer->get_location(); 4501 4502 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec: 4503 * 4504 * "All uniform variables are read-only and are initialized either 4505 * directly by an application via API commands, or indirectly by 4506 * OpenGL." 4507 */ 4508 if (var->data.mode == ir_var_uniform) { 4509 state->check_version(120, 0, &initializer_loc, 4510 "cannot initialize uniform %s", 4511 var->name); 4512 } 4513 4514 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: 4515 * 4516 * "Buffer variables cannot have initializers." 4517 */ 4518 if (var->data.mode == ir_var_shader_storage) { 4519 _mesa_glsl_error(&initializer_loc, state, 4520 "cannot initialize buffer variable %s", 4521 var->name); 4522 } 4523 4524 /* From section 4.1.7 of the GLSL 4.40 spec: 4525 * 4526 * "Opaque variables [...] are initialized only through the 4527 * OpenGL API; they cannot be declared with an initializer in a 4528 * shader." 4529 * 4530 * From section 4.1.7 of the ARB_bindless_texture spec: 4531 * 4532 * "Samplers may be declared as shader inputs and outputs, as uniform 4533 * variables, as temporary variables, and as function parameters." 4534 * 4535 * From section 4.1.X of the ARB_bindless_texture spec: 4536 * 4537 * "Images may be declared as shader inputs and outputs, as uniform 4538 * variables, as temporary variables, and as function parameters." 4539 */ 4540 if (var->type->contains_atomic() || 4541 (!state->has_bindless() && var->type->contains_opaque())) { 4542 _mesa_glsl_error(&initializer_loc, state, 4543 "cannot initialize %s variable %s", 4544 var->name, state->has_bindless() ? "atomic" : "opaque"); 4545 } 4546 4547 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) { 4548 _mesa_glsl_error(&initializer_loc, state, 4549 "cannot initialize %s shader input / %s %s", 4550 _mesa_shader_stage_to_string(state->stage), 4551 (state->stage == MESA_SHADER_VERTEX) 4552 ? "attribute" : "varying", 4553 var->name); 4554 } 4555 4556 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) { 4557 _mesa_glsl_error(&initializer_loc, state, 4558 "cannot initialize %s shader output %s", 4559 _mesa_shader_stage_to_string(state->stage), 4560 var->name); 4561 } 4562 4563 /* If the initializer is an ast_aggregate_initializer, recursively store 4564 * type information from the LHS into it, so that its hir() function can do 4565 * type checking. 4566 */ 4567 if (decl->initializer->oper == ast_aggregate) 4568 _mesa_ast_set_aggregate_type(var->type, decl->initializer); 4569 4570 ir_dereference *const lhs = new(state) ir_dereference_variable(var); 4571 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state); 4572 4573 /* Calculate the constant value if this is a const or uniform 4574 * declaration. 4575 * 4576 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says: 4577 * 4578 * "Declarations of globals without a storage qualifier, or with 4579 * just the const qualifier, may include initializers, in which case 4580 * they will be initialized before the first line of main() is 4581 * executed. Such initializers must be a constant expression." 4582 * 4583 * The same section of the GLSL ES 3.00.4 spec has similar language. 4584 */ 4585 if (type->qualifier.flags.q.constant 4586 || type->qualifier.flags.q.uniform 4587 || (state->es_shader && state->current_function == NULL)) { 4588 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc, 4589 lhs, rhs, true); 4590 if (new_rhs != NULL) { 4591 rhs = new_rhs; 4592 4593 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec 4594 * says: 4595 * 4596 * "A constant expression is one of 4597 * 4598 * ... 4599 * 4600 * - an expression formed by an operator on operands that are 4601 * all constant expressions, including getting an element of 4602 * a constant array, or a field of a constant structure, or 4603 * components of a constant vector. However, the sequence 4604 * operator ( , ) and the assignment operators ( =, +=, ...) 4605 * are not included in the operators that can create a 4606 * constant expression." 4607 * 4608 * Section 12.43 (Sequence operator and constant expressions) says: 4609 * 4610 * "Should the following construct be allowed? 4611 * 4612 * float a[2,3]; 4613 * 4614 * The expression within the brackets uses the sequence operator 4615 * (',') and returns the integer 3 so the construct is declaring 4616 * a single-dimensional array of size 3. In some languages, the 4617 * construct declares a two-dimensional array. It would be 4618 * preferable to make this construct illegal to avoid confusion. 4619 * 4620 * One possibility is to change the definition of the sequence 4621 * operator so that it does not return a constant-expression and 4622 * hence cannot be used to declare an array size. 4623 * 4624 * RESOLUTION: The result of a sequence operator is not a 4625 * constant-expression." 4626 * 4627 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec 4628 * contains language almost identical to the section 4.3.3 in the 4629 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL 4630 * versions. 4631 */ 4632 ir_constant *constant_value = 4633 rhs->constant_expression_value(mem_ctx); 4634 4635 if (!constant_value || 4636 (state->is_version(430, 300) && 4637 decl->initializer->has_sequence_subexpression())) { 4638 const char *const variable_mode = 4639 (type->qualifier.flags.q.constant) 4640 ? "const" 4641 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global"); 4642 4643 /* If ARB_shading_language_420pack is enabled, initializers of 4644 * const-qualified local variables do not have to be constant 4645 * expressions. Const-qualified global variables must still be 4646 * initialized with constant expressions. 4647 */ 4648 if (!state->has_420pack() 4649 || state->current_function == NULL) { 4650 _mesa_glsl_error(& initializer_loc, state, 4651 "initializer of %s variable `%s' must be a " 4652 "constant expression", 4653 variable_mode, 4654 decl->identifier); 4655 if (var->type->is_numeric()) { 4656 /* Reduce cascading errors. */ 4657 var->constant_value = type->qualifier.flags.q.constant 4658 ? ir_constant::zero(state, var->type) : NULL; 4659 } 4660 } 4661 } else { 4662 rhs = constant_value; 4663 var->constant_value = type->qualifier.flags.q.constant 4664 ? constant_value : NULL; 4665 } 4666 } else { 4667 if (var->type->is_numeric()) { 4668 /* Reduce cascading errors. */ 4669 rhs = var->constant_value = type->qualifier.flags.q.constant 4670 ? ir_constant::zero(state, var->type) : NULL; 4671 } 4672 } 4673 } 4674 4675 if (rhs && !rhs->type->is_error()) { 4676 bool temp = var->data.read_only; 4677 if (type->qualifier.flags.q.constant) 4678 var->data.read_only = false; 4679 4680 /* Never emit code to initialize a uniform. 4681 */ 4682 const glsl_type *initializer_type; 4683 bool error_emitted = false; 4684 if (!type->qualifier.flags.q.uniform) { 4685 error_emitted = 4686 do_assignment(initializer_instructions, state, 4687 NULL, lhs, rhs, 4688 &result, true, true, 4689 type->get_location()); 4690 initializer_type = result->type; 4691 } else 4692 initializer_type = rhs->type; 4693 4694 if (!error_emitted) { 4695 var->constant_initializer = rhs->constant_expression_value(mem_ctx); 4696 var->data.has_initializer = true; 4697 var->data.is_implicit_initializer = false; 4698 4699 /* If the declared variable is an unsized array, it must inherrit 4700 * its full type from the initializer. A declaration such as 4701 * 4702 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0); 4703 * 4704 * becomes 4705 * 4706 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0); 4707 * 4708 * The assignment generated in the if-statement (below) will also 4709 * automatically handle this case for non-uniforms. 4710 * 4711 * If the declared variable is not an array, the types must 4712 * already match exactly. As a result, the type assignment 4713 * here can be done unconditionally. For non-uniforms the call 4714 * to do_assignment can change the type of the initializer (via 4715 * the implicit conversion rules). For uniforms the initializer 4716 * must be a constant expression, and the type of that expression 4717 * was validated above. 4718 */ 4719 var->type = initializer_type; 4720 } 4721 4722 var->data.read_only = temp; 4723 } 4724 4725 return result; 4726} 4727 4728static void 4729validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state, 4730 YYLTYPE loc, ir_variable *var, 4731 unsigned num_vertices, 4732 unsigned *size, 4733 const char *var_category) 4734{ 4735 if (var->type->is_unsized_array()) { 4736 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says: 4737 * 4738 * All geometry shader input unsized array declarations will be 4739 * sized by an earlier input layout qualifier, when present, as per 4740 * the following table. 4741 * 4742 * Followed by a table mapping each allowed input layout qualifier to 4743 * the corresponding input length. 4744 * 4745 * Similarly for tessellation control shader outputs. 4746 */ 4747 if (num_vertices != 0) 4748 var->type = glsl_type::get_array_instance(var->type->fields.array, 4749 num_vertices); 4750 } else { 4751 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec 4752 * includes the following examples of compile-time errors: 4753 * 4754 * // code sequence within one shader... 4755 * in vec4 Color1[]; // size unknown 4756 * ...Color1.length()...// illegal, length() unknown 4757 * in vec4 Color2[2]; // size is 2 4758 * ...Color1.length()...// illegal, Color1 still has no size 4759 * in vec4 Color3[3]; // illegal, input sizes are inconsistent 4760 * layout(lines) in; // legal, input size is 2, matching 4761 * in vec4 Color4[3]; // illegal, contradicts layout 4762 * ... 4763 * 4764 * To detect the case illustrated by Color3, we verify that the size of 4765 * an explicitly-sized array matches the size of any previously declared 4766 * explicitly-sized array. To detect the case illustrated by Color4, we 4767 * verify that the size of an explicitly-sized array is consistent with 4768 * any previously declared input layout. 4769 */ 4770 if (num_vertices != 0 && var->type->length != num_vertices) { 4771 _mesa_glsl_error(&loc, state, 4772 "%s size contradicts previously declared layout " 4773 "(size is %u, but layout requires a size of %u)", 4774 var_category, var->type->length, num_vertices); 4775 } else if (*size != 0 && var->type->length != *size) { 4776 _mesa_glsl_error(&loc, state, 4777 "%s sizes are inconsistent (size is %u, but a " 4778 "previous declaration has size %u)", 4779 var_category, var->type->length, *size); 4780 } else { 4781 *size = var->type->length; 4782 } 4783 } 4784} 4785 4786static void 4787handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state, 4788 YYLTYPE loc, ir_variable *var) 4789{ 4790 unsigned num_vertices = 0; 4791 4792 if (state->tcs_output_vertices_specified) { 4793 if (!state->out_qualifier->vertices-> 4794 process_qualifier_constant(state, "vertices", 4795 &num_vertices, false)) { 4796 return; 4797 } 4798 4799 if (num_vertices > state->Const.MaxPatchVertices) { 4800 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds " 4801 "GL_MAX_PATCH_VERTICES", num_vertices); 4802 return; 4803 } 4804 } 4805 4806 if (!var->type->is_array() && !var->data.patch) { 4807 _mesa_glsl_error(&loc, state, 4808 "tessellation control shader outputs must be arrays"); 4809 4810 /* To avoid cascading failures, short circuit the checks below. */ 4811 return; 4812 } 4813 4814 if (var->data.patch) 4815 return; 4816 4817 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, 4818 &state->tcs_output_size, 4819 "tessellation control shader output"); 4820} 4821 4822/** 4823 * Do additional processing necessary for tessellation control/evaluation shader 4824 * input declarations. This covers both interface block arrays and bare input 4825 * variables. 4826 */ 4827static void 4828handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state, 4829 YYLTYPE loc, ir_variable *var) 4830{ 4831 if (!var->type->is_array() && !var->data.patch) { 4832 _mesa_glsl_error(&loc, state, 4833 "per-vertex tessellation shader inputs must be arrays"); 4834 /* Avoid cascading failures. */ 4835 return; 4836 } 4837 4838 if (var->data.patch) 4839 return; 4840 4841 /* The ARB_tessellation_shader spec says: 4842 * 4843 * "Declaring an array size is optional. If no size is specified, it 4844 * will be taken from the implementation-dependent maximum patch size 4845 * (gl_MaxPatchVertices). If a size is specified, it must match the 4846 * maximum patch size; otherwise, a compile or link error will occur." 4847 * 4848 * This text appears twice, once for TCS inputs, and again for TES inputs. 4849 */ 4850 if (var->type->is_unsized_array()) { 4851 var->type = glsl_type::get_array_instance(var->type->fields.array, 4852 state->Const.MaxPatchVertices); 4853 } else if (var->type->length != state->Const.MaxPatchVertices) { 4854 _mesa_glsl_error(&loc, state, 4855 "per-vertex tessellation shader input arrays must be " 4856 "sized to gl_MaxPatchVertices (%d).", 4857 state->Const.MaxPatchVertices); 4858 } 4859} 4860 4861 4862/** 4863 * Do additional processing necessary for geometry shader input declarations 4864 * (this covers both interface blocks arrays and bare input variables). 4865 */ 4866static void 4867handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state, 4868 YYLTYPE loc, ir_variable *var) 4869{ 4870 unsigned num_vertices = 0; 4871 4872 if (state->gs_input_prim_type_specified) { 4873 num_vertices = vertices_per_prim(state->in_qualifier->prim_type); 4874 } 4875 4876 /* Geometry shader input variables must be arrays. Caller should have 4877 * reported an error for this. 4878 */ 4879 if (!var->type->is_array()) { 4880 assert(state->error); 4881 4882 /* To avoid cascading failures, short circuit the checks below. */ 4883 return; 4884 } 4885 4886 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices, 4887 &state->gs_input_size, 4888 "geometry shader input"); 4889} 4890 4891static void 4892validate_identifier(const char *identifier, YYLTYPE loc, 4893 struct _mesa_glsl_parse_state *state) 4894{ 4895 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec, 4896 * 4897 * "Identifiers starting with "gl_" are reserved for use by 4898 * OpenGL, and may not be declared in a shader as either a 4899 * variable or a function." 4900 */ 4901 if (is_gl_identifier(identifier)) { 4902 _mesa_glsl_error(&loc, state, 4903 "identifier `%s' uses reserved `gl_' prefix", 4904 identifier); 4905 } else if (strstr(identifier, "__")) { 4906 /* From page 14 (page 20 of the PDF) of the GLSL 1.10 4907 * spec: 4908 * 4909 * "In addition, all identifiers containing two 4910 * consecutive underscores (__) are reserved as 4911 * possible future keywords." 4912 * 4913 * The intention is that names containing __ are reserved for internal 4914 * use by the implementation, and names prefixed with GL_ are reserved 4915 * for use by Khronos. Names simply containing __ are dangerous to use, 4916 * but should be allowed. 4917 * 4918 * A future version of the GLSL specification will clarify this. 4919 */ 4920 _mesa_glsl_warning(&loc, state, 4921 "identifier `%s' uses reserved `__' string", 4922 identifier); 4923 } 4924} 4925 4926ir_rvalue * 4927ast_declarator_list::hir(exec_list *instructions, 4928 struct _mesa_glsl_parse_state *state) 4929{ 4930 void *ctx = state; 4931 const struct glsl_type *decl_type; 4932 const char *type_name = NULL; 4933 ir_rvalue *result = NULL; 4934 YYLTYPE loc = this->get_location(); 4935 4936 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec: 4937 * 4938 * "To ensure that a particular output variable is invariant, it is 4939 * necessary to use the invariant qualifier. It can either be used to 4940 * qualify a previously declared variable as being invariant 4941 * 4942 * invariant gl_Position; // make existing gl_Position be invariant" 4943 * 4944 * In these cases the parser will set the 'invariant' flag in the declarator 4945 * list, and the type will be NULL. 4946 */ 4947 if (this->invariant) { 4948 assert(this->type == NULL); 4949 4950 if (state->current_function != NULL) { 4951 _mesa_glsl_error(& loc, state, 4952 "all uses of `invariant' keyword must be at global " 4953 "scope"); 4954 } 4955 4956 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 4957 assert(decl->array_specifier == NULL); 4958 assert(decl->initializer == NULL); 4959 4960 ir_variable *const earlier = 4961 state->symbols->get_variable(decl->identifier); 4962 if (earlier == NULL) { 4963 _mesa_glsl_error(& loc, state, 4964 "undeclared variable `%s' cannot be marked " 4965 "invariant", decl->identifier); 4966 } else if (!is_allowed_invariant(earlier, state)) { 4967 _mesa_glsl_error(&loc, state, 4968 "`%s' cannot be marked invariant; interfaces between " 4969 "shader stages only.", decl->identifier); 4970 } else if (earlier->data.used) { 4971 _mesa_glsl_error(& loc, state, 4972 "variable `%s' may not be redeclared " 4973 "`invariant' after being used", 4974 earlier->name); 4975 } else { 4976 earlier->data.explicit_invariant = true; 4977 earlier->data.invariant = true; 4978 } 4979 } 4980 4981 /* Invariant redeclarations do not have r-values. 4982 */ 4983 return NULL; 4984 } 4985 4986 if (this->precise) { 4987 assert(this->type == NULL); 4988 4989 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 4990 assert(decl->array_specifier == NULL); 4991 assert(decl->initializer == NULL); 4992 4993 ir_variable *const earlier = 4994 state->symbols->get_variable(decl->identifier); 4995 if (earlier == NULL) { 4996 _mesa_glsl_error(& loc, state, 4997 "undeclared variable `%s' cannot be marked " 4998 "precise", decl->identifier); 4999 } else if (state->current_function != NULL && 5000 !state->symbols->name_declared_this_scope(decl->identifier)) { 5001 /* Note: we have to check if we're in a function, since 5002 * builtins are treated as having come from another scope. 5003 */ 5004 _mesa_glsl_error(& loc, state, 5005 "variable `%s' from an outer scope may not be " 5006 "redeclared `precise' in this scope", 5007 earlier->name); 5008 } else if (earlier->data.used) { 5009 _mesa_glsl_error(& loc, state, 5010 "variable `%s' may not be redeclared " 5011 "`precise' after being used", 5012 earlier->name); 5013 } else { 5014 earlier->data.precise = true; 5015 } 5016 } 5017 5018 /* Precise redeclarations do not have r-values either. */ 5019 return NULL; 5020 } 5021 5022 assert(this->type != NULL); 5023 assert(!this->invariant); 5024 assert(!this->precise); 5025 5026 /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to 5027 * indicate that it needs to be updated later (see glsl_parser.yy). 5028 * This is done here, based on the layout qualifier and the type of the image var 5029 */ 5030 if (this->type->qualifier.flags.q.explicit_image_format && 5031 this->type->specifier->type->is_image() && 5032 this->type->qualifier.image_base_type == GLSL_TYPE_VOID) { 5033 /* "The ARB_shader_image_load_store says: 5034 * If both extensions are enabled in the shading language, the "size*" layout 5035 * qualifiers are treated as format qualifiers, and are mapped to equivalent 5036 * format qualifiers in the table below, according to the type of image 5037 * variable. 5038 * image* iimage* uimage* 5039 * -------- -------- -------- 5040 * size1x8 n/a r8i r8ui 5041 * size1x16 r16f r16i r16ui 5042 * size1x32 r32f r32i r32ui 5043 * size2x32 rg32f rg32i rg32ui 5044 * size4x32 rgba32f rgba32i rgba32ui" 5045 */ 5046 if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) { 5047 switch (this->type->qualifier.image_format) { 5048 case PIPE_FORMAT_R8_SINT: 5049 /* The GL_EXT_shader_image_load_store spec says: 5050 * A layout of "size1x8" is illegal for image variables associated 5051 * with floating-point data types. 