float64.glsl revision 7e102996
17e102996Smaya/*
27e102996Smaya * The implementations contained in this file are heavily based on the
37e102996Smaya * implementations found in the Berkeley SoftFloat library. As such, they are
47e102996Smaya * licensed under the same 3-clause BSD license:
57e102996Smaya *
67e102996Smaya * License for Berkeley SoftFloat Release 3e
77e102996Smaya *
87e102996Smaya * John R. Hauser
97e102996Smaya * 2018 January 20
107e102996Smaya *
117e102996Smaya * The following applies to the whole of SoftFloat Release 3e as well as to
127e102996Smaya * each source file individually.
137e102996Smaya *
147e102996Smaya * Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of the
157e102996Smaya * University of California.  All rights reserved.
167e102996Smaya *
177e102996Smaya * Redistribution and use in source and binary forms, with or without
187e102996Smaya * modification, are permitted provided that the following conditions are met:
197e102996Smaya *
207e102996Smaya *  1. Redistributions of source code must retain the above copyright notice,
217e102996Smaya *     this list of conditions, and the following disclaimer.
227e102996Smaya *
237e102996Smaya *  2. Redistributions in binary form must reproduce the above copyright
247e102996Smaya *     notice, this list of conditions, and the following disclaimer in the
257e102996Smaya *     documentation and/or other materials provided with the distribution.
267e102996Smaya *
277e102996Smaya *  3. Neither the name of the University nor the names of its contributors
287e102996Smaya *     may be used to endorse or promote products derived from this software
297e102996Smaya *     without specific prior written permission.
307e102996Smaya *
317e102996Smaya * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
327e102996Smaya * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
337e102996Smaya * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
347e102996Smaya * DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
357e102996Smaya * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
367e102996Smaya * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
377e102996Smaya * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
387e102996Smaya * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
397e102996Smaya * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
407e102996Smaya * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
417e102996Smaya*/
427e102996Smaya
437e102996Smaya#version 430
447e102996Smaya#extension GL_ARB_gpu_shader_int64 : enable
457e102996Smaya#extension GL_ARB_shader_bit_encoding : enable
467e102996Smaya#extension GL_EXT_shader_integer_mix : enable
477e102996Smaya#extension GL_MESA_shader_integer_functions : enable
487e102996Smaya
497e102996Smaya#pragma warning(off)
507e102996Smaya
517e102996Smaya/* Software IEEE floating-point rounding mode.
527e102996Smaya * GLSL spec section "4.7.1 Range and Precision":
537e102996Smaya * The rounding mode cannot be set and is undefined.
547e102996Smaya * But here, we are able to define the rounding mode at the compilation time.
557e102996Smaya */
567e102996Smaya#define FLOAT_ROUND_NEAREST_EVEN    0
577e102996Smaya#define FLOAT_ROUND_TO_ZERO         1
587e102996Smaya#define FLOAT_ROUND_DOWN            2
597e102996Smaya#define FLOAT_ROUND_UP              3
607e102996Smaya#define FLOAT_ROUNDING_MODE         FLOAT_ROUND_NEAREST_EVEN
617e102996Smaya
627e102996Smaya/* Absolute value of a Float64 :
637e102996Smaya * Clear the sign bit
647e102996Smaya */
657e102996Smayauint64_t
667e102996Smaya__fabs64(uint64_t __a)
677e102996Smaya{
687e102996Smaya   uvec2 a = unpackUint2x32(__a);
697e102996Smaya   a.y &= 0x7FFFFFFFu;
707e102996Smaya   return packUint2x32(a);
717e102996Smaya}
727e102996Smaya
737e102996Smaya/* Returns 1 if the double-precision floating-point value `a' is a NaN;
747e102996Smaya * otherwise returns 0.
757e102996Smaya */
767e102996Smayabool
777e102996Smaya__is_nan(uint64_t __a)
787e102996Smaya{
797e102996Smaya   uvec2 a = unpackUint2x32(__a);
807e102996Smaya   return (0xFFE00000u <= (a.y<<1)) &&
817e102996Smaya      ((a.x != 0u) || ((a.y & 0x000FFFFFu) != 0u));
827e102996Smaya}
837e102996Smaya
847e102996Smaya/* Negate value of a Float64 :
857e102996Smaya * Toggle the sign bit
867e102996Smaya */
877e102996Smayauint64_t
887e102996Smaya__fneg64(uint64_t __a)
897e102996Smaya{
907e102996Smaya   uvec2 a = unpackUint2x32(__a);
917e102996Smaya   uint t = a.y;
927e102996Smaya
937e102996Smaya   t ^= (1u << 31);
947e102996Smaya   a.y = mix(t, a.y, __is_nan(__a));
957e102996Smaya   return packUint2x32(a);
967e102996Smaya}
977e102996Smaya
987e102996Smayauint64_t
997e102996Smaya__fsign64(uint64_t __a)
1007e102996Smaya{
1017e102996Smaya   uvec2 a = unpackUint2x32(__a);
1027e102996Smaya   uvec2 retval;
1037e102996Smaya   retval.x = 0u;
1047e102996Smaya   retval.y = mix((a.y & 0x80000000u) | 0x3FF00000u, 0u, (a.y << 1 | a.x) == 0u);
1057e102996Smaya   return packUint2x32(retval);
1067e102996Smaya}
1077e102996Smaya
1087e102996Smaya/* Returns the fraction bits of the double-precision floating-point value `a'.*/
1097e102996Smayauint
1107e102996Smaya__extractFloat64FracLo(uint64_t a)
1117e102996Smaya{
1127e102996Smaya   return unpackUint2x32(a).x;
1137e102996Smaya}
1147e102996Smaya
1157e102996Smayauint
1167e102996Smaya__extractFloat64FracHi(uint64_t a)
1177e102996Smaya{
1187e102996Smaya   return unpackUint2x32(a).y & 0x000FFFFFu;
1197e102996Smaya}
1207e102996Smaya
1217e102996Smaya/* Returns the exponent bits of the double-precision floating-point value `a'.*/
1227e102996Smayaint
1237e102996Smaya__extractFloat64Exp(uint64_t __a)
1247e102996Smaya{
1257e102996Smaya   uvec2 a = unpackUint2x32(__a);
1267e102996Smaya   return int((a.y>>20) & 0x7FFu);
1277e102996Smaya}
1287e102996Smaya
1297e102996Smayabool
1307e102996Smaya__feq64_nonnan(uint64_t __a, uint64_t __b)
1317e102996Smaya{
1327e102996Smaya   uvec2 a = unpackUint2x32(__a);
1337e102996Smaya   uvec2 b = unpackUint2x32(__b);
1347e102996Smaya   return (a.x == b.x) &&
1357e102996Smaya          ((a.y == b.y) || ((a.x == 0u) && (((a.y | b.y)<<1) == 0u)));
1367e102996Smaya}
1377e102996Smaya
1387e102996Smaya/* Returns true if the double-precision floating-point value `a' is equal to the
1397e102996Smaya * corresponding value `b', and false otherwise.  The comparison is performed
1407e102996Smaya * according to the IEEE Standard for Floating-Point Arithmetic.
1417e102996Smaya */
1427e102996Smayabool
1437e102996Smaya__feq64(uint64_t a, uint64_t b)
1447e102996Smaya{
1457e102996Smaya   if (__is_nan(a) || __is_nan(b))
1467e102996Smaya      return false;
1477e102996Smaya
1487e102996Smaya   return __feq64_nonnan(a, b);
1497e102996Smaya}
1507e102996Smaya
1517e102996Smaya/* Returns true if the double-precision floating-point value `a' is not equal
1527e102996Smaya * to the corresponding value `b', and false otherwise.  The comparison is
1537e102996Smaya * performed according to the IEEE Standard for Floating-Point Arithmetic.
1547e102996Smaya */
1557e102996Smayabool
1567e102996Smaya__fne64(uint64_t a, uint64_t b)
1577e102996Smaya{
1587e102996Smaya   if (__is_nan(a) || __is_nan(b))
1597e102996Smaya      return true;
1607e102996Smaya
1617e102996Smaya   return !__feq64_nonnan(a, b);
1627e102996Smaya}
1637e102996Smaya
1647e102996Smaya/* Returns the sign bit of the double-precision floating-point value `a'.*/
1657e102996Smayauint
1667e102996Smaya__extractFloat64Sign(uint64_t a)
1677e102996Smaya{
1687e102996Smaya   return unpackUint2x32(a).y >> 31;
1697e102996Smaya}
1707e102996Smaya
1717e102996Smaya/* Returns true if the 64-bit value formed by concatenating `a0' and `a1' is less
1727e102996Smaya * than the 64-bit value formed by concatenating `b0' and `b1'.  Otherwise,
1737e102996Smaya * returns false.
1747e102996Smaya */
1757e102996Smayabool
1767e102996Smayalt64(uint a0, uint a1, uint b0, uint b1)
1777e102996Smaya{
1787e102996Smaya   return (a0 < b0) || ((a0 == b0) && (a1 < b1));
1797e102996Smaya}
1807e102996Smaya
1817e102996Smayabool
1827e102996Smaya__flt64_nonnan(uint64_t __a, uint64_t __b)
1837e102996Smaya{
1847e102996Smaya   uvec2 a = unpackUint2x32(__a);
1857e102996Smaya   uvec2 b = unpackUint2x32(__b);
1867e102996Smaya   uint aSign = __extractFloat64Sign(__a);
1877e102996Smaya   uint bSign = __extractFloat64Sign(__b);
1887e102996Smaya   if (aSign != bSign)
1897e102996Smaya      return (aSign != 0u) && ((((a.y | b.y)<<1) | a.x | b.x) != 0u);
1907e102996Smaya
1917e102996Smaya   return mix(lt64(a.y, a.x, b.y, b.x), lt64(b.y, b.x, a.y, a.x), aSign != 0u);
1927e102996Smaya}
1937e102996Smaya
1947e102996Smaya/* Returns true if the double-precision floating-point value `a' is less than
1957e102996Smaya * the corresponding value `b', and false otherwise.  The comparison is performed
1967e102996Smaya * according to the IEEE Standard for Floating-Point Arithmetic.
1977e102996Smaya */
1987e102996Smayabool
1997e102996Smaya__flt64(uint64_t a, uint64_t b)
2007e102996Smaya{
2017e102996Smaya   if (__is_nan(a) || __is_nan(b))
2027e102996Smaya      return false;
2037e102996Smaya
2047e102996Smaya   return __flt64_nonnan(a, b);
2057e102996Smaya}
2067e102996Smaya
2077e102996Smaya/* Returns true if the double-precision floating-point value `a' is greater
2087e102996Smaya * than or equal to * the corresponding value `b', and false otherwise.  The
2097e102996Smaya * comparison is performed * according to the IEEE Standard for Floating-Point
2107e102996Smaya * Arithmetic.
2117e102996Smaya */
2127e102996Smayabool
2137e102996Smaya__fge64(uint64_t a, uint64_t b)
2147e102996Smaya{
2157e102996Smaya   if (__is_nan(a) || __is_nan(b))
2167e102996Smaya      return false;
2177e102996Smaya
2187e102996Smaya   return !__flt64_nonnan(a, b);
2197e102996Smaya}
2207e102996Smaya
2217e102996Smaya/* Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
2227e102996Smaya * value formed by concatenating `b0' and `b1'.  Addition is modulo 2^64, so
2237e102996Smaya * any carry out is lost.  The result is broken into two 32-bit pieces which
2247e102996Smaya * are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
2257e102996Smaya */
2267e102996Smayavoid
2277e102996Smaya__add64(uint a0, uint a1, uint b0, uint b1,
2287e102996Smaya        out uint z0Ptr,
2297e102996Smaya        out uint z1Ptr)
2307e102996Smaya{
2317e102996Smaya   uint z1 = a1 + b1;
2327e102996Smaya   z1Ptr = z1;
2337e102996Smaya   z0Ptr = a0 + b0 + uint(z1 < a1);
2347e102996Smaya}
2357e102996Smaya
2367e102996Smaya
2377e102996Smaya/* Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
2387e102996Smaya * 64-bit value formed by concatenating `a0' and `a1'.  Subtraction is modulo
2397e102996Smaya * 2^64, so any borrow out (carry out) is lost.  The result is broken into two
2407e102996Smaya * 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
2417e102996Smaya * `z1Ptr'.
