1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program.  This includes:
30 *
31 *    * Symbol table management
32 *    * Type checking
33 *    * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly.  However, this results in frequent changes
37 * to the parser code.  Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system.  In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52#include "glsl_symbol_table.h"
53#include "glsl_parser_extras.h"
54#include "ast.h"
55#include "compiler/glsl_types.h"
56#include "util/hash_table.h"
57#include "main/mtypes.h"
58#include "main/macros.h"
59#include "main/shaderobj.h"
60#include "ir.h"
61#include "ir_builder.h"
62#include "builtin_functions.h"
63
64using namespace ir_builder;
65
66static void
67detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68                               exec_list *instructions);
69static void
70verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71
72static void
73remove_per_vertex_blocks(exec_list *instructions,
74                         _mesa_glsl_parse_state *state, ir_variable_mode mode);
75
76/**
77 * Visitor class that finds the first instance of any write-only variable that
78 * is ever read, if any
79 */
80class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81{
82public:
83   read_from_write_only_variable_visitor() : found(NULL)
84   {
85   }
86
87   virtual ir_visitor_status visit(ir_dereference_variable *ir)
88   {
89      if (this->in_assignee)
90         return visit_continue;
91
92      ir_variable *var = ir->variable_referenced();
93      /* We can have memory_write_only set on both images and buffer variables,
94       * but in the former there is a distinction between reads from
95       * the variable itself (write_only) and from the memory they point to
96       * (memory_write_only), while in the case of buffer variables there is
97       * no such distinction, that is why this check here is limited to
98       * buffer variables alone.
99       */
100      if (!var || var->data.mode != ir_var_shader_storage)
101         return visit_continue;
102
103      if (var->data.memory_write_only) {
104         found = var;
105         return visit_stop;
106      }
107
108      return visit_continue;
109   }
110
111   ir_variable *get_variable() {
112      return found;
113   }
114
115   virtual ir_visitor_status visit_enter(ir_expression *ir)
116   {
117      /* .length() doesn't actually read anything */
118      if (ir->operation == ir_unop_ssbo_unsized_array_length)
119         return visit_continue_with_parent;
120
121      return visit_continue;
122   }
123
124private:
125   ir_variable *found;
126};
127
128void
129_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130{
131   _mesa_glsl_initialize_variables(instructions, state);
132
133   state->symbols->separate_function_namespace = state->language_version == 110;
134
135   state->current_function = NULL;
136
137   state->toplevel_ir = instructions;
138
139   state->gs_input_prim_type_specified = false;
140   state->tcs_output_vertices_specified = false;
141   state->cs_input_local_size_specified = false;
142
143   /* Section 4.2 of the GLSL 1.20 specification states:
144    * "The built-in functions are scoped in a scope outside the global scope
145    *  users declare global variables in.  That is, a shader's global scope,
146    *  available for user-defined functions and global variables, is nested
147    *  inside the scope containing the built-in functions."
148    *
149    * Since built-in functions like ftransform() access built-in variables,
150    * it follows that those must be in the outer scope as well.
151    *
152    * We push scope here to create this nesting effect...but don't pop.
153    * This way, a shader's globals are still in the symbol table for use
154    * by the linker.
155    */
156   state->symbols->push_scope();
157
158   foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159      ast->hir(instructions, state);
160
161   verify_subroutine_associated_funcs(state);
162   detect_recursion_unlinked(state, instructions);
163   detect_conflicting_assignments(state, instructions);
164
165   state->toplevel_ir = NULL;
166
167   /* Move all of the variable declarations to the front of the IR list, and
168    * reverse the order.  This has the (intended!) side effect that vertex
169    * shader inputs and fragment shader outputs will appear in the IR in the
170    * same order that they appeared in the shader code.  This results in the
171    * locations being assigned in the declared order.  Many (arguably buggy)
172    * applications depend on this behavior, and it matches what nearly all
173    * other drivers do.
174    */
175   foreach_in_list_safe(ir_instruction, node, instructions) {
176      ir_variable *const var = node->as_variable();
177
178      if (var == NULL)
179         continue;
180
181      var->remove();
182      instructions->push_head(var);
183   }
184
185   /* Figure out if gl_FragCoord is actually used in fragment shader */
186   ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187   if (var != NULL)
188      state->fs_uses_gl_fragcoord = var->data.used;
189
190   /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191    *
192    *     If multiple shaders using members of a built-in block belonging to
193    *     the same interface are linked together in the same program, they
194    *     must all redeclare the built-in block in the same way, as described
195    *     in section 4.3.7 "Interface Blocks" for interface block matching, or
196    *     a link error will result.
197    *
198    * The phrase "using members of a built-in block" implies that if two
199    * shaders are linked together and one of them *does not use* any members
200    * of the built-in block, then that shader does not need to have a matching
201    * redeclaration of the built-in block.
202    *
203    * This appears to be a clarification to the behaviour established for
204    * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205    * version.
206    *
207    * The definition of "interface" in section 4.3.7 that applies here is as
208    * follows:
209    *
210    *     The boundary between adjacent programmable pipeline stages: This
211    *     spans all the outputs in all compilation units of the first stage
212    *     and all the inputs in all compilation units of the second stage.
213    *
214    * Therefore this rule applies to both inter- and intra-stage linking.
215    *
216    * The easiest way to implement this is to check whether the shader uses
217    * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218    * remove all the relevant variable declaration from the IR, so that the
219    * linker won't see them and complain about mismatches.
220    */
221   remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222   remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223
224   /* Check that we don't have reads from write-only variables */
225   read_from_write_only_variable_visitor v;
226   v.run(instructions);
227   ir_variable *error_var = v.get_variable();
228   if (error_var) {
229      /* It would be nice to have proper location information, but for that
230       * we would need to check this as we process each kind of AST node
231       */
232      YYLTYPE loc;
233      memset(&loc, 0, sizeof(loc));
234      _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235                       error_var->name);
236   }
237}
238
239
240static ir_expression_operation
241get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242                                  struct _mesa_glsl_parse_state *state)
243{
244   switch (to->base_type) {
245   case GLSL_TYPE_FLOAT:
246      switch (from->base_type) {
247      case GLSL_TYPE_INT: return ir_unop_i2f;
248      case GLSL_TYPE_UINT: return ir_unop_u2f;
249      default: return (ir_expression_operation)0;
250      }
251
252   case GLSL_TYPE_UINT:
253      if (!state->has_implicit_int_to_uint_conversion())
254         return (ir_expression_operation)0;
255      switch (from->base_type) {
256         case GLSL_TYPE_INT: return ir_unop_i2u;
257         default: return (ir_expression_operation)0;
258      }
259
260   case GLSL_TYPE_DOUBLE:
261      if (!state->has_double())
262         return (ir_expression_operation)0;
263      switch (from->base_type) {
264      case GLSL_TYPE_INT: return ir_unop_i2d;
265      case GLSL_TYPE_UINT: return ir_unop_u2d;
266      case GLSL_TYPE_FLOAT: return ir_unop_f2d;
267      case GLSL_TYPE_INT64: return ir_unop_i642d;
268      case GLSL_TYPE_UINT64: return ir_unop_u642d;
269      default: return (ir_expression_operation)0;
270      }
271
272   case GLSL_TYPE_UINT64:
273      if (!state->has_int64())
274         return (ir_expression_operation)0;
275      switch (from->base_type) {
276      case GLSL_TYPE_INT: return ir_unop_i2u64;
277      case GLSL_TYPE_UINT: return ir_unop_u2u64;
278      case GLSL_TYPE_INT64: return ir_unop_i642u64;
279      default: return (ir_expression_operation)0;
280      }
281
282   case GLSL_TYPE_INT64:
283      if (!state->has_int64())
284         return (ir_expression_operation)0;
285      switch (from->base_type) {
286      case GLSL_TYPE_INT: return ir_unop_i2i64;
287      default: return (ir_expression_operation)0;
288      }
289
290   default: return (ir_expression_operation)0;
291   }
292}
293
294
295/**
296 * If a conversion is available, convert one operand to a different type
297 *
298 * The \c from \c ir_rvalue is converted "in place".
299 *
300 * \param to     Type that the operand it to be converted to
301 * \param from   Operand that is being converted
302 * \param state  GLSL compiler state
303 *
304 * \return
305 * If a conversion is possible (or unnecessary), \c true is returned.
306 * Otherwise \c false is returned.
307 */
308static bool
309apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
310                          struct _mesa_glsl_parse_state *state)
311{
312   void *ctx = state;
313   if (to->base_type == from->type->base_type)
314      return true;
315
316   /* Prior to GLSL 1.20, there are no implicit conversions */
317   if (!state->has_implicit_conversions())
318      return false;
319
320   /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321    *
322    *    "There are no implicit array or structure conversions. For
323    *    example, an array of int cannot be implicitly converted to an
324    *    array of float.
325    */
326   if (!to->is_numeric() || !from->type->is_numeric())
327      return false;
328
329   /* We don't actually want the specific type `to`, we want a type
330    * with the same base type as `to`, but the same vector width as
331    * `from`.
332    */
333   to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334                                from->type->matrix_columns);
335
336   ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337   if (op) {
338      from = new(ctx) ir_expression(op, to, from, NULL);
339      return true;
340   } else {
341      return false;
342   }
343}
344
345
346static const struct glsl_type *
347arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348                       bool multiply,
349                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350{
351   const glsl_type *type_a = value_a->type;
352   const glsl_type *type_b = value_b->type;
353
354   /* From GLSL 1.50 spec, page 56:
355    *
356    *    "The arithmetic binary operators add (+), subtract (-),
357    *    multiply (*), and divide (/) operate on integer and
358    *    floating-point scalars, vectors, and matrices."
359    */
360   if (!type_a->is_numeric() || !type_b->is_numeric()) {
361      _mesa_glsl_error(loc, state,
362                       "operands to arithmetic operators must be numeric");
363      return glsl_type::error_type;
364   }
365
366
367   /*    "If one operand is floating-point based and the other is
368    *    not, then the conversions from Section 4.1.10 "Implicit
369    *    Conversions" are applied to the non-floating-point-based operand."
370    */
371   if (!apply_implicit_conversion(type_a, value_b, state)
372       && !apply_implicit_conversion(type_b, value_a, state)) {
373      _mesa_glsl_error(loc, state,
374                       "could not implicitly convert operands to "
375                       "arithmetic operator");
376      return glsl_type::error_type;
377   }
378   type_a = value_a->type;
379   type_b = value_b->type;
380
381   /*    "If the operands are integer types, they must both be signed or
382    *    both be unsigned."
383    *
384    * From this rule and the preceeding conversion it can be inferred that
385    * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386    * The is_numeric check above already filtered out the case where either
387    * type is not one of these, so now the base types need only be tested for
388    * equality.
389    */
390   if (type_a->base_type != type_b->base_type) {
391      _mesa_glsl_error(loc, state,
392                       "base type mismatch for arithmetic operator");
393      return glsl_type::error_type;
394   }
395
396   /*    "All arithmetic binary operators result in the same fundamental type
397    *    (signed integer, unsigned integer, or floating-point) as the
398    *    operands they operate on, after operand type conversion. After
399    *    conversion, the following cases are valid
400    *
401    *    * The two operands are scalars. In this case the operation is
402    *      applied, resulting in a scalar."
403    */
404   if (type_a->is_scalar() && type_b->is_scalar())
405      return type_a;
406
407   /*   "* One operand is a scalar, and the other is a vector or matrix.
408    *      In this case, the scalar operation is applied independently to each
409    *      component of the vector or matrix, resulting in the same size
410    *      vector or matrix."
411    */
412   if (type_a->is_scalar()) {
413      if (!type_b->is_scalar())
414         return type_b;
415   } else if (type_b->is_scalar()) {
416      return type_a;
417   }
418
419   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420    * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421    * handled.
422    */
423   assert(!type_a->is_scalar());
424   assert(!type_b->is_scalar());
425
426   /*   "* The two operands are vectors of the same size. In this case, the
427    *      operation is done component-wise resulting in the same size
428    *      vector."
429    */
430   if (type_a->is_vector() && type_b->is_vector()) {
431      if (type_a == type_b) {
432         return type_a;
433      } else {
434         _mesa_glsl_error(loc, state,
435                          "vector size mismatch for arithmetic operator");
436         return glsl_type::error_type;
437      }
438   }
439
440   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441    * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442    * <vector, vector> have been handled.  At least one of the operands must
443    * be matrix.  Further, since there are no integer matrix types, the base
444    * type of both operands must be float.
445    */
446   assert(type_a->is_matrix() || type_b->is_matrix());
447   assert(type_a->is_float() || type_a->is_double());
448   assert(type_b->is_float() || type_b->is_double());
449
450   /*   "* The operator is add (+), subtract (-), or divide (/), and the
451    *      operands are matrices with the same number of rows and the same
452    *      number of columns. In this case, the operation is done component-
453    *      wise resulting in the same size matrix."
454    *    * The operator is multiply (*), where both operands are matrices or
455    *      one operand is a vector and the other a matrix. A right vector
456    *      operand is treated as a column vector and a left vector operand as a
457    *      row vector. In all these cases, it is required that the number of
458    *      columns of the left operand is equal to the number of rows of the
459    *      right operand. Then, the multiply (*) operation does a linear
460    *      algebraic multiply, yielding an object that has the same number of
461    *      rows as the left operand and the same number of columns as the right
462    *      operand. Section 5.10 "Vector and Matrix Operations" explains in
463    *      more detail how vectors and matrices are operated on."
464    */
465   if (! multiply) {
466      if (type_a == type_b)
467         return type_a;
468   } else {
469      const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471      if (type == glsl_type::error_type) {
472         _mesa_glsl_error(loc, state,
473                          "size mismatch for matrix multiplication");
474      }
475
476      return type;
477   }
478
479
480   /*    "All other cases are illegal."
481    */
482   _mesa_glsl_error(loc, state, "type mismatch");
483   return glsl_type::error_type;
484}
485
486
487static const struct glsl_type *
488unary_arithmetic_result_type(const struct glsl_type *type,
489                             struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490{
491   /* From GLSL 1.50 spec, page 57:
492    *
493    *    "The arithmetic unary operators negate (-), post- and pre-increment
494    *     and decrement (-- and ++) operate on integer or floating-point
495    *     values (including vectors and matrices). All unary operators work
496    *     component-wise on their operands. These result with the same type
497    *     they operated on."
498    */
499   if (!type->is_numeric()) {
500      _mesa_glsl_error(loc, state,
501                       "operands to arithmetic operators must be numeric");
502      return glsl_type::error_type;
503   }
504
505   return type;
506}
507
508/**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517static const struct glsl_type *
518bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519                      ast_operators op,
520                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521{
522   const glsl_type *type_a = value_a->type;
523   const glsl_type *type_b = value_b->type;
524
525   if (!state->check_bitwise_operations_allowed(loc)) {
526      return glsl_type::error_type;
527   }
528
529   /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530    *
531    *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532    *     (|). The operands must be of type signed or unsigned integers or
533    *     integer vectors."
534    */
535   if (!type_a->is_integer_32_64()) {
536      _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537                        ast_expression::operator_string(op));
538      return glsl_type::error_type;
539   }
540   if (!type_b->is_integer_32_64()) {
541      _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542                       ast_expression::operator_string(op));
543      return glsl_type::error_type;
544   }
545
546   /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547    * make sense for bitwise operations, as they don't operate on floats.
548    *
549    * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550    * here.  It wasn't clear whether or not we should apply them to bitwise
551    * operations.  However, Khronos has decided that they should in future
552    * language revisions.  Applications also rely on this behavior.  We opt
553    * to apply them in general, but issue a portability warning.
554    *
555    * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556    */
557   if (type_a->base_type != type_b->base_type) {
558      if (!apply_implicit_conversion(type_a, value_b, state)
559          && !apply_implicit_conversion(type_b, value_a, state)) {
560         _mesa_glsl_error(loc, state,
561                          "could not implicitly convert operands to "
562                          "`%s` operator",
563                          ast_expression::operator_string(op));
564         return glsl_type::error_type;
565      } else {
566         _mesa_glsl_warning(loc, state,
567                            "some implementations may not support implicit "
568                            "int -> uint conversions for `%s' operators; "
569                            "consider casting explicitly for portability",
570                            ast_expression::operator_string(op));
571      }
572      type_a = value_a->type;
573      type_b = value_b->type;
574   }
575
576   /*     "The fundamental types of the operands (signed or unsigned) must
577    *     match,"
578    */
579   if (type_a->base_type != type_b->base_type) {
580      _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581                       "base type", ast_expression::operator_string(op));
582      return glsl_type::error_type;
583   }
584
585   /*     "The operands cannot be vectors of differing size." */
586   if (type_a->is_vector() &&
587       type_b->is_vector() &&
588       type_a->vector_elements != type_b->vector_elements) {
589      _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590                       "different sizes", ast_expression::operator_string(op));
591      return glsl_type::error_type;
592   }
593
594   /*     "If one operand is a scalar and the other a vector, the scalar is
595    *     applied component-wise to the vector, resulting in the same type as
596    *     the vector. The fundamental types of the operands [...] will be the
597    *     resulting fundamental type."
598    */
599   if (type_a->is_scalar())
600       return type_b;
601   else
602       return type_a;
603}
604
605static const struct glsl_type *
606modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607                    struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608{
609   const glsl_type *type_a = value_a->type;
610   const glsl_type *type_b = value_b->type;
611
612   if (!state->EXT_gpu_shader4_enable &&
613       !state->check_version(130, 300, loc, "operator '%%' is reserved")) {
614      return glsl_type::error_type;
615   }
616
617   /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
618    *
619    *    "The operator modulus (%) operates on signed or unsigned integers or
620    *    integer vectors."
621    */
622   if (!type_a->is_integer_32_64()) {
623      _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
624      return glsl_type::error_type;
625   }
626   if (!type_b->is_integer_32_64()) {
627      _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
628      return glsl_type::error_type;
629   }
630
631   /*    "If the fundamental types in the operands do not match, then the
632    *    conversions from section 4.1.10 "Implicit Conversions" are applied
633    *    to create matching types."
634    *
635    * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
636    * int -> uint conversion rules.  Prior to that, there were no implicit
637    * conversions.  So it's harmless to apply them universally - no implicit
638    * conversions will exist.  If the types don't match, we'll receive false,
639    * and raise an error, satisfying the GLSL 1.50 spec, page 56:
640    *
641    *    "The operand types must both be signed or unsigned."
642    */
643   if (!apply_implicit_conversion(type_a, value_b, state) &&
644       !apply_implicit_conversion(type_b, value_a, state)) {
645      _mesa_glsl_error(loc, state,
646                       "could not implicitly convert operands to "
647                       "modulus (%%) operator");
648      return glsl_type::error_type;
649   }
650   type_a = value_a->type;
651   type_b = value_b->type;
652
653   /*    "The operands cannot be vectors of differing size. If one operand is
654    *    a scalar and the other vector, then the scalar is applied component-
655    *    wise to the vector, resulting in the same type as the vector. If both
656    *    are vectors of the same size, the result is computed component-wise."
657    */
658   if (type_a->is_vector()) {
659      if (!type_b->is_vector()
660          || (type_a->vector_elements == type_b->vector_elements))
661      return type_a;
662   } else
663      return type_b;
664
665   /*    "The operator modulus (%) is not defined for any other data types
666    *    (non-integer types)."
667    */
668   _mesa_glsl_error(loc, state, "type mismatch");
669   return glsl_type::error_type;
670}
671
672
673static const struct glsl_type *
674relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
675                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
676{
677   const glsl_type *type_a = value_a->type;
678   const glsl_type *type_b = value_b->type;
679
680   /* From GLSL 1.50 spec, page 56:
681    *    "The relational operators greater than (>), less than (<), greater
682    *    than or equal (>=), and less than or equal (<=) operate only on
683    *    scalar integer and scalar floating-point expressions."
684    */
685   if (!type_a->is_numeric()
686       || !type_b->is_numeric()
687       || !type_a->is_scalar()
688       || !type_b->is_scalar()) {
689      _mesa_glsl_error(loc, state,
690                       "operands to relational operators must be scalar and "
691                       "numeric");
692      return glsl_type::error_type;
693   }
694
695   /*    "Either the operands' types must match, or the conversions from
696    *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
697    *    operand, after which the types must match."
698    */
699   if (!apply_implicit_conversion(type_a, value_b, state)
700       && !apply_implicit_conversion(type_b, value_a, state)) {
701      _mesa_glsl_error(loc, state,
702                       "could not implicitly convert operands to "
703                       "relational operator");
704      return glsl_type::error_type;
705   }
706   type_a = value_a->type;
707   type_b = value_b->type;
708
709   if (type_a->base_type != type_b->base_type) {
710      _mesa_glsl_error(loc, state, "base type mismatch");
711      return glsl_type::error_type;
712   }
713
714   /*    "The result is scalar Boolean."
715    */
716   return glsl_type::bool_type;
717}
718
719/**
720 * \brief Return the result type of a bit-shift operation.
721 *
722 * If the given types to the bit-shift operator are invalid, return
723 * glsl_type::error_type.
724 *
725 * \param type_a Type of LHS of bit-shift op
726 * \param type_b Type of RHS of bit-shift op
727 */
728static const struct glsl_type *
729shift_result_type(const struct glsl_type *type_a,
730                  const struct glsl_type *type_b,
731                  ast_operators op,
732                  struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
733{
734   if (!state->check_bitwise_operations_allowed(loc)) {
735      return glsl_type::error_type;
736   }
737
738   /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
739    *
740    *     "The shift operators (<<) and (>>). For both operators, the operands
741    *     must be signed or unsigned integers or integer vectors. One operand
742    *     can be signed while the other is unsigned."
743    */
744   if (!type_a->is_integer_32_64()) {
745      _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
746                       "integer vector", ast_expression::operator_string(op));
747     return glsl_type::error_type;
748
749   }
750   if (!type_b->is_integer_32()) {
751      _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
752                       "integer vector", ast_expression::operator_string(op));
753     return glsl_type::error_type;
754   }
755
756   /*     "If the first operand is a scalar, the second operand has to be
757    *     a scalar as well."
758    */
759   if (type_a->is_scalar() && !type_b->is_scalar()) {
760      _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
761                       "second must be scalar as well",
762                       ast_expression::operator_string(op));
763     return glsl_type::error_type;
764   }
765
766   /* If both operands are vectors, check that they have same number of
767    * elements.
768    */
769   if (type_a->is_vector() &&
770      type_b->is_vector() &&
771      type_a->vector_elements != type_b->vector_elements) {
772      _mesa_glsl_error(loc, state, "vector operands to operator %s must "
773                       "have same number of elements",
774                       ast_expression::operator_string(op));
775     return glsl_type::error_type;
776   }
777
778   /*     "In all cases, the resulting type will be the same type as the left
779    *     operand."
780    */
781   return type_a;
782}
783
784/**
785 * Returns the innermost array index expression in an rvalue tree.
786 * This is the largest indexing level -- if an array of blocks, then
787 * it is the block index rather than an indexing expression for an
788 * array-typed member of an array of blocks.
789 */
790static ir_rvalue *
791find_innermost_array_index(ir_rvalue *rv)
792{
793   ir_dereference_array *last = NULL;
794   while (rv) {
795      if (rv->as_dereference_array()) {
796         last = rv->as_dereference_array();
797         rv = last->array;
798      } else if (rv->as_dereference_record())
799         rv = rv->as_dereference_record()->record;
800      else if (rv->as_swizzle())
801         rv = rv->as_swizzle()->val;
802      else
803         rv = NULL;
804   }
805
806   if (last)
807      return last->array_index;
808
809   return NULL;
810}
811
812/**
813 * Validates that a value can be assigned to a location with a specified type
814 *
815 * Validates that \c rhs can be assigned to some location.  If the types are
816 * not an exact match but an automatic conversion is possible, \c rhs will be
817 * converted.
818 *
819 * \return
820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
821 * Otherwise the actual RHS to be assigned will be returned.  This may be
822 * \c rhs, or it may be \c rhs after some type conversion.
823 *
824 * \note
825 * In addition to being used for assignments, this function is used to
826 * type-check return values.
827 */
828static ir_rvalue *
829validate_assignment(struct _mesa_glsl_parse_state *state,
830                    YYLTYPE loc, ir_rvalue *lhs,
831                    ir_rvalue *rhs, bool is_initializer)
832{
833   /* If there is already some error in the RHS, just return it.  Anything
834    * else will lead to an avalanche of error message back to the user.
835    */
836   if (rhs->type->is_error())
837      return rhs;
838
839   /* In the Tessellation Control Shader:
840    * If a per-vertex output variable is used as an l-value, it is an error
841    * if the expression indicating the vertex number is not the identifier
842    * `gl_InvocationID`.
843    */
844   if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
845      ir_variable *var = lhs->variable_referenced();
846      if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
847         ir_rvalue *index = find_innermost_array_index(lhs);
848         ir_variable *index_var = index ? index->variable_referenced() : NULL;
849         if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
850            _mesa_glsl_error(&loc, state,
851                             "Tessellation control shader outputs can only "
852                             "be indexed by gl_InvocationID");
853            return NULL;
854         }
855      }
856   }
857
858   /* If the types are identical, the assignment can trivially proceed.
859    */
860   if (rhs->type == lhs->type)
861      return rhs;
862
863   /* If the array element types are the same and the LHS is unsized,
864    * the assignment is okay for initializers embedded in variable
865    * declarations.
866    *
867    * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
868    * is handled by ir_dereference::is_lvalue.
869    */
870   const glsl_type *lhs_t = lhs->type;
871   const glsl_type *rhs_t = rhs->type;
872   bool unsized_array = false;
873   while(lhs_t->is_array()) {
874      if (rhs_t == lhs_t)
875         break; /* the rest of the inner arrays match so break out early */
876      if (!rhs_t->is_array()) {
877         unsized_array = false;
878         break; /* number of dimensions mismatch */
879      }
880      if (lhs_t->length == rhs_t->length) {
881         lhs_t = lhs_t->fields.array;
882         rhs_t = rhs_t->fields.array;
883         continue;
884      } else if (lhs_t->is_unsized_array()) {
885         unsized_array = true;
886      } else {
887         unsized_array = false;
888         break; /* sized array mismatch */
889      }
890      lhs_t = lhs_t->fields.array;
891      rhs_t = rhs_t->fields.array;
892   }
893   if (unsized_array) {
894      if (is_initializer) {
895         if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
896            return rhs;
897      } else {
898         _mesa_glsl_error(&loc, state,
899                          "implicitly sized arrays cannot be assigned");
900         return NULL;
901      }
902   }
903
904   /* Check for implicit conversion in GLSL 1.20 */
905   if (apply_implicit_conversion(lhs->type, rhs, state)) {
906      if (rhs->type == lhs->type)
907         return rhs;
908   }
909
910   _mesa_glsl_error(&loc, state,
911                    "%s of type %s cannot be assigned to "
912                    "variable of type %s",
913                    is_initializer ? "initializer" : "value",
914                    rhs->type->name, lhs->type->name);
915
916   return NULL;
917}
918
919static void
920mark_whole_array_access(ir_rvalue *access)
921{
922   ir_dereference_variable *deref = access->as_dereference_variable();
923
924   if (deref && deref->var) {
925      deref->var->data.max_array_access = deref->type->length - 1;
926   }
927}
928
929static bool
930do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
931              const char *non_lvalue_description,
932              ir_rvalue *lhs, ir_rvalue *rhs,
933              ir_rvalue **out_rvalue, bool needs_rvalue,
934              bool is_initializer,
935              YYLTYPE lhs_loc)
936{
937   void *ctx = state;
938   bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
939
940   ir_variable *lhs_var = lhs->variable_referenced();
941   if (lhs_var)
942      lhs_var->data.assigned = true;
943
944   bool omit_assignment = false;
945   if (!error_emitted) {
946      if (non_lvalue_description != NULL) {
947         _mesa_glsl_error(&lhs_loc, state,
948                          "assignment to %s",
949                          non_lvalue_description);
950         error_emitted = true;
951      } else if (lhs_var != NULL && (lhs_var->data.read_only ||
952                 (lhs_var->data.mode == ir_var_shader_storage &&
953                  lhs_var->data.memory_read_only))) {
954         /* We can have memory_read_only set on both images and buffer variables,
955          * but in the former there is a distinction between assignments to
956          * the variable itself (read_only) and to the memory they point to
957          * (memory_read_only), while in the case of buffer variables there is
958          * no such distinction, that is why this check here is limited to
959          * buffer variables alone.
960          */
961
962         if (state->ignore_write_to_readonly_var)
963            omit_assignment = true;
964         else {
965            _mesa_glsl_error(&lhs_loc, state,
966                             "assignment to read-only variable '%s'",
967                             lhs_var->name);
968            error_emitted = true;
969         }
970      } else if (lhs->type->is_array() &&
971                 !state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
972                                       300, &lhs_loc,
973                                       "whole array assignment forbidden")) {
974         /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
975          *
976          *    "Other binary or unary expressions, non-dereferenced
977          *     arrays, function names, swizzles with repeated fields,
978          *     and constants cannot be l-values."
979          *
980          * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
981          */
982         error_emitted = true;
983      } else if (!lhs->is_lvalue(state)) {
984         _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
985         error_emitted = true;
986      }
987   }
988
989   ir_rvalue *new_rhs =
990      validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
991   if (new_rhs != NULL) {
992      rhs = new_rhs;
993
994      /* If the LHS array was not declared with a size, it takes it size from
995       * the RHS.  If the LHS is an l-value and a whole array, it must be a
996       * dereference of a variable.  Any other case would require that the LHS
997       * is either not an l-value or not a whole array.
998       */
999      if (lhs->type->is_unsized_array()) {
1000         ir_dereference *const d = lhs->as_dereference();
1001
1002         assert(d != NULL);
1003
1004         ir_variable *const var = d->variable_referenced();
1005
1006         assert(var != NULL);
1007
1008         if (var->data.max_array_access >= rhs->type->array_size()) {
1009            /* FINISHME: This should actually log the location of the RHS. */
1010            _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1011                             "previous access",
1012                             var->data.max_array_access);
1013         }
1014
1015         var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1016                                                   rhs->type->array_size());
1017         d->type = var->type;
1018      }
1019      if (lhs->type->is_array()) {
1020         mark_whole_array_access(rhs);
1021         mark_whole_array_access(lhs);
1022      }
1023   } else {
1024     error_emitted = true;
1025   }
1026
1027   if (omit_assignment) {
1028      *out_rvalue = needs_rvalue ? ir_rvalue::error_value(ctx) : NULL;
1029      return error_emitted;
1030   }
1031
1032   /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1033    * but not post_inc) need the converted assigned value as an rvalue
1034    * to handle things like:
1035    *
1036    * i = j += 1;
1037    */
1038   if (needs_rvalue) {
1039      ir_rvalue *rvalue;
1040      if (!error_emitted) {
1041         ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1042                                                 ir_var_temporary);
1043         instructions->push_tail(var);
1044         instructions->push_tail(assign(var, rhs));
1045
1046         ir_dereference_variable *deref_var =
1047            new(ctx) ir_dereference_variable(var);
1048         instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1049         rvalue = new(ctx) ir_dereference_variable(var);
1050      } else {
1051         rvalue = ir_rvalue::error_value(ctx);
1052      }
1053      *out_rvalue = rvalue;
1054   } else {
1055      if (!error_emitted)
1056         instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1057      *out_rvalue = NULL;
1058   }
1059
1060   return error_emitted;
1061}
1062
1063static ir_rvalue *
1064get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1065{
1066   void *ctx = ralloc_parent(lvalue);
1067   ir_variable *var;
1068
1069   var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1070                              ir_var_temporary);
1071   instructions->push_tail(var);
1072
1073   instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1074                                                  lvalue));
1075
1076   return new(ctx) ir_dereference_variable(var);
1077}
1078
1079
1080ir_rvalue *
1081ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1082{
1083   (void) instructions;
1084   (void) state;
1085
1086   return NULL;
1087}
1088
1089bool
1090ast_node::has_sequence_subexpression() const
1091{
1092   return false;
1093}
1094
1095void
1096ast_node::set_is_lhs(bool /* new_value */)
1097{
1098}
1099
1100void
1101ast_function_expression::hir_no_rvalue(exec_list *instructions,
1102                                       struct _mesa_glsl_parse_state *state)
1103{
1104   (void)hir(instructions, state);
1105}
1106
1107void
1108ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1109                                         struct _mesa_glsl_parse_state *state)
1110{
1111   (void)hir(instructions, state);
1112}
1113
1114static ir_rvalue *
1115do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1116{
1117   int join_op;
1118   ir_rvalue *cmp = NULL;
1119
1120   if (operation == ir_binop_all_equal)
1121      join_op = ir_binop_logic_and;
1122   else
1123      join_op = ir_binop_logic_or;
1124
1125   switch (op0->type->base_type) {
1126   case GLSL_TYPE_FLOAT:
1127   case GLSL_TYPE_FLOAT16:
1128   case GLSL_TYPE_UINT:
1129   case GLSL_TYPE_INT:
1130   case GLSL_TYPE_BOOL:
1131   case GLSL_TYPE_DOUBLE:
1132   case GLSL_TYPE_UINT64:
1133   case GLSL_TYPE_INT64:
1134   case GLSL_TYPE_UINT16:
1135   case GLSL_TYPE_INT16:
1136   case GLSL_TYPE_UINT8:
1137   case GLSL_TYPE_INT8:
1138      return new(mem_ctx) ir_expression(operation, op0, op1);
1139
1140   case GLSL_TYPE_ARRAY: {
1141      for (unsigned int i = 0; i < op0->type->length; i++) {
1142         ir_rvalue *e0, *e1, *result;
1143
1144         e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1145                                                new(mem_ctx) ir_constant(i));
1146         e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1147                                                new(mem_ctx) ir_constant(i));
1148         result = do_comparison(mem_ctx, operation, e0, e1);
1149
1150         if (cmp) {
1151            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1152         } else {
1153            cmp = result;
1154         }
1155      }
1156
1157      mark_whole_array_access(op0);
1158      mark_whole_array_access(op1);
1159      break;
1160   }
1161
1162   case GLSL_TYPE_STRUCT: {
1163      for (unsigned int i = 0; i < op0->type->length; i++) {
1164         ir_rvalue *e0, *e1, *result;
1165         const char *field_name = op0->type->fields.structure[i].name;
1166
1167         e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1168                                                 field_name);
1169         e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1170                                                 field_name);
1171         result = do_comparison(mem_ctx, operation, e0, e1);
1172
1173         if (cmp) {
1174            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1175         } else {
1176            cmp = result;
1177         }
1178      }
1179      break;
1180   }
1181
1182   case GLSL_TYPE_ERROR:
1183   case GLSL_TYPE_VOID:
1184   case GLSL_TYPE_SAMPLER:
1185   case GLSL_TYPE_IMAGE:
1186   case GLSL_TYPE_INTERFACE:
1187   case GLSL_TYPE_ATOMIC_UINT:
1188   case GLSL_TYPE_SUBROUTINE:
1189   case GLSL_TYPE_FUNCTION:
1190      /* I assume a comparison of a struct containing a sampler just
1191       * ignores the sampler present in the type.
1192       */
1193      break;
1194   }
1195
1196   if (cmp == NULL)
1197      cmp = new(mem_ctx) ir_constant(true);
1198
1199   return cmp;
1200}
1201
1202/* For logical operations, we want to ensure that the operands are
1203 * scalar booleans.  If it isn't, emit an error and return a constant
1204 * boolean to avoid triggering cascading error messages.
1205 */
1206static ir_rvalue *
1207get_scalar_boolean_operand(exec_list *instructions,
1208                           struct _mesa_glsl_parse_state *state,
1209                           ast_expression *parent_expr,
1210                           int operand,
1211                           const char *operand_name,
1212                           bool *error_emitted)
1213{
1214   ast_expression *expr = parent_expr->subexpressions[operand];
1215   void *ctx = state;
1216   ir_rvalue *val = expr->hir(instructions, state);
1217
1218   if (val->type->is_boolean() && val->type->is_scalar())
1219      return val;
1220
1221   if (!*error_emitted) {
1222      YYLTYPE loc = expr->get_location();
1223      _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1224                       operand_name,
1225                       parent_expr->operator_string(parent_expr->oper));
1226      *error_emitted = true;
1227   }
1228
1229   return new(ctx) ir_constant(true);
1230}
1231
1232/**
1233 * If name refers to a builtin array whose maximum allowed size is less than
1234 * size, report an error and return true.  Otherwise return false.
1235 */
1236void
1237check_builtin_array_max_size(const char *name, unsigned size,
1238                             YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1239{
1240   if ((strcmp("gl_TexCoord", name) == 0)
1241       && (size > state->Const.MaxTextureCoords)) {
1242      /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1243       *
1244       *     "The size [of gl_TexCoord] can be at most
1245       *     gl_MaxTextureCoords."
1246       */
1247      _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1248                       "be larger than gl_MaxTextureCoords (%u)",
1249                       state->Const.MaxTextureCoords);
1250   } else if (strcmp("gl_ClipDistance", name) == 0) {
1251      state->clip_dist_size = size;
1252      if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1253         /* From section 7.1 (Vertex Shader Special Variables) of the
1254          * GLSL 1.30 spec:
1255          *
1256          *   "The gl_ClipDistance array is predeclared as unsized and
1257          *   must be sized by the shader either redeclaring it with a
1258          *   size or indexing it only with integral constant
1259          *   expressions. ... The size can be at most
1260          *   gl_MaxClipDistances."
1261          */
1262         _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1263                          "be larger than gl_MaxClipDistances (%u)",
1264                          state->Const.MaxClipPlanes);
1265      }
1266   } else if (strcmp("gl_CullDistance", name) == 0) {
1267      state->cull_dist_size = size;
1268      if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1269         /* From the ARB_cull_distance spec:
1270          *
1271          *   "The gl_CullDistance array is predeclared as unsized and
1272          *    must be sized by the shader either redeclaring it with
1273          *    a size or indexing it only with integral constant
1274          *    expressions. The size determines the number and set of
1275          *    enabled cull distances and can be at most
1276          *    gl_MaxCullDistances."