5052 */ 5053 _mesa_glsl_error(& loc, state, 5054 "size1x8 is illegal for image variables " 5055 "with floating-point data types."); 5056 return NULL; 5057 case PIPE_FORMAT_R16_SINT: 5058 this->type->qualifier.image_format = PIPE_FORMAT_R16_FLOAT; 5059 break; 5060 case PIPE_FORMAT_R32_SINT: 5061 this->type->qualifier.image_format = PIPE_FORMAT_R32_FLOAT; 5062 break; 5063 case PIPE_FORMAT_R32G32_SINT: 5064 this->type->qualifier.image_format = PIPE_FORMAT_R32G32_FLOAT; 5065 break; 5066 case PIPE_FORMAT_R32G32B32A32_SINT: 5067 this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_FLOAT; 5068 break; 5069 default: 5070 unreachable("Unknown image format"); 5071 } 5072 this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT; 5073 } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) { 5074 switch (this->type->qualifier.image_format) { 5075 case PIPE_FORMAT_R8_SINT: 5076 this->type->qualifier.image_format = PIPE_FORMAT_R8_UINT; 5077 break; 5078 case PIPE_FORMAT_R16_SINT: 5079 this->type->qualifier.image_format = PIPE_FORMAT_R16_UINT; 5080 break; 5081 case PIPE_FORMAT_R32_SINT: 5082 this->type->qualifier.image_format = PIPE_FORMAT_R32_UINT; 5083 break; 5084 case PIPE_FORMAT_R32G32_SINT: 5085 this->type->qualifier.image_format = PIPE_FORMAT_R32G32_UINT; 5086 break; 5087 case PIPE_FORMAT_R32G32B32A32_SINT: 5088 this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_UINT; 5089 break; 5090 default: 5091 unreachable("Unknown image format"); 5092 } 5093 this->type->qualifier.image_base_type = GLSL_TYPE_UINT; 5094 } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) { 5095 this->type->qualifier.image_base_type = GLSL_TYPE_INT; 5096 } else { 5097 assert(false); 5098 } 5099 } 5100 5101 /* The type specifier may contain a structure definition. Process that 5102 * before any of the variable declarations. 5103 */ 5104 (void) this->type->specifier->hir(instructions, state); 5105 5106 decl_type = this->type->glsl_type(& type_name, state); 5107 5108 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec: 5109 * "Buffer variables may only be declared inside interface blocks 5110 * (section 4.3.9 “Interface Blocks”), which are then referred to as 5111 * shader storage blocks. It is a compile-time error to declare buffer 5112 * variables at global scope (outside a block)." 5113 */ 5114 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) { 5115 _mesa_glsl_error(&loc, state, 5116 "buffer variables cannot be declared outside " 5117 "interface blocks"); 5118 } 5119 5120 /* An offset-qualified atomic counter declaration sets the default 5121 * offset for the next declaration within the same atomic counter 5122 * buffer. 5123 */ 5124 if (decl_type && decl_type->contains_atomic()) { 5125 if (type->qualifier.flags.q.explicit_binding && 5126 type->qualifier.flags.q.explicit_offset) { 5127 unsigned qual_binding; 5128 unsigned qual_offset; 5129 if (process_qualifier_constant(state, &loc, "binding", 5130 type->qualifier.binding, 5131 &qual_binding) 5132 && process_qualifier_constant(state, &loc, "offset", 5133 type->qualifier.offset, 5134 &qual_offset)) { 5135 if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets)) 5136 state->atomic_counter_offsets[qual_binding] = qual_offset; 5137 } 5138 } 5139 5140 ast_type_qualifier allowed_atomic_qual_mask; 5141 allowed_atomic_qual_mask.flags.i = 0; 5142 allowed_atomic_qual_mask.flags.q.explicit_binding = 1; 5143 allowed_atomic_qual_mask.flags.q.explicit_offset = 1; 5144 allowed_atomic_qual_mask.flags.q.uniform = 1; 5145 5146 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask, 5147 "invalid layout qualifier for", 5148 "atomic_uint"); 5149 } 5150 5151 if (this->declarations.is_empty()) { 5152 /* If there is no structure involved in the program text, there are two 5153 * possible scenarios: 5154 * 5155 * - The program text contained something like 'vec4;'. This is an 5156 * empty declaration. It is valid but weird. Emit a warning. 5157 * 5158 * - The program text contained something like 'S;' and 'S' is not the 5159 * name of a known structure type. This is both invalid and weird. 5160 * Emit an error. 5161 * 5162 * - The program text contained something like 'mediump float;' 5163 * when the programmer probably meant 'precision mediump 5164 * float;' Emit a warning with a description of what they 5165 * probably meant to do. 5166 * 5167 * Note that if decl_type is NULL and there is a structure involved, 5168 * there must have been some sort of error with the structure. In this 5169 * case we assume that an error was already generated on this line of 5170 * code for the structure. There is no need to generate an additional, 5171 * confusing error. 5172 */ 5173 assert(this->type->specifier->structure == NULL || decl_type != NULL 5174 || state->error); 5175 5176 if (decl_type == NULL) { 5177 _mesa_glsl_error(&loc, state, 5178 "invalid type `%s' in empty declaration", 5179 type_name); 5180 } else { 5181 if (decl_type->is_array()) { 5182 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2 5183 * spec: 5184 * 5185 * "... any declaration that leaves the size undefined is 5186 * disallowed as this would add complexity and there are no 5187 * use-cases." 5188 */ 5189 if (state->es_shader && decl_type->is_unsized_array()) { 5190 _mesa_glsl_error(&loc, state, "array size must be explicitly " 5191 "or implicitly defined"); 5192 } 5193 5194 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec: 5195 * 5196 * "The combinations of types and qualifiers that cause 5197 * compile-time or link-time errors are the same whether or not 5198 * the declaration is empty." 5199 */ 5200 validate_array_dimensions(decl_type, state, &loc); 5201 } 5202 5203 if (decl_type->is_atomic_uint()) { 5204 /* Empty atomic counter declarations are allowed and useful 5205 * to set the default offset qualifier. 5206 */ 5207 return NULL; 5208 } else if (this->type->qualifier.precision != ast_precision_none) { 5209 if (this->type->specifier->structure != NULL) { 5210 _mesa_glsl_error(&loc, state, 5211 "precision qualifiers can't be applied " 5212 "to structures"); 5213 } else { 5214 static const char *const precision_names[] = { 5215 "highp", 5216 "highp", 5217 "mediump", 5218 "lowp" 5219 }; 5220 5221 _mesa_glsl_warning(&loc, state, 5222 "empty declaration with precision " 5223 "qualifier, to set the default precision, " 5224 "use `precision %s %s;'", 5225 precision_names[this->type-> 5226 qualifier.precision], 5227 type_name); 5228 } 5229 } else if (this->type->specifier->structure == NULL) { 5230 _mesa_glsl_warning(&loc, state, "empty declaration"); 5231 } 5232 } 5233 } 5234 5235 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 5236 const struct glsl_type *var_type; 5237 ir_variable *var; 5238 const char *identifier = decl->identifier; 5239 /* FINISHME: Emit a warning if a variable declaration shadows a 5240 * FINISHME: declaration at a higher scope. 5241 */ 5242 5243 if ((decl_type == NULL) || decl_type->is_void()) { 5244 if (type_name != NULL) { 5245 _mesa_glsl_error(& loc, state, 5246 "invalid type `%s' in declaration of `%s'", 5247 type_name, decl->identifier); 5248 } else { 5249 _mesa_glsl_error(& loc, state, 5250 "invalid type in declaration of `%s'", 5251 decl->identifier); 5252 } 5253 continue; 5254 } 5255 5256 if (this->type->qualifier.is_subroutine_decl()) { 5257 const glsl_type *t; 5258 const char *name; 5259 5260 t = state->symbols->get_type(this->type->specifier->type_name); 5261 if (!t) 5262 _mesa_glsl_error(& loc, state, 5263 "invalid type in declaration of `%s'", 5264 decl->identifier); 5265 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier); 5266 5267 identifier = name; 5268 5269 } 5270 var_type = process_array_type(&loc, decl_type, decl->array_specifier, 5271 state); 5272 5273 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto); 5274 5275 /* The 'varying in' and 'varying out' qualifiers can only be used with 5276 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support 5277 * yet. 5278 */ 5279 if (this->type->qualifier.flags.q.varying) { 5280 if (this->type->qualifier.flags.q.in) { 5281 _mesa_glsl_error(& loc, state, 5282 "`varying in' qualifier in declaration of " 5283 "`%s' only valid for geometry shaders using " 5284 "ARB_geometry_shader4 or EXT_geometry_shader4", 5285 decl->identifier); 5286 } else if (this->type->qualifier.flags.q.out) { 5287 _mesa_glsl_error(& loc, state, 5288 "`varying out' qualifier in declaration of " 5289 "`%s' only valid for geometry shaders using " 5290 "ARB_geometry_shader4 or EXT_geometry_shader4", 5291 decl->identifier); 5292 } 5293 } 5294 5295 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification; 5296 * 5297 * "Global variables can only use the qualifiers const, 5298 * attribute, uniform, or varying. Only one may be 5299 * specified. 5300 * 5301 * Local variables can only use the qualifier const." 5302 * 5303 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by 5304 * any extension that adds the 'layout' keyword. 5305 */ 5306 if (!state->is_version(130, 300) 5307 && !state->has_explicit_attrib_location() 5308 && !state->has_separate_shader_objects() 5309 && !state->ARB_fragment_coord_conventions_enable) { 5310 /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader 5311 * outputs. (the varying flag is not set by the parser) 5312 */ 5313 if (this->type->qualifier.flags.q.out && 5314 (!state->EXT_gpu_shader4_enable || 5315 state->stage != MESA_SHADER_FRAGMENT)) { 5316 _mesa_glsl_error(& loc, state, 5317 "`out' qualifier in declaration of `%s' " 5318 "only valid for function parameters in %s", 5319 decl->identifier, state->get_version_string()); 5320 } 5321 if (this->type->qualifier.flags.q.in) { 5322 _mesa_glsl_error(& loc, state, 5323 "`in' qualifier in declaration of `%s' " 5324 "only valid for function parameters in %s", 5325 decl->identifier, state->get_version_string()); 5326 } 5327 /* FINISHME: Test for other invalid qualifiers. */ 5328 } 5329 5330 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, 5331 & loc, false); 5332 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state, 5333 &loc); 5334 5335 if ((state->zero_init & (1u << var->data.mode)) && 5336 (var->type->is_numeric() || var->type->is_boolean())) { 5337 const ir_constant_data data = { { 0 } }; 5338 var->data.has_initializer = true; 5339 var->data.is_implicit_initializer = true; 5340 var->constant_initializer = new(var) ir_constant(var->type, &data); 5341 } 5342 5343 if (this->type->qualifier.flags.q.invariant) { 5344 if (!is_allowed_invariant(var, state)) { 5345 _mesa_glsl_error(&loc, state, 5346 "`%s' cannot be marked invariant; interfaces between " 5347 "shader stages only", var->name); 5348 } 5349 } 5350 5351 if (state->current_function != NULL) { 5352 const char *mode = NULL; 5353 const char *extra = ""; 5354 5355 /* There is no need to check for 'inout' here because the parser will 5356 * only allow that in function parameter lists. 5357 */ 5358 if (this->type->qualifier.flags.q.attribute) { 5359 mode = "attribute"; 5360 } else if (this->type->qualifier.is_subroutine_decl()) { 5361 mode = "subroutine uniform"; 5362 } else if (this->type->qualifier.flags.q.uniform) { 5363 mode = "uniform"; 5364 } else if (this->type->qualifier.flags.q.varying) { 5365 mode = "varying"; 5366 } else if (this->type->qualifier.flags.q.in) { 5367 mode = "in"; 5368 extra = " or in function parameter list"; 5369 } else if (this->type->qualifier.flags.q.out) { 5370 mode = "out"; 5371 extra = " or in function parameter list"; 5372 } 5373 5374 if (mode) { 5375 _mesa_glsl_error(& loc, state, 5376 "%s variable `%s' must be declared at " 5377 "global scope%s", 5378 mode, var->name, extra); 5379 } 5380 } else if (var->data.mode == ir_var_shader_in) { 5381 var->data.read_only = true; 5382 5383 if (state->stage == MESA_SHADER_VERTEX) { 5384 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec: 5385 * 5386 * "Vertex shader inputs can only be float, floating-point 5387 * vectors, matrices, signed and unsigned integers and integer 5388 * vectors. Vertex shader inputs can also form arrays of these 5389 * types, but not structures." 5390 * 5391 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec: 5392 * 5393 * "Vertex shader inputs can only be float, floating-point 5394 * vectors, matrices, signed and unsigned integers and integer 5395 * vectors. They cannot be arrays or structures." 5396 * 5397 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec: 5398 * 5399 * "The attribute qualifier can be used only with float, 5400 * floating-point vectors, and matrices. Attribute variables 5401 * cannot be declared as arrays or structures." 5402 * 5403 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec: 5404 * 5405 * "Vertex shader inputs can only be float, floating-point 5406 * vectors, matrices, signed and unsigned integers and integer 5407 * vectors. Vertex shader inputs cannot be arrays or 5408 * structures." 5409 * 5410 * From section 4.3.4 of the ARB_bindless_texture spec: 5411 * 5412 * "(modify third paragraph of the section to allow sampler and 5413 * image types) ... Vertex shader inputs can only be float, 5414 * single-precision floating-point scalars, single-precision 5415 * floating-point vectors, matrices, signed and unsigned 5416 * integers and integer vectors, sampler and image types." 5417 */ 5418 const glsl_type *check_type = var->type->without_array(); 5419 5420 bool error = false; 5421 switch (check_type->base_type) { 5422 case GLSL_TYPE_FLOAT: 5423 break; 5424 case GLSL_TYPE_UINT64: 5425 case GLSL_TYPE_INT64: 5426 break; 5427 case GLSL_TYPE_UINT: 5428 case GLSL_TYPE_INT: 5429 error = !state->is_version(120, 300) && !state->EXT_gpu_shader4_enable; 5430 break; 5431 case GLSL_TYPE_DOUBLE: 5432 error = !state->is_version(410, 0) && !state->ARB_vertex_attrib_64bit_enable; 5433 break; 5434 case GLSL_TYPE_SAMPLER: 5435 case GLSL_TYPE_IMAGE: 5436 error = !state->has_bindless(); 5437 break; 5438 default: 5439 error = true; 5440 } 5441 5442 if (error) { 5443 _mesa_glsl_error(& loc, state, 5444 "vertex shader input / attribute cannot have " 5445 "type %s`%s'", 5446 var->type->is_array() ? "array of " : "", 5447 check_type->name); 5448 } else if (var->type->is_array() && 5449 !state->check_version(150, 0, &loc, 5450 "vertex shader input / attribute " 5451 "cannot have array type")) { 5452 } 5453 } else if (state->stage == MESA_SHADER_GEOMETRY) { 5454 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: 5455 * 5456 * Geometry shader input variables get the per-vertex values 5457 * written out by vertex shader output variables of the same 5458 * names. Since a geometry shader operates on a set of 5459 * vertices, each input varying variable (or input block, see 5460 * interface blocks below) needs to be declared as an array. 5461 */ 5462 if (!var->type->is_array()) { 5463 _mesa_glsl_error(&loc, state, 5464 "geometry shader inputs must be arrays"); 5465 } 5466 5467 handle_geometry_shader_input_decl(state, loc, var); 5468 } else if (state->stage == MESA_SHADER_FRAGMENT) { 5469 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec: 5470 * 5471 * It is a compile-time error to declare a fragment shader 5472 * input with, or that contains, any of the following types: 5473 * 5474 * * A boolean type 5475 * * An opaque type 5476 * * An array of arrays 5477 * * An array of structures 5478 * * A structure containing an array 5479 * * A structure containing a structure 5480 */ 5481 if (state->es_shader) { 5482 const glsl_type *check_type = var->type->without_array(); 5483 if (check_type->is_boolean() || 5484 check_type->contains_opaque()) { 5485 _mesa_glsl_error(&loc, state, 5486 "fragment shader input cannot have type %s", 5487 check_type->name); 5488 } 5489 if (var->type->is_array() && 5490 var->type->fields.array->is_array()) { 5491 _mesa_glsl_error(&loc, state, 5492 "%s shader output " 5493 "cannot have an array of arrays", 5494 _mesa_shader_stage_to_string(state->stage)); 5495 } 5496 if (var->type->is_array() && 5497 var->type->fields.array->is_struct()) { 5498 _mesa_glsl_error(&loc, state, 5499 "fragment shader input " 5500 "cannot have an array of structs"); 5501 } 5502 if (var->type->is_struct()) { 5503 for (unsigned i = 0; i < var->type->length; i++) { 5504 if (var->type->fields.structure[i].type->is_array() || 5505 var->type->fields.structure[i].type->is_struct()) 5506 _mesa_glsl_error(&loc, state, 5507 "fragment shader input cannot have " 5508 "a struct that contains an " 5509 "array or struct"); 5510 } 5511 } 5512 } 5513 } else if (state->stage == MESA_SHADER_TESS_CTRL || 5514 state->stage == MESA_SHADER_TESS_EVAL) { 5515 handle_tess_shader_input_decl(state, loc, var); 5516 } 5517 } else if (var->data.mode == ir_var_shader_out) { 5518 const glsl_type *check_type = var->type->without_array(); 5519 5520 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec: 5521 * 5522 * It is a compile-time error to declare a fragment shader output 5523 * that contains any of the following: 5524 * 5525 * * A Boolean type (bool, bvec2 ...) 5526 * * A double-precision scalar or vector (double, dvec2 ...) 5527 * * An opaque type 5528 * * Any matrix type 5529 * * A structure 5530 */ 5531 if (state->stage == MESA_SHADER_FRAGMENT) { 5532 if (check_type->is_struct() || check_type->is_matrix()) 5533 _mesa_glsl_error(&loc, state, 5534 "fragment shader output " 5535 "cannot have struct or matrix type"); 5536 switch (check_type->base_type) { 5537 case GLSL_TYPE_UINT: 5538 case GLSL_TYPE_INT: 5539 case GLSL_TYPE_FLOAT: 5540 break; 5541 default: 5542 _mesa_glsl_error(&loc, state, 5543 "fragment shader output cannot have " 5544 "type %s", check_type->name); 5545 } 5546 } 5547 5548 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec: 5549 * 5550 * It is a compile-time error to declare a vertex shader output 5551 * with, or that contains, any of the following types: 5552 * 5553 * * A boolean type 5554 * * An opaque type 5555 * * An array of arrays 5556 * * An array of structures 5557 * * A structure containing an array 5558 * * A structure containing a structure 5559 * 5560 * It is a compile-time error to declare a fragment shader output 5561 * with, or that contains, any of the following types: 5562 * 5563 * * A boolean type 5564 * * An opaque type 5565 * * A matrix 5566 * * A structure 5567 * * An array of array 5568 * 5569 * ES 3.20 updates this to apply to tessellation and geometry shaders 5570 * as well. Because there are per-vertex arrays in the new stages, 5571 * it strikes the "array of..." rules and replaces them with these: 5572 * 5573 * * For per-vertex-arrayed variables (applies to tessellation 5574 * control, tessellation evaluation and geometry shaders): 5575 * 5576 * * Per-vertex-arrayed arrays of arrays 5577 * * Per-vertex-arrayed arrays of structures 5578 * 5579 * * For non-per-vertex-arrayed variables: 5580 * 5581 * * An array of arrays 5582 * * An array of structures 5583 * 5584 * which basically says to unwrap the per-vertex aspect and apply 5585 * the old rules. 