ir.cpp revision 7ec681f3
11.36Sbouyer/*
21.1Scgd * Copyright © 2010 Intel Corporation
31.9Smycroft *
41.32Smycroft * Permission is hereby granted, free of charge, to any person obtaining a
51.9Smycroft * copy of this software and associated documentation files (the "Software"),
61.1Scgd * to deal in the Software without restriction, including without limitation
71.9Smycroft * the rights to use, copy, modify, merge, publish, distribute, sublicense,
81.9Smycroft * and/or sell copies of the Software, and to permit persons to whom the
91.1Scgd * Software is furnished to do so, subject to the following conditions:
101.1Scgd *
111.1Scgd * The above copyright notice and this permission notice (including the next
121.1Scgd * paragraph) shall be included in all copies or substantial portions of the
131.1Scgd * Software.
141.1Scgd *
151.1Scgd * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
161.1Scgd * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
171.1Scgd * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
181.1Scgd * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
191.1Scgd * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
201.9Smycroft * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
211.9Smycroft * DEALINGS IN THE SOFTWARE.
221.9Smycroft */
231.9Smycroft#include <string.h>
241.9Smycroft#include "ir.h"
251.1Scgd#include "util/half_float.h"
261.9Smycroft#include "compiler/glsl_types.h"
271.9Smycroft#include "glsl_parser_extras.h"
281.9Smycroft
291.9Smycroft
301.9Smycroftir_rvalue::ir_rvalue(enum ir_node_type t)
311.9Smycroft   : ir_instruction(t)
321.9Smycroft{
331.9Smycroft   this->type = glsl_type::error_type;
341.9Smycroft}
351.9Smycroft
361.9Smycroftbool ir_rvalue::is_zero() const
371.1Scgd{
381.22Slukem   return false;
391.22Slukem}
401.36Sbouyer
411.1Scgdbool ir_rvalue::is_one() const
421.1Scgd{
431.1Scgd   return false;
441.1Scgd}
451.10Sbouyer
461.1Scgdbool ir_rvalue::is_negative_one() const
471.3Smycroft{
481.1Scgd   return false;
491.1Scgd}
501.1Scgd
511.1Scgd/**
521.3Smycroft * Modify the swizzle make to move one component to another
531.10Sbouyer *
541.1Scgd * \param m    IR swizzle to be modified
551.1Scgd * \param from Component in the RHS that is to be swizzled
561.1Scgd * \param to   Desired swizzle location of \c from
571.1Scgd */
581.5Sdrochnerstatic void
591.1Scgdupdate_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
601.15Sbouyer{
611.20Stakemura   switch (to) {
621.21Sleo   case 0: m.x = from; break;
631.21Sleo   case 1: m.y = from; break;
641.1Scgd   case 2: m.z = from; break;
651.1Scgd   case 3: m.w = from; break;
661.10Sbouyer   default: assert(!"Should not get here.");
671.30Smatt   }
681.10Sbouyer}
691.30Smatt
701.7Sthorpejvoid
711.1Scgdir_assignment::set_lhs(ir_rvalue *lhs)
721.1Scgd{
731.1Scgd   void *mem_ctx = this;
741.1Scgd   bool swizzled = false;
751.1Scgd
761.1Scgd   while (lhs != NULL) {
771.1Scgd      ir_swizzle *swiz = lhs->as_swizzle();
781.27Sthorpej
791.28Sthorpej      if (swiz == NULL)
801.1Scgd	 break;
811.29Smycroft
821.10Sbouyer      unsigned write_mask = 0;
831.10Sbouyer      ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
841.19Sitojun
851.10Sbouyer      for (unsigned i = 0; i < swiz->mask.num_components; i++) {
861.29Smycroft	 unsigned c = 0;
871.1Scgd
881.1Scgd	 switch (i) {
891.1Scgd	 case 0: c = swiz->mask.x; break;
901.1Scgd	 case 1: c = swiz->mask.y; break;
911.1Scgd	 case 2: c = swiz->mask.z; break;
921.1Scgd	 case 3: c = swiz->mask.w; break;
931.1Scgd	 default: assert(!"Should not get here.");
941.18Sthorpej	 }
951.1Scgd
961.1Scgd	 write_mask |= (((this->write_mask >> i) & 1) << c);
971.18Sthorpej	 update_rhs_swizzle(rhs_swiz, i, c);
981.24Sthorpej         rhs_swiz.num_components = swiz->val->type->vector_elements;
991.24Sthorpej      }
1001.24Sthorpej
1011.24Sthorpej      this->write_mask = write_mask;
1021.24Sthorpej      lhs = swiz->val;
1031.24Sthorpej
1041.24Sthorpej      this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
1051.24Sthorpej      swizzled = true;
1061.24Sthorpej   }
1071.24Sthorpej
1081.24Sthorpej   if (swizzled) {
1091.24Sthorpej      /* Now, RHS channels line up with the LHS writemask.  Collapse it
1101.25Sgmcgarry       * to just the channels that will be written.
1111.25Sgmcgarry       */
1121.24Sthorpej      ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
1131.18Sthorpej      int rhs_chan = 0;
1141.1Scgd      for (int i = 0; i < 4; i++) {
1151.10Sbouyer	 if (write_mask & (1 << i))
1161.24Sthorpej	    update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
1171.24Sthorpej      }
1181.24Sthorpej      rhs_swiz.num_components = rhs_chan;
1191.1Scgd      this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
1201.1Scgd   }
1211.10Sbouyer
1221.24Sthorpej   assert((lhs == NULL) || lhs->as_dereference());
1231.24Sthorpej
1241.1Scgd   this->lhs = (ir_dereference *) lhs;
1251.1Scgd}
1261.10Sbouyer
1271.1Scgdir_variable *
1281.24Sthorpejir_assignment::whole_variable_written()
1291.24Sthorpej{
1301.24Sthorpej   ir_variable *v = this->lhs->whole_variable_referenced();
1311.24Sthorpej
1321.24Sthorpej   if (v == NULL)
1331.24Sthorpej      return NULL;
1341.1Scgd
1351.1Scgd   if (v->type->is_scalar())
1361.10Sbouyer      return v;
1371.1Scgd
1381.10Sbouyer   if (v->type->is_vector()) {
1391.1Scgd      const unsigned mask = (1U << v->type->vector_elements) - 1;
1401.1Scgd
1411.1Scgd      if (mask != this->write_mask)
1421.1Scgd	 return NULL;
1431.1Scgd   }
1441.1Scgd
1451.1Scgd   /* Either all the vector components are assigned or the variable is some
1461.1Scgd    * composite type (and the whole thing is assigned.
1471.1Scgd    */
1481.4Smycroft   return v;
1491.1Scgd}
1501.30Smatt
1511.4Smycroftir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
1521.10Sbouyer			     ir_rvalue *condition, unsigned write_mask)
1531.10Sbouyer   : ir_instruction(ir_type_assignment)
1541.7Sthorpej{
1551.24Sthorpej   this->condition = condition;
1561.10Sbouyer   this->rhs = rhs;
1571.10Sbouyer   this->lhs = lhs;
1581.24Sthorpej   this->write_mask = write_mask;
1591.24Sthorpej
1601.30Smatt   if (lhs->type->is_scalar() || lhs->type->is_vector()) {
1611.30Smatt      int lhs_components = 0;
1621.1Scgd      for (int i = 0; i < 4; i++) {
1631.10Sbouyer	 if (write_mask & (1 << i))
1641.10Sbouyer	    lhs_components++;
1651.1Scgd      }
1661.24Sthorpej
1671.24Sthorpej      assert(lhs_components == this->rhs->type->vector_elements);
1681.1Scgd   }
1691.29Smycroft}
1701.24Sthorpej
1711.24Sthorpejir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
1721.1Scgd			     ir_rvalue *condition)
1731.10Sbouyer   : ir_instruction(ir_type_assignment)
1741.10Sbouyer{
1751.10Sbouyer   this->condition = condition;
1761.10Sbouyer   this->rhs = rhs;
1771.10Sbouyer
1781.10Sbouyer   /* If the RHS is a vector type, assume that all components of the vector
1791.6Scgd    * type are being written to the LHS.  The write mask comes from the RHS
1801.29Smycroft    * because we can have a case where the LHS is a vec4 and the RHS is a
1811.15Sbouyer    * vec3.  In that case, the assignment is:
1821.30Smatt    *
1831.15Sbouyer    *     (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
1841.30Smatt    */
1851.21Sleo   if (rhs->type->is_vector())
1861.30Smatt      this->write_mask = (1U << rhs->type->vector_elements) - 1;
1871.21Sleo   else if (rhs->type->is_scalar())
1881.30Smatt      this->write_mask = 1;
1891.12Sbouyer   else
1901.30Smatt      this->write_mask = 0;
1911.30Smatt
1921.10Sbouyer   this->set_lhs(lhs);
1931.10Sbouyer}
1941.10Sbouyer
1951.30Smattir_expression::ir_expression(int op, const struct glsl_type *type,
1961.30Smatt			     ir_rvalue *op0, ir_rvalue *op1,
1971.30Smatt			     ir_rvalue *op2, ir_rvalue *op3)
1981.30Smatt   : ir_rvalue(ir_type_expression)
1991.36Sbouyer{
2001.1Scgd   this->type = type;
2011.1Scgd   this->operation = ir_expression_operation(op);
2021.29Smycroft   this->operands[0] = op0;
2031.1Scgd   this->operands[1] = op1;
2041.10Sbouyer   this->operands[2] = op2;
2051.10Sbouyer   this->operands[3] = op3;
2061.1Scgd   init_num_operands();
2071.16Sthorpej
2081.16Sthorpej#ifndef NDEBUG
2091.16Sthorpej   for (unsigned i = num_operands; i < 4; i++) {
2101.17Sthorpej      assert(this->operands[i] == NULL);
2111.17Sthorpej   }
2121.31Sfvdl
2131.31Sfvdl   for (unsigned i = 0; i < num_operands; i++) {
2141.31Sfvdl      assert(this->operands[i] != NULL);
2151.31Sfvdl   }
2161.31Sfvdl#endif
2171.31Sfvdl}
2181.31Sfvdl
2191.16Sthorpejir_expression::ir_expression(int op, ir_rvalue *op0)
2201.16Sthorpej   : ir_rvalue(ir_type_expression)
2211.16Sthorpej{
2221.16Sthorpej   this->operation = ir_expression_operation(op);
2231.7Sthorpej   this->operands[0] = op0;
2241.1Scgd   this->operands[1] = NULL;
2251.1Scgd   this->operands[2] = NULL;
2261.1Scgd   this->operands[3] = NULL;
2271.10Sbouyer
2281.1Scgd   assert(op <= ir_last_unop);
2291.1Scgd   init_num_operands();
2301.1Scgd   assert(num_operands == 1);
2311.10Sbouyer   assert(this->operands[0]);
2321.10Sbouyer
2331.10Sbouyer   switch (this->operation) {
2341.10Sbouyer   case ir_unop_bit_not:
2351.10Sbouyer   case ir_unop_logic_not:
2361.1Scgd   case ir_unop_neg:
2371.1Scgd   case ir_unop_abs:
2381.10Sbouyer   case ir_unop_sign:
2391.1Scgd   case ir_unop_rcp:
2401.13Smycroft   case ir_unop_rsq:
2411.13Smycroft   case ir_unop_sqrt:
2421.1Scgd   case ir_unop_exp:
2431.10Sbouyer   case ir_unop_log:
2441.1Scgd   case ir_unop_exp2:
2451.1Scgd   case ir_unop_log2:
2461.1Scgd   case ir_unop_trunc:
2471.19Sitojun   case ir_unop_ceil:
2481.10Sbouyer   case ir_unop_floor:
2491.10Sbouyer   case ir_unop_fract:
2501.10Sbouyer   case ir_unop_round_even:
2511.10Sbouyer   case ir_unop_sin:
2521.10Sbouyer   case ir_unop_cos:
2531.10Sbouyer   case ir_unop_dFdx:
2541.10Sbouyer   case ir_unop_dFdx_coarse:
2551.10Sbouyer   case ir_unop_dFdx_fine:
2561.10Sbouyer   case ir_unop_dFdy:
2571.10Sbouyer   case ir_unop_dFdy_coarse:
2581.10Sbouyer   case ir_unop_dFdy_fine:
2591.1Scgd   case ir_unop_bitfield_reverse:
2601.10Sbouyer   case ir_unop_interpolate_at_centroid:
2611.1Scgd   case ir_unop_clz:
2621.7Sthorpej   case ir_unop_saturate:
2631.10Sbouyer   case ir_unop_atan:
2641.1Scgd      this->type = op0->type;
2651.29Smycroft      break;
266
267   case ir_unop_f2i:
268   case ir_unop_b2i:
269   case ir_unop_u2i:
270   case ir_unop_d2i:
271   case ir_unop_bitcast_f2i:
272   case ir_unop_bit_count:
273   case ir_unop_find_msb:
274   case ir_unop_find_lsb:
275   case ir_unop_subroutine_to_int:
276   case ir_unop_i642i:
277   case ir_unop_u642i:
278      this->type = glsl_type::get_instance(GLSL_TYPE_INT,
279					   op0->type->vector_elements, 1);
280      break;
281
282   case ir_unop_b2f:
283   case ir_unop_i2f:
284   case ir_unop_u2f:
285   case ir_unop_d2f:
