loop_analysis.cpp revision 7ec681f3
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24#include "compiler/glsl_types.h"
25#include "loop_analysis.h"
26#include "ir_hierarchical_visitor.h"
27
28static void try_add_loop_terminator(loop_variable_state *ls, ir_if *ir);
29
30static bool all_expression_operands_are_loop_constant(ir_rvalue *,
31						      hash_table *);
32
33static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);
34
35/**
36 * Find an initializer of a variable outside a loop
37 *
38 * Works backwards from the loop to find the pre-loop value of the variable.
39 * This is used, for example, to find the initial value of loop induction
40 * variables.
41 *
42 * \param loop  Loop where \c var is an induction variable
43 * \param var   Variable whose initializer is to be found
44 *
45 * \return
46 * The \c ir_rvalue assigned to the variable outside the loop.  May return
47 * \c NULL if no initializer can be found.
48 */
49static ir_rvalue *
50find_initial_value(ir_loop *loop, ir_variable *var)
51{
52   for (exec_node *node = loop->prev; !node->is_head_sentinel();
53        node = node->prev) {
54      ir_instruction *ir = (ir_instruction *) node;
55
56      switch (ir->ir_type) {
57      case ir_type_call:
58      case ir_type_loop:
59      case ir_type_loop_jump:
60      case ir_type_return:
61      case ir_type_if:
62         return NULL;
63
64      case ir_type_function:
65      case ir_type_function_signature:
66         assert(!"Should not get here.");
67         return NULL;
68
69      case ir_type_assignment: {
70         ir_assignment *assign = ir->as_assignment();
71         ir_variable *assignee = assign->lhs->whole_variable_referenced();
72
73         if (assignee == var)
74            return (assign->condition != NULL) ? NULL : assign->rhs;
75
76         break;
77      }
78
79      default:
80         break;
81      }
82   }
83
84   return NULL;
85}
86
87
88static int
89calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
90                     enum ir_expression_operation op, bool continue_from_then,
91                     bool swap_compare_operands, bool inc_before_terminator)
92{
93   if (from == NULL || to == NULL || increment == NULL)
94      return -1;
95
96   void *mem_ctx = ralloc_context(NULL);
97
98   ir_expression *const sub =
99      new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);
100
101   ir_expression *const div =
102      new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);
103
104   ir_constant *iter = div->constant_expression_value(mem_ctx);
105   if (iter == NULL) {
106      ralloc_free(mem_ctx);
107      return -1;
108   }
109
110   if (!iter->type->is_integer()) {
111      const ir_expression_operation op = iter->type->is_double()
112         ? ir_unop_d2i : ir_unop_f2i;
113      ir_rvalue *cast =
114         new(mem_ctx) ir_expression(op, glsl_type::int_type, iter, NULL);
115
116      iter = cast->constant_expression_value(mem_ctx);
117   }
118
119   int64_t iter_value = iter->get_int64_component(0);
120
121   /* Code after this block works under assumption that iterator will be
122    * incremented or decremented until it hits the limit,
123    * however the loop condition can be false on the first iteration.
124    * Handle such loops first.
125    */
126   {
127      ir_rvalue *first_value = from;
128      if (inc_before_terminator) {
129         first_value =
130            new(mem_ctx) ir_expression(ir_binop_add, from->type, from, increment);
131      }
132
133      ir_expression *cmp = swap_compare_operands
134            ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, first_value)
135            : new(mem_ctx) ir_expression(op, glsl_type::bool_type, first_value, to);
136      if (continue_from_then)
137         cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
138
139      ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
140      assert(cmp_result != NULL);
141      if (cmp_result->get_bool_component(0)) {
142         ralloc_free(mem_ctx);
143         return 0;
144      }
145   }
146
147   /* Make sure that the calculated number of iterations satisfies the exit
148    * condition.  This is needed to catch off-by-one errors and some types of
149    * ill-formed loops.  For example, we need to detect that the following
150    * loop does not have a maximum iteration count.