5586 */ 5587 if (state->es_shader) { 5588 if (var->type->is_array() && 5589 var->type->fields.array->is_array()) { 5590 _mesa_glsl_error(&loc, state, 5591 "%s shader output " 5592 "cannot have an array of arrays", 5593 _mesa_shader_stage_to_string(state->stage)); 5594 } 5595 if (state->stage <= MESA_SHADER_GEOMETRY) { 5596 const glsl_type *type = var->type; 5597 5598 if (state->stage == MESA_SHADER_TESS_CTRL && 5599 !var->data.patch && var->type->is_array()) { 5600 type = var->type->fields.array; 5601 } 5602 5603 if (type->is_array() && type->fields.array->is_struct()) { 5604 _mesa_glsl_error(&loc, state, 5605 "%s shader output cannot have " 5606 "an array of structs", 5607 _mesa_shader_stage_to_string(state->stage)); 5608 } 5609 if (type->is_struct()) { 5610 for (unsigned i = 0; i < type->length; i++) { 5611 if (type->fields.structure[i].type->is_array() || 5612 type->fields.structure[i].type->is_struct()) 5613 _mesa_glsl_error(&loc, state, 5614 "%s shader output cannot have a " 5615 "struct that contains an " 5616 "array or struct", 5617 _mesa_shader_stage_to_string(state->stage)); 5618 } 5619 } 5620 } 5621 } 5622 5623 if (state->stage == MESA_SHADER_TESS_CTRL) { 5624 handle_tess_ctrl_shader_output_decl(state, loc, var); 5625 } 5626 } else if (var->type->contains_subroutine()) { 5627 /* declare subroutine uniforms as hidden */ 5628 var->data.how_declared = ir_var_hidden; 5629 } 5630 5631 /* From section 4.3.4 of the GLSL 4.00 spec: 5632 * "Input variables may not be declared using the patch in qualifier 5633 * in tessellation control or geometry shaders." 5634 * 5635 * From section 4.3.6 of the GLSL 4.00 spec: 5636 * "It is an error to use patch out in a vertex, tessellation 5637 * evaluation, or geometry shader." 5638 * 5639 * This doesn't explicitly forbid using them in a fragment shader, but 5640 * that's probably just an oversight. 5641 */ 5642 if (state->stage != MESA_SHADER_TESS_EVAL 5643 && this->type->qualifier.flags.q.patch 5644 && this->type->qualifier.flags.q.in) { 5645 5646 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a " 5647 "tessellation evaluation shader"); 5648 } 5649 5650 if (state->stage != MESA_SHADER_TESS_CTRL 5651 && this->type->qualifier.flags.q.patch 5652 && this->type->qualifier.flags.q.out) { 5653 5654 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a " 5655 "tessellation control shader"); 5656 } 5657 5658 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30. 5659 */ 5660 if (this->type->qualifier.precision != ast_precision_none) { 5661 state->check_precision_qualifiers_allowed(&loc); 5662 } 5663 5664 if (this->type->qualifier.precision != ast_precision_none && 5665 !precision_qualifier_allowed(var->type)) { 5666 _mesa_glsl_error(&loc, state, 5667 "precision qualifiers apply only to floating point" 5668 ", integer and opaque types"); 5669 } 5670 5671 /* From section 4.1.7 of the GLSL 4.40 spec: 5672 * 5673 * "[Opaque types] can only be declared as function 5674 * parameters or uniform-qualified variables." 5675 * 5676 * From section 4.1.7 of the ARB_bindless_texture spec: 5677 * 5678 * "Samplers may be declared as shader inputs and outputs, as uniform 5679 * variables, as temporary variables, and as function parameters." 5680 * 5681 * From section 4.1.X of the ARB_bindless_texture spec: 5682 * 5683 * "Images may be declared as shader inputs and outputs, as uniform 5684 * variables, as temporary variables, and as function parameters." 5685 */ 5686 if (!this->type->qualifier.flags.q.uniform && 5687 (var_type->contains_atomic() || 5688 (!state->has_bindless() && var_type->contains_opaque()))) { 5689 _mesa_glsl_error(&loc, state, 5690 "%s variables must be declared uniform", 5691 state->has_bindless() ? "atomic" : "opaque"); 5692 } 5693 5694 /* Process the initializer and add its instructions to a temporary 5695 * list. This list will be added to the instruction stream (below) after 5696 * the declaration is added. This is done because in some cases (such as 5697 * redeclarations) the declaration may not actually be added to the 5698 * instruction stream. 5699 */ 5700 exec_list initializer_instructions; 5701 5702 /* Examine var name here since var may get deleted in the next call */ 5703 bool var_is_gl_id = is_gl_identifier(var->name); 5704 5705 bool is_redeclaration; 5706 var = get_variable_being_redeclared(&var, decl->get_location(), state, 5707 false /* allow_all_redeclarations */, 5708 &is_redeclaration); 5709 if (is_redeclaration) { 5710 if (var_is_gl_id && 5711 var->data.how_declared == ir_var_declared_in_block) { 5712 _mesa_glsl_error(&loc, state, 5713 "`%s' has already been redeclared using " 5714 "gl_PerVertex", var->name); 5715 } 5716 var->data.how_declared = ir_var_declared_normally; 5717 } 5718 5719 if (decl->initializer != NULL) { 5720 result = process_initializer(var, 5721 decl, this->type, 5722 &initializer_instructions, state); 5723 } else { 5724 validate_array_dimensions(var_type, state, &loc); 5725 } 5726 5727 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec: 5728 * 5729 * "It is an error to write to a const variable outside of 5730 * its declaration, so they must be initialized when 5731 * declared." 5732 */ 5733 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) { 5734 _mesa_glsl_error(& loc, state, 5735 "const declaration of `%s' must be initialized", 5736 decl->identifier); 5737 } 5738 5739 if (state->es_shader) { 5740 const glsl_type *const t = var->type; 5741 5742 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs. 5743 * 5744 * The GL_OES_tessellation_shader spec says about inputs: 5745 * 5746 * "Declaring an array size is optional. If no size is specified, 5747 * it will be taken from the implementation-dependent maximum 5748 * patch size (gl_MaxPatchVertices)." 5749 * 5750 * and about TCS outputs: 5751 * 5752 * "If no size is specified, it will be taken from output patch 5753 * size declared in the shader." 5754 * 5755 * The GL_OES_geometry_shader spec says: 5756 * 5757 * "All geometry shader input unsized array declarations will be 5758 * sized by an earlier input primitive layout qualifier, when 5759 * present, as per the following table." 5760 */ 5761 const bool implicitly_sized = 5762 (var->data.mode == ir_var_shader_in && 5763 state->stage >= MESA_SHADER_TESS_CTRL && 5764 state->stage <= MESA_SHADER_GEOMETRY) || 5765 (var->data.mode == ir_var_shader_out && 5766 state->stage == MESA_SHADER_TESS_CTRL); 5767 5768 if (t->is_unsized_array() && !implicitly_sized) 5769 /* Section 10.17 of the GLSL ES 1.00 specification states that 5770 * unsized array declarations have been removed from the language. 5771 * Arrays that are sized using an initializer are still explicitly 5772 * sized. However, GLSL ES 1.00 does not allow array 5773 * initializers. That is only allowed in GLSL ES 3.00. 5774 * 5775 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says: 5776 * 5777 * "An array type can also be formed without specifying a size 5778 * if the definition includes an initializer: 5779 * 5780 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2 5781 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3 5782 * 5783 * float a[5]; 5784 * float b[] = a;" 5785 */ 5786 _mesa_glsl_error(& loc, state, 5787 "unsized array declarations are not allowed in " 5788 "GLSL ES"); 5789 } 5790 5791 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec: 5792 * 5793 * "It is a compile-time error to declare an unsized array of 5794 * atomic_uint" 5795 */ 5796 if (var->type->is_unsized_array() && 5797 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) { 5798 _mesa_glsl_error(& loc, state, 5799 "Unsized array of atomic_uint is not allowed"); 5800 } 5801 5802 /* If the declaration is not a redeclaration, there are a few additional 5803 * semantic checks that must be applied. In addition, variable that was 5804 * created for the declaration should be added to the IR stream. 5805 */ 5806 if (!is_redeclaration) { 5807 validate_identifier(decl->identifier, loc, state); 5808 5809 /* Add the variable to the symbol table. Note that the initializer's 5810 * IR was already processed earlier (though it hasn't been emitted 5811 * yet), without the variable in scope. 5812 * 5813 * This differs from most C-like languages, but it follows the GLSL 5814 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50 5815 * spec: 5816 * 5817 * "Within a declaration, the scope of a name starts immediately 5818 * after the initializer if present or immediately after the name 5819 * being declared if not." 5820 */ 5821 if (!state->symbols->add_variable(var)) { 5822 YYLTYPE loc = this->get_location(); 5823 _mesa_glsl_error(&loc, state, "name `%s' already taken in the " 5824 "current scope", decl->identifier); 5825 continue; 5826 } 5827 5828 /* Push the variable declaration to the top. It means that all the 5829 * variable declarations will appear in a funny last-to-first order, 5830 * but otherwise we run into trouble if a function is prototyped, a 5831 * global var is decled, then the function is defined with usage of 5832 * the global var. See glslparsertest's CorrectModule.frag. 5833 */ 5834 instructions->push_head(var); 5835 } 5836 5837 instructions->append_list(&initializer_instructions); 5838 } 5839 5840 5841 /* Generally, variable declarations do not have r-values. However, 5842 * one is used for the declaration in 5843 * 5844 * while (bool b = some_condition()) { 5845 * ... 5846 * } 5847 * 5848 * so we return the rvalue from the last seen declaration here. 5849 */ 5850 return result; 5851} 5852 5853 5854ir_rvalue * 5855ast_parameter_declarator::hir(exec_list *instructions, 5856 struct _mesa_glsl_parse_state *state) 5857{ 5858 void *ctx = state; 5859 const struct glsl_type *type; 5860 const char *name = NULL; 5861 YYLTYPE loc = this->get_location(); 5862 5863 type = this->type->glsl_type(& name, state); 5864 5865 if (type == NULL) { 5866 if (name != NULL) { 5867 _mesa_glsl_error(& loc, state, 5868 "invalid type `%s' in declaration of `%s'", 5869 name, this->identifier); 5870 } else { 5871 _mesa_glsl_error(& loc, state, 5872 "invalid type in declaration of `%s'", 5873 this->identifier); 5874 } 5875 5876 type = glsl_type::error_type; 5877 } 5878 5879 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec: 5880 * 5881 * "Functions that accept no input arguments need not use void in the 5882 * argument list because prototypes (or definitions) are required and 5883 * therefore there is no ambiguity when an empty argument list "( )" is 5884 * declared. The idiom "(void)" as a parameter list is provided for 5885 * convenience." 5886 * 5887 * Placing this check here prevents a void parameter being set up 5888 * for a function, which avoids tripping up checks for main taking 5889 * parameters and lookups of an unnamed symbol. 5890 */ 5891 if (type->is_void()) { 5892 if (this->identifier != NULL) 5893 _mesa_glsl_error(& loc, state, 5894 "named parameter cannot have type `void'"); 5895 5896 is_void = true; 5897 return NULL; 5898 } 5899 5900 if (formal_parameter && (this->identifier == NULL)) { 5901 _mesa_glsl_error(& loc, state, "formal parameter lacks a name"); 5902 return NULL; 5903 } 5904 5905 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...) 5906 * call already handled the "vec4[..] foo" case. 5907 */ 5908 type = process_array_type(&loc, type, this->array_specifier, state); 5909 5910 if (!type->is_error() && type->is_unsized_array()) { 5911 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have " 5912 "a declared size"); 5913 type = glsl_type::error_type; 5914 } 5915 5916 is_void = false; 5917 ir_variable *var = new(ctx) 5918 ir_variable(type, this->identifier, ir_var_function_in); 5919 5920 /* Apply any specified qualifiers to the parameter declaration. Note that 5921 * for function parameters the default mode is 'in'. 5922 */ 5923 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc, 5924 true); 5925 5926 if (((1u << var->data.mode) & state->zero_init) && 5927 (var->type->is_numeric() || var->type->is_boolean())) { 5928 const ir_constant_data data = { { 0 } }; 5929 var->data.has_initializer = true; 5930 var->data.is_implicit_initializer = true; 5931 var->constant_initializer = new(var) ir_constant(var->type, &data); 5932 } 5933 5934 /* From section 4.1.7 of the GLSL 4.40 spec: 5935 * 5936 * "Opaque variables cannot be treated as l-values; hence cannot 5937 * be used as out or inout function parameters, nor can they be 5938 * assigned into." 5939 * 5940 * From section 4.1.7 of the ARB_bindless_texture spec: 5941 * 5942 * "Samplers can be used as l-values, so can be assigned into and used 5943 * as "out" and "inout" function parameters." 5944 * 5945 * From section 4.1.X of the ARB_bindless_texture spec: 5946 * 5947 * "Images can be used as l-values, so can be assigned into and used as 5948 * "out" and "inout" function parameters." 5949 */ 5950 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) 5951 && (type->contains_atomic() || 5952 (!state->has_bindless() && type->contains_opaque()))) { 5953 _mesa_glsl_error(&loc, state, "out and inout parameters cannot " 5954 "contain %s variables", 5955 state->has_bindless() ? "atomic" : "opaque"); 5956 type = glsl_type::error_type; 5957 } 5958 5959 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec: 5960 * 5961 * "When calling a function, expressions that do not evaluate to 5962 * l-values cannot be passed to parameters declared as out or inout." 5963 * 5964 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec: 5965 * 5966 * "Other binary or unary expressions, non-dereferenced arrays, 5967 * function names, swizzles with repeated fields, and constants 5968 * cannot be l-values." 5969 * 5970 * So for GLSL 1.10, passing an array as an out or inout parameter is not 5971 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES. 5972 */ 5973 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out) 5974 && type->is_array() 5975 && !state->check_version(120, 100, &loc, 5976 "arrays cannot be out or inout parameters")) { 5977 type = glsl_type::error_type; 5978 } 5979 5980 instructions->push_tail(var); 5981 5982 /* Parameter declarations do not have r-values. 5983 */ 5984 return NULL; 5985} 5986 5987 5988void 5989ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters, 5990 bool formal, 5991 exec_list *ir_parameters, 5992 _mesa_glsl_parse_state *state) 5993{ 5994 ast_parameter_declarator *void_param = NULL; 5995 unsigned count = 0; 5996 5997 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) { 5998 param->formal_parameter = formal; 5999 param->hir(ir_parameters, state); 6000 6001 if (param->is_void) 6002 void_param = param; 6003 6004 count++; 6005 } 6006 6007 if ((void_param != NULL) && (count > 1)) { 6008 YYLTYPE loc = void_param->get_location(); 6009 6010 _mesa_glsl_error(& loc, state, 6011 "`void' parameter must be only parameter"); 6012 } 6013} 6014 6015 6016void 6017emit_function(_mesa_glsl_parse_state *state, ir_function *f) 6018{ 6019 /* IR invariants disallow function declarations or definitions 6020 * nested within other function definitions. But there is no 6021 * requirement about the relative order of function declarations 6022 * and definitions with respect to one another. So simply insert 6023 * the new ir_function block at the end of the toplevel instruction 6024 * list. 6025 */ 6026 state->toplevel_ir->push_tail(f); 6027} 6028 6029 6030ir_rvalue * 6031ast_function::hir(exec_list *instructions, 6032 struct _mesa_glsl_parse_state *state) 6033{ 6034 void *ctx = state; 6035 ir_function *f = NULL; 6036 ir_function_signature *sig = NULL; 6037 exec_list hir_parameters; 6038 YYLTYPE loc = this->get_location(); 6039 6040 const char *const name = identifier; 6041 6042 /* New functions are always added to the top-level IR instruction stream, 6043 * so this instruction list pointer is ignored. See also emit_function 6044 * (called below). 6045 */ 6046 (void) instructions; 6047 6048 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec, 6049 * 6050 * "Function declarations (prototypes) cannot occur inside of functions; 6051 * they must be at global scope, or for the built-in functions, outside 6052 * the global scope." 6053 * 6054 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec, 6055 * 6056 * "User defined functions may only be defined within the global scope." 6057 * 6058 * Note that this language does not appear in GLSL 1.10. 6059 */ 6060 if ((state->current_function != NULL) && 6061 state->is_version(120, 100)) { 6062 YYLTYPE loc = this->get_location(); 6063 _mesa_glsl_error(&loc, state, 6064 "declaration of function `%s' not allowed within " 6065 "function body", name); 6066 } 6067 6068 validate_identifier(name, this->get_location(), state); 6069 6070 /* Convert the list of function parameters to HIR now so that they can be 6071 * used below to compare this function's signature with previously seen 6072 * signatures for functions with the same name. 6073 */ 6074 ast_parameter_declarator::parameters_to_hir(& this->parameters, 6075 is_definition, 6076 & hir_parameters, state); 6077 6078 const char *return_type_name; 6079 const glsl_type *return_type = 6080 this->return_type->glsl_type(& return_type_name, state); 6081 6082 if (!return_type) { 6083 YYLTYPE loc = this->get_location(); 6084 _mesa_glsl_error(&loc, state, 6085 "function `%s' has undeclared return type `%s'", 6086 name, return_type_name); 6087 return_type = glsl_type::error_type; 6088 } 6089 6090 /* ARB_shader_subroutine states: 6091 * "Subroutine declarations cannot be prototyped. It is an error to prepend 6092 * subroutine(...) to a function declaration." 6093 */ 6094 if (this->return_type->qualifier.subroutine_list && !is_definition) { 6095 YYLTYPE loc = this->get_location(); 6096 _mesa_glsl_error(&loc, state, 6097 "function declaration `%s' cannot have subroutine prepended", 6098 name); 6099 } 6100 6101 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec: 6102 * "No qualifier is allowed on the return type of a function." 6103 */ 6104 if (this->return_type->has_qualifiers(state)) { 6105 YYLTYPE loc = this->get_location(); 6106 _mesa_glsl_error(& loc, state, 6107 "function `%s' return type has qualifiers", name); 6108 } 6109 6110 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says: 6111 * 6112 * "Arrays are allowed as arguments and as the return type. In both 6113 * cases, the array must be explicitly sized." 6114 */ 6115 if (return_type->is_unsized_array()) { 6116 YYLTYPE loc = this->get_location(); 6117 _mesa_glsl_error(& loc, state, 6118 "function `%s' return type array must be explicitly " 6119 "sized", name); 6120 } 6121 6122 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec: 6123 * 6124 * "Arrays are allowed as arguments, but not as the return type. [...] 6125 * The return type can also be a structure if the structure does not 6126 * contain an array." 6127 */ 6128 if (state->language_version == 100 && return_type->contains_array()) { 6129 YYLTYPE loc = this->get_location(); 6130 _mesa_glsl_error(& loc, state, 6131 "function `%s' return type contains an array", name); 6132 } 6133 6134 /* From section 4.1.7 of the GLSL 4.40 spec: 6135 * 6136 * "[Opaque types] can only be declared as function parameters 6137 * or uniform-qualified variables." 6138 * 6139 * The ARB_bindless_texture spec doesn't clearly state this, but as it says 6140 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X, 6141 * (Images)", this should be allowed. 6142 */ 6143 if (return_type->contains_atomic() || 6144 (!state->has_bindless() && return_type->contains_opaque())) { 6145 YYLTYPE loc = this->get_location(); 6146 _mesa_glsl_error(&loc, state, 6147 "function `%s' return type can't contain an %s type", 6148 name, state->has_bindless() ? "atomic" : "opaque"); 6149 } 6150 6151 /**/ 6152 if (return_type->is_subroutine()) { 6153 YYLTYPE loc = this->get_location(); 6154 _mesa_glsl_error(&loc, state, 6155 "function `%s' return type can't be a subroutine type", 6156 name); 6157 } 6158 6159 /* Get the precision for the return type */ 6160 unsigned return_precision; 6161 6162 if (state->es_shader) { 6163 YYLTYPE loc = this->get_location(); 6164 return_precision = 6165 select_gles_precision(this->return_type->qualifier.precision, 6166 return_type, 6167 state, 6168 &loc); 6169 } else { 6170 return_precision = GLSL_PRECISION_NONE; 6171 } 6172 6173 /* Create an ir_function if one doesn't already exist. */ 6174 f = state->symbols->get_function(name); 6175 if (f == NULL) { 6176 f = new(ctx) ir_function(name); 6177 if (!this->return_type->qualifier.is_subroutine_decl()) { 6178 if (!state->symbols->add_function(f)) { 6179 /* This function name shadows a non-function use of the same name. */ 6180 YYLTYPE loc = this->get_location(); 6181 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with " 6182 "non-function", name); 6183 return NULL; 6184 } 6185 } 6186 emit_function(state, f); 6187 } 6188 6189 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71: 6190 * 6191 * "A shader cannot redefine or overload built-in functions." 