286   case ir_unop_f162f:
287   case ir_unop_bitcast_i2f:
288   case ir_unop_bitcast_u2f:
289   case ir_unop_i642f:
290   case ir_unop_u642f:
291      this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
292					   op0->type->vector_elements, 1);
293      break;
294
295   case ir_unop_f2f16:
296   case ir_unop_f2fmp:
297   case ir_unop_b2f16:
298      this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16,
299					   op0->type->vector_elements, 1);
300      break;
301
302   case ir_unop_i2imp:
303      this->type = glsl_type::get_instance(GLSL_TYPE_INT16,
304					   op0->type->vector_elements, 1);
305      break;
306
307   case ir_unop_i2i:
308      if (op0->type->base_type == GLSL_TYPE_INT) {
309         this->type = glsl_type::get_instance(GLSL_TYPE_INT16,
310                                              op0->type->vector_elements, 1);
311      } else {
312         assert(op0->type->base_type == GLSL_TYPE_INT16);
313         this->type = glsl_type::get_instance(GLSL_TYPE_INT,
314                                              op0->type->vector_elements, 1);
315      }
316      break;
317
318   case ir_unop_u2u:
319      if (op0->type->base_type == GLSL_TYPE_UINT) {
320         this->type = glsl_type::get_instance(GLSL_TYPE_UINT16,
321                                              op0->type->vector_elements, 1);
322      } else {
323         assert(op0->type->base_type == GLSL_TYPE_UINT16);
324         this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
325                                              op0->type->vector_elements, 1);
326      }
327      break;
328
329   case ir_unop_u2ump:
330      this->type = glsl_type::get_instance(GLSL_TYPE_UINT16,
331					   op0->type->vector_elements, 1);
332      break;
333
334   case ir_unop_f2b:
335   case ir_unop_i2b:
336   case ir_unop_d2b:
337   case ir_unop_f162b:
338   case ir_unop_i642b:
339      this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
340					   op0->type->vector_elements, 1);
341      break;
342
343   case ir_unop_f2d:
344   case ir_unop_i2d:
345   case ir_unop_u2d:
346   case ir_unop_i642d:
347   case ir_unop_u642d:
348      this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
349					   op0->type->vector_elements, 1);
350      break;
351
352   case ir_unop_i2u:
353   case ir_unop_f2u:
354   case ir_unop_d2u:
355   case ir_unop_bitcast_f2u:
356   case ir_unop_i642u:
357   case ir_unop_u642u:
358      this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
359					   op0->type->vector_elements, 1);
360      break;
361
362   case ir_unop_i2i64:
363   case ir_unop_u2i64:
364   case ir_unop_b2i64:
365   case ir_unop_f2i64:
366   case ir_unop_d2i64:
367   case ir_unop_u642i64:
368      this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
369					   op0->type->vector_elements, 1);
370      break;
371
372   case ir_unop_i2u64:
373   case ir_unop_u2u64:
374   case ir_unop_f2u64:
375   case ir_unop_d2u64:
376   case ir_unop_i642u64:
377      this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
378					   op0->type->vector_elements, 1);
379      break;
380
381   case ir_unop_unpack_double_2x32:
382   case ir_unop_unpack_uint_2x32:
383      this->type = glsl_type::uvec2_type;
384      break;
385
386   case ir_unop_unpack_int_2x32:
387      this->type = glsl_type::ivec2_type;
388      break;
389
390   case ir_unop_pack_snorm_2x16:
391   case ir_unop_pack_snorm_4x8:
392   case ir_unop_pack_unorm_2x16:
393   case ir_unop_pack_unorm_4x8:
394   case ir_unop_pack_half_2x16:
395      this->type = glsl_type::uint_type;
396      break;
397
398   case ir_unop_pack_double_2x32:
399      this->type = glsl_type::double_type;
400      break;
401
402   case ir_unop_pack_int_2x32:
403      this->type = glsl_type::int64_t_type;
404      break;
405
406   case ir_unop_pack_uint_2x32:
407      this->type = glsl_type::uint64_t_type;
408      break;
409
410   case ir_unop_unpack_snorm_2x16:
411   case ir_unop_unpack_unorm_2x16:
412   case ir_unop_unpack_half_2x16:
413      this->type = glsl_type::vec2_type;
414      break;
415
416   case ir_unop_unpack_snorm_4x8:
417   case ir_unop_unpack_unorm_4x8:
418      this->type = glsl_type::vec4_type;
419      break;
420
421   case ir_unop_unpack_sampler_2x32:
422   case ir_unop_unpack_image_2x32:
423      this->type = glsl_type::uvec2_type;
424      break;
425
426   case ir_unop_pack_sampler_2x32:
427   case ir_unop_pack_image_2x32:
428      this->type = op0->type;
429      break;
430
431   case ir_unop_frexp_sig:
432      this->type = op0->type;
433      break;
434   case ir_unop_frexp_exp:
435      this->type = glsl_type::get_instance(GLSL_TYPE_INT,
436					   op0->type->vector_elements, 1);
437      break;
438
439   case ir_unop_get_buffer_size:
440   case ir_unop_ssbo_unsized_array_length:
441   case ir_unop_implicitly_sized_array_length:
442      this->type = glsl_type::int_type;
443      break;
444
445   case ir_unop_bitcast_i642d:
446   case ir_unop_bitcast_u642d:
447      this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
448                                           op0->type->vector_elements, 1);
449      break;
450
451   case ir_unop_bitcast_d2i64:
452      this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
453                                           op0->type->vector_elements, 1);
454      break;
455   case ir_unop_bitcast_d2u64:
456      this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
457                                           op0->type->vector_elements, 1);
458      break;
459
460   default:
461      assert(!"not reached: missing automatic type setup for ir_expression");
462      this->type = op0->type;
463      break;
464   }
465}
466
467ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
468   : ir_rvalue(ir_type_expression)
469{
470   this->operation = ir_expression_operation(op);
471   this->operands[0] = op0;
472   this->operands[1] = op1;
473   this->operands[2] = NULL;
474   this->operands[3] = NULL;
475
476   assert(op > ir_last_unop);
477   init_num_operands();
478   assert(num_operands == 2);
479   for (unsigned i = 0; i < num_operands; i++) {
480      assert(this->operands[i] != NULL);
481   }
482
483   switch (this->operation) {
484   case ir_binop_all_equal:
485   case ir_binop_any_nequal:
486      this->type = glsl_type::bool_type;
487      break;
488
489   case ir_binop_add:
490   case ir_binop_sub:
491   case ir_binop_min:
492   case ir_binop_max:
493   case ir_binop_pow:
494   case ir_binop_mul:
495   case ir_binop_div:
496   case ir_binop_mod:
497   case ir_binop_atan2:
498      if (op0->type->is_scalar()) {
499	 this->type = op1->type;
500      } else if (op1->type->is_scalar()) {
501	 this->type = op0->type;
502      } else {
503         if (this->operation == ir_binop_mul) {
504            this->type = glsl_type::get_mul_type(op0->type, op1->type);
505         } else {
506            assert(op0->type == op1->type);
507            this->type = op0->type;
508         }
509      }
510      break;
511
512   case ir_binop_logic_and:
513   case ir_binop_logic_xor:
514   case ir_binop_logic_or:
515   case ir_binop_bit_and:
516   case ir_binop_bit_xor:
517   case ir_binop_bit_or:
518       assert(!op0->type->is_matrix());
519       assert(!op1->type->is_matrix());
520      if (op0->type->is_scalar()) {
521         this->type = op1->type;
522      } else if (op1->type->is_scalar()) {
523         this->type = op0->type;
524      } else {
525          assert(op0->type->vector_elements == op1->type->vector_elements);
526          this->type = op0->type;
527      }
528      break;
529
530   case ir_binop_equal:
531   case ir_binop_nequal:
532   case ir_binop_gequal:
533   case ir_binop_less:
534      assert(op0->type == op1->type);
535      this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
536					   op0->type->vector_elements, 1);
537      break;
538
539   case ir_binop_dot:
540      this->type = op0->type->get_base_type();
541      break;
542
543   case ir_binop_imul_high:
544   case ir_binop_mul_32x16:
545   case ir_binop_carry:
546   case ir_binop_borrow:
547   case ir_binop_lshift:
548   case ir_binop_rshift:
549   case ir_binop_ldexp:
550   case ir_binop_interpolate_at_offset:
551   case ir_binop_interpolate_at_sample:
552      this->type = op0->type;
553      break;
554
555   case ir_binop_add_sat:
556   case ir_binop_sub_sat:
557   case ir_binop_avg:
558   case ir_binop_avg_round:
559      assert(op0->type == op1->type);
560      this->type = op0->type;
561      break;
562
563   case ir_binop_abs_sub: {
564      enum glsl_base_type base;
565
566      assert(op0->type == op1->type);
567
568      switch (op0->type->base_type) {
569      case GLSL_TYPE_UINT:
570      case GLSL_TYPE_INT:
571         base = GLSL_TYPE_UINT;
572         break;
573      case GLSL_TYPE_UINT8:
574      case GLSL_TYPE_INT8:
575         base = GLSL_TYPE_UINT8;
576         break;
577      case GLSL_TYPE_UINT16:
578      case GLSL_TYPE_INT16:
579         base = GLSL_TYPE_UINT16;
580         break;
581      case GLSL_TYPE_UINT64:
582      case GLSL_TYPE_INT64:
583         base = GLSL_TYPE_UINT64;
584         break;
585      default:
586         unreachable(!"Invalid base type.");
587      }
588
589      this->type = glsl_type::get_instance(base, op0->type->vector_elements, 1);
590      break;
591   }
592
593   case ir_binop_vector_extract:
594      this->type = op0->type->get_scalar_type();
595      break;
596
597   default:
598      assert(!"not reached: missing automatic type setup for ir_expression");
599      this->type = glsl_type::float_type;
600   }
601}
602
603ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
604                             ir_rvalue *op2)
605   : ir_rvalue(ir_type_expression)
606{
607   this->operation = ir_expression_operation(op);
608   this->operands[0] = op0;
609   this->operands[1] = op1;
610   this->operands[2] = op2;
611   this->operands[3] = NULL;
612
613   assert(op > ir_last_binop && op <= ir_last_triop);
614   init_num_operands();
615   assert(num_operands == 3);
616   for (unsigned i = 0; i < num_operands; i++) {
617      assert(this->operands[i] != NULL);
618   }
619
620   switch (this->operation) {
621   case ir_triop_fma:
622   case ir_triop_lrp:
623   case ir_triop_bitfield_extract:
624   case ir_triop_vector_insert:
625      this->type = op0->type;
626      break;
627
628   case ir_triop_csel:
629      this->type = op1->type;
630      break;
631
632   default:
633      assert(!"not reached: missing automatic type setup for ir_expression");
634      this->type = glsl_type::float_type;
635   }
636}
637
638/**
639 * This is only here for ir_reader to used for testing purposes. Please use
640 * the precomputed num_operands field if you need the number of operands.
