1/*
2 * Copyright © 2010 Luca Barbieri
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file lower_jumps.cpp
26 *
27 * This pass lowers jumps (break, continue, and return) to if/else structures.
28 *
29 * It can be asked to:
30 * 1. Pull jumps out of ifs where possible
31 * 2. Remove all "continue"s, replacing them with an "execute flag"
32 * 3. Replace all "break" with a single conditional one at the end of the loop
33 * 4. Replace all "return"s with a single return at the end of the function,
34 *    for the main function and/or other functions
35 *
36 * Applying this pass gives several benefits:
37 * 1. All functions can be inlined.
38 * 2. nv40 and other pre-DX10 chips without "continue" can be supported
39 * 3. nv30 and other pre-DX10 chips with no control flow at all are better
40 *    supported
41 *
42 * Continues are lowered by adding a per-loop "execute flag", initialized to
43 * true, that when cleared inhibits all execution until the end of the loop.
44 *
45 * Breaks are lowered to continues, plus setting a "break flag" that is checked
46 * at the end of the loop, and trigger the unique "break".
47 *
48 * Returns are lowered to breaks/continues, plus adding a "return flag" that
49 * causes loops to break again out of their enclosing loops until all the
50 * loops are exited: then the "execute flag" logic will ignore everything
51 * until the end of the function.
52 *
53 * Note that "continue" and "return" can also be implemented by adding
54 * a dummy loop and using break.
55 * However, this is bad for hardware with limited nesting depth, and
56 * prevents further optimization, and thus is not currently performed.
57 */
58
59#include "compiler/glsl_types.h"
60#include <string.h>
61#include "ir.h"
62
63/**
64 * Enum recording the result of analyzing how control flow might exit
65 * an IR node.
66 *
67 * Each possible value of jump_strength indicates a strictly stronger
68 * guarantee on control flow than the previous value.
69 *
70 * The ordering of strengths roughly reflects the way jumps are
71 * lowered: jumps with higher strength tend to be lowered to jumps of
72 * lower strength.  Accordingly, strength is used as a heuristic to
73 * determine which lowering to perform first.
74 *
75 * This enum is also used by get_jump_strength() to categorize
76 * instructions as either break, continue, return, or other.  When
77 * used in this fashion, strength_always_clears_execute_flag is not
78 * used.
79 *
80 * The control flow analysis made by this optimization pass makes two
81 * simplifying assumptions:
82 *
83 * - It ignores discard instructions, since they are lowered by a
84 *   separate pass (lower_discard.cpp).
85 *
86 * - It assumes it is always possible for control to flow from a loop
87 *   to the instruction immediately following it.  Technically, this
88 *   is not true (since all execution paths through the loop might
89 *   jump back to the top, or return from the function).
90 *
91 * Both of these simplifying assumtions are safe, since they can never
92 * cause reachable code to be incorrectly classified as unreachable;
93 * they can only do the opposite.
94 */
95enum jump_strength
96{
97   /**
98    * Analysis has produced no guarantee on how control flow might
99    * exit this IR node.  It might fall out the bottom (with or
100    * without clearing the execute flag, if present), or it might
101    * continue to the top of the innermost enclosing loop, break out
102    * of it, or return from the function.
103    */
104   strength_none,
105
106   /**
107    * The only way control can fall out the bottom of this node is
108    * through a code path that clears the execute flag.  It might also
109    * continue to the top of the innermost enclosing loop, break out
110    * of it, or return from the function.
111    */
112   strength_always_clears_execute_flag,
113
114   /**
115    * Control cannot fall out the bottom of this node.  It might
116    * continue to the top of the innermost enclosing loop, break out
117    * of it, or return from the function.
118    */
119   strength_continue,
120
121   /**
122    * Control cannot fall out the bottom of this node, or continue the
123    * top of the innermost enclosing loop.  It can only break out of
124    * it or return from the function.
125    */
126   strength_break,
127
128   /**
129    * Control cannot fall out the bottom of this node, continue to the
130    * top of the innermost enclosing loop, or break out of it.  It can
131    * only return from the function.