2427e102996Smaya */
2437e102996Smayavoid
2447e102996Smaya__sub64(uint a0, uint a1, uint b0, uint b1,
2457e102996Smaya        out uint z0Ptr,
2467e102996Smaya        out uint z1Ptr)
2477e102996Smaya{
2487e102996Smaya   z1Ptr = a1 - b1;
2497e102996Smaya   z0Ptr = a0 - b0 - uint(a1 < b1);
2507e102996Smaya}
2517e102996Smaya
2527e102996Smaya/* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
2537e102996Smaya * number of bits given in `count'.  If any nonzero bits are shifted off, they
2547e102996Smaya * are "jammed" into the least significant bit of the result by setting the
2557e102996Smaya * least significant bit to 1.  The value of `count' can be arbitrarily large;
2567e102996Smaya * in particular, if `count' is greater than 64, the result will be either 0
2577e102996Smaya * or 1, depending on whether the concatenation of `a0' and `a1' is zero or
2587e102996Smaya * nonzero.  The result is broken into two 32-bit pieces which are stored at
2597e102996Smaya * the locations pointed to by `z0Ptr' and `z1Ptr'.
2607e102996Smaya */
2617e102996Smayavoid
2627e102996Smaya__shift64RightJamming(uint a0,
2637e102996Smaya                      uint a1,
2647e102996Smaya                      int count,
2657e102996Smaya                      out uint z0Ptr,
2667e102996Smaya                      out uint z1Ptr)
2677e102996Smaya{
2687e102996Smaya   uint z0;
2697e102996Smaya   uint z1;
2707e102996Smaya   int negCount = (-count) & 31;
2717e102996Smaya
2727e102996Smaya   z0 = mix(0u, a0, count == 0);
2737e102996Smaya   z0 = mix(z0, (a0 >> count), count < 32);
2747e102996Smaya
2757e102996Smaya   z1 = uint((a0 | a1) != 0u); /* count >= 64 */
2767e102996Smaya   uint z1_lt64 = (a0>>(count & 31)) | uint(((a0<<negCount) | a1) != 0u);
2777e102996Smaya   z1 = mix(z1, z1_lt64, count < 64);
2787e102996Smaya   z1 = mix(z1, (a0 | uint(a1 != 0u)), count == 32);
2797e102996Smaya   uint z1_lt32 = (a0<<negCount) | (a1>>count) | uint ((a1<<negCount) != 0u);
2807e102996Smaya   z1 = mix(z1, z1_lt32, count < 32);
2817e102996Smaya   z1 = mix(z1, a1, count == 0);
2827e102996Smaya   z1Ptr = z1;
2837e102996Smaya   z0Ptr = z0;
2847e102996Smaya}
2857e102996Smaya
2867e102996Smaya/* Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
2877e102996Smaya * by 32 _plus_ the number of bits given in `count'.  The shifted result is
2887e102996Smaya * at most 64 nonzero bits; these are broken into two 32-bit pieces which are
2897e102996Smaya * stored at the locations pointed to by `z0Ptr' and `z1Ptr'.  The bits shifted
2907e102996Smaya * off form a third 32-bit result as follows:  The _last_ bit shifted off is
2917e102996Smaya * the most-significant bit of the extra result, and the other 31 bits of the
2927e102996Smaya * extra result are all zero if and only if _all_but_the_last_ bits shifted off
2937e102996Smaya * were all zero.  This extra result is stored in the location pointed to by
2947e102996Smaya * `z2Ptr'.  The value of `count' can be arbitrarily large.
2957e102996Smaya *     (This routine makes more sense if `a0', `a1', and `a2' are considered
2967e102996Smaya * to form a fixed-point value with binary point between `a1' and `a2'.  This
2977e102996Smaya * fixed-point value is shifted right by the number of bits given in `count',
2987e102996Smaya * and the integer part of the result is returned at the locations pointed to
2997e102996Smaya * by `z0Ptr' and `z1Ptr'.  The fractional part of the result may be slightly
3007e102996Smaya * corrupted as described above, and is returned at the location pointed to by
3017e102996Smaya * `z2Ptr'.)
3027e102996Smaya */
3037e102996Smayavoid
3047e102996Smaya__shift64ExtraRightJamming(uint a0, uint a1, uint a2,
3057e102996Smaya                           int count,
3067e102996Smaya                           out uint z0Ptr,
3077e102996Smaya                           out uint z1Ptr,
3087e102996Smaya                           out uint z2Ptr)
3097e102996Smaya{
3107e102996Smaya   uint z0 = 0u;
3117e102996Smaya   uint z1;
3127e102996Smaya   uint z2;
3137e102996Smaya   int negCount = (-count) & 31;
3147e102996Smaya
3157e102996Smaya   z2 = mix(uint(a0 != 0u), a0, count == 64);
3167e102996Smaya   z2 = mix(z2, a0 << negCount, count < 64);
3177e102996Smaya   z2 = mix(z2, a1 << negCount, count < 32);
3187e102996Smaya
3197e102996Smaya   z1 = mix(0u, (a0 >> (count & 31)), count < 64);
3207e102996Smaya   z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
3217e102996Smaya
3227e102996Smaya   a2 = mix(a2 | a1, a2, count < 32);
3237e102996Smaya   z0 = mix(z0, a0 >> count, count < 32);
3247e102996Smaya   z2 |= uint(a2 != 0u);
3257e102996Smaya
3267e102996Smaya   z0 = mix(z0, 0u, (count == 32));
3277e102996Smaya   z1 = mix(z1, a0, (count == 32));
3287e102996Smaya   z2 = mix(z2, a1, (count == 32));
3297e102996Smaya   z0 = mix(z0, a0, (count == 0));
3307e102996Smaya   z1 = mix(z1, a1, (count == 0));
3317e102996Smaya   z2 = mix(z2, a2, (count == 0));
3327e102996Smaya   z2Ptr = z2;
3337e102996Smaya   z1Ptr = z1;
3347e102996Smaya   z0Ptr = z0;
3357e102996Smaya}
3367e102996Smaya
3377e102996Smaya/* Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
3387e102996Smaya * number of bits given in `count'.  Any bits shifted off are lost.  The value
3397e102996Smaya * of `count' must be less than 32.  The result is broken into two 32-bit
3407e102996Smaya * pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
3417e102996Smaya */
3427e102996Smayavoid
3437e102996Smaya__shortShift64Left(uint a0, uint a1,
3447e102996Smaya                   int count,
3457e102996Smaya                   out uint z0Ptr,
3467e102996Smaya                   out uint z1Ptr)
3477e102996Smaya{
3487e102996Smaya   z1Ptr = a1<<count;
3497e102996Smaya   z0Ptr = mix((a0 << count | (a1 >> ((-count) & 31))), a0, count == 0);
3507e102996Smaya}
3517e102996Smaya
3527e102996Smaya/* Packs the sign `zSign', the exponent `zExp', and the significand formed by
3537e102996Smaya * the concatenation of `zFrac0' and `zFrac1' into a double-precision floating-
3547e102996Smaya * point value, returning the result.  After being shifted into the proper
3557e102996Smaya * positions, the three fields `zSign', `zExp', and `zFrac0' are simply added
3567e102996Smaya * together to form the most significant 32 bits of the result.  This means
3577e102996Smaya * that any integer portion of `zFrac0' will be added into the exponent.  Since
3587e102996Smaya * a properly normalized significand will have an integer portion equal to 1,
3597e102996Smaya * the `zExp' input should be 1 less than the desired result exponent whenever
3607e102996Smaya * `zFrac0' and `zFrac1' concatenated form a complete, normalized significand.
3617e102996Smaya */
3627e102996Smayauint64_t
3637e102996Smaya__packFloat64(uint zSign, int zExp, uint zFrac0, uint zFrac1)
3647e102996Smaya{
3657e102996Smaya   uvec2 z;
3667e102996Smaya
3677e102996Smaya   z.y = (zSign << 31) + (uint(zExp) << 20) + zFrac0;
3687e102996Smaya   z.x = zFrac1;
3697e102996Smaya   return packUint2x32(z);
3707e102996Smaya}
3717e102996Smaya
3727e102996Smaya/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
3737e102996Smaya * and extended significand formed by the concatenation of `zFrac0', `zFrac1',
3747e102996Smaya * and `zFrac2', and returns the proper double-precision floating-point value
3757e102996Smaya * corresponding to the abstract input.  Ordinarily, the abstract value is
3767e102996Smaya * simply rounded and packed into the double-precision format, with the inexact
3777e102996Smaya * exception raised if the abstract input cannot be represented exactly.
3787e102996Smaya * However, if the abstract value is too large, the overflow and inexact
3797e102996Smaya * exceptions are raised and an infinity or maximal finite value is returned.
3807e102996Smaya * If the abstract value is too small, the input value is rounded to a
3817e102996Smaya * subnormal number, and the underflow and inexact exceptions are raised if the
3827e102996Smaya * abstract input cannot be represented exactly as a subnormal double-precision
3837e102996Smaya * floating-point number.
3847e102996Smaya *     The input significand must be normalized or smaller.  If the input
3857e102996Smaya * significand is not normalized, `zExp' must be 0; in that case, the result
3867e102996Smaya * returned is a subnormal number, and it must not require rounding.  In the
3877e102996Smaya * usual case that the input significand is normalized, `zExp' must be 1 less
3887e102996Smaya * than the "true" floating-point exponent.  The handling of underflow and
3897e102996Smaya * overflow follows the IEEE Standard for Floating-Point Arithmetic.