641 */
642unsigned
643ir_expression::get_num_operands(ir_expression_operation op)
644{
645   assert(op <= ir_last_opcode);
646
647   if (op <= ir_last_unop)
648      return 1;
649
650   if (op <= ir_last_binop)
651      return 2;
652
653   if (op <= ir_last_triop)
654      return 3;
655
656   if (op <= ir_last_quadop)
657      return 4;
658
659   unreachable("Could not calculate number of operands");
660}
661
662#include "ir_expression_operation_strings.h"
663
664const char*
665depth_layout_string(ir_depth_layout layout)
666{
667   switch(layout) {
668   case ir_depth_layout_none:      return "";
669   case ir_depth_layout_any:       return "depth_any";
670   case ir_depth_layout_greater:   return "depth_greater";
671   case ir_depth_layout_less:      return "depth_less";
672   case ir_depth_layout_unchanged: return "depth_unchanged";
673
674   default:
675      assert(0);
676      return "";
677   }
678}
679
680ir_expression_operation
681ir_expression::get_operator(const char *str)
682{
683   for (int op = 0; op <= int(ir_last_opcode); op++) {
684      if (strcmp(str, ir_expression_operation_strings[op]) == 0)
685	 return (ir_expression_operation) op;
686   }
687   return (ir_expression_operation) -1;
688}
689
690ir_variable *
691ir_expression::variable_referenced() const
692{
693   switch (operation) {
694      case ir_binop_vector_extract:
695      case ir_triop_vector_insert:
696         /* We get these for things like a[0] where a is a vector type. In these
697          * cases we want variable_referenced() to return the actual vector
698          * variable this is wrapping.
699          */
700         return operands[0]->variable_referenced();
701      default:
702         return ir_rvalue::variable_referenced();
703   }
704}
705
706ir_constant::ir_constant()
707   : ir_rvalue(ir_type_constant)
708{
709   this->const_elements = NULL;
710}
711
712ir_constant::ir_constant(const struct glsl_type *type,
713			 const ir_constant_data *data)
714   : ir_rvalue(ir_type_constant)
715{
716   this->const_elements = NULL;
717
718   assert((type->base_type >= GLSL_TYPE_UINT)
719	  && (type->base_type <= GLSL_TYPE_IMAGE));
720
721   this->type = type;
722   memcpy(& this->value, data, sizeof(this->value));
723}
724
725ir_constant::ir_constant(float16_t f16, unsigned vector_elements)
726   : ir_rvalue(ir_type_constant)
727{
728   this->const_elements = NULL;
729   assert(vector_elements <= 4);
730   this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16, vector_elements, 1);
731   for (unsigned i = 0; i < vector_elements; i++) {
732      this->value.f16[i] = f16.bits;
733   }
734   for (unsigned i = vector_elements; i < 16; i++)  {
735      this->value.f[i] = 0;
736   }
737}
738
739ir_constant::ir_constant(float f, unsigned vector_elements)
740   : ir_rvalue(ir_type_constant)
741{
742   this->const_elements = NULL;
743   assert(vector_elements <= 4);
744   this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1);
745   for (unsigned i = 0; i < vector_elements; i++) {
746      this->value.f[i] = f;
747   }
748   for (unsigned i = vector_elements; i < 16; i++)  {
749      this->value.f[i] = 0;
750   }
751}
752
753ir_constant::ir_constant(double d, unsigned vector_elements)
754   : ir_rvalue(ir_type_constant)
755{
756   this->const_elements = NULL;
757   assert(vector_elements <= 4);
758   this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1);
759   for (unsigned i = 0; i < vector_elements; i++) {
760      this->value.d[i] = d;
761   }
762   for (unsigned i = vector_elements; i < 16; i++)  {
763      this->value.d[i] = 0.0;
764   }
765}
766
767ir_constant::ir_constant(int16_t i16, unsigned vector_elements)
768   : ir_rvalue(ir_type_constant)
769{
770   this->const_elements = NULL;
771   assert(vector_elements <= 4);
772   this->type = glsl_type::get_instance(GLSL_TYPE_INT16, vector_elements, 1);
773   for (unsigned i = 0; i < vector_elements; i++) {
774      this->value.i16[i] = i16;
775   }
776   for (unsigned i = vector_elements; i < 16; i++) {
777      this->value.i16[i] = 0;
778   }
779}
780
781ir_constant::ir_constant(uint16_t u16, unsigned vector_elements)
782   : ir_rvalue(ir_type_constant)
783{
784   this->const_elements = NULL;
785   assert(vector_elements <= 4);
786   this->type = glsl_type::get_instance(GLSL_TYPE_UINT16, vector_elements, 1);
787   for (unsigned i = 0; i < vector_elements; i++) {
788      this->value.u16[i] = u16;
789   }
790   for (unsigned i = vector_elements; i < 16; i++) {
791      this->value.u16[i] = 0;
792   }
793}
794
795ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
796   : ir_rvalue(ir_type_constant)
797{
798   this->const_elements = NULL;
799   assert(vector_elements <= 4);
800   this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1);
801   for (unsigned i = 0; i < vector_elements; i++) {
802      this->value.u[i] = u;
803   }
804   for (unsigned i = vector_elements; i < 16; i++) {
805      this->value.u[i] = 0;
806   }
807}
808
809ir_constant::ir_constant(int integer, unsigned vector_elements)
810   : ir_rvalue(ir_type_constant)
811{
812   this->const_elements = NULL;
813   assert(vector_elements <= 4);
814   this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1);
815   for (unsigned i = 0; i < vector_elements; i++) {
816      this->value.i[i] = integer;
817   }
818   for (unsigned i = vector_elements; i < 16; i++) {
819      this->value.i[i] = 0;
820   }
821}
822
823ir_constant::ir_constant(uint64_t u64, unsigned vector_elements)
824   : ir_rvalue(ir_type_constant)
825{
826   this->const_elements = NULL;
827   assert(vector_elements <= 4);
828   this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, vector_elements, 1);
829   for (unsigned i = 0; i < vector_elements; i++) {
830      this->value.u64[i] = u64;
831   }
832   for (unsigned i = vector_elements; i < 16; i++) {
833      this->value.u64[i] = 0;
834   }
835}
836
837ir_constant::ir_constant(int64_t int64, unsigned vector_elements)
838   : ir_rvalue(ir_type_constant)
839{
840   this->const_elements = NULL;
841   assert(vector_elements <= 4);
842   this->type = glsl_type::get_instance(GLSL_TYPE_INT64, vector_elements, 1);
843   for (unsigned i = 0; i < vector_elements; i++) {
844      this->value.i64[i] = int64;
845   }
846   for (unsigned i = vector_elements; i < 16; i++) {
847      this->value.i64[i] = 0;
848   }
849}
850
851ir_constant::ir_constant(bool b, unsigned vector_elements)
852   : ir_rvalue(ir_type_constant)
853{
854   this->const_elements = NULL;
855   assert(vector_elements <= 4);
856   this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1);
857   for (unsigned i = 0; i < vector_elements; i++) {
858      this->value.b[i] = b;
859   }
860   for (unsigned i = vector_elements; i < 16; i++) {
861      this->value.b[i] = false;
862   }
863}
864
865ir_constant::ir_constant(const ir_constant *c, unsigned i)
866   : ir_rvalue(ir_type_constant)
867{
868   this->const_elements = NULL;
869   this->type = c->type->get_base_type();
870
871   /* Section 5.11 (Out-of-Bounds Accesses) of the GLSL 4.60 spec says:
872    *
873    *    In the subsections described above for array, vector, matrix and
874    *    structure accesses, any out-of-bounds access produced undefined
875    *    behavior....Out-of-bounds reads return undefined values, which
876    *    include values from other variables of the active program or zero.