151    *
152    *    for (float x = 0.0; x != 0.9; x += 0.2)
153    *        ;
154    */
155   const int bias[] = { -1, 0, 1 };
156   bool valid_loop = false;
157
158   for (unsigned i = 0; i < ARRAY_SIZE(bias); i++) {
159      /* Increment may be of type int, uint or float. */
160      switch (increment->type->base_type) {
161      case GLSL_TYPE_INT:
162         iter = new(mem_ctx) ir_constant(int32_t(iter_value + bias[i]));
163         break;
164      case GLSL_TYPE_INT16:
165         iter = new(mem_ctx) ir_constant(int16_t(iter_value + bias[i]));
166         break;
167      case GLSL_TYPE_INT64:
168         iter = new(mem_ctx) ir_constant(int64_t(iter_value + bias[i]));
169         break;
170      case GLSL_TYPE_UINT:
171         iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
172         break;
173      case GLSL_TYPE_UINT16:
174         iter = new(mem_ctx) ir_constant(uint16_t(iter_value + bias[i]));
175         break;
176      case GLSL_TYPE_UINT64:
177         iter = new(mem_ctx) ir_constant(uint64_t(iter_value + bias[i]));
178         break;
179      case GLSL_TYPE_FLOAT:
180         iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
181         break;
182      case GLSL_TYPE_FLOAT16:
183         iter = new(mem_ctx) ir_constant(float16_t(float(iter_value + bias[i])));
184         break;
185      case GLSL_TYPE_DOUBLE:
186         iter = new(mem_ctx) ir_constant(double(iter_value + bias[i]));
187         break;
188      default:
189          unreachable("Unsupported type for loop iterator.");
190      }
191
192      ir_expression *const mul =
193         new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
194                                    increment);
195
196      ir_expression *const add =
197         new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);
198
199      ir_expression *cmp = swap_compare_operands
200         ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, add)
201         : new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
202      if (continue_from_then)
203         cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
204
205      ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
206
207      assert(cmp_result != NULL);
208      if (cmp_result->get_bool_component(0)) {
209         iter_value += bias[i];
210         valid_loop = true;
211         break;
212      }
213   }
214
215   ralloc_free(mem_ctx);
216
217   if (inc_before_terminator) {
218      iter_value--;
219   }
220
221   return (valid_loop) ? iter_value : -1;
222}
223
224static bool
225incremented_before_terminator(ir_loop *loop, ir_variable *var,
226                              ir_if *terminator)
227{
228   for (exec_node *node = loop->body_instructions.get_head();
229        !node->is_tail_sentinel();
230        node = node->get_next()) {
231      ir_instruction *ir = (ir_instruction *) node;
232
233      switch (ir->ir_type) {
234      case ir_type_if:
235         if (ir->as_if() == terminator)
236            return false;
237         break;
238
239      case ir_type_assignment: {
240         ir_assignment *assign = ir->as_assignment();
241         ir_variable *assignee = assign->lhs->whole_variable_referenced();
242
243         if (assignee == var) {
244            assert(assign->condition == NULL);
245            return true;
246         }
247
248         break;
249      }
250
251      default:
252         break;
253      }
254   }
255
256   unreachable("Unable to find induction variable");
257}
258
259/**
260 * Record the fact that the given loop variable was referenced inside the loop.
261 *
262 * \arg in_assignee is true if the reference was on the LHS of an assignment.
263 *
264 * \arg in_conditional_code_or_nested_loop is true if the reference occurred
265 * inside an if statement or a nested loop.
266 *
267 * \arg current_assignment is the ir_assignment node that the loop variable is
268 * on the LHS of, if any (ignored if \c in_assignee is false).
269 */
270void
271loop_variable::record_reference(bool in_assignee,
272                                bool in_conditional_code_or_nested_loop,
273                                ir_assignment *current_assignment)
274{
275   if (in_assignee) {
276      assert(current_assignment != NULL);
277
278      if (in_conditional_code_or_nested_loop ||
279          current_assignment->condition != NULL) {
280         this->conditional_or_nested_assignment = true;
281      }
282
283      if (this->first_assignment == NULL) {
284         assert(this->num_assignments == 0);
285
286         this->first_assignment = current_assignment;
287      }
288
289      this->num_assignments++;
290   } else if (this->first_assignment == current_assignment) {
291      /* This catches the case where the variable is used in the RHS of an
292       * assignment where it is also in the LHS.