3907e102996Smaya */
3917e102996Smayauint64_t
3927e102996Smaya__roundAndPackFloat64(uint zSign,
3937e102996Smaya                      int zExp,
3947e102996Smaya                      uint zFrac0,
3957e102996Smaya                      uint zFrac1,
3967e102996Smaya                      uint zFrac2)
3977e102996Smaya{
3987e102996Smaya   bool roundNearestEven;
3997e102996Smaya   bool increment;
4007e102996Smaya
4017e102996Smaya   roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
4027e102996Smaya   increment = int(zFrac2) < 0;
4037e102996Smaya   if (!roundNearestEven) {
4047e102996Smaya      if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
4057e102996Smaya         increment = false;
4067e102996Smaya      } else {
4077e102996Smaya         if (zSign != 0u) {
4087e102996Smaya            increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
4097e102996Smaya               (zFrac2 != 0u);
4107e102996Smaya         } else {
4117e102996Smaya            increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
4127e102996Smaya               (zFrac2 != 0u);
4137e102996Smaya         }
4147e102996Smaya      }
4157e102996Smaya   }
4167e102996Smaya   if (0x7FD <= zExp) {
4177e102996Smaya      if ((0x7FD < zExp) ||
4187e102996Smaya         ((zExp == 0x7FD) &&
4197e102996Smaya            (0x001FFFFFu == zFrac0 && 0xFFFFFFFFu == zFrac1) &&
4207e102996Smaya               increment)) {
4217e102996Smaya         if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) ||
4227e102996Smaya            ((zSign != 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)) ||
4237e102996Smaya               ((zSign == 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN))) {
4247e102996Smaya            return __packFloat64(zSign, 0x7FE, 0x000FFFFFu, 0xFFFFFFFFu);
4257e102996Smaya         }
4267e102996Smaya         return __packFloat64(zSign, 0x7FF, 0u, 0u);
4277e102996Smaya      }
4287e102996Smaya      if (zExp < 0) {
4297e102996Smaya         __shift64ExtraRightJamming(
4307e102996Smaya            zFrac0, zFrac1, zFrac2, -zExp, zFrac0, zFrac1, zFrac2);
4317e102996Smaya         zExp = 0;
4327e102996Smaya         if (roundNearestEven) {
4337e102996Smaya            increment = zFrac2 < 0u;
4347e102996Smaya         } else {
4357e102996Smaya            if (zSign != 0u) {
4367e102996Smaya               increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
4377e102996Smaya                  (zFrac2 != 0u);
4387e102996Smaya            } else {
4397e102996Smaya               increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
4407e102996Smaya                  (zFrac2 != 0u);
4417e102996Smaya            }
4427e102996Smaya         }
4437e102996Smaya      }
4447e102996Smaya   }
4457e102996Smaya   if (increment) {
4467e102996Smaya      __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
4477e102996Smaya      zFrac1 &= ~((zFrac2 + uint(zFrac2 == 0u)) & uint(roundNearestEven));
4487e102996Smaya   } else {
4497e102996Smaya      zExp = mix(zExp, 0, (zFrac0 | zFrac1) == 0u);
4507e102996Smaya   }
4517e102996Smaya   return __packFloat64(zSign, zExp, zFrac0, zFrac1);
4527e102996Smaya}
4537e102996Smaya
4547e102996Smayauint64_t
4557e102996Smaya__roundAndPackUInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
4567e102996Smaya{
4577e102996Smaya   bool roundNearestEven;
4587e102996Smaya   bool increment;
4597e102996Smaya   uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
4607e102996Smaya
4617e102996Smaya   roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
4627e102996Smaya
4637e102996Smaya   if (zFrac2 >= 0x80000000u)
4647e102996Smaya      increment = false;
4657e102996Smaya
4667e102996Smaya   if (!roundNearestEven) {
4677e102996Smaya      if (zSign != 0u) {
4687e102996Smaya         if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && (zFrac2 != 0u)) {
4697e102996Smaya            increment = false;
4707e102996Smaya         }
4717e102996Smaya      } else {
4727e102996Smaya         increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
4737e102996Smaya            (zFrac2 != 0u);
4747e102996Smaya      }
4757e102996Smaya   }
4767e102996Smaya
4777e102996Smaya   if (increment) {
4787e102996Smaya      __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
4797e102996Smaya      if ((zFrac0 | zFrac1) != 0u)
4807e102996Smaya         zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
4817e102996Smaya   }
4827e102996Smaya   return mix(packUint2x32(uvec2(zFrac1, zFrac0)), default_nan,
4837e102996Smaya              (zSign !=0u && (zFrac0 | zFrac1) != 0u));
4847e102996Smaya}
4857e102996Smaya
4867e102996Smayaint64_t
4877e102996Smaya__roundAndPackInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
4887e102996Smaya{
4897e102996Smaya   bool roundNearestEven;
4907e102996Smaya   bool increment;
4917e102996Smaya   int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
4927e102996Smaya   int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
4937e102996Smaya
4947e102996Smaya   roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
4957e102996Smaya
4967e102996Smaya   if (zFrac2 >= 0x80000000u)
4977e102996Smaya      increment = false;
4987e102996Smaya
4997e102996Smaya   if (!roundNearestEven) {
5007e102996Smaya      if (zSign != 0u) {
5017e102996Smaya         increment = ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
5027e102996Smaya            (zFrac2 != 0u));
5037e102996Smaya      } else {
5047e102996Smaya         increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
5057e102996Smaya            (zFrac2 != 0u);
5067e102996Smaya      }
5077e102996Smaya   }
5087e102996Smaya
5097e102996Smaya   if (increment) {
5107e102996Smaya      __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
5117e102996Smaya      if ((zFrac0 | zFrac1) != 0u)
5127e102996Smaya         zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
5137e102996Smaya   }
5147e102996Smaya
5157e102996Smaya   int64_t absZ = mix(int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
5167e102996Smaya                      -int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
5177e102996Smaya                      (zSign != 0u));
5187e102996Smaya   int64_t nan = mix(default_PosNaN, default_NegNaN, bool(zSign));
5197e102996Smaya   return mix(absZ, nan, bool(zSign ^ uint(absZ < 0)) && bool(absZ));
5207e102996Smaya}
5217e102996Smaya
5227e102996Smaya/* Returns the number of leading 0 bits before the most-significant 1 bit of
5237e102996Smaya * `a'.  If `a' is zero, 32 is returned.
5247e102996Smaya */
5257e102996Smayaint
5267e102996Smaya__countLeadingZeros32(uint a)
5277e102996Smaya{
5287e102996Smaya   int shiftCount;
5297e102996Smaya   shiftCount = mix(31 - findMSB(a), 32, a == 0u);
5307e102996Smaya   return shiftCount;
5317e102996Smaya}
5327e102996Smaya
5337e102996Smaya/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
5347e102996Smaya * and significand formed by the concatenation of `zSig0' and `zSig1', and
5357e102996Smaya * returns the proper double-precision floating-point value corresponding
5367e102996Smaya * to the abstract input.  This routine is just like `__roundAndPackFloat64'
5377e102996Smaya * except that the input significand has fewer bits and does not have to be
5387e102996Smaya * normalized.  In all cases, `zExp' must be 1 less than the "true" floating-
5397e102996Smaya * point exponent.
5407e102996Smaya */
5417e102996Smayauint64_t
5427e102996Smaya__normalizeRoundAndPackFloat64(uint zSign,
5437e102996Smaya                               int zExp,
5447e102996Smaya                               uint zFrac0,
5457e102996Smaya                               uint zFrac1)
5467e102996Smaya{
5477e102996Smaya   int shiftCount;
5487e102996Smaya   uint zFrac2;
5497e102996Smaya
5507e102996Smaya   if (zFrac0 == 0u) {
5517e102996Smaya      zExp -= 32;
5527e102996Smaya      zFrac0 = zFrac1;
5537e102996Smaya      zFrac1 = 0u;
5547e102996Smaya   }
5557e102996Smaya
5567e102996Smaya   shiftCount = __countLeadingZeros32(zFrac0) - 11;
5577e102996Smaya   if (0 <= shiftCount) {
5587e102996Smaya      zFrac2 = 0u;
5597e102996Smaya      __shortShift64Left(zFrac0, zFrac1, shiftCount, zFrac0, zFrac1);
5607e102996Smaya   } else {
5617e102996Smaya      __shift64ExtraRightJamming(
5627e102996Smaya         zFrac0, zFrac1, 0u, -shiftCount, zFrac0, zFrac1, zFrac2);
5637e102996Smaya   }
5647e102996Smaya   zExp -= shiftCount;
5657e102996Smaya   return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
5667e102996Smaya}
5677e102996Smaya
5687e102996Smaya/* Takes two double-precision floating-point values `a' and `b', one of which
5697e102996Smaya * is a NaN, and returns the appropriate NaN result.
5707e102996Smaya */
5717e102996Smayauint64_t
5727e102996Smaya__propagateFloat64NaN(uint64_t __a, uint64_t __b)
5737e102996Smaya{
5747e102996Smaya   bool aIsNaN = __is_nan(__a);
5757e102996Smaya   bool bIsNaN = __is_nan(__b);
5767e102996Smaya   uvec2 a = unpackUint2x32(__a);
5777e102996Smaya   uvec2 b = unpackUint2x32(__b);
5787e102996Smaya   a.y |= 0x00080000u;
5797e102996Smaya   b.y |= 0x00080000u;
5807e102996Smaya
5817e102996Smaya   return packUint2x32(mix(b, mix(a, b, bvec2(bIsNaN, bIsNaN)), bvec2(aIsNaN, aIsNaN)));
5827e102996Smaya}
5837e102996Smaya
5847e102996Smaya/* Returns the result of adding the double-precision floating-point values
5857e102996Smaya * `a' and `b'.  The operation is performed according to the IEEE Standard for
5867e102996Smaya * Floating-Point Arithmetic.
5877e102996Smaya */
5887e102996Smayauint64_t
5897e102996Smaya__fadd64(uint64_t a, uint64_t b)
5907e102996Smaya{
5917e102996Smaya   uint aSign = __extractFloat64Sign(a);
5927e102996Smaya   uint bSign = __extractFloat64Sign(b);
5937e102996Smaya   uint aFracLo = __extractFloat64FracLo(a);
5947e102996Smaya   uint aFracHi = __extractFloat64FracHi(a);
5957e102996Smaya   uint bFracLo = __extractFloat64FracLo(b);
5967e102996Smaya   uint bFracHi = __extractFloat64FracHi(b);
5977e102996Smaya   int aExp = __extractFloat64Exp(a);
5987e102996Smaya   int bExp = __extractFloat64Exp(b);
5997e102996Smaya   uint zFrac0 = 0u;
6007e102996Smaya   uint zFrac1 = 0u;
6017e102996Smaya   int expDiff = aExp - bExp;
6027e102996Smaya   if (aSign == bSign) {
6037e102996Smaya      uint zFrac2 = 0u;
6047e102996Smaya      int zExp;
6057e102996Smaya      bool orig_exp_diff_is_zero = (expDiff == 0);
6067e102996Smaya
6077e102996Smaya      if (orig_exp_diff_is_zero) {
6087e102996Smaya         if (aExp == 0x7FF) {
6097e102996Smaya            bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u;
6107e102996Smaya            return mix(a, __propagateFloat64NaN(a, b), propagate);
6117e102996Smaya         }
6127e102996Smaya         __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
6137e102996Smaya         if (aExp == 0)
6147e102996Smaya            return __packFloat64(aSign, 0, zFrac0, zFrac1);
6157e102996Smaya         zFrac2 = 0u;
6167e102996Smaya         zFrac0 |= 0x00200000u;
6177e102996Smaya         zExp = aExp;
6187e102996Smaya         __shift64ExtraRightJamming(
6197e102996Smaya            zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
6207e102996Smaya      } else if (0 < expDiff) {
6217e102996Smaya         if (aExp == 0x7FF) {
6227e102996Smaya            bool propagate = (aFracHi | aFracLo) != 0u;
6237e102996Smaya            return mix(a, __propagateFloat64NaN(a, b), propagate);
6247e102996Smaya         }
6257e102996Smaya
6267e102996Smaya         expDiff = mix(expDiff, expDiff - 1, bExp == 0);
6277e102996Smaya         bFracHi = mix(bFracHi | 0x00100000u, bFracHi, bExp == 0);
6287e102996Smaya         __shift64ExtraRightJamming(
6297e102996Smaya            bFracHi, bFracLo, 0u, expDiff, bFracHi, bFracLo, zFrac2);
6307e102996Smaya         zExp = aExp;
6317e102996Smaya      } else if (expDiff < 0) {
6327e102996Smaya         if (bExp == 0x7FF) {
6337e102996Smaya            bool propagate = (bFracHi | bFracLo) != 0u;
6347e102996Smaya            return mix(__packFloat64(aSign, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
6357e102996Smaya         }
6367e102996Smaya         expDiff = mix(expDiff, expDiff + 1, aExp == 0);
6377e102996Smaya         aFracHi = mix(aFracHi | 0x00100000u, aFracHi, aExp == 0);
6387e102996Smaya         __shift64ExtraRightJamming(
6397e102996Smaya            aFracHi, aFracLo, 0u, - expDiff, aFracHi, aFracLo, zFrac2);
6407e102996Smaya         zExp = bExp;
6417e102996Smaya      }
6427e102996Smaya      if (!orig_exp_diff_is_zero) {
6437e102996Smaya         aFracHi |= 0x00100000u;
6447e102996Smaya         __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
6457e102996Smaya         --zExp;
6467e102996Smaya         if (!(zFrac0 < 0x00200000u)) {
6477e102996Smaya            __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
6487e102996Smaya            ++zExp;
6497e102996Smaya         }
6507e102996Smaya      }
6517e102996Smaya      return __roundAndPackFloat64(aSign, zExp, zFrac0, zFrac1, zFrac2);
6527e102996Smaya
6537e102996Smaya   } else {
6547e102996Smaya      int zExp;
6557e102996Smaya
6567e102996Smaya      __shortShift64Left(aFracHi, aFracLo, 10, aFracHi, aFracLo);
6577e102996Smaya      __shortShift64Left(bFracHi, bFracLo, 10, bFracHi, bFracLo);
6587e102996Smaya      if (0 < expDiff) {
6597e102996Smaya         if (aExp == 0x7FF) {
6607e102996Smaya            bool propagate = (aFracHi | aFracLo) != 0u;
6617e102996Smaya            return mix(a, __propagateFloat64NaN(a, b), propagate);
6627e102996Smaya         }
6637e102996Smaya         expDiff = mix(expDiff, expDiff - 1, bExp == 0);
6647e102996Smaya         bFracHi = mix(bFracHi | 0x40000000u, bFracHi, bExp == 0);
6657e102996Smaya         __shift64RightJamming(bFracHi, bFracLo, expDiff, bFracHi, bFracLo);
6667e102996Smaya         aFracHi |= 0x40000000u;
6677e102996Smaya         __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
6687e102996Smaya         zExp = aExp;
6697e102996Smaya         --zExp;
6707e102996Smaya         return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
6717e102996Smaya      }
6727e102996Smaya      if (expDiff < 0) {
6737e102996Smaya         if (bExp == 0x7FF) {
6747e102996Smaya            bool propagate = (bFracHi | bFracLo) != 0u;
6757e102996Smaya            return mix(__packFloat64(aSign ^ 1u, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
6767e102996Smaya         }
6777e102996Smaya         expDiff = mix(expDiff, expDiff + 1, aExp == 0);
6787e102996Smaya         aFracHi = mix(aFracHi | 0x40000000u, aFracHi, aExp == 0);
6797e102996Smaya         __shift64RightJamming(aFracHi, aFracLo, - expDiff, aFracHi, aFracLo);
6807e102996Smaya         bFracHi |= 0x40000000u;
6817e102996Smaya         __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
6827e102996Smaya         zExp = bExp;
6837e102996Smaya         aSign ^= 1u;
6847e102996Smaya         --zExp;
6857e102996Smaya         return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
6867e102996Smaya      }
6877e102996Smaya      if (aExp == 0x7FF) {
6887e102996Smaya          bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u;
6897e102996Smaya         return mix(0xFFFFFFFFFFFFFFFFUL, __propagateFloat64NaN(a, b), propagate);
6907e102996Smaya      }
6917e102996Smaya      bExp = mix(bExp, 1, aExp == 0);
6927e102996Smaya      aExp = mix(aExp, 1, aExp == 0);
6937e102996Smaya      bool zexp_normal = false;
6947e102996Smaya      bool blta = true;
6957e102996Smaya      if (bFracHi < aFracHi) {
6967e102996Smaya         __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
6977e102996Smaya         zexp_normal = true;
6987e102996Smaya      }
6997e102996Smaya      else if (aFracHi < bFracHi) {
7007e102996Smaya         __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
7017e102996Smaya         blta = false;
7027e102996Smaya         zexp_normal = true;
7037e102996Smaya      }
7047e102996Smaya      else if (bFracLo < aFracLo) {
7057e102996Smaya         __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
7067e102996Smaya         zexp_normal = true;
7077e102996Smaya      }
7087e102996Smaya      else if (aFracLo < bFracLo) {
7097e102996Smaya         __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
7107e102996Smaya          blta = false;
7117e102996Smaya          zexp_normal = true;
7127e102996Smaya      }
7137e102996Smaya      zExp = mix(bExp, aExp, blta);
7147e102996Smaya      aSign = mix(aSign ^ 1u, aSign, blta);
7157e102996Smaya      uint64_t retval_0 = __packFloat64(uint(FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN), 0, 0u, 0u);
7167e102996Smaya      uint64_t retval_1 = __normalizeRoundAndPackFloat64(aSign, zExp - 11, zFrac0, zFrac1);
7177e102996Smaya      return mix(retval_0, retval_1, zexp_normal);
7187e102996Smaya   }
7197e102996Smaya}
7207e102996Smaya
7217e102996Smaya/* Multiplies `a' by `b' to obtain a 64-bit product.  The product is broken
7227e102996Smaya * into two 32-bit pieces which are stored at the locations pointed to by
7237e102996Smaya * `z0Ptr' and `z1Ptr'.