877    *
878    * GL_KHR_robustness and GL_ARB_robustness encourage us to return zero.
879    */
880   if (i >= c->type->vector_elements) {
881      this->value = { { 0 } };
882      return;
883   }
884
885   switch (this->type->base_type) {
886   case GLSL_TYPE_UINT16:  this->value.u16[0] = c->value.u16[i]; break;
887   case GLSL_TYPE_INT16:  this->value.i16[0] = c->value.i16[i]; break;
888   case GLSL_TYPE_UINT:  this->value.u[0] = c->value.u[i]; break;
889   case GLSL_TYPE_INT:   this->value.i[0] = c->value.i[i]; break;
890   case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
891   case GLSL_TYPE_FLOAT16: this->value.f16[0] = c->value.f16[i]; break;
892   case GLSL_TYPE_BOOL:  this->value.b[0] = c->value.b[i]; break;
893   case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
894   default:              assert(!"Should not get here."); break;
895   }
896}
897
898ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
899   : ir_rvalue(ir_type_constant)
900{
901   this->const_elements = NULL;
902   this->type = type;
903
904   assert(type->is_scalar() || type->is_vector() || type->is_matrix()
905	  || type->is_struct() || type->is_array());
906
907   /* If the constant is a record, the types of each of the entries in
908    * value_list must be a 1-for-1 match with the structure components.  Each
909    * entry must also be a constant.  Just move the nodes from the value_list
910    * to the list in the ir_constant.
911    */
912   if (type->is_array() || type->is_struct()) {
913      this->const_elements = ralloc_array(this, ir_constant *, type->length);
914      unsigned i = 0;
915      foreach_in_list(ir_constant, value, value_list) {
916	 assert(value->as_constant() != NULL);
917
918	 this->const_elements[i++] = value;
919      }
920      return;
921   }
922
923   for (unsigned i = 0; i < 16; i++) {
924      this->value.u[i] = 0;
925   }
926
927   ir_constant *value = (ir_constant *) (value_list->get_head_raw());
928
929   /* Constructors with exactly one scalar argument are special for vectors
930    * and matrices.  For vectors, the scalar value is replicated to fill all
931    * the components.  For matrices, the scalar fills the components of the
932    * diagonal while the rest is filled with 0.
933    */
934   if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
935      if (type->is_matrix()) {
936	 /* Matrix - fill diagonal (rest is already set to 0) */
937         for (unsigned i = 0; i < type->matrix_columns; i++) {
938            switch (type->base_type) {
939            case GLSL_TYPE_FLOAT:
940               this->value.f[i * type->vector_elements + i] =
941                  value->value.f[0];
942               break;
943            case GLSL_TYPE_DOUBLE:
944               this->value.d[i * type->vector_elements + i] =
945                  value->value.d[0];
946               break;
947            case GLSL_TYPE_FLOAT16:
948               this->value.f16[i * type->vector_elements + i] =
949                  value->value.f16[0];
950               break;
951            default:
952               assert(!"unexpected matrix base type");
953            }
954         }
955      } else {
956	 /* Vector or scalar - fill all components */
957	 switch (type->base_type) {
958         case GLSL_TYPE_UINT16:
959	 case GLSL_TYPE_INT16:
960	    for (unsigned i = 0; i < type->components(); i++)
961	       this->value.u16[i] = value->value.u16[0];
962	    break;
963	 case GLSL_TYPE_UINT:
964	 case GLSL_TYPE_INT:
965	    for (unsigned i = 0; i < type->components(); i++)
966	       this->value.u[i] = value->value.u[0];
967	    break;
968	 case GLSL_TYPE_FLOAT:
969	    for (unsigned i = 0; i < type->components(); i++)
970	       this->value.f[i] = value->value.f[0];
971	    break;
972	 case GLSL_TYPE_FLOAT16:
973	    for (unsigned i = 0; i < type->components(); i++)
974	       this->value.f16[i] = value->value.f16[0];
975	    break;
976	 case GLSL_TYPE_DOUBLE:
977	    for (unsigned i = 0; i < type->components(); i++)
978	       this->value.d[i] = value->value.d[0];
979	    break;
980	 case GLSL_TYPE_UINT64:
981	 case GLSL_TYPE_INT64:
982	    for (unsigned i = 0; i < type->components(); i++)
983	       this->value.u64[i] = value->value.u64[0];
984	    break;
985	 case GLSL_TYPE_BOOL:
986	    for (unsigned i = 0; i < type->components(); i++)
987	       this->value.b[i] = value->value.b[0];
988	    break;
989	 case GLSL_TYPE_SAMPLER:
990	 case GLSL_TYPE_IMAGE:
991	    this->value.u64[0] = value->value.u64[0];
992	    break;
993	 default:
994	    assert(!"Should not get here.");
995	    break;
996	 }
997      }
998      return;
999   }
1000
1001   if (type->is_matrix() && value->type->is_matrix()) {
1002      assert(value->next->is_tail_sentinel());
1003
1004      /* From section 5.4.2 of the GLSL 1.20 spec:
1005       * "If a matrix is constructed from a matrix, then each component
1006       *  (column i, row j) in the result that has a corresponding component
1007       *  (column i, row j) in the argument will be initialized from there."
1008       */
1009      unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
1010      unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
1011      for (unsigned i = 0; i < cols; i++) {
1012	 for (unsigned j = 0; j < rows; j++) {
1013	    const unsigned src = i * value->type->vector_elements + j;
1014	    const unsigned dst = i * type->vector_elements + j;
1015	    this->value.f[dst] = value->value.f[src];
1016	 }
1017      }
1018
1019      /* "All other components will be initialized to the identity matrix." */
1020      for (unsigned i = cols; i < type->matrix_columns; i++)
1021	 this->value.f[i * type->vector_elements + i] = 1.0;
1022
1023      return;
1024   }
1025
1026   /* Use each component from each entry in the value_list to initialize one
1027    * component of the constant being constructed.
1028    */
1029   unsigned i = 0;
1030   for (;;) {
1031      assert(value->as_constant() != NULL);
1032      assert(!value->is_tail_sentinel());
1033
1034      for (unsigned j = 0; j < value->type->components(); j++) {
1035	 switch (type->base_type) {
1036         case GLSL_TYPE_UINT16:
1037	    this->value.u16[i] = value->get_uint16_component(j);
1038	    break;
1039	 case GLSL_TYPE_INT16:
1040	    this->value.i16[i] = value->get_int16_component(j);
1041	    break;
1042	 case GLSL_TYPE_UINT:
1043	    this->value.u[i] = value->get_uint_component(j);
1044	    break;
1045	 case GLSL_TYPE_INT:
1046	    this->value.i[i] = value->get_int_component(j);
1047	    break;
1048	 case GLSL_TYPE_FLOAT:
1049	    this->value.f[i] = value->get_float_component(j);
1050	    break;
1051	 case GLSL_TYPE_FLOAT16:
1052	    this->value.f16[i] = value->get_float16_component(j);
1053	    break;
1054	 case GLSL_TYPE_BOOL:
1055	    this->value.b[i] = value->get_bool_component(j);
1056	    break;
1057	 case GLSL_TYPE_DOUBLE:
1058	    this->value.d[i] = value->get_double_component(j);
1059	    break;
1060         case GLSL_TYPE_UINT64:
1061	    this->value.u64[i] = value->get_uint64_component(j);
1062	    break;
1063	 case GLSL_TYPE_INT64:
1064	    this->value.i64[i] = value->get_int64_component(j);
1065	    break;
1066	 default:
1067	    /* FINISHME: What to do?  Exceptions are not the answer.
1068	     */
1069	    break;
1070	 }
1071
1072	 i++;
1073	 if (i >= type->components())
1074	    break;
1075      }
1076
1077      if (i >= type->components())
1078	 break; /* avoid downcasting a list sentinel */
1079      value = (ir_constant *) value->next;
1080   }
1081}
1082
1083ir_constant *
1084ir_constant::zero(void *mem_ctx, const glsl_type *type)
1085{
1086   assert(type->is_scalar() || type->is_vector() || type->is_matrix()
1087	  || type->is_struct() || type->is_array());
1088
1089   ir_constant *c = new(mem_ctx) ir_constant;
1090   c->type = type;
1091   memset(&c->value, 0, sizeof(c->value));
1092
1093   if (type->is_array()) {
1094      c->const_elements = ralloc_array(c, ir_constant *, type->length);
1095
1096      for (unsigned i = 0; i < type->length; i++)
1097	 c->const_elements[i] = ir_constant::zero(c, type->fields.array);
1098   }
1099
1100   if (type->is_struct()) {
1101      c->const_elements = ralloc_array(c, ir_constant *, type->length);
1102
1103      for (unsigned i = 0; i < type->length; i++) {
1104         c->const_elements[i] =
1105            ir_constant::zero(mem_ctx, type->fields.structure[i].type);
1106      }
1107   }
1108
1109   return c;
1110}
1111
1112bool
1113ir_constant::get_bool_component(unsigned i) const
1114{
1115   switch (this->type->base_type) {
1116   case GLSL_TYPE_UINT16:return this->value.u16[i] != 0;
1117   case GLSL_TYPE_INT16: return this->value.i16[i] != 0;
1118   case GLSL_TYPE_UINT:  return this->value.u[i] != 0;
1119   case GLSL_TYPE_INT:   return this->value.i[i] != 0;
1120   case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
1121   case GLSL_TYPE_FLOAT16: return ((int)_mesa_half_to_float(this->value.f16[i])) != 0;
1122   case GLSL_TYPE_BOOL:  return this->value.b[i];
1123   case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
1124   case GLSL_TYPE_SAMPLER:
1125   case GLSL_TYPE_IMAGE:
1126   case GLSL_TYPE_UINT64: return this->value.u64[i] != 0;
1127   case GLSL_TYPE_INT64:  return this->value.i64[i] != 0;
1128   default:              assert(!"Should not get here."); break;
1129   }
1130
1131   /* Must return something to make the compiler happy.  This is clearly an
1132    * error case.
1133    */
1134   return false;
1135}
1136
1137float
1138ir_constant::get_float_component(unsigned i) const
1139{
1140   switch (this->type->base_type) {
1141   case GLSL_TYPE_UINT16:return (float) this->value.u16[i];
1142   case GLSL_TYPE_INT16: return (float) this->value.i16[i];
1143   case GLSL_TYPE_UINT:  return (float) this->value.u[i];
1144   case GLSL_TYPE_INT:   return (float) this->value.i[i];
1145   case GLSL_TYPE_FLOAT: return this->value.f[i];
1146   case GLSL_TYPE_FLOAT16: return _mesa_half_to_float(this->value.f16[i]);
1147   case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1.0f : 0.0f;
1148   case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
1149   case GLSL_TYPE_SAMPLER:
1150   case GLSL_TYPE_IMAGE:
1151   case GLSL_TYPE_UINT64: return (float) this->value.u64[i];
1152   case GLSL_TYPE_INT64:  return (float) this->value.i64[i];
1153   default:              assert(!"Should not get here."); break;
1154   }
1155
1156   /* Must return something to make the compiler happy.  This is clearly an
1157    * error case.
