1/* 2 * Copyright © 2010 Luca Barbieri 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file lower_jumps.cpp 26 * 27 * This pass lowers jumps (break, continue, and return) to if/else structures. 28 * 29 * It can be asked to: 30 * 1. Pull jumps out of ifs where possible 31 * 2. Remove all "continue"s, replacing them with an "execute flag" 32 * 3. Replace all "break" with a single conditional one at the end of the loop 33 * 4. Replace all "return"s with a single return at the end of the function, 34 * for the main function and/or other functions 35 * 36 * Applying this pass gives several benefits: 37 * 1. All functions can be inlined. 38 * 2. nv40 and other pre-DX10 chips without "continue" can be supported 39 * 3. nv30 and other pre-DX10 chips with no control flow at all are better 40 * supported 41 * 42 * Continues are lowered by adding a per-loop "execute flag", initialized to 43 * true, that when cleared inhibits all execution until the end of the loop. 44 * 45 * Breaks are lowered to continues, plus setting a "break flag" that is checked 46 * at the end of the loop, and trigger the unique "break". 47 * 48 * Returns are lowered to breaks/continues, plus adding a "return flag" that 49 * causes loops to break again out of their enclosing loops until all the 50 * loops are exited: then the "execute flag" logic will ignore everything 51 * until the end of the function. 52 * 53 * Note that "continue" and "return" can also be implemented by adding 54 * a dummy loop and using break. 55 * However, this is bad for hardware with limited nesting depth, and 56 * prevents further optimization, and thus is not currently performed. 57 */ 58 59#include "compiler/glsl_types.h" 60#include <string.h> 61#include "ir.h" 62 63/** 64 * Enum recording the result of analyzing how control flow might exit 65 * an IR node. 66 * 67 * Each possible value of jump_strength indicates a strictly stronger 68 * guarantee on control flow than the previous value. 69 * 70 * The ordering of strengths roughly reflects the way jumps are 71 * lowered: jumps with higher strength tend to be lowered to jumps of 72 * lower strength. Accordingly, strength is used as a heuristic to 73 * determine which lowering to perform first. 74 * 75 * This enum is also used by get_jump_strength() to categorize 76 * instructions as either break, continue, return, or other. When 77 * used in this fashion, strength_always_clears_execute_flag is not 78 * used. 79 * 80 * The control flow analysis made by this optimization pass makes two 81 * simplifying assumptions: 82 * 83 * - It ignores discard instructions, since they are lowered by a 84 * separate pass (lower_discard.cpp). 85 * 86 * - It assumes it is always possible for control to flow from a loop 87 * to the instruction immediately following it. Technically, this 88 * is not true (since all execution paths through the loop might 89 * jump back to the top, or return from the function). 90 * 91 * Both of these simplifying assumtions are safe, since they can never 92 * cause reachable code to be incorrectly classified as unreachable; 93 * they can only do the opposite. 94 */ 95enum jump_strength 96{ 97 /** 98 * Analysis has produced no guarantee on how control flow might 99 * exit this IR node. It might fall out the bottom (with or 100 * without clearing the execute flag, if present), or it might 101 * continue to the top of the innermost enclosing loop, break out 102 * of it, or return from the function. 103 */ 104 strength_none, 105 106 /** 107 * The only way control can fall out the bottom of this node is 108 * through a code path that clears the execute flag. It might also 109 * continue to the top of the innermost enclosing loop, break out 110 * of it, or return from the function. 111 */ 112 strength_always_clears_execute_flag, 113 114 /** 115 * Control cannot fall out the bottom of this node. It might 116 * continue to the top of the innermost enclosing loop, break out 117 * of it, or return from the function. 118 */ 119 strength_continue, 120 121 /** 122 * Control cannot fall out the bottom of this node, or continue the 123 * top of the innermost enclosing loop. It can only break out of 124 * it or return from the function. 125 */ 126 strength_break, 127 128 /** 129 * Control cannot fall out the bottom of this node, continue to the 130 * top of the innermost enclosing loop, or break out of it. It can 131 * only return from the function. 