1277          */
1278         _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1279                          "be larger than gl_MaxCullDistances (%u)",
1280                          state->Const.MaxClipPlanes);
1281      }
1282   }
1283}
1284
1285/**
1286 * Create the constant 1, of a which is appropriate for incrementing and
1287 * decrementing values of the given GLSL type.  For example, if type is vec4,
1288 * this creates a constant value of 1.0 having type float.
1289 *
1290 * If the given type is invalid for increment and decrement operators, return
1291 * a floating point 1--the error will be detected later.
1292 */
1293static ir_rvalue *
1294constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1295{
1296   switch (type->base_type) {
1297   case GLSL_TYPE_UINT:
1298      return new(ctx) ir_constant((unsigned) 1);
1299   case GLSL_TYPE_INT:
1300      return new(ctx) ir_constant(1);
1301   case GLSL_TYPE_UINT64:
1302      return new(ctx) ir_constant((uint64_t) 1);
1303   case GLSL_TYPE_INT64:
1304      return new(ctx) ir_constant((int64_t) 1);
1305   default:
1306   case GLSL_TYPE_FLOAT:
1307      return new(ctx) ir_constant(1.0f);
1308   }
1309}
1310
1311ir_rvalue *
1312ast_expression::hir(exec_list *instructions,
1313                    struct _mesa_glsl_parse_state *state)
1314{
1315   return do_hir(instructions, state, true);
1316}
1317
1318void
1319ast_expression::hir_no_rvalue(exec_list *instructions,
1320                              struct _mesa_glsl_parse_state *state)
1321{
1322   do_hir(instructions, state, false);
1323}
1324
1325void
1326ast_expression::set_is_lhs(bool new_value)
1327{
1328   /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1329    * if we lack an identifier we can just skip it.
1330    */
1331   if (this->primary_expression.identifier == NULL)
1332      return;
1333
1334   this->is_lhs = new_value;
1335
1336   /* We need to go through the subexpressions tree to cover cases like
1337    * ast_field_selection
1338    */
1339   if (this->subexpressions[0] != NULL)
1340      this->subexpressions[0]->set_is_lhs(new_value);
1341}
1342
1343ir_rvalue *
1344ast_expression::do_hir(exec_list *instructions,
1345                       struct _mesa_glsl_parse_state *state,
1346                       bool needs_rvalue)
1347{
1348   void *ctx = state;
1349   static const int operations[AST_NUM_OPERATORS] = {
1350      -1,               /* ast_assign doesn't convert to ir_expression. */
1351      -1,               /* ast_plus doesn't convert to ir_expression. */
1352      ir_unop_neg,
1353      ir_binop_add,
1354      ir_binop_sub,
1355      ir_binop_mul,
1356      ir_binop_div,
1357      ir_binop_mod,
1358      ir_binop_lshift,
1359      ir_binop_rshift,
1360      ir_binop_less,
1361      ir_binop_less,    /* This is correct.  See the ast_greater case below. */
1362      ir_binop_gequal,  /* This is correct.  See the ast_lequal case below. */
1363      ir_binop_gequal,
1364      ir_binop_all_equal,
1365      ir_binop_any_nequal,
1366      ir_binop_bit_and,
1367      ir_binop_bit_xor,
1368      ir_binop_bit_or,
1369      ir_unop_bit_not,
1370      ir_binop_logic_and,
1371      ir_binop_logic_xor,
1372      ir_binop_logic_or,
1373      ir_unop_logic_not,
1374
1375      /* Note: The following block of expression types actually convert
1376       * to multiple IR instructions.
1377       */
1378      ir_binop_mul,     /* ast_mul_assign */
1379      ir_binop_div,     /* ast_div_assign */
1380      ir_binop_mod,     /* ast_mod_assign */
1381      ir_binop_add,     /* ast_add_assign */
1382      ir_binop_sub,     /* ast_sub_assign */
1383      ir_binop_lshift,  /* ast_ls_assign */
1384      ir_binop_rshift,  /* ast_rs_assign */
1385      ir_binop_bit_and, /* ast_and_assign */
1386      ir_binop_bit_xor, /* ast_xor_assign */
1387      ir_binop_bit_or,  /* ast_or_assign */
1388
1389      -1,               /* ast_conditional doesn't convert to ir_expression. */
1390      ir_binop_add,     /* ast_pre_inc. */
1391      ir_binop_sub,     /* ast_pre_dec. */
1392      ir_binop_add,     /* ast_post_inc. */
1393      ir_binop_sub,     /* ast_post_dec. */
1394      -1,               /* ast_field_selection doesn't conv to ir_expression. */
1395      -1,               /* ast_array_index doesn't convert to ir_expression. */
1396      -1,               /* ast_function_call doesn't conv to ir_expression. */
1397      -1,               /* ast_identifier doesn't convert to ir_expression. */
1398      -1,               /* ast_int_constant doesn't convert to ir_expression. */
1399      -1,               /* ast_uint_constant doesn't conv to ir_expression. */
1400      -1,               /* ast_float_constant doesn't conv to ir_expression. */
1401      -1,               /* ast_bool_constant doesn't conv to ir_expression. */
1402      -1,               /* ast_sequence doesn't convert to ir_expression. */
1403      -1,               /* ast_aggregate shouldn't ever even get here. */
1404   };
1405   ir_rvalue *result = NULL;
1406   ir_rvalue *op[3];
1407   const struct glsl_type *type, *orig_type;
1408   bool error_emitted = false;
1409   YYLTYPE loc;
1410
1411   loc = this->get_location();
1412
1413   switch (this->oper) {
1414   case ast_aggregate:
1415      unreachable("ast_aggregate: Should never get here.");
1416
1417   case ast_assign: {
1418      this->subexpressions[0]->set_is_lhs(true);
1419      op[0] = this->subexpressions[0]->hir(instructions, state);
1420      op[1] = this->subexpressions[1]->hir(instructions, state);
1421
1422      error_emitted =
1423         do_assignment(instructions, state,
1424                       this->subexpressions[0]->non_lvalue_description,
1425                       op[0], op[1], &result, needs_rvalue, false,
1426                       this->subexpressions[0]->get_location());
1427      break;
1428   }
1429
1430   case ast_plus:
1431      op[0] = this->subexpressions[0]->hir(instructions, state);
1432
1433      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1434
1435      error_emitted = type->is_error();
1436
1437      result = op[0];
1438      break;
1439
1440   case ast_neg:
1441      op[0] = this->subexpressions[0]->hir(instructions, state);
1442
1443      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1444
1445      error_emitted = type->is_error();
1446
1447      result = new(ctx) ir_expression(operations[this->oper], type,
1448                                      op[0], NULL);
1449      break;
1450
1451   case ast_add:
1452   case ast_sub:
1453   case ast_mul:
1454   case ast_div:
1455      op[0] = this->subexpressions[0]->hir(instructions, state);
1456      op[1] = this->subexpressions[1]->hir(instructions, state);
1457
1458      type = arithmetic_result_type(op[0], op[1],
1459                                    (this->oper == ast_mul),
1460                                    state, & loc);
1461      error_emitted = type->is_error();
1462
1463      result = new(ctx) ir_expression(operations[this->oper], type,
1464                                      op[0], op[1]);
1465      break;
1466
1467   case ast_mod:
1468      op[0] = this->subexpressions[0]->hir(instructions, state);
1469      op[1] = this->subexpressions[1]->hir(instructions, state);
1470
1471      type = modulus_result_type(op[0], op[1], state, &loc);
1472
1473      assert(operations[this->oper] == ir_binop_mod);
1474
1475      result = new(ctx) ir_expression(operations[this->oper], type,
1476                                      op[0], op[1]);
1477      error_emitted = type->is_error();
1478      break;
1479
1480   case ast_lshift:
1481   case ast_rshift:
1482       if (!state->check_bitwise_operations_allowed(&loc)) {
1483          error_emitted = true;
1484       }
1485
1486       op[0] = this->subexpressions[0]->hir(instructions, state);
1487       op[1] = this->subexpressions[1]->hir(instructions, state);
1488       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1489                                &loc);
1490       result = new(ctx) ir_expression(operations[this->oper], type,
1491                                       op[0], op[1]);
1492       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1493       break;
1494
1495   case ast_less:
1496   case ast_greater:
1497   case ast_lequal:
1498   case ast_gequal:
1499      op[0] = this->subexpressions[0]->hir(instructions, state);
1500      op[1] = this->subexpressions[1]->hir(instructions, state);
1501
1502      type = relational_result_type(op[0], op[1], state, & loc);
1503
1504      /* The relational operators must either generate an error or result
1505       * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1506       */
1507      assert(type->is_error()
1508             || (type->is_boolean() && type->is_scalar()));
1509
1510      /* Like NIR, GLSL IR does not have opcodes for > or <=.  Instead, swap
1511       * the arguments and use < or >=.
1512       */
1513      if (this->oper == ast_greater || this->oper == ast_lequal) {
1514         ir_rvalue *const tmp = op[0];
1515         op[0] = op[1];
1516         op[1] = tmp;
1517      }
1518
1519      result = new(ctx) ir_expression(operations[this->oper], type,
1520                                      op[0], op[1]);
1521      error_emitted = type->is_error();
1522      break;
1523
1524   case ast_nequal:
1525   case ast_equal:
1526      op[0] = this->subexpressions[0]->hir(instructions, state);
1527      op[1] = this->subexpressions[1]->hir(instructions, state);
1528
1529      /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1530       *
1531       *    "The equality operators equal (==), and not equal (!=)
1532       *    operate on all types. They result in a scalar Boolean. If
1533       *    the operand types do not match, then there must be a
1534       *    conversion from Section 4.1.10 "Implicit Conversions"
1535       *    applied to one operand that can make them match, in which
1536       *    case this conversion is done."
1537       */
1538
1539      if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1540         _mesa_glsl_error(& loc, state, "`%s':  wrong operand types: "
1541                         "no operation `%1$s' exists that takes a left-hand "
1542                         "operand of type 'void' or a right operand of type "
1543                         "'void'", (this->oper == ast_equal) ? "==" : "!=");
1544         error_emitted = true;
1545      } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1546           && !apply_implicit_conversion(op[1]->type, op[0], state))
1547          || (op[0]->type != op[1]->type)) {
1548         _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1549                          "type", (this->oper == ast_equal) ? "==" : "!=");
1550         error_emitted = true;
1551      } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1552                 !state->check_version(120, 300, &loc,
1553                                       "array comparisons forbidden")) {
1554         error_emitted = true;
1555      } else if ((op[0]->type->contains_subroutine() ||
1556                  op[1]->type->contains_subroutine())) {
1557         _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1558         error_emitted = true;
1559      } else if ((op[0]->type->contains_opaque() ||
1560                  op[1]->type->contains_opaque())) {
1561         _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1562         error_emitted = true;
1563      }
1564
1565      if (error_emitted) {
1566         result = new(ctx) ir_constant(false);
1567      } else {
1568         result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1569         assert(result->type == glsl_type::bool_type);
1570      }
1571      break;
1572
1573   case ast_bit_and:
1574   case ast_bit_xor:
1575   case ast_bit_or:
1576      op[0] = this->subexpressions[0]->hir(instructions, state);
1577      op[1] = this->subexpressions[1]->hir(instructions, state);
1578      type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1579      result = new(ctx) ir_expression(operations[this->oper], type,
1580                                      op[0], op[1]);
1581      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1582      break;
1583
1584   case ast_bit_not:
1585      op[0] = this->subexpressions[0]->hir(instructions, state);
1586
1587      if (!state->check_bitwise_operations_allowed(&loc)) {
1588         error_emitted = true;
1589      }
1590
1591      if (!op[0]->type->is_integer_32_64()) {
1592         _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1593         error_emitted = true;
1594      }
1595
1596      type = error_emitted ? glsl_type::error_type : op[0]->type;
1597      result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1598      break;
1599
1600   case ast_logic_and: {
1601      exec_list rhs_instructions;
1602      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1603                                         "LHS", &error_emitted);
1604      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1605                                         "RHS", &error_emitted);
1606
1607      if (rhs_instructions.is_empty()) {
1608         result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1609      } else {
1610         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1611                                                       "and_tmp",
1612                                                       ir_var_temporary);
1613         instructions->push_tail(tmp);
1614
1615         ir_if *const stmt = new(ctx) ir_if(op[0]);
1616         instructions->push_tail(stmt);
1617
1618         stmt->then_instructions.append_list(&rhs_instructions);
1619         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1620         ir_assignment *const then_assign =
1621            new(ctx) ir_assignment(then_deref, op[1]);
1622         stmt->then_instructions.push_tail(then_assign);
1623
1624         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1625         ir_assignment *const else_assign =
1626            new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1627         stmt->else_instructions.push_tail(else_assign);
1628
1629         result = new(ctx) ir_dereference_variable(tmp);
1630      }
1631      break;
1632   }
1633
1634   case ast_logic_or: {
1635      exec_list rhs_instructions;
1636      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1637                                         "LHS", &error_emitted);
1638      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1639                                         "RHS", &error_emitted);
1640
1641      if (rhs_instructions.is_empty()) {
1642         result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1643      } else {
1644         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1645                                                       "or_tmp",
1646                                                       ir_var_temporary);
1647         instructions->push_tail(tmp);
1648
1649         ir_if *const stmt = new(ctx) ir_if(op[0]);
1650         instructions->push_tail(stmt);
1651
1652         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1653         ir_assignment *const then_assign =
1654            new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1655         stmt->then_instructions.push_tail(then_assign);
1656
1657         stmt->else_instructions.append_list(&rhs_instructions);
1658         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1659         ir_assignment *const else_assign =
1660            new(ctx) ir_assignment(else_deref, op[1]);
1661         stmt->else_instructions.push_tail(else_assign);
1662
1663         result = new(ctx) ir_dereference_variable(tmp);
1664      }
1665      break;
1666   }
1667
1668   case ast_logic_xor:
1669      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1670       *
1671       *    "The logical binary operators and (&&), or ( | | ), and
1672       *     exclusive or (^^). They operate only on two Boolean
1673       *     expressions and result in a Boolean expression."
1674       */
1675      op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1676                                         &error_emitted);
1677      op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1678                                         &error_emitted);
1679
1680      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1681                                      op[0], op[1]);
1682      break;
1683
1684   case ast_logic_not:
1685      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1686                                         "operand", &error_emitted);
1687
1688      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1689                                      op[0], NULL);
1690      break;
1691
1692   case ast_mul_assign:
1693   case ast_div_assign:
1694   case ast_add_assign:
1695   case ast_sub_assign: {
1696      this->subexpressions[0]->set_is_lhs(true);
1697      op[0] = this->subexpressions[0]->hir(instructions, state);
1698      op[1] = this->subexpressions[1]->hir(instructions, state);
1699
1700      orig_type = op[0]->type;
1701
1702      /* Break out if operand types were not parsed successfully. */
1703      if ((op[0]->type == glsl_type::error_type ||
1704           op[1]->type == glsl_type::error_type)) {
1705         error_emitted = true;
1706         result = ir_rvalue::error_value(ctx);
1707         break;
1708      }
1709
1710      type = arithmetic_result_type(op[0], op[1],
1711                                    (this->oper == ast_mul_assign),
1712                                    state, & loc);
1713
1714      if (type != orig_type) {
1715         _mesa_glsl_error(& loc, state,
1716                          "could not implicitly convert "
1717                          "%s to %s", type->name, orig_type->name);
1718         type = glsl_type::error_type;
1719      }
1720
1721      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1722                                                   op[0], op[1]);
1723
1724      error_emitted =
1725         do_assignment(instructions, state,
1726                       this->subexpressions[0]->non_lvalue_description,
1727                       op[0]->clone(ctx, NULL), temp_rhs,
1728                       &result, needs_rvalue, false,
1729                       this->subexpressions[0]->get_location());
1730
1731      /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1732       * explicitly test for this because none of the binary expression
1733       * operators allow array operands either.
1734       */
1735
1736      break;
1737   }
1738
1739   case ast_mod_assign: {
1740      this->subexpressions[0]->set_is_lhs(true);
1741      op[0] = this->subexpressions[0]->hir(instructions, state);
1742      op[1] = this->subexpressions[1]->hir(instructions, state);
1743
1744      /* Break out if operand types were not parsed successfully. */
1745      if ((op[0]->type == glsl_type::error_type ||
1746           op[1]->type == glsl_type::error_type)) {
1747         error_emitted = true;
1748         result = ir_rvalue::error_value(ctx);
1749         break;
1750      }
1751
1752      orig_type = op[0]->type;
1753      type = modulus_result_type(op[0], op[1], state, &loc);
1754
1755      if (type != orig_type) {
1756         _mesa_glsl_error(& loc, state,
1757                          "could not implicitly convert "
1758                          "%s to %s", type->name, orig_type->name);
1759         type = glsl_type::error_type;
1760      }
1761
1762      assert(operations[this->oper] == ir_binop_mod);
1763
1764      ir_rvalue *temp_rhs;
1765      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1766                                        op[0], op[1]);
1767
1768      error_emitted =
1769         do_assignment(instructions, state,
1770                       this->subexpressions[0]->non_lvalue_description,
1771                       op[0]->clone(ctx, NULL), temp_rhs,
1772                       &result, needs_rvalue, false,
1773                       this->subexpressions[0]->get_location());
1774      break;
1775   }
1776
1777   case ast_ls_assign:
1778   case ast_rs_assign: {
1779      this->subexpressions[0]->set_is_lhs(true);
1780      op[0] = this->subexpressions[0]->hir(instructions, state);
1781      op[1] = this->subexpressions[1]->hir(instructions, state);
1782
1783      /* Break out if operand types were not parsed successfully. */
1784      if ((op[0]->type == glsl_type::error_type ||
1785           op[1]->type == glsl_type::error_type)) {
1786         error_emitted = true;
1787         result = ir_rvalue::error_value(ctx);
1788         break;
1789      }
1790
1791      type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1792                               &loc);
1793      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1794                                                   type, op[0], op[1]);
1795      error_emitted =
1796         do_assignment(instructions, state,
1797                       this->subexpressions[0]->non_lvalue_description,
1798                       op[0]->clone(ctx, NULL), temp_rhs,
1799                       &result, needs_rvalue, false,
1800                       this->subexpressions[0]->get_location());
1801      break;
1802   }
1803
1804   case ast_and_assign:
1805   case ast_xor_assign:
1806   case ast_or_assign: {
1807      this->subexpressions[0]->set_is_lhs(true);
1808      op[0] = this->subexpressions[0]->hir(instructions, state);
1809      op[1] = this->subexpressions[1]->hir(instructions, state);
1810
1811      /* Break out if operand types were not parsed successfully. */
1812      if ((op[0]->type == glsl_type::error_type ||
1813           op[1]->type == glsl_type::error_type)) {
1814         error_emitted = true;
1815         result = ir_rvalue::error_value(ctx);
1816         break;
1817      }
1818
1819      orig_type = op[0]->type;
1820      type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1821
1822      if (type != orig_type) {
1823         _mesa_glsl_error(& loc, state,
1824                          "could not implicitly convert "
1825                          "%s to %s", type->name, orig_type->name);
1826         type = glsl_type::error_type;
1827      }
1828
1829      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1830                                                   type, op[0], op[1]);
1831      error_emitted =
1832         do_assignment(instructions, state,
1833                       this->subexpressions[0]->non_lvalue_description,
1834                       op[0]->clone(ctx, NULL), temp_rhs,
1835                       &result, needs_rvalue, false,
1836                       this->subexpressions[0]->get_location());
1837      break;
1838   }
1839
1840   case ast_conditional: {
1841      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1842       *
1843       *    "The ternary selection operator (?:). It operates on three
1844       *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1845       *    first expression, which must result in a scalar Boolean."
1846       */
1847      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1848                                         "condition", &error_emitted);
1849
1850      /* The :? operator is implemented by generating an anonymous temporary
1851       * followed by an if-statement.  The last instruction in each branch of
1852       * the if-statement assigns a value to the anonymous temporary.  This
1853       * temporary is the r-value of the expression.
1854       */
1855      exec_list then_instructions;
1856      exec_list else_instructions;
1857
1858      op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1859      op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1860
1861      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1862       *
1863       *     "The second and third expressions can be any type, as
1864       *     long their types match, or there is a conversion in
1865       *     Section 4.1.10 "Implicit Conversions" that can be applied
1866       *     to one of the expressions to make their types match. This
1867       *     resulting matching type is the type of the entire
1868       *     expression."
1869       */
1870      if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1871          && !apply_implicit_conversion(op[2]->type, op[1], state))
1872          || (op[1]->type != op[2]->type)) {
1873         YYLTYPE loc = this->subexpressions[1]->get_location();
1874
1875         _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1876                          "operator must have matching types");
1877         error_emitted = true;
1878         type = glsl_type::error_type;
1879      } else {
1880         type = op[1]->type;
1881      }
1882
1883      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1884       *
1885       *    "The second and third expressions must be the same type, but can
1886       *    be of any type other than an array."
1887       */
1888      if (type->is_array() &&
1889          !state->check_version(120, 300, &loc,
1890                                "second and third operands of ?: operator "
1891                                "cannot be arrays")) {
1892         error_emitted = true;
1893      }
1894
1895      /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1896       *
1897       *  "Except for array indexing, structure member selection, and
1898       *   parentheses, opaque variables are not allowed to be operands in
1899       *   expressions; such use results in a compile-time error."
1900       */
1901      if (type->contains_opaque()) {
1902         if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1903            _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1904                             "operands of the ?: operator", type->name);
1905            error_emitted = true;
1906         }
1907      }
1908
1909      ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1910
1911      if (then_instructions.is_empty()
1912          && else_instructions.is_empty()
1913          && cond_val != NULL) {
1914         result = cond_val->value.b[0] ? op[1] : op[2];
1915      } else {
1916         /* The copy to conditional_tmp reads the whole array. */
1917         if (type->is_array()) {
1918            mark_whole_array_access(op[1]);
1919            mark_whole_array_access(op[2]);
1920         }
1921
1922         ir_variable *const tmp =
1923            new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1924         instructions->push_tail(tmp);
1925
1926         ir_if *const stmt = new(ctx) ir_if(op[0]);
1927         instructions->push_tail(stmt);
1928
1929         then_instructions.move_nodes_to(& stmt->then_instructions);
1930         ir_dereference *const then_deref =
1931            new(ctx) ir_dereference_variable(tmp);
1932         ir_assignment *const then_assign =
1933            new(ctx) ir_assignment(then_deref, op[1]);
1934         stmt->then_instructions.push_tail(then_assign);
1935
1936         else_instructions.move_nodes_to(& stmt->else_instructions);
1937         ir_dereference *const else_deref =
1938            new(ctx) ir_dereference_variable(tmp);
1939         ir_assignment *const else_assign =
1940            new(ctx) ir_assignment(else_deref, op[2]);
1941         stmt->else_instructions.push_tail(else_assign);
1942
1943         result = new(ctx) ir_dereference_variable(tmp);
1944      }
1945      break;
1946   }
1947
1948   case ast_pre_inc:
1949   case ast_pre_dec: {
1950      this->non_lvalue_description = (this->oper == ast_pre_inc)
1951         ? "pre-increment operation" : "pre-decrement operation";
1952
1953      op[0] = this->subexpressions[0]->hir(instructions, state);
1954      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1955
1956      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1957
1958      ir_rvalue *temp_rhs;
1959      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1960                                        op[0], op[1]);
1961
1962      error_emitted =
1963         do_assignment(instructions, state,
1964                       this->subexpressions[0]->non_lvalue_description,
1965                       op[0]->clone(ctx, NULL), temp_rhs,
1966                       &result, needs_rvalue, false,
1967                       this->subexpressions[0]->get_location());
1968      break;
1969   }
1970
1971   case ast_post_inc:
1972   case ast_post_dec: {
1973      this->non_lvalue_description = (this->oper == ast_post_inc)
1974         ? "post-increment operation" : "post-decrement operation";
1975      op[0] = this->subexpressions[0]->hir(instructions, state);
1976      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1977
1978      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1979
1980      if (error_emitted) {
1981         result = ir_rvalue::error_value(ctx);
1982         break;
1983      }
1984
1985      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1986
1987      ir_rvalue *temp_rhs;
1988      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1989                                        op[0], op[1]);
1990
1991      /* Get a temporary of a copy of the lvalue before it's modified.
1992       * This may get thrown away later.
1993       */
1994      result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1995
1996      ir_rvalue *junk_rvalue;
1997      error_emitted =
1998         do_assignment(instructions, state,
1999                       this->subexpressions[0]->non_lvalue_description,
2000                       op[0]->clone(ctx, NULL), temp_rhs,
2001                       &junk_rvalue, false, false,
2002                       this->subexpressions[0]->get_location());
2003
2004      break;
2005   }
2006
2007   case ast_field_selection:
2008      result = _mesa_ast_field_selection_to_hir(this, instructions, state);
2009      break;
2010
2011   case ast_array_index: {
2012      YYLTYPE index_loc = subexpressions[1]->get_location();
2013
2014      /* Getting if an array is being used uninitialized is beyond what we get
2015       * from ir_value.data.assigned. Setting is_lhs as true would force to
2016       * not raise a uninitialized warning when using an array
2017       */
2018      subexpressions[0]->set_is_lhs(true);
2019      op[0] = subexpressions[0]->hir(instructions, state);
2020      op[1] = subexpressions[1]->hir(instructions, state);
2021
2022      result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
2023                                            loc, index_loc);
2024
2025      if (result->type->is_error())
2026         error_emitted = true;
2027
2028      break;
2029   }
2030
2031   case ast_unsized_array_dim:
2032      unreachable("ast_unsized_array_dim: Should never get here.");
2033
2034   case ast_function_call:
2035      /* Should *NEVER* get here.  ast_function_call should always be handled
2036       * by ast_function_expression::hir.
2037       */
2038      unreachable("ast_function_call: handled elsewhere ");
2039
2040   case ast_identifier: {
2041      /* ast_identifier can appear several places in a full abstract syntax
2042       * tree.  This particular use must be at location specified in the grammar
2043       * as 'variable_identifier'.
2044       */
2045      ir_variable *var =
2046         state->symbols->get_variable(this->primary_expression.identifier);
2047
2048      if (var == NULL) {
2049         /* the identifier might be a subroutine name */
2050         char *sub_name;
2051         sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2052         var = state->symbols->get_variable(sub_name);
2053         ralloc_free(sub_name);
2054      }
2055
2056      if (var != NULL) {
2057         var->data.used = true;
2058         result = new(ctx) ir_dereference_variable(var);
2059
2060         if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2061             && !this->is_lhs
2062             && result->variable_referenced()->data.assigned != true
2063             && !is_gl_identifier(var->name)) {
2064            _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2065                               this->primary_expression.identifier);
2066         }
2067
2068         /* From the EXT_shader_framebuffer_fetch spec:
2069          *
2070          *   "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2071          *    enabled in addition, it's an error to use gl_LastFragData if it
2072          *    hasn't been explicitly redeclared with layout(noncoherent)."
2073          */
2074         if (var->data.fb_fetch_output && var->data.memory_coherent &&
2075             !state->EXT_shader_framebuffer_fetch_enable) {
2076            _mesa_glsl_error(&loc, state,
2077                             "invalid use of framebuffer fetch output not "
2078                             "qualified with layout(noncoherent)");
2079         }
2080
2081      } else {
2082         _mesa_glsl_error(& loc, state, "`%s' undeclared",
2083                          this->primary_expression.identifier);
2084
2085         result = ir_rvalue::error_value(ctx);
2086         error_emitted = true;
2087      }
2088      break;
2089   }
2090
2091   case ast_int_constant:
2092      result = new(ctx) ir_constant(this->primary_expression.int_constant);
2093      break;
2094
2095   case ast_uint_constant:
2096      result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2097      break;
2098
2099   case ast_float_constant:
2100      result = new(ctx) ir_constant(this->primary_expression.float_constant);
2101      break;
2102
2103   case ast_bool_constant:
2104      result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2105      break;
2106
2107   case ast_double_constant:
2108      result = new(ctx) ir_constant(this->primary_expression.double_constant);
2109      break;
2110
2111   case ast_uint64_constant:
2112      result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2113      break;
2114
2115   case ast_int64_constant:
2116      result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2117      break;
2118
2119   case ast_sequence: {
2120      /* It should not be possible to generate a sequence in the AST without
2121       * any expressions in it.
2122       */
2123      assert(!this->expressions.is_empty());
2124
2125      /* The r-value of a sequence is the last expression in the sequence.  If
2126       * the other expressions in the sequence do not have side-effects (and
2127       * therefore add instructions to the instruction list), they get dropped
2128       * on the floor.
2129       */
2130      exec_node *previous_tail = NULL;
2131      YYLTYPE previous_operand_loc = loc;
2132
2133      foreach_list_typed (ast_node, ast, link, &this->expressions) {
2134         /* If one of the operands of comma operator does not generate any
2135          * code, we want to emit a warning.  At each pass through the loop
2136          * previous_tail will point to the last instruction in the stream
2137          * *before* processing the previous operand.  Naturally,
2138          * instructions->get_tail_raw() will point to the last instruction in
2139          * the stream *after* processing the previous operand.  If the two
2140          * pointers match, then the previous operand had no effect.
2141          *
2142          * The warning behavior here differs slightly from GCC.  GCC will
2143          * only emit a warning if none of the left-hand operands have an
2144          * effect.  However, it will emit a warning for each.  I believe that
2145          * there are some cases in C (especially with GCC extensions) where
2146          * it is useful to have an intermediate step in a sequence have no
2147          * effect, but I don't think these cases exist in GLSL.  Either way,
2148          * it would be a giant hassle to replicate that behavior.
2149          */
2150         if (previous_tail == instructions->get_tail_raw()) {
2151            _mesa_glsl_warning(&previous_operand_loc, state,
2152                               "left-hand operand of comma expression has "
2153                               "no effect");
2154         }
2155
2156         /* The tail is directly accessed instead of using the get_tail()
2157          * method for performance reasons.  get_tail() has extra code to
2158          * return NULL when the list is empty.  We don't care about that
2159          * here, so using get_tail_raw() is fine.
2160          */
2161         previous_tail = instructions->get_tail_raw();
2162         previous_operand_loc = ast->get_location();
2163
2164         result = ast->hir(instructions, state);
2165      }
2166
2167      /* Any errors should have already been emitted in the loop above.
2168       */
2169      error_emitted = true;
2170      break;
2171   }
2172   }
2173   type = NULL; /* use result->type, not type. */
2174   assert(error_emitted || (result != NULL || !needs_rvalue));
2175
2176   if (result && result->type->is_error() && !error_emitted)
2177      _mesa_glsl_error(& loc, state, "type mismatch");
2178
2179   return result;
2180}
2181
2182bool
2183ast_expression::has_sequence_subexpression() const
2184{
2185   switch (this->oper) {
2186   case ast_plus:
2187   case ast_neg:
2188   case ast_bit_not:
2189   case ast_logic_not:
2190   case ast_pre_inc:
2191   case ast_pre_dec:
2192   case ast_post_inc:
2193   case ast_post_dec:
2194      return this->subexpressions[0]->has_sequence_subexpression();
2195
2196   case ast_assign:
2197   case ast_add:
2198   case ast_sub:
2199   case ast_mul:
2200   case ast_div:
2201   case ast_mod:
2202   case ast_lshift:
2203   case ast_rshift:
2204   case ast_less:
2205   case ast_greater:
2206   case ast_lequal:
2207   case ast_gequal:
2208   case ast_nequal:
2209   case ast_equal:
2210   case ast_bit_and:
2211   case ast_bit_xor:
2212   case ast_bit_or:
2213   case ast_logic_and:
2214   case ast_logic_or:
2215   case ast_logic_xor:
2216   case ast_array_index:
2217   case ast_mul_assign:
2218   case ast_div_assign:
2219   case ast_add_assign:
2220   case ast_sub_assign:
2221   case ast_mod_assign:
2222   case ast_ls_assign:
2223   case ast_rs_assign:
2224   case ast_and_assign:
2225   case ast_xor_assign:
2226   case ast_or_assign:
2227      return this->subexpressions[0]->has_sequence_subexpression() ||
2228             this->subexpressions[1]->has_sequence_subexpression();
2229
2230   case ast_conditional:
2231      return this->subexpressions[0]->has_sequence_subexpression() ||
2232             this->subexpressions[1]->has_sequence_subexpression() ||
2233             this->subexpressions[2]->has_sequence_subexpression();
2234
2235   case ast_sequence:
2236      return true;
2237
2238   case ast_field_selection:
2239   case ast_identifier:
2240   case ast_int_constant:
2241   case ast_uint_constant:
2242   case ast_float_constant:
2243   case ast_bool_constant:
2244   case ast_double_constant:
2245   case ast_int64_constant:
2246   case ast_uint64_constant:
2247      return false;
2248
2249   case ast_aggregate:
2250      return false;
2251
2252   case ast_function_call:
2253      unreachable("should be handled by ast_function_expression::hir");
2254
2255   case ast_unsized_array_dim:
2256      unreachable("ast_unsized_array_dim: Should never get here.");
2257   }
2258
2259   return false;
2260}
2261
2262ir_rvalue *
2263ast_expression_statement::hir(exec_list *instructions,
2264                              struct _mesa_glsl_parse_state *state)
2265{
2266   /* It is possible to have expression statements that don't have an
2267    * expression.  This is the solitary semicolon:
2268    *
2269    * for (i = 0; i < 5; i++)
2270    *     ;
2271    *
2272    * In this case the expression will be NULL.  Test for NULL and don't do
2273    * anything in that case.
2274    */
2275   if (expression != NULL)
2276      expression->hir_no_rvalue(instructions, state);
2277
2278   /* Statements do not have r-values.
2279    */
2280   return NULL;
2281}
2282
2283
2284ir_rvalue *
2285ast_compound_statement::hir(exec_list *instructions,
2286                            struct _mesa_glsl_parse_state *state)
2287{
2288   if (new_scope)
2289      state->symbols->push_scope();
2290
2291   foreach_list_typed (ast_node, ast, link, &this->statements)
2292      ast->hir(instructions, state);
2293
2294   if (new_scope)
2295      state->symbols->pop_scope();
2296
2297   /* Compound statements do not have r-values.
2298    */
2299   return NULL;
2300}
2301
2302/**
2303 * Evaluate the given exec_node (which should be an ast_node representing
2304 * a single array dimension) and return its integer value.
2305 */
2306static unsigned
2307process_array_size(exec_node *node,
2308                   struct _mesa_glsl_parse_state *state)
2309{
2310   void *mem_ctx = state;
2311
2312   exec_list dummy_instructions;
2313
2314   ast_node *array_size = exec_node_data(ast_node, node, link);
2315
2316   /**
2317    * Dimensions other than the outermost dimension can by unsized if they
2318    * are immediately sized by a constructor or initializer.
2319    */
2320   if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2321      return 0;
2322
2323   ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2324   YYLTYPE loc = array_size->get_location();
2325
2326   if (ir == NULL) {
2327      _mesa_glsl_error(& loc, state,
2328                       "array size could not be resolved");
2329      return 0;
2330   }
2331
2332   if (!ir->type->is_integer_32()) {
2333      _mesa_glsl_error(& loc, state,
2334                       "array size must be integer type");
2335      return 0;
2336   }
2337
2338   if (!ir->type->is_scalar()) {
2339      _mesa_glsl_error(& loc, state,
2340                       "array size must be scalar type");
2341      return 0;
2342   }
2343
2344   ir_constant *const size = ir->constant_expression_value(mem_ctx);
2345   if (size == NULL ||
2346       (state->is_version(120, 300) &&
2347        array_size->has_sequence_subexpression())) {
2348      _mesa_glsl_error(& loc, state, "array size must be a "
2349                       "constant valued expression");
2350      return 0;
2351   }
2352
2353   if (size->value.i[0] <= 0) {
2354      _mesa_glsl_error(& loc, state, "array size must be > 0");
2355      return 0;
2356   }
2357
2358   assert(size->type == ir->type);
2359
2360   /* If the array size is const (and we've verified that
2361    * it is) then no instructions should have been emitted
2362    * when we converted it to HIR. If they were emitted,
2363    * then either the array size isn't const after all, or
2364    * we are emitting unnecessary instructions.
2365    */
2366   assert(dummy_instructions.is_empty());
2367
2368   return size->value.u[0];
2369}
2370
2371static const glsl_type *
2372process_array_type(YYLTYPE *loc, const glsl_type *base,
2373                   ast_array_specifier *array_specifier,
2374                   struct _mesa_glsl_parse_state *state)
2375{
2376   const glsl_type *array_type = base;
2377
2378   if (array_specifier != NULL) {
2379      if (base->is_array()) {
2380
2381         /* From page 19 (page 25) of the GLSL 1.20 spec:
2382          *
2383          * "Only one-dimensional arrays may be declared."
2384          */
2385         if (!state->check_arrays_of_arrays_allowed(loc)) {
2386            return glsl_type::error_type;
2387         }
2388      }
2389
2390      for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2391           !node->is_head_sentinel(); node = node->prev) {
2392         unsigned array_size = process_array_size(node, state);
2393         array_type = glsl_type::get_array_instance(array_type, array_size);
2394      }
2395   }
2396
2397   return array_type;
2398}
2399
2400static bool
2401precision_qualifier_allowed(const glsl_type *type)
2402{
2403   /* Precision qualifiers apply to floating point, integer and opaque
2404    * types.
2405    *
2406    * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2407    *    "Any floating point or any integer declaration can have the type
2408    *    preceded by one of these precision qualifiers [...] Literal
2409    *    constants do not have precision qualifiers. Neither do Boolean
2410    *    variables.
2411    *
2412    * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2413    * spec also says:
2414    *
2415    *     "Precision qualifiers are added for code portability with OpenGL
2416    *     ES, not for functionality. They have the same syntax as in OpenGL
2417    *     ES."
2418    *
2419    * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2420    *
2421    *     "uniform lowp sampler2D sampler;
2422    *     highp vec2 coord;
2423    *     ...
2424    *     lowp vec4 col = texture2D (sampler, coord);
2425    *                                            // texture2D returns lowp"
2426    *
2427    * From this, we infer that GLSL 1.30 (and later) should allow precision
2428    * qualifiers on sampler types just like float and integer types.