132    */
133   strength_return
134};
135
136namespace {
137
138struct block_record
139{
140   /* minimum jump strength (of lowered IR, not pre-lowering IR)
141    *
142    * If the block ends with a jump, must be the strength of the jump.
143    * Otherwise, the jump would be dead and have been deleted before)
144    *
145    * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump
146    * (e.g. an if with a return in one branch, and a break in the other, while not lowering them)
147    * Note that identical jumps are usually unified though.
148    */
149   jump_strength min_strength;
150
151   /* can anything clear the execute flag? */
152   bool may_clear_execute_flag;
153
154   block_record()
155   {
156      this->min_strength = strength_none;
157      this->may_clear_execute_flag = false;
158   }
159};
160
161struct loop_record
162{
163   ir_function_signature* signature;
164   ir_loop* loop;
165
166   /* used to avoid lowering the break used to represent lowered breaks */
167   unsigned nesting_depth;
168   bool in_if_at_the_end_of_the_loop;
169
170   bool may_set_return_flag;
171
172   ir_variable* break_flag;
173   ir_variable* execute_flag; /* cleared to emulate continue */
174
175   loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0)
176   {
177      this->signature = p_signature;
178      this->loop = p_loop;
179      this->nesting_depth = 0;
180      this->in_if_at_the_end_of_the_loop = false;
181      this->may_set_return_flag = false;
182      this->break_flag = 0;
183      this->execute_flag = 0;
184   }
185
186   ir_variable* get_execute_flag()
187   {
188      /* also supported for the "function loop" */
189      if(!this->execute_flag) {
190         exec_list& list = this->loop ? this->loop->body_instructions : signature->body;
191         this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary);
192         list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true)));
193         list.push_head(this->execute_flag);
194      }
195      return this->execute_flag;
196   }
197
198   ir_variable* get_break_flag()
199   {
200      assert(this->loop);
201      if(!this->break_flag) {
202         this->break_flag = new(this->signature) ir_variable(glsl_type::bool_type, "break_flag", ir_var_temporary);
203         this->loop->insert_before(this->break_flag);
204         this->loop->insert_before(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(break_flag), new(this->signature) ir_constant(false)));
205      }
206      return this->break_flag;
207   }
208};
209
210struct function_record
211{
212   ir_function_signature* signature;
213   ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */
214   ir_variable* return_value;
215   bool lower_return;
216   unsigned nesting_depth;
217
218   function_record(ir_function_signature* p_signature = 0,
219                   bool lower_return = false)
220   {
221      this->signature = p_signature;
222      this->return_flag = 0;
223      this->return_value = 0;
224      this->nesting_depth = 0;
225      this->lower_return = lower_return;
226   }
227
228   ir_variable* get_return_flag()
229   {
230      if(!this->return_flag) {
231         this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary);
232         this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false)));
233         this->signature->body.push_head(this->return_flag);
234      }
235      return this->return_flag;
236   }
237
238   ir_variable* get_return_value()
239   {
240      if(!this->return_value) {
241         assert(!this->signature->return_type->is_void());
242         return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary);
243         this->signature->body.push_head(this->return_value);
244      }
245      return this->return_value;
246   }
247};
248
249struct ir_lower_jumps_visitor : public ir_control_flow_visitor {
250   /* Postconditions: on exit of any visit() function:
251    *
252    * ANALYSIS: this->block.min_strength,
253    * this->block.may_clear_execute_flag, and
254    * this->loop.may_set_return_flag are updated to reflect the
255    * characteristics of the visited statement.
256    *
257    * DEAD_CODE_ELIMINATION: If this->block.min_strength is not
258    * strength_none, the visited node is at the end of its exec_list.
259    * In other words, any unreachable statements that follow the
260    * visited statement in its exec_list have been removed.
261    *
262    * CONTAINED_JUMPS_LOWERED: If the visited statement contains other
263    * statements, then should_lower_jump() is false for all of the
264    * return, break, or continue statements it contains.
265    *
266    * Note that visiting a jump does not lower it.  That is the
267    * responsibility of the statement (or function signature) that
268    * contains the jump.