132 */ 133 strength_return 134}; 135 136namespace { 137 138struct block_record 139{ 140 /* minimum jump strength (of lowered IR, not pre-lowering IR) 141 * 142 * If the block ends with a jump, must be the strength of the jump. 143 * Otherwise, the jump would be dead and have been deleted before) 144 * 145 * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump 146 * (e.g. an if with a return in one branch, and a break in the other, while not lowering them) 147 * Note that identical jumps are usually unified though. 148 */ 149 jump_strength min_strength; 150 151 /* can anything clear the execute flag? */ 152 bool may_clear_execute_flag; 153 154 block_record() 155 { 156 this->min_strength = strength_none; 157 this->may_clear_execute_flag = false; 158 } 159}; 160 161struct loop_record 162{ 163 ir_function_signature* signature; 164 ir_loop* loop; 165 166 /* used to avoid lowering the break used to represent lowered breaks */ 167 unsigned nesting_depth; 168 bool in_if_at_the_end_of_the_loop; 169 170 bool may_set_return_flag; 171 172 ir_variable* break_flag; 173 ir_variable* execute_flag; /* cleared to emulate continue */ 174 175 loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0) 176 { 177 this->signature = p_signature; 178 this->loop = p_loop; 179 this->nesting_depth = 0; 180 this->in_if_at_the_end_of_the_loop = false; 181 this->may_set_return_flag = false; 182 this->break_flag = 0; 183 this->execute_flag = 0; 184 } 185 186 ir_variable* get_execute_flag() 187 { 188 /* also supported for the "function loop" */ 189 if(!this->execute_flag) { 190 exec_list& list = this->loop ? this->loop->body_instructions : signature->body; 191 this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary); 192 list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true))); 193 list.push_head(this->execute_flag); 194 } 195 return this->execute_flag; 196 } 197 198 ir_variable* get_break_flag() 199 { 200 assert(this->loop); 201 if(!this->break_flag) { 202 this->break_flag = new(this->signature) ir_variable(glsl_type::bool_type, "break_flag", ir_var_temporary); 203 this->loop->insert_before(this->break_flag); 204 this->loop->insert_before(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(break_flag), new(this->signature) ir_constant(false))); 205 } 206 return this->break_flag; 207 } 208}; 209 210struct function_record 211{ 212 ir_function_signature* signature; 213 ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */ 214 ir_variable* return_value; 215 bool lower_return; 216 unsigned nesting_depth; 217 218 function_record(ir_function_signature* p_signature = 0, 219 bool lower_return = false) 220 { 221 this->signature = p_signature; 222 this->return_flag = 0; 223 this->return_value = 0; 224 this->nesting_depth = 0; 225 this->lower_return = lower_return; 226 } 227 228 ir_variable* get_return_flag() 229 { 230 if(!this->return_flag) { 231 this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary); 232 this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false))); 233 this->signature->body.push_head(this->return_flag); 234 } 235 return this->return_flag; 236 } 237 238 ir_variable* get_return_value() 239 { 240 if(!this->return_value) { 241 assert(!this->signature->return_type->is_void()); 242 return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary); 243 this->signature->body.push_head(this->return_value); 244 } 245 return this->return_value; 246 } 247}; 248 249struct ir_lower_jumps_visitor : public ir_control_flow_visitor { 250 /* Postconditions: on exit of any visit() function: 251 * 252 * ANALYSIS: this->block.min_strength, 253 * this->block.may_clear_execute_flag, and 254 * this->loop.may_set_return_flag are updated to reflect the 255 * characteristics of the visited statement. 256 * 257 * DEAD_CODE_ELIMINATION: If this->block.min_strength is not 258 * strength_none, the visited node is at the end of its exec_list. 259 * In other words, any unreachable statements that follow the 260 * visited statement in its exec_list have been removed. 261 * 262 * CONTAINED_JUMPS_LOWERED: If the visited statement contains other 263 * statements, then should_lower_jump() is false for all of the 264 * return, break, or continue statements it contains. 