7247e102996Smaya */
7257e102996Smayavoid
7267e102996Smaya__mul32To64(uint a, uint b, out uint z0Ptr, out uint z1Ptr)
7277e102996Smaya{
7287e102996Smaya   uint aLow = a & 0x0000FFFFu;
7297e102996Smaya   uint aHigh = a>>16;
7307e102996Smaya   uint bLow = b & 0x0000FFFFu;
7317e102996Smaya   uint bHigh = b>>16;
7327e102996Smaya   uint z1 = aLow * bLow;
7337e102996Smaya   uint zMiddleA = aLow * bHigh;
7347e102996Smaya   uint zMiddleB = aHigh * bLow;
7357e102996Smaya   uint z0 = aHigh * bHigh;
7367e102996Smaya   zMiddleA += zMiddleB;
7377e102996Smaya   z0 += ((uint(zMiddleA < zMiddleB)) << 16) + (zMiddleA >> 16);
7387e102996Smaya   zMiddleA <<= 16;
7397e102996Smaya   z1 += zMiddleA;
7407e102996Smaya   z0 += uint(z1 < zMiddleA);
7417e102996Smaya   z1Ptr = z1;
7427e102996Smaya   z0Ptr = z0;
7437e102996Smaya}
7447e102996Smaya
7457e102996Smaya/* Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
7467e102996Smaya * 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
7477e102996Smaya * product.  The product is broken into four 32-bit pieces which are stored at
7487e102996Smaya * the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
7497e102996Smaya */
7507e102996Smayavoid
7517e102996Smaya__mul64To128(uint a0, uint a1, uint b0, uint b1,
7527e102996Smaya             out uint z0Ptr,
7537e102996Smaya             out uint z1Ptr,
7547e102996Smaya             out uint z2Ptr,
7557e102996Smaya             out uint z3Ptr)
7567e102996Smaya{
7577e102996Smaya   uint z0 = 0u;
7587e102996Smaya   uint z1 = 0u;
7597e102996Smaya   uint z2 = 0u;
7607e102996Smaya   uint z3 = 0u;
7617e102996Smaya   uint more1 = 0u;
7627e102996Smaya   uint more2 = 0u;
7637e102996Smaya
7647e102996Smaya   __mul32To64(a1, b1, z2, z3);
7657e102996Smaya   __mul32To64(a1, b0, z1, more2);
7667e102996Smaya   __add64(z1, more2, 0u, z2, z1, z2);
7677e102996Smaya   __mul32To64(a0, b0, z0, more1);
7687e102996Smaya   __add64(z0, more1, 0u, z1, z0, z1);
7697e102996Smaya   __mul32To64(a0, b1, more1, more2);
7707e102996Smaya   __add64(more1, more2, 0u, z2, more1, z2);
7717e102996Smaya   __add64(z0, z1, 0u, more1, z0, z1);
7727e102996Smaya   z3Ptr = z3;
7737e102996Smaya   z2Ptr = z2;
7747e102996Smaya   z1Ptr = z1;
7757e102996Smaya   z0Ptr = z0;
7767e102996Smaya}
7777e102996Smaya
7787e102996Smaya/* Normalizes the subnormal double-precision floating-point value represented
7797e102996Smaya * by the denormalized significand formed by the concatenation of `aFrac0' and
7807e102996Smaya * `aFrac1'.  The normalized exponent is stored at the location pointed to by
7817e102996Smaya * `zExpPtr'.  The most significant 21 bits of the normalized significand are
7827e102996Smaya * stored at the location pointed to by `zFrac0Ptr', and the least significant
7837e102996Smaya * 32 bits of the normalized significand are stored at the location pointed to
7847e102996Smaya * by `zFrac1Ptr'.
7857e102996Smaya */
7867e102996Smayavoid
7877e102996Smaya__normalizeFloat64Subnormal(uint aFrac0, uint aFrac1,
7887e102996Smaya                            out int zExpPtr,
7897e102996Smaya                            out uint zFrac0Ptr,
7907e102996Smaya                            out uint zFrac1Ptr)
7917e102996Smaya{
7927e102996Smaya   int shiftCount;
7937e102996Smaya   uint temp_zfrac0, temp_zfrac1;
7947e102996Smaya   shiftCount = __countLeadingZeros32(mix(aFrac0, aFrac1, aFrac0 == 0u)) - 11;
7957e102996Smaya   zExpPtr = mix(1 - shiftCount, -shiftCount - 31, aFrac0 == 0u);
7967e102996Smaya
7977e102996Smaya   temp_zfrac0 = mix(aFrac1<<shiftCount, aFrac1>>(-shiftCount), shiftCount < 0);
7987e102996Smaya   temp_zfrac1 = mix(0u, aFrac1<<(shiftCount & 31), shiftCount < 0);
7997e102996Smaya
8007e102996Smaya   __shortShift64Left(aFrac0, aFrac1, shiftCount, zFrac0Ptr, zFrac1Ptr);
8017e102996Smaya
8027e102996Smaya   zFrac0Ptr = mix(zFrac0Ptr, temp_zfrac0, aFrac0 == 0);
8037e102996Smaya   zFrac1Ptr = mix(zFrac1Ptr, temp_zfrac1, aFrac0 == 0);
8047e102996Smaya}
8057e102996Smaya
8067e102996Smaya/* Returns the result of multiplying the double-precision floating-point values
8077e102996Smaya * `a' and `b'.  The operation is performed according to the IEEE Standard for
8087e102996Smaya * Floating-Point Arithmetic.
8097e102996Smaya */
8107e102996Smayauint64_t
8117e102996Smaya__fmul64(uint64_t a, uint64_t b)
8127e102996Smaya{
8137e102996Smaya   uint zFrac0 = 0u;
8147e102996Smaya   uint zFrac1 = 0u;
8157e102996Smaya   uint zFrac2 = 0u;
8167e102996Smaya   uint zFrac3 = 0u;
8177e102996Smaya   int zExp;
8187e102996Smaya
8197e102996Smaya   uint aFracLo = __extractFloat64FracLo(a);
8207e102996Smaya   uint aFracHi = __extractFloat64FracHi(a);
8217e102996Smaya   uint bFracLo = __extractFloat64FracLo(b);
8227e102996Smaya   uint bFracHi = __extractFloat64FracHi(b);
8237e102996Smaya   int aExp = __extractFloat64Exp(a);
8247e102996Smaya   uint aSign = __extractFloat64Sign(a);
8257e102996Smaya   int bExp = __extractFloat64Exp(b);
8267e102996Smaya   uint bSign = __extractFloat64Sign(b);
8277e102996Smaya   uint zSign = aSign ^ bSign;
8287e102996Smaya   if (aExp == 0x7FF) {
8297e102996Smaya      if (((aFracHi | aFracLo) != 0u) ||
8307e102996Smaya         ((bExp == 0x7FF) && ((bFracHi | bFracLo) != 0u))) {
8317e102996Smaya         return __propagateFloat64NaN(a, b);
8327e102996Smaya      }
8337e102996Smaya      if ((uint(bExp) | bFracHi | bFracLo) == 0u)
8347e102996Smaya            return 0xFFFFFFFFFFFFFFFFUL;
8357e102996Smaya      return __packFloat64(zSign, 0x7FF, 0u, 0u);
8367e102996Smaya   }
8377e102996Smaya   if (bExp == 0x7FF) {
8387e102996Smaya      if ((bFracHi | bFracLo) != 0u)
8397e102996Smaya         return __propagateFloat64NaN(a, b);
8407e102996Smaya      if ((uint(aExp) | aFracHi | aFracLo) == 0u)
8417e102996Smaya         return 0xFFFFFFFFFFFFFFFFUL;
8427e102996Smaya      return __packFloat64(zSign, 0x7FF, 0u, 0u);
8437e102996Smaya   }
8447e102996Smaya   if (aExp == 0) {
8457e102996Smaya      if ((aFracHi | aFracLo) == 0u)
8467e102996Smaya         return __packFloat64(zSign, 0, 0u, 0u);
8477e102996Smaya      __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
8487e102996Smaya   }
8497e102996Smaya   if (bExp == 0) {
8507e102996Smaya      if ((bFracHi | bFracLo) == 0u)
8517e102996Smaya         return __packFloat64(zSign, 0, 0u, 0u);
8527e102996Smaya      __normalizeFloat64Subnormal(bFracHi, bFracLo, bExp, bFracHi, bFracLo);
8537e102996Smaya   }
8547e102996Smaya   zExp = aExp + bExp - 0x400;
8557e102996Smaya   aFracHi |= 0x00100000u;
8567e102996Smaya   __shortShift64Left(bFracHi, bFracLo, 12, bFracHi, bFracLo);
8577e102996Smaya   __mul64To128(
8587e102996Smaya      aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1, zFrac2, zFrac3);
8597e102996Smaya   __add64(zFrac0, zFrac1, aFracHi, aFracLo, zFrac0, zFrac1);
8607e102996Smaya   zFrac2 |= uint(zFrac3 != 0u);
8617e102996Smaya   if (0x00200000u <= zFrac0) {
8627e102996Smaya      __shift64ExtraRightJamming(
8637e102996Smaya         zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
8647e102996Smaya      ++zExp;
8657e102996Smaya   }
8667e102996Smaya   return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
8677e102996Smaya}
8687e102996Smaya
8697e102996Smayauint64_t
8707e102996Smaya__ffma64(uint64_t a, uint64_t b, uint64_t c)
8717e102996Smaya{
8727e102996Smaya   return __fadd64(__fmul64(a, b), c);
8737e102996Smaya}
8747e102996Smaya
8757e102996Smaya/* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
8767e102996Smaya * number of bits given in `count'.  Any bits shifted off are lost.  The value
8777e102996Smaya * of `count' can be arbitrarily large; in particular, if `count' is greater
8787e102996Smaya * than 64, the result will be 0.  The result is broken into two 32-bit pieces
8797e102996Smaya * which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
8807e102996Smaya */
8817e102996Smayavoid
8827e102996Smaya__shift64Right(uint a0, uint a1,
8837e102996Smaya               int count,
8847e102996Smaya               out uint z0Ptr,
8857e102996Smaya               out uint z1Ptr)
8867e102996Smaya{
8877e102996Smaya   uint z0;
8887e102996Smaya   uint z1;
8897e102996Smaya   int negCount = (-count) & 31;
8907e102996Smaya
8917e102996Smaya   z0 = 0u;
8927e102996Smaya   z0 = mix(z0, (a0 >> count), count < 32);
8937e102996Smaya   z0 = mix(z0, a0, count == 0);
8947e102996Smaya
8957e102996Smaya   z1 = mix(0u, (a0 >> (count & 31)), count < 64);
8967e102996Smaya   z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
8977e102996Smaya   z1 = mix(z1, a0, count == 0);
8987e102996Smaya
8997e102996Smaya   z1Ptr = z1;
9007e102996Smaya   z0Ptr = z0;
9017e102996Smaya}
9027e102996Smaya
9037e102996Smaya/* Returns the result of converting the double-precision floating-point value
9047e102996Smaya * `a' to the unsigned integer format.  The conversion is performed according
9057e102996Smaya * to the IEEE Standard for Floating-Point Arithmetic.