269    */
270
271   using ir_control_flow_visitor::visit;
272
273   bool progress;
274
275   struct function_record function;
276   struct loop_record loop;
277   struct block_record block;
278
279   bool pull_out_jumps;
280   bool lower_continue;
281   bool lower_break;
282   bool lower_sub_return;
283   bool lower_main_return;
284
285   ir_lower_jumps_visitor()
286      : progress(false),
287        pull_out_jumps(false),
288        lower_continue(false),
289        lower_break(false),
290        lower_sub_return(false),
291        lower_main_return(false)
292   {
293   }
294
295   void truncate_after_instruction(exec_node *ir)
296   {
297      if (!ir)
298         return;
299
300      while (!ir->get_next()->is_tail_sentinel()) {
301         ((ir_instruction *)ir->get_next())->remove();
302         this->progress = true;
303      }
304   }
305
306   void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block)
307   {
308      while (!ir->get_next()->is_tail_sentinel()) {
309         ir_instruction *move_ir = (ir_instruction *)ir->get_next();
310
311         move_ir->remove();
312         inner_block->push_tail(move_ir);
313      }
314   }
315
316   /**
317    * Insert the instructions necessary to lower a return statement,
318    * before the given return instruction.
319    */
320   void insert_lowered_return(ir_return *ir)
321   {
322      ir_variable* return_flag = this->function.get_return_flag();
323      if(!this->function.signature->return_type->is_void()) {
324         ir_variable* return_value = this->function.get_return_value();
325         ir->insert_before(
326            new(ir) ir_assignment(
327               new (ir) ir_dereference_variable(return_value),
328               ir->value));
329      }
330      ir->insert_before(
331         new(ir) ir_assignment(
332            new (ir) ir_dereference_variable(return_flag),
333            new (ir) ir_constant(true)));
334      this->loop.may_set_return_flag = true;
335   }
336
337   /**
338    * If the given instruction is a return, lower it to instructions
339    * that store the return value (if there is one), set the return
340    * flag, and then break.
341    *
342    * It is safe to pass NULL to this function.
343    */
344   void lower_return_unconditionally(ir_instruction *ir)
345   {
346      if (get_jump_strength(ir) != strength_return) {
347         return;
348      }
349      insert_lowered_return((ir_return*)ir);
350      ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
351   }
352
353   /**
354    * Create the necessary instruction to replace a break instruction.
355    */
356   ir_instruction *create_lowered_break()
357   {
358      void *ctx = this->function.signature;
359      return new(ctx) ir_assignment(
360          new(ctx) ir_dereference_variable(this->loop.get_break_flag()),
361          new(ctx) ir_constant(true));
362   }
363
364   /**
365    * If the given instruction is a break, lower it to an instruction
366    * that sets the break flag, without consulting
367    * should_lower_jump().
368    *
369    * It is safe to pass NULL to this function.
370    */
371   void lower_break_unconditionally(ir_instruction *ir)
372   {
373      if (get_jump_strength(ir) != strength_break) {
374         return;
375      }
376      ir->replace_with(create_lowered_break());
377   }
378
379   /**
380    * If the block ends in a conditional or unconditional break, lower
381    * it, even though should_lower_jump() says it needn't be lowered.
382    */
383   void lower_final_breaks(exec_list *block)
384   {
385      ir_instruction *ir = (ir_instruction *) block->get_tail();
386      lower_break_unconditionally(ir);
387      ir_if *ir_if = ir->as_if();
388      if (ir_if) {
389          lower_break_unconditionally(
390              (ir_instruction *) ir_if->then_instructions.get_tail());
391          lower_break_unconditionally(
392              (ir_instruction *) ir_if->else_instructions.get_tail());
393      }
394   }
395
396   virtual void visit(class ir_loop_jump * ir)
397   {
398      /* Eliminate all instructions after each one, since they are
399       * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
400       * postcondition.
401       */
402      truncate_after_instruction(ir);
403
404      /* Set this->block.min_strength based on this instruction.  This
405       * satisfies the ANALYSIS postcondition.  It is not necessary to
406       * update this->block.may_clear_execute_flag or
407       * this->loop.may_set_return_flag, because an unlowered jump
408       * instruction can't change any flags.
409       */
410      this->block.min_strength = ir->is_break() ? strength_break : strength_continue;
411
412      /* The CONTAINED_JUMPS_LOWERED postcondition is already
413       * satisfied, because jump statements can't contain other
414       * statements.