2429    */
2430   const glsl_type *const t = type->without_array();
2431
2432   return (t->is_float() || t->is_integer_32() || t->contains_opaque()) &&
2433          !t->is_struct();
2434}
2435
2436const glsl_type *
2437ast_type_specifier::glsl_type(const char **name,
2438                              struct _mesa_glsl_parse_state *state) const
2439{
2440   const struct glsl_type *type;
2441
2442   if (this->type != NULL)
2443      type = this->type;
2444   else if (structure)
2445      type = structure->type;
2446   else
2447      type = state->symbols->get_type(this->type_name);
2448   *name = this->type_name;
2449
2450   YYLTYPE loc = this->get_location();
2451   type = process_array_type(&loc, type, this->array_specifier, state);
2452
2453   return type;
2454}
2455
2456/**
2457 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2458 *
2459 * "The precision statement
2460 *
2461 *    precision precision-qualifier type;
2462 *
2463 *  can be used to establish a default precision qualifier. The type field can
2464 *  be either int or float or any of the sampler types, (...) If type is float,
2465 *  the directive applies to non-precision-qualified floating point type
2466 *  (scalar, vector, and matrix) declarations. If type is int, the directive
2467 *  applies to all non-precision-qualified integer type (scalar, vector, signed,
2468 *  and unsigned) declarations."
2469 *
2470 * We use the symbol table to keep the values of the default precisions for
2471 * each 'type' in each scope and we use the 'type' string from the precision
2472 * statement as key in the symbol table. When we want to retrieve the default
2473 * precision associated with a given glsl_type we need to know the type string
2474 * associated with it. This is what this function returns.
2475 */
2476static const char *
2477get_type_name_for_precision_qualifier(const glsl_type *type)
2478{
2479   switch (type->base_type) {
2480   case GLSL_TYPE_FLOAT:
2481      return "float";
2482   case GLSL_TYPE_UINT:
2483   case GLSL_TYPE_INT:
2484      return "int";
2485   case GLSL_TYPE_ATOMIC_UINT:
2486      return "atomic_uint";
2487   case GLSL_TYPE_IMAGE:
2488   FALLTHROUGH;
2489   case GLSL_TYPE_SAMPLER: {
2490      const unsigned type_idx =
2491         type->sampler_array + 2 * type->sampler_shadow;
2492      const unsigned offset = type->is_sampler() ? 0 : 4;
2493      assert(type_idx < 4);
2494      switch (type->sampled_type) {
2495      case GLSL_TYPE_FLOAT:
2496         switch (type->sampler_dimensionality) {
2497         case GLSL_SAMPLER_DIM_1D: {
2498            assert(type->is_sampler());
2499            static const char *const names[4] = {
2500              "sampler1D", "sampler1DArray",
2501              "sampler1DShadow", "sampler1DArrayShadow"
2502            };
2503            return names[type_idx];
2504         }
2505         case GLSL_SAMPLER_DIM_2D: {
2506            static const char *const names[8] = {
2507              "sampler2D", "sampler2DArray",
2508              "sampler2DShadow", "sampler2DArrayShadow",
2509              "image2D", "image2DArray", NULL, NULL
2510            };
2511            return names[offset + type_idx];
2512         }
2513         case GLSL_SAMPLER_DIM_3D: {
2514            static const char *const names[8] = {
2515              "sampler3D", NULL, NULL, NULL,
2516              "image3D", NULL, NULL, NULL
2517            };
2518            return names[offset + type_idx];
2519         }
2520         case GLSL_SAMPLER_DIM_CUBE: {
2521            static const char *const names[8] = {
2522              "samplerCube", "samplerCubeArray",
2523              "samplerCubeShadow", "samplerCubeArrayShadow",
2524              "imageCube", NULL, NULL, NULL
2525            };
2526            return names[offset + type_idx];
2527         }
2528         case GLSL_SAMPLER_DIM_MS: {
2529            assert(type->is_sampler());
2530            static const char *const names[4] = {
2531              "sampler2DMS", "sampler2DMSArray", NULL, NULL
2532            };
2533            return names[type_idx];
2534         }
2535         case GLSL_SAMPLER_DIM_RECT: {
2536            assert(type->is_sampler());
2537            static const char *const names[4] = {
2538              "samplerRect", NULL, "samplerRectShadow", NULL
2539            };
2540            return names[type_idx];
2541         }
2542         case GLSL_SAMPLER_DIM_BUF: {
2543            static const char *const names[8] = {
2544              "samplerBuffer", NULL, NULL, NULL,
2545              "imageBuffer", NULL, NULL, NULL
2546            };
2547            return names[offset + type_idx];
2548         }
2549         case GLSL_SAMPLER_DIM_EXTERNAL: {
2550            assert(type->is_sampler());
2551            static const char *const names[4] = {
2552              "samplerExternalOES", NULL, NULL, NULL
2553            };
2554            return names[type_idx];
2555         }
2556         default:
2557            unreachable("Unsupported sampler/image dimensionality");
2558         } /* sampler/image float dimensionality */
2559         break;
2560      case GLSL_TYPE_INT:
2561         switch (type->sampler_dimensionality) {
2562         case GLSL_SAMPLER_DIM_1D: {
2563            assert(type->is_sampler());
2564            static const char *const names[4] = {
2565              "isampler1D", "isampler1DArray", NULL, NULL
2566            };
2567            return names[type_idx];
2568         }
2569         case GLSL_SAMPLER_DIM_2D: {
2570            static const char *const names[8] = {
2571              "isampler2D", "isampler2DArray", NULL, NULL,
2572              "iimage2D", "iimage2DArray", NULL, NULL
2573            };
2574            return names[offset + type_idx];
2575         }
2576         case GLSL_SAMPLER_DIM_3D: {
2577            static const char *const names[8] = {
2578              "isampler3D", NULL, NULL, NULL,
2579              "iimage3D", NULL, NULL, NULL
2580            };
2581            return names[offset + type_idx];
2582         }
2583         case GLSL_SAMPLER_DIM_CUBE: {
2584            static const char *const names[8] = {
2585              "isamplerCube", "isamplerCubeArray", NULL, NULL,
2586              "iimageCube", NULL, NULL, NULL
2587            };
2588            return names[offset + type_idx];
2589         }
2590         case GLSL_SAMPLER_DIM_MS: {
2591            assert(type->is_sampler());
2592            static const char *const names[4] = {
2593              "isampler2DMS", "isampler2DMSArray", NULL, NULL
2594            };
2595            return names[type_idx];
2596         }
2597         case GLSL_SAMPLER_DIM_RECT: {
2598            assert(type->is_sampler());
2599            static const char *const names[4] = {
2600              "isamplerRect", NULL, "isamplerRectShadow", NULL
2601            };
2602            return names[type_idx];
2603         }
2604         case GLSL_SAMPLER_DIM_BUF: {
2605            static const char *const names[8] = {
2606              "isamplerBuffer", NULL, NULL, NULL,
2607              "iimageBuffer", NULL, NULL, NULL
2608            };
2609            return names[offset + type_idx];
2610         }
2611         default:
2612            unreachable("Unsupported isampler/iimage dimensionality");
2613         } /* sampler/image int dimensionality */
2614         break;
2615      case GLSL_TYPE_UINT:
2616         switch (type->sampler_dimensionality) {
2617         case GLSL_SAMPLER_DIM_1D: {
2618            assert(type->is_sampler());
2619            static const char *const names[4] = {
2620              "usampler1D", "usampler1DArray", NULL, NULL
2621            };
2622            return names[type_idx];
2623         }
2624         case GLSL_SAMPLER_DIM_2D: {
2625            static const char *const names[8] = {
2626              "usampler2D", "usampler2DArray", NULL, NULL,
2627              "uimage2D", "uimage2DArray", NULL, NULL
2628            };
2629            return names[offset + type_idx];
2630         }
2631         case GLSL_SAMPLER_DIM_3D: {
2632            static const char *const names[8] = {
2633              "usampler3D", NULL, NULL, NULL,
2634              "uimage3D", NULL, NULL, NULL
2635            };
2636            return names[offset + type_idx];
2637         }
2638         case GLSL_SAMPLER_DIM_CUBE: {
2639            static const char *const names[8] = {
2640              "usamplerCube", "usamplerCubeArray", NULL, NULL,
2641              "uimageCube", NULL, NULL, NULL
2642            };
2643            return names[offset + type_idx];
2644         }
2645         case GLSL_SAMPLER_DIM_MS: {
2646            assert(type->is_sampler());
2647            static const char *const names[4] = {
2648              "usampler2DMS", "usampler2DMSArray", NULL, NULL
2649            };
2650            return names[type_idx];
2651         }
2652         case GLSL_SAMPLER_DIM_RECT: {
2653            assert(type->is_sampler());
2654            static const char *const names[4] = {
2655              "usamplerRect", NULL, "usamplerRectShadow", NULL
2656            };
2657            return names[type_idx];
2658         }
2659         case GLSL_SAMPLER_DIM_BUF: {
2660            static const char *const names[8] = {
2661              "usamplerBuffer", NULL, NULL, NULL,
2662              "uimageBuffer", NULL, NULL, NULL
2663            };
2664            return names[offset + type_idx];
2665         }
2666         default:
2667            unreachable("Unsupported usampler/uimage dimensionality");
2668         } /* sampler/image uint dimensionality */
2669         break;
2670      default:
2671         unreachable("Unsupported sampler/image type");
2672      } /* sampler/image type */
2673      break;
2674   } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2675   break;
2676   default:
2677      unreachable("Unsupported type");
2678   } /* base type */
2679}
2680
2681static unsigned
2682select_gles_precision(unsigned qual_precision,
2683                      const glsl_type *type,
2684                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2685{
2686   /* Precision qualifiers do not have any meaning in Desktop GLSL.
2687    * In GLES we take the precision from the type qualifier if present,
2688    * otherwise, if the type of the variable allows precision qualifiers at
2689    * all, we look for the default precision qualifier for that type in the
2690    * current scope.
2691    */
2692   assert(state->es_shader);
2693
2694   unsigned precision = GLSL_PRECISION_NONE;
2695   if (qual_precision) {
2696      precision = qual_precision;
2697   } else if (precision_qualifier_allowed(type)) {
2698      const char *type_name =
2699         get_type_name_for_precision_qualifier(type->without_array());
2700      assert(type_name != NULL);
2701
2702      precision =
2703         state->symbols->get_default_precision_qualifier(type_name);
2704      if (precision == ast_precision_none) {
2705         _mesa_glsl_error(loc, state,
2706                          "No precision specified in this scope for type `%s'",
2707                          type->name);
2708      }
2709   }
2710
2711
2712   /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2713    *
2714    *    "The default precision of all atomic types is highp. It is an error to
2715    *    declare an atomic type with a different precision or to specify the
2716    *    default precision for an atomic type to be lowp or mediump."
2717    */
2718   if (type->is_atomic_uint() && precision != ast_precision_high) {
2719      _mesa_glsl_error(loc, state,
2720                       "atomic_uint can only have highp precision qualifier");
2721   }
2722
2723   return precision;
2724}
2725
2726const glsl_type *
2727ast_fully_specified_type::glsl_type(const char **name,
2728                                    struct _mesa_glsl_parse_state *state) const
2729{
2730   return this->specifier->glsl_type(name, state);
2731}
2732
2733/**
2734 * Determine whether a toplevel variable declaration declares a varying.  This
2735 * function operates by examining the variable's mode and the shader target,
2736 * so it correctly identifies linkage variables regardless of whether they are
2737 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2738 *
2739 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2740 * this function will produce undefined results.
2741 */
2742static bool
2743is_varying_var(ir_variable *var, gl_shader_stage target)
2744{
2745   switch (target) {
2746   case MESA_SHADER_VERTEX:
2747      return var->data.mode == ir_var_shader_out;
2748   case MESA_SHADER_FRAGMENT:
2749      return var->data.mode == ir_var_shader_in ||
2750             (var->data.mode == ir_var_system_value &&
2751              var->data.location == SYSTEM_VALUE_FRAG_COORD);
2752   default:
2753      return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2754   }
2755}
2756
2757static bool
2758is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2759{
2760   if (is_varying_var(var, state->stage))
2761      return true;
2762
2763   /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2764    * "Only variables output from a vertex shader can be candidates
2765    * for invariance".
2766    */
2767   if (!state->is_version(130, 100))
2768      return false;
2769
2770   /*
2771    * Later specs remove this language - so allowed invariant
2772    * on fragment shader outputs as well.
2773    */
2774   if (state->stage == MESA_SHADER_FRAGMENT &&
2775       var->data.mode == ir_var_shader_out)
2776      return true;
2777   return false;
2778}
2779
2780static void
2781validate_component_layout_for_type(struct _mesa_glsl_parse_state *state,
2782                                   YYLTYPE *loc, const glsl_type *type,
2783                                   unsigned qual_component)
2784{
2785   type = type->without_array();
2786   unsigned components = type->component_slots();
2787
2788   if (type->is_matrix() || type->is_struct()) {
2789       _mesa_glsl_error(loc, state, "component layout qualifier "
2790                        "cannot be applied to a matrix, a structure, "
2791                        "a block, or an array containing any of these.");
2792   } else if (components > 4 && type->is_64bit()) {
2793      _mesa_glsl_error(loc, state, "component layout qualifier "
2794                       "cannot be applied to dvec%u.",
2795                        components / 2);
2796   } else if (qual_component != 0 && (qual_component + components - 1) > 3) {
2797      _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
2798                       (qual_component + components - 1));
2799   } else if (qual_component == 1 && type->is_64bit()) {
2800      /* We don't bother checking for 3 as it should be caught by the
2801       * overflow check above.
2802       */
2803      _mesa_glsl_error(loc, state, "doubles cannot begin at component 1 or 3");
2804   }
2805}
2806
2807/**
2808 * Matrix layout qualifiers are only allowed on certain types
2809 */
2810static void
2811validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2812                                YYLTYPE *loc,
2813                                const glsl_type *type,
2814                                ir_variable *var)
2815{
2816   if (var && !var->is_in_buffer_block()) {
2817      /* Layout qualifiers may only apply to interface blocks and fields in
2818       * them.
2819       */
2820      _mesa_glsl_error(loc, state,
2821                       "uniform block layout qualifiers row_major and "
2822                       "column_major may not be applied to variables "
2823                       "outside of uniform blocks");
2824   } else if (!type->without_array()->is_matrix()) {
2825      /* The OpenGL ES 3.0 conformance tests did not originally allow
2826       * matrix layout qualifiers on non-matrices.  However, the OpenGL
2827       * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2828       * amended to specifically allow these layouts on all types.  Emit
2829       * a warning so that people know their code may not be portable.
2830       */
2831      _mesa_glsl_warning(loc, state,
2832                         "uniform block layout qualifiers row_major and "
2833                         "column_major applied to non-matrix types may "
2834                         "be rejected by older compilers");
2835   }
2836}
2837
2838static bool
2839validate_xfb_buffer_qualifier(YYLTYPE *loc,
2840                              struct _mesa_glsl_parse_state *state,
2841                              unsigned xfb_buffer) {
2842   if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2843      _mesa_glsl_error(loc, state,
2844                       "invalid xfb_buffer specified %d is larger than "
2845                       "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2846                       xfb_buffer,
2847                       state->Const.MaxTransformFeedbackBuffers - 1);
2848      return false;
2849   }
2850
2851   return true;
2852}
2853
2854/* From the ARB_enhanced_layouts spec:
2855 *
2856 *    "Variables and block members qualified with *xfb_offset* can be
2857 *    scalars, vectors, matrices, structures, and (sized) arrays of these.
2858 *    The offset must be a multiple of the size of the first component of
2859 *    the first qualified variable or block member, or a compile-time error
2860 *    results.  Further, if applied to an aggregate containing a double,
2861 *    the offset must also be a multiple of 8, and the space taken in the
2862 *    buffer will be a multiple of 8.
2863 */
2864static bool
2865validate_xfb_offset_qualifier(YYLTYPE *loc,
2866                              struct _mesa_glsl_parse_state *state,
2867                              int xfb_offset, const glsl_type *type,
2868                              unsigned component_size) {
2869  const glsl_type *t_without_array = type->without_array();
2870
2871   if (xfb_offset != -1 && type->is_unsized_array()) {
2872      _mesa_glsl_error(loc, state,
2873                       "xfb_offset can't be used with unsized arrays.");
2874      return false;
2875   }
2876
2877   /* Make sure nested structs don't contain unsized arrays, and validate
2878    * any xfb_offsets on interface members.
2879    */
2880   if (t_without_array->is_struct() || t_without_array->is_interface())
2881      for (unsigned int i = 0; i < t_without_array->length; i++) {
2882         const glsl_type *member_t = t_without_array->fields.structure[i].type;
2883
2884         /* When the interface block doesn't have an xfb_offset qualifier then
2885          * we apply the component size rules at the member level.
2886          */
2887         if (xfb_offset == -1)
2888            component_size = member_t->contains_double() ? 8 : 4;
2889
2890         int xfb_offset = t_without_array->fields.structure[i].offset;
2891         validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2892                                       component_size);
2893      }
2894
2895  /* Nested structs or interface block without offset may not have had an
2896   * offset applied yet so return.
2897   */
2898   if (xfb_offset == -1) {
2899     return true;
2900   }
2901
2902   if (xfb_offset % component_size) {
2903      _mesa_glsl_error(loc, state,
2904                       "invalid qualifier xfb_offset=%d must be a multiple "
2905                       "of the first component size of the first qualified "
2906                       "variable or block member. Or double if an aggregate "
2907                       "that contains a double (%d).",
2908                       xfb_offset, component_size);
2909      return false;
2910   }
2911
2912   return true;
2913}
2914
2915static bool
2916validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2917                          unsigned stream)
2918{
2919   if (stream >= state->ctx->Const.MaxVertexStreams) {
2920      _mesa_glsl_error(loc, state,
2921                       "invalid stream specified %d is larger than "
2922                       "MAX_VERTEX_STREAMS - 1 (%d).",
2923                       stream, state->ctx->Const.MaxVertexStreams - 1);
2924      return false;
2925   }
2926
2927   return true;
2928}
2929
2930static void
2931apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2932                       YYLTYPE *loc,
2933                       ir_variable *var,
2934                       const glsl_type *type,
2935                       const ast_type_qualifier *qual)
2936{
2937   if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2938      _mesa_glsl_error(loc, state,
2939                       "the \"binding\" qualifier only applies to uniforms and "
2940                       "shader storage buffer objects");
2941      return;
2942   }
2943
2944   unsigned qual_binding;
2945   if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2946                                   &qual_binding)) {
2947      return;
2948   }
2949
2950   const struct gl_context *const ctx = state->ctx;
2951   unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2952   unsigned max_index = qual_binding + elements - 1;
2953   const glsl_type *base_type = type->without_array();
2954
2955   if (base_type->is_interface()) {
2956      /* UBOs.  From page 60 of the GLSL 4.20 specification:
2957       * "If the binding point for any uniform block instance is less than zero,
2958       *  or greater than or equal to the implementation-dependent maximum
2959       *  number of uniform buffer bindings, a compilation error will occur.
2960       *  When the binding identifier is used with a uniform block instanced as
2961       *  an array of size N, all elements of the array from binding through
2962       *  binding + N – 1 must be within this range."
2963       *
2964       * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2965       */
2966      if (qual->flags.q.uniform &&
2967         max_index >= ctx->Const.MaxUniformBufferBindings) {
2968         _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2969                          "the maximum number of UBO binding points (%d)",
2970                          qual_binding, elements,
2971                          ctx->Const.MaxUniformBufferBindings);
2972         return;
2973      }
2974
2975      /* SSBOs. From page 67 of the GLSL 4.30 specification:
2976       * "If the binding point for any uniform or shader storage block instance
2977       *  is less than zero, or greater than or equal to the
2978       *  implementation-dependent maximum number of uniform buffer bindings, a
2979       *  compile-time error will occur. When the binding identifier is used
2980       *  with a uniform or shader storage block instanced as an array of size
2981       *  N, all elements of the array from binding through binding + N – 1 must
2982       *  be within this range."
2983       */
2984      if (qual->flags.q.buffer &&
2985         max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2986         _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2987                          "the maximum number of SSBO binding points (%d)",
2988                          qual_binding, elements,
2989                          ctx->Const.MaxShaderStorageBufferBindings);
2990         return;
2991      }
2992   } else if (base_type->is_sampler()) {
2993      /* Samplers.  From page 63 of the GLSL 4.20 specification:
2994       * "If the binding is less than zero, or greater than or equal to the
2995       *  implementation-dependent maximum supported number of units, a
2996       *  compilation error will occur. When the binding identifier is used
2997       *  with an array of size N, all elements of the array from binding
2998       *  through binding + N - 1 must be within this range."
2999       */
3000      unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
3001
3002      if (max_index >= limit) {
3003         _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
3004                          "exceeds the maximum number of texture image units "
3005                          "(%u)", qual_binding, elements, limit);
3006
3007         return;
3008      }
3009   } else if (base_type->contains_atomic()) {
3010      assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
3011      if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
3012         _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
3013                          "maximum number of atomic counter buffer bindings "
3014                          "(%u)", qual_binding,
3015                          ctx->Const.MaxAtomicBufferBindings);
3016
3017         return;
3018      }
3019   } else if ((state->is_version(420, 310) ||
3020               state->ARB_shading_language_420pack_enable) &&
3021              base_type->is_image()) {
3022      assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
3023      if (max_index >= ctx->Const.MaxImageUnits) {
3024         _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
3025                          "maximum number of image units (%d)", max_index,
3026                          ctx->Const.MaxImageUnits);
3027         return;
3028      }
3029
3030   } else {
3031      _mesa_glsl_error(loc, state,
3032                       "the \"binding\" qualifier only applies to uniform "
3033                       "blocks, storage blocks, opaque variables, or arrays "
3034                       "thereof");
3035      return;
3036   }
3037
3038   var->data.explicit_binding = true;
3039   var->data.binding = qual_binding;
3040
3041   return;
3042}
3043
3044static void
3045validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
3046                                           YYLTYPE *loc,
3047                                           const glsl_interp_mode interpolation,
3048                                           const struct glsl_type *var_type,
3049                                           ir_variable_mode mode)
3050{
3051   if (state->stage != MESA_SHADER_FRAGMENT ||
3052       interpolation == INTERP_MODE_FLAT ||
3053       mode != ir_var_shader_in)
3054      return;
3055
3056   /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
3057    * so must integer vertex outputs.
3058    *
3059    * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3060    *    "Fragment shader inputs that are signed or unsigned integers or
3061    *    integer vectors must be qualified with the interpolation qualifier
3062    *    flat."
3063    *
3064    * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3065    *    "Fragment shader inputs that are, or contain, signed or unsigned
3066    *    integers or integer vectors must be qualified with the
3067    *    interpolation qualifier flat."
3068    *
3069    * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3070    *    "Vertex shader outputs that are, or contain, signed or unsigned
3071    *    integers or integer vectors must be qualified with the
3072    *    interpolation qualifier flat."
3073    *
3074    * Note that prior to GLSL 1.50, this requirement applied to vertex
3075    * outputs rather than fragment inputs.  That creates problems in the
3076    * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3077    * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
3078    * apply the restriction to both vertex outputs and fragment inputs.
3079    *
3080    * Note also that the desktop GLSL specs are missing the text "or
3081    * contain"; this is presumably an oversight, since there is no
3082    * reasonable way to interpolate a fragment shader input that contains
3083    * an integer. See Khronos bug #15671.
3084    */
3085   if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3086       && var_type->contains_integer()) {
3087      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3088                       "an integer, then it must be qualified with 'flat'");
3089   }
3090
3091   /* Double fragment inputs must be qualified with 'flat'.
3092    *
3093    * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3094    *    "This extension does not support interpolation of double-precision
3095    *    values; doubles used as fragment shader inputs must be qualified as
3096    *    "flat"."
3097    *
3098    * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3099    *    "Fragment shader inputs that are signed or unsigned integers, integer
3100    *    vectors, or any double-precision floating-point type must be
3101    *    qualified with the interpolation qualifier flat."
3102    *
3103    * Note that the GLSL specs are missing the text "or contain"; this is
3104    * presumably an oversight. See Khronos bug #15671.
3105    *
3106    * The 'double' type does not exist in GLSL ES so far.
3107    */
3108   if (state->has_double()
3109       && var_type->contains_double()) {
3110      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3111                       "a double, then it must be qualified with 'flat'");
3112   }
3113
3114   /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3115    *
3116    * From section 4.3.4 of the ARB_bindless_texture spec:
3117    *
3118    *    "(modify last paragraph, p. 35, allowing samplers and images as
3119    *     fragment shader inputs) ... Fragment inputs can only be signed and
3120    *     unsigned integers and integer vectors, floating point scalars,
3121    *     floating-point vectors, matrices, sampler and image types, or arrays
3122    *     or structures of these.  Fragment shader inputs that are signed or
3123    *     unsigned integers, integer vectors, or any double-precision floating-
3124    *     point type, or any sampler or image type must be qualified with the
3125    *     interpolation qualifier "flat"."
3126    */
3127   if (state->has_bindless()
3128       && (var_type->contains_sampler() || var_type->contains_image())) {
3129      _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3130                       "a bindless sampler (or image), then it must be "
3131                       "qualified with 'flat'");
3132   }
3133}
3134
3135static void
3136validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3137                                 YYLTYPE *loc,
3138                                 const glsl_interp_mode interpolation,
3139                                 const struct ast_type_qualifier *qual,
3140                                 const struct glsl_type *var_type,
3141                                 ir_variable_mode mode)
3142{
3143   /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3144    * not to vertex shader inputs nor fragment shader outputs.
3145    *
3146    * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3147    *    "Outputs from a vertex shader (out) and inputs to a fragment
3148    *    shader (in) can be further qualified with one or more of these
3149    *    interpolation qualifiers"
3150    *    ...
3151    *    "These interpolation qualifiers may only precede the qualifiers in,
3152    *    centroid in, out, or centroid out in a declaration. They do not apply
3153    *    to the deprecated storage qualifiers varying or centroid
3154    *    varying. They also do not apply to inputs into a vertex shader or
3155    *    outputs from a fragment shader."
3156    *
3157    * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3158    *    "Outputs from a shader (out) and inputs to a shader (in) can be
3159    *    further qualified with one of these interpolation qualifiers."
3160    *    ...
3161    *    "These interpolation qualifiers may only precede the qualifiers
3162    *    in, centroid in, out, or centroid out in a declaration. They do
3163    *    not apply to inputs into a vertex shader or outputs from a
3164    *    fragment shader."
3165    */
3166   if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3167       && interpolation != INTERP_MODE_NONE) {
3168      const char *i = interpolation_string(interpolation);
3169      if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3170         _mesa_glsl_error(loc, state,
3171                          "interpolation qualifier `%s' can only be applied to "
3172                          "shader inputs or outputs.", i);
3173
3174      switch (state->stage) {
3175      case MESA_SHADER_VERTEX:
3176         if (mode == ir_var_shader_in) {
3177            _mesa_glsl_error(loc, state,
3178                             "interpolation qualifier '%s' cannot be applied to "
3179                             "vertex shader inputs", i);
3180         }
3181         break;
3182      case MESA_SHADER_FRAGMENT:
3183         if (mode == ir_var_shader_out) {
3184            _mesa_glsl_error(loc, state,
3185                             "interpolation qualifier '%s' cannot be applied to "
3186                             "fragment shader outputs", i);
3187         }
3188         break;
3189      default:
3190         break;
3191      }
3192   }
3193
3194   /* Interpolation qualifiers cannot be applied to 'centroid' and
3195    * 'centroid varying'.
3196    *
3197    * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3198    *    "interpolation qualifiers may only precede the qualifiers in,
3199    *    centroid in, out, or centroid out in a declaration. They do not apply
3200    *    to the deprecated storage qualifiers varying or centroid varying."
3201    *
3202    * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3203    *
3204    * GL_EXT_gpu_shader4 allows this.
3205    */
3206   if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable
3207       && interpolation != INTERP_MODE_NONE
3208       && qual->flags.q.varying) {
3209
3210      const char *i = interpolation_string(interpolation);
3211      const char *s;
3212      if (qual->flags.q.centroid)
3213         s = "centroid varying";
3214      else
3215         s = "varying";
3216
3217      _mesa_glsl_error(loc, state,
3218                       "qualifier '%s' cannot be applied to the "
3219                       "deprecated storage qualifier '%s'", i, s);
3220   }
3221
3222   validate_fragment_flat_interpolation_input(state, loc, interpolation,
3223                                              var_type, mode);
3224}
3225
3226static glsl_interp_mode
3227interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3228                                  const struct glsl_type *var_type,
3229                                  ir_variable_mode mode,
3230                                  struct _mesa_glsl_parse_state *state,
3231                                  YYLTYPE *loc)
3232{
3233   glsl_interp_mode interpolation;
3234   if (qual->flags.q.flat)
3235      interpolation = INTERP_MODE_FLAT;
3236   else if (qual->flags.q.noperspective)
3237      interpolation = INTERP_MODE_NOPERSPECTIVE;
3238   else if (qual->flags.q.smooth)
3239      interpolation = INTERP_MODE_SMOOTH;
3240   else
3241      interpolation = INTERP_MODE_NONE;
3242
3243   validate_interpolation_qualifier(state, loc,
3244                                    interpolation,
3245                                    qual, var_type, mode);
3246
3247   return interpolation;
3248}
3249
3250
3251static void
3252apply_explicit_location(const struct ast_type_qualifier *qual,
3253                        ir_variable *var,
3254                        struct _mesa_glsl_parse_state *state,
3255                        YYLTYPE *loc)
3256{
3257   bool fail = false;
3258
3259   unsigned qual_location;
3260   if (!process_qualifier_constant(state, loc, "location", qual->location,
3261                                   &qual_location)) {
3262      return;
3263   }
3264
3265   /* Checks for GL_ARB_explicit_uniform_location. */
3266   if (qual->flags.q.uniform) {
3267      if (!state->check_explicit_uniform_location_allowed(loc, var))
3268         return;
3269
3270      const struct gl_context *const ctx = state->ctx;
3271      unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3272
3273      if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3274         _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3275                          ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3276                          ctx->Const.MaxUserAssignableUniformLocations);
3277         return;
3278      }
3279
3280      var->data.explicit_location = true;
3281      var->data.location = qual_location;
3282      return;
3283   }
3284
3285   /* Between GL_ARB_explicit_attrib_location an
3286    * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3287    * stage can be assigned explicit locations.  The checking here associates
3288    * the correct extension with the correct stage's input / output:
3289    *
3290    *                     input            output
3291    *                     -----            ------
3292    * vertex              explicit_loc     sso
3293    * tess control        sso              sso
3294    * tess eval           sso              sso
3295    * geometry            sso              sso
3296    * fragment            sso              explicit_loc
3297    */
3298   switch (state->stage) {
3299   case MESA_SHADER_VERTEX:
3300      if (var->data.mode == ir_var_shader_in) {
3301         if (!state->check_explicit_attrib_location_allowed(loc, var))
3302            return;
3303
3304         break;
3305      }
3306
3307      if (var->data.mode == ir_var_shader_out) {
3308         if (!state->check_separate_shader_objects_allowed(loc, var))
3309            return;
3310
3311         break;
3312      }
3313
3314      fail = true;
3315      break;
3316
3317   case MESA_SHADER_TESS_CTRL:
3318   case MESA_SHADER_TESS_EVAL:
3319   case MESA_SHADER_GEOMETRY:
3320      if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3321         if (!state->check_separate_shader_objects_allowed(loc, var))
3322            return;
3323
3324         break;
3325      }
3326
3327      fail = true;
3328      break;
3329
3330   case MESA_SHADER_FRAGMENT:
3331      if (var->data.mode == ir_var_shader_in) {
3332         if (!state->check_separate_shader_objects_allowed(loc, var))
3333            return;
3334
3335         break;
3336      }
3337
3338      if (var->data.mode == ir_var_shader_out) {
3339         if (!state->check_explicit_attrib_location_allowed(loc, var))
3340            return;
3341
3342         break;
3343      }
3344
3345      fail = true;
3346      break;
3347
3348   case MESA_SHADER_COMPUTE:
3349      _mesa_glsl_error(loc, state,
3350                       "compute shader variables cannot be given "
3351                       "explicit locations");
3352      return;
3353   default:
3354      fail = true;
3355      break;
3356   };
3357
3358   if (fail) {
3359      _mesa_glsl_error(loc, state,
3360                       "%s cannot be given an explicit location in %s shader",
3361                       mode_string(var),
3362      _mesa_shader_stage_to_string(state->stage));
3363   } else {
3364      var->data.explicit_location = true;
3365
3366      switch (state->stage) {
3367      case MESA_SHADER_VERTEX:
3368         var->data.location = (var->data.mode == ir_var_shader_in)
3369            ? (qual_location + VERT_ATTRIB_GENERIC0)
3370            : (qual_location + VARYING_SLOT_VAR0);
3371         break;
3372
3373      case MESA_SHADER_TESS_CTRL:
3374      case MESA_SHADER_TESS_EVAL:
3375      case MESA_SHADER_GEOMETRY:
3376         if (var->data.patch)
3377            var->data.location = qual_location + VARYING_SLOT_PATCH0;
3378         else
3379            var->data.location = qual_location + VARYING_SLOT_VAR0;
3380         break;
3381
3382      case MESA_SHADER_FRAGMENT:
3383         var->data.location = (var->data.mode == ir_var_shader_out)
3384            ? (qual_location + FRAG_RESULT_DATA0)
3385            : (qual_location + VARYING_SLOT_VAR0);
3386         break;
3387      default:
3388         assert(!"Unexpected shader type");
3389         break;
3390      }
3391
3392      /* Check if index was set for the uniform instead of the function */
3393      if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3394         _mesa_glsl_error(loc, state, "an index qualifier can only be "
3395                          "used with subroutine functions");
3396         return;
3397      }
3398
3399      unsigned qual_index;
3400      if (qual->flags.q.explicit_index &&
3401          process_qualifier_constant(state, loc, "index", qual->index,
3402                                     &qual_index)) {
3403         /* From the GLSL 4.30 specification, section 4.4.2 (Output
3404          * Layout Qualifiers):
3405          *
3406          * "It is also a compile-time error if a fragment shader
3407          *  sets a layout index to less than 0 or greater than 1."
3408          *
3409          * Older specifications don't mandate a behavior; we take
3410          * this as a clarification and always generate the error.
3411          */
3412         if (qual_index > 1) {
3413            _mesa_glsl_error(loc, state,
3414                             "explicit index may only be 0 or 1");
3415         } else {
3416            var->data.explicit_index = true;
3417            var->data.index = qual_index;
3418         }
3419      }
3420   }
3421}
3422
3423static bool
3424validate_storage_for_sampler_image_types(ir_variable *var,
3425                                         struct _mesa_glsl_parse_state *state,
3426                                         YYLTYPE *loc)
3427{
3428   /* From section 4.1.7 of the GLSL 4.40 spec:
3429    *
3430    *    "[Opaque types] can only be declared as function
3431    *     parameters or uniform-qualified variables."
3432    *
3433    * From section 4.1.7 of the ARB_bindless_texture spec:
3434    *
3435    *    "Samplers may be declared as shader inputs and outputs, as uniform
3436    *     variables, as temporary variables, and as function parameters."
3437    *
3438    * From section 4.1.X of the ARB_bindless_texture spec:
3439    *
3440    *    "Images may be declared as shader inputs and outputs, as uniform
3441    *     variables, as temporary variables, and as function parameters."
3442    */
3443   if (state->has_bindless()) {
3444      if (var->data.mode != ir_var_auto &&
3445          var->data.mode != ir_var_uniform &&
3446          var->data.mode != ir_var_shader_in &&
3447          var->data.mode != ir_var_shader_out &&
3448          var->data.mode != ir_var_function_in &&
3449          var->data.mode != ir_var_function_out &&
3450          var->data.mode != ir_var_function_inout) {
3451         _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3452                         "only be declared as shader inputs and outputs, as "
3453                         "uniform variables, as temporary variables and as "
3454                         "function parameters");
3455         return false;
3456      }
3457   } else {
3458      if (var->data.mode != ir_var_uniform &&
3459          var->data.mode != ir_var_function_in) {
3460         _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3461                          "declared as function parameters or "
3462                          "uniform-qualified global variables");
3463         return false;
3464      }
3465   }
3466   return true;
3467}
3468
3469static bool
3470validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3471                                   YYLTYPE *loc,
3472                                   const struct ast_type_qualifier *qual,
3473                                   const glsl_type *type)
3474{
3475   /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3476    *
3477    * "Memory qualifiers are only supported in the declarations of image
3478    *  variables, buffer variables, and shader storage blocks; it is an error
3479    *  to use such qualifiers in any other declarations.
3480    */
3481   if (!type->is_image() && !qual->flags.q.buffer) {
3482      if (qual->flags.q.read_only ||
3483          qual->flags.q.write_only ||
3484          qual->flags.q.coherent ||
3485          qual->flags.q._volatile ||
3486          qual->flags.q.restrict_flag) {
3487         _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3488                          "in the declarations of image variables, buffer "
3489                          "variables, and shader storage blocks");
3490         return false;
3491      }
3492   }
3493   return true;
3494}
3495
3496static bool
3497validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3498                                         YYLTYPE *loc,
3499                                         const struct ast_type_qualifier *qual,
3500                                         const glsl_type *type)
3501{
3502   /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3503    *
3504    * "Format layout qualifiers can be used on image variable declarations
3505    *  (those declared with a basic type  having “image ” in its keyword)."
