loop_analysis.cpp revision 01e04c3f
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24#include "compiler/glsl_types.h"
25#include "loop_analysis.h"
26#include "ir_hierarchical_visitor.h"
27
28static void try_add_loop_terminator(loop_variable_state *ls, ir_if *ir);
29
30static bool all_expression_operands_are_loop_constant(ir_rvalue *,
31						      hash_table *);
32
33static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);
34
35/**
36 * Find an initializer of a variable outside a loop
37 *
38 * Works backwards from the loop to find the pre-loop value of the variable.
39 * This is used, for example, to find the initial value of loop induction
40 * variables.
41 *
42 * \param loop  Loop where \c var is an induction variable
43 * \param var   Variable whose initializer is to be found
44 *
45 * \return
46 * The \c ir_rvalue assigned to the variable outside the loop.  May return
47 * \c NULL if no initializer can be found.
48 */
49static ir_rvalue *
50find_initial_value(ir_loop *loop, ir_variable *var)
51{
52   for (exec_node *node = loop->prev; !node->is_head_sentinel();
53        node = node->prev) {
54      ir_instruction *ir = (ir_instruction *) node;
55
56      switch (ir->ir_type) {
57      case ir_type_call:
58      case ir_type_loop:
59      case ir_type_loop_jump:
60      case ir_type_return:
61      case ir_type_if:
62         return NULL;
63
64      case ir_type_function:
65      case ir_type_function_signature:
66         assert(!"Should not get here.");
67         return NULL;
68
69      case ir_type_assignment: {
70         ir_assignment *assign = ir->as_assignment();
71         ir_variable *assignee = assign->lhs->whole_variable_referenced();
72
73         if (assignee == var)
74            return (assign->condition != NULL) ? NULL : assign->rhs;
75
76         break;
77      }
78
79      default:
80         break;
81      }
82   }
83
84   return NULL;
85}
86
87
88static int
89calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
90                     enum ir_expression_operation op, bool continue_from_then,
91                     bool swap_compare_operands)
92{
93   if (from == NULL || to == NULL || increment == NULL)
94      return -1;
95
96   void *mem_ctx = ralloc_context(NULL);
97
98   ir_expression *const sub =
99      new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);
100
101   ir_expression *const div =
102      new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);
103
104   ir_constant *iter = div->constant_expression_value(mem_ctx);
105   if (iter == NULL) {
106      ralloc_free(mem_ctx);
107      return -1;
108   }
109
110   if (!iter->type->is_integer()) {
111      const ir_expression_operation op = iter->type->is_double()
112         ? ir_unop_d2i : ir_unop_f2i;
113      ir_rvalue *cast =
114         new(mem_ctx) ir_expression(op, glsl_type::int_type, iter, NULL);
115
116      iter = cast->constant_expression_value(mem_ctx);
117   }
118
119   int iter_value = iter->get_int_component(0);
120
121   /* Make sure that the calculated number of iterations satisfies the exit
122    * condition.  This is needed to catch off-by-one errors and some types of
123    * ill-formed loops.  For example, we need to detect that the following
124    * loop does not have a maximum iteration count.
125    *
126    *    for (float x = 0.0; x != 0.9; x += 0.2)
127    *        ;
128    */
129   const int bias[] = { -1, 0, 1 };
130   bool valid_loop = false;
131
132   for (unsigned i = 0; i < ARRAY_SIZE(bias); i++) {
133      /* Increment may be of type int, uint or float. */
134      switch (increment->type->base_type) {
135      case GLSL_TYPE_INT:
136         iter = new(mem_ctx) ir_constant(iter_value + bias[i]);
137         break;
138      case GLSL_TYPE_UINT:
139         iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
140         break;
141      case GLSL_TYPE_FLOAT:
142         iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
143         break;
144      case GLSL_TYPE_DOUBLE:
145         iter = new(mem_ctx) ir_constant(double(iter_value + bias[i]));
146         break;
147      default:
148          unreachable("Unsupported type for loop iterator.");
149      }
150
151      ir_expression *const mul =
152         new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
153                                    increment);
154
155      ir_expression *const add =
156         new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);
157
158      ir_expression *cmp = swap_compare_operands
159         ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, add)
160         : new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
161      if (continue_from_then)
162         cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
163
164      ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
165
166      assert(cmp_result != NULL);
167      if (cmp_result->get_bool_component(0)) {
168         iter_value += bias[i];
169         valid_loop = true;
170         break;
171      }
172   }
173
174   ralloc_free(mem_ctx);
175   return (valid_loop) ? iter_value : -1;
176}
177
178static bool
179incremented_before_terminator(ir_loop *loop, ir_variable *var,
180                              ir_if *terminator)
181{
182   for (exec_node *node = loop->body_instructions.get_head();
183        !node->is_tail_sentinel();
184        node = node->get_next()) {
185      ir_instruction *ir = (ir_instruction *) node;
186
187      switch (ir->ir_type) {
188      case ir_type_if:
189         if (ir->as_if() == terminator)
190            return false;
191         break;
192
193      case ir_type_assignment: {
194         ir_assignment *assign = ir->as_assignment();
195         ir_variable *assignee = assign->lhs->whole_variable_referenced();
196
197         if (assignee == var) {
198            assert(assign->condition == NULL);
199            return true;
200         }
201
202         break;
203      }
204
205      default:
206         break;
207      }
208   }
209
210   unreachable("Unable to find induction variable");
211}
212
213/**
214 * Record the fact that the given loop variable was referenced inside the loop.