293       */
294      this->read_before_write = true;
295   }
296}
297
298
299loop_state::loop_state()
300{
301   this->ht = _mesa_pointer_hash_table_create(NULL);
302   this->mem_ctx = ralloc_context(NULL);
303   this->loop_found = false;
304}
305
306
307loop_state::~loop_state()
308{
309   _mesa_hash_table_destroy(this->ht, NULL);
310   ralloc_free(this->mem_ctx);
311}
312
313
314loop_variable_state *
315loop_state::insert(ir_loop *ir)
316{
317   loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;
318
319   _mesa_hash_table_insert(this->ht, ir, ls);
320   this->loop_found = true;
321
322   return ls;
323}
324
325
326loop_variable_state *
327loop_state::get(const ir_loop *ir)
328{
329   hash_entry *entry = _mesa_hash_table_search(this->ht, ir);
330   return entry ? (loop_variable_state *) entry->data : NULL;
331}
332
333
334loop_variable *
335loop_variable_state::get(const ir_variable *ir)
336{
337   if (ir == NULL)
338      return NULL;
339
340   hash_entry *entry = _mesa_hash_table_search(this->var_hash, ir);
341   return entry ? (loop_variable *) entry->data : NULL;
342}
343
344
345loop_variable *
346loop_variable_state::insert(ir_variable *var)
347{
348   void *mem_ctx = ralloc_parent(this);
349   loop_variable *lv = rzalloc(mem_ctx, loop_variable);
350
351   lv->var = var;
352
353   _mesa_hash_table_insert(this->var_hash, lv->var, lv);
354   this->variables.push_tail(lv);
355
356   return lv;
357}
358
359
360loop_terminator *
361loop_variable_state::insert(ir_if *if_stmt, bool continue_from_then)
362{
363   void *mem_ctx = ralloc_parent(this);
364   loop_terminator *t = new(mem_ctx) loop_terminator(if_stmt,
365                                                     continue_from_then);
366
367   this->terminators.push_tail(t);
368
369   return t;
370}
371
372
373/**
374 * If the given variable already is recorded in the state for this loop,
375 * return the corresponding loop_variable object that records information
376 * about it.
377 *
378 * Otherwise, create a new loop_variable object to record information about
379 * the variable, and set its \c read_before_write field appropriately based on
380 * \c in_assignee.
381 *
382 * \arg in_assignee is true if this variable was encountered on the LHS of an
383 * assignment.
384 */
385loop_variable *
386loop_variable_state::get_or_insert(ir_variable *var, bool in_assignee)
387{
388   loop_variable *lv = this->get(var);
389
390   if (lv == NULL) {
391      lv = this->insert(var);
392      lv->read_before_write = !in_assignee;
393   }
394
395   return lv;
396}
397
398
399namespace {
400
401class loop_analysis : public ir_hierarchical_visitor {
402public:
403   loop_analysis(loop_state *loops);
404
405   virtual ir_visitor_status visit(ir_loop_jump *);
406   virtual ir_visitor_status visit(ir_dereference_variable *);
407
408   virtual ir_visitor_status visit_enter(ir_call *);
409
410   virtual ir_visitor_status visit_enter(ir_loop *);
411   virtual ir_visitor_status visit_leave(ir_loop *);
412   virtual ir_visitor_status visit_enter(ir_assignment *);
413   virtual ir_visitor_status visit_leave(ir_assignment *);
414   virtual ir_visitor_status visit_enter(ir_if *);
415   virtual ir_visitor_status visit_leave(ir_if *);
416
417   loop_state *loops;
418
419   int if_statement_depth;
420
421   ir_assignment *current_assignment;
422
423   exec_list state;
424};
425
426} /* anonymous namespace */
427
428loop_analysis::loop_analysis(loop_state *loops)
429   : loops(loops), if_statement_depth(0), current_assignment(NULL)
430{
431   /* empty */
432}
433
434
435ir_visitor_status
436loop_analysis::visit(ir_loop_jump *ir)
437{
438   (void) ir;
439
440   assert(!this->state.is_empty());
441
442   loop_variable_state *const ls =
443      (loop_variable_state *) this->state.get_head();
444
445   ls->num_loop_jumps++;
446
447   return visit_continue;
448}
449
450
451ir_visitor_status
452loop_analysis::visit_enter(ir_call *)
453{
454   /* Mark every loop that we're currently analyzing as containing an ir_call
455    * (even those at outer nesting levels).