3506    */
3507   if (!type->is_image() && qual->flags.q.explicit_image_format) {
3508      _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3509                       "applied to images");
3510      return false;
3511   }
3512   return true;
3513}
3514
3515static void
3516apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3517                                  ir_variable *var,
3518                                  struct _mesa_glsl_parse_state *state,
3519                                  YYLTYPE *loc)
3520{
3521   const glsl_type *base_type = var->type->without_array();
3522
3523   if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3524       !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3525      return;
3526
3527   if (!base_type->is_image())
3528      return;
3529
3530   if (!validate_storage_for_sampler_image_types(var, state, loc))
3531      return;
3532
3533   var->data.memory_read_only |= qual->flags.q.read_only;
3534   var->data.memory_write_only |= qual->flags.q.write_only;
3535   var->data.memory_coherent |= qual->flags.q.coherent;
3536   var->data.memory_volatile |= qual->flags.q._volatile;
3537   var->data.memory_restrict |= qual->flags.q.restrict_flag;
3538
3539   if (qual->flags.q.explicit_image_format) {
3540      if (var->data.mode == ir_var_function_in) {
3541         _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3542                          "image function parameters");
3543      }
3544
3545      if (qual->image_base_type != base_type->sampled_type) {
3546         _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3547                          "data type of the image");
3548      }
3549
3550      var->data.image_format = qual->image_format;
3551   } else if (state->has_image_load_formatted()) {
3552      if (var->data.mode == ir_var_uniform &&
3553          state->EXT_shader_image_load_formatted_warn) {
3554         _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used");
3555      }
3556   } else {
3557      if (var->data.mode == ir_var_uniform) {
3558         if (state->es_shader ||
3559             !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) {
3560            _mesa_glsl_error(loc, state, "all image uniforms must have a "
3561                             "format layout qualifier");
3562         } else if (!qual->flags.q.write_only) {
3563            _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3564                             "`writeonly' must have a format layout qualifier");
3565         }
3566      }
3567      var->data.image_format = PIPE_FORMAT_NONE;
3568   }
3569
3570   /* From page 70 of the GLSL ES 3.1 specification:
3571    *
3572    * "Except for image variables qualified with the format qualifiers r32f,
3573    *  r32i, and r32ui, image variables must specify either memory qualifier
3574    *  readonly or the memory qualifier writeonly."
3575    */
3576   if (state->es_shader &&
3577       var->data.image_format != PIPE_FORMAT_R32_FLOAT &&
3578       var->data.image_format != PIPE_FORMAT_R32_SINT &&
3579       var->data.image_format != PIPE_FORMAT_R32_UINT &&
3580       !var->data.memory_read_only &&
3581       !var->data.memory_write_only) {
3582      _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3583                       "r32i or r32ui must be qualified `readonly' or "
3584                       "`writeonly'");
3585   }
3586}
3587
3588static inline const char*
3589get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3590{
3591   if (origin_upper_left && pixel_center_integer)
3592      return "origin_upper_left, pixel_center_integer";
3593   else if (origin_upper_left)
3594      return "origin_upper_left";
3595   else if (pixel_center_integer)
3596      return "pixel_center_integer";
3597   else
3598      return " ";
3599}
3600
3601static inline bool
3602is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3603                                       const struct ast_type_qualifier *qual)
3604{
3605   /* If gl_FragCoord was previously declared, and the qualifiers were
3606    * different in any way, return true.
3607    */
3608   if (state->fs_redeclares_gl_fragcoord) {
3609      return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3610         || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3611   }
3612
3613   return false;
3614}
3615
3616static inline bool
3617is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state,
3618                                   const struct ast_type_qualifier *qual)
3619{
3620   if (state->redeclares_gl_layer) {
3621      return state->layer_viewport_relative != qual->flags.q.viewport_relative;
3622   }
3623   return false;
3624}
3625
3626static inline void
3627validate_array_dimensions(const glsl_type *t,
3628                          struct _mesa_glsl_parse_state *state,
3629                          YYLTYPE *loc) {
3630   if (t->is_array()) {
3631      t = t->fields.array;
3632      while (t->is_array()) {
3633         if (t->is_unsized_array()) {
3634            _mesa_glsl_error(loc, state,
3635                             "only the outermost array dimension can "
3636                             "be unsized",
3637                             t->name);
3638            break;
3639         }
3640         t = t->fields.array;
3641      }
3642   }
3643}
3644
3645static void
3646apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3647                                     ir_variable *var,
3648                                     struct _mesa_glsl_parse_state *state,
3649                                     YYLTYPE *loc)
3650{
3651   bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3652                               qual->flags.q.bindless_image ||
3653                               qual->flags.q.bound_sampler ||
3654                               qual->flags.q.bound_image;
3655
3656   /* The ARB_bindless_texture spec says:
3657    *
3658    * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3659    *  spec"
3660    *
3661    * "If these layout qualifiers are applied to other types of default block
3662    *  uniforms, or variables with non-uniform storage, a compile-time error
3663    *  will be generated."
3664    */
3665   if (has_local_qualifiers && !qual->flags.q.uniform) {
3666      _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3667                       "can only be applied to default block uniforms or "
3668                       "variables with uniform storage");
3669      return;
3670   }
3671
3672   /* The ARB_bindless_texture spec doesn't state anything in this situation,
3673    * but it makes sense to only allow bindless_sampler/bound_sampler for
3674    * sampler types, and respectively bindless_image/bound_image for image
3675    * types.
3676    */
3677   if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3678       !var->type->contains_sampler()) {
3679      _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3680                       "be applied to sampler types");
3681      return;
3682   }
3683
3684   if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3685       !var->type->contains_image()) {
3686      _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3687                       "applied to image types");
3688      return;
3689   }
3690
3691   /* The bindless_sampler/bindless_image (and respectively
3692    * bound_sampler/bound_image) layout qualifiers can be set at global and at
3693    * local scope.
3694    */
3695   if (var->type->contains_sampler() || var->type->contains_image()) {
3696      var->data.bindless = qual->flags.q.bindless_sampler ||
3697                           qual->flags.q.bindless_image ||
3698                           state->bindless_sampler_specified ||
3699                           state->bindless_image_specified;
3700
3701      var->data.bound = qual->flags.q.bound_sampler ||
3702                        qual->flags.q.bound_image ||
3703                        state->bound_sampler_specified ||
3704                        state->bound_image_specified;
3705   }
3706}
3707
3708static void
3709apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3710                                   ir_variable *var,
3711                                   struct _mesa_glsl_parse_state *state,
3712                                   YYLTYPE *loc)
3713{
3714   if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3715
3716      /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3717       *
3718       *    "Within any shader, the first redeclarations of gl_FragCoord
3719       *     must appear before any use of gl_FragCoord."
3720       *
3721       * Generate a compiler error if above condition is not met by the
3722       * fragment shader.
3723       */
3724      ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3725      if (earlier != NULL &&
3726          earlier->data.used &&
3727          !state->fs_redeclares_gl_fragcoord) {
3728         _mesa_glsl_error(loc, state,
3729                          "gl_FragCoord used before its first redeclaration "
3730                          "in fragment shader");
3731      }
3732
3733      /* Make sure all gl_FragCoord redeclarations specify the same layout
3734       * qualifiers.
3735       */
3736      if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3737         const char *const qual_string =
3738            get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3739                                        qual->flags.q.pixel_center_integer);
3740
3741         const char *const state_string =
3742            get_layout_qualifier_string(state->fs_origin_upper_left,
3743                                        state->fs_pixel_center_integer);
3744
3745         _mesa_glsl_error(loc, state,
3746                          "gl_FragCoord redeclared with different layout "
3747                          "qualifiers (%s) and (%s) ",
3748                          state_string,
3749                          qual_string);
3750      }
3751      state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3752      state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3753      state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3754         !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3755      state->fs_redeclares_gl_fragcoord =
3756         state->fs_origin_upper_left ||
3757         state->fs_pixel_center_integer ||
3758         state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3759   }
3760
3761   if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3762       && (strcmp(var->name, "gl_FragCoord") != 0)) {
3763      const char *const qual_string = (qual->flags.q.origin_upper_left)
3764         ? "origin_upper_left" : "pixel_center_integer";
3765
3766      _mesa_glsl_error(loc, state,
3767                       "layout qualifier `%s' can only be applied to "
3768                       "fragment shader input `gl_FragCoord'",
3769                       qual_string);
3770   }
3771
3772   if (qual->flags.q.explicit_location) {
3773      apply_explicit_location(qual, var, state, loc);
3774
3775      if (qual->flags.q.explicit_component) {
3776         unsigned qual_component;
3777         if (process_qualifier_constant(state, loc, "component",
3778                                        qual->component, &qual_component)) {
3779            validate_component_layout_for_type(state, loc, var->type,
3780                                               qual_component);
3781            var->data.explicit_component = true;
3782            var->data.location_frac = qual_component;
3783         }
3784      }
3785   } else if (qual->flags.q.explicit_index) {
3786      if (!qual->subroutine_list)
3787         _mesa_glsl_error(loc, state,
3788                          "explicit index requires explicit location");
3789   } else if (qual->flags.q.explicit_component) {
3790      _mesa_glsl_error(loc, state,
3791                       "explicit component requires explicit location");
3792   }
3793
3794   if (qual->flags.q.explicit_binding) {
3795      apply_explicit_binding(state, loc, var, var->type, qual);
3796   }
3797
3798   if (state->stage == MESA_SHADER_GEOMETRY &&
3799       qual->flags.q.out && qual->flags.q.stream) {
3800      unsigned qual_stream;
3801      if (process_qualifier_constant(state, loc, "stream", qual->stream,
3802                                     &qual_stream) &&
3803          validate_stream_qualifier(loc, state, qual_stream)) {
3804         var->data.stream = qual_stream;
3805      }
3806   }
3807
3808   if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3809      unsigned qual_xfb_buffer;
3810      if (process_qualifier_constant(state, loc, "xfb_buffer",
3811                                     qual->xfb_buffer, &qual_xfb_buffer) &&
3812          validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3813         var->data.xfb_buffer = qual_xfb_buffer;
3814         if (qual->flags.q.explicit_xfb_buffer)
3815            var->data.explicit_xfb_buffer = true;
3816      }
3817   }
3818
3819   if (qual->flags.q.explicit_xfb_offset) {
3820      unsigned qual_xfb_offset;
3821      unsigned component_size = var->type->contains_double() ? 8 : 4;
3822
3823      if (process_qualifier_constant(state, loc, "xfb_offset",
3824                                     qual->offset, &qual_xfb_offset) &&
3825          validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3826                                        var->type, component_size)) {
3827         var->data.offset = qual_xfb_offset;
3828         var->data.explicit_xfb_offset = true;
3829      }
3830   }
3831
3832   if (qual->flags.q.explicit_xfb_stride) {
3833      unsigned qual_xfb_stride;
3834      if (process_qualifier_constant(state, loc, "xfb_stride",
3835                                     qual->xfb_stride, &qual_xfb_stride)) {
3836         var->data.xfb_stride = qual_xfb_stride;
3837         var->data.explicit_xfb_stride = true;
3838      }
3839   }
3840
3841   if (var->type->contains_atomic()) {
3842      if (var->data.mode == ir_var_uniform) {
3843         if (var->data.explicit_binding) {
3844            unsigned *offset =
3845               &state->atomic_counter_offsets[var->data.binding];
3846
3847            if (*offset % ATOMIC_COUNTER_SIZE)
3848               _mesa_glsl_error(loc, state,
3849                                "misaligned atomic counter offset");
3850
3851            var->data.offset = *offset;
3852            *offset += var->type->atomic_size();
3853
3854         } else {
3855            _mesa_glsl_error(loc, state,
3856                             "atomic counters require explicit binding point");
3857         }
3858      } else if (var->data.mode != ir_var_function_in) {
3859         _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3860                          "function parameters or uniform-qualified "
3861                          "global variables");
3862      }
3863   }
3864
3865   if (var->type->contains_sampler() &&
3866       !validate_storage_for_sampler_image_types(var, state, loc))
3867      return;
3868
3869   /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3870    * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3871    * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3872    * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3873    * These extensions and all following extensions that add the 'layout'
3874    * keyword have been modified to require the use of 'in' or 'out'.
3875    *
3876    * The following extension do not allow the deprecated keywords:
3877    *
3878    *    GL_AMD_conservative_depth
3879    *    GL_ARB_conservative_depth
3880    *    GL_ARB_gpu_shader5
3881    *    GL_ARB_separate_shader_objects
3882    *    GL_ARB_tessellation_shader
3883    *    GL_ARB_transform_feedback3
3884    *    GL_ARB_uniform_buffer_object
3885    *
3886    * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3887    * allow layout with the deprecated keywords.
3888    */
3889   const bool relaxed_layout_qualifier_checking =
3890      state->ARB_fragment_coord_conventions_enable;
3891
3892   const bool uses_deprecated_qualifier = qual->flags.q.attribute
3893      || qual->flags.q.varying;
3894   if (qual->has_layout() && uses_deprecated_qualifier) {
3895      if (relaxed_layout_qualifier_checking) {
3896         _mesa_glsl_warning(loc, state,
3897                            "`layout' qualifier may not be used with "
3898                            "`attribute' or `varying'");
3899      } else {
3900         _mesa_glsl_error(loc, state,
3901                          "`layout' qualifier may not be used with "
3902                          "`attribute' or `varying'");
3903      }
3904   }
3905
3906   /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3907    * AMD_conservative_depth.
3908    */
3909   if (qual->flags.q.depth_type
3910       && !state->is_version(420, 0)
3911       && !state->AMD_conservative_depth_enable
3912       && !state->ARB_conservative_depth_enable) {
3913       _mesa_glsl_error(loc, state,
3914                        "extension GL_AMD_conservative_depth or "
3915                        "GL_ARB_conservative_depth must be enabled "
3916                        "to use depth layout qualifiers");
3917   } else if (qual->flags.q.depth_type
3918              && strcmp(var->name, "gl_FragDepth") != 0) {
3919       _mesa_glsl_error(loc, state,
3920                        "depth layout qualifiers can be applied only to "
3921                        "gl_FragDepth");
3922   }
3923
3924   switch (qual->depth_type) {
3925   case ast_depth_any:
3926      var->data.depth_layout = ir_depth_layout_any;
3927      break;
3928   case ast_depth_greater:
3929      var->data.depth_layout = ir_depth_layout_greater;
3930      break;
3931   case ast_depth_less:
3932      var->data.depth_layout = ir_depth_layout_less;
3933      break;
3934   case ast_depth_unchanged:
3935      var->data.depth_layout = ir_depth_layout_unchanged;
3936      break;
3937   default:
3938      var->data.depth_layout = ir_depth_layout_none;
3939      break;
3940   }
3941
3942   if (qual->flags.q.std140 ||
3943       qual->flags.q.std430 ||
3944       qual->flags.q.packed ||
3945       qual->flags.q.shared) {
3946      _mesa_glsl_error(loc, state,
3947                       "uniform and shader storage block layout qualifiers "
3948                       "std140, std430, packed, and shared can only be "
3949                       "applied to uniform or shader storage blocks, not "
3950                       "members");
3951   }
3952
3953   if (qual->flags.q.row_major || qual->flags.q.column_major) {
3954      validate_matrix_layout_for_type(state, loc, var->type, var);
3955   }
3956
3957   /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3958    * Inputs):
3959    *
3960    *  "Fragment shaders also allow the following layout qualifier on in only
3961    *   (not with variable declarations)
3962    *     layout-qualifier-id
3963    *        early_fragment_tests
3964    *   [...]"
3965    */
3966   if (qual->flags.q.early_fragment_tests) {
3967      _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3968                       "valid in fragment shader input layout declaration.");
3969   }
3970
3971   if (qual->flags.q.inner_coverage) {
3972      _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3973                       "valid in fragment shader input layout declaration.");
3974   }
3975
3976   if (qual->flags.q.post_depth_coverage) {
3977      _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3978                       "valid in fragment shader input layout declaration.");
3979   }
3980
3981   if (state->has_bindless())
3982      apply_bindless_qualifier_to_variable(qual, var, state, loc);
3983
3984   if (qual->flags.q.pixel_interlock_ordered ||
3985       qual->flags.q.pixel_interlock_unordered ||
3986       qual->flags.q.sample_interlock_ordered ||
3987       qual->flags.q.sample_interlock_unordered) {
3988      _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
3989                       "pixel_interlock_ordered, pixel_interlock_unordered, "
3990                       "sample_interlock_ordered and sample_interlock_unordered, "
3991                       "only valid in fragment shader input layout declaration.");
3992   }
3993
3994   if (var->name != NULL && strcmp(var->name, "gl_Layer") == 0) {
3995      if (is_conflicting_layer_redeclaration(state, qual)) {
3996         _mesa_glsl_error(loc, state, "gl_Layer redeclaration with "
3997                          "different viewport_relative setting than earlier");
3998      }
3999      state->redeclares_gl_layer = true;
4000      if (qual->flags.q.viewport_relative) {
4001         state->layer_viewport_relative = true;
4002      }
4003   } else if (qual->flags.q.viewport_relative) {
4004      _mesa_glsl_error(loc, state,
4005                       "viewport_relative qualifier "
4006                       "can only be applied to gl_Layer.");
4007   }
4008}
4009
4010static void
4011apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
4012                                 ir_variable *var,
4013                                 struct _mesa_glsl_parse_state *state,
4014                                 YYLTYPE *loc,
4015                                 bool is_parameter)
4016{
4017   STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
4018
4019   if (qual->flags.q.invariant) {
4020      if (var->data.used) {
4021         _mesa_glsl_error(loc, state,
4022                          "variable `%s' may not be redeclared "
4023                          "`invariant' after being used",
4024                          var->name);
4025      } else {
4026         var->data.explicit_invariant = true;
4027         var->data.invariant = true;
4028      }
4029   }
4030
4031   if (qual->flags.q.precise) {
4032      if (var->data.used) {
4033         _mesa_glsl_error(loc, state,
4034                          "variable `%s' may not be redeclared "
4035                          "`precise' after being used",
4036                          var->name);
4037      } else {
4038         var->data.precise = 1;
4039      }
4040   }
4041
4042   if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
4043      _mesa_glsl_error(loc, state,
4044                       "`subroutine' may only be applied to uniforms, "
4045                       "subroutine type declarations, or function definitions");
4046   }
4047
4048   if (qual->flags.q.constant || qual->flags.q.attribute
4049       || qual->flags.q.uniform
4050       || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4051      var->data.read_only = 1;
4052
4053   if (qual->flags.q.centroid)
4054      var->data.centroid = 1;
4055
4056   if (qual->flags.q.sample)
4057      var->data.sample = 1;
4058
4059   /* Precision qualifiers do not hold any meaning in Desktop GLSL */
4060   if (state->es_shader) {
4061      var->data.precision =
4062         select_gles_precision(qual->precision, var->type, state, loc);
4063   }
4064
4065   if (qual->flags.q.patch)
4066      var->data.patch = 1;
4067
4068   if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
4069      var->type = glsl_type::error_type;
4070      _mesa_glsl_error(loc, state,
4071                       "`attribute' variables may not be declared in the "
4072                       "%s shader",
4073                       _mesa_shader_stage_to_string(state->stage));
4074   }
4075
4076   /* Disallow layout qualifiers which may only appear on layout declarations. */
4077   if (qual->flags.q.prim_type) {
4078      _mesa_glsl_error(loc, state,
4079                       "Primitive type may only be specified on GS input or output "
4080                       "layout declaration, not on variables.");
4081   }
4082
4083   /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4084    *
4085    *     "However, the const qualifier cannot be used with out or inout."
4086    *
4087    * The same section of the GLSL 4.40 spec further clarifies this saying:
4088    *
4089    *     "The const qualifier cannot be used with out or inout, or a
4090    *     compile-time error results."
4091    */
4092   if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4093      _mesa_glsl_error(loc, state,
4094                       "`const' may not be applied to `out' or `inout' "
4095                       "function parameters");
4096   }
4097
4098   /* If there is no qualifier that changes the mode of the variable, leave
4099    * the setting alone.
4100    */
4101   assert(var->data.mode != ir_var_temporary);
4102   if (qual->flags.q.in && qual->flags.q.out)
4103      var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4104   else if (qual->flags.q.in)
4105      var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4106   else if (qual->flags.q.attribute
4107            || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4108      var->data.mode = ir_var_shader_in;
4109   else if (qual->flags.q.out)
4110      var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4111   else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4112      var->data.mode = ir_var_shader_out;
4113   else if (qual->flags.q.uniform)
4114      var->data.mode = ir_var_uniform;
4115   else if (qual->flags.q.buffer)
4116      var->data.mode = ir_var_shader_storage;
4117   else if (qual->flags.q.shared_storage)
4118      var->data.mode = ir_var_shader_shared;
4119
4120   if (!is_parameter && state->has_framebuffer_fetch() &&
4121       state->stage == MESA_SHADER_FRAGMENT) {
4122      if (state->is_version(130, 300))
4123         var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4124      else
4125         var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4126   }
4127
4128   if (var->data.fb_fetch_output) {
4129      var->data.assigned = true;
4130      var->data.memory_coherent = !qual->flags.q.non_coherent;
4131
4132      /* From the EXT_shader_framebuffer_fetch spec:
4133       *
4134       *   "It is an error to declare an inout fragment output not qualified
4135       *    with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4136       *    extension hasn't been enabled."
4137       */
4138      if (var->data.memory_coherent &&
4139          !state->EXT_shader_framebuffer_fetch_enable)
4140         _mesa_glsl_error(loc, state,
4141                          "invalid declaration of framebuffer fetch output not "
4142                          "qualified with layout(noncoherent)");
4143
4144   } else {
4145      /* From the EXT_shader_framebuffer_fetch spec:
4146       *
4147       *   "Fragment outputs declared inout may specify the following layout
4148       *    qualifier: [...] noncoherent"
4149       */
4150      if (qual->flags.q.non_coherent)
4151         _mesa_glsl_error(loc, state,
4152                          "invalid layout(noncoherent) qualifier not part of "
4153                          "framebuffer fetch output declaration");
4154   }
4155
4156   if (!is_parameter && is_varying_var(var, state->stage)) {
4157      /* User-defined ins/outs are not permitted in compute shaders. */
4158      if (state->stage == MESA_SHADER_COMPUTE) {
4159         _mesa_glsl_error(loc, state,
4160                          "user-defined input and output variables are not "
4161                          "permitted in compute shaders");
4162      }
4163
4164      /* This variable is being used to link data between shader stages (in
4165       * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
4166       * that is allowed for such purposes.
4167       *
4168       * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4169       *
4170       *     "The varying qualifier can be used only with the data types
4171       *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4172       *     these."
4173       *
4174       * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
4175       * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4176       *
4177       *     "Fragment inputs can only be signed and unsigned integers and
4178       *     integer vectors, float, floating-point vectors, matrices, or
4179       *     arrays of these. Structures cannot be input.
4180       *
4181       * Similar text exists in the section on vertex shader outputs.
4182       *
4183       * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4184       * 3.00 spec allows structs as well.  Varying structs are also allowed
4185       * in GLSL 1.50.
4186       *
4187       * From section 4.3.4 of the ARB_bindless_texture spec:
4188       *
4189       *     "(modify third paragraph of the section to allow sampler and image
4190       *     types) ...  Vertex shader inputs can only be float,
4191       *     single-precision floating-point scalars, single-precision
4192       *     floating-point vectors, matrices, signed and unsigned integers
4193       *     and integer vectors, sampler and image types."
4194       *
4195       * From section 4.3.6 of the ARB_bindless_texture spec:
4196       *
4197       *     "Output variables can only be floating-point scalars,
4198       *     floating-point vectors, matrices, signed or unsigned integers or
4199       *     integer vectors, sampler or image types, or arrays or structures
4200       *     of any these."
4201       */
4202      switch (var->type->without_array()->base_type) {
4203      case GLSL_TYPE_FLOAT:
4204         /* Ok in all GLSL versions */
4205         break;
4206      case GLSL_TYPE_UINT:
4207      case GLSL_TYPE_INT:
4208         if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
4209            break;
4210         _mesa_glsl_error(loc, state,
4211                          "varying variables must be of base type float in %s",
4212                          state->get_version_string());
4213         break;
4214      case GLSL_TYPE_STRUCT:
4215         if (state->is_version(150, 300))
4216            break;
4217         _mesa_glsl_error(loc, state,
4218                          "varying variables may not be of type struct");
4219         break;
4220      case GLSL_TYPE_DOUBLE:
4221      case GLSL_TYPE_UINT64:
4222      case GLSL_TYPE_INT64:
4223         break;
4224      case GLSL_TYPE_SAMPLER:
4225      case GLSL_TYPE_IMAGE:
4226         if (state->has_bindless())
4227            break;
4228         FALLTHROUGH;
4229      default:
4230         _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4231         break;
4232      }
4233   }
4234
4235   if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4236      var->data.explicit_invariant = true;
4237      var->data.invariant = true;
4238   }
4239
4240   var->data.interpolation =
4241      interpret_interpolation_qualifier(qual, var->type,
4242                                        (ir_variable_mode) var->data.mode,
4243                                        state, loc);
4244
4245   /* Does the declaration use the deprecated 'attribute' or 'varying'
4246    * keywords?
4247    */
4248   const bool uses_deprecated_qualifier = qual->flags.q.attribute
4249      || qual->flags.q.varying;
4250
4251
4252   /* Validate auxiliary storage qualifiers */
4253
4254   /* From section 4.3.4 of the GLSL 1.30 spec:
4255    *    "It is an error to use centroid in in a vertex shader."
4256    *
4257    * From section 4.3.4 of the GLSL ES 3.00 spec:
4258    *    "It is an error to use centroid in or interpolation qualifiers in
4259    *    a vertex shader input."
4260    */
4261
4262   /* Section 4.3.6 of the GLSL 1.30 specification states:
4263    * "It is an error to use centroid out in a fragment shader."
4264    *
4265    * The GL_ARB_shading_language_420pack extension specification states:
4266    * "It is an error to use auxiliary storage qualifiers or interpolation
4267    *  qualifiers on an output in a fragment shader."
4268    */
4269   if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4270      _mesa_glsl_error(loc, state,
4271                       "sample qualifier may only be used on `in` or `out` "
4272                       "variables between shader stages");
4273   }
4274   if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4275      _mesa_glsl_error(loc, state,
4276                       "centroid qualifier may only be used with `in', "
4277                       "`out' or `varying' variables between shader stages");
4278   }
4279
4280   if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4281      _mesa_glsl_error(loc, state,
4282                       "the shared storage qualifiers can only be used with "
4283                       "compute shaders");
4284   }
4285
4286   apply_image_qualifier_to_variable(qual, var, state, loc);
4287}
4288
4289/**
4290 * Get the variable that is being redeclared by this declaration or if it
4291 * does not exist, the current declared variable.
4292 *
4293 * Semantic checks to verify the validity of the redeclaration are also
4294 * performed.  If semantic checks fail, compilation error will be emitted via
4295 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4296 *
4297 * \returns
4298 * A pointer to an existing variable in the current scope if the declaration
4299 * is a redeclaration, current variable otherwise. \c is_declared boolean
4300 * will return \c true if the declaration is a redeclaration, \c false
4301 * otherwise.
4302 */
4303static ir_variable *
4304get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4305                              struct _mesa_glsl_parse_state *state,
4306                              bool allow_all_redeclarations,
4307                              bool *is_redeclaration)
4308{
4309   ir_variable *var = *var_ptr;
4310
4311   /* Check if this declaration is actually a re-declaration, either to
4312    * resize an array or add qualifiers to an existing variable.
4313    *
4314    * This is allowed for variables in the current scope, or when at
4315    * global scope (for built-ins in the implicit outer scope).
4316    */
4317   ir_variable *earlier = state->symbols->get_variable(var->name);
4318   if (earlier == NULL ||
4319       (state->current_function != NULL &&
4320       !state->symbols->name_declared_this_scope(var->name))) {
4321      *is_redeclaration = false;
4322      return var;
4323   }
4324
4325   *is_redeclaration = true;
4326
4327   if (earlier->data.how_declared == ir_var_declared_implicitly) {
4328      /* Verify that the redeclaration of a built-in does not change the
4329       * storage qualifier.  There are a couple special cases.
4330       *
4331       * 1. Some built-in variables that are defined as 'in' in the
4332       *    specification are implemented as system values.  Allow
4333       *    ir_var_system_value -> ir_var_shader_in.
4334       *
4335       * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4336       *    specification requires that redeclarations omit any qualifier.
4337       *    Allow ir_var_shader_out -> ir_var_auto for this one variable.
4338       */
4339      if (earlier->data.mode != var->data.mode &&
4340          !(earlier->data.mode == ir_var_system_value &&
4341            var->data.mode == ir_var_shader_in) &&
4342          !(strcmp(var->name, "gl_LastFragData") == 0 &&
4343            var->data.mode == ir_var_auto)) {
4344         _mesa_glsl_error(&loc, state,
4345                          "redeclaration cannot change qualification of `%s'",
4346                          var->name);
4347      }
4348   }
4349
4350   /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4351    *
4352    * "It is legal to declare an array without a size and then
4353    *  later re-declare the same name as an array of the same
4354    *  type and specify a size."
4355    */
4356   if (earlier->type->is_unsized_array() && var->type->is_array()
4357       && (var->type->fields.array == earlier->type->fields.array)) {
4358      const int size = var->type->array_size();
4359      check_builtin_array_max_size(var->name, size, loc, state);
4360      if ((size > 0) && (size <= earlier->data.max_array_access)) {
4361         _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4362                          "previous access",
4363                          earlier->data.max_array_access);
4364      }
4365
4366      earlier->type = var->type;
4367      delete var;
4368      var = NULL;
4369      *var_ptr = NULL;
4370   } else if (earlier->type != var->type) {
4371      _mesa_glsl_error(&loc, state,
4372                       "redeclaration of `%s' has incorrect type",
4373                       var->name);
4374   } else if ((state->ARB_fragment_coord_conventions_enable ||
4375              state->is_version(150, 0))
4376              && strcmp(var->name, "gl_FragCoord") == 0) {
4377      /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4378       * qualifiers.
4379       *
4380       * We don't really need to do anything here, just allow the
4381       * redeclaration. Any error on the gl_FragCoord is handled on the ast
4382       * level at apply_layout_qualifier_to_variable using the
4383       * ast_type_qualifier and _mesa_glsl_parse_state, or later at
4384       * linker.cpp.
4385       */
4386      /* According to section 4.3.7 of the GLSL 1.30 spec,
4387       * the following built-in varaibles can be redeclared with an
4388       * interpolation qualifier:
4389       *    * gl_FrontColor
4390       *    * gl_BackColor
4391       *    * gl_FrontSecondaryColor
4392       *    * gl_BackSecondaryColor
4393       *    * gl_Color
4394       *    * gl_SecondaryColor
4395       */
4396   } else if (state->is_version(130, 0)
4397              && (strcmp(var->name, "gl_FrontColor") == 0
4398                  || strcmp(var->name, "gl_BackColor") == 0
4399                  || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4400                  || strcmp(var->name, "gl_BackSecondaryColor") == 0
4401                  || strcmp(var->name, "gl_Color") == 0
4402                  || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4403      earlier->data.interpolation = var->data.interpolation;
4404
4405      /* Layout qualifiers for gl_FragDepth. */
4406   } else if ((state->is_version(420, 0) ||
4407               state->AMD_conservative_depth_enable ||
4408               state->ARB_conservative_depth_enable)
4409              && strcmp(var->name, "gl_FragDepth") == 0) {
4410
4411      /** From the AMD_conservative_depth spec:
4412       *     Within any shader, the first redeclarations of gl_FragDepth
4413       *     must appear before any use of gl_FragDepth.
4414       */
4415      if (earlier->data.used) {
4416         _mesa_glsl_error(&loc, state,
4417                          "the first redeclaration of gl_FragDepth "
4418                          "must appear before any use of gl_FragDepth");
4419      }
4420
4421      /* Prevent inconsistent redeclaration of depth layout qualifier. */
4422      if (earlier->data.depth_layout != ir_depth_layout_none
4423          && earlier->data.depth_layout != var->data.depth_layout) {
4424            _mesa_glsl_error(&loc, state,
4425                             "gl_FragDepth: depth layout is declared here "
4426                             "as '%s, but it was previously declared as "
4427                             "'%s'",
4428                             depth_layout_string(var->data.depth_layout),
4429                             depth_layout_string(earlier->data.depth_layout));
4430      }
4431
4432      earlier->data.depth_layout = var->data.depth_layout;
4433
4434   } else if (state->has_framebuffer_fetch() &&
4435              strcmp(var->name, "gl_LastFragData") == 0 &&
4436              var->data.mode == ir_var_auto) {
4437      /* According to the EXT_shader_framebuffer_fetch spec:
4438       *
4439       *   "By default, gl_LastFragData is declared with the mediump precision
4440       *    qualifier. This can be changed by redeclaring the corresponding
4441       *    variables with the desired precision qualifier."
4442       *
4443       *   "Fragment shaders may specify the following layout qualifier only for
4444       *    redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4445       */
4446      earlier->data.precision = var->data.precision;
4447      earlier->data.memory_coherent = var->data.memory_coherent;
4448
4449   } else if (state->NV_viewport_array2_enable &&
4450              strcmp(var->name, "gl_Layer") == 0 &&
4451              earlier->data.how_declared == ir_var_declared_implicitly) {
4452      /* No need to do anything, just allow it. Qualifier is stored in state */
4453
4454   } else if (state->is_version(0, 300) &&
4455              state->has_separate_shader_objects() &&
4456              (strcmp(var->name, "gl_Position") == 0 ||
4457              strcmp(var->name, "gl_PointSize") == 0)) {
4458
4459       /*  EXT_separate_shader_objects spec says:
4460       *
4461       *  "The following vertex shader outputs may be redeclared
4462       *   at global scope to specify a built-in output interface,
4463       *   with or without special qualifiers:
4464       *
4465       *    gl_Position
4466       *    gl_PointSize
4467       *
4468       *    When compiling shaders using either of the above variables,
4469       *    both such variables must be redeclared prior to use."
4470       */
4471      if (earlier->data.used) {
4472         _mesa_glsl_error(&loc, state, "the first redeclaration of "
4473                         "%s must appear before any use", var->name);
4474      }
4475   } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4476               state->allow_builtin_variable_redeclaration) ||
4477              allow_all_redeclarations) {
4478      /* Allow verbatim redeclarations of built-in variables. Not explicitly
4479       * valid, but some applications do it.
4480       */
4481   } else {
4482      _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4483   }
4484
4485   return earlier;
4486}
4487
4488/**
4489 * Generate the IR for an initializer in a variable declaration
4490 */
4491static ir_rvalue *
4492process_initializer(ir_variable *var, ast_declaration *decl,
4493                    ast_fully_specified_type *type,
4494                    exec_list *initializer_instructions,
4495                    struct _mesa_glsl_parse_state *state)
4496{
4497   void *mem_ctx = state;
4498   ir_rvalue *result = NULL;
4499
4500   YYLTYPE initializer_loc = decl->initializer->get_location();
4501
4502   /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4503    *
4504    *    "All uniform variables are read-only and are initialized either
4505    *    directly by an application via API commands, or indirectly by
4506    *    OpenGL."
4507    */
4508   if (var->data.mode == ir_var_uniform) {
4509      state->check_version(120, 0, &initializer_loc,
4510                           "cannot initialize uniform %s",
4511                           var->name);
4512   }
4513
4514   /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4515    *
4516    *    "Buffer variables cannot have initializers."
4517    */
4518   if (var->data.mode == ir_var_shader_storage) {
4519      _mesa_glsl_error(&initializer_loc, state,
4520                       "cannot initialize buffer variable %s",
4521                       var->name);
4522   }
4523
4524   /* From section 4.1.7 of the GLSL 4.40 spec:
4525    *
4526    *    "Opaque variables [...] are initialized only through the
4527    *     OpenGL API; they cannot be declared with an initializer in a
4528    *     shader."
4529    *
4530    * From section 4.1.7 of the ARB_bindless_texture spec:
4531    *
4532    *    "Samplers may be declared as shader inputs and outputs, as uniform
4533    *     variables, as temporary variables, and as function parameters."
4534    *
4535    * From section 4.1.X of the ARB_bindless_texture spec:
4536    *
4537    *    "Images may be declared as shader inputs and outputs, as uniform
4538    *     variables, as temporary variables, and as function parameters."
4539    */
4540   if (var->type->contains_atomic() ||
4541       (!state->has_bindless() && var->type->contains_opaque())) {
4542      _mesa_glsl_error(&initializer_loc, state,
4543                       "cannot initialize %s variable %s",
4544                       var->name, state->has_bindless() ? "atomic" : "opaque");
4545   }
4546
4547   if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4548      _mesa_glsl_error(&initializer_loc, state,
4549                       "cannot initialize %s shader input / %s %s",
4550                       _mesa_shader_stage_to_string(state->stage),
4551                       (state->stage == MESA_SHADER_VERTEX)
4552                       ? "attribute" : "varying",
4553                       var->name);
4554   }
4555
4556   if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4557      _mesa_glsl_error(&initializer_loc, state,
4558                       "cannot initialize %s shader output %s",
4559                       _mesa_shader_stage_to_string(state->stage),
4560                       var->name);
4561   }
4562
4563   /* If the initializer is an ast_aggregate_initializer, recursively store
4564    * type information from the LHS into it, so that its hir() function can do
4565    * type checking.
4566    */
4567   if (decl->initializer->oper == ast_aggregate)
4568      _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4569
4570   ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4571   ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4572
4573   /* Calculate the constant value if this is a const or uniform
4574    * declaration.
4575    *
4576    * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4577    *
4578    *     "Declarations of globals without a storage qualifier, or with
4579    *     just the const qualifier, may include initializers, in which case
4580    *     they will be initialized before the first line of main() is
4581    *     executed.  Such initializers must be a constant expression."
4582    *
4583    * The same section of the GLSL ES 3.00.4 spec has similar language.
4584    */
4585   if (type->qualifier.flags.q.constant
4586       || type->qualifier.flags.q.uniform
4587       || (state->es_shader && state->current_function == NULL)) {
4588      ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4589                                               lhs, rhs, true);
4590      if (new_rhs != NULL) {
4591         rhs = new_rhs;
4592
4593         /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4594          * says:
4595          *
4596          *     "A constant expression is one of
4597          *
4598          *        ...
4599          *
4600          *        - an expression formed by an operator on operands that are
4601          *          all constant expressions, including getting an element of
4602          *          a constant array, or a field of a constant structure, or
4603          *          components of a constant vector.  However, the sequence
4604          *          operator ( , ) and the assignment operators ( =, +=, ...)
4605          *          are not included in the operators that can create a
4606          *          constant expression."
4607          *
4608          * Section 12.43 (Sequence operator and constant expressions) says:
4609          *
4610          *     "Should the following construct be allowed?
4611          *
4612          *         float a[2,3];
4613          *
4614          *     The expression within the brackets uses the sequence operator
4615          *     (',') and returns the integer 3 so the construct is declaring
4616          *     a single-dimensional array of size 3.  In some languages, the
4617          *     construct declares a two-dimensional array.  It would be
4618          *     preferable to make this construct illegal to avoid confusion.