1158    */
1159   return 0.0;
1160}
1161
1162uint16_t
1163ir_constant::get_float16_component(unsigned i) const
1164{
1165   if (this->type->base_type == GLSL_TYPE_FLOAT16)
1166      return this->value.f16[i];
1167   else
1168      return _mesa_float_to_half(get_float_component(i));
1169}
1170
1171double
1172ir_constant::get_double_component(unsigned i) const
1173{
1174   switch (this->type->base_type) {
1175   case GLSL_TYPE_UINT16:return (double) this->value.u16[i];
1176   case GLSL_TYPE_INT16: return (double) this->value.i16[i];
1177   case GLSL_TYPE_UINT:  return (double) this->value.u[i];
1178   case GLSL_TYPE_INT:   return (double) this->value.i[i];
1179   case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
1180   case GLSL_TYPE_FLOAT16: return (double) _mesa_half_to_float(this->value.f16[i]);
1181   case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1.0 : 0.0;
1182   case GLSL_TYPE_DOUBLE: return this->value.d[i];
1183   case GLSL_TYPE_SAMPLER:
1184   case GLSL_TYPE_IMAGE:
1185   case GLSL_TYPE_UINT64: return (double) this->value.u64[i];
1186   case GLSL_TYPE_INT64:  return (double) this->value.i64[i];
1187   default:              assert(!"Should not get here."); break;
1188   }
1189
1190   /* Must return something to make the compiler happy.  This is clearly an
1191    * error case.
1192    */
1193   return 0.0;
1194}
1195
1196int16_t
1197ir_constant::get_int16_component(unsigned i) const
1198{
1199   switch (this->type->base_type) {
1200   case GLSL_TYPE_UINT16:return this->value.u16[i];
1201   case GLSL_TYPE_INT16: return this->value.i16[i];
1202   case GLSL_TYPE_UINT:  return this->value.u[i];
1203   case GLSL_TYPE_INT:   return this->value.i[i];
1204   case GLSL_TYPE_FLOAT: return (int16_t) this->value.f[i];
1205   case GLSL_TYPE_FLOAT16: return (int16_t) _mesa_half_to_float(this->value.f16[i]);
1206   case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1207   case GLSL_TYPE_DOUBLE: return (int16_t) this->value.d[i];
1208   case GLSL_TYPE_SAMPLER:
1209   case GLSL_TYPE_IMAGE:
1210   case GLSL_TYPE_UINT64: return (int16_t) this->value.u64[i];
1211   case GLSL_TYPE_INT64:  return (int16_t) this->value.i64[i];
1212   default:              assert(!"Should not get here."); break;
1213   }
1214
1215   /* Must return something to make the compiler happy.  This is clearly an
1216    * error case.
1217    */
1218   return 0;
1219}
1220
1221uint16_t
1222ir_constant::get_uint16_component(unsigned i) const
1223{
1224   switch (this->type->base_type) {
1225   case GLSL_TYPE_UINT16:return this->value.u16[i];
1226   case GLSL_TYPE_INT16: return this->value.i16[i];
1227   case GLSL_TYPE_UINT:  return this->value.u[i];
1228   case GLSL_TYPE_INT:   return this->value.i[i];
1229   case GLSL_TYPE_FLOAT: return (uint16_t) this->value.f[i];
1230   case GLSL_TYPE_FLOAT16: return (uint16_t) _mesa_half_to_float(this->value.f16[i]);
1231   case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1232   case GLSL_TYPE_DOUBLE: return (uint16_t) this->value.d[i];
1233   case GLSL_TYPE_SAMPLER:
1234   case GLSL_TYPE_IMAGE:
1235   case GLSL_TYPE_UINT64: return (uint16_t) this->value.u64[i];
1236   case GLSL_TYPE_INT64:  return (uint16_t) this->value.i64[i];
1237   default:              assert(!"Should not get here."); break;
1238   }
1239
1240   /* Must return something to make the compiler happy.  This is clearly an
1241    * error case.
1242    */
1243   return 0;
1244}
1245
1246int
1247ir_constant::get_int_component(unsigned i) const
1248{
1249   switch (this->type->base_type) {
1250   case GLSL_TYPE_UINT16:return this->value.u16[i];
1251   case GLSL_TYPE_INT16: return this->value.i16[i];
1252   case GLSL_TYPE_UINT:  return this->value.u[i];
1253   case GLSL_TYPE_INT:   return this->value.i[i];
1254   case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
1255   case GLSL_TYPE_FLOAT16: return (int) _mesa_half_to_float(this->value.f16[i]);
1256   case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1257   case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
1258   case GLSL_TYPE_SAMPLER:
1259   case GLSL_TYPE_IMAGE:
1260   case GLSL_TYPE_UINT64: return (int) this->value.u64[i];
1261   case GLSL_TYPE_INT64:  return (int) this->value.i64[i];
1262   default:              assert(!"Should not get here."); break;
1263   }
1264
1265   /* Must return something to make the compiler happy.  This is clearly an
1266    * error case.
1267    */
1268   return 0;
1269}
1270
1271unsigned
1272ir_constant::get_uint_component(unsigned i) const
1273{
1274   switch (this->type->base_type) {
1275   case GLSL_TYPE_UINT16:return this->value.u16[i];
1276   case GLSL_TYPE_INT16: return this->value.i16[i];
1277   case GLSL_TYPE_UINT:  return this->value.u[i];
1278   case GLSL_TYPE_INT:   return this->value.i[i];
1279   case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
1280   case GLSL_TYPE_FLOAT16: return (unsigned) _mesa_half_to_float(this->value.f16[i]);
1281   case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1282   case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
1283   case GLSL_TYPE_SAMPLER:
1284   case GLSL_TYPE_IMAGE:
1285   case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i];
1286   case GLSL_TYPE_INT64:  return (unsigned) this->value.i64[i];
1287   default:              assert(!"Should not get here."); break;
1288   }
1289
1290   /* Must return something to make the compiler happy.  This is clearly an
1291    * error case.
1292    */
1293   return 0;
1294}
1295
1296int64_t
1297ir_constant::get_int64_component(unsigned i) const
1298{
1299   switch (this->type->base_type) {
1300   case GLSL_TYPE_UINT16:return this->value.u16[i];
1301   case GLSL_TYPE_INT16: return this->value.i16[i];
1302   case GLSL_TYPE_UINT:  return this->value.u[i];
1303   case GLSL_TYPE_INT:   return this->value.i[i];
1304   case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i];
1305   case GLSL_TYPE_FLOAT16: return (int64_t) _mesa_half_to_float(this->value.f16[i]);
1306   case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1307   case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i];
1308   case GLSL_TYPE_SAMPLER:
1309   case GLSL_TYPE_IMAGE:
1310   case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i];
1311   case GLSL_TYPE_INT64:  return this->value.i64[i];
1312   default:              assert(!"Should not get here."); break;
1313   }
1314
1315   /* Must return something to make the compiler happy.  This is clearly an
1316    * error case.
1317    */
1318   return 0;
1319}
1320
1321uint64_t
1322ir_constant::get_uint64_component(unsigned i) const
1323{
1324   switch (this->type->base_type) {
1325   case GLSL_TYPE_UINT16:return this->value.u16[i];
1326   case GLSL_TYPE_INT16: return this->value.i16[i];
1327   case GLSL_TYPE_UINT:  return this->value.u[i];
1328   case GLSL_TYPE_INT:   return this->value.i[i];
1329   case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i];
1330   case GLSL_TYPE_FLOAT16: return (uint64_t) _mesa_half_to_float(this->value.f16[i]);
1331   case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1332   case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i];
1333   case GLSL_TYPE_SAMPLER:
1334   case GLSL_TYPE_IMAGE:
1335   case GLSL_TYPE_UINT64: return this->value.u64[i];
1336   case GLSL_TYPE_INT64:  return (uint64_t) this->value.i64[i];
1337   default:              assert(!"Should not get here."); break;
1338   }
1339
1340   /* Must return something to make the compiler happy.  This is clearly an
1341    * error case.
1342    */
1343   return 0;
1344}
1345
1346ir_constant *
1347ir_constant::get_array_element(unsigned i) const
1348{
1349   assert(this->type->is_array());
1350
1351   /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
1352    *
1353    *     "Behavior is undefined if a shader subscripts an array with an index
1354    *     less than 0 or greater than or equal to the size the array was
1355    *     declared with."
1356    *
1357    * Most out-of-bounds accesses are removed before things could get this far.
1358    * There are cases where non-constant array index values can get constant
1359    * folded.