215 *
216 * \arg in_assignee is true if the reference was on the LHS of an assignment.
217 *
218 * \arg in_conditional_code_or_nested_loop is true if the reference occurred
219 * inside an if statement or a nested loop.
220 *
221 * \arg current_assignment is the ir_assignment node that the loop variable is
222 * on the LHS of, if any (ignored if \c in_assignee is false).
223 */
224void
225loop_variable::record_reference(bool in_assignee,
226                                bool in_conditional_code_or_nested_loop,
227                                ir_assignment *current_assignment)
228{
229   if (in_assignee) {
230      assert(current_assignment != NULL);
231
232      if (in_conditional_code_or_nested_loop ||
233          current_assignment->condition != NULL) {
234         this->conditional_or_nested_assignment = true;
235      }
236
237      if (this->first_assignment == NULL) {
238         assert(this->num_assignments == 0);
239
240         this->first_assignment = current_assignment;
241      }
242
243      this->num_assignments++;
244   } else if (this->first_assignment == current_assignment) {
245      /* This catches the case where the variable is used in the RHS of an
246       * assignment where it is also in the LHS.
247       */
248      this->read_before_write = true;
249   }
250}
251
252
253loop_state::loop_state()
254{
255   this->ht = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
256                                      _mesa_key_pointer_equal);
257   this->mem_ctx = ralloc_context(NULL);
258   this->loop_found = false;
259}
260
261
262loop_state::~loop_state()
263{
264   _mesa_hash_table_destroy(this->ht, NULL);
265   ralloc_free(this->mem_ctx);
266}
267
268
269loop_variable_state *
270loop_state::insert(ir_loop *ir)
271{
272   loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;
273
274   _mesa_hash_table_insert(this->ht, ir, ls);
275   this->loop_found = true;
276
277   return ls;
278}
279
280
281loop_variable_state *
282loop_state::get(const ir_loop *ir)
283{
284   hash_entry *entry = _mesa_hash_table_search(this->ht, ir);
285   return entry ? (loop_variable_state *) entry->data : NULL;
286}
287
288
289loop_variable *
290loop_variable_state::get(const ir_variable *ir)
291{
292   hash_entry *entry = _mesa_hash_table_search(this->var_hash, ir);
293   return entry ? (loop_variable *) entry->data : NULL;
294}
295
296
297loop_variable *
298loop_variable_state::insert(ir_variable *var)
299{
300   void *mem_ctx = ralloc_parent(this);
301   loop_variable *lv = rzalloc(mem_ctx, loop_variable);
302
303   lv->var = var;
304
305   _mesa_hash_table_insert(this->var_hash, lv->var, lv);
306   this->variables.push_tail(lv);
307
308   return lv;
309}
310
311
312loop_terminator *
313loop_variable_state::insert(ir_if *if_stmt, bool continue_from_then)
314{
315   void *mem_ctx = ralloc_parent(this);
316   loop_terminator *t = new(mem_ctx) loop_terminator();
317
318   t->ir = if_stmt;
319   t->continue_from_then = continue_from_then;
320
321   this->terminators.push_tail(t);
322
323   return t;
324}
325
326
327/**
328 * If the given variable already is recorded in the state for this loop,
329 * return the corresponding loop_variable object that records information
330 * about it.
331 *
332 * Otherwise, create a new loop_variable object to record information about
333 * the variable, and set its \c read_before_write field appropriately based on
334 * \c in_assignee.
335 *
336 * \arg in_assignee is true if this variable was encountered on the LHS of an
337 * assignment.