4619          *
4620          *     One possibility is to change the definition of the sequence
4621          *     operator so that it does not return a constant-expression and
4622          *     hence cannot be used to declare an array size.
4623          *
4624          *     RESOLUTION: The result of a sequence operator is not a
4625          *     constant-expression."
4626          *
4627          * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4628          * contains language almost identical to the section 4.3.3 in the
4629          * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
4630          * versions.
4631          */
4632         ir_constant *constant_value =
4633            rhs->constant_expression_value(mem_ctx);
4634
4635         if (!constant_value ||
4636             (state->is_version(430, 300) &&
4637              decl->initializer->has_sequence_subexpression())) {
4638            const char *const variable_mode =
4639               (type->qualifier.flags.q.constant)
4640               ? "const"
4641               : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4642
4643            /* If ARB_shading_language_420pack is enabled, initializers of
4644             * const-qualified local variables do not have to be constant
4645             * expressions. Const-qualified global variables must still be
4646             * initialized with constant expressions.
4647             */
4648            if (!state->has_420pack()
4649                || state->current_function == NULL) {
4650               _mesa_glsl_error(& initializer_loc, state,
4651                                "initializer of %s variable `%s' must be a "
4652                                "constant expression",
4653                                variable_mode,
4654                                decl->identifier);
4655               if (var->type->is_numeric()) {
4656                  /* Reduce cascading errors. */
4657                  var->constant_value = type->qualifier.flags.q.constant
4658                     ? ir_constant::zero(state, var->type) : NULL;
4659               }
4660            }
4661         } else {
4662            rhs = constant_value;
4663            var->constant_value = type->qualifier.flags.q.constant
4664               ? constant_value : NULL;
4665         }
4666      } else {
4667         if (var->type->is_numeric()) {
4668            /* Reduce cascading errors. */
4669            rhs = var->constant_value = type->qualifier.flags.q.constant
4670               ? ir_constant::zero(state, var->type) : NULL;
4671         }
4672      }
4673   }
4674
4675   if (rhs && !rhs->type->is_error()) {
4676      bool temp = var->data.read_only;
4677      if (type->qualifier.flags.q.constant)
4678         var->data.read_only = false;
4679
4680      /* Never emit code to initialize a uniform.
4681       */
4682      const glsl_type *initializer_type;
4683      bool error_emitted = false;
4684      if (!type->qualifier.flags.q.uniform) {
4685         error_emitted =
4686            do_assignment(initializer_instructions, state,
4687                          NULL, lhs, rhs,
4688                          &result, true, true,
4689                          type->get_location());
4690         initializer_type = result->type;
4691      } else
4692         initializer_type = rhs->type;
4693
4694      if (!error_emitted) {
4695         var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4696         var->data.has_initializer = true;
4697         var->data.is_implicit_initializer = false;
4698
4699         /* If the declared variable is an unsized array, it must inherrit
4700         * its full type from the initializer.  A declaration such as
4701         *
4702         *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4703         *
4704         * becomes
4705         *
4706         *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4707         *
4708         * The assignment generated in the if-statement (below) will also
4709         * automatically handle this case for non-uniforms.
4710         *
4711         * If the declared variable is not an array, the types must
4712         * already match exactly.  As a result, the type assignment
4713         * here can be done unconditionally.  For non-uniforms the call
4714         * to do_assignment can change the type of the initializer (via
4715         * the implicit conversion rules).  For uniforms the initializer
4716         * must be a constant expression, and the type of that expression
4717         * was validated above.
4718         */
4719         var->type = initializer_type;
4720      }
4721
4722      var->data.read_only = temp;
4723   }
4724
4725   return result;
4726}
4727
4728static void
4729validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4730                                       YYLTYPE loc, ir_variable *var,
4731                                       unsigned num_vertices,
4732                                       unsigned *size,
4733                                       const char *var_category)
4734{
4735   if (var->type->is_unsized_array()) {
4736      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4737       *
4738       *   All geometry shader input unsized array declarations will be
4739       *   sized by an earlier input layout qualifier, when present, as per
4740       *   the following table.
4741       *
4742       * Followed by a table mapping each allowed input layout qualifier to
4743       * the corresponding input length.
4744       *
4745       * Similarly for tessellation control shader outputs.
4746       */
4747      if (num_vertices != 0)
4748         var->type = glsl_type::get_array_instance(var->type->fields.array,
4749                                                   num_vertices);
4750   } else {
4751      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4752       * includes the following examples of compile-time errors:
4753       *
4754       *   // code sequence within one shader...
4755       *   in vec4 Color1[];    // size unknown
4756       *   ...Color1.length()...// illegal, length() unknown
4757       *   in vec4 Color2[2];   // size is 2
4758       *   ...Color1.length()...// illegal, Color1 still has no size
4759       *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
4760       *   layout(lines) in;    // legal, input size is 2, matching
4761       *   in vec4 Color4[3];   // illegal, contradicts layout
4762       *   ...
4763       *
4764       * To detect the case illustrated by Color3, we verify that the size of
4765       * an explicitly-sized array matches the size of any previously declared
4766       * explicitly-sized array.  To detect the case illustrated by Color4, we
4767       * verify that the size of an explicitly-sized array is consistent with
4768       * any previously declared input layout.
4769       */
4770      if (num_vertices != 0 && var->type->length != num_vertices) {
4771         _mesa_glsl_error(&loc, state,
4772                          "%s size contradicts previously declared layout "
4773                          "(size is %u, but layout requires a size of %u)",
4774                          var_category, var->type->length, num_vertices);
4775      } else if (*size != 0 && var->type->length != *size) {
4776         _mesa_glsl_error(&loc, state,
4777                          "%s sizes are inconsistent (size is %u, but a "
4778                          "previous declaration has size %u)",
4779                          var_category, var->type->length, *size);
4780      } else {
4781         *size = var->type->length;
4782      }
4783   }
4784}
4785
4786static void
4787handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4788                                    YYLTYPE loc, ir_variable *var)
4789{
4790   unsigned num_vertices = 0;
4791
4792   if (state->tcs_output_vertices_specified) {
4793      if (!state->out_qualifier->vertices->
4794             process_qualifier_constant(state, "vertices",
4795                                        &num_vertices, false)) {
4796         return;
4797      }
4798
4799      if (num_vertices > state->Const.MaxPatchVertices) {
4800         _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4801                          "GL_MAX_PATCH_VERTICES", num_vertices);
4802         return;
4803      }
4804   }
4805
4806   if (!var->type->is_array() && !var->data.patch) {
4807      _mesa_glsl_error(&loc, state,
4808                       "tessellation control shader outputs must be arrays");
4809
4810      /* To avoid cascading failures, short circuit the checks below. */
4811      return;
4812   }
4813
4814   if (var->data.patch)
4815      return;
4816
4817   validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4818                                          &state->tcs_output_size,
4819                                          "tessellation control shader output");
4820}
4821
4822/**
4823 * Do additional processing necessary for tessellation control/evaluation shader
4824 * input declarations. This covers both interface block arrays and bare input
4825 * variables.
4826 */
4827static void
4828handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4829                              YYLTYPE loc, ir_variable *var)
4830{
4831   if (!var->type->is_array() && !var->data.patch) {
4832      _mesa_glsl_error(&loc, state,
4833                       "per-vertex tessellation shader inputs must be arrays");
4834      /* Avoid cascading failures. */
4835      return;
4836   }
4837
4838   if (var->data.patch)
4839      return;
4840
4841   /* The ARB_tessellation_shader spec says:
4842    *
4843    *    "Declaring an array size is optional.  If no size is specified, it
4844    *     will be taken from the implementation-dependent maximum patch size
4845    *     (gl_MaxPatchVertices).  If a size is specified, it must match the
4846    *     maximum patch size; otherwise, a compile or link error will occur."
4847    *
4848    * This text appears twice, once for TCS inputs, and again for TES inputs.
4849    */
4850   if (var->type->is_unsized_array()) {
4851      var->type = glsl_type::get_array_instance(var->type->fields.array,
4852            state->Const.MaxPatchVertices);
4853   } else if (var->type->length != state->Const.MaxPatchVertices) {
4854      _mesa_glsl_error(&loc, state,
4855                       "per-vertex tessellation shader input arrays must be "
4856                       "sized to gl_MaxPatchVertices (%d).",
4857                       state->Const.MaxPatchVertices);
4858   }
4859}
4860
4861
4862/**
4863 * Do additional processing necessary for geometry shader input declarations
4864 * (this covers both interface blocks arrays and bare input variables).
4865 */
4866static void
4867handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4868                                  YYLTYPE loc, ir_variable *var)
4869{
4870   unsigned num_vertices = 0;
4871
4872   if (state->gs_input_prim_type_specified) {
4873      num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4874   }
4875
4876   /* Geometry shader input variables must be arrays.  Caller should have
4877    * reported an error for this.
4878    */
4879   if (!var->type->is_array()) {
4880      assert(state->error);
4881
4882      /* To avoid cascading failures, short circuit the checks below. */
4883      return;
4884   }
4885
4886   validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4887                                          &state->gs_input_size,
4888                                          "geometry shader input");
4889}
4890
4891static void
4892validate_identifier(const char *identifier, YYLTYPE loc,
4893                    struct _mesa_glsl_parse_state *state)
4894{
4895   /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4896    *
4897    *   "Identifiers starting with "gl_" are reserved for use by
4898    *   OpenGL, and may not be declared in a shader as either a
4899    *   variable or a function."
4900    */
4901   if (is_gl_identifier(identifier)) {
4902      _mesa_glsl_error(&loc, state,
4903                       "identifier `%s' uses reserved `gl_' prefix",
4904                       identifier);
4905   } else if (strstr(identifier, "__")) {
4906      /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4907       * spec:
4908       *
4909       *     "In addition, all identifiers containing two
4910       *      consecutive underscores (__) are reserved as
4911       *      possible future keywords."
4912       *
4913       * The intention is that names containing __ are reserved for internal
4914       * use by the implementation, and names prefixed with GL_ are reserved
4915       * for use by Khronos.  Names simply containing __ are dangerous to use,
4916       * but should be allowed.
4917       *
4918       * A future version of the GLSL specification will clarify this.
4919       */
4920      _mesa_glsl_warning(&loc, state,
4921                         "identifier `%s' uses reserved `__' string",
4922                         identifier);
4923   }
4924}
4925
4926ir_rvalue *
4927ast_declarator_list::hir(exec_list *instructions,
4928                         struct _mesa_glsl_parse_state *state)
4929{
4930   void *ctx = state;
4931   const struct glsl_type *decl_type;
4932   const char *type_name = NULL;
4933   ir_rvalue *result = NULL;
4934   YYLTYPE loc = this->get_location();
4935
4936   /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4937    *
4938    *     "To ensure that a particular output variable is invariant, it is
4939    *     necessary to use the invariant qualifier. It can either be used to
4940    *     qualify a previously declared variable as being invariant
4941    *
4942    *         invariant gl_Position; // make existing gl_Position be invariant"
4943    *
4944    * In these cases the parser will set the 'invariant' flag in the declarator
4945    * list, and the type will be NULL.
4946    */
4947   if (this->invariant) {
4948      assert(this->type == NULL);
4949
4950      if (state->current_function != NULL) {
4951         _mesa_glsl_error(& loc, state,
4952                          "all uses of `invariant' keyword must be at global "
4953                          "scope");
4954      }
4955
4956      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4957         assert(decl->array_specifier == NULL);
4958         assert(decl->initializer == NULL);
4959
4960         ir_variable *const earlier =
4961            state->symbols->get_variable(decl->identifier);
4962         if (earlier == NULL) {
4963            _mesa_glsl_error(& loc, state,
4964                             "undeclared variable `%s' cannot be marked "
4965                             "invariant", decl->identifier);
4966         } else if (!is_allowed_invariant(earlier, state)) {
4967            _mesa_glsl_error(&loc, state,
4968                             "`%s' cannot be marked invariant; interfaces between "
4969                             "shader stages only.", decl->identifier);
4970         } else if (earlier->data.used) {
4971            _mesa_glsl_error(& loc, state,
4972                            "variable `%s' may not be redeclared "
4973                            "`invariant' after being used",
4974                            earlier->name);
4975         } else {
4976            earlier->data.explicit_invariant = true;
4977            earlier->data.invariant = true;
4978         }
4979      }
4980
4981      /* Invariant redeclarations do not have r-values.
4982       */
4983      return NULL;
4984   }
4985
4986   if (this->precise) {
4987      assert(this->type == NULL);
4988
4989      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4990         assert(decl->array_specifier == NULL);
4991         assert(decl->initializer == NULL);
4992
4993         ir_variable *const earlier =
4994            state->symbols->get_variable(decl->identifier);
4995         if (earlier == NULL) {
4996            _mesa_glsl_error(& loc, state,
4997                             "undeclared variable `%s' cannot be marked "
4998                             "precise", decl->identifier);
4999         } else if (state->current_function != NULL &&
5000                    !state->symbols->name_declared_this_scope(decl->identifier)) {
5001            /* Note: we have to check if we're in a function, since
5002             * builtins are treated as having come from another scope.
5003             */
5004            _mesa_glsl_error(& loc, state,
5005                             "variable `%s' from an outer scope may not be "
5006                             "redeclared `precise' in this scope",
5007                             earlier->name);
5008         } else if (earlier->data.used) {
5009            _mesa_glsl_error(& loc, state,
5010                             "variable `%s' may not be redeclared "
5011                             "`precise' after being used",
5012                             earlier->name);
5013         } else {
5014            earlier->data.precise = true;
5015         }
5016      }
5017
5018      /* Precise redeclarations do not have r-values either. */
5019      return NULL;
5020   }
5021
5022   assert(this->type != NULL);
5023   assert(!this->invariant);
5024   assert(!this->precise);
5025
5026   /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to
5027    * indicate that it needs to be updated later (see glsl_parser.yy).
5028    * This is done here, based on the layout qualifier and the type of the image var
5029    */
5030   if (this->type->qualifier.flags.q.explicit_image_format &&
5031         this->type->specifier->type->is_image() &&
5032         this->type->qualifier.image_base_type == GLSL_TYPE_VOID) {
5033      /*     "The ARB_shader_image_load_store says:
5034       *     If both extensions are enabled in the shading language, the "size*" layout
5035       *     qualifiers are treated as format qualifiers, and are mapped to equivalent
5036       *     format qualifiers in the table below, according to the type of image
5037       *     variable.
5038       *                     image*    iimage*   uimage*
5039       *                     --------  --------  --------
5040       *       size1x8       n/a       r8i       r8ui
5041       *       size1x16      r16f      r16i      r16ui
5042       *       size1x32      r32f      r32i      r32ui
5043       *       size2x32      rg32f     rg32i     rg32ui
5044       *       size4x32      rgba32f   rgba32i   rgba32ui"
5045       */
5046      if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) {
5047         switch (this->type->qualifier.image_format) {
5048         case PIPE_FORMAT_R8_SINT:
5049            /* The GL_EXT_shader_image_load_store spec says:
5050             *    A layout of "size1x8" is illegal for image variables associated
5051             *    with floating-point data types.
5052             */
5053            _mesa_glsl_error(& loc, state,
5054                             "size1x8 is illegal for image variables "
5055                             "with floating-point data types.");
5056            return NULL;
5057         case PIPE_FORMAT_R16_SINT:
5058            this->type->qualifier.image_format = PIPE_FORMAT_R16_FLOAT;
5059            break;
5060         case PIPE_FORMAT_R32_SINT:
5061            this->type->qualifier.image_format = PIPE_FORMAT_R32_FLOAT;
5062            break;
5063         case PIPE_FORMAT_R32G32_SINT:
5064            this->type->qualifier.image_format = PIPE_FORMAT_R32G32_FLOAT;
5065            break;
5066         case PIPE_FORMAT_R32G32B32A32_SINT:
5067            this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
5068            break;
5069         default:
5070            unreachable("Unknown image format");
5071         }
5072         this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT;
5073      } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) {
5074         switch (this->type->qualifier.image_format) {
5075         case PIPE_FORMAT_R8_SINT:
5076            this->type->qualifier.image_format = PIPE_FORMAT_R8_UINT;
5077            break;
5078         case PIPE_FORMAT_R16_SINT:
5079            this->type->qualifier.image_format = PIPE_FORMAT_R16_UINT;
5080            break;
5081         case PIPE_FORMAT_R32_SINT:
5082            this->type->qualifier.image_format = PIPE_FORMAT_R32_UINT;
5083            break;
5084         case PIPE_FORMAT_R32G32_SINT:
5085            this->type->qualifier.image_format = PIPE_FORMAT_R32G32_UINT;
5086            break;
5087         case PIPE_FORMAT_R32G32B32A32_SINT:
5088            this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_UINT;
5089            break;
5090         default:
5091            unreachable("Unknown image format");
5092         }
5093         this->type->qualifier.image_base_type = GLSL_TYPE_UINT;
5094      } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) {
5095         this->type->qualifier.image_base_type = GLSL_TYPE_INT;
5096      } else {
5097         assert(false);
5098      }
5099   }
5100
5101   /* The type specifier may contain a structure definition.  Process that
5102    * before any of the variable declarations.
5103    */
5104   (void) this->type->specifier->hir(instructions, state);
5105
5106   decl_type = this->type->glsl_type(& type_name, state);
5107
5108   /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
5109    *    "Buffer variables may only be declared inside interface blocks
5110    *    (section 4.3.9 “Interface Blocks”), which are then referred to as
5111    *    shader storage blocks. It is a compile-time error to declare buffer
5112    *    variables at global scope (outside a block)."
5113    */
5114   if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
5115      _mesa_glsl_error(&loc, state,
5116                       "buffer variables cannot be declared outside "
5117                       "interface blocks");
5118   }
5119
5120   /* An offset-qualified atomic counter declaration sets the default
5121    * offset for the next declaration within the same atomic counter
5122    * buffer.
5123    */
5124   if (decl_type && decl_type->contains_atomic()) {
5125      if (type->qualifier.flags.q.explicit_binding &&
5126          type->qualifier.flags.q.explicit_offset) {
5127         unsigned qual_binding;
5128         unsigned qual_offset;
5129         if (process_qualifier_constant(state, &loc, "binding",
5130                                        type->qualifier.binding,
5131                                        &qual_binding)
5132             && process_qualifier_constant(state, &loc, "offset",
5133                                        type->qualifier.offset,
5134                                        &qual_offset)) {
5135            if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
5136               state->atomic_counter_offsets[qual_binding] = qual_offset;
5137         }
5138      }
5139
5140      ast_type_qualifier allowed_atomic_qual_mask;
5141      allowed_atomic_qual_mask.flags.i = 0;
5142      allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
5143      allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
5144      allowed_atomic_qual_mask.flags.q.uniform = 1;
5145
5146      type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
5147                                     "invalid layout qualifier for",
5148                                     "atomic_uint");
5149   }
5150
5151   if (this->declarations.is_empty()) {
5152      /* If there is no structure involved in the program text, there are two
5153       * possible scenarios:
5154       *
5155       * - The program text contained something like 'vec4;'.  This is an
5156       *   empty declaration.  It is valid but weird.  Emit a warning.
5157       *
5158       * - The program text contained something like 'S;' and 'S' is not the
5159       *   name of a known structure type.  This is both invalid and weird.
5160       *   Emit an error.
5161       *
5162       * - The program text contained something like 'mediump float;'
5163       *   when the programmer probably meant 'precision mediump
5164       *   float;' Emit a warning with a description of what they
5165       *   probably meant to do.
5166       *
5167       * Note that if decl_type is NULL and there is a structure involved,
5168       * there must have been some sort of error with the structure.  In this
5169       * case we assume that an error was already generated on this line of
5170       * code for the structure.  There is no need to generate an additional,
5171       * confusing error.
5172       */
5173      assert(this->type->specifier->structure == NULL || decl_type != NULL
5174             || state->error);
5175
5176      if (decl_type == NULL) {
5177         _mesa_glsl_error(&loc, state,
5178                          "invalid type `%s' in empty declaration",
5179                          type_name);
5180      } else {
5181         if (decl_type->is_array()) {
5182            /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5183             * spec:
5184             *
5185             *    "... any declaration that leaves the size undefined is
5186             *    disallowed as this would add complexity and there are no
5187             *    use-cases."
5188             */
5189            if (state->es_shader && decl_type->is_unsized_array()) {
5190               _mesa_glsl_error(&loc, state, "array size must be explicitly "
5191                                "or implicitly defined");
5192            }
5193
5194            /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5195             *
5196             *    "The combinations of types and qualifiers that cause
5197             *    compile-time or link-time errors are the same whether or not
5198             *    the declaration is empty."
5199             */
5200            validate_array_dimensions(decl_type, state, &loc);
5201         }
5202
5203         if (decl_type->is_atomic_uint()) {
5204            /* Empty atomic counter declarations are allowed and useful
5205             * to set the default offset qualifier.
5206             */
5207            return NULL;
5208         } else if (this->type->qualifier.precision != ast_precision_none) {
5209            if (this->type->specifier->structure != NULL) {
5210               _mesa_glsl_error(&loc, state,
5211                                "precision qualifiers can't be applied "
5212                                "to structures");
5213            } else {
5214               static const char *const precision_names[] = {
5215                  "highp",
5216                  "highp",
5217                  "mediump",
5218                  "lowp"
5219               };
5220
5221               _mesa_glsl_warning(&loc, state,
5222                                  "empty declaration with precision "
5223                                  "qualifier, to set the default precision, "
5224                                  "use `precision %s %s;'",
5225                                  precision_names[this->type->
5226                                     qualifier.precision],
5227                                  type_name);
5228            }
5229         } else if (this->type->specifier->structure == NULL) {
5230            _mesa_glsl_warning(&loc, state, "empty declaration");
5231         }
5232      }
5233   }
5234
5235   foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5236      const struct glsl_type *var_type;
5237      ir_variable *var;
5238      const char *identifier = decl->identifier;
5239      /* FINISHME: Emit a warning if a variable declaration shadows a
5240       * FINISHME: declaration at a higher scope.
5241       */
5242
5243      if ((decl_type == NULL) || decl_type->is_void()) {
5244         if (type_name != NULL) {
5245            _mesa_glsl_error(& loc, state,
5246                             "invalid type `%s' in declaration of `%s'",
5247                             type_name, decl->identifier);
5248         } else {
5249            _mesa_glsl_error(& loc, state,
5250                             "invalid type in declaration of `%s'",
5251                             decl->identifier);
5252         }
5253         continue;
5254      }
5255
5256      if (this->type->qualifier.is_subroutine_decl()) {
5257         const glsl_type *t;
5258         const char *name;
5259
5260         t = state->symbols->get_type(this->type->specifier->type_name);
5261         if (!t)
5262            _mesa_glsl_error(& loc, state,
5263                             "invalid type in declaration of `%s'",
5264                             decl->identifier);
5265         name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5266
5267         identifier = name;
5268
5269      }
5270      var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5271                                    state);
5272
5273      var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5274
5275      /* The 'varying in' and 'varying out' qualifiers can only be used with
5276       * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5277       * yet.
5278       */
5279      if (this->type->qualifier.flags.q.varying) {
5280         if (this->type->qualifier.flags.q.in) {
5281            _mesa_glsl_error(& loc, state,
5282                             "`varying in' qualifier in declaration of "
5283                             "`%s' only valid for geometry shaders using "
5284                             "ARB_geometry_shader4 or EXT_geometry_shader4",
5285                             decl->identifier);
5286         } else if (this->type->qualifier.flags.q.out) {
5287            _mesa_glsl_error(& loc, state,
5288                             "`varying out' qualifier in declaration of "
5289                             "`%s' only valid for geometry shaders using "
5290                             "ARB_geometry_shader4 or EXT_geometry_shader4",
5291                             decl->identifier);
5292         }
5293      }
5294
5295      /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5296       *
5297       *     "Global variables can only use the qualifiers const,
5298       *     attribute, uniform, or varying. Only one may be
5299       *     specified.
5300       *
5301       *     Local variables can only use the qualifier const."
5302       *
5303       * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
5304       * any extension that adds the 'layout' keyword.
5305       */
5306      if (!state->is_version(130, 300)
5307          && !state->has_explicit_attrib_location()
5308          && !state->has_separate_shader_objects()
5309          && !state->ARB_fragment_coord_conventions_enable) {
5310         /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader
5311          * outputs. (the varying flag is not set by the parser)
5312          */
5313         if (this->type->qualifier.flags.q.out &&
5314             (!state->EXT_gpu_shader4_enable ||
5315              state->stage != MESA_SHADER_FRAGMENT)) {
5316            _mesa_glsl_error(& loc, state,
5317                             "`out' qualifier in declaration of `%s' "
5318                             "only valid for function parameters in %s",
5319                             decl->identifier, state->get_version_string());
5320         }
5321         if (this->type->qualifier.flags.q.in) {
5322            _mesa_glsl_error(& loc, state,
5323                             "`in' qualifier in declaration of `%s' "
5324                             "only valid for function parameters in %s",
5325                             decl->identifier, state->get_version_string());
5326         }
5327         /* FINISHME: Test for other invalid qualifiers. */
5328      }
5329
5330      apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5331                                       & loc, false);
5332      apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5333                                         &loc);
5334
5335      if ((state->zero_init & (1u << var->data.mode)) &&
5336          (var->type->is_numeric() || var->type->is_boolean())) {
5337         const ir_constant_data data = { { 0 } };
5338         var->data.has_initializer = true;
5339         var->data.is_implicit_initializer = true;
5340         var->constant_initializer = new(var) ir_constant(var->type, &data);
5341      }
5342
5343      if (this->type->qualifier.flags.q.invariant) {
5344         if (!is_allowed_invariant(var, state)) {
5345            _mesa_glsl_error(&loc, state,
5346                             "`%s' cannot be marked invariant; interfaces between "
5347                             "shader stages only", var->name);
5348         }
5349      }
5350
5351      if (state->current_function != NULL) {
5352         const char *mode = NULL;
5353         const char *extra = "";
5354
5355         /* There is no need to check for 'inout' here because the parser will
5356          * only allow that in function parameter lists.
5357          */
5358         if (this->type->qualifier.flags.q.attribute) {
5359            mode = "attribute";
5360         } else if (this->type->qualifier.is_subroutine_decl()) {
5361            mode = "subroutine uniform";
5362         } else if (this->type->qualifier.flags.q.uniform) {
5363            mode = "uniform";
5364         } else if (this->type->qualifier.flags.q.varying) {
5365            mode = "varying";
5366         } else if (this->type->qualifier.flags.q.in) {
5367            mode = "in";
5368            extra = " or in function parameter list";
5369         } else if (this->type->qualifier.flags.q.out) {
5370            mode = "out";
5371            extra = " or in function parameter list";
5372         }
5373
5374         if (mode) {
5375            _mesa_glsl_error(& loc, state,
5376                             "%s variable `%s' must be declared at "
5377                             "global scope%s",
5378                             mode, var->name, extra);
5379         }
5380      } else if (var->data.mode == ir_var_shader_in) {
5381         var->data.read_only = true;
5382
5383         if (state->stage == MESA_SHADER_VERTEX) {
5384            /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5385             *
5386             *    "Vertex shader inputs can only be float, floating-point
5387             *    vectors, matrices, signed and unsigned integers and integer
5388             *    vectors. Vertex shader inputs can also form arrays of these
5389             *    types, but not structures."
5390             *
5391             * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5392             *
5393             *    "Vertex shader inputs can only be float, floating-point
5394             *    vectors, matrices, signed and unsigned integers and integer
5395             *    vectors. They cannot be arrays or structures."
5396             *
5397             * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5398             *
5399             *    "The attribute qualifier can be used only with float,
5400             *    floating-point vectors, and matrices. Attribute variables
5401             *    cannot be declared as arrays or structures."
5402             *
5403             * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5404             *
5405             *    "Vertex shader inputs can only be float, floating-point
5406             *    vectors, matrices, signed and unsigned integers and integer
5407             *    vectors. Vertex shader inputs cannot be arrays or
5408             *    structures."
5409             *
5410             * From section 4.3.4 of the ARB_bindless_texture spec:
5411             *
5412             *    "(modify third paragraph of the section to allow sampler and
5413             *    image types) ...  Vertex shader inputs can only be float,
5414             *    single-precision floating-point scalars, single-precision
5415             *    floating-point vectors, matrices, signed and unsigned
5416             *    integers and integer vectors, sampler and image types."
5417             */
5418            const glsl_type *check_type = var->type->without_array();
5419
5420            bool error = false;
5421            switch (check_type->base_type) {
5422            case GLSL_TYPE_FLOAT:
5423               break;
5424            case GLSL_TYPE_UINT64:
5425            case GLSL_TYPE_INT64:
5426               break;
5427            case GLSL_TYPE_UINT:
5428            case GLSL_TYPE_INT:
5429               error = !state->is_version(120, 300) && !state->EXT_gpu_shader4_enable;
5430               break;
5431            case GLSL_TYPE_DOUBLE:
5432               error = !state->is_version(410, 0) && !state->ARB_vertex_attrib_64bit_enable;
5433               break;
5434            case GLSL_TYPE_SAMPLER:
5435            case GLSL_TYPE_IMAGE:
5436               error = !state->has_bindless();
5437               break;
5438            default:
5439               error = true;
5440            }
5441
5442            if (error) {
5443               _mesa_glsl_error(& loc, state,
5444                                "vertex shader input / attribute cannot have "
5445                                "type %s`%s'",
5446                                var->type->is_array() ? "array of " : "",
5447                                check_type->name);
5448            } else if (var->type->is_array() &&
5449                !state->check_version(150, 0, &loc,
5450                                      "vertex shader input / attribute "
5451                                      "cannot have array type")) {
5452            }
5453         } else if (state->stage == MESA_SHADER_GEOMETRY) {
5454            /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5455             *
5456             *     Geometry shader input variables get the per-vertex values
5457             *     written out by vertex shader output variables of the same
5458             *     names. Since a geometry shader operates on a set of
5459             *     vertices, each input varying variable (or input block, see
5460             *     interface blocks below) needs to be declared as an array.
5461             */
5462            if (!var->type->is_array()) {
5463               _mesa_glsl_error(&loc, state,
5464                                "geometry shader inputs must be arrays");
5465            }
5466
5467            handle_geometry_shader_input_decl(state, loc, var);
5468         } else if (state->stage == MESA_SHADER_FRAGMENT) {
5469            /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5470             *
5471             *     It is a compile-time error to declare a fragment shader
5472             *     input with, or that contains, any of the following types:
5473             *
5474             *     * A boolean type
5475             *     * An opaque type
5476             *     * An array of arrays
5477             *     * An array of structures
5478             *     * A structure containing an array
5479             *     * A structure containing a structure
5480             */
5481            if (state->es_shader) {
5482               const glsl_type *check_type = var->type->without_array();
5483               if (check_type->is_boolean() ||
5484                   check_type->contains_opaque()) {
5485                  _mesa_glsl_error(&loc, state,
5486                                   "fragment shader input cannot have type %s",
5487                                   check_type->name);
5488               }
5489               if (var->type->is_array() &&
5490                   var->type->fields.array->is_array()) {
5491                  _mesa_glsl_error(&loc, state,
5492                                   "%s shader output "
5493                                   "cannot have an array of arrays",
5494                                   _mesa_shader_stage_to_string(state->stage));
5495               }
5496               if (var->type->is_array() &&
5497                   var->type->fields.array->is_struct()) {
5498                  _mesa_glsl_error(&loc, state,
5499                                   "fragment shader input "
5500                                   "cannot have an array of structs");
5501               }
5502               if (var->type->is_struct()) {
5503                  for (unsigned i = 0; i < var->type->length; i++) {
5504                     if (var->type->fields.structure[i].type->is_array() ||
5505                         var->type->fields.structure[i].type->is_struct())
5506                        _mesa_glsl_error(&loc, state,
5507                                         "fragment shader input cannot have "
5508                                         "a struct that contains an "
5509                                         "array or struct");
5510                  }
5511               }
5512            }
5513         } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5514                    state->stage == MESA_SHADER_TESS_EVAL) {
5515            handle_tess_shader_input_decl(state, loc, var);
5516         }
5517      } else if (var->data.mode == ir_var_shader_out) {
5518         const glsl_type *check_type = var->type->without_array();
5519
5520         /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5521          *
5522          *     It is a compile-time error to declare a fragment shader output
5523          *     that contains any of the following:
5524          *
5525          *     * A Boolean type (bool, bvec2 ...)
5526          *     * A double-precision scalar or vector (double, dvec2 ...)
5527          *     * An opaque type
5528          *     * Any matrix type
5529          *     * A structure
5530          */
5531         if (state->stage == MESA_SHADER_FRAGMENT) {
5532            if (check_type->is_struct() || check_type->is_matrix())
5533               _mesa_glsl_error(&loc, state,
5534                                "fragment shader output "
5535                                "cannot have struct or matrix type");
5536            switch (check_type->base_type) {
5537            case GLSL_TYPE_UINT:
5538            case GLSL_TYPE_INT:
5539            case GLSL_TYPE_FLOAT:
5540               break;
5541            default:
5542               _mesa_glsl_error(&loc, state,
5543                                "fragment shader output cannot have "
5544                                "type %s", check_type->name);
5545            }
5546         }
5547
5548         /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5549          *
5550          *     It is a compile-time error to declare a vertex shader output
5551          *     with, or that contains, any of the following types:
5552          *
5553          *     * A boolean type
5554          *     * An opaque type
5555          *     * An array of arrays
5556          *     * An array of structures
5557          *     * A structure containing an array
5558          *     * A structure containing a structure
5559          *
5560          *     It is a compile-time error to declare a fragment shader output
5561          *     with, or that contains, any of the following types:
5562          *
5563          *     * A boolean type
5564          *     * An opaque type
5565          *     * A matrix
5566          *     * A structure
5567          *     * An array of array
5568          *
5569          * ES 3.20 updates this to apply to tessellation and geometry shaders
5570          * as well.  Because there are per-vertex arrays in the new stages,
5571          * it strikes the "array of..." rules and replaces them with these:
5572          *
5573          *     * For per-vertex-arrayed variables (applies to tessellation
5574          *       control, tessellation evaluation and geometry shaders):
5575          *
5576          *       * Per-vertex-arrayed arrays of arrays
5577          *       * Per-vertex-arrayed arrays of structures
5578          *
5579          *     * For non-per-vertex-arrayed variables:
5580          *
5581          *       * An array of arrays
5582          *       * An array of structures
5583          *
5584          * which basically says to unwrap the per-vertex aspect and apply
5585          * the old rules.
5586          */
5587         if (state->es_shader) {
5588            if (var->type->is_array() &&
5589                var->type->fields.array->is_array()) {
5590               _mesa_glsl_error(&loc, state,
5591                                "%s shader output "
5592                                "cannot have an array of arrays",
5593                                _mesa_shader_stage_to_string(state->stage));
5594            }
5595            if (state->stage <= MESA_SHADER_GEOMETRY) {
5596               const glsl_type *type = var->type;
5597
5598               if (state->stage == MESA_SHADER_TESS_CTRL &&
5599                   !var->data.patch && var->type->is_array()) {
5600                  type = var->type->fields.array;
5601               }
5602
5603               if (type->is_array() && type->fields.array->is_struct()) {
5604                  _mesa_glsl_error(&loc, state,
5605                                   "%s shader output cannot have "
5606                                   "an array of structs",
5607                                   _mesa_shader_stage_to_string(state->stage));
5608               }
5609               if (type->is_struct()) {
5610                  for (unsigned i = 0; i < type->length; i++) {
5611                     if (type->fields.structure[i].type->is_array() ||
5612                         type->fields.structure[i].type->is_struct())
5613                        _mesa_glsl_error(&loc, state,
5614                                         "%s shader output cannot have a "
5615                                         "struct that contains an "
5616                                         "array or struct",
5617                                         _mesa_shader_stage_to_string(state->stage));
5618                  }
5619               }
5620            }
5621         }
5622
5623         if (state->stage == MESA_SHADER_TESS_CTRL) {
5624            handle_tess_ctrl_shader_output_decl(state, loc, var);
5625         }
5626      } else if (var->type->contains_subroutine()) {
5627         /* declare subroutine uniforms as hidden */
5628         var->data.how_declared = ir_var_hidden;
5629      }
5630
5631      /* From section 4.3.4 of the GLSL 4.00 spec:
5632       *    "Input variables may not be declared using the patch in qualifier
5633       *    in tessellation control or geometry shaders."
5634       *
5635       * From section 4.3.6 of the GLSL 4.00 spec:
5636       *    "It is an error to use patch out in a vertex, tessellation
5637       *    evaluation, or geometry shader."
5638       *
5639       * This doesn't explicitly forbid using them in a fragment shader, but
5640       * that's probably just an oversight.
5641       */
5642      if (state->stage != MESA_SHADER_TESS_EVAL
5643          && this->type->qualifier.flags.q.patch
5644          && this->type->qualifier.flags.q.in) {
5645
5646         _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5647                          "tessellation evaluation shader");
5648      }
5649
5650      if (state->stage != MESA_SHADER_TESS_CTRL
5651          && this->type->qualifier.flags.q.patch
5652          && this->type->qualifier.flags.q.out) {
5653
5654         _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5655                          "tessellation control shader");
5656      }
5657
5658      /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5659       */
5660      if (this->type->qualifier.precision != ast_precision_none) {
5661         state->check_precision_qualifiers_allowed(&loc);
5662      }
5663
5664      if (this->type->qualifier.precision != ast_precision_none &&
5665          !precision_qualifier_allowed(var->type)) {
5666         _mesa_glsl_error(&loc, state,
5667                          "precision qualifiers apply only to floating point"
5668                          ", integer and opaque types");
5669      }
5670
5671      /* From section 4.1.7 of the GLSL 4.40 spec:
5672       *
5673       *    "[Opaque types] can only be declared as function
5674       *     parameters or uniform-qualified variables."
5675       *
5676       * From section 4.1.7 of the ARB_bindless_texture spec:
5677       *
5678       *    "Samplers may be declared as shader inputs and outputs, as uniform
5679       *     variables, as temporary variables, and as function parameters."