6192 * 6193 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions": 6194 * 6195 * "User code can overload the built-in functions but cannot redefine 6196 * them." 6197 */ 6198 if (state->es_shader) { 6199 /* Local shader has no exact candidates; check the built-ins. */ 6200 if (state->language_version >= 300 && 6201 _mesa_glsl_has_builtin_function(state, name)) { 6202 YYLTYPE loc = this->get_location(); 6203 _mesa_glsl_error(& loc, state, 6204 "A shader cannot redefine or overload built-in " 6205 "function `%s' in GLSL ES 3.00", name); 6206 return NULL; 6207 } 6208 6209 if (state->language_version == 100) { 6210 ir_function_signature *sig = 6211 _mesa_glsl_find_builtin_function(state, name, &hir_parameters); 6212 if (sig && sig->is_builtin()) { 6213 _mesa_glsl_error(& loc, state, 6214 "A shader cannot redefine built-in " 6215 "function `%s' in GLSL ES 1.00", name); 6216 } 6217 } 6218 } 6219 6220 /* Verify that this function's signature either doesn't match a previously 6221 * seen signature for a function with the same name, or, if a match is found, 6222 * that the previously seen signature does not have an associated definition. 6223 */ 6224 if (state->es_shader || f->has_user_signature()) { 6225 sig = f->exact_matching_signature(state, &hir_parameters); 6226 if (sig != NULL) { 6227 const char *badvar = sig->qualifiers_match(&hir_parameters); 6228 if (badvar != NULL) { 6229 YYLTYPE loc = this->get_location(); 6230 6231 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' " 6232 "qualifiers don't match prototype", name, badvar); 6233 } 6234 6235 if (sig->return_type != return_type) { 6236 YYLTYPE loc = this->get_location(); 6237 6238 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't " 6239 "match prototype", name); 6240 } 6241 6242 if (sig->return_precision != return_precision) { 6243 YYLTYPE loc = this->get_location(); 6244 6245 _mesa_glsl_error(&loc, state, "function `%s' return type precision " 6246 "doesn't match prototype", name); 6247 } 6248 6249 if (sig->is_defined) { 6250 if (is_definition) { 6251 YYLTYPE loc = this->get_location(); 6252 _mesa_glsl_error(& loc, state, "function `%s' redefined", name); 6253 } else { 6254 /* We just encountered a prototype that exactly matches a 6255 * function that's already been defined. This is redundant, 6256 * and we should ignore it. 6257 */ 6258 return NULL; 6259 } 6260 } else if (state->language_version == 100 && !is_definition) { 6261 /* From the GLSL 1.00 spec, section 4.2.7: 6262 * 6263 * "A particular variable, structure or function declaration 6264 * may occur at most once within a scope with the exception 6265 * that a single function prototype plus the corresponding 6266 * function definition are allowed." 6267 */ 6268 YYLTYPE loc = this->get_location(); 6269 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name); 6270 } 6271 } 6272 } 6273 6274 /* Verify the return type of main() */ 6275 if (strcmp(name, "main") == 0) { 6276 if (! return_type->is_void()) { 6277 YYLTYPE loc = this->get_location(); 6278 6279 _mesa_glsl_error(& loc, state, "main() must return void"); 6280 } 6281 6282 if (!hir_parameters.is_empty()) { 6283 YYLTYPE loc = this->get_location(); 6284 6285 _mesa_glsl_error(& loc, state, "main() must not take any parameters"); 6286 } 6287 } 6288 6289 /* Finish storing the information about this new function in its signature. 6290 */ 6291 if (sig == NULL) { 6292 sig = new(ctx) ir_function_signature(return_type); 6293 sig->return_precision = return_precision; 6294 f->add_signature(sig); 6295 } 6296 6297 sig->replace_parameters(&hir_parameters); 6298 signature = sig; 6299 6300 if (this->return_type->qualifier.subroutine_list) { 6301 int idx; 6302 6303 if (this->return_type->qualifier.flags.q.explicit_index) { 6304 unsigned qual_index; 6305 if (process_qualifier_constant(state, &loc, "index", 6306 this->return_type->qualifier.index, 6307 &qual_index)) { 6308 if (!state->has_explicit_uniform_location()) { 6309 _mesa_glsl_error(&loc, state, "subroutine index requires " 6310 "GL_ARB_explicit_uniform_location or " 6311 "GLSL 4.30"); 6312 } else if (qual_index >= MAX_SUBROUTINES) { 6313 _mesa_glsl_error(&loc, state, 6314 "invalid subroutine index (%d) index must " 6315 "be a number between 0 and " 6316 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index, 6317 MAX_SUBROUTINES - 1); 6318 } else { 6319 f->subroutine_index = qual_index; 6320 } 6321 } 6322 } 6323 6324 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length(); 6325 f->subroutine_types = ralloc_array(state, const struct glsl_type *, 6326 f->num_subroutine_types); 6327 idx = 0; 6328 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) { 6329 const struct glsl_type *type; 6330 /* the subroutine type must be already declared */ 6331 type = state->symbols->get_type(decl->identifier); 6332 if (!type) { 6333 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier); 6334 } 6335 6336 for (int i = 0; i < state->num_subroutine_types; i++) { 6337 ir_function *fn = state->subroutine_types[i]; 6338 ir_function_signature *tsig = NULL; 6339 6340 if (strcmp(fn->name, decl->identifier)) 6341 continue; 6342 6343 tsig = fn->matching_signature(state, &sig->parameters, 6344 false); 6345 if (!tsig) { 6346 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier); 6347 } else { 6348 if (tsig->return_type != sig->return_type) { 6349 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier); 6350 } 6351 } 6352 } 6353 f->subroutine_types[idx++] = type; 6354 } 6355 state->subroutines = (ir_function **)reralloc(state, state->subroutines, 6356 ir_function *, 6357 state->num_subroutines + 1); 6358 state->subroutines[state->num_subroutines] = f; 6359 state->num_subroutines++; 6360 6361 } 6362 6363 if (this->return_type->qualifier.is_subroutine_decl()) { 6364 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) { 6365 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier); 6366 return NULL; 6367 } 6368 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types, 6369 ir_function *, 6370 state->num_subroutine_types + 1); 6371 state->subroutine_types[state->num_subroutine_types] = f; 6372 state->num_subroutine_types++; 6373 6374 f->is_subroutine = true; 6375 } 6376 6377 /* Function declarations (prototypes) do not have r-values. 6378 */ 6379 return NULL; 6380} 6381 6382 6383ir_rvalue * 6384ast_function_definition::hir(exec_list *instructions, 6385 struct _mesa_glsl_parse_state *state) 6386{ 6387 prototype->is_definition = true; 6388 prototype->hir(instructions, state); 6389 6390 ir_function_signature *signature = prototype->signature; 6391 if (signature == NULL) 6392 return NULL; 6393 6394 assert(state->current_function == NULL); 6395 state->current_function = signature; 6396 state->found_return = false; 6397 state->found_begin_interlock = false; 6398 state->found_end_interlock = false; 6399 6400 /* Duplicate parameters declared in the prototype as concrete variables. 6401 * Add these to the symbol table. 6402 */ 6403 state->symbols->push_scope(); 6404 foreach_in_list(ir_variable, var, &signature->parameters) { 6405 assert(var->as_variable() != NULL); 6406 6407 /* The only way a parameter would "exist" is if two parameters have 6408 * the same name. 6409 */ 6410 if (state->symbols->name_declared_this_scope(var->name)) { 6411 YYLTYPE loc = this->get_location(); 6412 6413 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name); 6414 } else { 6415 state->symbols->add_variable(var); 6416 } 6417 } 6418 6419 /* Convert the body of the function to HIR. */ 6420 this->body->hir(&signature->body, state); 6421 signature->is_defined = true; 6422 6423 state->symbols->pop_scope(); 6424 6425 assert(state->current_function == signature); 6426 state->current_function = NULL; 6427 6428 if (!signature->return_type->is_void() && !state->found_return) { 6429 YYLTYPE loc = this->get_location(); 6430 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type " 6431 "%s, but no return statement", 6432 signature->function_name(), 6433 signature->return_type->name); 6434 } 6435 6436 /* Function definitions do not have r-values. 6437 */ 6438 return NULL; 6439} 6440 6441 6442ir_rvalue * 6443ast_jump_statement::hir(exec_list *instructions, 6444 struct _mesa_glsl_parse_state *state) 6445{ 6446 void *ctx = state; 6447 6448 switch (mode) { 6449 case ast_return: { 6450 ir_return *inst; 6451 assert(state->current_function); 6452 6453 if (opt_return_value) { 6454 ir_rvalue *ret = opt_return_value->hir(instructions, state); 6455 6456 /* The value of the return type can be NULL if the shader says 6457 * 'return foo();' and foo() is a function that returns void. 6458 * 6459 * NOTE: The GLSL spec doesn't say that this is an error. The type 6460 * of the return value is void. If the return type of the function is 6461 * also void, then this should compile without error. Seriously. 6462 */ 6463 const glsl_type *const ret_type = 6464 (ret == NULL) ? glsl_type::void_type : ret->type; 6465 6466 /* Implicit conversions are not allowed for return values prior to 6467 * ARB_shading_language_420pack. 6468 */ 6469 if (state->current_function->return_type != ret_type) { 6470 YYLTYPE loc = this->get_location(); 6471 6472 if (state->has_420pack()) { 6473 if (!apply_implicit_conversion(state->current_function->return_type, 6474 ret, state) 6475 || (ret->type != state->current_function->return_type)) { 6476 _mesa_glsl_error(& loc, state, 6477 "could not implicitly convert return value " 6478 "to %s, in function `%s'", 6479 state->current_function->return_type->name, 6480 state->current_function->function_name()); 6481 } 6482 } else { 6483 _mesa_glsl_error(& loc, state, 6484 "`return' with wrong type %s, in function `%s' " 6485 "returning %s", 6486 ret_type->name, 6487 state->current_function->function_name(), 6488 state->current_function->return_type->name); 6489 } 6490 } else if (state->current_function->return_type->base_type == 6491 GLSL_TYPE_VOID) { 6492 YYLTYPE loc = this->get_location(); 6493 6494 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20 6495 * specs add a clarification: 6496 * 6497 * "A void function can only use return without a return argument, even if 6498 * the return argument has void type. Return statements only accept values: 6499 * 6500 * void func1() { } 6501 * void func2() { return func1(); } // illegal return statement" 6502 */ 6503 _mesa_glsl_error(& loc, state, 6504 "void functions can only use `return' without a " 6505 "return argument"); 6506 } 6507 6508 inst = new(ctx) ir_return(ret); 6509 } else { 6510 if (state->current_function->return_type->base_type != 6511 GLSL_TYPE_VOID) { 6512 YYLTYPE loc = this->get_location(); 6513 6514 _mesa_glsl_error(& loc, state, 6515 "`return' with no value, in function %s returning " 6516 "non-void", 6517 state->current_function->function_name()); 6518 } 6519 inst = new(ctx) ir_return; 6520 } 6521 6522 state->found_return = true; 6523 instructions->push_tail(inst); 6524 break; 6525 } 6526 6527 case ast_discard: 6528 if (state->stage != MESA_SHADER_FRAGMENT) { 6529 YYLTYPE loc = this->get_location(); 6530 6531 _mesa_glsl_error(& loc, state, 6532 "`discard' may only appear in a fragment shader"); 6533 } 6534 instructions->push_tail(new(ctx) ir_discard); 6535 break; 6536 6537 case ast_break: 6538 case ast_continue: 6539 if (mode == ast_continue && 6540 state->loop_nesting_ast == NULL) { 6541 YYLTYPE loc = this->get_location(); 6542 6543 _mesa_glsl_error(& loc, state, "continue may only appear in a loop"); 6544 } else if (mode == ast_break && 6545 state->loop_nesting_ast == NULL && 6546 state->switch_state.switch_nesting_ast == NULL) { 6547 YYLTYPE loc = this->get_location(); 6548 6549 _mesa_glsl_error(& loc, state, 6550 "break may only appear in a loop or a switch"); 6551 } else { 6552 /* For a loop, inline the for loop expression again, since we don't 6553 * know where near the end of the loop body the normal copy of it is 6554 * going to be placed. Same goes for the condition for a do-while 6555 * loop. 6556 */ 6557 if (state->loop_nesting_ast != NULL && 6558 mode == ast_continue && !state->switch_state.is_switch_innermost) { 6559 if (state->loop_nesting_ast->rest_expression) { 6560 clone_ir_list(ctx, instructions, 6561 &state->loop_nesting_ast->rest_instructions); 6562 } 6563 if (state->loop_nesting_ast->mode == 6564 ast_iteration_statement::ast_do_while) { 6565 state->loop_nesting_ast->condition_to_hir(instructions, state); 6566 } 6567 } 6568 6569 if (state->switch_state.is_switch_innermost && 6570 mode == ast_continue) { 6571 /* Set 'continue_inside' to true. */ 6572 ir_rvalue *const true_val = new (ctx) ir_constant(true); 6573 ir_dereference_variable *deref_continue_inside_var = 6574 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6575 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var, 6576 true_val)); 6577 6578 /* Break out from the switch, continue for the loop will 6579 * be called right after switch. */ 6580 ir_loop_jump *const jump = 6581 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6582 instructions->push_tail(jump); 6583 6584 } else if (state->switch_state.is_switch_innermost && 6585 mode == ast_break) { 6586 /* Force break out of switch by inserting a break. */ 6587 ir_loop_jump *const jump = 6588 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6589 instructions->push_tail(jump); 6590 } else { 6591 ir_loop_jump *const jump = 6592 new(ctx) ir_loop_jump((mode == ast_break) 6593 ? ir_loop_jump::jump_break 6594 : ir_loop_jump::jump_continue); 6595 instructions->push_tail(jump); 6596 } 6597 } 6598 6599 break; 6600 } 6601 6602 /* Jump instructions do not have r-values. 6603 */ 6604 return NULL; 6605} 6606 6607 6608ir_rvalue * 6609ast_demote_statement::hir(exec_list *instructions, 6610 struct _mesa_glsl_parse_state *state) 6611{ 6612 void *ctx = state; 6613 6614 if (state->stage != MESA_SHADER_FRAGMENT) { 6615 YYLTYPE loc = this->get_location(); 6616 6617 _mesa_glsl_error(& loc, state, 6618 "`demote' may only appear in a fragment shader"); 6619 } 6620 6621 instructions->push_tail(new(ctx) ir_demote); 6622 6623 return NULL; 6624} 6625 6626 6627ir_rvalue * 6628ast_selection_statement::hir(exec_list *instructions, 6629 struct _mesa_glsl_parse_state *state) 6630{ 6631 void *ctx = state; 6632 6633 ir_rvalue *const condition = this->condition->hir(instructions, state); 6634 6635 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec: 6636 * 6637 * "Any expression whose type evaluates to a Boolean can be used as the 6638 * conditional expression bool-expression. Vector types are not accepted 6639 * as the expression to if." 6640 * 6641 * The checks are separated so that higher quality diagnostics can be 6642 * generated for cases where both rules are violated. 6643 */ 6644 if (!condition->type->is_boolean() || !condition->type->is_scalar()) { 6645 YYLTYPE loc = this->condition->get_location(); 6646 6647 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar " 6648 "boolean"); 6649 } 6650 6651 ir_if *const stmt = new(ctx) ir_if(condition); 6652 6653 if (then_statement != NULL) { 6654 state->symbols->push_scope(); 6655 then_statement->hir(& stmt->then_instructions, state); 6656 state->symbols->pop_scope(); 6657 } 6658 6659 if (else_statement != NULL) { 6660 state->symbols->push_scope(); 6661 else_statement->hir(& stmt->else_instructions, state); 6662 state->symbols->pop_scope(); 6663 } 6664 6665 instructions->push_tail(stmt); 6666 6667 /* if-statements do not have r-values. 6668 */ 6669 return NULL; 6670} 6671 6672 6673struct case_label { 6674 /** Value of the case label. */ 6675 unsigned value; 6676 6677 /** Does this label occur after the default? */ 6678 bool after_default; 6679 6680 /** 6681 * AST for the case label. 6682 * 6683 * This is only used to generate error messages for duplicate labels. 6684 */ 6685 ast_expression *ast; 6686}; 6687 6688/* Used for detection of duplicate case values, compare 6689 * given contents directly. 6690 */ 6691static bool 6692compare_case_value(const void *a, const void *b) 6693{ 6694 return ((struct case_label *) a)->value == ((struct case_label *) b)->value; 6695} 6696 6697 6698/* Used for detection of duplicate case values, just 6699 * returns key contents as is. 6700 */ 6701static unsigned 6702key_contents(const void *key) 6703{ 6704 return ((struct case_label *) key)->value; 6705} 6706 6707void 6708ast_switch_statement::eval_test_expression(exec_list *instructions, 6709 struct _mesa_glsl_parse_state *state) 6710{ 6711 if (test_val == NULL) 6712 test_val = this->test_expression->hir(instructions, state); 6713} 6714 6715ir_rvalue * 6716ast_switch_statement::hir(exec_list *instructions, 6717 struct _mesa_glsl_parse_state *state) 6718{ 6719 void *ctx = state; 6720 6721 this->eval_test_expression(instructions, state); 6722 6723 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec: 6724 * 6725 * "The type of init-expression in a switch statement must be a 6726 * scalar integer." 6727 */ 6728 if (!test_val->type->is_scalar() || 6729 !test_val->type->is_integer_32()) { 6730 YYLTYPE loc = this->test_expression->get_location(); 6731 6732 _mesa_glsl_error(& loc, 6733 state, 6734 "switch-statement expression must be scalar " 6735 "integer"); 6736 return NULL; 6737 } 6738 6739 /* Track the switch-statement nesting in a stack-like manner. 6740 */ 6741 struct glsl_switch_state saved = state->switch_state; 6742 6743 state->switch_state.is_switch_innermost = true; 6744 state->switch_state.switch_nesting_ast = this; 6745 state->switch_state.labels_ht = 6746 _mesa_hash_table_create(NULL, key_contents, 6747 compare_case_value); 6748 state->switch_state.previous_default = NULL; 6749 6750 /* Initalize is_fallthru state to false. 6751 */ 6752 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false); 6753 state->switch_state.is_fallthru_var = 6754 new(ctx) ir_variable(glsl_type::bool_type, 6755 "switch_is_fallthru_tmp", 6756 ir_var_temporary); 6757 instructions->push_tail(state->switch_state.is_fallthru_var); 6758 6759 ir_dereference_variable *deref_is_fallthru_var = 6760 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var); 6761 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var, 6762 is_fallthru_val)); 6763 6764 /* Initialize continue_inside state to false. 6765 */ 6766 state->switch_state.continue_inside = 6767 new(ctx) ir_variable(glsl_type::bool_type, 6768 "continue_inside_tmp", 6769 ir_var_temporary); 6770 instructions->push_tail(state->switch_state.continue_inside); 6771 6772 ir_rvalue *const false_val = new (ctx) ir_constant(false); 6773 ir_dereference_variable *deref_continue_inside_var = 6774 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6775 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var, 6776 false_val)); 6777 6778 state->switch_state.run_default = 6779 new(ctx) ir_variable(glsl_type::bool_type, 6780 "run_default_tmp", 6781 ir_var_temporary); 6782 instructions->push_tail(state->switch_state.run_default); 6783 6784 /* Loop around the switch is used for flow control. */ 6785 ir_loop * loop = new(ctx) ir_loop(); 6786 instructions->push_tail(loop); 6787 6788 /* Cache test expression. 