9067e102996Smaya */
9077e102996Smayauint
9087e102996Smaya__fp64_to_uint(uint64_t a)
9097e102996Smaya{
9107e102996Smaya   uint aFracLo = __extractFloat64FracLo(a);
9117e102996Smaya   uint aFracHi = __extractFloat64FracHi(a);
9127e102996Smaya   int aExp = __extractFloat64Exp(a);
9137e102996Smaya   uint aSign = __extractFloat64Sign(a);
9147e102996Smaya
9157e102996Smaya   if ((aExp == 0x7FF) && ((aFracHi | aFracLo) != 0u))
9167e102996Smaya      return 0xFFFFFFFFu;
9177e102996Smaya
9187e102996Smaya   aFracHi |= mix(0u, 0x00100000u, aExp != 0);
9197e102996Smaya
9207e102996Smaya   int shiftDist = 0x427 - aExp;
9217e102996Smaya   if (0 < shiftDist)
9227e102996Smaya      __shift64RightJamming(aFracHi, aFracLo, shiftDist, aFracHi, aFracLo);
9237e102996Smaya
9247e102996Smaya   if ((aFracHi & 0xFFFFF000u) != 0u)
9257e102996Smaya      return mix(~0u, 0u, (aSign != 0u));
9267e102996Smaya
9277e102996Smaya   uint z = 0u;
9287e102996Smaya   uint zero = 0u;
9297e102996Smaya   __shift64Right(aFracHi, aFracLo, 12, zero, z);
9307e102996Smaya
9317e102996Smaya   uint expt = mix(~0u, 0u, (aSign != 0u));
9327e102996Smaya
9337e102996Smaya   return mix(z, expt, (aSign != 0u) && (z != 0u));
9347e102996Smaya}
9357e102996Smaya
9367e102996Smayauint64_t
9377e102996Smaya__uint_to_fp64(uint a)
9387e102996Smaya{
9397e102996Smaya   if (a == 0u)
9407e102996Smaya      return 0ul;
9417e102996Smaya
9427e102996Smaya   int shiftDist = __countLeadingZeros32(a) + 21;
9437e102996Smaya
9447e102996Smaya   uint aHigh = 0u;
9457e102996Smaya   uint aLow = 0u;
9467e102996Smaya   int negCount = (- shiftDist) & 31;
9477e102996Smaya
9487e102996Smaya   aHigh = mix(0u, a<< shiftDist - 32, shiftDist < 64);
9497e102996Smaya   aLow = 0u;
9507e102996Smaya   aHigh = mix(aHigh, 0u, shiftDist == 0);
9517e102996Smaya   aLow = mix(aLow, a, shiftDist ==0);
9527e102996Smaya   aHigh = mix(aHigh, a >> negCount, shiftDist < 32);
9537e102996Smaya   aLow = mix(aLow, a << shiftDist, shiftDist < 32);
9547e102996Smaya
9557e102996Smaya   return __packFloat64(0u, 0x432 - shiftDist, aHigh, aLow);
9567e102996Smaya}
9577e102996Smaya
9587e102996Smayauint64_t
9597e102996Smaya__uint64_to_fp64(uint64_t a)
9607e102996Smaya{
9617e102996Smaya   if (a == 0u)
9627e102996Smaya      return 0ul;
9637e102996Smaya
9647e102996Smaya   uvec2 aFrac = unpackUint2x32(a);
9657e102996Smaya   uint aFracLo = __extractFloat64FracLo(a);
9667e102996Smaya   uint aFracHi = __extractFloat64FracHi(a);
9677e102996Smaya
9687e102996Smaya   if ((aFracHi & 0x80000000u) != 0u) {
9697e102996Smaya      __shift64RightJamming(aFracHi, aFracLo, 1, aFracHi, aFracLo);
9707e102996Smaya      return __roundAndPackFloat64(0, 0x433, aFracHi, aFracLo, 0u);
9717e102996Smaya   } else {
9727e102996Smaya      return __normalizeRoundAndPackFloat64(0, 0x432, aFrac.y, aFrac.x);
9737e102996Smaya   }
9747e102996Smaya}
9757e102996Smaya
9767e102996Smayauint64_t
9777e102996Smaya__fp64_to_uint64(uint64_t a)
9787e102996Smaya{
9797e102996Smaya   uint aFracLo = __extractFloat64FracLo(a);
9807e102996Smaya   uint aFracHi = __extractFloat64FracHi(a);
9817e102996Smaya   int aExp = __extractFloat64Exp(a);
9827e102996Smaya   uint aSign = __extractFloat64Sign(a);
9837e102996Smaya   uint zFrac2 = 0u;
9847e102996Smaya   uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
9857e102996Smaya
9867e102996Smaya   aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0);
9877e102996Smaya   int shiftCount = 0x433 - aExp;
9887e102996Smaya
9897e102996Smaya   if ( shiftCount <= 0 ) {
9907e102996Smaya      if (shiftCount < -11 && aExp == 0x7FF) {
9917e102996Smaya         if ((aFracHi | aFracLo) != 0u)
9927e102996Smaya            return __propagateFloat64NaN(a, a);
9937e102996Smaya         return mix(default_nan, a, aSign == 0u);
9947e102996Smaya      }
9957e102996Smaya      __shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo);
9967e102996Smaya   } else {
9977e102996Smaya      __shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount,
9987e102996Smaya                                 aFracHi, aFracLo, zFrac2);
9997e102996Smaya   }
10007e102996Smaya   return __roundAndPackUInt64(aSign, aFracHi, aFracLo, zFrac2);
10017e102996Smaya}
10027e102996Smaya
10037e102996Smayaint64_t
10047e102996Smaya__fp64_to_int64(uint64_t a)
10057e102996Smaya{
10067e102996Smaya   uint zFrac2 = 0u;
10077e102996Smaya   uint aFracLo = __extractFloat64FracLo(a);
10087e102996Smaya   uint aFracHi = __extractFloat64FracHi(a);
10097e102996Smaya   int aExp = __extractFloat64Exp(a);
10107e102996Smaya   uint aSign = __extractFloat64Sign(a);
10117e102996Smaya   int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
10127e102996Smaya   int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
10137e102996Smaya
10147e102996Smaya   aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0);
10157e102996Smaya   int shiftCount = 0x433 - aExp;
10167e102996Smaya
10177e102996Smaya   if (shiftCount <= 0) {
10187e102996Smaya      if (shiftCount < -11 && aExp == 0x7FF) {
10197e102996Smaya         if ((aFracHi | aFracLo) != 0u)
10207e102996Smaya            return default_NegNaN;
10217e102996Smaya         return mix(default_NegNaN, default_PosNaN, aSign == 0u);
10227e102996Smaya      }
10237e102996Smaya      __shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo);
10247e102996Smaya   } else {
10257e102996Smaya      __shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount,
10267e102996Smaya                                 aFracHi, aFracLo, zFrac2);
10277e102996Smaya   }
10287e102996Smaya
10297e102996Smaya   return __roundAndPackInt64(aSign, aFracHi, aFracLo, zFrac2);
10307e102996Smaya}
10317e102996Smaya
10327e102996Smayauint64_t
10337e102996Smaya__fp32_to_uint64(float f)
10347e102996Smaya{
10357e102996Smaya   uint a = floatBitsToUint(f);
10367e102996Smaya   uint aFrac = a & 0x007FFFFFu;
10377e102996Smaya   int aExp = int((a>>23) & 0xFFu);
10387e102996Smaya   uint aSign = a>>31;
10397e102996Smaya   uint zFrac0 = 0u;
10407e102996Smaya   uint zFrac1 = 0u;
10417e102996Smaya   uint zFrac2 = 0u;
10427e102996Smaya   uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
10437e102996Smaya   int shiftCount = 0xBE - aExp;
10447e102996Smaya
10457e102996Smaya   if (shiftCount <0) {
10467e102996Smaya      if (aExp == 0xFF)
10477e102996Smaya         return default_nan;
10487e102996Smaya   }
10497e102996Smaya
10507e102996Smaya   aFrac = mix(aFrac, aFrac | 0x00800000u, aExp != 0);
10517e102996Smaya   __shortShift64Left(aFrac, 0, 40, zFrac0, zFrac1);
10527e102996Smaya
10537e102996Smaya   if (shiftCount != 0) {
10547e102996Smaya      __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, shiftCount,
10557e102996Smaya                                 zFrac0, zFrac1, zFrac2);
10567e102996Smaya   }
10577e102996Smaya
10587e102996Smaya   return __roundAndPackUInt64(aSign, zFrac0, zFrac1, zFrac2);
10597e102996Smaya}
10607e102996Smaya
10617e102996Smayaint64_t
10627e102996Smaya__fp32_to_int64(float f)
10637e102996Smaya{
10647e102996Smaya   uint a = floatBitsToUint(f);
10657e102996Smaya   uint aFrac = a & 0x007FFFFFu;
10667e102996Smaya   int aExp = int((a>>23) & 0xFFu);
10677e102996Smaya   uint aSign = a>>31;
10687e102996Smaya   uint zFrac0 = 0u;
10697e102996Smaya   uint zFrac1 = 0u;
10707e102996Smaya   uint zFrac2 = 0u;
10717e102996Smaya   int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
10727e102996Smaya   int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
10737e102996Smaya   int shiftCount = 0xBE - aExp;
10747e102996Smaya
10757e102996Smaya   if (shiftCount <0) {
10767e102996Smaya      if (aExp == 0xFF && aFrac != 0u)
10777e102996Smaya         return default_NegNaN;
10787e102996Smaya      return mix(default_NegNaN, default_PosNaN, aSign == 0u);
10797e102996Smaya   }
10807e102996Smaya
10817e102996Smaya   aFrac = mix(aFrac, aFrac | 0x00800000u, aExp != 0);
10827e102996Smaya   __shortShift64Left(aFrac, 0, 40, zFrac0, zFrac1);
10837e102996Smaya
10847e102996Smaya   if (shiftCount != 0) {
10857e102996Smaya      __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, shiftCount,
10867e102996Smaya                                 zFrac0, zFrac1, zFrac2);
10877e102996Smaya   }
10887e102996Smaya
10897e102996Smaya   return __roundAndPackInt64(aSign, zFrac0, zFrac1, zFrac2);
10907e102996Smaya}
10917e102996Smaya
10927e102996Smayauint64_t
10937e102996Smaya__int64_to_fp64(int64_t a)
10947e102996Smaya{
10957e102996Smaya   if (a==0)
10967e102996Smaya      return 0ul;
10977e102996Smaya
10987e102996Smaya   uint64_t absA = mix(uint64_t(a), uint64_t(-a), a < 0);
10997e102996Smaya   uint aFracHi = __extractFloat64FracHi(absA);
11007e102996Smaya   uvec2 aFrac = unpackUint2x32(absA);
11017e102996Smaya   uint zSign = uint(a < 0);
11027e102996Smaya
11037e102996Smaya   if ((aFracHi & 0x80000000u) != 0u) {
11047e102996Smaya      return mix(0ul, __packFloat64(1, 0x434, 0u, 0u), a < 0);
11057e102996Smaya   }
11067e102996Smaya
11077e102996Smaya   return __normalizeRoundAndPackFloat64(zSign, 0x432, aFrac.y, aFrac.x);
11087e102996Smaya}
11097e102996Smaya
11107e102996Smaya/* Returns the result of converting the double-precision floating-point value
11117e102996Smaya * `a' to the 32-bit two's complement integer format.  The conversion is
11127e102996Smaya * performed according to the IEEE Standard for Floating-Point Arithmetic---
11137e102996Smaya * which means in particular that the conversion is rounded according to the
11147e102996Smaya * current rounding mode.  If `a' is a NaN, the largest positive integer is
11157e102996Smaya * returned.  Otherwise, if the conversion overflows, the largest integer with
11167e102996Smaya * the same sign as `a' is returned.