415       */
416   }
417
418   virtual void visit(class ir_return * ir)
419   {
420      /* Eliminate all instructions after each one, since they are
421       * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
422       * postcondition.
423       */
424      truncate_after_instruction(ir);
425
426      /* Set this->block.min_strength based on this instruction.  This
427       * satisfies the ANALYSIS postcondition.  It is not necessary to
428       * update this->block.may_clear_execute_flag or
429       * this->loop.may_set_return_flag, because an unlowered return
430       * instruction can't change any flags.
431       */
432      this->block.min_strength = strength_return;
433
434      /* The CONTAINED_JUMPS_LOWERED postcondition is already
435       * satisfied, because jump statements can't contain other
436       * statements.
437       */
438   }
439
440   virtual void visit(class ir_discard * ir)
441   {
442      /* Nothing needs to be done.  The ANALYSIS and
443       * DEAD_CODE_ELIMINATION postconditions are already satisfied,
444       * because discard statements are ignored by this optimization
445       * pass.  The CONTAINED_JUMPS_LOWERED postcondition is already
446       * satisfied, because discard statements can't contain other
447       * statements.
448       */
449      (void) ir;
450   }
451
452   enum jump_strength get_jump_strength(ir_instruction* ir)
453   {
454      if(!ir)
455         return strength_none;
456      else if(ir->ir_type == ir_type_loop_jump) {
457         if(((ir_loop_jump*)ir)->is_break())
458            return strength_break;
459         else
460            return strength_continue;
461      } else if(ir->ir_type == ir_type_return)
462         return strength_return;
463      else
464         return strength_none;
465   }
466
467   bool should_lower_jump(ir_jump* ir)
468   {
469      unsigned strength = get_jump_strength(ir);
470      bool lower;
471      switch(strength)
472      {
473      case strength_none:
474         lower = false; /* don't change this, code relies on it */
475         break;
476      case strength_continue:
477         lower = lower_continue;
478         break;
479      case strength_break:
480         assert(this->loop.loop);
481         /* never lower "canonical break" */
482         if(ir->get_next()->is_tail_sentinel() && (this->loop.nesting_depth == 0
483               || (this->loop.nesting_depth == 1 && this->loop.in_if_at_the_end_of_the_loop)))
484            lower = false;
485         else
486            lower = lower_break;
487         break;
488      case strength_return:
489         /* never lower return at the end of a this->function */
490         if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
491            lower = false;
492         else
493            lower = this->function.lower_return;
494         break;
495      }
496      return lower;
497   }
498
499   block_record visit_block(exec_list* list)
500   {
501      /* Note: since visiting a node may change that node's next
502       * pointer, we can't use visit_exec_list(), because
503       * visit_exec_list() caches the node's next pointer before
504       * visiting it.  So we use foreach_in_list() instead.
505       *
506       * foreach_in_list() isn't safe if the node being visited gets
507       * removed, but fortunately this visitor doesn't do that.
508       */
509
510      block_record saved_block = this->block;
511      this->block = block_record();
512      foreach_in_list(ir_instruction, node, list) {
513         node->accept(this);
514      }
515      block_record ret = this->block;
516      this->block = saved_block;
517      return ret;
518   }
519
520   virtual void visit(ir_if *ir)
521   {
522      if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
523         this->loop.in_if_at_the_end_of_the_loop = true;
524
525      ++this->function.nesting_depth;
526      ++this->loop.nesting_depth;
527
528      block_record block_records[2];
529      ir_jump* jumps[2];
530
531      /* Recursively lower nested jumps.  This satisfies the
532       * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
533       * unconditional jumps at the end of ir->then_instructions and
534       * ir->else_instructions, which are handled below.
535       */
536      block_records[0] = visit_block(&ir->then_instructions);
537      block_records[1] = visit_block(&ir->else_instructions);
538
539retry: /* we get here if we put code after the if inside a branch */
540
541      /* Determine which of ir->then_instructions and
542       * ir->else_instructions end with an unconditional jump.