6789 */ 6790 test_to_hir(&loop->body_instructions, state); 6791 6792 /* Emit code for body of switch stmt. 6793 */ 6794 body->hir(&loop->body_instructions, state); 6795 6796 /* Insert a break at the end to exit loop. */ 6797 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 6798 loop->body_instructions.push_tail(jump); 6799 6800 /* If we are inside loop, check if continue got called inside switch. */ 6801 if (state->loop_nesting_ast != NULL) { 6802 ir_dereference_variable *deref_continue_inside = 6803 new(ctx) ir_dereference_variable(state->switch_state.continue_inside); 6804 ir_if *irif = new(ctx) ir_if(deref_continue_inside); 6805 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue); 6806 6807 if (state->loop_nesting_ast != NULL) { 6808 if (state->loop_nesting_ast->rest_expression) { 6809 clone_ir_list(ctx, &irif->then_instructions, 6810 &state->loop_nesting_ast->rest_instructions); 6811 } 6812 if (state->loop_nesting_ast->mode == 6813 ast_iteration_statement::ast_do_while) { 6814 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state); 6815 } 6816 } 6817 irif->then_instructions.push_tail(jump); 6818 instructions->push_tail(irif); 6819 } 6820 6821 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL); 6822 6823 state->switch_state = saved; 6824 6825 /* Switch statements do not have r-values. */ 6826 return NULL; 6827} 6828 6829 6830void 6831ast_switch_statement::test_to_hir(exec_list *instructions, 6832 struct _mesa_glsl_parse_state *state) 6833{ 6834 void *ctx = state; 6835 6836 /* set to true to avoid a duplicate "use of uninitialized variable" warning 6837 * on the switch test case. The first one would be already raised when 6838 * getting the test_expression at ast_switch_statement::hir 6839 */ 6840 test_expression->set_is_lhs(true); 6841 /* Cache value of test expression. */ 6842 this->eval_test_expression(instructions, state); 6843 6844 state->switch_state.test_var = new(ctx) ir_variable(test_val->type, 6845 "switch_test_tmp", 6846 ir_var_temporary); 6847 ir_dereference_variable *deref_test_var = 6848 new(ctx) ir_dereference_variable(state->switch_state.test_var); 6849 6850 instructions->push_tail(state->switch_state.test_var); 6851 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val)); 6852} 6853 6854 6855ir_rvalue * 6856ast_switch_body::hir(exec_list *instructions, 6857 struct _mesa_glsl_parse_state *state) 6858{ 6859 if (stmts != NULL) { 6860 state->symbols->push_scope(); 6861 stmts->hir(instructions, state); 6862 state->symbols->pop_scope(); 6863 } 6864 6865 /* Switch bodies do not have r-values. */ 6866 return NULL; 6867} 6868 6869ir_rvalue * 6870ast_case_statement_list::hir(exec_list *instructions, 6871 struct _mesa_glsl_parse_state *state) 6872{ 6873 exec_list default_case, after_default, tmp; 6874 6875 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) { 6876 case_stmt->hir(&tmp, state); 6877 6878 /* Default case. */ 6879 if (state->switch_state.previous_default && default_case.is_empty()) { 6880 default_case.append_list(&tmp); 6881 continue; 6882 } 6883 6884 /* If default case found, append 'after_default' list. */ 6885 if (!default_case.is_empty()) 6886 after_default.append_list(&tmp); 6887 else 6888 instructions->append_list(&tmp); 6889 } 6890 6891 /* Handle the default case. This is done here because default might not be 6892 * the last case. We need to add checks against following cases first to see 6893 * if default should be chosen or not. 6894 */ 6895 if (!default_case.is_empty()) { 6896 ir_factory body(instructions, state); 6897 6898 ir_expression *cmp = NULL; 6899 6900 hash_table_foreach(state->switch_state.labels_ht, entry) { 6901 const struct case_label *const l = (struct case_label *) entry->data; 6902 6903 /* If the switch init-value is the value of one of the labels that 6904 * occurs after the default case, disable execution of the default 6905 * case. 6906 */ 6907 if (l->after_default) { 6908 ir_constant *const cnst = 6909 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT 6910 ? body.constant(unsigned(l->value)) 6911 : body.constant(int(l->value)); 6912 6913 cmp = cmp == NULL 6914 ? equal(cnst, state->switch_state.test_var) 6915 : logic_or(cmp, equal(cnst, state->switch_state.test_var)); 6916 } 6917 } 6918 6919 if (cmp != NULL) 6920 body.emit(assign(state->switch_state.run_default, logic_not(cmp))); 6921 else 6922 body.emit(assign(state->switch_state.run_default, body.constant(true))); 6923 6924 /* Append default case and all cases after it. */ 6925 instructions->append_list(&default_case); 6926 instructions->append_list(&after_default); 6927 } 6928 6929 /* Case statements do not have r-values. */ 6930 return NULL; 6931} 6932 6933ir_rvalue * 6934ast_case_statement::hir(exec_list *instructions, 6935 struct _mesa_glsl_parse_state *state) 6936{ 6937 labels->hir(instructions, state); 6938 6939 /* Guard case statements depending on fallthru state. */ 6940 ir_dereference_variable *const deref_fallthru_guard = 6941 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var); 6942 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard); 6943 6944 foreach_list_typed (ast_node, stmt, link, & this->stmts) 6945 stmt->hir(& test_fallthru->then_instructions, state); 6946 6947 instructions->push_tail(test_fallthru); 6948 6949 /* Case statements do not have r-values. */ 6950 return NULL; 6951} 6952 6953 6954ir_rvalue * 6955ast_case_label_list::hir(exec_list *instructions, 6956 struct _mesa_glsl_parse_state *state) 6957{ 6958 foreach_list_typed (ast_case_label, label, link, & this->labels) 6959 label->hir(instructions, state); 6960 6961 /* Case labels do not have r-values. */ 6962 return NULL; 6963} 6964 6965ir_rvalue * 6966ast_case_label::hir(exec_list *instructions, 6967 struct _mesa_glsl_parse_state *state) 6968{ 6969 ir_factory body(instructions, state); 6970 6971 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var; 6972 6973 /* If not default case, ... */ 6974 if (this->test_value != NULL) { 6975 /* Conditionally set fallthru state based on 6976 * comparison of cached test expression value to case label. 6977 */ 6978 ir_rvalue *const label_rval = this->test_value->hir(instructions, state); 6979 ir_constant *label_const = 6980 label_rval->constant_expression_value(body.mem_ctx); 6981 6982 if (!label_const) { 6983 YYLTYPE loc = this->test_value->get_location(); 6984 6985 _mesa_glsl_error(& loc, state, 6986 "switch statement case label must be a " 6987 "constant expression"); 6988 6989 /* Stuff a dummy value in to allow processing to continue. */ 6990 label_const = body.constant(0); 6991 } else { 6992 hash_entry *entry = 6993 _mesa_hash_table_search(state->switch_state.labels_ht, 6994 &label_const->value.u[0]); 6995 6996 if (entry) { 6997 const struct case_label *const l = 6998 (struct case_label *) entry->data; 6999 const ast_expression *const previous_label = l->ast; 7000 YYLTYPE loc = this->test_value->get_location(); 7001 7002 _mesa_glsl_error(& loc, state, "duplicate case value"); 7003 7004 loc = previous_label->get_location(); 7005 _mesa_glsl_error(& loc, state, "this is the previous case label"); 7006 } else { 7007 struct case_label *l = ralloc(state->switch_state.labels_ht, 7008 struct case_label); 7009 7010 l->value = label_const->value.u[0]; 7011 l->after_default = state->switch_state.previous_default != NULL; 7012 l->ast = this->test_value; 7013 7014 _mesa_hash_table_insert(state->switch_state.labels_ht, 7015 &label_const->value.u[0], 7016 l); 7017 } 7018 } 7019 7020 /* Create an r-value version of the ir_constant label here (after we may 7021 * have created a fake one in error cases) that can be passed to 7022 * apply_implicit_conversion below. 7023 */ 7024 ir_rvalue *label = label_const; 7025 7026 ir_rvalue *deref_test_var = 7027 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var); 7028 7029 /* 7030 * From GLSL 4.40 specification section 6.2 ("Selection"): 7031 * 7032 * "The type of the init-expression value in a switch statement must 7033 * be a scalar int or uint. The type of the constant-expression value 7034 * in a case label also must be a scalar int or uint. When any pair 7035 * of these values is tested for "equal value" and the types do not 7036 * match, an implicit conversion will be done to convert the int to a 7037 * uint (see section 4.1.10 “Implicit Conversions”) before the compare 7038 * is done." 7039 */ 7040 if (label->type != state->switch_state.test_var->type) { 7041 YYLTYPE loc = this->test_value->get_location(); 7042 7043 const glsl_type *type_a = label->type; 7044 const glsl_type *type_b = state->switch_state.test_var->type; 7045 7046 /* Check if int->uint implicit conversion is supported. */ 7047 bool integer_conversion_supported = 7048 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type, 7049 state); 7050 7051 if ((!type_a->is_integer_32() || !type_b->is_integer_32()) || 7052 !integer_conversion_supported) { 7053 _mesa_glsl_error(&loc, state, "type mismatch with switch " 7054 "init-expression and case label (%s != %s)", 7055 type_a->name, type_b->name); 7056 } else { 7057 /* Conversion of the case label. */ 7058 if (type_a->base_type == GLSL_TYPE_INT) { 7059 if (!apply_implicit_conversion(glsl_type::uint_type, 7060 label, state)) 7061 _mesa_glsl_error(&loc, state, "implicit type conversion error"); 7062 } else { 7063 /* Conversion of the init-expression value. */ 7064 if (!apply_implicit_conversion(glsl_type::uint_type, 7065 deref_test_var, state)) 7066 _mesa_glsl_error(&loc, state, "implicit type conversion error"); 7067 } 7068 } 7069 7070 /* If the implicit conversion was allowed, the types will already be 7071 * the same. If the implicit conversion wasn't allowed, smash the 7072 * type of the label anyway. This will prevent the expression 7073 * constructor (below) from failing an assertion. 7074 */ 7075 label->type = deref_test_var->type; 7076 } 7077 7078 body.emit(assign(fallthru_var, 7079 logic_or(fallthru_var, equal(label, deref_test_var)))); 7080 } else { /* default case */ 7081 if (state->switch_state.previous_default) { 7082 YYLTYPE loc = this->get_location(); 7083 _mesa_glsl_error(& loc, state, 7084 "multiple default labels in one switch"); 7085 7086 loc = state->switch_state.previous_default->get_location(); 7087 _mesa_glsl_error(& loc, state, "this is the first default label"); 7088 } 7089 state->switch_state.previous_default = this; 7090 7091 /* Set fallthru condition on 'run_default' bool. */ 7092 body.emit(assign(fallthru_var, 7093 logic_or(fallthru_var, 7094 state->switch_state.run_default))); 7095 } 7096 7097 /* Case statements do not have r-values. */ 7098 return NULL; 7099} 7100 7101void 7102ast_iteration_statement::condition_to_hir(exec_list *instructions, 7103 struct _mesa_glsl_parse_state *state) 7104{ 7105 void *ctx = state; 7106 7107 if (condition != NULL) { 7108 ir_rvalue *const cond = 7109 condition->hir(instructions, state); 7110 7111 if ((cond == NULL) 7112 || !cond->type->is_boolean() || !cond->type->is_scalar()) { 7113 YYLTYPE loc = condition->get_location(); 7114 7115 _mesa_glsl_error(& loc, state, 7116 "loop condition must be scalar boolean"); 7117 } else { 7118 /* As the first code in the loop body, generate a block that looks 7119 * like 'if (!condition) break;' as the loop termination condition. 7120 */ 7121 ir_rvalue *const not_cond = 7122 new(ctx) ir_expression(ir_unop_logic_not, cond); 7123 7124 ir_if *const if_stmt = new(ctx) ir_if(not_cond); 7125 7126 ir_jump *const break_stmt = 7127 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 7128 7129 if_stmt->then_instructions.push_tail(break_stmt); 7130 instructions->push_tail(if_stmt); 7131 } 7132 } 7133} 7134 7135 7136ir_rvalue * 7137ast_iteration_statement::hir(exec_list *instructions, 7138 struct _mesa_glsl_parse_state *state) 7139{ 7140 void *ctx = state; 7141 7142 /* For-loops and while-loops start a new scope, but do-while loops do not. 7143 */ 7144 if (mode != ast_do_while) 7145 state->symbols->push_scope(); 7146 7147 if (init_statement != NULL) 7148 init_statement->hir(instructions, state); 7149 7150 ir_loop *const stmt = new(ctx) ir_loop(); 7151 instructions->push_tail(stmt); 7152 7153 /* Track the current loop nesting. */ 7154 ast_iteration_statement *nesting_ast = state->loop_nesting_ast; 7155 7156 state->loop_nesting_ast = this; 7157 7158 /* Likewise, indicate that following code is closest to a loop, 7159 * NOT closest to a switch. 7160 */ 7161 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost; 7162 state->switch_state.is_switch_innermost = false; 7163 7164 if (mode != ast_do_while) 7165 condition_to_hir(&stmt->body_instructions, state); 7166 7167 if (rest_expression != NULL) 7168 rest_expression->hir(&rest_instructions, state); 7169 7170 if (body != NULL) { 7171 if (mode == ast_do_while) 7172 state->symbols->push_scope(); 7173 7174 body->hir(& stmt->body_instructions, state); 7175 7176 if (mode == ast_do_while) 7177 state->symbols->pop_scope(); 7178 } 7179 7180 if (rest_expression != NULL) 7181 stmt->body_instructions.append_list(&rest_instructions); 7182 7183 if (mode == ast_do_while) 7184 condition_to_hir(&stmt->body_instructions, state); 7185 7186 if (mode != ast_do_while) 7187 state->symbols->pop_scope(); 7188 7189 /* Restore previous nesting before returning. */ 7190 state->loop_nesting_ast = nesting_ast; 7191 state->switch_state.is_switch_innermost = saved_is_switch_innermost; 7192 7193 /* Loops do not have r-values. 7194 */ 7195 return NULL; 7196} 7197 7198 7199/** 7200 * Determine if the given type is valid for establishing a default precision 7201 * qualifier. 7202 * 7203 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"): 7204 * 7205 * "The precision statement 7206 * 7207 * precision precision-qualifier type; 7208 * 7209 * can be used to establish a default precision qualifier. The type field 7210 * can be either int or float or any of the sampler types, and the 7211 * precision-qualifier can be lowp, mediump, or highp." 7212 * 7213 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision 7214 * qualifiers on sampler types, but this seems like an oversight (since the 7215 * intention of including these in GLSL 1.30 is to allow compatibility with ES 7216 * shaders). So we allow int, float, and all sampler types regardless of GLSL 7217 * version. 7218 */ 7219static bool 7220is_valid_default_precision_type(const struct glsl_type *const type) 7221{ 7222 if (type == NULL) 7223 return false; 7224 7225 switch (type->base_type) { 7226 case GLSL_TYPE_INT: 7227 case GLSL_TYPE_FLOAT: 7228 /* "int" and "float" are valid, but vectors and matrices are not. */ 7229 return type->vector_elements == 1 && type->matrix_columns == 1; 7230 case GLSL_TYPE_SAMPLER: 7231 case GLSL_TYPE_IMAGE: 7232 case GLSL_TYPE_ATOMIC_UINT: 7233 return true; 7234 default: 7235 return false; 7236 } 7237} 7238 7239 7240ir_rvalue * 7241ast_type_specifier::hir(exec_list *instructions, 7242 struct _mesa_glsl_parse_state *state) 7243{ 7244 if (this->default_precision == ast_precision_none && this->structure == NULL) 7245 return NULL; 7246 7247 YYLTYPE loc = this->get_location(); 7248 7249 /* If this is a precision statement, check that the type to which it is 7250 * applied is either float or int. 7251 * 7252 * From section 4.5.3 of the GLSL 1.30 spec: 7253 * "The precision statement 7254 * precision precision-qualifier type; 7255 * can be used to establish a default precision qualifier. The type 7256 * field can be either int or float [...]. Any other types or 7257 * qualifiers will result in an error. 7258 */ 7259 if (this->default_precision != ast_precision_none) { 7260 if (!state->check_precision_qualifiers_allowed(&loc)) 7261 return NULL; 7262 7263 if (this->structure != NULL) { 7264 _mesa_glsl_error(&loc, state, 7265 "precision qualifiers do not apply to structures"); 7266 return NULL; 7267 } 7268 7269 if (this->array_specifier != NULL) { 7270 _mesa_glsl_error(&loc, state, 7271 "default precision statements do not apply to " 7272 "arrays"); 7273 return NULL; 7274 } 7275 7276 const struct glsl_type *const type = 7277 state->symbols->get_type(this->type_name); 7278 if (!is_valid_default_precision_type(type)) { 7279 _mesa_glsl_error(&loc, state, 7280 "default precision statements apply only to " 7281 "float, int, and opaque types"); 7282 return NULL; 7283 } 7284 7285 if (state->es_shader) { 7286 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00 7287 * spec says: 7288 * 7289 * "Non-precision qualified declarations will use the precision 7290 * qualifier specified in the most recent precision statement 7291 * that is still in scope. The precision statement has the same 7292 * scoping rules as variable declarations. If it is declared 7293 * inside a compound statement, its effect stops at the end of 7294 * the innermost statement it was declared in. Precision 7295 * statements in nested scopes override precision statements in 7296 * outer scopes. Multiple precision statements for the same basic 7297 * type can appear inside the same scope, with later statements 7298 * overriding earlier statements within that scope." 7299 * 7300 * Default precision specifications follow the same scope rules as 7301 * variables. So, we can track the state of the default precision 7302 * qualifiers in the symbol table, and the rules will just work. This 7303 * is a slight abuse of the symbol table, but it has the semantics 7304 * that we want. 7305 */ 7306 state->symbols->add_default_precision_qualifier(this->type_name, 7307 this->default_precision); 7308 } 7309 7310 /* FINISHME: Translate precision statements into IR. */ 7311 return NULL; 7312 } 7313 7314 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that 7315 * process_record_constructor() can do type-checking on C-style initializer 7316 * expressions of structs, but ast_struct_specifier should only be translated 7317 * to HIR if it is declaring the type of a structure. 7318 * 7319 * The ->is_declaration field is false for initializers of variables 7320 * declared separately from the struct's type definition. 7321 * 7322 * struct S { ... }; (is_declaration = true) 7323 * struct T { ... } t = { ... }; (is_declaration = true) 7324 * S s = { ... }; (is_declaration = false) 7325 */ 7326 if (this->structure != NULL && this->structure->is_declaration) 7327 return this->structure->hir(instructions, state); 7328 7329 return NULL; 7330} 7331 7332 7333/** 7334 * Process a structure or interface block tree into an array of structure fields 7335 * 7336 * After parsing, where there are some syntax differnces, structures and 7337 * interface blocks are almost identical. They are similar enough that the 7338 * AST for each can be processed the same way into a set of 7339 * \c glsl_struct_field to describe the members. 7340 * 7341 * If we're processing an interface block, var_mode should be the type of the 7342 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or 7343 * ir_var_shader_storage). If we're processing a structure, var_mode should be 7344 * ir_var_auto. 7345 * 7346 * \return 7347 * The number of fields processed. A pointer to the array structure fields is 7348 * stored in \c *fields_ret. 7349 */ 7350static unsigned 7351ast_process_struct_or_iface_block_members(exec_list *instructions, 7352 struct _mesa_glsl_parse_state *state, 7353 exec_list *declarations, 7354 glsl_struct_field **fields_ret, 7355 bool is_interface, 7356 enum glsl_matrix_layout matrix_layout, 7357 bool allow_reserved_names, 7358 ir_variable_mode var_mode, 7359 ast_type_qualifier *layout, 7360 unsigned block_stream, 7361 unsigned block_xfb_buffer, 7362 unsigned block_xfb_offset, 7363 unsigned expl_location, 7364 unsigned expl_align) 7365{ 7366 unsigned decl_count = 0; 7367 unsigned next_offset = 0; 7368 7369 /* Make an initial pass over the list of fields to determine how 7370 * many there are. Each element in this list is an ast_declarator_list. 7371 * This means that we actually need to count the number of elements in the 7372 * 'declarations' list in each of the elements. 