456    */
457   foreach_in_list(loop_variable_state, ls, &this->state) {
458      ls->contains_calls = true;
459   }
460
461   return visit_continue_with_parent;
462}
463
464
465ir_visitor_status
466loop_analysis::visit(ir_dereference_variable *ir)
467{
468   /* If we're not somewhere inside a loop, there's nothing to do.
469    */
470   if (this->state.is_empty())
471      return visit_continue;
472
473   bool nested = false;
474
475   foreach_in_list(loop_variable_state, ls, &this->state) {
476      ir_variable *var = ir->variable_referenced();
477      loop_variable *lv = ls->get_or_insert(var, this->in_assignee);
478
479      lv->record_reference(this->in_assignee,
480                           nested || this->if_statement_depth > 0,
481                           this->current_assignment);
482      nested = true;
483   }
484
485   return visit_continue;
486}
487
488ir_visitor_status
489loop_analysis::visit_enter(ir_loop *ir)
490{
491   loop_variable_state *ls = this->loops->insert(ir);
492   this->state.push_head(ls);
493
494   return visit_continue;
495}
496
497ir_visitor_status
498loop_analysis::visit_leave(ir_loop *ir)
499{
500   loop_variable_state *const ls =
501      (loop_variable_state *) this->state.pop_head();
502
503   /* Function calls may contain side effects.  These could alter any of our
504    * variables in ways that cannot be known, and may even terminate shader
505    * execution (say, calling discard in the fragment shader).  So we can't
506    * rely on any of our analysis about assignments to variables.
507    *
508    * We could perform some conservative analysis (prove there's no statically
509    * possible assignment, etc.) but it isn't worth it for now; function
510    * inlining will allow us to unroll loops anyway.
511    */
512   if (ls->contains_calls)
513      return visit_continue;
514
515   foreach_in_list(ir_instruction, node, &ir->body_instructions) {
516      /* Skip over declarations at the start of a loop.
517       */
518      if (node->as_variable())
519	 continue;
520
521      ir_if *if_stmt = ((ir_instruction *) node)->as_if();
522
523      if (if_stmt != NULL)
524         try_add_loop_terminator(ls, if_stmt);
525   }
526
527
528   foreach_in_list_safe(loop_variable, lv, &ls->variables) {
529      /* Move variables that are already marked as being loop constant to
530       * a separate list.  These trivially don't need to be tested.
531       */
532      if (lv->is_loop_constant()) {
533	 lv->remove();
534	 ls->constants.push_tail(lv);
535      }
536   }
537
538   /* Each variable assigned in the loop that isn't already marked as being loop
539    * constant might still be loop constant.  The requirements at this point
540    * are:
541    *
542    *    - Variable is written before it is read.
543    *
544    *    - Only one assignment to the variable.
545    *
546    *    - All operands on the RHS of the assignment are also loop constants.
547    *
548    * The last requirement is the reason for the progress loop.  A variable
549    * marked as a loop constant on one pass may allow other variables to be
550    * marked as loop constant on following passes.
551    */
552   bool progress;
553   do {
554      progress = false;
555
556      foreach_in_list_safe(loop_variable, lv, &ls->variables) {
557	 if (lv->conditional_or_nested_assignment || (lv->num_assignments > 1))
558	    continue;
559
560	 /* Process the RHS of the assignment.  If all of the variables
561	  * accessed there are loop constants, then add this
562	  */
563	 ir_rvalue *const rhs = lv->first_assignment->rhs;
564	 if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
565	    lv->rhs_clean = true;
566
567	    if (lv->is_loop_constant()) {
568	       progress = true;
569
570	       lv->remove();
571	       ls->constants.push_tail(lv);
572	    }
573	 }
574      }
575   } while (progress);
576
577   /* The remaining variables that are not loop invariant might be loop
578    * induction variables.