543       */
544      for(unsigned i = 0; i < 2; ++i) {
545         exec_list& list = i ? ir->else_instructions : ir->then_instructions;
546         jumps[i] = 0;
547         if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail()))
548            jumps[i] = (ir_jump*)list.get_tail();
549      }
550
551      /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED
552       * postcondition by lowering jumps in both then_instructions and
553       * else_instructions.
554       */
555      for(;;) {
556         /* Determine the types of the jumps that terminate
557          * ir->then_instructions and ir->else_instructions.
558          */
559         jump_strength jump_strengths[2];
560
561         for(unsigned i = 0; i < 2; ++i) {
562            if(jumps[i]) {
563               jump_strengths[i] = block_records[i].min_strength;
564               assert(jump_strengths[i] == get_jump_strength(jumps[i]));
565            } else
566               jump_strengths[i] = strength_none;
567         }
568
569         /* If both code paths end in a jump, and the jumps are the
570          * same, and we are pulling out jumps, replace them with a
571          * single jump that comes after the if instruction.  The new
572          * jump will be visited next, and it will be lowered if
573          * necessary by the loop or conditional that encloses it.
574          */
575         if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) {
576            bool unify = true;
577            if(jump_strengths[0] == strength_continue)
578               ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue));
579            else if(jump_strengths[0] == strength_break)
580               ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
581            /* FINISHME: unify returns with identical expressions */
582            else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void())
583               ir->insert_after(new(ir) ir_return(NULL));
584	    else
585	       unify = false;
586
587            if(unify) {
588               jumps[0]->remove();
589               jumps[1]->remove();
590               this->progress = true;
591
592               /* Update jumps[] to reflect the fact that the jumps
593                * are gone, and update block_records[] to reflect the
594                * fact that control can now flow to the next
595                * instruction.
596                */
597               jumps[0] = 0;
598               jumps[1] = 0;
599               block_records[0].min_strength = strength_none;
600               block_records[1].min_strength = strength_none;
601
602               /* The CONTAINED_JUMPS_LOWERED postcondition is now
603                * satisfied, so we can break out of the loop.
604                */
605               break;
606            }
607         }
608
609         /* lower a jump: if both need to lowered, start with the strongest one, so that
610          * we might later unify the lowered version with the other one
611          */
612         bool should_lower[2];
613         for(unsigned i = 0; i < 2; ++i)
614            should_lower[i] = should_lower_jump(jumps[i]);
615
616         int lower;
617         if(should_lower[1] && should_lower[0])
618            lower = jump_strengths[1] > jump_strengths[0];
619         else if(should_lower[0])
620            lower = 0;
621         else if(should_lower[1])
622            lower = 1;
623         else
624            /* Neither code path ends in a jump that needs to be
625             * lowered, so the CONTAINED_JUMPS_LOWERED postcondition
626             * is satisfied and we can break out of the loop.
627             */
628            break;
629
630         if(jump_strengths[lower] == strength_return) {
631            /* To lower a return, we create a return flag (if the
632             * function doesn't have one already) and add instructions
633             * that: 1. store the return value (if this function has a
634             * non-void return) and 2. set the return flag
635             */
636            insert_lowered_return((ir_return*)jumps[lower]);
637            if(this->loop.loop) {
638               /* If we are in a loop, replace the return instruction
639                * with a break instruction, and then loop so that the
640                * break instruction can be lowered if necessary.
641                */
642               ir_loop_jump* lowered = 0;
643               lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
644               /* Note: we must update block_records and jumps to
645                * reflect the fact that the control path has been
646                * altered from a return to a break.
647                */
648               block_records[lower].min_strength = strength_break;
649               jumps[lower]->replace_with(lowered);
650               jumps[lower] = lowered;
651            } else {
652               /* If we are not in a loop, we then proceed as we would
653                * for a continue statement (set the execute flag to
654                * false to prevent the rest of the function from
655                * executing).
656                */
657               goto lower_continue;
658            }
659            this->progress = true;
660         } else if(jump_strengths[lower] == strength_break) {
661            /* To lower a break, we create a break flag (if the loop
662             * doesn't have one already) and add an instruction that
663             * sets it.
664             *
665             * Then we proceed as we would for a continue statement
666             * (set the execute flag to false to prevent the rest of
667             * the loop body from executing).