1360    */
1361   if (int(i) < 0)
1362      i = 0;
1363   else if (i >= this->type->length)
1364      i = this->type->length - 1;
1365
1366   return const_elements[i];
1367}
1368
1369ir_constant *
1370ir_constant::get_record_field(int idx)
1371{
1372   assert(this->type->is_struct());
1373   assert(idx >= 0 && (unsigned) idx < this->type->length);
1374
1375   return const_elements[idx];
1376}
1377
1378void
1379ir_constant::copy_offset(ir_constant *src, int offset)
1380{
1381   switch (this->type->base_type) {
1382   case GLSL_TYPE_UINT16:
1383   case GLSL_TYPE_INT16:
1384   case GLSL_TYPE_UINT:
1385   case GLSL_TYPE_INT:
1386   case GLSL_TYPE_FLOAT:
1387   case GLSL_TYPE_FLOAT16:
1388   case GLSL_TYPE_DOUBLE:
1389   case GLSL_TYPE_SAMPLER:
1390   case GLSL_TYPE_IMAGE:
1391   case GLSL_TYPE_UINT64:
1392   case GLSL_TYPE_INT64:
1393   case GLSL_TYPE_BOOL: {
1394      unsigned int size = src->type->components();
1395      assert (size <= this->type->components() - offset);
1396      for (unsigned int i=0; i<size; i++) {
1397	 switch (this->type->base_type) {
1398         case GLSL_TYPE_UINT16:
1399	    value.u16[i+offset] = src->get_uint16_component(i);
1400	    break;
1401	 case GLSL_TYPE_INT16:
1402	    value.i16[i+offset] = src->get_int16_component(i);
1403	    break;
1404	 case GLSL_TYPE_UINT:
1405	    value.u[i+offset] = src->get_uint_component(i);
1406	    break;
1407	 case GLSL_TYPE_INT:
1408	    value.i[i+offset] = src->get_int_component(i);
1409	    break;
1410	 case GLSL_TYPE_FLOAT:
1411	    value.f[i+offset] = src->get_float_component(i);
1412	    break;
1413	 case GLSL_TYPE_FLOAT16:
1414	    value.f16[i+offset] = src->get_float16_component(i);
1415	    break;
1416	 case GLSL_TYPE_BOOL:
1417	    value.b[i+offset] = src->get_bool_component(i);
1418	    break;
1419	 case GLSL_TYPE_DOUBLE:
1420	    value.d[i+offset] = src->get_double_component(i);
1421	    break;
1422	 case GLSL_TYPE_SAMPLER:
1423	 case GLSL_TYPE_IMAGE:
1424	 case GLSL_TYPE_UINT64:
1425	    value.u64[i+offset] = src->get_uint64_component(i);
1426	    break;
1427	 case GLSL_TYPE_INT64:
1428	    value.i64[i+offset] = src->get_int64_component(i);
1429	    break;
1430	 default: // Shut up the compiler
1431	    break;
1432	 }
1433      }
1434      break;
1435   }
1436
1437   case GLSL_TYPE_STRUCT:
1438   case GLSL_TYPE_ARRAY: {
1439      assert (src->type == this->type);
1440      for (unsigned i = 0; i < this->type->length; i++) {
1441	 this->const_elements[i] = src->const_elements[i]->clone(this, NULL);
1442      }
1443      break;
1444   }
1445
1446   default:
1447      assert(!"Should not get here.");
1448      break;
1449   }
1450}
1451
1452void
1453ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
1454{
1455   assert (!type->is_array() && !type->is_struct());
1456
1457   if (!type->is_vector() && !type->is_matrix()) {
1458      offset = 0;
1459      mask = 1;
1460   }
1461
1462   int id = 0;
1463   for (int i=0; i<4; i++) {
1464      if (mask & (1 << i)) {
1465	 switch (this->type->base_type) {
1466         case GLSL_TYPE_UINT16:
1467	    value.u16[i+offset] = src->get_uint16_component(id++);
1468	    break;
1469	 case GLSL_TYPE_INT16:
1470	    value.i16[i+offset] = src->get_int16_component(id++);
1471	    break;
1472	 case GLSL_TYPE_UINT:
1473	    value.u[i+offset] = src->get_uint_component(id++);
1474	    break;
1475	 case GLSL_TYPE_INT:
1476	    value.i[i+offset] = src->get_int_component(id++);
1477	    break;
1478	 case GLSL_TYPE_FLOAT:
1479	    value.f[i+offset] = src->get_float_component(id++);
1480	    break;
1481	 case GLSL_TYPE_FLOAT16:
1482	    value.f16[i+offset] = src->get_float16_component(id++);
1483	    break;
1484	 case GLSL_TYPE_BOOL:
1485	    value.b[i+offset] = src->get_bool_component(id++);
1486	    break;
1487	 case GLSL_TYPE_DOUBLE:
1488	    value.d[i+offset] = src->get_double_component(id++);
1489	    break;
1490	 case GLSL_TYPE_SAMPLER:
1491	 case GLSL_TYPE_IMAGE:
1492	 case GLSL_TYPE_UINT64:
1493	    value.u64[i+offset] = src->get_uint64_component(id++);
1494	    break;
1495	 case GLSL_TYPE_INT64:
1496	    value.i64[i+offset] = src->get_int64_component(id++);
1497	    break;
1498	 default:
1499	    assert(!"Should not get here.");
1500	    return;
1501	 }
1502      }
1503   }
1504}
1505
1506bool
1507ir_constant::has_value(const ir_constant *c) const
1508{
1509   if (this->type != c->type)
1510      return false;
1511
1512   if (this->type->is_array() || this->type->is_struct()) {
1513      for (unsigned i = 0; i < this->type->length; i++) {
1514	 if (!this->const_elements[i]->has_value(c->const_elements[i]))
1515	    return false;
1516      }
1517      return true;
1518   }
1519
1520   for (unsigned i = 0; i < this->type->components(); i++) {
1521      switch (this->type->base_type) {
1522      case GLSL_TYPE_UINT16:
1523	 if (this->value.u16[i] != c->value.u16[i])
1524	    return false;
1525	 break;
1526      case GLSL_TYPE_INT16:
1527	 if (this->value.i16[i] != c->value.i16[i])
1528	    return false;
1529	 break;
1530      case GLSL_TYPE_UINT:
1531	 if (this->value.u[i] != c->value.u[i])
1532	    return false;
1533	 break;
1534      case GLSL_TYPE_INT:
1535	 if (this->value.i[i] != c->value.i[i])
1536	    return false;
1537	 break;
1538      case GLSL_TYPE_FLOAT:
1539	 if (this->value.f[i] != c->value.f[i])
1540	    return false;
1541	 break;
1542      case GLSL_TYPE_FLOAT16:
1543	/* Convert to float to make sure NaN and ±0.0 compares correctly */
1544	 if (_mesa_half_to_float(this->value.f16[i]) !=
1545             _mesa_half_to_float(c->value.f16[i]))
1546	    return false;
1547	 break;
1548      case GLSL_TYPE_BOOL:
1549	 if (this->value.b[i] != c->value.b[i])
1550	    return false;
1551	 break;
1552      case GLSL_TYPE_DOUBLE:
1553	 if (this->value.d[i] != c->value.d[i])
1554	    return false;
1555	 break;
1556      case GLSL_TYPE_SAMPLER:
1557      case GLSL_TYPE_IMAGE:
1558      case GLSL_TYPE_UINT64:
1559	 if (this->value.u64[i] != c->value.u64[i])
1560	    return false;
1561	 break;
1562      case GLSL_TYPE_INT64:
1563	 if (this->value.i64[i] != c->value.i64[i])
1564	    return false;
1565	 break;
1566      default:
1567	 assert(!"Should not get here.");
1568	 return false;
1569      }
1570   }
1571
1572   return true;
1573}
1574
1575bool
1576ir_constant::is_value(float f, int i) const
1577{
1578   if (!this->type->is_scalar() && !this->type->is_vector())
1579      return false;
1580
1581   /* Only accept boolean values for 0/1. */
1582   if (int(bool(i)) != i && this->type->is_boolean())
1583      return false;
1584
1585   for (unsigned c = 0; c < this->type->vector_elements; c++) {
1586      switch (this->type->base_type) {
1587      case GLSL_TYPE_FLOAT:
1588	 if (this->value.f[c] != f)
1589	    return false;
1590	 break;
1591      case GLSL_TYPE_FLOAT16:
1592         if (_mesa_half_to_float(this->value.f16[c]) != f)
1593            return false;
1594         break;
1595      case GLSL_TYPE_INT16:
1596	 if (this->value.i16[c] != int16_t(i))
1597	    return false;
1598	 break;
1599      case GLSL_TYPE_UINT16:
1600	 if (this->value.u16[c] != uint16_t(i))
1601	    return false;
1602	 break;
1603      case GLSL_TYPE_INT:
1604	 if (this->value.i[c] != i)
1605	    return false;
1606	 break;
1607      case GLSL_TYPE_UINT:
1608	 if (this->value.u[c] != unsigned(i))
1609	    return false;
1610	 break;
1611      case GLSL_TYPE_BOOL:
1612	 if (this->value.b[c] != bool(i))
1613	    return false;
1614	 break;
1615      case GLSL_TYPE_DOUBLE:
1616	 if (this->value.d[c] != double(f))
1617	    return false;
1618	 break;
1619      case GLSL_TYPE_SAMPLER:
1620      case GLSL_TYPE_IMAGE:
1621      case GLSL_TYPE_UINT64:
1622	 if (this->value.u64[c] != uint64_t(i))
1623	    return false;
1624	 break;
1625      case GLSL_TYPE_INT64:
1626	 if (this->value.i64[c] != i)
1627	    return false;
1628	 break;
1629      default:
1630	 /* The only other base types are structures, arrays, and samplers.
1631	  * Samplers cannot be constants, and the others should have been
1632	  * filtered out above.
1633	  */
1634	 assert(!"Should not get here.");
1635	 return false;
1636      }
1637   }
1638
1639   return true;
1640}
1641
1642bool
1643ir_constant::is_zero() const
1644{
1645   return is_value(0.0, 0);
1646}
1647
1648bool
1649ir_constant::is_one() const
1650{
1651   return is_value(1.0, 1);
1652}
1653
1654bool
1655ir_constant::is_negative_one() const
1656{
1657   return is_value(-1.0, -1);
1658}
1659
1660bool
1661ir_constant::is_uint16_constant() const
1662{
1663   if (!type->is_integer_32())
1664      return false;
1665
1666   return value.u[0] < (1 << 16);
1667}
1668
1669ir_loop::ir_loop()
1670   : ir_instruction(ir_type_loop)
1671{
1672}
1673
1674
1675ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1676   : ir_dereference(ir_type_dereference_variable)
1677{
1678   assert(var != NULL);
1679
1680   this->var = var;
1681   this->type = var->type;
1682}
1683
1684
1685ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1686					   ir_rvalue *array_index)
1687   : ir_dereference(ir_type_dereference_array)
1688{
1689   this->array_index = array_index;
1690   this->set_array(value);
1691}
1692
1693
1694ir_dereference_array::ir_dereference_array(ir_variable *var,
1695					   ir_rvalue *array_index)
1696   : ir_dereference(ir_type_dereference_array)
1697{
1698   void *ctx = ralloc_parent(var);
1699
1700   this->array_index = array_index;
1701   this->set_array(new(ctx) ir_dereference_variable(var));
1702}
1703
1704
1705void
1706ir_dereference_array::set_array(ir_rvalue *value)
1707{
1708   assert(value != NULL);
1709
1710   this->array = value;
1711
1712   const glsl_type *const vt = this->array->type;
1713
1714   if (vt->is_array()) {
1715      type = vt->fields.array;
1716   } else if (vt->is_matrix()) {
1717      type = vt->column_type();
1718   } else if (vt->is_vector()) {
1719      type = vt->get_base_type();
1720   }
1721}
1722
1723
1724ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1725					     const char *field)
1726   : ir_dereference(ir_type_dereference_record)
1727{
1728   assert(value != NULL);
1729
1730   this->record = value;
1731   this->type = this->record->type->field_type(field);
1732   this->field_idx = this->record->type->field_index(field);
1733}
1734
1735
1736ir_dereference_record::ir_dereference_record(ir_variable *var,
1737					     const char *field)
1738   : ir_dereference(ir_type_dereference_record)
1739{
1740   void *ctx = ralloc_parent(var);
1741
1742   this->record = new(ctx) ir_dereference_variable(var);
1743   this->type = this->record->type->field_type(field);
1744   this->field_idx = this->record->type->field_index(field);
1745}
1746
1747bool
1748ir_dereference::is_lvalue(const struct _mesa_glsl_parse_state *state) const
1749{
1750   ir_variable *var = this->variable_referenced();
1751
1752   /* Every l-value dereference chain eventually ends in a variable.