338 */
339loop_variable *
340loop_variable_state::get_or_insert(ir_variable *var, bool in_assignee)
341{
342   loop_variable *lv = this->get(var);
343
344   if (lv == NULL) {
345      lv = this->insert(var);
346      lv->read_before_write = !in_assignee;
347   }
348
349   return lv;
350}
351
352
353namespace {
354
355class loop_analysis : public ir_hierarchical_visitor {
356public:
357   loop_analysis(loop_state *loops);
358
359   virtual ir_visitor_status visit(ir_loop_jump *);
360   virtual ir_visitor_status visit(ir_dereference_variable *);
361
362   virtual ir_visitor_status visit_enter(ir_call *);
363
364   virtual ir_visitor_status visit_enter(ir_loop *);
365   virtual ir_visitor_status visit_leave(ir_loop *);
366   virtual ir_visitor_status visit_enter(ir_assignment *);
367   virtual ir_visitor_status visit_leave(ir_assignment *);
368   virtual ir_visitor_status visit_enter(ir_if *);
369   virtual ir_visitor_status visit_leave(ir_if *);
370
371   loop_state *loops;
372
373   int if_statement_depth;
374
375   ir_assignment *current_assignment;
376
377   exec_list state;
378};
379
380} /* anonymous namespace */
381
382loop_analysis::loop_analysis(loop_state *loops)
383   : loops(loops), if_statement_depth(0), current_assignment(NULL)
384{
385   /* empty */
386}
387
388
389ir_visitor_status
390loop_analysis::visit(ir_loop_jump *ir)
391{
392   (void) ir;
393
394   assert(!this->state.is_empty());
395
396   loop_variable_state *const ls =
397      (loop_variable_state *) this->state.get_head();
398
399   ls->num_loop_jumps++;
400
401   return visit_continue;
402}
403
404
405ir_visitor_status
406loop_analysis::visit_enter(ir_call *)
407{
408   /* Mark every loop that we're currently analyzing as containing an ir_call
409    * (even those at outer nesting levels).
410    */
411   foreach_in_list(loop_variable_state, ls, &this->state) {
412      ls->contains_calls = true;
413   }
414
415   return visit_continue_with_parent;
416}
417
418
419ir_visitor_status
420loop_analysis::visit(ir_dereference_variable *ir)
421{
422   /* If we're not somewhere inside a loop, there's nothing to do.
423    */
424   if (this->state.is_empty())
425      return visit_continue;
426
427   bool nested = false;
428
429   foreach_in_list(loop_variable_state, ls, &this->state) {
430      ir_variable *var = ir->variable_referenced();
431      loop_variable *lv = ls->get_or_insert(var, this->in_assignee);
432
433      lv->record_reference(this->in_assignee,
434                           nested || this->if_statement_depth > 0,
435                           this->current_assignment);
436      nested = true;
437   }
438
439   return visit_continue;
440}
441
442ir_visitor_status
443loop_analysis::visit_enter(ir_loop *ir)
444{
445   loop_variable_state *ls = this->loops->insert(ir);
446   this->state.push_head(ls);
447
448   return visit_continue;
449}
450
451ir_visitor_status
452loop_analysis::visit_leave(ir_loop *ir)
453{
454   loop_variable_state *const ls =
455      (loop_variable_state *) this->state.pop_head();
456
457   /* Function calls may contain side effects.  These could alter any of our
458    * variables in ways that cannot be known, and may even terminate shader
459    * execution (say, calling discard in the fragment shader).  So we can't
460    * rely on any of our analysis about assignments to variables.
461    *
462    * We could perform some conservative analysis (prove there's no statically
463    * possible assignment, etc.) but it isn't worth it for now; function
464    * inlining will allow us to unroll loops anyway.
465    */
466   if (ls->contains_calls)
467      return visit_continue;
468
469   foreach_in_list(ir_instruction, node, &ir->body_instructions) {
470      /* Skip over declarations at the start of a loop.
471       */
472      if (node->as_variable())
473	 continue;
474
475      ir_if *if_stmt = ((ir_instruction *) node)->as_if();
476
477      if (if_stmt != NULL)
478         try_add_loop_terminator(ls, if_stmt);
479   }
480
481
482   foreach_in_list_safe(loop_variable, lv, &ls->variables) {
483      /* Move variables that are already marked as being loop constant to
484       * a separate list.  These trivially don't need to be tested.
485       */
486      if (lv->is_loop_constant()) {
487	 lv->remove();
488	 ls->constants.push_tail(lv);
489      }
490   }
491
492   /* Each variable assigned in the loop that isn't already marked as being loop
493    * constant might still be loop constant.  The requirements at this point
494    * are:
495    *
496    *    - Variable is written before it is read.
497    *
498    *    - Only one assignment to the variable.