579    */
580   foreach_in_list_safe(loop_variable, lv, &ls->variables) {
581      /* If there is more than one assignment to a variable, it cannot be a
582       * loop induction variable.  This isn't strictly true, but this is a
583       * very simple induction variable detector, and it can't handle more
584       * complex cases.
585       */
586      if (lv->num_assignments > 1)
587	 continue;
588
589      /* All of the variables with zero assignments in the loop are loop
590       * invariant, and they should have already been filtered out.
591       */
592      assert(lv->num_assignments == 1);
593      assert(lv->first_assignment != NULL);
594
595      /* The assignment to the variable in the loop must be unconditional and
596       * not inside a nested loop.
597       */
598      if (lv->conditional_or_nested_assignment)
599	 continue;
600
601      /* Basic loop induction variables have a single assignment in the loop
602       * that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
603       * loop invariant.
604       */
605      ir_rvalue *const inc =
606	 get_basic_induction_increment(lv->first_assignment, ls->var_hash);
607      if (inc != NULL) {
608	 lv->increment = inc;
609
610	 lv->remove();
611	 ls->induction_variables.push_tail(lv);
612      }
613   }
614
615   /* Search the loop terminating conditions for those of the form 'i < c'
616    * where i is a loop induction variable, c is a constant, and < is any
617    * relative operator.  From each of these we can infer an iteration count.
618    * Also figure out which terminator (if any) produces the smallest
619    * iteration count--this is the limiting terminator.
620    */
621   foreach_in_list(loop_terminator, t, &ls->terminators) {
622      ir_if *if_stmt = t->ir;
623
624      /* If-statements can be either 'if (expr)' or 'if (deref)'.  We only care
625       * about the former here.
626       */
627      ir_expression *cond = if_stmt->condition->as_expression();
628      if (cond == NULL)
629	 continue;
630
631      switch (cond->operation) {
632      case ir_binop_less:
633      case ir_binop_gequal: {
634	 /* The expressions that we care about will either be of the form
635	  * 'counter < limit' or 'limit < counter'.  Figure out which is
636	  * which.
637	  */
638	 ir_rvalue *counter = cond->operands[0]->as_dereference_variable();
639	 ir_constant *limit = cond->operands[1]->as_constant();
640	 enum ir_expression_operation cmp = cond->operation;
641         bool swap_compare_operands = false;
642
643	 if (limit == NULL) {
644	    counter = cond->operands[1]->as_dereference_variable();
645	    limit = cond->operands[0]->as_constant();
646            swap_compare_operands = true;
647	 }
648
649	 if ((counter == NULL) || (limit == NULL))
650	    break;
651
652	 ir_variable *var = counter->variable_referenced();
653
654	 ir_rvalue *init = find_initial_value(ir, var);
655
656         loop_variable *lv = ls->get(var);
657         if (lv != NULL && lv->is_induction_var()) {
658            bool inc_before_terminator =
659               incremented_before_terminator(ir, var, t->ir);
660
661            t->iterations = calculate_iterations(init, limit, lv->increment,
662                                                 cmp, t->continue_from_then,
663                                                 swap_compare_operands,
664                                                 inc_before_terminator);
665
666            if (t->iterations >= 0 &&
667                (ls->limiting_terminator == NULL ||
668                 t->iterations < ls->limiting_terminator->iterations)) {
669               ls->limiting_terminator = t;
670            }
671         }
672         break;
673      }
674
675      default:
676         break;
677      }
678   }
679
680   return visit_continue;
681}
682
683ir_visitor_status
684loop_analysis::visit_enter(ir_if *ir)
685{
686   (void) ir;
687
688   if (!this->state.is_empty())
689      this->if_statement_depth++;
690
691   return visit_continue;
692}
693
694ir_visitor_status
695loop_analysis::visit_leave(ir_if *ir)
696{
697   (void) ir;
698
699   if (!this->state.is_empty())
700      this->if_statement_depth--;
701
702   return visit_continue;
703}
704
705ir_visitor_status
706loop_analysis::visit_enter(ir_assignment *ir)
707{
708   /* If we're not somewhere inside a loop, there's nothing to do.