1753    */
1754   if ((var == NULL) || var->data.read_only)
1755      return false;
1756
1757   /* From section 4.1.7 of the ARB_bindless_texture spec:
1758    *
1759    * "Samplers can be used as l-values, so can be assigned into and used as
1760    *  "out" and "inout" function parameters."
1761    *
1762    * From section 4.1.X of the ARB_bindless_texture spec:
1763    *
1764    * "Images can be used as l-values, so can be assigned into and used as
1765    *  "out" and "inout" function parameters."
1766    */
1767   if ((!state || state->has_bindless()) &&
1768       (this->type->contains_sampler() || this->type->contains_image()))
1769      return true;
1770
1771   /* From section 4.1.7 of the GLSL 4.40 spec:
1772    *
1773    *   "Opaque variables cannot be treated as l-values; hence cannot
1774    *    be used as out or inout function parameters, nor can they be
1775    *    assigned into."
1776    */
1777   if (this->type->contains_opaque())
1778      return false;
1779
1780   return true;
1781}
1782
1783
1784static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
1785
1786const char *ir_texture::opcode_string()
1787{
1788   assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
1789   return tex_opcode_strs[op];
1790}
1791
1792ir_texture_opcode
1793ir_texture::get_opcode(const char *str)
1794{
1795   const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1796   for (int op = 0; op < count; op++) {
1797      if (strcmp(str, tex_opcode_strs[op]) == 0)
1798	 return (ir_texture_opcode) op;
1799   }
1800   return (ir_texture_opcode) -1;
1801}
1802
1803
1804void
1805ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1806{
1807   assert(sampler != NULL);
1808   assert(type != NULL);
1809   this->sampler = sampler;
1810   this->type = type;
1811
1812   if (this->op == ir_txs || this->op == ir_query_levels ||
1813       this->op == ir_texture_samples) {
1814      assert(type->base_type == GLSL_TYPE_INT);
1815   } else if (this->op == ir_lod) {
1816      assert(type->vector_elements == 2);
1817      assert(type->is_float());
1818   } else if (this->op == ir_samples_identical) {
1819      assert(type == glsl_type::bool_type);
1820      assert(sampler->type->is_sampler());
1821      assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
1822   } else {
1823      assert(sampler->type->sampled_type == (int) type->base_type);
1824      if (sampler->type->sampler_shadow)
1825	 assert(type->vector_elements == 4 || type->vector_elements == 1);
1826      else
1827	 assert(type->vector_elements == 4);
1828   }
1829}
1830
1831
1832void
1833ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1834{
1835   assert((count >= 1) && (count <= 4));
1836
1837   memset(&this->mask, 0, sizeof(this->mask));
1838   this->mask.num_components = count;
1839
1840   unsigned dup_mask = 0;
1841   switch (count) {
1842   case 4:
1843      assert(comp[3] <= 3);
1844      dup_mask |= (1U << comp[3])
1845	 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1846      this->mask.w = comp[3];
1847
1848   case 3:
1849      assert(comp[2] <= 3);
1850      dup_mask |= (1U << comp[2])
1851	 & ((1U << comp[0]) | (1U << comp[1]));
1852      this->mask.z = comp[2];
1853
1854   case 2:
1855      assert(comp[1] <= 3);
1856      dup_mask |= (1U << comp[1])
1857	 & ((1U << comp[0]));
1858      this->mask.y = comp[1];
1859
1860   case 1:
1861      assert(comp[0] <= 3);
1862      this->mask.x = comp[0];
1863   }
1864
1865   this->mask.has_duplicates = dup_mask != 0;
1866
1867   /* Based on the number of elements in the swizzle and the base type
1868    * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1869    * generate the type of the resulting value.
1870    */
1871   type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1872}
1873
1874ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1875		       unsigned w, unsigned count)
1876   : ir_rvalue(ir_type_swizzle), val(val)
1877{
1878   const unsigned components[4] = { x, y, z, w };
1879   this->init_mask(components, count);
1880}
1881
1882ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1883		       unsigned count)
1884   : ir_rvalue(ir_type_swizzle), val(val)
1885{
1886   this->init_mask(comp, count);
1887}
1888
1889ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1890   : ir_rvalue(ir_type_swizzle), val(val), mask(mask)
1891{
1892   this->type = glsl_type::get_instance(val->type->base_type,
1893					mask.num_components, 1);
1894}
1895
1896#define X 1
1897#define R 5
1898#define S 9
1899#define I 13
1900
1901ir_swizzle *
1902ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1903{
1904   void *ctx = ralloc_parent(val);
1905
1906   /* For each possible swizzle character, this table encodes the value in
1907    * \c idx_map that represents the 0th element of the vector.  For invalid
1908    * swizzle characters (e.g., 'k'), a special value is used that will allow
1909    * detection of errors.
1910    */
1911   static const unsigned char base_idx[26] = {
1912   /* a  b  c  d  e  f  g  h  i  j  k  l  m */
1913      R, R, I, I, I, I, R, I, I, I, I, I, I,
1914   /* n  o  p  q  r  s  t  u  v  w  x  y  z */
1915      I, I, S, S, R, S, S, I, I, X, X, X, X
1916   };
1917
1918   /* Each valid swizzle character has an entry in the previous table.  This
1919    * table encodes the base index encoded in the previous table plus the actual
1920    * index of the swizzle character.  When processing swizzles, the first
1921    * character in the string is indexed in the previous table.  Each character
1922    * in the string is indexed in this table, and the value found there has the
1923    * value form the first table subtracted.  The result must be on the range
1924    * [0,3].
1925    *
1926    * For example, the string "wzyx" will get X from the first table.  Each of
1927    * the charcaters will get X+3, X+2, X+1, and X+0 from this table.  After
1928    * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1929    *
1930    * The string "wzrg" will get X from the first table.  Each of the characters
1931    * will get X+3, X+2, R+0, and R+1 from this table.  After subtraction, the
1932    * swizzle values are { 3, 2, 4, 5 }.  Since 4 and 5 are outside the range
1933    * [0,3], the error is detected.
1934    */
1935   static const unsigned char idx_map[26] = {
1936   /* a    b    c    d    e    f    g    h    i    j    k    l    m */
1937      R+3, R+2, 0,   0,   0,   0,   R+1, 0,   0,   0,   0,   0,   0,
1938   /* n    o    p    q    r    s    t    u    v    w    x    y    z */
1939      0,   0,   S+2, S+3, R+0, S+0, S+1, 0,   0,   X+3, X+0, X+1, X+2
1940   };
1941
1942   int swiz_idx[4] = { 0, 0, 0, 0 };
1943   unsigned i;
1944
1945
1946   /* Validate the first character in the swizzle string and look up the base
1947    * index value as described above.
1948    */
1949   if ((str[0] < 'a') || (str[0] > 'z'))
1950      return NULL;
1951
1952   const unsigned base = base_idx[str[0] - 'a'];
1953
1954
1955   for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1956      /* Validate the next character, and, as described above, convert it to a
1957       * swizzle index.
1958       */
1959      if ((str[i] < 'a') || (str[i] > 'z'))
1960	 return NULL;
1961
1962      swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1963      if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1964	 return NULL;
1965   }
1966
1967   if (str[i] != '\0')
1968	 return NULL;
1969
1970   return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1971			      swiz_idx[3], i);
1972}
1973
1974#undef X
1975#undef R
1976#undef S
1977#undef I
1978
1979ir_variable *
1980ir_swizzle::variable_referenced() const
1981{
1982   return this->val->variable_referenced();
1983}
1984
1985
1986bool ir_variable::temporaries_allocate_names = false;
1987
1988const char ir_variable::tmp_name[] = "compiler_temp";
1989
1990ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1991			 ir_variable_mode mode)
1992   : ir_instruction(ir_type_variable)
1993{
1994   this->type = type;
1995
1996   if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
1997      name = NULL;
1998
1999   /* The ir_variable clone method may call this constructor with name set to
2000    * tmp_name.