11177e102996Smaya */
11187e102996Smayaint
11197e102996Smaya__fp64_to_int(uint64_t a)
11207e102996Smaya{
11217e102996Smaya   uint aFracLo = __extractFloat64FracLo(a);
11227e102996Smaya   uint aFracHi = __extractFloat64FracHi(a);
11237e102996Smaya   int aExp = __extractFloat64Exp(a);
11247e102996Smaya   uint aSign = __extractFloat64Sign(a);
11257e102996Smaya
11267e102996Smaya   uint absZ = 0u;
11277e102996Smaya   uint aFracExtra = 0u;
11287e102996Smaya   int shiftCount = aExp - 0x413;
11297e102996Smaya
11307e102996Smaya   if (0 <= shiftCount) {
11317e102996Smaya      if (0x41E < aExp) {
11327e102996Smaya         if ((aExp == 0x7FF) && bool(aFracHi | aFracLo))
11337e102996Smaya            aSign = 0u;
11347e102996Smaya         return mix(0x7FFFFFFF, 0x80000000, bool(aSign));
11357e102996Smaya      }
11367e102996Smaya      __shortShift64Left(aFracHi | 0x00100000u, aFracLo, shiftCount, absZ, aFracExtra);
11377e102996Smaya   } else {
11387e102996Smaya      if (aExp < 0x3FF)
11397e102996Smaya         return 0;
11407e102996Smaya
11417e102996Smaya      aFracHi |= 0x00100000u;
11427e102996Smaya      aFracExtra = ( aFracHi << (shiftCount & 31)) | aFracLo;
11437e102996Smaya      absZ = aFracHi >> (- shiftCount);
11447e102996Smaya   }
11457e102996Smaya
11467e102996Smaya   int z = mix(int(absZ), -int(absZ), (aSign != 0u));
11477e102996Smaya   int nan = mix(0x7FFFFFFF, 0x80000000, bool(aSign));
11487e102996Smaya   return mix(z, nan, bool(aSign ^ uint(z < 0)) && bool(z));
11497e102996Smaya}
11507e102996Smaya
11517e102996Smaya/* Returns the result of converting the 32-bit two's complement integer `a'
11527e102996Smaya * to the double-precision floating-point format.  The conversion is performed
11537e102996Smaya * according to the IEEE Standard for Floating-Point Arithmetic.
11547e102996Smaya */
11557e102996Smayauint64_t
11567e102996Smaya__int_to_fp64(int a)
11577e102996Smaya{
11587e102996Smaya   uint zFrac0 = 0u;
11597e102996Smaya   uint zFrac1 = 0u;
11607e102996Smaya   if (a==0)
11617e102996Smaya      return __packFloat64(0u, 0, 0u, 0u);
11627e102996Smaya   uint zSign = uint(a < 0);
11637e102996Smaya   uint absA = mix(uint(a), uint(-a), a < 0);
11647e102996Smaya   int shiftCount = __countLeadingZeros32(absA) - 11;
11657e102996Smaya   if (0 <= shiftCount) {
11667e102996Smaya      zFrac0 = absA << shiftCount;
11677e102996Smaya      zFrac1 = 0u;
11687e102996Smaya   } else {
11697e102996Smaya      __shift64Right(absA, 0u, -shiftCount, zFrac0, zFrac1);
11707e102996Smaya   }
11717e102996Smaya   return __packFloat64(zSign, 0x412 - shiftCount, zFrac0, zFrac1);
11727e102996Smaya}
11737e102996Smaya
11747e102996Smayabool
11757e102996Smaya__fp64_to_bool(uint64_t a)
11767e102996Smaya{
11777e102996Smaya   return !__feq64_nonnan(__fabs64(a), 0ul);
11787e102996Smaya}
11797e102996Smaya
11807e102996Smayauint64_t
11817e102996Smaya__bool_to_fp64(bool a)
11827e102996Smaya{
11837e102996Smaya   return __int_to_fp64(int(a));
11847e102996Smaya}
11857e102996Smaya
11867e102996Smaya/* Packs the sign `zSign', exponent `zExp', and significand `zFrac' into a
11877e102996Smaya * single-precision floating-point value, returning the result.  After being
11887e102996Smaya * shifted into the proper positions, the three fields are simply added
11897e102996Smaya * together to form the result.  This means that any integer portion of `zSig'
11907e102996Smaya * will be added into the exponent.  Since a properly normalized significand
11917e102996Smaya * will have an integer portion equal to 1, the `zExp' input should be 1 less
11927e102996Smaya * than the desired result exponent whenever `zFrac' is a complete, normalized
11937e102996Smaya * significand.
11947e102996Smaya */
11957e102996Smayafloat
11967e102996Smaya__packFloat32(uint zSign, int zExp, uint zFrac)
11977e102996Smaya{
11987e102996Smaya   return uintBitsToFloat((zSign<<31) + (uint(zExp)<<23) + zFrac);
11997e102996Smaya}
12007e102996Smaya
12017e102996Smaya/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
12027e102996Smaya * and significand `zFrac', and returns the proper single-precision floating-
12037e102996Smaya * point value corresponding to the abstract input.  Ordinarily, the abstract
12047e102996Smaya * value is simply rounded and packed into the single-precision format, with
12057e102996Smaya * the inexact exception raised if the abstract input cannot be represented
12067e102996Smaya * exactly.  However, if the abstract value is too large, the overflow and
12077e102996Smaya * inexact exceptions are raised and an infinity or maximal finite value is
12087e102996Smaya * returned.  If the abstract value is too small, the input value is rounded to
12097e102996Smaya * a subnormal number, and the underflow and inexact exceptions are raised if
12107e102996Smaya * the abstract input cannot be represented exactly as a subnormal single-
12117e102996Smaya * precision floating-point number.
12127e102996Smaya *     The input significand `zFrac' has its binary point between bits 30
12137e102996Smaya * and 29, which is 7 bits to the left of the usual location.  This shifted
12147e102996Smaya * significand must be normalized or smaller.  If `zFrac' is not normalized,
12157e102996Smaya * `zExp' must be 0; in that case, the result returned is a subnormal number,
12167e102996Smaya * and it must not require rounding.  In the usual case that `zFrac' is
12177e102996Smaya * normalized, `zExp' must be 1 less than the "true" floating-point exponent.
12187e102996Smaya * The handling of underflow and overflow follows the IEEE Standard for
12197e102996Smaya * Floating-Point Arithmetic.
12207e102996Smaya */
12217e102996Smayafloat
12227e102996Smaya__roundAndPackFloat32(uint zSign, int zExp, uint zFrac)
12237e102996Smaya{
12247e102996Smaya   bool roundNearestEven;
12257e102996Smaya   int roundIncrement;
12267e102996Smaya   int roundBits;
12277e102996Smaya
12287e102996Smaya   roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
12297e102996Smaya   roundIncrement = 0x40;
12307e102996Smaya   if (!roundNearestEven) {
12317e102996Smaya      if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
12327e102996Smaya         roundIncrement = 0;
12337e102996Smaya      } else {
12347e102996Smaya         roundIncrement = 0x7F;
12357e102996Smaya         if (zSign != 0u) {
12367e102996Smaya            if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)
12377e102996Smaya               roundIncrement = 0;
12387e102996Smaya         } else {
12397e102996Smaya            if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN)
12407e102996Smaya               roundIncrement = 0;
12417e102996Smaya         }
12427e102996Smaya      }
12437e102996Smaya   }
12447e102996Smaya   roundBits = int(zFrac & 0x7Fu);
12457e102996Smaya   if (0xFDu <= uint(zExp)) {
12467e102996Smaya      if ((0xFD < zExp) || ((zExp == 0xFD) && (int(zFrac) + roundIncrement) < 0))
12477e102996Smaya         return __packFloat32(zSign, 0xFF, 0u) - float(roundIncrement == 0);
12487e102996Smaya      int count = -zExp;
12497e102996Smaya      bool zexp_lt0 = zExp < 0;
12507e102996Smaya      uint zFrac_lt0 = mix(uint(zFrac != 0u), (zFrac>>count) | uint((zFrac<<((-count) & 31)) != 0u), (-zExp) < 32);
12517e102996Smaya      zFrac = mix(zFrac, zFrac_lt0, zexp_lt0);
12527e102996Smaya      roundBits = mix(roundBits, int(zFrac) & 0x7f, zexp_lt0);
12537e102996Smaya      zExp = mix(zExp, 0, zexp_lt0);
12547e102996Smaya   }
12557e102996Smaya   zFrac = (zFrac + uint(roundIncrement))>>7;
12567e102996Smaya   zFrac &= ~uint(((roundBits ^ 0x40) == 0) && roundNearestEven);
12577e102996Smaya
12587e102996Smaya   return __packFloat32(zSign, mix(zExp, 0, zFrac == 0u), zFrac);
12597e102996Smaya}
12607e102996Smaya
12617e102996Smaya/* Returns the result of converting the double-precision floating-point value
12627e102996Smaya * `a' to the single-precision floating-point format.  The conversion is
12637e102996Smaya * performed according to the IEEE Standard for Floating-Point Arithmetic.
12647e102996Smaya */
12657e102996Smayafloat
12667e102996Smaya__fp64_to_fp32(uint64_t __a)
12677e102996Smaya{
12687e102996Smaya   uvec2 a = unpackUint2x32(__a);
12697e102996Smaya   uint zFrac = 0u;
12707e102996Smaya   uint allZero = 0u;
12717e102996Smaya
12727e102996Smaya   uint aFracLo = __extractFloat64FracLo(__a);
12737e102996Smaya   uint aFracHi = __extractFloat64FracHi(__a);
12747e102996Smaya   int aExp = __extractFloat64Exp(__a);
12757e102996Smaya   uint aSign = __extractFloat64Sign(__a);
12767e102996Smaya   if (aExp == 0x7FF) {
12777e102996Smaya      __shortShift64Left(a.y, a.x, 12, a.y, a.x);
12787e102996Smaya      float rval = uintBitsToFloat((aSign<<31) | 0x7FC00000u | (a.y>>9));
12797e102996Smaya      rval = mix(__packFloat32(aSign, 0xFF, 0u), rval, (aFracHi | aFracLo) != 0u);
12807e102996Smaya      return rval;
12817e102996Smaya   }
12827e102996Smaya   __shift64RightJamming(aFracHi, aFracLo, 22, allZero, zFrac);
12837e102996Smaya   zFrac = mix(zFrac, zFrac | 0x40000000u, aExp != 0);
12847e102996Smaya   return __roundAndPackFloat32(aSign, aExp - 0x381, zFrac);
12857e102996Smaya}
12867e102996Smaya
12877e102996Smayafloat
12887e102996Smaya__uint64_to_fp32(uint64_t __a)
12897e102996Smaya{
12907e102996Smaya   uint zFrac = 0u;
12917e102996Smaya   uvec2 aFrac = unpackUint2x32(__a);
12927e102996Smaya   int shiftCount = __countLeadingZeros32(mix(aFrac.y, aFrac.x, aFrac.y == 0u));
12937e102996Smaya   shiftCount -= mix(40, 8, aFrac.y == 0u);
12947e102996Smaya
12957e102996Smaya   if (0 <= shiftCount) {
12967e102996Smaya      __shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x);
12977e102996Smaya      bool is_zero = (aFrac.y | aFrac.x) == 0u;
12987e102996Smaya      return mix(__packFloat32(0u, 0x95 - shiftCount, aFrac.x), 0, is_zero);
12997e102996Smaya   }
13007e102996Smaya
13017e102996Smaya   shiftCount += 7;
13027e102996Smaya   __shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
13037e102996Smaya   zFrac = mix(aFrac.x<<shiftCount, aFrac.x, shiftCount < 0);
13047e102996Smaya   return __roundAndPackFloat32(0u, 0x9C - shiftCount, zFrac);
13057e102996Smaya}
13067e102996Smaya
13077e102996Smayafloat
13087e102996Smaya__int64_to_fp32(int64_t __a)
13097e102996Smaya{
13107e102996Smaya   uint zFrac = 0u;
13117e102996Smaya   uint aSign = uint(__a < 0);
13127e102996Smaya   uint64_t absA = mix(uint64_t(__a), uint64_t(-__a), __a < 0);
13137e102996Smaya   uvec2 aFrac = unpackUint2x32(absA);
13147e102996Smaya   int shiftCount = __countLeadingZeros32(mix(aFrac.y, aFrac.x, aFrac.y == 0u));
13157e102996Smaya   shiftCount -= mix(40, 8, aFrac.y == 0u);
13167e102996Smaya
13177e102996Smaya   if (0 <= shiftCount) {
13187e102996Smaya      __shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x);
13197e102996Smaya      bool is_zero = (aFrac.y | aFrac.x) == 0u;
13207e102996Smaya      return mix(__packFloat32(aSign, 0x95 - shiftCount, aFrac.x), 0, absA == 0u);
13217e102996Smaya   }
13227e102996Smaya
13237e102996Smaya   shiftCount += 7;
13247e102996Smaya   __shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
13257e102996Smaya   zFrac = mix(aFrac.x<<shiftCount, aFrac.x, shiftCount < 0);
13267e102996Smaya   return __roundAndPackFloat32(aSign, 0x9C - shiftCount, zFrac);
13277e102996Smaya}
13287e102996Smaya
13297e102996Smaya/* Returns the result of converting the single-precision floating-point value
13307e102996Smaya * `a' to the double-precision floating-point format.