709    */
710   if (this->state.is_empty())
711      return visit_continue_with_parent;
712
713   this->current_assignment = ir;
714
715   return visit_continue;
716}
717
718ir_visitor_status
719loop_analysis::visit_leave(ir_assignment *ir)
720{
721   /* Since the visit_enter exits with visit_continue_with_parent for this
722    * case, the loop state stack should never be empty here.
723    */
724   assert(!this->state.is_empty());
725
726   assert(this->current_assignment == ir);
727   this->current_assignment = NULL;
728
729   return visit_continue;
730}
731
732
733class examine_rhs : public ir_hierarchical_visitor {
734public:
735   examine_rhs(hash_table *loop_variables)
736   {
737      this->only_uses_loop_constants = true;
738      this->loop_variables = loop_variables;
739   }
740
741   virtual ir_visitor_status visit(ir_dereference_variable *ir)
742   {
743      hash_entry *entry = _mesa_hash_table_search(this->loop_variables,
744                                                  ir->var);
745      loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
746
747      assert(lv != NULL);
748
749      if (lv->is_loop_constant()) {
750	 return visit_continue;
751      } else {
752	 this->only_uses_loop_constants = false;
753	 return visit_stop;
754      }
755   }
756
757   hash_table *loop_variables;
758   bool only_uses_loop_constants;
759};
760
761
762bool
763all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
764{
765   examine_rhs v(variables);
766
767   ir->accept(&v);
768
769   return v.only_uses_loop_constants;
770}
771
772
773ir_rvalue *
774get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
775{
776   /* The RHS must be a binary expression.
777    */
778   ir_expression *const rhs = ir->rhs->as_expression();
779   if ((rhs == NULL)
780       || ((rhs->operation != ir_binop_add)
781	   && (rhs->operation != ir_binop_sub)))
782      return NULL;
783
784   /* One of the of operands of the expression must be the variable assigned.
785    * If the operation is subtraction, the variable in question must be the
786    * "left" operand.
787    */
788   ir_variable *const var = ir->lhs->variable_referenced();
789
790   ir_variable *const op0 = rhs->operands[0]->variable_referenced();
791   ir_variable *const op1 = rhs->operands[1]->variable_referenced();
792
793   if (((op0 != var) && (op1 != var))
794       || ((op1 == var) && (rhs->operation == ir_binop_sub)))
795      return NULL;
796
797   ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];
798
799   if (inc->as_constant() == NULL) {
800      ir_variable *const inc_var = inc->variable_referenced();
801      if (inc_var != NULL) {
802         hash_entry *entry = _mesa_hash_table_search(var_hash, inc_var);
803         loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
804
805         if (lv == NULL || !lv->is_loop_constant()) {
806            assert(lv != NULL);
807            inc = NULL;
808         }
809      } else
810	 inc = NULL;
811   }
812
813   if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
814      void *mem_ctx = ralloc_parent(ir);
815
816      inc = new(mem_ctx) ir_expression(ir_unop_neg,
817				       inc->type,
818				       inc->clone(mem_ctx, NULL),
819				       NULL);
820   }
821
822   return inc;
823}
824
825
826/**
827 * Detect whether an if-statement is a loop terminating condition, if so
828 * add it to the list of loop terminators.
829 *
830 * Detects if-statements of the form
831 *
832 *  (if (expression bool ...) (...then_instrs...break))
833 *
834 *     or
835 *
836 *  (if (expression bool ...) ... (...else_instrs...break))
837 */
838void
839try_add_loop_terminator(loop_variable_state *ls, ir_if *ir)
840{
841   ir_instruction *inst = (ir_instruction *) ir->then_instructions.get_tail();
842   ir_instruction *else_inst =
843      (ir_instruction *) ir->else_instructions.get_tail();
844
845   if (is_break(inst) || is_break(else_inst))
846      ls->insert(ir, is_break(else_inst));
847}
848
849
850loop_state *
851analyze_loop_variables(exec_list *instructions)
852{
853   loop_state *loops = new loop_state;
854   loop_analysis v(loops);
855
856   v.run(instructions);
857   return v.loops;
858}
859