499    *
500    *    - All operands on the RHS of the assignment are also loop constants.
501    *
502    * The last requirement is the reason for the progress loop.  A variable
503    * marked as a loop constant on one pass may allow other variables to be
504    * marked as loop constant on following passes.
505    */
506   bool progress;
507   do {
508      progress = false;
509
510      foreach_in_list_safe(loop_variable, lv, &ls->variables) {
511	 if (lv->conditional_or_nested_assignment || (lv->num_assignments > 1))
512	    continue;
513
514	 /* Process the RHS of the assignment.  If all of the variables
515	  * accessed there are loop constants, then add this
516	  */
517	 ir_rvalue *const rhs = lv->first_assignment->rhs;
518	 if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
519	    lv->rhs_clean = true;
520
521	    if (lv->is_loop_constant()) {
522	       progress = true;
523
524	       lv->remove();
525	       ls->constants.push_tail(lv);
526	    }
527	 }
528      }
529   } while (progress);
530
531   /* The remaining variables that are not loop invariant might be loop
532    * induction variables.
533    */
534   foreach_in_list_safe(loop_variable, lv, &ls->variables) {
535      /* If there is more than one assignment to a variable, it cannot be a
536       * loop induction variable.  This isn't strictly true, but this is a
537       * very simple induction variable detector, and it can't handle more
538       * complex cases.
539       */
540      if (lv->num_assignments > 1)
541	 continue;
542
543      /* All of the variables with zero assignments in the loop are loop
544       * invariant, and they should have already been filtered out.
545       */
546      assert(lv->num_assignments == 1);
547      assert(lv->first_assignment != NULL);
548
549      /* The assignment to the variable in the loop must be unconditional and
550       * not inside a nested loop.
551       */
552      if (lv->conditional_or_nested_assignment)
553	 continue;
554
555      /* Basic loop induction variables have a single assignment in the loop
556       * that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
557       * loop invariant.
558       */
559      ir_rvalue *const inc =
560	 get_basic_induction_increment(lv->first_assignment, ls->var_hash);
561      if (inc != NULL) {
562	 lv->increment = inc;
563
564	 lv->remove();
565	 ls->induction_variables.push_tail(lv);
566      }
567   }
568
569   /* Search the loop terminating conditions for those of the form 'i < c'
570    * where i is a loop induction variable, c is a constant, and < is any
571    * relative operator.  From each of these we can infer an iteration count.
572    * Also figure out which terminator (if any) produces the smallest
573    * iteration count--this is the limiting terminator.
574    */
575   foreach_in_list(loop_terminator, t, &ls->terminators) {
576      ir_if *if_stmt = t->ir;
577
578      /* If-statements can be either 'if (expr)' or 'if (deref)'.  We only care
579       * about the former here.
580       */
581      ir_expression *cond = if_stmt->condition->as_expression();
582      if (cond == NULL)
583	 continue;
584
585      switch (cond->operation) {
586      case ir_binop_less:
587      case ir_binop_gequal: {
588	 /* The expressions that we care about will either be of the form
589	  * 'counter < limit' or 'limit < counter'.  Figure out which is
590	  * which.
591	  */
592	 ir_rvalue *counter = cond->operands[0]->as_dereference_variable();
593	 ir_constant *limit = cond->operands[1]->as_constant();
594	 enum ir_expression_operation cmp = cond->operation;
595         bool swap_compare_operands = false;
596
597	 if (limit == NULL) {
598	    counter = cond->operands[1]->as_dereference_variable();
599	    limit = cond->operands[0]->as_constant();
600            swap_compare_operands = true;
601	 }
602
603	 if ((counter == NULL) || (limit == NULL))
604	    break;
605
606	 ir_variable *var = counter->variable_referenced();
607
608	 ir_rvalue *init = find_initial_value(ir, var);
609
610         loop_variable *lv = ls->get(var);
611         if (lv != NULL && lv->is_induction_var()) {
612            t->iterations = calculate_iterations(init, limit, lv->increment,
613                                                 cmp, t->continue_from_then,
614                                                 swap_compare_operands);
615
616            if (incremented_before_terminator(ir, var, t->ir)) {
617               t->iterations--;
618            }
619
620            if (t->iterations >= 0 &&
621                (ls->limiting_terminator == NULL ||
622                 t->iterations < ls->limiting_terminator->iterations)) {
623               ls->limiting_terminator = t;
624            }
625         }
626         break;
627      }
628
629      default:
630         break;
631      }
632   }
633
634   return visit_continue;
635}
636
637ir_visitor_status
638loop_analysis::visit_enter(ir_if *ir)
639{
640   (void) ir;
641
642   if (!this->state.is_empty())
643      this->if_statement_depth++;
644
645   return visit_continue;
646}
647
648ir_visitor_status
649loop_analysis::visit_leave(ir_if *ir)
650{
651   (void) ir;
652
653   if (!this->state.is_empty())
654      this->if_statement_depth--;
655
656   return visit_continue;
657}
658
659ir_visitor_status
660loop_analysis::visit_enter(ir_assignment *ir)
661{
662   /* If we're not somewhere inside a loop, there's nothing to do.