13317e102996Smaya */
13327e102996Smayauint64_t
13337e102996Smaya__fp32_to_fp64(float f)
13347e102996Smaya{
13357e102996Smaya   uint a = floatBitsToUint(f);
13367e102996Smaya   uint aFrac = a & 0x007FFFFFu;
13377e102996Smaya   int aExp = int((a>>23) & 0xFFu);
13387e102996Smaya   uint aSign = a>>31;
13397e102996Smaya   uint zFrac0 = 0u;
13407e102996Smaya   uint zFrac1 = 0u;
13417e102996Smaya
13427e102996Smaya   if (aExp == 0xFF) {
13437e102996Smaya      if (aFrac != 0u) {
13447e102996Smaya         uint nanLo = 0u;
13457e102996Smaya         uint nanHi = a<<9;
13467e102996Smaya         __shift64Right(nanHi, nanLo, 12, nanHi, nanLo);
13477e102996Smaya         nanHi |= ((aSign<<31) | 0x7FF80000u);
13487e102996Smaya         return packUint2x32(uvec2(nanLo, nanHi));
13497e102996Smaya      }
13507e102996Smaya      return __packFloat64(aSign, 0x7FF, 0u, 0u);
13517e102996Smaya    }
13527e102996Smaya
13537e102996Smaya   if (aExp == 0) {
13547e102996Smaya      if (aFrac == 0u)
13557e102996Smaya         return __packFloat64(aSign, 0, 0u, 0u);
13567e102996Smaya      /* Normalize subnormal */
13577e102996Smaya      int shiftCount = __countLeadingZeros32(aFrac) - 8;
13587e102996Smaya      aFrac <<= shiftCount;
13597e102996Smaya      aExp = 1 - shiftCount;
13607e102996Smaya      --aExp;
13617e102996Smaya   }
13627e102996Smaya
13637e102996Smaya   __shift64Right(aFrac, 0u, 3, zFrac0, zFrac1);
13647e102996Smaya   return __packFloat64(aSign, aExp + 0x380, zFrac0, zFrac1);
13657e102996Smaya}
13667e102996Smaya
13677e102996Smaya/* Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
13687e102996Smaya * 96-bit value formed by concatenating `b0', `b1', and `b2'.  Addition is
13697e102996Smaya * modulo 2^96, so any carry out is lost.  The result is broken into three
13707e102996Smaya * 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
13717e102996Smaya * `z1Ptr', and `z2Ptr'.
13727e102996Smaya */
13737e102996Smayavoid
13747e102996Smaya__add96(uint a0, uint a1, uint a2,
13757e102996Smaya        uint b0, uint b1, uint b2,
13767e102996Smaya        out uint z0Ptr,
13777e102996Smaya        out uint z1Ptr,
13787e102996Smaya        out uint z2Ptr)
13797e102996Smaya{
13807e102996Smaya   uint z2 = a2 + b2;
13817e102996Smaya   uint carry1 = uint(z2 < a2);
13827e102996Smaya   uint z1 = a1 + b1;
13837e102996Smaya   uint carry0 = uint(z1 < a1);
13847e102996Smaya   uint z0 = a0 + b0;
13857e102996Smaya   z1 += carry1;
13867e102996Smaya   z0 += uint(z1 < carry1);
13877e102996Smaya   z0 += carry0;
13887e102996Smaya   z2Ptr = z2;
13897e102996Smaya   z1Ptr = z1;
13907e102996Smaya   z0Ptr = z0;
13917e102996Smaya}
13927e102996Smaya
13937e102996Smaya/* Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
13947e102996Smaya * the 96-bit value formed by concatenating `a0', `a1', and `a2'.  Subtraction
13957e102996Smaya * is modulo 2^96, so any borrow out (carry out) is lost.  The result is broken
13967e102996Smaya * into three 32-bit pieces which are stored at the locations pointed to by
13977e102996Smaya * `z0Ptr', `z1Ptr', and `z2Ptr'.
13987e102996Smaya */
13997e102996Smayavoid
14007e102996Smaya__sub96(uint a0, uint a1, uint a2,
14017e102996Smaya        uint b0, uint b1, uint b2,
14027e102996Smaya        out uint z0Ptr,
14037e102996Smaya        out uint z1Ptr,
14047e102996Smaya        out uint z2Ptr)
14057e102996Smaya{
14067e102996Smaya   uint z2 = a2 - b2;
14077e102996Smaya   uint borrow1 = uint(a2 < b2);
14087e102996Smaya   uint z1 = a1 - b1;
14097e102996Smaya   uint borrow0 = uint(a1 < b1);
14107e102996Smaya   uint z0 = a0 - b0;
14117e102996Smaya   z0 -= uint(z1 < borrow1);
14127e102996Smaya   z1 -= borrow1;
14137e102996Smaya   z0 -= borrow0;
14147e102996Smaya   z2Ptr = z2;
14157e102996Smaya   z1Ptr = z1;
14167e102996Smaya   z0Ptr = z0;
14177e102996Smaya}
14187e102996Smaya
14197e102996Smaya/* Returns an approximation to the 32-bit integer quotient obtained by dividing
14207e102996Smaya * `b' into the 64-bit value formed by concatenating `a0' and `a1'.  The
14217e102996Smaya * divisor `b' must be at least 2^31.  If q is the exact quotient truncated
14227e102996Smaya * toward zero, the approximation returned lies between q and q + 2 inclusive.
14237e102996Smaya * If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
14247e102996Smaya * unsigned integer is returned.
14257e102996Smaya */
14267e102996Smayauint
14277e102996Smaya__estimateDiv64To32(uint a0, uint a1, uint b)
14287e102996Smaya{
14297e102996Smaya   uint b0;
14307e102996Smaya   uint b1;
14317e102996Smaya   uint rem0 = 0u;
14327e102996Smaya   uint rem1 = 0u;
14337e102996Smaya   uint term0 = 0u;
14347e102996Smaya   uint term1 = 0u;
14357e102996Smaya   uint z;
14367e102996Smaya
14377e102996Smaya   if (b <= a0)
14387e102996Smaya      return 0xFFFFFFFFu;
14397e102996Smaya   b0 = b>>16;
14407e102996Smaya   z = (b0<<16 <= a0) ? 0xFFFF0000u : (a0 / b0)<<16;
14417e102996Smaya   __mul32To64(b, z, term0, term1);
14427e102996Smaya   __sub64(a0, a1, term0, term1, rem0, rem1);
14437e102996Smaya   while (int(rem0) < 0) {
14447e102996Smaya      z -= 0x10000u;
14457e102996Smaya      b1 = b<<16;
14467e102996Smaya      __add64(rem0, rem1, b0, b1, rem0, rem1);
14477e102996Smaya   }
14487e102996Smaya   rem0 = (rem0<<16) | (rem1>>16);
14497e102996Smaya   z |= (b0<<16 <= rem0) ? 0xFFFFu : rem0 / b0;
14507e102996Smaya   return z;
14517e102996Smaya}
14527e102996Smaya
14537e102996Smayauint
14547e102996Smaya__sqrtOddAdjustments(int index)
14557e102996Smaya{
14567e102996Smaya   uint res = 0u;
14577e102996Smaya   if (index == 0)
14587e102996Smaya      res = 0x0004u;
14597e102996Smaya   if (index == 1)
14607e102996Smaya      res = 0x0022u;
14617e102996Smaya   if (index == 2)
14627e102996Smaya      res = 0x005Du;
14637e102996Smaya   if (index == 3)
14647e102996Smaya      res = 0x00B1u;
14657e102996Smaya   if (index == 4)
14667e102996Smaya      res = 0x011Du;
14677e102996Smaya   if (index == 5)
14687e102996Smaya      res = 0x019Fu;
14697e102996Smaya   if (index == 6)
14707e102996Smaya      res = 0x0236u;
14717e102996Smaya   if (index == 7)
14727e102996Smaya      res = 0x02E0u;
14737e102996Smaya   if (index == 8)
14747e102996Smaya      res = 0x039Cu;
14757e102996Smaya   if (index == 9)
14767e102996Smaya      res = 0x0468u;
14777e102996Smaya   if (index == 10)
14787e102996Smaya      res = 0x0545u;
14797e102996Smaya   if (index == 11)
14807e102996Smaya      res = 0x631u;
14817e102996Smaya   if (index == 12)
14827e102996Smaya      res = 0x072Bu;
14837e102996Smaya   if (index == 13)
14847e102996Smaya      res = 0x0832u;
14857e102996Smaya   if (index == 14)
14867e102996Smaya      res = 0x0946u;
14877e102996Smaya   if (index == 15)
14887e102996Smaya      res = 0x0A67u;
14897e102996Smaya
14907e102996Smaya   return res;
14917e102996Smaya}
14927e102996Smaya
14937e102996Smayauint
14947e102996Smaya__sqrtEvenAdjustments(int index)
14957e102996Smaya{
14967e102996Smaya   uint res = 0u;
14977e102996Smaya   if (index == 0)
14987e102996Smaya      res = 0x0A2Du;
14997e102996Smaya   if (index == 1)
15007e102996Smaya      res = 0x08AFu;
15017e102996Smaya   if (index == 2)
15027e102996Smaya      res = 0x075Au;
15037e102996Smaya   if (index == 3)
15047e102996Smaya      res = 0x0629u;
15057e102996Smaya   if (index == 4)
15067e102996Smaya      res = 0x051Au;
15077e102996Smaya   if (index == 5)
15087e102996Smaya      res = 0x0429u;
15097e102996Smaya   if (index == 6)
15107e102996Smaya      res = 0x0356u;
15117e102996Smaya   if (index == 7)
15127e102996Smaya      res = 0x029Eu;
15137e102996Smaya   if (index == 8)
15147e102996Smaya      res = 0x0200u;
15157e102996Smaya   if (index == 9)
15167e102996Smaya      res = 0x0179u;
15177e102996Smaya   if (index == 10)
15187e102996Smaya      res = 0x0109u;
15197e102996Smaya   if (index == 11)
15207e102996Smaya      res = 0x00AFu;
15217e102996Smaya   if (index == 12)
15227e102996Smaya      res = 0x0068u;
15237e102996Smaya   if (index == 13)
15247e102996Smaya      res = 0x0034u;
15257e102996Smaya   if (index == 14)
15267e102996Smaya      res = 0x0012u;
15277e102996Smaya   if (index == 15)
15287e102996Smaya      res = 0x0002u;
15297e102996Smaya
15307e102996Smaya   return res;
15317e102996Smaya}
15327e102996Smaya
15337e102996Smaya/* Returns an approximation to the square root of the 32-bit significand given
15347e102996Smaya * by `a'.  Considered as an integer, `a' must be at least 2^31.  If bit 0 of
15357e102996Smaya * `aExp' (the least significant bit) is 1, the integer returned approximates
15367e102996Smaya * 2^31*sqrt(`a'/2^31), where `a' is considered an integer.  If bit 0 of `aExp'
15377e102996Smaya * is 0, the integer returned approximates 2^31*sqrt(`a'/2^30).  In either
15387e102996Smaya * case, the approximation returned lies strictly within +/-2 of the exact
15397e102996Smaya * value.