5680       *
5681       * From section 4.1.X of the ARB_bindless_texture spec:
5682       *
5683       *    "Images may be declared as shader inputs and outputs, as uniform
5684       *     variables, as temporary variables, and as function parameters."
5685       */
5686      if (!this->type->qualifier.flags.q.uniform &&
5687          (var_type->contains_atomic() ||
5688           (!state->has_bindless() && var_type->contains_opaque()))) {
5689         _mesa_glsl_error(&loc, state,
5690                          "%s variables must be declared uniform",
5691                          state->has_bindless() ? "atomic" : "opaque");
5692      }
5693
5694      /* Process the initializer and add its instructions to a temporary
5695       * list.  This list will be added to the instruction stream (below) after
5696       * the declaration is added.  This is done because in some cases (such as
5697       * redeclarations) the declaration may not actually be added to the
5698       * instruction stream.
5699       */
5700      exec_list initializer_instructions;
5701
5702      /* Examine var name here since var may get deleted in the next call */
5703      bool var_is_gl_id = is_gl_identifier(var->name);
5704
5705      bool is_redeclaration;
5706      var = get_variable_being_redeclared(&var, decl->get_location(), state,
5707                                          false /* allow_all_redeclarations */,
5708                                          &is_redeclaration);
5709      if (is_redeclaration) {
5710         if (var_is_gl_id &&
5711             var->data.how_declared == ir_var_declared_in_block) {
5712            _mesa_glsl_error(&loc, state,
5713                             "`%s' has already been redeclared using "
5714                             "gl_PerVertex", var->name);
5715         }
5716         var->data.how_declared = ir_var_declared_normally;
5717      }
5718
5719      if (decl->initializer != NULL) {
5720         result = process_initializer(var,
5721                                      decl, this->type,
5722                                      &initializer_instructions, state);
5723      } else {
5724         validate_array_dimensions(var_type, state, &loc);
5725      }
5726
5727      /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5728       *
5729       *     "It is an error to write to a const variable outside of
5730       *      its declaration, so they must be initialized when
5731       *      declared."
5732       */
5733      if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5734         _mesa_glsl_error(& loc, state,
5735                          "const declaration of `%s' must be initialized",
5736                          decl->identifier);
5737      }
5738
5739      if (state->es_shader) {
5740         const glsl_type *const t = var->type;
5741
5742         /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5743          *
5744          * The GL_OES_tessellation_shader spec says about inputs:
5745          *
5746          *    "Declaring an array size is optional. If no size is specified,
5747          *     it will be taken from the implementation-dependent maximum
5748          *     patch size (gl_MaxPatchVertices)."
5749          *
5750          * and about TCS outputs:
5751          *
5752          *    "If no size is specified, it will be taken from output patch
5753          *     size declared in the shader."
5754          *
5755          * The GL_OES_geometry_shader spec says:
5756          *
5757          *    "All geometry shader input unsized array declarations will be
5758          *     sized by an earlier input primitive layout qualifier, when
5759          *     present, as per the following table."
5760          */
5761         const bool implicitly_sized =
5762            (var->data.mode == ir_var_shader_in &&
5763             state->stage >= MESA_SHADER_TESS_CTRL &&
5764             state->stage <= MESA_SHADER_GEOMETRY) ||
5765            (var->data.mode == ir_var_shader_out &&
5766             state->stage == MESA_SHADER_TESS_CTRL);
5767
5768         if (t->is_unsized_array() && !implicitly_sized)
5769            /* Section 10.17 of the GLSL ES 1.00 specification states that
5770             * unsized array declarations have been removed from the language.
5771             * Arrays that are sized using an initializer are still explicitly
5772             * sized.  However, GLSL ES 1.00 does not allow array
5773             * initializers.  That is only allowed in GLSL ES 3.00.
5774             *
5775             * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5776             *
5777             *     "An array type can also be formed without specifying a size
5778             *     if the definition includes an initializer:
5779             *
5780             *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
5781             *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5782             *
5783             *         float a[5];
5784             *         float b[] = a;"
5785             */
5786            _mesa_glsl_error(& loc, state,
5787                             "unsized array declarations are not allowed in "
5788                             "GLSL ES");
5789      }
5790
5791      /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5792       *
5793       *    "It is a compile-time error to declare an unsized array of
5794       *     atomic_uint"
5795       */
5796      if (var->type->is_unsized_array() &&
5797          var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5798         _mesa_glsl_error(& loc, state,
5799                          "Unsized array of atomic_uint is not allowed");
5800      }
5801
5802      /* If the declaration is not a redeclaration, there are a few additional
5803       * semantic checks that must be applied.  In addition, variable that was
5804       * created for the declaration should be added to the IR stream.
5805       */
5806      if (!is_redeclaration) {
5807         validate_identifier(decl->identifier, loc, state);
5808
5809         /* Add the variable to the symbol table.  Note that the initializer's
5810          * IR was already processed earlier (though it hasn't been emitted
5811          * yet), without the variable in scope.
5812          *
5813          * This differs from most C-like languages, but it follows the GLSL
5814          * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
5815          * spec:
5816          *
5817          *     "Within a declaration, the scope of a name starts immediately
5818          *     after the initializer if present or immediately after the name
5819          *     being declared if not."
5820          */
5821         if (!state->symbols->add_variable(var)) {
5822            YYLTYPE loc = this->get_location();
5823            _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5824                             "current scope", decl->identifier);
5825            continue;
5826         }
5827
5828         /* Push the variable declaration to the top.  It means that all the
5829          * variable declarations will appear in a funny last-to-first order,
5830          * but otherwise we run into trouble if a function is prototyped, a
5831          * global var is decled, then the function is defined with usage of
5832          * the global var.  See glslparsertest's CorrectModule.frag.
5833          */
5834         instructions->push_head(var);
5835      }
5836
5837      instructions->append_list(&initializer_instructions);
5838   }
5839
5840
5841   /* Generally, variable declarations do not have r-values.  However,
5842    * one is used for the declaration in
5843    *
5844    * while (bool b = some_condition()) {
5845    *   ...
5846    * }
5847    *
5848    * so we return the rvalue from the last seen declaration here.
5849    */
5850   return result;
5851}
5852
5853
5854ir_rvalue *
5855ast_parameter_declarator::hir(exec_list *instructions,
5856                              struct _mesa_glsl_parse_state *state)
5857{
5858   void *ctx = state;
5859   const struct glsl_type *type;
5860   const char *name = NULL;
5861   YYLTYPE loc = this->get_location();
5862
5863   type = this->type->glsl_type(& name, state);
5864
5865   if (type == NULL) {
5866      if (name != NULL) {
5867         _mesa_glsl_error(& loc, state,
5868                          "invalid type `%s' in declaration of `%s'",
5869                          name, this->identifier);
5870      } else {
5871         _mesa_glsl_error(& loc, state,
5872                          "invalid type in declaration of `%s'",
5873                          this->identifier);
5874      }
5875
5876      type = glsl_type::error_type;
5877   }
5878
5879   /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5880    *
5881    *    "Functions that accept no input arguments need not use void in the
5882    *    argument list because prototypes (or definitions) are required and
5883    *    therefore there is no ambiguity when an empty argument list "( )" is
5884    *    declared. The idiom "(void)" as a parameter list is provided for
5885    *    convenience."
5886    *
5887    * Placing this check here prevents a void parameter being set up
5888    * for a function, which avoids tripping up checks for main taking
5889    * parameters and lookups of an unnamed symbol.
5890    */
5891   if (type->is_void()) {
5892      if (this->identifier != NULL)
5893         _mesa_glsl_error(& loc, state,
5894                          "named parameter cannot have type `void'");
5895
5896      is_void = true;
5897      return NULL;
5898   }
5899
5900   if (formal_parameter && (this->identifier == NULL)) {
5901      _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5902      return NULL;
5903   }
5904
5905   /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
5906    * call already handled the "vec4[..] foo" case.
5907    */
5908   type = process_array_type(&loc, type, this->array_specifier, state);
5909
5910   if (!type->is_error() && type->is_unsized_array()) {
5911      _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5912                       "a declared size");
5913      type = glsl_type::error_type;
5914   }
5915
5916   is_void = false;
5917   ir_variable *var = new(ctx)
5918      ir_variable(type, this->identifier, ir_var_function_in);
5919
5920   /* Apply any specified qualifiers to the parameter declaration.  Note that
5921    * for function parameters the default mode is 'in'.
5922    */
5923   apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5924                                    true);
5925
5926   if (((1u << var->data.mode) & state->zero_init) &&
5927       (var->type->is_numeric() || var->type->is_boolean())) {
5928         const ir_constant_data data = { { 0 } };
5929         var->data.has_initializer = true;
5930         var->data.is_implicit_initializer = true;
5931         var->constant_initializer = new(var) ir_constant(var->type, &data);
5932   }
5933
5934   /* From section 4.1.7 of the GLSL 4.40 spec:
5935    *
5936    *   "Opaque variables cannot be treated as l-values; hence cannot
5937    *    be used as out or inout function parameters, nor can they be
5938    *    assigned into."
5939    *
5940    * From section 4.1.7 of the ARB_bindless_texture spec:
5941    *
5942    *   "Samplers can be used as l-values, so can be assigned into and used
5943    *    as "out" and "inout" function parameters."
5944    *
5945    * From section 4.1.X of the ARB_bindless_texture spec:
5946    *
5947    *   "Images can be used as l-values, so can be assigned into and used as
5948    *    "out" and "inout" function parameters."
5949    */
5950   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5951       && (type->contains_atomic() ||
5952           (!state->has_bindless() && type->contains_opaque()))) {
5953      _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5954                       "contain %s variables",
5955                       state->has_bindless() ? "atomic" : "opaque");
5956      type = glsl_type::error_type;
5957   }
5958
5959   /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5960    *
5961    *    "When calling a function, expressions that do not evaluate to
5962    *     l-values cannot be passed to parameters declared as out or inout."
5963    *
5964    * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5965    *
5966    *    "Other binary or unary expressions, non-dereferenced arrays,
5967    *     function names, swizzles with repeated fields, and constants
5968    *     cannot be l-values."
5969    *
5970    * So for GLSL 1.10, passing an array as an out or inout parameter is not
5971    * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
5972    */
5973   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5974       && type->is_array()
5975       && !state->check_version(120, 100, &loc,
5976                                "arrays cannot be out or inout parameters")) {
5977      type = glsl_type::error_type;
5978   }
5979
5980   instructions->push_tail(var);
5981
5982   /* Parameter declarations do not have r-values.
5983    */
5984   return NULL;
5985}
5986
5987
5988void
5989ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5990                                            bool formal,
5991                                            exec_list *ir_parameters,
5992                                            _mesa_glsl_parse_state *state)
5993{
5994   ast_parameter_declarator *void_param = NULL;
5995   unsigned count = 0;
5996
5997   foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5998      param->formal_parameter = formal;
5999      param->hir(ir_parameters, state);
6000
6001      if (param->is_void)
6002         void_param = param;
6003
6004      count++;
6005   }
6006
6007   if ((void_param != NULL) && (count > 1)) {
6008      YYLTYPE loc = void_param->get_location();
6009
6010      _mesa_glsl_error(& loc, state,
6011                       "`void' parameter must be only parameter");
6012   }
6013}
6014
6015
6016void
6017emit_function(_mesa_glsl_parse_state *state, ir_function *f)
6018{
6019   /* IR invariants disallow function declarations or definitions
6020    * nested within other function definitions.  But there is no
6021    * requirement about the relative order of function declarations
6022    * and definitions with respect to one another.  So simply insert
6023    * the new ir_function block at the end of the toplevel instruction
6024    * list.
6025    */
6026   state->toplevel_ir->push_tail(f);
6027}
6028
6029
6030ir_rvalue *
6031ast_function::hir(exec_list *instructions,
6032                  struct _mesa_glsl_parse_state *state)
6033{
6034   void *ctx = state;
6035   ir_function *f = NULL;
6036   ir_function_signature *sig = NULL;
6037   exec_list hir_parameters;
6038   YYLTYPE loc = this->get_location();
6039
6040   const char *const name = identifier;
6041
6042   /* New functions are always added to the top-level IR instruction stream,
6043    * so this instruction list pointer is ignored.  See also emit_function
6044    * (called below).
6045    */
6046   (void) instructions;
6047
6048   /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
6049    *
6050    *   "Function declarations (prototypes) cannot occur inside of functions;
6051    *   they must be at global scope, or for the built-in functions, outside
6052    *   the global scope."
6053    *
6054    * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
6055    *
6056    *   "User defined functions may only be defined within the global scope."
6057    *
6058    * Note that this language does not appear in GLSL 1.10.
6059    */
6060   if ((state->current_function != NULL) &&
6061       state->is_version(120, 100)) {
6062      YYLTYPE loc = this->get_location();
6063      _mesa_glsl_error(&loc, state,
6064                       "declaration of function `%s' not allowed within "
6065                       "function body", name);
6066   }
6067
6068   validate_identifier(name, this->get_location(), state);
6069
6070   /* Convert the list of function parameters to HIR now so that they can be
6071    * used below to compare this function's signature with previously seen
6072    * signatures for functions with the same name.
6073    */
6074   ast_parameter_declarator::parameters_to_hir(& this->parameters,
6075                                               is_definition,
6076                                               & hir_parameters, state);
6077
6078   const char *return_type_name;
6079   const glsl_type *return_type =
6080      this->return_type->glsl_type(& return_type_name, state);
6081
6082   if (!return_type) {
6083      YYLTYPE loc = this->get_location();
6084      _mesa_glsl_error(&loc, state,
6085                       "function `%s' has undeclared return type `%s'",
6086                       name, return_type_name);
6087      return_type = glsl_type::error_type;
6088   }
6089
6090   /* ARB_shader_subroutine states:
6091    *  "Subroutine declarations cannot be prototyped. It is an error to prepend
6092    *   subroutine(...) to a function declaration."
6093    */
6094   if (this->return_type->qualifier.subroutine_list && !is_definition) {
6095      YYLTYPE loc = this->get_location();
6096      _mesa_glsl_error(&loc, state,
6097                       "function declaration `%s' cannot have subroutine prepended",
6098                       name);
6099   }
6100
6101   /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
6102    * "No qualifier is allowed on the return type of a function."
6103    */
6104   if (this->return_type->has_qualifiers(state)) {
6105      YYLTYPE loc = this->get_location();
6106      _mesa_glsl_error(& loc, state,
6107                       "function `%s' return type has qualifiers", name);
6108   }
6109
6110   /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
6111    *
6112    *     "Arrays are allowed as arguments and as the return type. In both
6113    *     cases, the array must be explicitly sized."
6114    */
6115   if (return_type->is_unsized_array()) {
6116      YYLTYPE loc = this->get_location();
6117      _mesa_glsl_error(& loc, state,
6118                       "function `%s' return type array must be explicitly "
6119                       "sized", name);
6120   }
6121
6122   /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
6123    *
6124    *     "Arrays are allowed as arguments, but not as the return type. [...]
6125    *      The return type can also be a structure if the structure does not
6126    *      contain an array."
6127    */
6128   if (state->language_version == 100 && return_type->contains_array()) {
6129      YYLTYPE loc = this->get_location();
6130      _mesa_glsl_error(& loc, state,
6131                       "function `%s' return type contains an array", name);
6132   }
6133
6134   /* From section 4.1.7 of the GLSL 4.40 spec:
6135    *
6136    *    "[Opaque types] can only be declared as function parameters
6137    *     or uniform-qualified variables."
6138    *
6139    * The ARB_bindless_texture spec doesn't clearly state this, but as it says
6140    * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
6141    * (Images)", this should be allowed.
6142    */
6143   if (return_type->contains_atomic() ||
6144       (!state->has_bindless() && return_type->contains_opaque())) {
6145      YYLTYPE loc = this->get_location();
6146      _mesa_glsl_error(&loc, state,
6147                       "function `%s' return type can't contain an %s type",
6148                       name, state->has_bindless() ? "atomic" : "opaque");
6149   }
6150
6151   /**/
6152   if (return_type->is_subroutine()) {
6153      YYLTYPE loc = this->get_location();
6154      _mesa_glsl_error(&loc, state,
6155                       "function `%s' return type can't be a subroutine type",
6156                       name);
6157   }
6158
6159   /* Get the precision for the return type */
6160   unsigned return_precision;
6161
6162   if (state->es_shader) {
6163      YYLTYPE loc = this->get_location();
6164      return_precision =
6165         select_gles_precision(this->return_type->qualifier.precision,
6166                               return_type,
6167                               state,
6168                               &loc);
6169   } else {
6170      return_precision = GLSL_PRECISION_NONE;
6171   }
6172
6173   /* Create an ir_function if one doesn't already exist. */
6174   f = state->symbols->get_function(name);
6175   if (f == NULL) {
6176      f = new(ctx) ir_function(name);
6177      if (!this->return_type->qualifier.is_subroutine_decl()) {
6178         if (!state->symbols->add_function(f)) {
6179            /* This function name shadows a non-function use of the same name. */
6180            YYLTYPE loc = this->get_location();
6181            _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
6182                             "non-function", name);
6183            return NULL;
6184         }
6185      }
6186      emit_function(state, f);
6187   }
6188
6189   /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
6190    *
6191    * "A shader cannot redefine or overload built-in functions."
6192    *
6193    * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
6194    *
6195    * "User code can overload the built-in functions but cannot redefine
6196    * them."
6197    */
6198   if (state->es_shader) {
6199      /* Local shader has no exact candidates; check the built-ins. */
6200      if (state->language_version >= 300 &&
6201          _mesa_glsl_has_builtin_function(state, name)) {
6202         YYLTYPE loc = this->get_location();
6203         _mesa_glsl_error(& loc, state,
6204                          "A shader cannot redefine or overload built-in "
6205                          "function `%s' in GLSL ES 3.00", name);
6206         return NULL;
6207      }
6208
6209      if (state->language_version == 100) {
6210         ir_function_signature *sig =
6211            _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6212         if (sig && sig->is_builtin()) {
6213            _mesa_glsl_error(& loc, state,
6214                             "A shader cannot redefine built-in "
6215                             "function `%s' in GLSL ES 1.00", name);
6216         }
6217      }
6218   }
6219
6220   /* Verify that this function's signature either doesn't match a previously
6221    * seen signature for a function with the same name, or, if a match is found,
6222    * that the previously seen signature does not have an associated definition.
6223    */
6224   if (state->es_shader || f->has_user_signature()) {
6225      sig = f->exact_matching_signature(state, &hir_parameters);
6226      if (sig != NULL) {
6227         const char *badvar = sig->qualifiers_match(&hir_parameters);
6228         if (badvar != NULL) {
6229            YYLTYPE loc = this->get_location();
6230
6231            _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6232                             "qualifiers don't match prototype", name, badvar);
6233         }
6234
6235         if (sig->return_type != return_type) {
6236            YYLTYPE loc = this->get_location();
6237
6238            _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6239                             "match prototype", name);
6240         }
6241
6242         if (sig->return_precision != return_precision) {
6243            YYLTYPE loc = this->get_location();
6244
6245            _mesa_glsl_error(&loc, state, "function `%s' return type precision "
6246                             "doesn't match prototype", name);
6247         }
6248
6249         if (sig->is_defined) {
6250            if (is_definition) {
6251               YYLTYPE loc = this->get_location();
6252               _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6253            } else {
6254               /* We just encountered a prototype that exactly matches a
6255                * function that's already been defined.  This is redundant,
6256                * and we should ignore it.
6257                */
6258               return NULL;
6259            }
6260         } else if (state->language_version == 100 && !is_definition) {
6261            /* From the GLSL 1.00 spec, section 4.2.7:
6262             *
6263             *     "A particular variable, structure or function declaration
6264             *      may occur at most once within a scope with the exception
6265             *      that a single function prototype plus the corresponding
6266             *      function definition are allowed."
6267             */
6268            YYLTYPE loc = this->get_location();
6269            _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6270         }
6271      }
6272   }
6273
6274   /* Verify the return type of main() */
6275   if (strcmp(name, "main") == 0) {
6276      if (! return_type->is_void()) {
6277         YYLTYPE loc = this->get_location();
6278
6279         _mesa_glsl_error(& loc, state, "main() must return void");
6280      }
6281
6282      if (!hir_parameters.is_empty()) {
6283         YYLTYPE loc = this->get_location();
6284
6285         _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6286      }
6287   }
6288
6289   /* Finish storing the information about this new function in its signature.
6290    */
6291   if (sig == NULL) {
6292      sig = new(ctx) ir_function_signature(return_type);
6293      sig->return_precision = return_precision;
6294      f->add_signature(sig);
6295   }
6296
6297   sig->replace_parameters(&hir_parameters);
6298   signature = sig;
6299
6300   if (this->return_type->qualifier.subroutine_list) {
6301      int idx;
6302
6303      if (this->return_type->qualifier.flags.q.explicit_index) {
6304         unsigned qual_index;
6305         if (process_qualifier_constant(state, &loc, "index",
6306                                        this->return_type->qualifier.index,
6307                                        &qual_index)) {
6308            if (!state->has_explicit_uniform_location()) {
6309               _mesa_glsl_error(&loc, state, "subroutine index requires "
6310                                "GL_ARB_explicit_uniform_location or "
6311                                "GLSL 4.30");
6312            } else if (qual_index >= MAX_SUBROUTINES) {
6313               _mesa_glsl_error(&loc, state,
6314                                "invalid subroutine index (%d) index must "
6315                                "be a number between 0 and "
6316                                "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6317                                MAX_SUBROUTINES - 1);
6318            } else {
6319               f->subroutine_index = qual_index;
6320            }
6321         }
6322      }
6323
6324      f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6325      f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6326                                         f->num_subroutine_types);
6327      idx = 0;
6328      foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6329         const struct glsl_type *type;
6330         /* the subroutine type must be already declared */
6331         type = state->symbols->get_type(decl->identifier);
6332         if (!type) {
6333            _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6334         }
6335
6336         for (int i = 0; i < state->num_subroutine_types; i++) {
6337            ir_function *fn = state->subroutine_types[i];
6338            ir_function_signature *tsig = NULL;
6339
6340            if (strcmp(fn->name, decl->identifier))
6341               continue;
6342
6343            tsig = fn->matching_signature(state, &sig->parameters,
6344                                          false);
6345            if (!tsig) {
6346               _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6347            } else {
6348               if (tsig->return_type != sig->return_type) {
6349                  _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6350               }
6351            }
6352         }
6353         f->subroutine_types[idx++] = type;
6354      }
6355      state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6356                                                    ir_function *,
6357                                                    state->num_subroutines + 1);
6358      state->subroutines[state->num_subroutines] = f;
6359      state->num_subroutines++;
6360
6361   }
6362
6363   if (this->return_type->qualifier.is_subroutine_decl()) {
6364      if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6365         _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6366         return NULL;
6367      }
6368      state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6369                                                         ir_function *,
6370                                                         state->num_subroutine_types + 1);
6371      state->subroutine_types[state->num_subroutine_types] = f;
6372      state->num_subroutine_types++;
6373
6374      f->is_subroutine = true;
6375   }
6376
6377   /* Function declarations (prototypes) do not have r-values.
6378    */
6379   return NULL;
6380}
6381
6382
6383ir_rvalue *
6384ast_function_definition::hir(exec_list *instructions,
6385                             struct _mesa_glsl_parse_state *state)
6386{
6387   prototype->is_definition = true;
6388   prototype->hir(instructions, state);
6389
6390   ir_function_signature *signature = prototype->signature;
6391   if (signature == NULL)
6392      return NULL;
6393
6394   assert(state->current_function == NULL);
6395   state->current_function = signature;
6396   state->found_return = false;
6397   state->found_begin_interlock = false;
6398   state->found_end_interlock = false;
6399
6400   /* Duplicate parameters declared in the prototype as concrete variables.
6401    * Add these to the symbol table.
6402    */
6403   state->symbols->push_scope();
6404   foreach_in_list(ir_variable, var, &signature->parameters) {
6405      assert(var->as_variable() != NULL);
6406
6407      /* The only way a parameter would "exist" is if two parameters have
6408       * the same name.
6409       */
6410      if (state->symbols->name_declared_this_scope(var->name)) {
6411         YYLTYPE loc = this->get_location();
6412
6413         _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6414      } else {
6415         state->symbols->add_variable(var);
6416      }
6417   }
6418
6419   /* Convert the body of the function to HIR. */
6420   this->body->hir(&signature->body, state);
6421   signature->is_defined = true;
6422
6423   state->symbols->pop_scope();
6424
6425   assert(state->current_function == signature);
6426   state->current_function = NULL;
6427
6428   if (!signature->return_type->is_void() && !state->found_return) {
6429      YYLTYPE loc = this->get_location();
6430      _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6431                       "%s, but no return statement",
6432                       signature->function_name(),
6433                       signature->return_type->name);
6434   }
6435
6436   /* Function definitions do not have r-values.
6437    */
6438   return NULL;
6439}
6440
6441
6442ir_rvalue *
6443ast_jump_statement::hir(exec_list *instructions,
6444                        struct _mesa_glsl_parse_state *state)
6445{
6446   void *ctx = state;
6447
6448   switch (mode) {
6449   case ast_return: {
6450      ir_return *inst;
6451      assert(state->current_function);
6452
6453      if (opt_return_value) {
6454         ir_rvalue *ret = opt_return_value->hir(instructions, state);
6455
6456         /* The value of the return type can be NULL if the shader says
6457          * 'return foo();' and foo() is a function that returns void.
6458          *
6459          * NOTE: The GLSL spec doesn't say that this is an error.  The type
6460          * of the return value is void.  If the return type of the function is
6461          * also void, then this should compile without error.  Seriously.
6462          */
6463         const glsl_type *const ret_type =
6464            (ret == NULL) ? glsl_type::void_type : ret->type;
6465
6466         /* Implicit conversions are not allowed for return values prior to
6467          * ARB_shading_language_420pack.
6468          */
6469         if (state->current_function->return_type != ret_type) {
6470            YYLTYPE loc = this->get_location();
6471
6472            if (state->has_420pack()) {
6473               if (!apply_implicit_conversion(state->current_function->return_type,
6474                                              ret, state)
6475                   || (ret->type != state->current_function->return_type)) {
6476                  _mesa_glsl_error(& loc, state,
6477                                   "could not implicitly convert return value "
6478                                   "to %s, in function `%s'",
6479                                   state->current_function->return_type->name,
6480                                   state->current_function->function_name());
6481               }
6482            } else {
6483               _mesa_glsl_error(& loc, state,
6484                                "`return' with wrong type %s, in function `%s' "
6485                                "returning %s",
6486                                ret_type->name,
6487                                state->current_function->function_name(),
6488                                state->current_function->return_type->name);
6489            }
6490         } else if (state->current_function->return_type->base_type ==
6491                    GLSL_TYPE_VOID) {
6492            YYLTYPE loc = this->get_location();
6493
6494            /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6495             * specs add a clarification:
6496             *
6497             *    "A void function can only use return without a return argument, even if
6498             *     the return argument has void type. Return statements only accept values:
6499             *
6500             *         void func1() { }
6501             *         void func2() { return func1(); } // illegal return statement"
6502             */
6503            _mesa_glsl_error(& loc, state,
6504                             "void functions can only use `return' without a "
6505                             "return argument");
6506         }
6507
6508         inst = new(ctx) ir_return(ret);
6509      } else {
6510         if (state->current_function->return_type->base_type !=
6511             GLSL_TYPE_VOID) {
6512            YYLTYPE loc = this->get_location();
6513
6514            _mesa_glsl_error(& loc, state,
6515                             "`return' with no value, in function %s returning "
6516                             "non-void",
6517            state->current_function->function_name());
6518         }
6519         inst = new(ctx) ir_return;
6520      }
6521
6522      state->found_return = true;
6523      instructions->push_tail(inst);
6524      break;
6525   }
6526
6527   case ast_discard:
6528      if (state->stage != MESA_SHADER_FRAGMENT) {
6529         YYLTYPE loc = this->get_location();
6530
6531         _mesa_glsl_error(& loc, state,
6532                          "`discard' may only appear in a fragment shader");
6533      }
6534      instructions->push_tail(new(ctx) ir_discard);
6535      break;
6536
6537   case ast_break:
6538   case ast_continue:
6539      if (mode == ast_continue &&
6540          state->loop_nesting_ast == NULL) {
6541         YYLTYPE loc = this->get_location();
6542
6543         _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6544      } else if (mode == ast_break &&
6545         state->loop_nesting_ast == NULL &&
6546         state->switch_state.switch_nesting_ast == NULL) {
6547         YYLTYPE loc = this->get_location();
6548
6549         _mesa_glsl_error(& loc, state,
6550                          "break may only appear in a loop or a switch");
6551      } else {
6552         /* For a loop, inline the for loop expression again, since we don't
6553          * know where near the end of the loop body the normal copy of it is
6554          * going to be placed.  Same goes for the condition for a do-while
6555          * loop.
6556          */
6557         if (state->loop_nesting_ast != NULL &&
6558             mode == ast_continue && !state->switch_state.is_switch_innermost) {
6559            if (state->loop_nesting_ast->rest_expression) {
6560               clone_ir_list(ctx, instructions,
6561                             &state->loop_nesting_ast->rest_instructions);
6562            }
6563            if (state->loop_nesting_ast->mode ==
6564                ast_iteration_statement::ast_do_while) {
6565               state->loop_nesting_ast->condition_to_hir(instructions, state);
6566            }
6567         }
6568
6569         if (state->switch_state.is_switch_innermost &&
6570             mode == ast_continue) {
6571            /* Set 'continue_inside' to true. */
6572            ir_rvalue *const true_val = new (ctx) ir_constant(true);
6573            ir_dereference_variable *deref_continue_inside_var =
6574               new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6575            instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6576                                                           true_val));
6577
6578            /* Break out from the switch, continue for the loop will
6579             * be called right after switch. */
6580            ir_loop_jump *const jump =
6581               new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6582            instructions->push_tail(jump);
6583
6584         } else if (state->switch_state.is_switch_innermost &&
6585             mode == ast_break) {
6586            /* Force break out of switch by inserting a break. */
6587            ir_loop_jump *const jump =
6588               new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6589            instructions->push_tail(jump);
6590         } else {
6591            ir_loop_jump *const jump =
6592               new(ctx) ir_loop_jump((mode == ast_break)
6593                  ? ir_loop_jump::jump_break
6594                  : ir_loop_jump::jump_continue);
6595            instructions->push_tail(jump);
6596         }
6597      }
6598
6599      break;
6600   }
6601
6602   /* Jump instructions do not have r-values.
6603    */
6604   return NULL;
6605}
6606
6607
6608ir_rvalue *
6609ast_demote_statement::hir(exec_list *instructions,
6610                          struct _mesa_glsl_parse_state *state)
6611{
6612   void *ctx = state;
6613
6614   if (state->stage != MESA_SHADER_FRAGMENT) {
6615      YYLTYPE loc = this->get_location();
6616
6617      _mesa_glsl_error(& loc, state,
6618                       "`demote' may only appear in a fragment shader");
6619   }
6620
6621   instructions->push_tail(new(ctx) ir_demote);
6622
6623   return NULL;
6624}
6625
6626
6627ir_rvalue *
6628ast_selection_statement::hir(exec_list *instructions,
6629                             struct _mesa_glsl_parse_state *state)
6630{
6631   void *ctx = state;
6632
6633   ir_rvalue *const condition = this->condition->hir(instructions, state);
6634
6635   /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6636    *
6637    *    "Any expression whose type evaluates to a Boolean can be used as the
6638    *    conditional expression bool-expression. Vector types are not accepted
6639    *    as the expression to if."
6640    *
6641    * The checks are separated so that higher quality diagnostics can be
6642    * generated for cases where both rules are violated.
6643    */
6644   if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6645      YYLTYPE loc = this->condition->get_location();
6646
6647      _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6648                       "boolean");
6649   }
6650
6651   ir_if *const stmt = new(ctx) ir_if(condition);
6652
6653   if (then_statement != NULL) {
6654      state->symbols->push_scope();
6655      then_statement->hir(& stmt->then_instructions, state);
6656      state->symbols->pop_scope();
6657   }
6658
6659   if (else_statement != NULL) {
6660      state->symbols->push_scope();
6661      else_statement->hir(& stmt->else_instructions, state);
6662      state->symbols->pop_scope();
6663   }
6664
6665   instructions->push_tail(stmt);
6666
6667   /* if-statements do not have r-values.
6668    */
6669   return NULL;
6670}
6671
6672
6673struct case_label {
6674   /** Value of the case label. */
6675   unsigned value;
6676
6677   /** Does this label occur after the default? */
6678   bool after_default;
6679
6680   /**
6681    * AST for the case label.
6682    *
6683    * This is only used to generate error messages for duplicate labels.
6684    */
6685   ast_expression *ast;
6686};
6687
6688/* Used for detection of duplicate case values, compare
6689 * given contents directly.
6690 */
6691static bool
6692compare_case_value(const void *a, const void *b)
6693{
6694   return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6695}
6696
6697
6698/* Used for detection of duplicate case values, just
6699 * returns key contents as is.
6700 */
6701static unsigned
6702key_contents(const void *key)
6703{
6704   return ((struct case_label *) key)->value;
6705}
6706
6707void
6708ast_switch_statement::eval_test_expression(exec_list *instructions,
6709                                           struct _mesa_glsl_parse_state *state)
6710{
6711   if (test_val == NULL)
6712      test_val = this->test_expression->hir(instructions, state);
6713}
6714
6715ir_rvalue *
6716ast_switch_statement::hir(exec_list *instructions,
6717                          struct _mesa_glsl_parse_state *state)
6718{
6719   void *ctx = state;
6720
6721   this->eval_test_expression(instructions, state);
6722
6723   /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6724    *
6725    *    "The type of init-expression in a switch statement must be a
6726    *     scalar integer."
6727    */
6728   if (!test_val->type->is_scalar() ||
6729       !test_val->type->is_integer_32()) {
6730      YYLTYPE loc = this->test_expression->get_location();
6731
6732      _mesa_glsl_error(& loc,
6733                       state,
6734                       "switch-statement expression must be scalar "
6735                       "integer");
6736      return NULL;
6737   }
6738
6739   /* Track the switch-statement nesting in a stack-like manner.
6740    */
6741   struct glsl_switch_state saved = state->switch_state;
6742
6743   state->switch_state.is_switch_innermost = true;
6744   state->switch_state.switch_nesting_ast = this;
6745   state->switch_state.labels_ht =
6746         _mesa_hash_table_create(NULL, key_contents,
6747                                 compare_case_value);
6748   state->switch_state.previous_default = NULL;
6749
6750   /* Initalize is_fallthru state to false.
6751    */
6752   ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6753   state->switch_state.is_fallthru_var =
6754      new(ctx) ir_variable(glsl_type::bool_type,
6755                           "switch_is_fallthru_tmp",
6756                           ir_var_temporary);
6757   instructions->push_tail(state->switch_state.is_fallthru_var);
6758
6759   ir_dereference_variable *deref_is_fallthru_var =
6760      new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6761   instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6762                                                  is_fallthru_val));
6763
6764   /* Initialize continue_inside state to false.
6765    */
6766   state->switch_state.continue_inside =
6767      new(ctx) ir_variable(glsl_type::bool_type,
6768                           "continue_inside_tmp",
6769                           ir_var_temporary);
6770   instructions->push_tail(state->switch_state.continue_inside);
6771
6772   ir_rvalue *const false_val = new (ctx) ir_constant(false);
6773   ir_dereference_variable *deref_continue_inside_var =
6774      new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6775   instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6776                                                  false_val));
6777
6778   state->switch_state.run_default =
6779      new(ctx) ir_variable(glsl_type::bool_type,
6780                             "run_default_tmp",
6781                             ir_var_temporary);
6782   instructions->push_tail(state->switch_state.run_default);
6783
6784   /* Loop around the switch is used for flow control. */
6785   ir_loop * loop = new(ctx) ir_loop();
6786   instructions->push_tail(loop);
6787
6788   /* Cache test expression.
6789    */
6790   test_to_hir(&loop->body_instructions, state);
6791
6792   /* Emit code for body of switch stmt.
6793    */
6794   body->hir(&loop->body_instructions, state);
6795
6796   /* Insert a break at the end to exit loop. */
6797   ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6798   loop->body_instructions.push_tail(jump);
6799
6800   /* If we are inside loop, check if continue got called inside switch. */
6801   if (state->loop_nesting_ast != NULL) {
6802      ir_dereference_variable *deref_continue_inside =
6803         new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6804      ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6805      ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6806
6807      if (state->loop_nesting_ast != NULL) {
6808         if (state->loop_nesting_ast->rest_expression) {
6809            clone_ir_list(ctx, &irif->then_instructions,
6810                          &state->loop_nesting_ast->rest_instructions);
6811         }
6812         if (state->loop_nesting_ast->mode ==
6813             ast_iteration_statement::ast_do_while) {
6814            state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6815         }
6816      }
6817      irif->then_instructions.push_tail(jump);
6818      instructions->push_tail(irif);
6819   }
6820
6821   _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6822
6823   state->switch_state = saved;
6824
6825   /* Switch statements do not have r-values. */
6826   return NULL;
6827}
6828
6829
6830void
6831ast_switch_statement::test_to_hir(exec_list *instructions,
6832                                  struct _mesa_glsl_parse_state *state)
6833{
6834   void *ctx = state;
6835
6836   /* set to true to avoid a duplicate "use of uninitialized variable" warning
6837    * on the switch test case. The first one would be already raised when
6838    * getting the test_expression at ast_switch_statement::hir
6839    */
6840   test_expression->set_is_lhs(true);
6841   /* Cache value of test expression. */
6842   this->eval_test_expression(instructions, state);
6843
6844   state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6845                                                       "switch_test_tmp",
6846                                                       ir_var_temporary);
6847   ir_dereference_variable *deref_test_var =
6848      new(ctx) ir_dereference_variable(state->switch_state.test_var);
6849
6850   instructions->push_tail(state->switch_state.test_var);
6851   instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6852}
6853
6854
6855ir_rvalue *
6856ast_switch_body::hir(exec_list *instructions,
6857                     struct _mesa_glsl_parse_state *state)
6858{
6859   if (stmts != NULL) {
6860      state->symbols->push_scope();
6861      stmts->hir(instructions, state);
6862      state->symbols->pop_scope();
6863   }
6864
6865   /* Switch bodies do not have r-values. */
6866   return NULL;
6867}
6868
6869ir_rvalue *
6870ast_case_statement_list::hir(exec_list *instructions,
6871                             struct _mesa_glsl_parse_state *state)
6872{
6873   exec_list default_case, after_default, tmp;
6874
6875   foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6876      case_stmt->hir(&tmp, state);
6877
6878      /* Default case. */
6879      if (state->switch_state.previous_default && default_case.is_empty()) {
6880         default_case.append_list(&tmp);
6881         continue;
6882      }
6883
6884      /* If default case found, append 'after_default' list. */
6885      if (!default_case.is_empty())
6886         after_default.append_list(&tmp);
6887      else
6888         instructions->append_list(&tmp);
6889   }
6890
6891   /* Handle the default case. This is done here because default might not be
6892    * the last case. We need to add checks against following cases first to see
6893    * if default should be chosen or not.