2001    */
2002   assert(name != NULL
2003          || mode == ir_var_temporary
2004          || mode == ir_var_function_in
2005          || mode == ir_var_function_out
2006          || mode == ir_var_function_inout);
2007   assert(name != ir_variable::tmp_name
2008          || mode == ir_var_temporary);
2009   if (mode == ir_var_temporary
2010       && (name == NULL || name == ir_variable::tmp_name)) {
2011      this->name = ir_variable::tmp_name;
2012   } else if (name == NULL ||
2013              strlen(name) < ARRAY_SIZE(this->name_storage)) {
2014      strcpy(this->name_storage, name ? name : "");
2015      this->name = this->name_storage;
2016   } else {
2017      this->name = ralloc_strdup(this, name);
2018   }
2019
2020   this->u.max_ifc_array_access = NULL;
2021
2022   this->data.explicit_location = false;
2023   this->data.explicit_index = false;
2024   this->data.explicit_binding = false;
2025   this->data.explicit_component = false;
2026   this->data.has_initializer = false;
2027   this->data.is_implicit_initializer = false;
2028   this->data.is_unmatched_generic_inout = false;
2029   this->data.is_xfb = false;
2030   this->data.is_xfb_only = false;
2031   this->data.explicit_xfb_buffer = false;
2032   this->data.explicit_xfb_offset = false;
2033   this->data.explicit_xfb_stride = false;
2034   this->data.location = -1;
2035   this->data.location_frac = 0;
2036   this->data.matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
2037   this->data.from_named_ifc_block = false;
2038   this->data.must_be_shader_input = false;
2039   this->data.index = 0;
2040   this->data.binding = 0;
2041   this->data.warn_extension_index = 0;
2042   this->constant_value = NULL;
2043   this->constant_initializer = NULL;
2044   this->data.depth_layout = ir_depth_layout_none;
2045   this->data.used = false;
2046   this->data.assigned = false;
2047   this->data.always_active_io = false;
2048   this->data.read_only = false;
2049   this->data.centroid = false;
2050   this->data.sample = false;
2051   this->data.patch = false;
2052   this->data.explicit_invariant = false;
2053   this->data.invariant = false;
2054   this->data.precise = false;
2055   this->data.how_declared = ir_var_declared_normally;
2056   this->data.mode = mode;
2057   this->data.interpolation = INTERP_MODE_NONE;
2058   this->data.max_array_access = -1;
2059   this->data.offset = 0;
2060   this->data.precision = GLSL_PRECISION_NONE;
2061   this->data.memory_read_only = false;
2062   this->data.memory_write_only = false;
2063   this->data.memory_coherent = false;
2064   this->data.memory_volatile = false;
2065   this->data.memory_restrict = false;
2066   this->data.from_ssbo_unsized_array = false;
2067   this->data.implicit_sized_array = false;
2068   this->data.fb_fetch_output = false;
2069   this->data.bindless = false;
2070   this->data.bound = false;
2071   this->data.image_format = PIPE_FORMAT_NONE;
2072   this->data._num_state_slots = 0;
2073   this->data.param_index = 0;
2074   this->data.stream = 0;
2075   this->data.xfb_buffer = -1;
2076   this->data.xfb_stride = -1;
2077   this->data.implicit_conversion_prohibited = false;
2078
2079   this->interface_type = NULL;
2080
2081   if (type != NULL) {
2082      if (type->is_interface())
2083         this->init_interface_type(type);
2084      else if (type->without_array()->is_interface())
2085         this->init_interface_type(type->without_array());
2086   }
2087}
2088
2089
2090const char *
2091interpolation_string(unsigned interpolation)
2092{
2093   switch (interpolation) {
2094   case INTERP_MODE_NONE:          return "no";
2095   case INTERP_MODE_SMOOTH:        return "smooth";
2096   case INTERP_MODE_FLAT:          return "flat";
2097   case INTERP_MODE_NOPERSPECTIVE: return "noperspective";
2098   }
2099
2100   assert(!"Should not get here.");
2101   return "";
2102}
2103
2104const char *const ir_variable::warn_extension_table[] = {
2105   "",
2106   "GL_ARB_shader_stencil_export",
2107   "GL_AMD_shader_stencil_export",
2108};
2109
2110void
2111ir_variable::enable_extension_warning(const char *extension)
2112{
2113   for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
2114      if (strcmp(warn_extension_table[i], extension) == 0) {
2115         this->data.warn_extension_index = i;
2116         return;
2117      }
2118   }
2119
2120   assert(!"Should not get here.");
2121   this->data.warn_extension_index = 0;
2122}
2123
2124const char *
2125ir_variable::get_extension_warning() const
2126{
2127   return this->data.warn_extension_index == 0
2128      ? NULL : warn_extension_table[this->data.warn_extension_index];
2129}
2130
2131ir_function_signature::ir_function_signature(const glsl_type *return_type,
2132                                             builtin_available_predicate b)
2133   : ir_instruction(ir_type_function_signature),
2134     return_type(return_type), is_defined(false),
2135     return_precision(GLSL_PRECISION_NONE),
2136     intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
2137{
2138   this->origin = NULL;
2139}
2140
2141
2142bool
2143ir_function_signature::is_builtin() const
2144{
2145   return builtin_avail != NULL;
2146}
2147
2148
2149bool
2150ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
2151{
2152   /* We can't call the predicate without a state pointer, so just say that
2153    * the signature is available.  At compile time, we need the filtering,
2154    * but also receive a valid state pointer.  At link time, we're resolving
2155    * imported built-in prototypes to their definitions, which will always
2156    * be an exact match.  So we can skip the filtering.
2157    */
2158   if (state == NULL)
2159      return true;
2160
2161   assert(builtin_avail != NULL);
2162   return builtin_avail(state);
2163}
2164
2165
2166static bool
2167modes_match(unsigned a, unsigned b)
2168{
2169   if (a == b)
2170      return true;
2171
2172   /* Accept "in" vs. "const in" */
2173   if ((a == ir_var_const_in && b == ir_var_function_in) ||
2174       (b == ir_var_const_in && a == ir_var_function_in))
2175      return true;
2176
2177   return false;
2178}
2179
2180
2181const char *
2182ir_function_signature::qualifiers_match(exec_list *params)
2183{
2184   /* check that the qualifiers match. */
2185   foreach_two_lists(a_node, &this->parameters, b_node, params) {
2186      ir_variable *a = (ir_variable *) a_node;
2187      ir_variable *b = (ir_variable *) b_node;
2188
2189      if (a->data.read_only != b->data.read_only ||
2190	  !modes_match(a->data.mode, b->data.mode) ||
2191	  a->data.interpolation != b->data.interpolation ||
2192	  a->data.centroid != b->data.centroid ||
2193          a->data.sample != b->data.sample ||
2194          a->data.patch != b->data.patch ||
2195          a->data.memory_read_only != b->data.memory_read_only ||
2196          a->data.memory_write_only != b->data.memory_write_only ||
2197          a->data.memory_coherent != b->data.memory_coherent ||
2198          a->data.memory_volatile != b->data.memory_volatile ||
2199          a->data.memory_restrict != b->data.memory_restrict) {
2200
2201	 /* parameter a's qualifiers don't match */
2202	 return a->name;
2203      }
2204   }
2205   return NULL;
2206}
2207
2208
2209void
2210ir_function_signature::replace_parameters(exec_list *new_params)
2211{
2212   /* Destroy all of the previous parameter information.  If the previous
2213    * parameter information comes from the function prototype, it may either
2214    * specify incorrect parameter names or not have names at all.
2215    */
2216   new_params->move_nodes_to(&parameters);
2217}
2218
2219
2220ir_function::ir_function(const char *name)
2221   : ir_instruction(ir_type_function)
2222{
2223   this->subroutine_index = -1;
2224   this->name = ralloc_strdup(this, name);
2225}
2226
2227
2228bool
2229ir_function::has_user_signature()
2230{
2231   foreach_in_list(ir_function_signature, sig, &this->signatures) {
2232      if (!sig->is_builtin())
2233	 return true;
2234   }
2235   return false;
2236}
2237
2238
2239ir_rvalue *
2240ir_rvalue::error_value(void *mem_ctx)
2241{
2242   ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset);
2243
2244   v->type = glsl_type::error_type;
2245   return v;
2246}
2247
2248
2249void
2250visit_exec_list(exec_list *list, ir_visitor *visitor)
2251{
2252   foreach_in_list_safe(ir_instruction, node, list) {
2253      node->accept(visitor);
2254   }
2255}
2256
2257
2258static void
2259steal_memory(ir_instruction *ir, void *new_ctx)
2260{
2261   ir_variable *var = ir->as_variable();
2262   ir_function *fn = ir->as_function();
2263   ir_constant *constant = ir->as_constant();
2264   if (var != NULL && var->constant_value != NULL)
2265      steal_memory(var->constant_value, ir);
2266
2267   if (var != NULL && var->constant_initializer != NULL)
2268      steal_memory(var->constant_initializer, ir);
2269
2270   if (fn != NULL && fn->subroutine_types)
2271      ralloc_steal(new_ctx, fn->subroutine_types);
2272
2273   /* The components of aggregate constants are not visited by the normal
2274    * visitor, so steal their values by hand.
2275    */
2276   if (constant != NULL &&
2277       (constant->type->is_array() || constant->type->is_struct())) {
2278      for (unsigned int i = 0; i < constant->type->length; i++) {
2279         steal_memory(constant->const_elements[i], ir);
2280      }
2281   }
2282
2283   ralloc_steal(new_ctx, ir);
2284}
2285
2286
2287void
2288reparent_ir(exec_list *list, void *mem_ctx)
2289{
2290   foreach_in_list(ir_instruction, node, list) {
2291      visit_tree(node, steal_memory, mem_ctx);
2292   }
2293}
2294
2295
2296static ir_rvalue *
2297try_min_one(ir_rvalue *ir)
2298{
2299   ir_expression *expr = ir->as_expression();
2300
2301   if (!expr || expr->operation != ir_binop_min)
2302      return NULL;
2303
2304   if (expr->operands[0]->is_one())
2305      return expr->operands[1];
2306
2307   if (expr->operands[1]->is_one())
2308      return expr->operands[0];
2309
2310   return NULL;
2311}
2312
2313static ir_rvalue *
2314try_max_zero(ir_rvalue *ir)
2315{
2316   ir_expression *expr = ir->as_expression();
2317
2318   if (!expr || expr->operation != ir_binop_max)
2319      return NULL;
2320
2321   if (expr->operands[0]->is_zero())
2322      return expr->operands[1];
2323
2324   if (expr->operands[1]->is_zero())
2325      return expr->operands[0];
2326
2327   return NULL;
2328}
2329
2330ir_rvalue *
2331ir_rvalue::as_rvalue_to_saturate()
2332{
2333   ir_expression *expr = this->as_expression();
2334
2335   if (!expr)
2336      return NULL;
2337
2338   ir_rvalue *max_zero = try_max_zero(expr);
2339   if (max_zero) {
2340      return try_min_one(max_zero);
2341   } else {
2342      ir_rvalue *min_one = try_min_one(expr);
2343      if (min_one) {
2344	 return try_max_zero(min_one);
2345      }
2346   }
2347
2348   return NULL;
2349}
2350
2351
2352unsigned
2353vertices_per_prim(GLenum prim)
2354{
2355   switch (prim) {
2356   case GL_POINTS:
2357      return 1;
2358   case GL_LINES:
2359      return 2;
2360   case GL_TRIANGLES:
2361      return 3;
2362   case GL_LINES_ADJACENCY:
2363      return 4;
2364   case GL_TRIANGLES_ADJACENCY:
2365      return 6;
2366   default:
2367      assert(!"Bad primitive");
2368      return 3;
2369   }
2370}
2371
2372/**
2373 * Generate a string describing the mode of a variable
2374 */
2375const char *
2376mode_string(const ir_variable *var)
2377{
2378   switch (var->data.mode) {
2379   case ir_var_auto:
2380      return (var->data.read_only) ? "global constant" : "global variable";
2381
2382   case ir_var_uniform:
2383      return "uniform";
2384
2385   case ir_var_shader_storage:
2386      return "buffer";
2387
2388   case ir_var_shader_in:
2389      return "shader input";
2390
2391   case ir_var_shader_out:
2392      return "shader output";
2393
2394   case ir_var_function_in:
2395   case ir_var_const_in:
2396      return "function input";
2397
2398   case ir_var_function_out:
2399      return "function output";
2400
2401   case ir_var_function_inout:
2402      return "function inout";
2403
2404   case ir_var_system_value:
2405      return "shader input";
2406
2407   case ir_var_temporary:
2408      return "compiler temporary";
2409
2410   case ir_var_mode_count:
2411      break;
2412   }
2413
2414   assert(!"Should not get here.");
2415   return "invalid variable";
2416}
2417