15407e102996Smaya */
15417e102996Smayauint
15427e102996Smaya__estimateSqrt32(int aExp, uint a)
15437e102996Smaya{
15447e102996Smaya   uint z;
15457e102996Smaya
15467e102996Smaya   int index = int(a>>27 & 15u);
15477e102996Smaya   if ((aExp & 1) != 0) {
15487e102996Smaya      z = 0x4000u + (a>>17) - __sqrtOddAdjustments(index);
15497e102996Smaya      z = ((a / z)<<14) + (z<<15);
15507e102996Smaya      a >>= 1;
15517e102996Smaya   } else {
15527e102996Smaya      z = 0x8000u + (a>>17) - __sqrtEvenAdjustments(index);
15537e102996Smaya      z = a / z + z;
15547e102996Smaya      z = (0x20000u <= z) ? 0xFFFF8000u : (z<<15);
15557e102996Smaya      if (z <= a)
15567e102996Smaya         return uint(int(a)>>1);
15577e102996Smaya   }
15587e102996Smaya   return ((__estimateDiv64To32(a, 0u, z))>>1) + (z>>1);
15597e102996Smaya}
15607e102996Smaya
15617e102996Smaya/* Returns the square root of the double-precision floating-point value `a'.
15627e102996Smaya * The operation is performed according to the IEEE Standard for Floating-Point
15637e102996Smaya * Arithmetic.
15647e102996Smaya */
15657e102996Smayauint64_t
15667e102996Smaya__fsqrt64(uint64_t a)
15677e102996Smaya{
15687e102996Smaya   uint zFrac0 = 0u;
15697e102996Smaya   uint zFrac1 = 0u;
15707e102996Smaya   uint zFrac2 = 0u;
15717e102996Smaya   uint doubleZFrac0 = 0u;
15727e102996Smaya   uint rem0 = 0u;
15737e102996Smaya   uint rem1 = 0u;
15747e102996Smaya   uint rem2 = 0u;
15757e102996Smaya   uint rem3 = 0u;
15767e102996Smaya   uint term0 = 0u;
15777e102996Smaya   uint term1 = 0u;
15787e102996Smaya   uint term2 = 0u;
15797e102996Smaya   uint term3 = 0u;
15807e102996Smaya   uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
15817e102996Smaya
15827e102996Smaya   uint aFracLo = __extractFloat64FracLo(a);
15837e102996Smaya   uint aFracHi = __extractFloat64FracHi(a);
15847e102996Smaya   int aExp = __extractFloat64Exp(a);
15857e102996Smaya   uint aSign = __extractFloat64Sign(a);
15867e102996Smaya   if (aExp == 0x7FF) {
15877e102996Smaya      if ((aFracHi | aFracLo) != 0u)
15887e102996Smaya         return __propagateFloat64NaN(a, a);
15897e102996Smaya      if (aSign == 0u)
15907e102996Smaya         return a;
15917e102996Smaya      return default_nan;
15927e102996Smaya   }
15937e102996Smaya   if (aSign != 0u) {
15947e102996Smaya      if ((uint(aExp) | aFracHi | aFracLo) == 0u)
15957e102996Smaya         return a;
15967e102996Smaya      return default_nan;
15977e102996Smaya   }
15987e102996Smaya   if (aExp == 0) {
15997e102996Smaya      if ((aFracHi | aFracLo) == 0u)
16007e102996Smaya         return __packFloat64(0u, 0, 0u, 0u);
16017e102996Smaya      __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
16027e102996Smaya   }
16037e102996Smaya   int zExp = ((aExp - 0x3FF)>>1) + 0x3FE;
16047e102996Smaya   aFracHi |= 0x00100000u;
16057e102996Smaya   __shortShift64Left(aFracHi, aFracLo, 11, term0, term1);
16067e102996Smaya   zFrac0 = (__estimateSqrt32(aExp, term0)>>1) + 1u;
16077e102996Smaya   if (zFrac0 == 0u)
16087e102996Smaya      zFrac0 = 0x7FFFFFFFu;
16097e102996Smaya   doubleZFrac0 = zFrac0 + zFrac0;
16107e102996Smaya   __shortShift64Left(aFracHi, aFracLo, 9 - (aExp & 1), aFracHi, aFracLo);
16117e102996Smaya   __mul32To64(zFrac0, zFrac0, term0, term1);
16127e102996Smaya   __sub64(aFracHi, aFracLo, term0, term1, rem0, rem1);
16137e102996Smaya   while (int(rem0) < 0) {
16147e102996Smaya      --zFrac0;
16157e102996Smaya      doubleZFrac0 -= 2u;
16167e102996Smaya      __add64(rem0, rem1, 0u, doubleZFrac0 | 1u, rem0, rem1);
16177e102996Smaya   }
16187e102996Smaya   zFrac1 = __estimateDiv64To32(rem1, 0u, doubleZFrac0);
16197e102996Smaya   if ((zFrac1 & 0x1FFu) <= 5u) {
16207e102996Smaya      if (zFrac1 == 0u)
16217e102996Smaya         zFrac1 = 1u;
16227e102996Smaya      __mul32To64(doubleZFrac0, zFrac1, term1, term2);
16237e102996Smaya      __sub64(rem1, 0u, term1, term2, rem1, rem2);
16247e102996Smaya      __mul32To64(zFrac1, zFrac1, term2, term3);
16257e102996Smaya      __sub96(rem1, rem2, 0u, 0u, term2, term3, rem1, rem2, rem3);
16267e102996Smaya      while (int(rem1) < 0) {
16277e102996Smaya         --zFrac1;
16287e102996Smaya         __shortShift64Left(0u, zFrac1, 1, term2, term3);
16297e102996Smaya         term3 |= 1u;
16307e102996Smaya         term2 |= doubleZFrac0;
16317e102996Smaya         __add96(rem1, rem2, rem3, 0u, term2, term3, rem1, rem2, rem3);
16327e102996Smaya      }
16337e102996Smaya      zFrac1 |= uint((rem1 | rem2 | rem3) != 0u);
16347e102996Smaya   }
16357e102996Smaya   __shift64ExtraRightJamming(zFrac0, zFrac1, 0u, 10, zFrac0, zFrac1, zFrac2);
16367e102996Smaya   return __roundAndPackFloat64(0u, zExp, zFrac0, zFrac1, zFrac2);
16377e102996Smaya}
16387e102996Smaya
16397e102996Smayauint64_t
16407e102996Smaya__ftrunc64(uint64_t __a)
16417e102996Smaya{
16427e102996Smaya   uvec2 a = unpackUint2x32(__a);
16437e102996Smaya   int aExp = __extractFloat64Exp(__a);
16447e102996Smaya   uint zLo;
16457e102996Smaya   uint zHi;
16467e102996Smaya
16477e102996Smaya   int unbiasedExp = aExp - 1023;
16487e102996Smaya   int fracBits = 52 - unbiasedExp;
16497e102996Smaya   uint maskLo = mix(~0u << fracBits, 0u, fracBits >= 32);
16507e102996Smaya   uint maskHi = mix(~0u << (fracBits - 32), ~0u, fracBits < 33);
16517e102996Smaya   zLo = maskLo & a.x;
16527e102996Smaya   zHi = maskHi & a.y;
16537e102996Smaya
16547e102996Smaya   zLo = mix(zLo, 0u, unbiasedExp < 0);
16557e102996Smaya   zHi = mix(zHi, 0u, unbiasedExp < 0);
16567e102996Smaya   zLo = mix(zLo, a.x, unbiasedExp > 52);
16577e102996Smaya   zHi = mix(zHi, a.y, unbiasedExp > 52);
16587e102996Smaya   return packUint2x32(uvec2(zLo, zHi));
16597e102996Smaya}
16607e102996Smaya
16617e102996Smayauint64_t
16627e102996Smaya__ffloor64(uint64_t a)
16637e102996Smaya{
16647e102996Smaya   bool is_positive = __fge64(a, 0ul);
16657e102996Smaya   uint64_t tr = __ftrunc64(a);
16667e102996Smaya
16677e102996Smaya   if (is_positive || __feq64(tr, a)) {
16687e102996Smaya      return tr;
16697e102996Smaya   } else {
16707e102996Smaya      return __fadd64(tr, 0xbff0000000000000ul /* -1.0 */);
16717e102996Smaya   }
16727e102996Smaya}
16737e102996Smaya
16747e102996Smayauint64_t
16757e102996Smaya__fround64(uint64_t __a)
16767e102996Smaya{
16777e102996Smaya   uvec2 a = unpackUint2x32(__a);
16787e102996Smaya   int unbiasedExp = __extractFloat64Exp(__a) - 1023;
16797e102996Smaya   uint aHi = a.y;
16807e102996Smaya   uint aLo = a.x;
16817e102996Smaya
16827e102996Smaya   if (unbiasedExp < 20) {
16837e102996Smaya      if (unbiasedExp < 0) {
16847e102996Smaya         if ((aHi & 0x80000000u) != 0u && aLo == 0u) {
16857e102996Smaya            return 0;
16867e102996Smaya         }
16877e102996Smaya         aHi &= 0x80000000u;
16887e102996Smaya         if ((a.y & 0x000FFFFFu) == 0u && a.x == 0u) {
16897e102996Smaya            aLo = 0u;
16907e102996Smaya            return packUint2x32(uvec2(aLo, aHi));
16917e102996Smaya         }
16927e102996Smaya         aHi = mix(aHi, (aHi | 0x3FF00000u), unbiasedExp == -1);
16937e102996Smaya         aLo = 0u;
16947e102996Smaya      } else {
16957e102996Smaya         uint maskExp = 0x000FFFFFu >> unbiasedExp;
16967e102996Smaya         uint lastBit = maskExp + 1;
16977e102996Smaya         aHi += 0x00080000u >> unbiasedExp;
16987e102996Smaya         if ((aHi & maskExp) == 0u)
16997e102996Smaya            aHi &= ~lastBit;
17007e102996Smaya         aHi &= ~maskExp;
17017e102996Smaya         aLo = 0u;
17027e102996Smaya      }
17037e102996Smaya   } else if (unbiasedExp > 51 || unbiasedExp == 1024) {
17047e102996Smaya      return __a;
17057e102996Smaya   } else {
17067e102996Smaya      uint maskExp = 0xFFFFFFFFu >> (unbiasedExp - 20);
17077e102996Smaya      if ((aLo & maskExp) == 0u)
17087e102996Smaya         return __a;
17097e102996Smaya      uint tmp = aLo + (1u << (51 - unbiasedExp));
17107e102996Smaya      if(tmp < aLo)
17117e102996Smaya         aHi += 1u;
17127e102996Smaya      aLo = tmp;
17137e102996Smaya      aLo &= ~maskExp;
17147e102996Smaya   }
17157e102996Smaya
17167e102996Smaya   return packUint2x32(uvec2(aLo, aHi));
17177e102996Smaya}
17187e102996Smaya
17197e102996Smayauint64_t
17207e102996Smaya__fmin64(uint64_t a, uint64_t b)
17217e102996Smaya{
17227e102996Smaya   if (__is_nan(a)) return b;
17237e102996Smaya   if (__is_nan(b)) return a;
17247e102996Smaya
17257e102996Smaya   if (__flt64_nonnan(a, b)) return a;
17267e102996Smaya   return b;
17277e102996Smaya}
17287e102996Smaya
17297e102996Smayauint64_t
17307e102996Smaya__fmax64(uint64_t a, uint64_t b)
17317e102996Smaya{
17327e102996Smaya   if (__is_nan(a)) return b;
17337e102996Smaya   if (__is_nan(b)) return a;
17347e102996Smaya
17357e102996Smaya   if (__flt64_nonnan(a, b)) return b;
17367e102996Smaya   return a;
17377e102996Smaya}
17387e102996Smaya
17397e102996Smayauint64_t
17407e102996Smaya__ffract64(uint64_t a)
17417e102996Smaya{
17427e102996Smaya   return __fadd64(a, __fneg64(__ffloor64(a)));
17437e102996Smaya}
1744