7373 */ 7374 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) { 7375 decl_count += decl_list->declarations.length(); 7376 } 7377 7378 /* Allocate storage for the fields and process the field 7379 * declarations. As the declarations are processed, try to also convert 7380 * the types to HIR. This ensures that structure definitions embedded in 7381 * other structure definitions or in interface blocks are processed. 7382 */ 7383 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field, 7384 decl_count); 7385 7386 bool first_member = true; 7387 bool first_member_has_explicit_location = false; 7388 7389 unsigned i = 0; 7390 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) { 7391 const char *type_name; 7392 YYLTYPE loc = decl_list->get_location(); 7393 7394 decl_list->type->specifier->hir(instructions, state); 7395 7396 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says: 7397 * 7398 * "Anonymous structures are not supported; so embedded structures 7399 * must have a declarator. A name given to an embedded struct is 7400 * scoped at the same level as the struct it is embedded in." 7401 * 7402 * The same section of the GLSL 1.20 spec says: 7403 * 7404 * "Anonymous structures are not supported. Embedded structures are 7405 * not supported." 7406 * 7407 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow 7408 * embedded structures in 1.10 only. 7409 */ 7410 if (state->language_version != 110 && 7411 decl_list->type->specifier->structure != NULL) 7412 _mesa_glsl_error(&loc, state, 7413 "embedded structure declarations are not allowed"); 7414 7415 const glsl_type *decl_type = 7416 decl_list->type->glsl_type(& type_name, state); 7417 7418 const struct ast_type_qualifier *const qual = 7419 &decl_list->type->qualifier; 7420 7421 /* From section 4.3.9 of the GLSL 4.40 spec: 7422 * 7423 * "[In interface blocks] opaque types are not allowed." 7424 * 7425 * It should be impossible for decl_type to be NULL here. Cases that 7426 * might naturally lead to decl_type being NULL, especially for the 7427 * is_interface case, will have resulted in compilation having 7428 * already halted due to a syntax error. 7429 */ 7430 assert(decl_type); 7431 7432 if (is_interface) { 7433 /* From section 4.3.7 of the ARB_bindless_texture spec: 7434 * 7435 * "(remove the following bullet from the last list on p. 39, 7436 * thereby permitting sampler types in interface blocks; image 7437 * types are also permitted in blocks by this extension)" 7438 * 7439 * * sampler types are not allowed 7440 */ 7441 if (decl_type->contains_atomic() || 7442 (!state->has_bindless() && decl_type->contains_opaque())) { 7443 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default " 7444 "interface block contains %s variable", 7445 state->has_bindless() ? "atomic" : "opaque"); 7446 } 7447 } else { 7448 if (decl_type->contains_atomic()) { 7449 /* From section 4.1.7.3 of the GLSL 4.40 spec: 7450 * 7451 * "Members of structures cannot be declared as atomic counter 7452 * types." 7453 */ 7454 _mesa_glsl_error(&loc, state, "atomic counter in structure"); 7455 } 7456 7457 if (!state->has_bindless() && decl_type->contains_image()) { 7458 /* FINISHME: Same problem as with atomic counters. 7459 * FINISHME: Request clarification from Khronos and add 7460 * FINISHME: spec quotation here. 7461 */ 7462 _mesa_glsl_error(&loc, state, "image in structure"); 7463 } 7464 } 7465 7466 if (qual->flags.q.explicit_binding) { 7467 _mesa_glsl_error(&loc, state, 7468 "binding layout qualifier cannot be applied " 7469 "to struct or interface block members"); 7470 } 7471 7472 if (is_interface) { 7473 if (!first_member) { 7474 if (!layout->flags.q.explicit_location && 7475 ((first_member_has_explicit_location && 7476 !qual->flags.q.explicit_location) || 7477 (!first_member_has_explicit_location && 7478 qual->flags.q.explicit_location))) { 7479 _mesa_glsl_error(&loc, state, 7480 "when block-level location layout qualifier " 7481 "is not supplied either all members must " 7482 "have a location layout qualifier or all " 7483 "members must not have a location layout " 7484 "qualifier"); 7485 } 7486 } else { 7487 first_member = false; 7488 first_member_has_explicit_location = 7489 qual->flags.q.explicit_location; 7490 } 7491 } 7492 7493 if (qual->flags.q.std140 || 7494 qual->flags.q.std430 || 7495 qual->flags.q.packed || 7496 qual->flags.q.shared) { 7497 _mesa_glsl_error(&loc, state, 7498 "uniform/shader storage block layout qualifiers " 7499 "std140, std430, packed, and shared can only be " 7500 "applied to uniform/shader storage blocks, not " 7501 "members"); 7502 } 7503 7504 if (qual->flags.q.constant) { 7505 _mesa_glsl_error(&loc, state, 7506 "const storage qualifier cannot be applied " 7507 "to struct or interface block members"); 7508 } 7509 7510 validate_memory_qualifier_for_type(state, &loc, qual, decl_type); 7511 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type); 7512 7513 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec: 7514 * 7515 * "A block member may be declared with a stream identifier, but 7516 * the specified stream must match the stream associated with the 7517 * containing block." 7518 */ 7519 if (qual->flags.q.explicit_stream) { 7520 unsigned qual_stream; 7521 if (process_qualifier_constant(state, &loc, "stream", 7522 qual->stream, &qual_stream) && 7523 qual_stream != block_stream) { 7524 _mesa_glsl_error(&loc, state, "stream layout qualifier on " 7525 "interface block member does not match " 7526 "the interface block (%u vs %u)", qual_stream, 7527 block_stream); 7528 } 7529 } 7530 7531 int xfb_buffer; 7532 unsigned explicit_xfb_buffer = 0; 7533 if (qual->flags.q.explicit_xfb_buffer) { 7534 unsigned qual_xfb_buffer; 7535 if (process_qualifier_constant(state, &loc, "xfb_buffer", 7536 qual->xfb_buffer, &qual_xfb_buffer)) { 7537 explicit_xfb_buffer = 1; 7538 if (qual_xfb_buffer != block_xfb_buffer) 7539 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on " 7540 "interface block member does not match " 7541 "the interface block (%u vs %u)", 7542 qual_xfb_buffer, block_xfb_buffer); 7543 } 7544 xfb_buffer = (int) qual_xfb_buffer; 7545 } else { 7546 if (layout) 7547 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer; 7548 xfb_buffer = (int) block_xfb_buffer; 7549 } 7550 7551 int xfb_stride = -1; 7552 if (qual->flags.q.explicit_xfb_stride) { 7553 unsigned qual_xfb_stride; 7554 if (process_qualifier_constant(state, &loc, "xfb_stride", 7555 qual->xfb_stride, &qual_xfb_stride)) { 7556 xfb_stride = (int) qual_xfb_stride; 7557 } 7558 } 7559 7560 if (qual->flags.q.uniform && qual->has_interpolation()) { 7561 _mesa_glsl_error(&loc, state, 7562 "interpolation qualifiers cannot be used " 7563 "with uniform interface blocks"); 7564 } 7565 7566 if ((qual->flags.q.uniform || !is_interface) && 7567 qual->has_auxiliary_storage()) { 7568 _mesa_glsl_error(&loc, state, 7569 "auxiliary storage qualifiers cannot be used " 7570 "in uniform blocks or structures."); 7571 } 7572 7573 if (qual->flags.q.row_major || qual->flags.q.column_major) { 7574 if (!qual->flags.q.uniform && !qual->flags.q.buffer) { 7575 _mesa_glsl_error(&loc, state, 7576 "row_major and column_major can only be " 7577 "applied to interface blocks"); 7578 } else 7579 validate_matrix_layout_for_type(state, &loc, decl_type, NULL); 7580 } 7581 7582 foreach_list_typed (ast_declaration, decl, link, 7583 &decl_list->declarations) { 7584 YYLTYPE loc = decl->get_location(); 7585 7586 if (!allow_reserved_names) 7587 validate_identifier(decl->identifier, loc, state); 7588 7589 const struct glsl_type *field_type = 7590 process_array_type(&loc, decl_type, decl->array_specifier, state); 7591 validate_array_dimensions(field_type, state, &loc); 7592 fields[i].type = field_type; 7593 fields[i].name = decl->identifier; 7594 fields[i].interpolation = 7595 interpret_interpolation_qualifier(qual, field_type, 7596 var_mode, state, &loc); 7597 fields[i].centroid = qual->flags.q.centroid ? 1 : 0; 7598 fields[i].sample = qual->flags.q.sample ? 1 : 0; 7599 fields[i].patch = qual->flags.q.patch ? 1 : 0; 7600 fields[i].offset = -1; 7601 fields[i].explicit_xfb_buffer = explicit_xfb_buffer; 7602 fields[i].xfb_buffer = xfb_buffer; 7603 fields[i].xfb_stride = xfb_stride; 7604 7605 if (qual->flags.q.explicit_location) { 7606 unsigned qual_location; 7607 if (process_qualifier_constant(state, &loc, "location", 7608 qual->location, &qual_location)) { 7609 fields[i].location = qual_location + 7610 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0); 7611 expl_location = fields[i].location + 7612 fields[i].type->count_attribute_slots(false); 7613 } 7614 } else { 7615 if (layout && layout->flags.q.explicit_location) { 7616 fields[i].location = expl_location; 7617 expl_location += fields[i].type->count_attribute_slots(false); 7618 } else { 7619 fields[i].location = -1; 7620 } 7621 } 7622 7623 if (qual->flags.q.explicit_component) { 7624 unsigned qual_component; 7625 if (process_qualifier_constant(state, &loc, "component", 7626 qual->component, &qual_component)) { 7627 validate_component_layout_for_type(state, &loc, fields[i].type, 7628 qual_component); 7629 fields[i].component = qual_component; 7630 } 7631 } else { 7632 fields[i].component = -1; 7633 } 7634 7635 /* Offset can only be used with std430 and std140 layouts an initial 7636 * value of 0 is used for error detection. 7637 */ 7638 unsigned align = 0; 7639 unsigned size = 0; 7640 if (layout) { 7641 bool row_major; 7642 if (qual->flags.q.row_major || 7643 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) { 7644 row_major = true; 7645 } else { 7646 row_major = false; 7647 } 7648 7649 if(layout->flags.q.std140) { 7650 align = field_type->std140_base_alignment(row_major); 7651 size = field_type->std140_size(row_major); 7652 } else if (layout->flags.q.std430) { 7653 align = field_type->std430_base_alignment(row_major); 7654 size = field_type->std430_size(row_major); 7655 } 7656 } 7657 7658 if (qual->flags.q.explicit_offset) { 7659 unsigned qual_offset; 7660 if (process_qualifier_constant(state, &loc, "offset", 7661 qual->offset, &qual_offset)) { 7662 if (align != 0 && size != 0) { 7663 if (next_offset > qual_offset) 7664 _mesa_glsl_error(&loc, state, "layout qualifier " 7665 "offset overlaps previous member"); 7666 7667 if (qual_offset % align) { 7668 _mesa_glsl_error(&loc, state, "layout qualifier offset " 7669 "must be a multiple of the base " 7670 "alignment of %s", field_type->name); 7671 } 7672 fields[i].offset = qual_offset; 7673 next_offset = qual_offset + size; 7674 } else { 7675 _mesa_glsl_error(&loc, state, "offset can only be used " 7676 "with std430 and std140 layouts"); 7677 } 7678 } 7679 } 7680 7681 if (qual->flags.q.explicit_align || expl_align != 0) { 7682 unsigned offset = fields[i].offset != -1 ? fields[i].offset : 7683 next_offset; 7684 if (align == 0 || size == 0) { 7685 _mesa_glsl_error(&loc, state, "align can only be used with " 7686 "std430 and std140 layouts"); 7687 } else if (qual->flags.q.explicit_align) { 7688 unsigned member_align; 7689 if (process_qualifier_constant(state, &loc, "align", 7690 qual->align, &member_align)) { 7691 if (member_align == 0 || 7692 member_align & (member_align - 1)) { 7693 _mesa_glsl_error(&loc, state, "align layout qualifier " 7694 "is not a power of 2"); 7695 } else { 7696 fields[i].offset = glsl_align(offset, member_align); 7697 next_offset = fields[i].offset + size; 7698 } 7699 } 7700 } else { 7701 fields[i].offset = glsl_align(offset, expl_align); 7702 next_offset = fields[i].offset + size; 7703 } 7704 } else if (!qual->flags.q.explicit_offset) { 7705 if (align != 0 && size != 0) 7706 next_offset = glsl_align(next_offset, align) + size; 7707 } 7708 7709 /* From the ARB_enhanced_layouts spec: 7710 * 7711 * "The given offset applies to the first component of the first 7712 * member of the qualified entity. Then, within the qualified 7713 * entity, subsequent components are each assigned, in order, to 7714 * the next available offset aligned to a multiple of that 7715 * component's size. Aggregate types are flattened down to the 7716 * component level to get this sequence of components." 7717 */ 7718 if (qual->flags.q.explicit_xfb_offset) { 7719 unsigned xfb_offset; 7720 if (process_qualifier_constant(state, &loc, "xfb_offset", 7721 qual->offset, &xfb_offset)) { 7722 fields[i].offset = xfb_offset; 7723 block_xfb_offset = fields[i].offset + 7724 4 * field_type->component_slots(); 7725 } 7726 } else { 7727 if (layout && layout->flags.q.explicit_xfb_offset) { 7728 unsigned align = field_type->is_64bit() ? 8 : 4; 7729 fields[i].offset = glsl_align(block_xfb_offset, align); 7730 block_xfb_offset += 4 * field_type->component_slots(); 7731 } 7732 } 7733 7734 /* Propogate row- / column-major information down the fields of the 7735 * structure or interface block. Structures need this data because 7736 * the structure may contain a structure that contains ... a matrix 7737 * that need the proper layout. 7738 */ 7739 if (is_interface && layout && 7740 (layout->flags.q.uniform || layout->flags.q.buffer) && 7741 (field_type->without_array()->is_matrix() 7742 || field_type->without_array()->is_struct())) { 7743 /* If no layout is specified for the field, inherit the layout 7744 * from the block. 7745 */ 7746 fields[i].matrix_layout = matrix_layout; 7747 7748 if (qual->flags.q.row_major) 7749 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; 7750 else if (qual->flags.q.column_major) 7751 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; 7752 7753 /* If we're processing an uniform or buffer block, the matrix 7754 * layout must be decided by this point. 7755 */ 7756 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR 7757 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR); 7758 } 7759 7760 /* Memory qualifiers are allowed on buffer and image variables, while 7761 * the format qualifier is only accepted for images. 7762 */ 7763 if (var_mode == ir_var_shader_storage || 7764 field_type->without_array()->is_image()) { 7765 /* For readonly and writeonly qualifiers the field definition, 7766 * if set, overwrites the layout qualifier. 7767 */ 7768 if (qual->flags.q.read_only || qual->flags.q.write_only) { 7769 fields[i].memory_read_only = qual->flags.q.read_only; 7770 fields[i].memory_write_only = qual->flags.q.write_only; 7771 } else { 7772 fields[i].memory_read_only = 7773 layout ? layout->flags.q.read_only : 0; 7774 fields[i].memory_write_only = 7775 layout ? layout->flags.q.write_only : 0; 7776 } 7777 7778 /* For other qualifiers, we set the flag if either the layout 7779 * qualifier or the field qualifier are set 7780 */ 7781 fields[i].memory_coherent = qual->flags.q.coherent || 7782 (layout && layout->flags.q.coherent); 7783 fields[i].memory_volatile = qual->flags.q._volatile || 7784 (layout && layout->flags.q._volatile); 7785 fields[i].memory_restrict = qual->flags.q.restrict_flag || 7786 (layout && layout->flags.q.restrict_flag); 7787 7788 if (field_type->without_array()->is_image()) { 7789 if (qual->flags.q.explicit_image_format) { 7790 if (qual->image_base_type != 7791 field_type->without_array()->sampled_type) { 7792 _mesa_glsl_error(&loc, state, "format qualifier doesn't " 7793 "match the base data type of the image"); 7794 } 7795 7796 fields[i].image_format = qual->image_format; 7797 } else { 7798 if (!qual->flags.q.write_only) { 7799 _mesa_glsl_error(&loc, state, "image not qualified with " 7800 "`writeonly' must have a format layout " 7801 "qualifier"); 7802 } 7803 7804 fields[i].image_format = PIPE_FORMAT_NONE; 7805 } 7806 } 7807 } 7808 7809 /* Precision qualifiers do not hold any meaning in Desktop GLSL */ 7810 if (state->es_shader) { 7811 fields[i].precision = select_gles_precision(qual->precision, 7812 field_type, 7813 state, 7814 &loc); 7815 } else { 7816 fields[i].precision = qual->precision; 7817 } 7818 7819 i++; 7820 } 7821 } 7822 7823 assert(i == decl_count); 7824 7825 *fields_ret = fields; 7826 return decl_count; 7827} 7828 7829 7830ir_rvalue * 7831ast_struct_specifier::hir(exec_list *instructions, 7832 struct _mesa_glsl_parse_state *state) 7833{ 7834 YYLTYPE loc = this->get_location(); 7835 7836 unsigned expl_location = 0; 7837 if (layout && layout->flags.q.explicit_location) { 7838 if (!process_qualifier_constant(state, &loc, "location", 7839 layout->location, &expl_location)) { 7840 return NULL; 7841 } else { 7842 expl_location = VARYING_SLOT_VAR0 + expl_location; 7843 } 7844 } 7845 7846 glsl_struct_field *fields; 7847 unsigned decl_count = 7848 ast_process_struct_or_iface_block_members(instructions, 7849 state, 7850 &this->declarations, 7851 &fields, 7852 false, 7853 GLSL_MATRIX_LAYOUT_INHERITED, 7854 false /* allow_reserved_names */, 7855 ir_var_auto, 7856 layout, 7857 0, /* for interface only */ 7858 0, /* for interface only */ 7859 0, /* for interface only */ 7860 expl_location, 7861 0 /* for interface only */); 7862 7863 validate_identifier(this->name, loc, state); 7864 7865 type = glsl_type::get_struct_instance(fields, decl_count, this->name); 7866 7867 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) { 7868 const glsl_type *match = state->symbols->get_type(name); 7869 /* allow struct matching for desktop GL - older UE4 does this */ 7870 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, true, false)) 7871 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name); 7872 else 7873 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name); 7874 } else { 7875 const glsl_type **s = reralloc(state, state->user_structures, 7876 const glsl_type *, 7877 state->num_user_structures + 1); 7878 if (s != NULL) { 7879 s[state->num_user_structures] = type; 7880 state->user_structures = s; 7881 state->num_user_structures++; 7882 } 7883 } 7884 7885 /* Structure type definitions do not have r-values. 7886 */ 7887 return NULL; 7888} 7889 7890 7891/** 7892 * Visitor class which detects whether a given interface block has been used. 7893 */ 7894class interface_block_usage_visitor : public ir_hierarchical_visitor 7895{ 7896public: 7897 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block) 7898 : mode(mode), block(block), found(false) 7899 { 7900 } 7901 7902 virtual ir_visitor_status visit(ir_dereference_variable *ir) 7903 { 7904 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) { 7905 found = true; 7906 return visit_stop; 7907 } 7908 return visit_continue; 7909 } 7910 7911 bool usage_found() const 7912 { 7913 return this->found; 7914 } 7915 7916private: 7917 ir_variable_mode mode; 7918 const glsl_type *block; 7919 bool found; 7920}; 7921 7922static bool 7923is_unsized_array_last_element(ir_variable *v) 7924{ 7925 const glsl_type *interface_type = v->get_interface_type(); 7926 int length = interface_type->length; 7927 7928 assert(v->type->is_unsized_array()); 7929 7930 /* Check if it is the last element of the interface */ 7931 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0) 7932 return true; 7933 return false; 7934} 7935 7936static void 7937apply_memory_qualifiers(ir_variable *var, glsl_struct_field field) 7938{ 7939 var->data.memory_read_only = field.memory_read_only; 7940 var->data.memory_write_only = field.memory_write_only; 7941 var->data.memory_coherent = field.memory_coherent; 7942 var->data.memory_volatile = field.memory_volatile; 7943 var->data.memory_restrict = field.memory_restrict; 7944} 7945 7946ir_rvalue * 7947ast_interface_block::hir(exec_list *instructions, 7948 struct _mesa_glsl_parse_state *state) 7949{ 7950 YYLTYPE loc = this->get_location(); 7951 7952 /* Interface blocks must be declared at global scope */ 7953 if (state->current_function != NULL) { 7954 _mesa_glsl_error(&loc, state, 7955 "Interface block `%s' must be declared " 7956 "at global scope", 7957 this->block_name); 7958 } 7959 7960 /* Validate qualifiers: 7961 * 7962 * - Layout Qualifiers as per the table in Section 4.4 7963 * ("Layout Qualifiers") of the GLSL 4.50 spec. 7964 * 7965 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the 7966 * GLSL 4.50 spec: 7967 * 7968 * "Additionally, memory qualifiers may also be used in the declaration 7969 * of shader storage blocks" 7970 * 7971 * Note the table in Section 4.4 says std430 is allowed on both uniform and 7972 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block 7973 * Layout Qualifiers) of the GLSL 4.50 spec says: 7974 * 7975 * "The std430 qualifier is supported only for shader storage blocks; 7976 * using std430 on a uniform block will result in a compile-time error." 