668             *
669             * The visit() function for the loop will ensure that the
670             * break flag is checked after executing the loop body.
671             */
672            jumps[lower]->insert_before(create_lowered_break());
673            goto lower_continue;
674         } else if(jump_strengths[lower] == strength_continue) {
675lower_continue:
676            /* To lower a continue, we create an execute flag (if the
677             * loop doesn't have one already) and replace the continue
678             * with an instruction that clears it.
679             *
680             * Note that this code path gets exercised when lowering
681             * return statements that are not inside a loop, so
682             * this->loop must be initialized even outside of loops.
683             */
684            ir_variable* execute_flag = this->loop.get_execute_flag();
685            jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false)));
686            /* Note: we must update block_records and jumps to reflect
687             * the fact that the control path has been altered to an
688             * instruction that clears the execute flag.
689             */
690            jumps[lower] = 0;
691            block_records[lower].min_strength = strength_always_clears_execute_flag;
692            block_records[lower].may_clear_execute_flag = true;
693            this->progress = true;
694
695            /* Let the loop run again, in case the other branch of the
696             * if needs to be lowered too.
697             */
698         }
699      }
700
701      /* move out a jump out if possible */
702      if(pull_out_jumps) {
703         /* If one of the branches ends in a jump, and control cannot
704          * fall out the bottom of the other branch, then we can move
705          * the jump after the if.
706          *
707          * Set move_out to the branch we are moving a jump out of.
708          */
709         int move_out = -1;
710         if(jumps[0] && block_records[1].min_strength >= strength_continue)
711            move_out = 0;
712         else if(jumps[1] && block_records[0].min_strength >= strength_continue)
713            move_out = 1;
714
715         if(move_out >= 0)
716         {
717            jumps[move_out]->remove();
718            ir->insert_after(jumps[move_out]);
719            /* Note: we must update block_records and jumps to reflect
720             * the fact that the jump has been moved out of the if.
721             */
722            jumps[move_out] = 0;
723            block_records[move_out].min_strength = strength_none;
724            this->progress = true;
725         }
726      }
727
728      /* Now satisfy the ANALYSIS postcondition by setting
729       * this->block.min_strength and
730       * this->block.may_clear_execute_flag based on the
731       * characteristics of the two branches.
732       */
733      if(block_records[0].min_strength < block_records[1].min_strength)
734         this->block.min_strength = block_records[0].min_strength;
735      else
736         this->block.min_strength = block_records[1].min_strength;
737      this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag;
738
739      /* Now we need to clean up the instructions that follow the
740       * if.
741       *
742       * If those instructions are unreachable, then satisfy the
743       * DEAD_CODE_ELIMINATION postcondition by eliminating them.
744       * Otherwise that postcondition is already satisfied.
745       */
746      if(this->block.min_strength)
747         truncate_after_instruction(ir);
748      else if(this->block.may_clear_execute_flag)
749      {
750         /* If the "if" instruction might clear the execute flag, then
751          * we need to guard any instructions that follow so that they
752          * are only executed if the execute flag is set.
753          *
754          * If one of the branches of the "if" always clears the
755          * execute flag, and the other branch never clears it, then
756          * this is easy: just move all the instructions following the
757          * "if" into the branch that never clears it.
758          */
759         int move_into = -1;
760         if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag)
761            move_into = 1;
762         else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag)
763            move_into = 0;
764
765         if(move_into >= 0) {
766            assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */
767
768            exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions;
769            exec_node* next = ir->get_next();
770            if(!next->is_tail_sentinel()) {
771               move_outer_block_inside(ir, list);
772
773               /* If any instructions moved, then we need to visit
774                * them (since they are now inside the "if").  Since
775                * block_records[move_into] is in its default state
776                * (see assertion above), we can safely replace
777                * block_records[move_into] with the result of this
778                * analysis.
779                */
780               exec_list list;
781               list.head_sentinel.next = next;
782               block_records[move_into] = visit_block(&list);
783
784               /*
785                * Then we need to re-start our jump lowering, since one
786                * of the instructions we moved might be a jump that
787                * needs to be lowered.