6894    */
6895   if (!default_case.is_empty()) {
6896      ir_factory body(instructions, state);
6897
6898      ir_expression *cmp = NULL;
6899
6900      hash_table_foreach(state->switch_state.labels_ht, entry) {
6901         const struct case_label *const l = (struct case_label *) entry->data;
6902
6903         /* If the switch init-value is the value of one of the labels that
6904          * occurs after the default case, disable execution of the default
6905          * case.
6906          */
6907         if (l->after_default) {
6908            ir_constant *const cnst =
6909               state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6910               ? body.constant(unsigned(l->value))
6911               : body.constant(int(l->value));
6912
6913            cmp = cmp == NULL
6914               ? equal(cnst, state->switch_state.test_var)
6915               : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6916         }
6917      }
6918
6919      if (cmp != NULL)
6920         body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6921      else
6922         body.emit(assign(state->switch_state.run_default, body.constant(true)));
6923
6924      /* Append default case and all cases after it. */
6925      instructions->append_list(&default_case);
6926      instructions->append_list(&after_default);
6927   }
6928
6929   /* Case statements do not have r-values. */
6930   return NULL;
6931}
6932
6933ir_rvalue *
6934ast_case_statement::hir(exec_list *instructions,
6935                        struct _mesa_glsl_parse_state *state)
6936{
6937   labels->hir(instructions, state);
6938
6939   /* Guard case statements depending on fallthru state. */
6940   ir_dereference_variable *const deref_fallthru_guard =
6941      new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6942   ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6943
6944   foreach_list_typed (ast_node, stmt, link, & this->stmts)
6945      stmt->hir(& test_fallthru->then_instructions, state);
6946
6947   instructions->push_tail(test_fallthru);
6948
6949   /* Case statements do not have r-values. */
6950   return NULL;
6951}
6952
6953
6954ir_rvalue *
6955ast_case_label_list::hir(exec_list *instructions,
6956                         struct _mesa_glsl_parse_state *state)
6957{
6958   foreach_list_typed (ast_case_label, label, link, & this->labels)
6959      label->hir(instructions, state);
6960
6961   /* Case labels do not have r-values. */
6962   return NULL;
6963}
6964
6965ir_rvalue *
6966ast_case_label::hir(exec_list *instructions,
6967                    struct _mesa_glsl_parse_state *state)
6968{
6969   ir_factory body(instructions, state);
6970
6971   ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6972
6973   /* If not default case, ... */
6974   if (this->test_value != NULL) {
6975      /* Conditionally set fallthru state based on
6976       * comparison of cached test expression value to case label.
6977       */
6978      ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6979      ir_constant *label_const =
6980         label_rval->constant_expression_value(body.mem_ctx);
6981
6982      if (!label_const) {
6983         YYLTYPE loc = this->test_value->get_location();
6984
6985         _mesa_glsl_error(& loc, state,
6986                          "switch statement case label must be a "
6987                          "constant expression");
6988
6989         /* Stuff a dummy value in to allow processing to continue. */
6990         label_const = body.constant(0);
6991      } else {
6992         hash_entry *entry =
6993               _mesa_hash_table_search(state->switch_state.labels_ht,
6994                                       &label_const->value.u[0]);
6995
6996         if (entry) {
6997            const struct case_label *const l =
6998               (struct case_label *) entry->data;
6999            const ast_expression *const previous_label = l->ast;
7000            YYLTYPE loc = this->test_value->get_location();
7001
7002            _mesa_glsl_error(& loc, state, "duplicate case value");
7003
7004            loc = previous_label->get_location();
7005            _mesa_glsl_error(& loc, state, "this is the previous case label");
7006         } else {
7007            struct case_label *l = ralloc(state->switch_state.labels_ht,
7008                                          struct case_label);
7009
7010            l->value = label_const->value.u[0];
7011            l->after_default = state->switch_state.previous_default != NULL;
7012            l->ast = this->test_value;
7013
7014            _mesa_hash_table_insert(state->switch_state.labels_ht,
7015                                    &label_const->value.u[0],
7016                                    l);
7017         }
7018      }
7019
7020      /* Create an r-value version of the ir_constant label here (after we may
7021       * have created a fake one in error cases) that can be passed to
7022       * apply_implicit_conversion below.
7023       */
7024      ir_rvalue *label = label_const;
7025
7026      ir_rvalue *deref_test_var =
7027         new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
7028
7029      /*
7030       * From GLSL 4.40 specification section 6.2 ("Selection"):
7031       *
7032       *     "The type of the init-expression value in a switch statement must
7033       *     be a scalar int or uint. The type of the constant-expression value
7034       *     in a case label also must be a scalar int or uint. When any pair
7035       *     of these values is tested for "equal value" and the types do not
7036       *     match, an implicit conversion will be done to convert the int to a
7037       *     uint (see section 4.1.10 “Implicit Conversions”) before the compare
7038       *     is done."
7039       */
7040      if (label->type != state->switch_state.test_var->type) {
7041         YYLTYPE loc = this->test_value->get_location();
7042
7043         const glsl_type *type_a = label->type;
7044         const glsl_type *type_b = state->switch_state.test_var->type;
7045
7046         /* Check if int->uint implicit conversion is supported. */
7047         bool integer_conversion_supported =
7048            glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
7049                                                           state);
7050
7051         if ((!type_a->is_integer_32() || !type_b->is_integer_32()) ||
7052              !integer_conversion_supported) {
7053            _mesa_glsl_error(&loc, state, "type mismatch with switch "
7054                             "init-expression and case label (%s != %s)",
7055                             type_a->name, type_b->name);
7056         } else {
7057            /* Conversion of the case label. */
7058            if (type_a->base_type == GLSL_TYPE_INT) {
7059               if (!apply_implicit_conversion(glsl_type::uint_type,
7060                                              label, state))
7061                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
7062            } else {
7063               /* Conversion of the init-expression value. */
7064               if (!apply_implicit_conversion(glsl_type::uint_type,
7065                                              deref_test_var, state))
7066                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
7067            }
7068         }
7069
7070         /* If the implicit conversion was allowed, the types will already be
7071          * the same.  If the implicit conversion wasn't allowed, smash the
7072          * type of the label anyway.  This will prevent the expression
7073          * constructor (below) from failing an assertion.
7074          */
7075         label->type = deref_test_var->type;
7076      }
7077
7078      body.emit(assign(fallthru_var,
7079                       logic_or(fallthru_var, equal(label, deref_test_var))));
7080   } else { /* default case */
7081      if (state->switch_state.previous_default) {
7082         YYLTYPE loc = this->get_location();
7083         _mesa_glsl_error(& loc, state,
7084                          "multiple default labels in one switch");
7085
7086         loc = state->switch_state.previous_default->get_location();
7087         _mesa_glsl_error(& loc, state, "this is the first default label");
7088      }
7089      state->switch_state.previous_default = this;
7090
7091      /* Set fallthru condition on 'run_default' bool. */
7092      body.emit(assign(fallthru_var,
7093                       logic_or(fallthru_var,
7094                                state->switch_state.run_default)));
7095   }
7096
7097   /* Case statements do not have r-values. */
7098   return NULL;
7099}
7100
7101void
7102ast_iteration_statement::condition_to_hir(exec_list *instructions,
7103                                          struct _mesa_glsl_parse_state *state)
7104{
7105   void *ctx = state;
7106
7107   if (condition != NULL) {
7108      ir_rvalue *const cond =
7109         condition->hir(instructions, state);
7110
7111      if ((cond == NULL)
7112          || !cond->type->is_boolean() || !cond->type->is_scalar()) {
7113         YYLTYPE loc = condition->get_location();
7114
7115         _mesa_glsl_error(& loc, state,
7116                          "loop condition must be scalar boolean");
7117      } else {
7118         /* As the first code in the loop body, generate a block that looks
7119          * like 'if (!condition) break;' as the loop termination condition.
7120          */
7121         ir_rvalue *const not_cond =
7122            new(ctx) ir_expression(ir_unop_logic_not, cond);
7123
7124         ir_if *const if_stmt = new(ctx) ir_if(not_cond);
7125
7126         ir_jump *const break_stmt =
7127            new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
7128
7129         if_stmt->then_instructions.push_tail(break_stmt);
7130         instructions->push_tail(if_stmt);
7131      }
7132   }
7133}
7134
7135
7136ir_rvalue *
7137ast_iteration_statement::hir(exec_list *instructions,
7138                             struct _mesa_glsl_parse_state *state)
7139{
7140   void *ctx = state;
7141
7142   /* For-loops and while-loops start a new scope, but do-while loops do not.
7143    */
7144   if (mode != ast_do_while)
7145      state->symbols->push_scope();
7146
7147   if (init_statement != NULL)
7148      init_statement->hir(instructions, state);
7149
7150   ir_loop *const stmt = new(ctx) ir_loop();
7151   instructions->push_tail(stmt);
7152
7153   /* Track the current loop nesting. */
7154   ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
7155
7156   state->loop_nesting_ast = this;
7157
7158   /* Likewise, indicate that following code is closest to a loop,
7159    * NOT closest to a switch.
7160    */
7161   bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
7162   state->switch_state.is_switch_innermost = false;
7163
7164   if (mode != ast_do_while)
7165      condition_to_hir(&stmt->body_instructions, state);
7166
7167   if (rest_expression != NULL)
7168      rest_expression->hir(&rest_instructions, state);
7169
7170   if (body != NULL) {
7171      if (mode == ast_do_while)
7172         state->symbols->push_scope();
7173
7174      body->hir(& stmt->body_instructions, state);
7175
7176      if (mode == ast_do_while)
7177         state->symbols->pop_scope();
7178   }
7179
7180   if (rest_expression != NULL)
7181      stmt->body_instructions.append_list(&rest_instructions);
7182
7183   if (mode == ast_do_while)
7184      condition_to_hir(&stmt->body_instructions, state);
7185
7186   if (mode != ast_do_while)
7187      state->symbols->pop_scope();
7188
7189   /* Restore previous nesting before returning. */
7190   state->loop_nesting_ast = nesting_ast;
7191   state->switch_state.is_switch_innermost = saved_is_switch_innermost;
7192
7193   /* Loops do not have r-values.
7194    */
7195   return NULL;
7196}
7197
7198
7199/**
7200 * Determine if the given type is valid for establishing a default precision
7201 * qualifier.
7202 *
7203 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
7204 *
7205 *     "The precision statement
7206 *
7207 *         precision precision-qualifier type;
7208 *
7209 *     can be used to establish a default precision qualifier. The type field
7210 *     can be either int or float or any of the sampler types, and the
7211 *     precision-qualifier can be lowp, mediump, or highp."
7212 *
7213 * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
7214 * qualifiers on sampler types, but this seems like an oversight (since the
7215 * intention of including these in GLSL 1.30 is to allow compatibility with ES
7216 * shaders).  So we allow int, float, and all sampler types regardless of GLSL
7217 * version.
7218 */
7219static bool
7220is_valid_default_precision_type(const struct glsl_type *const type)
7221{
7222   if (type == NULL)
7223      return false;
7224
7225   switch (type->base_type) {
7226   case GLSL_TYPE_INT:
7227   case GLSL_TYPE_FLOAT:
7228      /* "int" and "float" are valid, but vectors and matrices are not. */
7229      return type->vector_elements == 1 && type->matrix_columns == 1;
7230   case GLSL_TYPE_SAMPLER:
7231   case GLSL_TYPE_IMAGE:
7232   case GLSL_TYPE_ATOMIC_UINT:
7233      return true;
7234   default:
7235      return false;
7236   }
7237}
7238
7239
7240ir_rvalue *
7241ast_type_specifier::hir(exec_list *instructions,
7242                        struct _mesa_glsl_parse_state *state)
7243{
7244   if (this->default_precision == ast_precision_none && this->structure == NULL)
7245      return NULL;
7246
7247   YYLTYPE loc = this->get_location();
7248
7249   /* If this is a precision statement, check that the type to which it is
7250    * applied is either float or int.
7251    *
7252    * From section 4.5.3 of the GLSL 1.30 spec:
7253    *    "The precision statement
7254    *       precision precision-qualifier type;
7255    *    can be used to establish a default precision qualifier. The type
7256    *    field can be either int or float [...].  Any other types or
7257    *    qualifiers will result in an error.
7258    */
7259   if (this->default_precision != ast_precision_none) {
7260      if (!state->check_precision_qualifiers_allowed(&loc))
7261         return NULL;
7262
7263      if (this->structure != NULL) {
7264         _mesa_glsl_error(&loc, state,
7265                          "precision qualifiers do not apply to structures");
7266         return NULL;
7267      }
7268
7269      if (this->array_specifier != NULL) {
7270         _mesa_glsl_error(&loc, state,
7271                          "default precision statements do not apply to "
7272                          "arrays");
7273         return NULL;
7274      }
7275
7276      const struct glsl_type *const type =
7277         state->symbols->get_type(this->type_name);
7278      if (!is_valid_default_precision_type(type)) {
7279         _mesa_glsl_error(&loc, state,
7280                          "default precision statements apply only to "
7281                          "float, int, and opaque types");
7282         return NULL;
7283      }
7284
7285      if (state->es_shader) {
7286         /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7287          * spec says:
7288          *
7289          *     "Non-precision qualified declarations will use the precision
7290          *     qualifier specified in the most recent precision statement
7291          *     that is still in scope. The precision statement has the same
7292          *     scoping rules as variable declarations. If it is declared
7293          *     inside a compound statement, its effect stops at the end of
7294          *     the innermost statement it was declared in. Precision
7295          *     statements in nested scopes override precision statements in
7296          *     outer scopes. Multiple precision statements for the same basic
7297          *     type can appear inside the same scope, with later statements
7298          *     overriding earlier statements within that scope."
7299          *
7300          * Default precision specifications follow the same scope rules as
7301          * variables.  So, we can track the state of the default precision
7302          * qualifiers in the symbol table, and the rules will just work.  This
7303          * is a slight abuse of the symbol table, but it has the semantics
7304          * that we want.
7305          */
7306         state->symbols->add_default_precision_qualifier(this->type_name,
7307                                                         this->default_precision);
7308      }
7309
7310      /* FINISHME: Translate precision statements into IR. */
7311      return NULL;
7312   }
7313
7314   /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7315    * process_record_constructor() can do type-checking on C-style initializer
7316    * expressions of structs, but ast_struct_specifier should only be translated
7317    * to HIR if it is declaring the type of a structure.
7318    *
7319    * The ->is_declaration field is false for initializers of variables
7320    * declared separately from the struct's type definition.
7321    *
7322    *    struct S { ... };              (is_declaration = true)
7323    *    struct T { ... } t = { ... };  (is_declaration = true)
7324    *    S s = { ... };                 (is_declaration = false)
7325    */
7326   if (this->structure != NULL && this->structure->is_declaration)
7327      return this->structure->hir(instructions, state);
7328
7329   return NULL;
7330}
7331
7332
7333/**
7334 * Process a structure or interface block tree into an array of structure fields
7335 *
7336 * After parsing, where there are some syntax differnces, structures and
7337 * interface blocks are almost identical.  They are similar enough that the
7338 * AST for each can be processed the same way into a set of
7339 * \c glsl_struct_field to describe the members.
7340 *
7341 * If we're processing an interface block, var_mode should be the type of the
7342 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7343 * ir_var_shader_storage).  If we're processing a structure, var_mode should be
7344 * ir_var_auto.
7345 *
7346 * \return
7347 * The number of fields processed.  A pointer to the array structure fields is
7348 * stored in \c *fields_ret.
7349 */
7350static unsigned
7351ast_process_struct_or_iface_block_members(exec_list *instructions,
7352                                          struct _mesa_glsl_parse_state *state,
7353                                          exec_list *declarations,
7354                                          glsl_struct_field **fields_ret,
7355                                          bool is_interface,
7356                                          enum glsl_matrix_layout matrix_layout,
7357                                          bool allow_reserved_names,
7358                                          ir_variable_mode var_mode,
7359                                          ast_type_qualifier *layout,
7360                                          unsigned block_stream,
7361                                          unsigned block_xfb_buffer,
7362                                          unsigned block_xfb_offset,
7363                                          unsigned expl_location,
7364                                          unsigned expl_align)
7365{
7366   unsigned decl_count = 0;
7367   unsigned next_offset = 0;
7368
7369   /* Make an initial pass over the list of fields to determine how
7370    * many there are.  Each element in this list is an ast_declarator_list.
7371    * This means that we actually need to count the number of elements in the
7372    * 'declarations' list in each of the elements.
7373    */
7374   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7375      decl_count += decl_list->declarations.length();
7376   }
7377
7378   /* Allocate storage for the fields and process the field
7379    * declarations.  As the declarations are processed, try to also convert
7380    * the types to HIR.  This ensures that structure definitions embedded in
7381    * other structure definitions or in interface blocks are processed.
7382    */
7383   glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7384                                                   decl_count);
7385
7386   bool first_member = true;
7387   bool first_member_has_explicit_location = false;
7388
7389   unsigned i = 0;
7390   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7391      const char *type_name;
7392      YYLTYPE loc = decl_list->get_location();
7393
7394      decl_list->type->specifier->hir(instructions, state);
7395
7396      /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7397       *
7398       *    "Anonymous structures are not supported; so embedded structures
7399       *    must have a declarator. A name given to an embedded struct is
7400       *    scoped at the same level as the struct it is embedded in."
7401       *
7402       * The same section of the  GLSL 1.20 spec says:
7403       *
7404       *    "Anonymous structures are not supported. Embedded structures are
7405       *    not supported."
7406       *
7407       * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7408       * embedded structures in 1.10 only.
7409       */
7410      if (state->language_version != 110 &&
7411          decl_list->type->specifier->structure != NULL)
7412         _mesa_glsl_error(&loc, state,
7413                          "embedded structure declarations are not allowed");
7414
7415      const glsl_type *decl_type =
7416         decl_list->type->glsl_type(& type_name, state);
7417
7418      const struct ast_type_qualifier *const qual =
7419         &decl_list->type->qualifier;
7420
7421      /* From section 4.3.9 of the GLSL 4.40 spec:
7422       *
7423       *    "[In interface blocks] opaque types are not allowed."
7424       *
7425       * It should be impossible for decl_type to be NULL here.  Cases that
7426       * might naturally lead to decl_type being NULL, especially for the
7427       * is_interface case, will have resulted in compilation having
7428       * already halted due to a syntax error.
7429       */
7430      assert(decl_type);
7431
7432      if (is_interface) {
7433         /* From section 4.3.7 of the ARB_bindless_texture spec:
7434          *
7435          *    "(remove the following bullet from the last list on p. 39,
7436          *     thereby permitting sampler types in interface blocks; image
7437          *     types are also permitted in blocks by this extension)"
7438          *
7439          *     * sampler types are not allowed
7440          */
7441         if (decl_type->contains_atomic() ||
7442             (!state->has_bindless() && decl_type->contains_opaque())) {
7443            _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7444                             "interface block contains %s variable",
7445                             state->has_bindless() ? "atomic" : "opaque");
7446         }
7447      } else {
7448         if (decl_type->contains_atomic()) {
7449            /* From section 4.1.7.3 of the GLSL 4.40 spec:
7450             *
7451             *    "Members of structures cannot be declared as atomic counter
7452             *     types."
7453             */
7454            _mesa_glsl_error(&loc, state, "atomic counter in structure");
7455         }
7456
7457         if (!state->has_bindless() && decl_type->contains_image()) {
7458            /* FINISHME: Same problem as with atomic counters.
7459             * FINISHME: Request clarification from Khronos and add
7460             * FINISHME: spec quotation here.
7461             */
7462            _mesa_glsl_error(&loc, state, "image in structure");
7463         }
7464      }
7465
7466      if (qual->flags.q.explicit_binding) {
7467         _mesa_glsl_error(&loc, state,
7468                          "binding layout qualifier cannot be applied "
7469                          "to struct or interface block members");
7470      }
7471
7472      if (is_interface) {
7473         if (!first_member) {
7474            if (!layout->flags.q.explicit_location &&
7475                ((first_member_has_explicit_location &&
7476                  !qual->flags.q.explicit_location) ||
7477                 (!first_member_has_explicit_location &&
7478                  qual->flags.q.explicit_location))) {
7479               _mesa_glsl_error(&loc, state,
7480                                "when block-level location layout qualifier "
7481                                "is not supplied either all members must "
7482                                "have a location layout qualifier or all "
7483                                "members must not have a location layout "
7484                                "qualifier");
7485            }
7486         } else {
7487            first_member = false;
7488            first_member_has_explicit_location =
7489               qual->flags.q.explicit_location;
7490         }
7491      }
7492
7493      if (qual->flags.q.std140 ||
7494          qual->flags.q.std430 ||
7495          qual->flags.q.packed ||
7496          qual->flags.q.shared) {
7497         _mesa_glsl_error(&loc, state,
7498                          "uniform/shader storage block layout qualifiers "
7499                          "std140, std430, packed, and shared can only be "
7500                          "applied to uniform/shader storage blocks, not "
7501                          "members");
7502      }
7503
7504      if (qual->flags.q.constant) {
7505         _mesa_glsl_error(&loc, state,
7506                          "const storage qualifier cannot be applied "
7507                          "to struct or interface block members");
7508      }
7509
7510      validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7511      validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7512
7513      /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7514       *
7515       *   "A block member may be declared with a stream identifier, but
7516       *   the specified stream must match the stream associated with the
7517       *   containing block."
7518       */
7519      if (qual->flags.q.explicit_stream) {
7520         unsigned qual_stream;
7521         if (process_qualifier_constant(state, &loc, "stream",
7522                                        qual->stream, &qual_stream) &&
7523             qual_stream != block_stream) {
7524            _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7525                             "interface block member does not match "
7526                             "the interface block (%u vs %u)", qual_stream,
7527                             block_stream);
7528         }
7529      }
7530
7531      int xfb_buffer;
7532      unsigned explicit_xfb_buffer = 0;
7533      if (qual->flags.q.explicit_xfb_buffer) {
7534         unsigned qual_xfb_buffer;
7535         if (process_qualifier_constant(state, &loc, "xfb_buffer",
7536                                        qual->xfb_buffer, &qual_xfb_buffer)) {
7537            explicit_xfb_buffer = 1;
7538            if (qual_xfb_buffer != block_xfb_buffer)
7539               _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7540                                "interface block member does not match "
7541                                "the interface block (%u vs %u)",
7542                                qual_xfb_buffer, block_xfb_buffer);
7543         }
7544         xfb_buffer = (int) qual_xfb_buffer;
7545      } else {
7546         if (layout)
7547            explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7548         xfb_buffer = (int) block_xfb_buffer;
7549      }
7550
7551      int xfb_stride = -1;
7552      if (qual->flags.q.explicit_xfb_stride) {
7553         unsigned qual_xfb_stride;
7554         if (process_qualifier_constant(state, &loc, "xfb_stride",
7555                                        qual->xfb_stride, &qual_xfb_stride)) {
7556            xfb_stride = (int) qual_xfb_stride;
7557         }
7558      }
7559
7560      if (qual->flags.q.uniform && qual->has_interpolation()) {
7561         _mesa_glsl_error(&loc, state,
7562                          "interpolation qualifiers cannot be used "
7563                          "with uniform interface blocks");
7564      }
7565
7566      if ((qual->flags.q.uniform || !is_interface) &&
7567          qual->has_auxiliary_storage()) {
7568         _mesa_glsl_error(&loc, state,
7569                          "auxiliary storage qualifiers cannot be used "
7570                          "in uniform blocks or structures.");
7571      }
7572
7573      if (qual->flags.q.row_major || qual->flags.q.column_major) {
7574         if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7575            _mesa_glsl_error(&loc, state,
7576                             "row_major and column_major can only be "
7577                             "applied to interface blocks");
7578         } else
7579            validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7580      }
7581
7582      foreach_list_typed (ast_declaration, decl, link,
7583                          &decl_list->declarations) {
7584         YYLTYPE loc = decl->get_location();
7585
7586         if (!allow_reserved_names)
7587            validate_identifier(decl->identifier, loc, state);
7588
7589         const struct glsl_type *field_type =
7590            process_array_type(&loc, decl_type, decl->array_specifier, state);
7591         validate_array_dimensions(field_type, state, &loc);
7592         fields[i].type = field_type;
7593         fields[i].name = decl->identifier;
7594         fields[i].interpolation =
7595            interpret_interpolation_qualifier(qual, field_type,
7596                                              var_mode, state, &loc);
7597         fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7598         fields[i].sample = qual->flags.q.sample ? 1 : 0;
7599         fields[i].patch = qual->flags.q.patch ? 1 : 0;
7600         fields[i].offset = -1;
7601         fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7602         fields[i].xfb_buffer = xfb_buffer;
7603         fields[i].xfb_stride = xfb_stride;
7604
7605         if (qual->flags.q.explicit_location) {
7606            unsigned qual_location;
7607            if (process_qualifier_constant(state, &loc, "location",
7608                                           qual->location, &qual_location)) {
7609               fields[i].location = qual_location +
7610                  (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7611               expl_location = fields[i].location +
7612                  fields[i].type->count_attribute_slots(false);
7613            }
7614         } else {
7615            if (layout && layout->flags.q.explicit_location) {
7616               fields[i].location = expl_location;
7617               expl_location += fields[i].type->count_attribute_slots(false);
7618            } else {
7619               fields[i].location = -1;
7620            }
7621         }
7622
7623         if (qual->flags.q.explicit_component) {
7624            unsigned qual_component;
7625            if (process_qualifier_constant(state, &loc, "component",
7626                                           qual->component, &qual_component)) {
7627               validate_component_layout_for_type(state, &loc, fields[i].type,
7628                                                  qual_component);
7629               fields[i].component = qual_component;
7630            }
7631         } else {
7632            fields[i].component = -1;
7633         }
7634
7635         /* Offset can only be used with std430 and std140 layouts an initial
7636          * value of 0 is used for error detection.
7637          */
7638         unsigned align = 0;
7639         unsigned size = 0;
7640         if (layout) {
7641            bool row_major;
7642            if (qual->flags.q.row_major ||
7643                matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7644               row_major = true;
7645            } else {
7646               row_major = false;
7647            }
7648
7649            if(layout->flags.q.std140) {
7650               align = field_type->std140_base_alignment(row_major);
7651               size = field_type->std140_size(row_major);
7652            } else if (layout->flags.q.std430) {
7653               align = field_type->std430_base_alignment(row_major);
7654               size = field_type->std430_size(row_major);
7655            }
7656         }
7657
7658         if (qual->flags.q.explicit_offset) {
7659            unsigned qual_offset;
7660            if (process_qualifier_constant(state, &loc, "offset",
7661                                           qual->offset, &qual_offset)) {
7662               if (align != 0 && size != 0) {
7663                   if (next_offset > qual_offset)
7664                      _mesa_glsl_error(&loc, state, "layout qualifier "
7665                                       "offset overlaps previous member");
7666
7667                  if (qual_offset % align) {
7668                     _mesa_glsl_error(&loc, state, "layout qualifier offset "
7669                                      "must be a multiple of the base "
7670                                      "alignment of %s", field_type->name);
7671                  }
7672                  fields[i].offset = qual_offset;
7673                  next_offset = qual_offset + size;
7674               } else {
7675                  _mesa_glsl_error(&loc, state, "offset can only be used "
7676                                   "with std430 and std140 layouts");
7677               }
7678            }
7679         }
7680
7681         if (qual->flags.q.explicit_align || expl_align != 0) {
7682            unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7683               next_offset;
7684            if (align == 0 || size == 0) {
7685               _mesa_glsl_error(&loc, state, "align can only be used with "
7686                                "std430 and std140 layouts");
7687            } else if (qual->flags.q.explicit_align) {
7688               unsigned member_align;
7689               if (process_qualifier_constant(state, &loc, "align",
7690                                              qual->align, &member_align)) {
7691                  if (member_align == 0 ||
7692                      member_align & (member_align - 1)) {
7693                     _mesa_glsl_error(&loc, state, "align layout qualifier "
7694                                      "is not a power of 2");
7695                  } else {
7696                     fields[i].offset = glsl_align(offset, member_align);
7697                     next_offset = fields[i].offset + size;
7698                  }
7699               }
7700            } else {
7701               fields[i].offset = glsl_align(offset, expl_align);
7702               next_offset = fields[i].offset + size;
7703            }
7704         } else if (!qual->flags.q.explicit_offset) {
7705            if (align != 0 && size != 0)
7706               next_offset = glsl_align(next_offset, align) + size;
7707         }
7708
7709         /* From the ARB_enhanced_layouts spec:
7710          *
7711          *    "The given offset applies to the first component of the first
7712          *    member of the qualified entity.  Then, within the qualified
7713          *    entity, subsequent components are each assigned, in order, to
7714          *    the next available offset aligned to a multiple of that
7715          *    component's size.  Aggregate types are flattened down to the
7716          *    component level to get this sequence of components."
7717          */
7718         if (qual->flags.q.explicit_xfb_offset) {
7719            unsigned xfb_offset;
7720            if (process_qualifier_constant(state, &loc, "xfb_offset",
7721                                           qual->offset, &xfb_offset)) {
7722               fields[i].offset = xfb_offset;
7723               block_xfb_offset = fields[i].offset +
7724                  4 * field_type->component_slots();
7725            }
7726         } else {
7727            if (layout && layout->flags.q.explicit_xfb_offset) {
7728               unsigned align = field_type->is_64bit() ? 8 : 4;
7729               fields[i].offset = glsl_align(block_xfb_offset, align);
7730               block_xfb_offset += 4 * field_type->component_slots();
7731            }
7732         }
7733
7734         /* Propogate row- / column-major information down the fields of the
7735          * structure or interface block.  Structures need this data because
7736          * the structure may contain a structure that contains ... a matrix
7737          * that need the proper layout.
7738          */
7739         if (is_interface && layout &&
7740             (layout->flags.q.uniform || layout->flags.q.buffer) &&
7741             (field_type->without_array()->is_matrix()
7742              || field_type->without_array()->is_struct())) {
7743            /* If no layout is specified for the field, inherit the layout
7744             * from the block.
7745             */
7746            fields[i].matrix_layout = matrix_layout;
7747
7748            if (qual->flags.q.row_major)
7749               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7750            else if (qual->flags.q.column_major)
7751               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7752
7753            /* If we're processing an uniform or buffer block, the matrix
7754             * layout must be decided by this point.
7755             */
7756            assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7757                   || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7758         }
7759
7760         /* Memory qualifiers are allowed on buffer and image variables, while
7761          * the format qualifier is only accepted for images.
7762          */
7763         if (var_mode == ir_var_shader_storage ||
7764             field_type->without_array()->is_image()) {
7765            /* For readonly and writeonly qualifiers the field definition,
7766             * if set, overwrites the layout qualifier.
7767             */
7768            if (qual->flags.q.read_only || qual->flags.q.write_only) {
7769               fields[i].memory_read_only = qual->flags.q.read_only;
7770               fields[i].memory_write_only = qual->flags.q.write_only;
7771            } else {
7772               fields[i].memory_read_only =
7773                  layout ? layout->flags.q.read_only : 0;
7774               fields[i].memory_write_only =
7775                  layout ? layout->flags.q.write_only : 0;
7776            }
7777
7778            /* For other qualifiers, we set the flag if either the layout
7779             * qualifier or the field qualifier are set
7780             */
7781            fields[i].memory_coherent = qual->flags.q.coherent ||
7782                                        (layout && layout->flags.q.coherent);
7783            fields[i].memory_volatile = qual->flags.q._volatile ||
7784                                        (layout && layout->flags.q._volatile);
7785            fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7786                                        (layout && layout->flags.q.restrict_flag);
7787
7788            if (field_type->without_array()->is_image()) {
7789               if (qual->flags.q.explicit_image_format) {
7790                  if (qual->image_base_type !=
7791                      field_type->without_array()->sampled_type) {
7792                     _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7793                                      "match the base data type of the image");
7794                  }
7795
7796                  fields[i].image_format = qual->image_format;
7797               } else {
7798                  if (!qual->flags.q.write_only) {
7799                     _mesa_glsl_error(&loc, state, "image not qualified with "
7800                                      "`writeonly' must have a format layout "
7801                                      "qualifier");
7802                  }
7803
7804                  fields[i].image_format = PIPE_FORMAT_NONE;
7805               }
7806            }
7807         }
7808
7809         /* Precision qualifiers do not hold any meaning in Desktop GLSL */
7810         if (state->es_shader) {
7811            fields[i].precision = select_gles_precision(qual->precision,
7812                                                        field_type,
7813                                                        state,
7814                                                        &loc);
7815         } else {
7816            fields[i].precision = qual->precision;
7817         }
7818
7819         i++;
7820      }
7821   }
7822
7823   assert(i == decl_count);
7824
7825   *fields_ret = fields;
7826   return decl_count;
7827}
7828
7829
7830ir_rvalue *
7831ast_struct_specifier::hir(exec_list *instructions,
7832                          struct _mesa_glsl_parse_state *state)
7833{
7834   YYLTYPE loc = this->get_location();
7835
7836   unsigned expl_location = 0;
7837   if (layout && layout->flags.q.explicit_location) {
7838      if (!process_qualifier_constant(state, &loc, "location",
7839                                      layout->location, &expl_location)) {
7840         return NULL;
7841      } else {
7842         expl_location = VARYING_SLOT_VAR0 + expl_location;
7843      }
7844   }
7845
7846   glsl_struct_field *fields;
7847   unsigned decl_count =
7848      ast_process_struct_or_iface_block_members(instructions,
7849                                                state,
7850                                                &this->declarations,
7851                                                &fields,
7852                                                false,
7853                                                GLSL_MATRIX_LAYOUT_INHERITED,
7854                                                false /* allow_reserved_names */,
7855                                                ir_var_auto,
7856                                                layout,
7857                                                0, /* for interface only */
7858                                                0, /* for interface only */
7859                                                0, /* for interface only */
7860                                                expl_location,
7861                                                0 /* for interface only */);
7862
7863   validate_identifier(this->name, loc, state);
7864
7865   type = glsl_type::get_struct_instance(fields, decl_count, this->name);
7866
7867   if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7868      const glsl_type *match = state->symbols->get_type(name);
7869      /* allow struct matching for desktop GL - older UE4 does this */
7870      if (match != NULL && state->is_version(130, 0) && match->record_compare(type, true, false))
7871         _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7872      else
7873         _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7874   } else {
7875      const glsl_type **s = reralloc(state, state->user_structures,
7876                                     const glsl_type *,
7877                                     state->num_user_structures + 1);
7878      if (s != NULL) {
7879         s[state->num_user_structures] = type;
7880         state->user_structures = s;
7881         state->num_user_structures++;
7882      }
7883   }
7884
7885   /* Structure type definitions do not have r-values.
7886    */
7887   return NULL;
7888}
7889
7890
7891/**
7892 * Visitor class which detects whether a given interface block has been used.
7893 */
7894class interface_block_usage_visitor : public ir_hierarchical_visitor
7895{
7896public:
7897   interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7898      : mode(mode), block(block), found(false)
7899   {
7900   }
7901
7902   virtual ir_visitor_status visit(ir_dereference_variable *ir)
7903   {
7904      if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7905         found = true;
7906         return visit_stop;
7907      }
7908      return visit_continue;
7909   }
7910
7911   bool usage_found() const
7912   {
7913      return this->found;
7914   }
7915
7916private:
7917   ir_variable_mode mode;
7918   const glsl_type *block;
7919   bool found;
7920};
7921
7922static bool
7923is_unsized_array_last_element(ir_variable *v)
7924{
7925   const glsl_type *interface_type = v->get_interface_type();
7926   int length = interface_type->length;
7927
7928   assert(v->type->is_unsized_array());
7929
7930   /* Check if it is the last element of the interface */
7931   if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7932      return true;
7933   return false;
7934}
7935
7936static void
7937apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7938{
7939   var->data.memory_read_only = field.memory_read_only;
7940   var->data.memory_write_only = field.memory_write_only;
7941   var->data.memory_coherent = field.memory_coherent;
7942   var->data.memory_volatile = field.memory_volatile;
7943   var->data.memory_restrict = field.memory_restrict;
7944}
7945
7946ir_rvalue *
7947ast_interface_block::hir(exec_list *instructions,
7948                         struct _mesa_glsl_parse_state *state)
7949{
7950   YYLTYPE loc = this->get_location();
7951
7952   /* Interface blocks must be declared at global scope */
7953   if (state->current_function != NULL) {
7954      _mesa_glsl_error(&loc, state,
7955                       "Interface block `%s' must be declared "
7956                       "at global scope",
7957                       this->block_name);
7958   }
7959
7960   /* Validate qualifiers:
7961    *
7962    * - Layout Qualifiers as per the table in Section 4.4
7963    *   ("Layout Qualifiers") of the GLSL 4.50 spec.
7964    *
7965    * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7966    *   GLSL 4.50 spec:
7967    *
7968    *     "Additionally, memory qualifiers may also be used in the declaration
7969    *      of shader storage blocks"
7970    *
7971    * Note the table in Section 4.4 says std430 is allowed on both uniform and
7972    * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7973    * Layout Qualifiers) of the GLSL 4.50 spec says:
7974    *
7975    *    "The std430 qualifier is supported only for shader storage blocks;
7976    *    using std430 on a uniform block will result in a compile-time error."