7977 */ 7978 ast_type_qualifier allowed_blk_qualifiers; 7979 allowed_blk_qualifiers.flags.i = 0; 7980 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) { 7981 allowed_blk_qualifiers.flags.q.shared = 1; 7982 allowed_blk_qualifiers.flags.q.packed = 1; 7983 allowed_blk_qualifiers.flags.q.std140 = 1; 7984 allowed_blk_qualifiers.flags.q.row_major = 1; 7985 allowed_blk_qualifiers.flags.q.column_major = 1; 7986 allowed_blk_qualifiers.flags.q.explicit_align = 1; 7987 allowed_blk_qualifiers.flags.q.explicit_binding = 1; 7988 if (this->layout.flags.q.buffer) { 7989 allowed_blk_qualifiers.flags.q.buffer = 1; 7990 allowed_blk_qualifiers.flags.q.std430 = 1; 7991 allowed_blk_qualifiers.flags.q.coherent = 1; 7992 allowed_blk_qualifiers.flags.q._volatile = 1; 7993 allowed_blk_qualifiers.flags.q.restrict_flag = 1; 7994 allowed_blk_qualifiers.flags.q.read_only = 1; 7995 allowed_blk_qualifiers.flags.q.write_only = 1; 7996 } else { 7997 allowed_blk_qualifiers.flags.q.uniform = 1; 7998 } 7999 } else { 8000 /* Interface block */ 8001 assert(this->layout.flags.q.in || this->layout.flags.q.out); 8002 8003 allowed_blk_qualifiers.flags.q.explicit_location = 1; 8004 if (this->layout.flags.q.out) { 8005 allowed_blk_qualifiers.flags.q.out = 1; 8006 if (state->stage == MESA_SHADER_GEOMETRY || 8007 state->stage == MESA_SHADER_TESS_CTRL || 8008 state->stage == MESA_SHADER_TESS_EVAL || 8009 state->stage == MESA_SHADER_VERTEX ) { 8010 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1; 8011 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1; 8012 allowed_blk_qualifiers.flags.q.xfb_buffer = 1; 8013 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1; 8014 allowed_blk_qualifiers.flags.q.xfb_stride = 1; 8015 if (state->stage == MESA_SHADER_GEOMETRY) { 8016 allowed_blk_qualifiers.flags.q.stream = 1; 8017 allowed_blk_qualifiers.flags.q.explicit_stream = 1; 8018 } 8019 if (state->stage == MESA_SHADER_TESS_CTRL) { 8020 allowed_blk_qualifiers.flags.q.patch = 1; 8021 } 8022 } 8023 } else { 8024 allowed_blk_qualifiers.flags.q.in = 1; 8025 if (state->stage == MESA_SHADER_TESS_EVAL) { 8026 allowed_blk_qualifiers.flags.q.patch = 1; 8027 } 8028 } 8029 } 8030 8031 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers, 8032 "invalid qualifier for block", 8033 this->block_name); 8034 8035 enum glsl_interface_packing packing; 8036 if (this->layout.flags.q.std140) { 8037 packing = GLSL_INTERFACE_PACKING_STD140; 8038 } else if (this->layout.flags.q.packed) { 8039 packing = GLSL_INTERFACE_PACKING_PACKED; 8040 } else if (this->layout.flags.q.std430) { 8041 packing = GLSL_INTERFACE_PACKING_STD430; 8042 } else { 8043 /* The default layout is shared. 8044 */ 8045 packing = GLSL_INTERFACE_PACKING_SHARED; 8046 } 8047 8048 ir_variable_mode var_mode; 8049 const char *iface_type_name; 8050 if (this->layout.flags.q.in) { 8051 var_mode = ir_var_shader_in; 8052 iface_type_name = "in"; 8053 } else if (this->layout.flags.q.out) { 8054 var_mode = ir_var_shader_out; 8055 iface_type_name = "out"; 8056 } else if (this->layout.flags.q.uniform) { 8057 var_mode = ir_var_uniform; 8058 iface_type_name = "uniform"; 8059 } else if (this->layout.flags.q.buffer) { 8060 var_mode = ir_var_shader_storage; 8061 iface_type_name = "buffer"; 8062 } else { 8063 var_mode = ir_var_auto; 8064 iface_type_name = "UNKNOWN"; 8065 assert(!"interface block layout qualifier not found!"); 8066 } 8067 8068 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED; 8069 if (this->layout.flags.q.row_major) 8070 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR; 8071 else if (this->layout.flags.q.column_major) 8072 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR; 8073 8074 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0; 8075 exec_list declared_variables; 8076 glsl_struct_field *fields; 8077 8078 /* For blocks that accept memory qualifiers (i.e. shader storage), verify 8079 * that we don't have incompatible qualifiers 8080 */ 8081 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) { 8082 _mesa_glsl_error(&loc, state, 8083 "Interface block sets both readonly and writeonly"); 8084 } 8085 8086 unsigned qual_stream; 8087 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream, 8088 &qual_stream) || 8089 !validate_stream_qualifier(&loc, state, qual_stream)) { 8090 /* If the stream qualifier is invalid it doesn't make sense to continue 8091 * on and try to compare stream layouts on member variables against it 8092 * so just return early. 8093 */ 8094 return NULL; 8095 } 8096 8097 unsigned qual_xfb_buffer; 8098 if (!process_qualifier_constant(state, &loc, "xfb_buffer", 8099 layout.xfb_buffer, &qual_xfb_buffer) || 8100 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) { 8101 return NULL; 8102 } 8103 8104 unsigned qual_xfb_offset = 0; 8105 if (layout.flags.q.explicit_xfb_offset) { 8106 if (!process_qualifier_constant(state, &loc, "xfb_offset", 8107 layout.offset, &qual_xfb_offset)) { 8108 return NULL; 8109 } 8110 } 8111 8112 unsigned qual_xfb_stride = 0; 8113 if (layout.flags.q.explicit_xfb_stride) { 8114 if (!process_qualifier_constant(state, &loc, "xfb_stride", 8115 layout.xfb_stride, &qual_xfb_stride)) { 8116 return NULL; 8117 } 8118 } 8119 8120 unsigned expl_location = 0; 8121 if (layout.flags.q.explicit_location) { 8122 if (!process_qualifier_constant(state, &loc, "location", 8123 layout.location, &expl_location)) { 8124 return NULL; 8125 } else { 8126 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0 8127 : VARYING_SLOT_VAR0; 8128 } 8129 } 8130 8131 unsigned expl_align = 0; 8132 if (layout.flags.q.explicit_align) { 8133 if (!process_qualifier_constant(state, &loc, "align", 8134 layout.align, &expl_align)) { 8135 return NULL; 8136 } else { 8137 if (expl_align == 0 || expl_align & (expl_align - 1)) { 8138 _mesa_glsl_error(&loc, state, "align layout qualifier is not a " 8139 "power of 2."); 8140 return NULL; 8141 } 8142 } 8143 } 8144 8145 unsigned int num_variables = 8146 ast_process_struct_or_iface_block_members(&declared_variables, 8147 state, 8148 &this->declarations, 8149 &fields, 8150 true, 8151 matrix_layout, 8152 redeclaring_per_vertex, 8153 var_mode, 8154 &this->layout, 8155 qual_stream, 8156 qual_xfb_buffer, 8157 qual_xfb_offset, 8158 expl_location, 8159 expl_align); 8160 8161 if (!redeclaring_per_vertex) { 8162 validate_identifier(this->block_name, loc, state); 8163 8164 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec: 8165 * 8166 * "Block names have no other use within a shader beyond interface 8167 * matching; it is a compile-time error to use a block name at global 8168 * scope for anything other than as a block name." 8169 */ 8170 ir_variable *var = state->symbols->get_variable(this->block_name); 8171 if (var && !var->type->is_interface()) { 8172 _mesa_glsl_error(&loc, state, "Block name `%s' is " 8173 "already used in the scope.", 8174 this->block_name); 8175 } 8176 } 8177 8178 const glsl_type *earlier_per_vertex = NULL; 8179 if (redeclaring_per_vertex) { 8180 /* Find the previous declaration of gl_PerVertex. If we're redeclaring 8181 * the named interface block gl_in, we can find it by looking at the 8182 * previous declaration of gl_in. Otherwise we can find it by looking 8183 * at the previous decalartion of any of the built-in outputs, 8184 * e.g. gl_Position. 8185 * 8186 * Also check that the instance name and array-ness of the redeclaration 8187 * are correct. 8188 */ 8189 switch (var_mode) { 8190 case ir_var_shader_in: 8191 if (ir_variable *earlier_gl_in = 8192 state->symbols->get_variable("gl_in")) { 8193 earlier_per_vertex = earlier_gl_in->get_interface_type(); 8194 } else { 8195 _mesa_glsl_error(&loc, state, 8196 "redeclaration of gl_PerVertex input not allowed " 8197 "in the %s shader", 8198 _mesa_shader_stage_to_string(state->stage)); 8199 } 8200 if (this->instance_name == NULL || 8201 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL || 8202 !this->array_specifier->is_single_dimension()) { 8203 _mesa_glsl_error(&loc, state, 8204 "gl_PerVertex input must be redeclared as " 8205 "gl_in[]"); 8206 } 8207 break; 8208 case ir_var_shader_out: 8209 if (ir_variable *earlier_gl_Position = 8210 state->symbols->get_variable("gl_Position")) { 8211 earlier_per_vertex = earlier_gl_Position->get_interface_type(); 8212 } else if (ir_variable *earlier_gl_out = 8213 state->symbols->get_variable("gl_out")) { 8214 earlier_per_vertex = earlier_gl_out->get_interface_type(); 8215 } else { 8216 _mesa_glsl_error(&loc, state, 8217 "redeclaration of gl_PerVertex output not " 8218 "allowed in the %s shader", 8219 _mesa_shader_stage_to_string(state->stage)); 8220 } 8221 if (state->stage == MESA_SHADER_TESS_CTRL) { 8222 if (this->instance_name == NULL || 8223 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) { 8224 _mesa_glsl_error(&loc, state, 8225 "gl_PerVertex output must be redeclared as " 8226 "gl_out[]"); 8227 } 8228 } else { 8229 if (this->instance_name != NULL) { 8230 _mesa_glsl_error(&loc, state, 8231 "gl_PerVertex output may not be redeclared with " 8232 "an instance name"); 8233 } 8234 } 8235 break; 8236 default: 8237 _mesa_glsl_error(&loc, state, 8238 "gl_PerVertex must be declared as an input or an " 8239 "output"); 8240 break; 8241 } 8242 8243 if (earlier_per_vertex == NULL) { 8244 /* An error has already been reported. Bail out to avoid null 8245 * dereferences later in this function. 8246 */ 8247 return NULL; 8248 } 8249 8250 /* Copy locations from the old gl_PerVertex interface block. */ 8251 for (unsigned i = 0; i < num_variables; i++) { 8252 int j = earlier_per_vertex->field_index(fields[i].name); 8253 if (j == -1) { 8254 _mesa_glsl_error(&loc, state, 8255 "redeclaration of gl_PerVertex must be a subset " 8256 "of the built-in members of gl_PerVertex"); 8257 } else { 8258 fields[i].location = 8259 earlier_per_vertex->fields.structure[j].location; 8260 fields[i].offset = 8261 earlier_per_vertex->fields.structure[j].offset; 8262 fields[i].interpolation = 8263 earlier_per_vertex->fields.structure[j].interpolation; 8264 fields[i].centroid = 8265 earlier_per_vertex->fields.structure[j].centroid; 8266 fields[i].sample = 8267 earlier_per_vertex->fields.structure[j].sample; 8268 fields[i].patch = 8269 earlier_per_vertex->fields.structure[j].patch; 8270 fields[i].precision = 8271 earlier_per_vertex->fields.structure[j].precision; 8272 fields[i].explicit_xfb_buffer = 8273 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer; 8274 fields[i].xfb_buffer = 8275 earlier_per_vertex->fields.structure[j].xfb_buffer; 8276 fields[i].xfb_stride = 8277 earlier_per_vertex->fields.structure[j].xfb_stride; 8278 } 8279 } 8280 8281 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 8282 * spec: 8283 * 8284 * If a built-in interface block is redeclared, it must appear in 8285 * the shader before any use of any member included in the built-in 8286 * declaration, or a compilation error will result. 8287 * 8288 * This appears to be a clarification to the behaviour established for 8289 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour 8290 * regardless of GLSL version. 8291 */ 8292 interface_block_usage_visitor v(var_mode, earlier_per_vertex); 8293 v.run(instructions); 8294 if (v.usage_found()) { 8295 _mesa_glsl_error(&loc, state, 8296 "redeclaration of a built-in interface block must " 8297 "appear before any use of any member of the " 8298 "interface block"); 8299 } 8300 } 8301 8302 const glsl_type *block_type = 8303 glsl_type::get_interface_instance(fields, 8304 num_variables, 8305 packing, 8306 matrix_layout == 8307 GLSL_MATRIX_LAYOUT_ROW_MAJOR, 8308 this->block_name); 8309 8310 unsigned component_size = block_type->contains_double() ? 8 : 4; 8311 int xfb_offset = 8312 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1; 8313 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type, 8314 component_size); 8315 8316 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) { 8317 YYLTYPE loc = this->get_location(); 8318 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' " 8319 "already taken in the current scope", 8320 this->block_name, iface_type_name); 8321 } 8322 8323 /* Since interface blocks cannot contain statements, it should be 8324 * impossible for the block to generate any instructions. 8325 */ 8326 assert(declared_variables.is_empty()); 8327 8328 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec: 8329 * 8330 * Geometry shader input variables get the per-vertex values written 8331 * out by vertex shader output variables of the same names. Since a 8332 * geometry shader operates on a set of vertices, each input varying 8333 * variable (or input block, see interface blocks below) needs to be 8334 * declared as an array. 8335 */ 8336 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL && 8337 var_mode == ir_var_shader_in) { 8338 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays"); 8339 } else if ((state->stage == MESA_SHADER_TESS_CTRL || 8340 state->stage == MESA_SHADER_TESS_EVAL) && 8341 !this->layout.flags.q.patch && 8342 this->array_specifier == NULL && 8343 var_mode == ir_var_shader_in) { 8344 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays"); 8345 } else if (state->stage == MESA_SHADER_TESS_CTRL && 8346 !this->layout.flags.q.patch && 8347 this->array_specifier == NULL && 8348 var_mode == ir_var_shader_out) { 8349 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays"); 8350 } 8351 8352 8353 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec 8354 * says: 8355 * 8356 * "If an instance name (instance-name) is used, then it puts all the 8357 * members inside a scope within its own name space, accessed with the 8358 * field selector ( . ) operator (analogously to structures)." 8359 */ 8360 if (this->instance_name) { 8361 if (redeclaring_per_vertex) { 8362 /* When a built-in in an unnamed interface block is redeclared, 8363 * get_variable_being_redeclared() calls 8364 * check_builtin_array_max_size() to make sure that built-in array 8365 * variables aren't redeclared to illegal sizes. But we're looking 8366 * at a redeclaration of a named built-in interface block. So we 8367 * have to manually call check_builtin_array_max_size() for all parts 8368 * of the interface that are arrays. 8369 */ 8370 for (unsigned i = 0; i < num_variables; i++) { 8371 if (fields[i].type->is_array()) { 8372 const unsigned size = fields[i].type->array_size(); 8373 check_builtin_array_max_size(fields[i].name, size, loc, state); 8374 } 8375 } 8376 } else { 8377 validate_identifier(this->instance_name, loc, state); 8378 } 8379 8380 ir_variable *var; 8381 8382 if (this->array_specifier != NULL) { 8383 const glsl_type *block_array_type = 8384 process_array_type(&loc, block_type, this->array_specifier, state); 8385 8386 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says: 8387 * 8388 * For uniform blocks declared an array, each individual array 8389 * element corresponds to a separate buffer object backing one 8390 * instance of the block. As the array size indicates the number 8391 * of buffer objects needed, uniform block array declarations 8392 * must specify an array size. 8393 * 8394 * And a few paragraphs later: 8395 * 8396 * Geometry shader input blocks must be declared as arrays and 8397 * follow the array declaration and linking rules for all 8398 * geometry shader inputs. All other input and output block 8399 * arrays must specify an array size. 8400 * 8401 * The same applies to tessellation shaders. 8402 * 8403 * The upshot of this is that the only circumstance where an 8404 * interface array size *doesn't* need to be specified is on a 8405 * geometry shader input, tessellation control shader input, 8406 * tessellation control shader output, and tessellation evaluation 8407 * shader input. 8408 */ 8409 if (block_array_type->is_unsized_array()) { 8410 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY || 8411 state->stage == MESA_SHADER_TESS_CTRL || 8412 state->stage == MESA_SHADER_TESS_EVAL; 8413 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL; 8414 8415 if (this->layout.flags.q.in) { 8416 if (!allow_inputs) 8417 _mesa_glsl_error(&loc, state, 8418 "unsized input block arrays not allowed in " 8419 "%s shader", 8420 _mesa_shader_stage_to_string(state->stage)); 8421 } else if (this->layout.flags.q.out) { 8422 if (!allow_outputs) 8423 _mesa_glsl_error(&loc, state, 8424 "unsized output block arrays not allowed in " 8425 "%s shader", 8426 _mesa_shader_stage_to_string(state->stage)); 8427 } else { 8428 /* by elimination, this is a uniform block array */ 8429 _mesa_glsl_error(&loc, state, 8430 "unsized uniform block arrays not allowed in " 8431 "%s shader", 8432 _mesa_shader_stage_to_string(state->stage)); 8433 } 8434 } 8435 8436 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec: 8437 * 8438 * * Arrays of arrays of blocks are not allowed 8439 */ 8440 if (state->es_shader && block_array_type->is_array() && 8441 block_array_type->fields.array->is_array()) { 8442 _mesa_glsl_error(&loc, state, 8443 "arrays of arrays interface blocks are " 8444 "not allowed"); 8445 } 8446 8447 var = new(state) ir_variable(block_array_type, 8448 this->instance_name, 8449 var_mode); 8450 } else { 8451 var = new(state) ir_variable(block_type, 8452 this->instance_name, 8453 var_mode); 8454 } 8455 8456 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED 8457 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; 8458 8459 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) 8460 var->data.read_only = true; 8461 8462 var->data.patch = this->layout.flags.q.patch; 8463 8464 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in) 8465 handle_geometry_shader_input_decl(state, loc, var); 8466 else if ((state->stage == MESA_SHADER_TESS_CTRL || 8467 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in) 8468 handle_tess_shader_input_decl(state, loc, var); 8469 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out) 8470 handle_tess_ctrl_shader_output_decl(state, loc, var); 8471 8472 for (unsigned i = 0; i < num_variables; i++) { 8473 if (var->data.mode == ir_var_shader_storage) 8474 apply_memory_qualifiers(var, fields[i]); 8475 } 8476 8477 if (ir_variable *earlier = 8478 state->symbols->get_variable(this->instance_name)) { 8479 if (!redeclaring_per_vertex) { 8480 _mesa_glsl_error(&loc, state, "`%s' redeclared", 8481 this->instance_name); 8482 } 8483 earlier->data.how_declared = ir_var_declared_normally; 8484 earlier->type = var->type; 8485 earlier->reinit_interface_type(block_type); 8486 delete var; 8487 } else { 8488 if (this->layout.flags.q.explicit_binding) { 8489 apply_explicit_binding(state, &loc, var, var->type, 8490 &this->layout); 8491 } 8492 8493 var->data.stream = qual_stream; 8494 if (layout.flags.q.explicit_location) { 8495 var->data.location = expl_location; 8496 var->data.explicit_location = true; 8497 } 8498 8499 state->symbols->add_variable(var); 8500 instructions->push_tail(var); 8501 } 8502 } else { 8503 /* In order to have an array size, the block must also be declared with 8504 * an instance name. 8505 */ 8506 assert(this->array_specifier == NULL); 8507 8508 for (unsigned i = 0; i < num_variables; i++) { 8509 ir_variable *var = 8510 new(state) ir_variable(fields[i].type, 8511 ralloc_strdup(state, fields[i].name), 8512 var_mode); 8513 var->data.interpolation = fields[i].interpolation; 8514 var->data.centroid = fields[i].centroid; 8515 var->data.sample = fields[i].sample; 8516 var->data.patch = fields[i].patch; 8517 var->data.stream = qual_stream; 8518 var->data.location = fields[i].location; 8519 8520 if (fields[i].location != -1) 8521 var->data.explicit_location = true; 8522 8523 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer; 8524 var->data.xfb_buffer = fields[i].xfb_buffer; 8525 8526 if (fields[i].offset != -1) 8527 var->data.explicit_xfb_offset = true; 8528 var->data.offset = fields[i].offset; 8529 8530 var->init_interface_type(block_type); 8531 8532 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform) 8533 var->data.read_only = true; 8534 8535 /* Precision qualifiers do not have any meaning in Desktop GLSL */ 8536 if (state->es_shader) { 8537 var->data.precision = 8538 select_gles_precision(fields[i].precision, fields[i].type, 8539 state, &loc); 8540 } 8541 8542 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) { 8543 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED 8544 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout; 8545 } else { 8546 var->data.matrix_layout = fields[i].matrix_layout; 8547 } 8548 8549 if (var->data.mode == ir_var_shader_storage) 8550 apply_memory_qualifiers(var, fields[i]); 8551 8552 /* Examine var name here since var may get deleted in the next call */ 8553 bool var_is_gl_id = is_gl_identifier(var->name); 8554 8555 if (redeclaring_per_vertex) { 8556 bool is_redeclaration; 8557 var = 8558 get_variable_being_redeclared(&var, loc, state, 8559 true /* allow_all_redeclarations */, 8560 &is_redeclaration); 8561 if (!var_is_gl_id || !is_redeclaration) { 8562 _mesa_glsl_error(&loc, state, 8563 "redeclaration of gl_PerVertex can only " 8564 "include built-in variables"); 8565 } else if (var->data.how_declared == ir_var_declared_normally) { 8566 _mesa_glsl_error(&loc, state, 8567 "`%s' has already been redeclared", 8568 var->name); 8569 } else { 8570 var->data.how_declared = ir_var_declared_in_block; 8571 var->reinit_interface_type(block_type); 8572 } 8573 continue; 8574 } 8575 8576 if (state->symbols->get_variable(var->name) != NULL) 8577 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name); 8578 8579 /* Propagate the "binding" keyword into this UBO/SSBO's fields. 