788                */
789               this->progress = true;
790               goto retry;
791            }
792         } else {
793            /* If we get here, then the simple case didn't apply; we
794             * need to actually guard the instructions that follow.
795             *
796             * To avoid creating unnecessarily-deep nesting, first
797             * look through the instructions that follow and unwrap
798             * any instructions that that are already wrapped in the
799             * appropriate guard.
800             */
801            ir_instruction* ir_after;
802            for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();)
803            {
804               ir_if* ir_if = ir_after->as_if();
805               if(ir_if && ir_if->else_instructions.is_empty()) {
806                  ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable();
807                  if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) {
808                     ir_instruction* ir_next = (ir_instruction*)ir_after->get_next();
809                     ir_after->insert_before(&ir_if->then_instructions);
810                     ir_after->remove();
811                     ir_after = ir_next;
812                     continue;
813                  }
814               }
815               ir_after = (ir_instruction*)ir_after->get_next();
816
817               /* only set this if we find any unprotected instruction */
818               this->progress = true;
819            }
820
821            /* Then, wrap all the instructions that follow in a single
822             * guard.
823             */
824            if(!ir->get_next()->is_tail_sentinel()) {
825               assert(this->loop.execute_flag);
826               ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag));
827               move_outer_block_inside(ir, &if_execute->then_instructions);
828               ir->insert_after(if_execute);
829            }
830         }
831      }
832      --this->loop.nesting_depth;
833      --this->function.nesting_depth;
834   }
835
836   virtual void visit(ir_loop *ir)
837   {
838      /* Visit the body of the loop, with a fresh data structure in
839       * this->loop so that the analysis we do here won't bleed into
840       * enclosing loops.
841       *
842       * We assume that all code after a loop is reachable from the
843       * loop (see comments on enum jump_strength), so the
844       * DEAD_CODE_ELIMINATION postcondition is automatically
845       * satisfied, as is the block.min_strength portion of the
846       * ANALYSIS postcondition.
847       *
848       * The block.may_clear_execute_flag portion of the ANALYSIS
849       * postcondition is automatically satisfied because execute
850       * flags do not propagate outside of loops.
851       *
852       * The loop.may_set_return_flag portion of the ANALYSIS
853       * postcondition is handled below.
854       */
855      ++this->function.nesting_depth;
856      loop_record saved_loop = this->loop;
857      this->loop = loop_record(this->function.signature, ir);
858
859      /* Recursively lower nested jumps.  This satisfies the
860       * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
861       * an unconditional continue or return at the bottom of the
862       * loop, which are handled below.
863       */
864      block_record body = visit_block(&ir->body_instructions);
865
866      /* If the loop ends in an unconditional continue, eliminate it
867       * because it is redundant.
868       */
869      ir_instruction *ir_last
870         = (ir_instruction *) ir->body_instructions.get_tail();
871      if (get_jump_strength(ir_last) == strength_continue) {
872         ir_last->remove();
873      }
874
875      /* If the loop ends in an unconditional return, and we are
876       * lowering returns, lower it.
877       */
878      if (this->function.lower_return)
879         lower_return_unconditionally(ir_last);
880
881      if(body.min_strength >= strength_break) {
882         /* FINISHME: If the min_strength of the loop body is
883          * strength_break or strength_return, that means that it
884          * isn't a loop at all, since control flow always leaves the
885          * body of the loop via break or return.  In principle the
886          * loop could be eliminated in this case.  This optimization
887          * is not implemented yet.
888          */
889      }
890
891      if(this->loop.break_flag) {
892         /* We only get here if we are lowering breaks */
893         assert (lower_break);
894
895         /* If a break flag was generated while visiting the body of
896          * the loop, then at least one break was lowered, so we need
897          * to generate an if statement at the end of the loop that
898          * does a "break" if the break flag is set.  The break we
899          * generate won't violate the CONTAINED_JUMPS_LOWERED
900          * postcondition, because should_lower_jump() always returns
901          * false for a break that happens at the end of a loop.
902          *
903          * However, if the loop already ends in a conditional or
904          * unconditional break, then we need to lower that break,
905          * because it won't be at the end of the loop anymore.