7977    */
7978   ast_type_qualifier allowed_blk_qualifiers;
7979   allowed_blk_qualifiers.flags.i = 0;
7980   if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7981      allowed_blk_qualifiers.flags.q.shared = 1;
7982      allowed_blk_qualifiers.flags.q.packed = 1;
7983      allowed_blk_qualifiers.flags.q.std140 = 1;
7984      allowed_blk_qualifiers.flags.q.row_major = 1;
7985      allowed_blk_qualifiers.flags.q.column_major = 1;
7986      allowed_blk_qualifiers.flags.q.explicit_align = 1;
7987      allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7988      if (this->layout.flags.q.buffer) {
7989         allowed_blk_qualifiers.flags.q.buffer = 1;
7990         allowed_blk_qualifiers.flags.q.std430 = 1;
7991         allowed_blk_qualifiers.flags.q.coherent = 1;
7992         allowed_blk_qualifiers.flags.q._volatile = 1;
7993         allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7994         allowed_blk_qualifiers.flags.q.read_only = 1;
7995         allowed_blk_qualifiers.flags.q.write_only = 1;
7996      } else {
7997         allowed_blk_qualifiers.flags.q.uniform = 1;
7998      }
7999   } else {
8000      /* Interface block */
8001      assert(this->layout.flags.q.in || this->layout.flags.q.out);
8002
8003      allowed_blk_qualifiers.flags.q.explicit_location = 1;
8004      if (this->layout.flags.q.out) {
8005         allowed_blk_qualifiers.flags.q.out = 1;
8006         if (state->stage == MESA_SHADER_GEOMETRY ||
8007          state->stage == MESA_SHADER_TESS_CTRL ||
8008          state->stage == MESA_SHADER_TESS_EVAL ||
8009          state->stage == MESA_SHADER_VERTEX ) {
8010            allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
8011            allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
8012            allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
8013            allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
8014            allowed_blk_qualifiers.flags.q.xfb_stride = 1;
8015            if (state->stage == MESA_SHADER_GEOMETRY) {
8016               allowed_blk_qualifiers.flags.q.stream = 1;
8017               allowed_blk_qualifiers.flags.q.explicit_stream = 1;
8018            }
8019            if (state->stage == MESA_SHADER_TESS_CTRL) {
8020               allowed_blk_qualifiers.flags.q.patch = 1;
8021            }
8022         }
8023      } else {
8024         allowed_blk_qualifiers.flags.q.in = 1;
8025         if (state->stage == MESA_SHADER_TESS_EVAL) {
8026            allowed_blk_qualifiers.flags.q.patch = 1;
8027         }
8028      }
8029   }
8030
8031   this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
8032                               "invalid qualifier for block",
8033                               this->block_name);
8034
8035   enum glsl_interface_packing packing;
8036   if (this->layout.flags.q.std140) {
8037      packing = GLSL_INTERFACE_PACKING_STD140;
8038   } else if (this->layout.flags.q.packed) {
8039      packing = GLSL_INTERFACE_PACKING_PACKED;
8040   } else if (this->layout.flags.q.std430) {
8041      packing = GLSL_INTERFACE_PACKING_STD430;
8042   } else {
8043      /* The default layout is shared.
8044       */
8045      packing = GLSL_INTERFACE_PACKING_SHARED;
8046   }
8047
8048   ir_variable_mode var_mode;
8049   const char *iface_type_name;
8050   if (this->layout.flags.q.in) {
8051      var_mode = ir_var_shader_in;
8052      iface_type_name = "in";
8053   } else if (this->layout.flags.q.out) {
8054      var_mode = ir_var_shader_out;
8055      iface_type_name = "out";
8056   } else if (this->layout.flags.q.uniform) {
8057      var_mode = ir_var_uniform;
8058      iface_type_name = "uniform";
8059   } else if (this->layout.flags.q.buffer) {
8060      var_mode = ir_var_shader_storage;
8061      iface_type_name = "buffer";
8062   } else {
8063      var_mode = ir_var_auto;
8064      iface_type_name = "UNKNOWN";
8065      assert(!"interface block layout qualifier not found!");
8066   }
8067
8068   enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
8069   if (this->layout.flags.q.row_major)
8070      matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
8071   else if (this->layout.flags.q.column_major)
8072      matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
8073
8074   bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
8075   exec_list declared_variables;
8076   glsl_struct_field *fields;
8077
8078   /* For blocks that accept memory qualifiers (i.e. shader storage), verify
8079    * that we don't have incompatible qualifiers
8080    */
8081   if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
8082      _mesa_glsl_error(&loc, state,
8083                       "Interface block sets both readonly and writeonly");
8084   }
8085
8086   unsigned qual_stream;
8087   if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
8088                                   &qual_stream) ||
8089       !validate_stream_qualifier(&loc, state, qual_stream)) {
8090      /* If the stream qualifier is invalid it doesn't make sense to continue
8091       * on and try to compare stream layouts on member variables against it
8092       * so just return early.
8093       */
8094      return NULL;
8095   }
8096
8097   unsigned qual_xfb_buffer;
8098   if (!process_qualifier_constant(state, &loc, "xfb_buffer",
8099                                   layout.xfb_buffer, &qual_xfb_buffer) ||
8100       !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
8101      return NULL;
8102   }
8103
8104   unsigned qual_xfb_offset = 0;
8105   if (layout.flags.q.explicit_xfb_offset) {
8106      if (!process_qualifier_constant(state, &loc, "xfb_offset",
8107                                      layout.offset, &qual_xfb_offset)) {
8108         return NULL;
8109      }
8110   }
8111
8112   unsigned qual_xfb_stride = 0;
8113   if (layout.flags.q.explicit_xfb_stride) {
8114      if (!process_qualifier_constant(state, &loc, "xfb_stride",
8115                                      layout.xfb_stride, &qual_xfb_stride)) {
8116         return NULL;
8117      }
8118   }
8119
8120   unsigned expl_location = 0;
8121   if (layout.flags.q.explicit_location) {
8122      if (!process_qualifier_constant(state, &loc, "location",
8123                                      layout.location, &expl_location)) {
8124         return NULL;
8125      } else {
8126         expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
8127                                                     : VARYING_SLOT_VAR0;
8128      }
8129   }
8130
8131   unsigned expl_align = 0;
8132   if (layout.flags.q.explicit_align) {
8133      if (!process_qualifier_constant(state, &loc, "align",
8134                                      layout.align, &expl_align)) {
8135         return NULL;
8136      } else {
8137         if (expl_align == 0 || expl_align & (expl_align - 1)) {
8138            _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
8139                             "power of 2.");
8140            return NULL;
8141         }
8142      }
8143   }
8144
8145   unsigned int num_variables =
8146      ast_process_struct_or_iface_block_members(&declared_variables,
8147                                                state,
8148                                                &this->declarations,
8149                                                &fields,
8150                                                true,
8151                                                matrix_layout,
8152                                                redeclaring_per_vertex,
8153                                                var_mode,
8154                                                &this->layout,
8155                                                qual_stream,
8156                                                qual_xfb_buffer,
8157                                                qual_xfb_offset,
8158                                                expl_location,
8159                                                expl_align);
8160
8161   if (!redeclaring_per_vertex) {
8162      validate_identifier(this->block_name, loc, state);
8163
8164      /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
8165       *
8166       *     "Block names have no other use within a shader beyond interface
8167       *     matching; it is a compile-time error to use a block name at global
8168       *     scope for anything other than as a block name."
8169       */
8170      ir_variable *var = state->symbols->get_variable(this->block_name);
8171      if (var && !var->type->is_interface()) {
8172         _mesa_glsl_error(&loc, state, "Block name `%s' is "
8173                          "already used in the scope.",
8174                          this->block_name);
8175      }
8176   }
8177
8178   const glsl_type *earlier_per_vertex = NULL;
8179   if (redeclaring_per_vertex) {
8180      /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
8181       * the named interface block gl_in, we can find it by looking at the
8182       * previous declaration of gl_in.  Otherwise we can find it by looking
8183       * at the previous decalartion of any of the built-in outputs,
8184       * e.g. gl_Position.
8185       *
8186       * Also check that the instance name and array-ness of the redeclaration
8187       * are correct.
8188       */
8189      switch (var_mode) {
8190      case ir_var_shader_in:
8191         if (ir_variable *earlier_gl_in =
8192             state->symbols->get_variable("gl_in")) {
8193            earlier_per_vertex = earlier_gl_in->get_interface_type();
8194         } else {
8195            _mesa_glsl_error(&loc, state,
8196                             "redeclaration of gl_PerVertex input not allowed "
8197                             "in the %s shader",
8198                             _mesa_shader_stage_to_string(state->stage));
8199         }
8200         if (this->instance_name == NULL ||
8201             strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
8202             !this->array_specifier->is_single_dimension()) {
8203            _mesa_glsl_error(&loc, state,
8204                             "gl_PerVertex input must be redeclared as "
8205                             "gl_in[]");
8206         }
8207         break;
8208      case ir_var_shader_out:
8209         if (ir_variable *earlier_gl_Position =
8210             state->symbols->get_variable("gl_Position")) {
8211            earlier_per_vertex = earlier_gl_Position->get_interface_type();
8212         } else if (ir_variable *earlier_gl_out =
8213               state->symbols->get_variable("gl_out")) {
8214            earlier_per_vertex = earlier_gl_out->get_interface_type();
8215         } else {
8216            _mesa_glsl_error(&loc, state,
8217                             "redeclaration of gl_PerVertex output not "
8218                             "allowed in the %s shader",
8219                             _mesa_shader_stage_to_string(state->stage));
8220         }
8221         if (state->stage == MESA_SHADER_TESS_CTRL) {
8222            if (this->instance_name == NULL ||
8223                strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
8224               _mesa_glsl_error(&loc, state,
8225                                "gl_PerVertex output must be redeclared as "
8226                                "gl_out[]");
8227            }
8228         } else {
8229            if (this->instance_name != NULL) {
8230               _mesa_glsl_error(&loc, state,
8231                                "gl_PerVertex output may not be redeclared with "
8232                                "an instance name");
8233            }
8234         }
8235         break;
8236      default:
8237         _mesa_glsl_error(&loc, state,
8238                          "gl_PerVertex must be declared as an input or an "
8239                          "output");
8240         break;
8241      }
8242
8243      if (earlier_per_vertex == NULL) {
8244         /* An error has already been reported.  Bail out to avoid null
8245          * dereferences later in this function.
8246          */
8247         return NULL;
8248      }
8249
8250      /* Copy locations from the old gl_PerVertex interface block. */
8251      for (unsigned i = 0; i < num_variables; i++) {
8252         int j = earlier_per_vertex->field_index(fields[i].name);
8253         if (j == -1) {
8254            _mesa_glsl_error(&loc, state,
8255                             "redeclaration of gl_PerVertex must be a subset "
8256                             "of the built-in members of gl_PerVertex");
8257         } else {
8258            fields[i].location =
8259               earlier_per_vertex->fields.structure[j].location;
8260            fields[i].offset =
8261               earlier_per_vertex->fields.structure[j].offset;
8262            fields[i].interpolation =
8263               earlier_per_vertex->fields.structure[j].interpolation;
8264            fields[i].centroid =
8265               earlier_per_vertex->fields.structure[j].centroid;
8266            fields[i].sample =
8267               earlier_per_vertex->fields.structure[j].sample;
8268            fields[i].patch =
8269               earlier_per_vertex->fields.structure[j].patch;
8270            fields[i].precision =
8271               earlier_per_vertex->fields.structure[j].precision;
8272            fields[i].explicit_xfb_buffer =
8273               earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8274            fields[i].xfb_buffer =
8275               earlier_per_vertex->fields.structure[j].xfb_buffer;
8276            fields[i].xfb_stride =
8277               earlier_per_vertex->fields.structure[j].xfb_stride;
8278         }
8279      }
8280
8281      /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8282       * spec:
8283       *
8284       *     If a built-in interface block is redeclared, it must appear in
8285       *     the shader before any use of any member included in the built-in
8286       *     declaration, or a compilation error will result.
8287       *
8288       * This appears to be a clarification to the behaviour established for
8289       * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8290       * regardless of GLSL version.
8291       */
8292      interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8293      v.run(instructions);
8294      if (v.usage_found()) {
8295         _mesa_glsl_error(&loc, state,
8296                          "redeclaration of a built-in interface block must "
8297                          "appear before any use of any member of the "
8298                          "interface block");
8299      }
8300   }
8301
8302   const glsl_type *block_type =
8303      glsl_type::get_interface_instance(fields,
8304                                        num_variables,
8305                                        packing,
8306                                        matrix_layout ==
8307                                           GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8308                                        this->block_name);
8309
8310   unsigned component_size = block_type->contains_double() ? 8 : 4;
8311   int xfb_offset =
8312      layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8313   validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8314                                 component_size);
8315
8316   if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8317      YYLTYPE loc = this->get_location();
8318      _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8319                       "already taken in the current scope",
8320                       this->block_name, iface_type_name);
8321   }
8322
8323   /* Since interface blocks cannot contain statements, it should be
8324    * impossible for the block to generate any instructions.
8325    */
8326   assert(declared_variables.is_empty());
8327
8328   /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8329    *
8330    *     Geometry shader input variables get the per-vertex values written
8331    *     out by vertex shader output variables of the same names. Since a
8332    *     geometry shader operates on a set of vertices, each input varying
8333    *     variable (or input block, see interface blocks below) needs to be
8334    *     declared as an array.
8335    */
8336   if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8337       var_mode == ir_var_shader_in) {
8338      _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8339   } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8340               state->stage == MESA_SHADER_TESS_EVAL) &&
8341              !this->layout.flags.q.patch &&
8342              this->array_specifier == NULL &&
8343              var_mode == ir_var_shader_in) {
8344      _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8345   } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8346              !this->layout.flags.q.patch &&
8347              this->array_specifier == NULL &&
8348              var_mode == ir_var_shader_out) {
8349      _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8350   }
8351
8352
8353   /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8354    * says:
8355    *
8356    *     "If an instance name (instance-name) is used, then it puts all the
8357    *     members inside a scope within its own name space, accessed with the
8358    *     field selector ( . ) operator (analogously to structures)."
8359    */
8360   if (this->instance_name) {
8361      if (redeclaring_per_vertex) {
8362         /* When a built-in in an unnamed interface block is redeclared,
8363          * get_variable_being_redeclared() calls
8364          * check_builtin_array_max_size() to make sure that built-in array
8365          * variables aren't redeclared to illegal sizes.  But we're looking
8366          * at a redeclaration of a named built-in interface block.  So we
8367          * have to manually call check_builtin_array_max_size() for all parts
8368          * of the interface that are arrays.
8369          */
8370         for (unsigned i = 0; i < num_variables; i++) {
8371            if (fields[i].type->is_array()) {
8372               const unsigned size = fields[i].type->array_size();
8373               check_builtin_array_max_size(fields[i].name, size, loc, state);
8374            }
8375         }
8376      } else {
8377         validate_identifier(this->instance_name, loc, state);
8378      }
8379
8380      ir_variable *var;
8381
8382      if (this->array_specifier != NULL) {
8383         const glsl_type *block_array_type =
8384            process_array_type(&loc, block_type, this->array_specifier, state);
8385
8386         /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8387          *
8388          *     For uniform blocks declared an array, each individual array
8389          *     element corresponds to a separate buffer object backing one
8390          *     instance of the block. As the array size indicates the number
8391          *     of buffer objects needed, uniform block array declarations
8392          *     must specify an array size.
8393          *
8394          * And a few paragraphs later:
8395          *
8396          *     Geometry shader input blocks must be declared as arrays and
8397          *     follow the array declaration and linking rules for all
8398          *     geometry shader inputs. All other input and output block
8399          *     arrays must specify an array size.
8400          *
8401          * The same applies to tessellation shaders.
8402          *
8403          * The upshot of this is that the only circumstance where an
8404          * interface array size *doesn't* need to be specified is on a
8405          * geometry shader input, tessellation control shader input,
8406          * tessellation control shader output, and tessellation evaluation
8407          * shader input.
8408          */
8409         if (block_array_type->is_unsized_array()) {
8410            bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8411                                state->stage == MESA_SHADER_TESS_CTRL ||
8412                                state->stage == MESA_SHADER_TESS_EVAL;
8413            bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8414
8415            if (this->layout.flags.q.in) {
8416               if (!allow_inputs)
8417                  _mesa_glsl_error(&loc, state,
8418                                   "unsized input block arrays not allowed in "
8419                                   "%s shader",
8420                                   _mesa_shader_stage_to_string(state->stage));
8421            } else if (this->layout.flags.q.out) {
8422               if (!allow_outputs)
8423                  _mesa_glsl_error(&loc, state,
8424                                   "unsized output block arrays not allowed in "
8425                                   "%s shader",
8426                                   _mesa_shader_stage_to_string(state->stage));
8427            } else {
8428               /* by elimination, this is a uniform block array */
8429               _mesa_glsl_error(&loc, state,
8430                                "unsized uniform block arrays not allowed in "
8431                                "%s shader",
8432                                _mesa_shader_stage_to_string(state->stage));
8433            }
8434         }
8435
8436         /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8437          *
8438          *     * Arrays of arrays of blocks are not allowed
8439          */
8440         if (state->es_shader && block_array_type->is_array() &&
8441             block_array_type->fields.array->is_array()) {
8442            _mesa_glsl_error(&loc, state,
8443                             "arrays of arrays interface blocks are "
8444                             "not allowed");
8445         }
8446
8447         var = new(state) ir_variable(block_array_type,
8448                                      this->instance_name,
8449                                      var_mode);
8450      } else {
8451         var = new(state) ir_variable(block_type,
8452                                      this->instance_name,
8453                                      var_mode);
8454      }
8455
8456      var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8457         ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8458
8459      if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8460         var->data.read_only = true;
8461
8462      var->data.patch = this->layout.flags.q.patch;
8463
8464      if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8465         handle_geometry_shader_input_decl(state, loc, var);
8466      else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8467           state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8468         handle_tess_shader_input_decl(state, loc, var);
8469      else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8470         handle_tess_ctrl_shader_output_decl(state, loc, var);
8471
8472      for (unsigned i = 0; i < num_variables; i++) {
8473         if (var->data.mode == ir_var_shader_storage)
8474            apply_memory_qualifiers(var, fields[i]);
8475      }
8476
8477      if (ir_variable *earlier =
8478          state->symbols->get_variable(this->instance_name)) {
8479         if (!redeclaring_per_vertex) {
8480            _mesa_glsl_error(&loc, state, "`%s' redeclared",
8481                             this->instance_name);
8482         }
8483         earlier->data.how_declared = ir_var_declared_normally;
8484         earlier->type = var->type;
8485         earlier->reinit_interface_type(block_type);
8486         delete var;
8487      } else {
8488         if (this->layout.flags.q.explicit_binding) {
8489            apply_explicit_binding(state, &loc, var, var->type,
8490                                   &this->layout);
8491         }
8492
8493         var->data.stream = qual_stream;
8494         if (layout.flags.q.explicit_location) {
8495            var->data.location = expl_location;
8496            var->data.explicit_location = true;
8497         }
8498
8499         state->symbols->add_variable(var);
8500         instructions->push_tail(var);
8501      }
8502   } else {
8503      /* In order to have an array size, the block must also be declared with
8504       * an instance name.
8505       */
8506      assert(this->array_specifier == NULL);
8507
8508      for (unsigned i = 0; i < num_variables; i++) {
8509         ir_variable *var =
8510            new(state) ir_variable(fields[i].type,
8511                                   ralloc_strdup(state, fields[i].name),
8512                                   var_mode);
8513         var->data.interpolation = fields[i].interpolation;
8514         var->data.centroid = fields[i].centroid;
8515         var->data.sample = fields[i].sample;
8516         var->data.patch = fields[i].patch;
8517         var->data.stream = qual_stream;
8518         var->data.location = fields[i].location;
8519
8520         if (fields[i].location != -1)
8521            var->data.explicit_location = true;
8522
8523         var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8524         var->data.xfb_buffer = fields[i].xfb_buffer;
8525
8526         if (fields[i].offset != -1)
8527            var->data.explicit_xfb_offset = true;
8528         var->data.offset = fields[i].offset;
8529
8530         var->init_interface_type(block_type);
8531
8532         if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8533            var->data.read_only = true;
8534
8535         /* Precision qualifiers do not have any meaning in Desktop GLSL */
8536         if (state->es_shader) {
8537            var->data.precision =
8538               select_gles_precision(fields[i].precision, fields[i].type,
8539                                     state, &loc);
8540         }
8541
8542         if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8543            var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8544               ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8545         } else {
8546            var->data.matrix_layout = fields[i].matrix_layout;
8547         }
8548
8549         if (var->data.mode == ir_var_shader_storage)
8550            apply_memory_qualifiers(var, fields[i]);
8551
8552         /* Examine var name here since var may get deleted in the next call */
8553         bool var_is_gl_id = is_gl_identifier(var->name);
8554
8555         if (redeclaring_per_vertex) {
8556            bool is_redeclaration;
8557            var =
8558               get_variable_being_redeclared(&var, loc, state,
8559                                             true /* allow_all_redeclarations */,
8560                                             &is_redeclaration);
8561            if (!var_is_gl_id || !is_redeclaration) {
8562               _mesa_glsl_error(&loc, state,
8563                                "redeclaration of gl_PerVertex can only "
8564                                "include built-in variables");
8565            } else if (var->data.how_declared == ir_var_declared_normally) {
8566               _mesa_glsl_error(&loc, state,
8567                                "`%s' has already been redeclared",
8568                                var->name);
8569            } else {
8570               var->data.how_declared = ir_var_declared_in_block;
8571               var->reinit_interface_type(block_type);
8572            }
8573            continue;
8574         }
8575
8576         if (state->symbols->get_variable(var->name) != NULL)
8577            _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8578
8579         /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8580          * The UBO declaration itself doesn't get an ir_variable unless it
8581          * has an instance name.  This is ugly.
8582          */
8583         if (this->layout.flags.q.explicit_binding) {
8584            apply_explicit_binding(state, &loc, var,
8585                                   var->get_interface_type(), &this->layout);
8586         }
8587
8588         if (var->type->is_unsized_array()) {
8589            if (var->is_in_shader_storage_block() &&
8590                is_unsized_array_last_element(var)) {
8591               var->data.from_ssbo_unsized_array = true;
8592            } else {
8593               /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8594                *
8595                * "If an array is declared as the last member of a shader storage
8596                * block and the size is not specified at compile-time, it is
8597                * sized at run-time. In all other cases, arrays are sized only
8598                * at compile-time."
8599                *
8600                * In desktop GLSL it is allowed to have unsized-arrays that are
8601                * not last, as long as we can determine that they are implicitly
8602                * sized.
8603                */
8604               if (state->es_shader) {
8605                  _mesa_glsl_error(&loc, state, "unsized array `%s' "
8606                                   "definition: only last member of a shader "
8607                                   "storage block can be defined as unsized "
8608                                   "array", fields[i].name);
8609               }
8610            }
8611         }
8612
8613         state->symbols->add_variable(var);
8614         instructions->push_tail(var);
8615      }
8616
8617      if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8618         /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8619          *
8620          *     It is also a compilation error ... to redeclare a built-in
8621          *     block and then use a member from that built-in block that was
8622          *     not included in the redeclaration.
8623          *
8624          * This appears to be a clarification to the behaviour established
8625          * for gl_PerVertex by GLSL 1.50, therefore we implement this
8626          * behaviour regardless of GLSL version.
8627          *
8628          * To prevent the shader from using a member that was not included in
8629          * the redeclaration, we disable any ir_variables that are still
8630          * associated with the old declaration of gl_PerVertex (since we've
8631          * already updated all of the variables contained in the new
8632          * gl_PerVertex to point to it).
8633          *
8634          * As a side effect this will prevent
8635          * validate_intrastage_interface_blocks() from getting confused and
8636          * thinking there are conflicting definitions of gl_PerVertex in the
8637          * shader.
8638          */
8639         foreach_in_list_safe(ir_instruction, node, instructions) {
8640            ir_variable *const var = node->as_variable();
8641            if (var != NULL &&
8642                var->get_interface_type() == earlier_per_vertex &&
8643                var->data.mode == var_mode) {
8644               if (var->data.how_declared == ir_var_declared_normally) {
8645                  _mesa_glsl_error(&loc, state,
8646                                   "redeclaration of gl_PerVertex cannot "
8647                                   "follow a redeclaration of `%s'",
8648                                   var->name);
8649               }
8650               state->symbols->disable_variable(var->name);
8651               var->remove();
8652            }
8653         }
8654      }
8655   }
8656
8657   return NULL;
8658}
8659
8660
8661ir_rvalue *
8662ast_tcs_output_layout::hir(exec_list *instructions,
8663                           struct _mesa_glsl_parse_state *state)
8664{
8665   YYLTYPE loc = this->get_location();
8666
8667   unsigned num_vertices;
8668   if (!state->out_qualifier->vertices->
8669          process_qualifier_constant(state, "vertices", &num_vertices,
8670                                     false)) {
8671      /* return here to stop cascading incorrect error messages */
8672     return NULL;
8673   }
8674
8675   /* If any shader outputs occurred before this declaration and specified an
8676    * array size, make sure the size they specified is consistent with the
8677    * primitive type.
8678    */
8679   if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8680      _mesa_glsl_error(&loc, state,
8681                       "this tessellation control shader output layout "
8682                       "specifies %u vertices, but a previous output "
8683                       "is declared with size %u",
8684                       num_vertices, state->tcs_output_size);
8685      return NULL;
8686   }
8687
8688   state->tcs_output_vertices_specified = true;
8689
8690   /* If any shader outputs occurred before this declaration and did not
8691    * specify an array size, their size is determined now.
8692    */
8693   foreach_in_list (ir_instruction, node, instructions) {
8694      ir_variable *var = node->as_variable();
8695      if (var == NULL || var->data.mode != ir_var_shader_out)
8696         continue;
8697
8698      /* Note: Not all tessellation control shader output are arrays. */
8699      if (!var->type->is_unsized_array() || var->data.patch)
8700         continue;
8701
8702      if (var->data.max_array_access >= (int)num_vertices) {
8703         _mesa_glsl_error(&loc, state,
8704                          "this tessellation control shader output layout "
8705                          "specifies %u vertices, but an access to element "
8706                          "%u of output `%s' already exists", num_vertices,
8707                          var->data.max_array_access, var->name);
8708      } else {
8709         var->type = glsl_type::get_array_instance(var->type->fields.array,
8710                                                   num_vertices);
8711      }
8712   }
8713
8714   return NULL;
8715}
8716
8717
8718ir_rvalue *
8719ast_gs_input_layout::hir(exec_list *instructions,
8720                         struct _mesa_glsl_parse_state *state)
8721{
8722   YYLTYPE loc = this->get_location();
8723
8724   /* Should have been prevented by the parser. */
8725   assert(!state->gs_input_prim_type_specified
8726          || state->in_qualifier->prim_type == this->prim_type);
8727
8728   /* If any shader inputs occurred before this declaration and specified an
8729    * array size, make sure the size they specified is consistent with the
8730    * primitive type.
8731    */
8732   unsigned num_vertices = vertices_per_prim(this->prim_type);
8733   if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8734      _mesa_glsl_error(&loc, state,
8735                       "this geometry shader input layout implies %u vertices"
8736                       " per primitive, but a previous input is declared"
8737                       " with size %u", num_vertices, state->gs_input_size);
8738      return NULL;
8739   }
8740
8741   state->gs_input_prim_type_specified = true;
8742
8743   /* If any shader inputs occurred before this declaration and did not
8744    * specify an array size, their size is determined now.
8745    */
8746   foreach_in_list(ir_instruction, node, instructions) {
8747      ir_variable *var = node->as_variable();
8748      if (var == NULL || var->data.mode != ir_var_shader_in)
8749         continue;
8750
8751      /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8752       * array; skip it.
8753       */
8754
8755      if (var->type->is_unsized_array()) {
8756         if (var->data.max_array_access >= (int)num_vertices) {
8757            _mesa_glsl_error(&loc, state,
8758                             "this geometry shader input layout implies %u"
8759                             " vertices, but an access to element %u of input"
8760                             " `%s' already exists", num_vertices,
8761                             var->data.max_array_access, var->name);
8762         } else {
8763            var->type = glsl_type::get_array_instance(var->type->fields.array,
8764                                                      num_vertices);
8765         }
8766      }
8767   }
8768
8769   return NULL;
8770}
8771
8772
8773ir_rvalue *
8774ast_cs_input_layout::hir(exec_list *instructions,
8775                         struct _mesa_glsl_parse_state *state)
8776{
8777   YYLTYPE loc = this->get_location();
8778
8779   /* From the ARB_compute_shader specification:
8780    *
8781    *     If the local size of the shader in any dimension is greater
8782    *     than the maximum size supported by the implementation for that
8783    *     dimension, a compile-time error results.
8784    *
8785    * It is not clear from the spec how the error should be reported if
8786    * the total size of the work group exceeds
8787    * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8788    * report it at compile time as well.
8789    */
8790   GLuint64 total_invocations = 1;
8791   unsigned qual_local_size[3];
8792   for (int i = 0; i < 3; i++) {
8793
8794      char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8795                                             'x' + i);
8796      /* Infer a local_size of 1 for unspecified dimensions */
8797      if (this->local_size[i] == NULL) {
8798         qual_local_size[i] = 1;
8799      } else if (!this->local_size[i]->
8800             process_qualifier_constant(state, local_size_str,
8801                                        &qual_local_size[i], false)) {
8802         ralloc_free(local_size_str);
8803         return NULL;
8804      }
8805      ralloc_free(local_size_str);
8806
8807      if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8808         _mesa_glsl_error(&loc, state,
8809                          "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8810                          " (%d)", 'x' + i,
8811                          state->ctx->Const.MaxComputeWorkGroupSize[i]);
8812         break;
8813      }
8814      total_invocations *= qual_local_size[i];
8815      if (total_invocations >
8816          state->ctx->Const.MaxComputeWorkGroupInvocations) {
8817         _mesa_glsl_error(&loc, state,
8818                          "product of local_sizes exceeds "
8819                          "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8820                          state->ctx->Const.MaxComputeWorkGroupInvocations);
8821         break;
8822      }
8823   }
8824
8825   /* If any compute input layout declaration preceded this one, make sure it
8826    * was consistent with this one.
8827    */
8828   if (state->cs_input_local_size_specified) {
8829      for (int i = 0; i < 3; i++) {
8830         if (state->cs_input_local_size[i] != qual_local_size[i]) {
8831            _mesa_glsl_error(&loc, state,
8832                             "compute shader input layout does not match"
8833                             " previous declaration");
8834            return NULL;
8835         }
8836      }
8837   }
8838
8839   /* The ARB_compute_variable_group_size spec says:
8840    *
8841    *     If a compute shader including a *local_size_variable* qualifier also
8842    *     declares a fixed local group size using the *local_size_x*,
8843    *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8844    *     results
8845    */
8846   if (state->cs_input_local_size_variable_specified) {
8847      _mesa_glsl_error(&loc, state,
8848                       "compute shader can't include both a variable and a "
8849                       "fixed local group size");
8850      return NULL;
8851   }
8852
8853   state->cs_input_local_size_specified = true;
8854   for (int i = 0; i < 3; i++)
8855      state->cs_input_local_size[i] = qual_local_size[i];
8856
8857   /* We may now declare the built-in constant gl_WorkGroupSize (see
8858    * builtin_variable_generator::generate_constants() for why we didn't
8859    * declare it earlier).
8860    */
8861   ir_variable *var = new(state->symbols)
8862      ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8863   var->data.how_declared = ir_var_declared_implicitly;
8864   var->data.read_only = true;
8865   instructions->push_tail(var);
8866   state->symbols->add_variable(var);
8867   ir_constant_data data;
8868   memset(&data, 0, sizeof(data));
8869   for (int i = 0; i < 3; i++)
8870      data.u[i] = qual_local_size[i];
8871   var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8872   var->constant_initializer =
8873      new(var) ir_constant(glsl_type::uvec3_type, &data);
8874   var->data.has_initializer = true;
8875   var->data.is_implicit_initializer = false;
8876
8877   return NULL;
8878}
8879
8880
8881static void
8882detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8883                               exec_list *instructions)
8884{
8885   bool gl_FragColor_assigned = false;
8886   bool gl_FragData_assigned = false;
8887   bool gl_FragSecondaryColor_assigned = false;
8888   bool gl_FragSecondaryData_assigned = false;
8889   bool user_defined_fs_output_assigned = false;
8890   ir_variable *user_defined_fs_output = NULL;
8891
8892   /* It would be nice to have proper location information. */
8893   YYLTYPE loc;
8894   memset(&loc, 0, sizeof(loc));
8895
8896   foreach_in_list(ir_instruction, node, instructions) {
8897      ir_variable *var = node->as_variable();
8898
8899      if (!var || !var->data.assigned)
8900         continue;
8901
8902      if (strcmp(var->name, "gl_FragColor") == 0) {
8903         gl_FragColor_assigned = true;
8904         if (!var->constant_initializer && state->zero_init) {
8905            const ir_constant_data data = { { 0 } };
8906            var->data.has_initializer = true;
8907            var->data.is_implicit_initializer = true;
8908            var->constant_initializer = new(var) ir_constant(var->type, &data);
8909         }
8910      }
8911      else if (strcmp(var->name, "gl_FragData") == 0)
8912         gl_FragData_assigned = true;
8913        else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8914         gl_FragSecondaryColor_assigned = true;
8915        else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8916         gl_FragSecondaryData_assigned = true;
8917      else if (!is_gl_identifier(var->name)) {
8918         if (state->stage == MESA_SHADER_FRAGMENT &&
8919             var->data.mode == ir_var_shader_out) {
8920            user_defined_fs_output_assigned = true;
8921            user_defined_fs_output = var;
8922         }
8923      }
8924   }
8925
8926   /* From the GLSL 1.30 spec:
8927    *
8928    *     "If a shader statically assigns a value to gl_FragColor, it
8929    *      may not assign a value to any element of gl_FragData. If a
8930    *      shader statically writes a value to any element of
8931    *      gl_FragData, it may not assign a value to
8932    *      gl_FragColor. That is, a shader may assign values to either
8933    *      gl_FragColor or gl_FragData, but not both. Multiple shaders
8934    *      linked together must also consistently write just one of
8935    *      these variables.  Similarly, if user declared output
8936    *      variables are in use (statically assigned to), then the
8937    *      built-in variables gl_FragColor and gl_FragData may not be
8938    *      assigned to. These incorrect usages all generate compile
8939    *      time errors."
8940    */
8941   if (gl_FragColor_assigned && gl_FragData_assigned) {
8942      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8943                       "`gl_FragColor' and `gl_FragData'");
8944   } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8945      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8946                       "`gl_FragColor' and `%s'",
8947                       user_defined_fs_output->name);
8948   } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8949      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8950                       "`gl_FragSecondaryColorEXT' and"
8951                       " `gl_FragSecondaryDataEXT'");
8952   } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8953      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8954                       "`gl_FragColor' and"
8955                       " `gl_FragSecondaryDataEXT'");
8956   } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8957      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8958                       "`gl_FragData' and"
8959                       " `gl_FragSecondaryColorEXT'");
8960   } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8961      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8962                       "`gl_FragData' and `%s'",
8963                       user_defined_fs_output->name);
8964   }
8965
8966   if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8967       !state->EXT_blend_func_extended_enable) {
8968      _mesa_glsl_error(&loc, state,
8969                       "Dual source blending requires EXT_blend_func_extended");
8970   }
8971}
8972
8973static void
8974verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
8975{
8976   YYLTYPE loc;
8977   memset(&loc, 0, sizeof(loc));
8978
8979   /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
8980    *
8981    *   "A program will fail to compile or link if any shader
8982    *    or stage contains two or more functions with the same
8983    *    name if the name is associated with a subroutine type."
8984    */
8985
8986   for (int i = 0; i < state->num_subroutines; i++) {
8987      unsigned definitions = 0;
8988      ir_function *fn = state->subroutines[i];
8989      /* Calculate number of function definitions with the same name */
8990      foreach_in_list(ir_function_signature, sig, &fn->signatures) {
8991         if (sig->is_defined) {
8992            if (++definitions > 1) {
8993               _mesa_glsl_error(&loc, state,
8994                     "%s shader contains two or more function "
8995                     "definitions with name `%s', which is "
8996                     "associated with a subroutine type.\n",
8997                     _mesa_shader_stage_to_string(state->stage),
8998                     fn->name);
8999               return;
9000            }
9001         }
9002      }
9003   }
9004}
9005
9006static void
9007remove_per_vertex_blocks(exec_list *instructions,
9008                         _mesa_glsl_parse_state *state, ir_variable_mode mode)
9009{
9010   /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
9011    * if it exists in this shader type.
9012    */
9013   const glsl_type *per_vertex = NULL;
9014   switch (mode) {
9015   case ir_var_shader_in:
9016      if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
9017         per_vertex = gl_in->get_interface_type();
9018      break;
9019   case ir_var_shader_out:
9020      if (ir_variable *gl_Position =
9021          state->symbols->get_variable("gl_Position")) {
9022         per_vertex = gl_Position->get_interface_type();
9023      }
9024      break;
9025   default:
9026      assert(!"Unexpected mode");
9027      break;
9028   }
9029
9030   /* If we didn't find a built-in gl_PerVertex interface block, then we don't
9031    * need to do anything.
9032    */
9033   if (per_vertex == NULL)
9034      return;
9035
9036   /* If the interface block is used by the shader, then we don't need to do
9037    * anything.
9038    */
9039   interface_block_usage_visitor v(mode, per_vertex);
9040   v.run(instructions);
9041   if (v.usage_found())
9042      return;
9043
9044   /* Remove any ir_variable declarations that refer to the interface block
9045    * we're removing.
9046    */
9047   foreach_in_list_safe(ir_instruction, node, instructions) {
9048      ir_variable *const var = node->as_variable();
9049      if (var != NULL && var->get_interface_type() == per_vertex &&
9050          var->data.mode == mode) {
9051         state->symbols->disable_variable(var->name);
9052         var->remove();
9053      }
9054   }
9055}
9056
9057ir_rvalue *
9058ast_warnings_toggle::hir(exec_list *,
9059                         struct _mesa_glsl_parse_state *state)
9060{
9061   state->warnings_enabled = enable;
9062   return NULL;
9063}
9064