8580 * The UBO declaration itself doesn't get an ir_variable unless it 8581 * has an instance name. This is ugly. 8582 */ 8583 if (this->layout.flags.q.explicit_binding) { 8584 apply_explicit_binding(state, &loc, var, 8585 var->get_interface_type(), &this->layout); 8586 } 8587 8588 if (var->type->is_unsized_array()) { 8589 if (var->is_in_shader_storage_block() && 8590 is_unsized_array_last_element(var)) { 8591 var->data.from_ssbo_unsized_array = true; 8592 } else { 8593 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays": 8594 * 8595 * "If an array is declared as the last member of a shader storage 8596 * block and the size is not specified at compile-time, it is 8597 * sized at run-time. In all other cases, arrays are sized only 8598 * at compile-time." 8599 * 8600 * In desktop GLSL it is allowed to have unsized-arrays that are 8601 * not last, as long as we can determine that they are implicitly 8602 * sized. 8603 */ 8604 if (state->es_shader) { 8605 _mesa_glsl_error(&loc, state, "unsized array `%s' " 8606 "definition: only last member of a shader " 8607 "storage block can be defined as unsized " 8608 "array", fields[i].name); 8609 } 8610 } 8611 } 8612 8613 state->symbols->add_variable(var); 8614 instructions->push_tail(var); 8615 } 8616 8617 if (redeclaring_per_vertex && block_type != earlier_per_vertex) { 8618 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec: 8619 * 8620 * It is also a compilation error ... to redeclare a built-in 8621 * block and then use a member from that built-in block that was 8622 * not included in the redeclaration. 8623 * 8624 * This appears to be a clarification to the behaviour established 8625 * for gl_PerVertex by GLSL 1.50, therefore we implement this 8626 * behaviour regardless of GLSL version. 8627 * 8628 * To prevent the shader from using a member that was not included in 8629 * the redeclaration, we disable any ir_variables that are still 8630 * associated with the old declaration of gl_PerVertex (since we've 8631 * already updated all of the variables contained in the new 8632 * gl_PerVertex to point to it). 8633 * 8634 * As a side effect this will prevent 8635 * validate_intrastage_interface_blocks() from getting confused and 8636 * thinking there are conflicting definitions of gl_PerVertex in the 8637 * shader. 8638 */ 8639 foreach_in_list_safe(ir_instruction, node, instructions) { 8640 ir_variable *const var = node->as_variable(); 8641 if (var != NULL && 8642 var->get_interface_type() == earlier_per_vertex && 8643 var->data.mode == var_mode) { 8644 if (var->data.how_declared == ir_var_declared_normally) { 8645 _mesa_glsl_error(&loc, state, 8646 "redeclaration of gl_PerVertex cannot " 8647 "follow a redeclaration of `%s'", 8648 var->name); 8649 } 8650 state->symbols->disable_variable(var->name); 8651 var->remove(); 8652 } 8653 } 8654 } 8655 } 8656 8657 return NULL; 8658} 8659 8660 8661ir_rvalue * 8662ast_tcs_output_layout::hir(exec_list *instructions, 8663 struct _mesa_glsl_parse_state *state) 8664{ 8665 YYLTYPE loc = this->get_location(); 8666 8667 unsigned num_vertices; 8668 if (!state->out_qualifier->vertices-> 8669 process_qualifier_constant(state, "vertices", &num_vertices, 8670 false)) { 8671 /* return here to stop cascading incorrect error messages */ 8672 return NULL; 8673 } 8674 8675 /* If any shader outputs occurred before this declaration and specified an 8676 * array size, make sure the size they specified is consistent with the 8677 * primitive type. 8678 */ 8679 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) { 8680 _mesa_glsl_error(&loc, state, 8681 "this tessellation control shader output layout " 8682 "specifies %u vertices, but a previous output " 8683 "is declared with size %u", 8684 num_vertices, state->tcs_output_size); 8685 return NULL; 8686 } 8687 8688 state->tcs_output_vertices_specified = true; 8689 8690 /* If any shader outputs occurred before this declaration and did not 8691 * specify an array size, their size is determined now. 8692 */ 8693 foreach_in_list (ir_instruction, node, instructions) { 8694 ir_variable *var = node->as_variable(); 8695 if (var == NULL || var->data.mode != ir_var_shader_out) 8696 continue; 8697 8698 /* Note: Not all tessellation control shader output are arrays. */ 8699 if (!var->type->is_unsized_array() || var->data.patch) 8700 continue; 8701 8702 if (var->data.max_array_access >= (int)num_vertices) { 8703 _mesa_glsl_error(&loc, state, 8704 "this tessellation control shader output layout " 8705 "specifies %u vertices, but an access to element " 8706 "%u of output `%s' already exists", num_vertices, 8707 var->data.max_array_access, var->name); 8708 } else { 8709 var->type = glsl_type::get_array_instance(var->type->fields.array, 8710 num_vertices); 8711 } 8712 } 8713 8714 return NULL; 8715} 8716 8717 8718ir_rvalue * 8719ast_gs_input_layout::hir(exec_list *instructions, 8720 struct _mesa_glsl_parse_state *state) 8721{ 8722 YYLTYPE loc = this->get_location(); 8723 8724 /* Should have been prevented by the parser. */ 8725 assert(!state->gs_input_prim_type_specified 8726 || state->in_qualifier->prim_type == this->prim_type); 8727 8728 /* If any shader inputs occurred before this declaration and specified an 8729 * array size, make sure the size they specified is consistent with the 8730 * primitive type. 8731 */ 8732 unsigned num_vertices = vertices_per_prim(this->prim_type); 8733 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) { 8734 _mesa_glsl_error(&loc, state, 8735 "this geometry shader input layout implies %u vertices" 8736 " per primitive, but a previous input is declared" 8737 " with size %u", num_vertices, state->gs_input_size); 8738 return NULL; 8739 } 8740 8741 state->gs_input_prim_type_specified = true; 8742 8743 /* If any shader inputs occurred before this declaration and did not 8744 * specify an array size, their size is determined now. 8745 */ 8746 foreach_in_list(ir_instruction, node, instructions) { 8747 ir_variable *var = node->as_variable(); 8748 if (var == NULL || var->data.mode != ir_var_shader_in) 8749 continue; 8750 8751 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an 8752 * array; skip it. 8753 */ 8754 8755 if (var->type->is_unsized_array()) { 8756 if (var->data.max_array_access >= (int)num_vertices) { 8757 _mesa_glsl_error(&loc, state, 8758 "this geometry shader input layout implies %u" 8759 " vertices, but an access to element %u of input" 8760 " `%s' already exists", num_vertices, 8761 var->data.max_array_access, var->name); 8762 } else { 8763 var->type = glsl_type::get_array_instance(var->type->fields.array, 8764 num_vertices); 8765 } 8766 } 8767 } 8768 8769 return NULL; 8770} 8771 8772 8773ir_rvalue * 8774ast_cs_input_layout::hir(exec_list *instructions, 8775 struct _mesa_glsl_parse_state *state) 8776{ 8777 YYLTYPE loc = this->get_location(); 8778 8779 /* From the ARB_compute_shader specification: 8780 * 8781 * If the local size of the shader in any dimension is greater 8782 * than the maximum size supported by the implementation for that 8783 * dimension, a compile-time error results. 8784 * 8785 * It is not clear from the spec how the error should be reported if 8786 * the total size of the work group exceeds 8787 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to 8788 * report it at compile time as well. 8789 */ 8790 GLuint64 total_invocations = 1; 8791 unsigned qual_local_size[3]; 8792 for (int i = 0; i < 3; i++) { 8793 8794 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c", 8795 'x' + i); 8796 /* Infer a local_size of 1 for unspecified dimensions */ 8797 if (this->local_size[i] == NULL) { 8798 qual_local_size[i] = 1; 8799 } else if (!this->local_size[i]-> 8800 process_qualifier_constant(state, local_size_str, 8801 &qual_local_size[i], false)) { 8802 ralloc_free(local_size_str); 8803 return NULL; 8804 } 8805 ralloc_free(local_size_str); 8806 8807 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) { 8808 _mesa_glsl_error(&loc, state, 8809 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE" 8810 " (%d)", 'x' + i, 8811 state->ctx->Const.MaxComputeWorkGroupSize[i]); 8812 break; 8813 } 8814 total_invocations *= qual_local_size[i]; 8815 if (total_invocations > 8816 state->ctx->Const.MaxComputeWorkGroupInvocations) { 8817 _mesa_glsl_error(&loc, state, 8818 "product of local_sizes exceeds " 8819 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)", 8820 state->ctx->Const.MaxComputeWorkGroupInvocations); 8821 break; 8822 } 8823 } 8824 8825 /* If any compute input layout declaration preceded this one, make sure it 8826 * was consistent with this one. 8827 */ 8828 if (state->cs_input_local_size_specified) { 8829 for (int i = 0; i < 3; i++) { 8830 if (state->cs_input_local_size[i] != qual_local_size[i]) { 8831 _mesa_glsl_error(&loc, state, 8832 "compute shader input layout does not match" 8833 " previous declaration"); 8834 return NULL; 8835 } 8836 } 8837 } 8838 8839 /* The ARB_compute_variable_group_size spec says: 8840 * 8841 * If a compute shader including a *local_size_variable* qualifier also 8842 * declares a fixed local group size using the *local_size_x*, 8843 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error 8844 * results 8845 */ 8846 if (state->cs_input_local_size_variable_specified) { 8847 _mesa_glsl_error(&loc, state, 8848 "compute shader can't include both a variable and a " 8849 "fixed local group size"); 8850 return NULL; 8851 } 8852 8853 state->cs_input_local_size_specified = true; 8854 for (int i = 0; i < 3; i++) 8855 state->cs_input_local_size[i] = qual_local_size[i]; 8856 8857 /* We may now declare the built-in constant gl_WorkGroupSize (see 8858 * builtin_variable_generator::generate_constants() for why we didn't 8859 * declare it earlier). 8860 */ 8861 ir_variable *var = new(state->symbols) 8862 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto); 8863 var->data.how_declared = ir_var_declared_implicitly; 8864 var->data.read_only = true; 8865 instructions->push_tail(var); 8866 state->symbols->add_variable(var); 8867 ir_constant_data data; 8868 memset(&data, 0, sizeof(data)); 8869 for (int i = 0; i < 3; i++) 8870 data.u[i] = qual_local_size[i]; 8871 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data); 8872 var->constant_initializer = 8873 new(var) ir_constant(glsl_type::uvec3_type, &data); 8874 var->data.has_initializer = true; 8875 var->data.is_implicit_initializer = false; 8876 8877 return NULL; 8878} 8879 8880 8881static void 8882detect_conflicting_assignments(struct _mesa_glsl_parse_state *state, 8883 exec_list *instructions) 8884{ 8885 bool gl_FragColor_assigned = false; 8886 bool gl_FragData_assigned = false; 8887 bool gl_FragSecondaryColor_assigned = false; 8888 bool gl_FragSecondaryData_assigned = false; 8889 bool user_defined_fs_output_assigned = false; 8890 ir_variable *user_defined_fs_output = NULL; 8891 8892 /* It would be nice to have proper location information. */ 8893 YYLTYPE loc; 8894 memset(&loc, 0, sizeof(loc)); 8895 8896 foreach_in_list(ir_instruction, node, instructions) { 8897 ir_variable *var = node->as_variable(); 8898 8899 if (!var || !var->data.assigned) 8900 continue; 8901 8902 if (strcmp(var->name, "gl_FragColor") == 0) { 8903 gl_FragColor_assigned = true; 8904 if (!var->constant_initializer && state->zero_init) { 8905 const ir_constant_data data = { { 0 } }; 8906 var->data.has_initializer = true; 8907 var->data.is_implicit_initializer = true; 8908 var->constant_initializer = new(var) ir_constant(var->type, &data); 8909 } 8910 } 8911 else if (strcmp(var->name, "gl_FragData") == 0) 8912 gl_FragData_assigned = true; 8913 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0) 8914 gl_FragSecondaryColor_assigned = true; 8915 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0) 8916 gl_FragSecondaryData_assigned = true; 8917 else if (!is_gl_identifier(var->name)) { 8918 if (state->stage == MESA_SHADER_FRAGMENT && 8919 var->data.mode == ir_var_shader_out) { 8920 user_defined_fs_output_assigned = true; 8921 user_defined_fs_output = var; 8922 } 8923 } 8924 } 8925 8926 /* From the GLSL 1.30 spec: 8927 * 8928 * "If a shader statically assigns a value to gl_FragColor, it 8929 * may not assign a value to any element of gl_FragData. If a 8930 * shader statically writes a value to any element of 8931 * gl_FragData, it may not assign a value to 8932 * gl_FragColor. That is, a shader may assign values to either 8933 * gl_FragColor or gl_FragData, but not both. Multiple shaders 8934 * linked together must also consistently write just one of 8935 * these variables. Similarly, if user declared output 8936 * variables are in use (statically assigned to), then the 8937 * built-in variables gl_FragColor and gl_FragData may not be 8938 * assigned to. These incorrect usages all generate compile 8939 * time errors." 8940 */ 8941 if (gl_FragColor_assigned && gl_FragData_assigned) { 8942 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8943 "`gl_FragColor' and `gl_FragData'"); 8944 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) { 8945 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8946 "`gl_FragColor' and `%s'", 8947 user_defined_fs_output->name); 8948 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) { 8949 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8950 "`gl_FragSecondaryColorEXT' and" 8951 " `gl_FragSecondaryDataEXT'"); 8952 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) { 8953 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8954 "`gl_FragColor' and" 8955 " `gl_FragSecondaryDataEXT'"); 8956 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) { 8957 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8958 "`gl_FragData' and" 8959 " `gl_FragSecondaryColorEXT'"); 8960 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) { 8961 _mesa_glsl_error(&loc, state, "fragment shader writes to both " 8962 "`gl_FragData' and `%s'", 8963 user_defined_fs_output->name); 8964 } 8965 8966 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) && 8967 !state->EXT_blend_func_extended_enable) { 8968 _mesa_glsl_error(&loc, state, 8969 "Dual source blending requires EXT_blend_func_extended"); 8970 } 8971} 8972 8973static void 8974verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state) 8975{ 8976 YYLTYPE loc; 8977 memset(&loc, 0, sizeof(loc)); 8978 8979 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says: 8980 * 8981 * "A program will fail to compile or link if any shader 8982 * or stage contains two or more functions with the same 8983 * name if the name is associated with a subroutine type." 8984 */ 8985 8986 for (int i = 0; i < state->num_subroutines; i++) { 8987 unsigned definitions = 0; 8988 ir_function *fn = state->subroutines[i]; 8989 /* Calculate number of function definitions with the same name */ 8990 foreach_in_list(ir_function_signature, sig, &fn->signatures) { 8991 if (sig->is_defined) { 8992 if (++definitions > 1) { 8993 _mesa_glsl_error(&loc, state, 8994 "%s shader contains two or more function " 8995 "definitions with name `%s', which is " 8996 "associated with a subroutine type.\n", 8997 _mesa_shader_stage_to_string(state->stage), 8998 fn->name); 8999 return; 9000 } 9001 } 9002 } 9003 } 9004} 9005 9006static void 9007remove_per_vertex_blocks(exec_list *instructions, 9008 _mesa_glsl_parse_state *state, ir_variable_mode mode) 9009{ 9010 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode, 9011 * if it exists in this shader type. 9012 */ 9013 const glsl_type *per_vertex = NULL; 9014 switch (mode) { 9015 case ir_var_shader_in: 9016 if (ir_variable *gl_in = state->symbols->get_variable("gl_in")) 9017 per_vertex = gl_in->get_interface_type(); 9018 break; 9019 case ir_var_shader_out: 9020 if (ir_variable *gl_Position = 9021 state->symbols->get_variable("gl_Position")) { 9022 per_vertex = gl_Position->get_interface_type(); 9023 } 9024 break; 9025 default: 9026 assert(!"Unexpected mode"); 9027 break; 9028 } 9029 9030 /* If we didn't find a built-in gl_PerVertex interface block, then we don't 9031 * need to do anything. 9032 */ 9033 if (per_vertex == NULL) 9034 return; 9035 9036 /* If the interface block is used by the shader, then we don't need to do 9037 * anything. 9038 */ 9039 interface_block_usage_visitor v(mode, per_vertex); 9040 v.run(instructions); 9041 if (v.usage_found()) 9042 return; 9043 9044 /* Remove any ir_variable declarations that refer to the interface block 9045 * we're removing. 9046 */ 9047 foreach_in_list_safe(ir_instruction, node, instructions) { 9048 ir_variable *const var = node->as_variable(); 9049 if (var != NULL && var->get_interface_type() == per_vertex && 9050 var->data.mode == mode) { 9051 state->symbols->disable_variable(var->name); 9052 var->remove(); 9053 } 9054 } 9055} 9056 9057ir_rvalue * 9058ast_warnings_toggle::hir(exec_list *, 9059 struct _mesa_glsl_parse_state *state) 9060{ 9061 state->warnings_enabled = enable; 9062 return NULL; 9063} 9064