906          */
907         lower_final_breaks(&ir->body_instructions);
908
909         ir_if* break_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.break_flag));
910         break_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
911         ir->body_instructions.push_tail(break_if);
912      }
913
914      /* If the body of the loop may set the return flag, then at
915       * least one return was lowered to a break, so we need to ensure
916       * that the return flag is checked after the body of the loop is
917       * executed.
918       */
919      if(this->loop.may_set_return_flag) {
920         assert(this->function.return_flag);
921         /* Generate the if statement to check the return flag */
922         ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag));
923         /* Note: we also need to propagate the knowledge that the
924          * return flag may get set to the outer context.  This
925          * satisfies the loop.may_set_return_flag part of the
926          * ANALYSIS postcondition.
927          */
928         saved_loop.may_set_return_flag = true;
929         if(saved_loop.loop)
930            /* If this loop is nested inside another one, then the if
931             * statement that we generated should break out of that
932             * loop if the return flag is set.  Caller will lower that
933             * break statement if necessary.
934             */
935            return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
936         else {
937            /* Otherwise, ensure that the instructions that follow are only
938             * executed if the return flag is clear.  We can do that by moving
939             * those instructions into the else clause of the generated if
940             * statement.
941             */
942            move_outer_block_inside(ir, &return_if->else_instructions);
943
944            /* In case the loop is embedded inside an if add a new return to
945             * the return flag then branch and let a future pass tidy it up.
946             */
947            if (this->function.signature->return_type->is_void())
948               return_if->then_instructions.push_tail(new(ir) ir_return(NULL));
949            else {
950               assert(this->function.return_value);
951               ir_variable* return_value = this->function.return_value;
952               return_if->then_instructions.push_tail(
953                  new(ir) ir_return(new(ir) ir_dereference_variable(return_value)));
954            }
955         }
956
957         ir->insert_after(return_if);
958      }
959
960      this->loop = saved_loop;
961      --this->function.nesting_depth;
962   }
963
964   virtual void visit(ir_function_signature *ir)
965   {
966      /* these are not strictly necessary */
967      assert(!this->function.signature);
968      assert(!this->loop.loop);
969
970      bool lower_return;
971      if (strcmp(ir->function_name(), "main") == 0)
972         lower_return = lower_main_return;
973      else
974         lower_return = lower_sub_return;
975
976      function_record saved_function = this->function;
977      loop_record saved_loop = this->loop;
978      this->function = function_record(ir, lower_return);
979      this->loop = loop_record(ir);
980
981      assert(!this->loop.loop);
982
983      /* Visit the body of the function to lower any jumps that occur
984       * in it, except possibly an unconditional return statement at
985       * the end of it.
986       */
987      visit_block(&ir->body);
988
989      /* If the body ended in an unconditional return of non-void,
990       * then we don't need to lower it because it's the one canonical
991       * return.
992       *
993       * If the body ended in a return of void, eliminate it because
994       * it is redundant.
995       */
996      if (ir->return_type->is_void() &&
997          get_jump_strength((ir_instruction *) ir->body.get_tail())) {
998         ir_jump *jump = (ir_jump *) ir->body.get_tail();
999         assert (jump->ir_type == ir_type_return);
1000         jump->remove();
1001      }
1002
1003      if(this->function.return_value)
1004         ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value)));
1005
1006      this->loop = saved_loop;
1007      this->function = saved_function;
1008   }
1009
1010   virtual void visit(class ir_function * ir)
1011   {
1012      visit_block(&ir->signatures);
1013   }
1014};
1015
1016} /* anonymous namespace */
1017
1018bool
1019do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue, bool lower_break)
1020{
1021   ir_lower_jumps_visitor v;
1022   v.pull_out_jumps = pull_out_jumps;
1023   v.lower_continue = lower_continue;
1024   v.lower_break = lower_break;
1025   v.lower_sub_return = lower_sub_return;
1026   v.lower_main_return = lower_main_return;
1027
1028   bool progress_ever = false;
1029   do {
1030      v.progress = false;
1031      visit_exec_list(instructions, &v);
1032      progress_ever = v.progress || progress_ever;
1033   } while (v.progress);
1034
1035   return progress_ever;
1036}
1037