663    */
664   if (this->state.is_empty())
665      return visit_continue_with_parent;
666
667   this->current_assignment = ir;
668
669   return visit_continue;
670}
671
672ir_visitor_status
673loop_analysis::visit_leave(ir_assignment *ir)
674{
675   /* Since the visit_enter exits with visit_continue_with_parent for this
676    * case, the loop state stack should never be empty here.
677    */
678   assert(!this->state.is_empty());
679
680   assert(this->current_assignment == ir);
681   this->current_assignment = NULL;
682
683   return visit_continue;
684}
685
686
687class examine_rhs : public ir_hierarchical_visitor {
688public:
689   examine_rhs(hash_table *loop_variables)
690   {
691      this->only_uses_loop_constants = true;
692      this->loop_variables = loop_variables;
693   }
694
695   virtual ir_visitor_status visit(ir_dereference_variable *ir)
696   {
697      hash_entry *entry = _mesa_hash_table_search(this->loop_variables,
698                                                  ir->var);
699      loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
700
701      assert(lv != NULL);
702
703      if (lv->is_loop_constant()) {
704	 return visit_continue;
705      } else {
706	 this->only_uses_loop_constants = false;
707	 return visit_stop;
708      }
709   }
710
711   hash_table *loop_variables;
712   bool only_uses_loop_constants;
713};
714
715
716bool
717all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
718{
719   examine_rhs v(variables);
720
721   ir->accept(&v);
722
723   return v.only_uses_loop_constants;
724}
725
726
727ir_rvalue *
728get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
729{
730   /* The RHS must be a binary expression.
731    */
732   ir_expression *const rhs = ir->rhs->as_expression();
733   if ((rhs == NULL)
734       || ((rhs->operation != ir_binop_add)
735	   && (rhs->operation != ir_binop_sub)))
736      return NULL;
737
738   /* One of the of operands of the expression must be the variable assigned.
739    * If the operation is subtraction, the variable in question must be the
740    * "left" operand.
741    */
742   ir_variable *const var = ir->lhs->variable_referenced();
743
744   ir_variable *const op0 = rhs->operands[0]->variable_referenced();
745   ir_variable *const op1 = rhs->operands[1]->variable_referenced();
746
747   if (((op0 != var) && (op1 != var))
748       || ((op1 == var) && (rhs->operation == ir_binop_sub)))
749      return NULL;
750
751   ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];
752
753   if (inc->as_constant() == NULL) {
754      ir_variable *const inc_var = inc->variable_referenced();
755      if (inc_var != NULL) {
756         hash_entry *entry = _mesa_hash_table_search(var_hash, inc_var);
757         loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
758
759         if (lv == NULL || !lv->is_loop_constant()) {
760            assert(lv != NULL);
761            inc = NULL;
762         }
763      } else
764	 inc = NULL;
765   }
766
767   if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
768      void *mem_ctx = ralloc_parent(ir);
769
770      inc = new(mem_ctx) ir_expression(ir_unop_neg,
771				       inc->type,
772				       inc->clone(mem_ctx, NULL),
773				       NULL);
774   }
775
776   return inc;
777}
778
779
780/**
781 * Detect whether an if-statement is a loop terminating condition, if so
782 * add it to the list of loop terminators.
783 *
784 * Detects if-statements of the form
785 *
786 *  (if (expression bool ...) (...then_instrs...break))
787 *
788 *     or
789 *
790 *  (if (expression bool ...) ... (...else_instrs...break))
791 */
792void
793try_add_loop_terminator(loop_variable_state *ls, ir_if *ir)
794{
795   ir_instruction *inst = (ir_instruction *) ir->then_instructions.get_tail();
796   ir_instruction *else_inst =
797      (ir_instruction *) ir->else_instructions.get_tail();
798
799   if (is_break(inst) || is_break(else_inst))
800      ls->insert(ir, is_break(else_inst));
801}
802
803
804loop_state *
805analyze_loop_variables(exec_list *instructions)
806{
807   loop_state *loops = new loop_state;
808   loop_analysis v(loops);
809
810   v.run(instructions);
811   return v.loops;
812}
813