265 * 266 * Note that visiting a jump does not lower it. That is the 267 * responsibility of the statement (or function signature) that 268 * contains the jump. 269 */ 270 271 using ir_control_flow_visitor::visit; 272 273 bool progress; 274 275 struct function_record function; 276 struct loop_record loop; 277 struct block_record block; 278 279 bool pull_out_jumps; 280 bool lower_continue; 281 bool lower_break; 282 bool lower_sub_return; 283 bool lower_main_return; 284 285 ir_lower_jumps_visitor() 286 : progress(false), 287 pull_out_jumps(false), 288 lower_continue(false), 289 lower_break(false), 290 lower_sub_return(false), 291 lower_main_return(false) 292 { 293 } 294 295 void truncate_after_instruction(exec_node *ir) 296 { 297 if (!ir) 298 return; 299 300 while (!ir->get_next()->is_tail_sentinel()) { 301 ((ir_instruction *)ir->get_next())->remove(); 302 this->progress = true; 303 } 304 } 305 306 void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block) 307 { 308 while (!ir->get_next()->is_tail_sentinel()) { 309 ir_instruction *move_ir = (ir_instruction *)ir->get_next(); 310 311 move_ir->remove(); 312 inner_block->push_tail(move_ir); 313 } 314 } 315 316 /** 317 * Insert the instructions necessary to lower a return statement, 318 * before the given return instruction. 319 */ 320 void insert_lowered_return(ir_return *ir) 321 { 322 ir_variable* return_flag = this->function.get_return_flag(); 323 if(!this->function.signature->return_type->is_void()) { 324 ir_variable* return_value = this->function.get_return_value(); 325 ir->insert_before( 326 new(ir) ir_assignment( 327 new (ir) ir_dereference_variable(return_value), 328 ir->value)); 329 } 330 ir->insert_before( 331 new(ir) ir_assignment( 332 new (ir) ir_dereference_variable(return_flag), 333 new (ir) ir_constant(true))); 334 this->loop.may_set_return_flag = true; 335 } 336 337 /** 338 * If the given instruction is a return, lower it to instructions 339 * that store the return value (if there is one), set the return 340 * flag, and then break. 341 * 342 * It is safe to pass NULL to this function. 343 */ 344 void lower_return_unconditionally(ir_instruction *ir) 345 { 346 if (get_jump_strength(ir) != strength_return) { 347 return; 348 } 349 insert_lowered_return((ir_return*)ir); 350 ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break)); 351 } 352 353 /** 354 * Create the necessary instruction to replace a break instruction. 355 */ 356 ir_instruction *create_lowered_break() 357 { 358 void *ctx = this->function.signature; 359 return new(ctx) ir_assignment( 360 new(ctx) ir_dereference_variable(this->loop.get_break_flag()), 361 new(ctx) ir_constant(true)); 362 } 363 364 /** 365 * If the given instruction is a break, lower it to an instruction 366 * that sets the break flag, without consulting 367 * should_lower_jump(). 368 * 369 * It is safe to pass NULL to this function. 370 */ 371 void lower_break_unconditionally(ir_instruction *ir) 372 { 373 if (get_jump_strength(ir) != strength_break) { 374 return; 375 } 376 ir->replace_with(create_lowered_break()); 377 } 378 379 /** 380 * If the block ends in a conditional or unconditional break, lower 381 * it, even though should_lower_jump() says it needn't be lowered. 382 */ 383 void lower_final_breaks(exec_list *block) 384 { 385 ir_instruction *ir = (ir_instruction *) block->get_tail(); 386 lower_break_unconditionally(ir); 387 ir_if *ir_if = ir->as_if(); 388 if (ir_if) { 389 lower_break_unconditionally( 390 (ir_instruction *) ir_if->then_instructions.get_tail()); 391 lower_break_unconditionally( 392 (ir_instruction *) ir_if->else_instructions.get_tail()); 393 } 394 } 395 396 virtual void visit(class ir_loop_jump * ir) 397 { 398 /* Eliminate all instructions after each one, since they are 399 * unreachable. This satisfies the DEAD_CODE_ELIMINATION 400 * postcondition. 401 */ 402 truncate_after_instruction(ir); 403 404 /* Set this->block.min_strength based on this instruction. This 405 * satisfies the ANALYSIS postcondition. It is not necessary to 406 * update this->block.may_clear_execute_flag or 407 * this->loop.may_set_return_flag, because an unlowered jump 408 * instruction can't change any flags. 409 */ 410 this->block.min_strength = ir->is_break() ? strength_break : strength_continue; 411 412 /* The CONTAINED_JUMPS_LOWERED postcondition is already 413 * satisfied, because jump statements can't contain other 414 * statements. 415 */ 416 } 417 418 virtual void visit(class ir_return * ir) 419 { 420 /* Eliminate all instructions after each one, since they are 421 * unreachable. This satisfies the DEAD_CODE_ELIMINATION 422 * postcondition. 423 */ 424 truncate_after_instruction(ir); 425 426 /* Set this->block.min_strength based on this instruction. This 427 * satisfies the ANALYSIS postcondition. It is not necessary to 428 * update this->block.may_clear_execute_flag or 429 * this->loop.may_set_return_flag, because an unlowered return 430 * instruction can't change any flags. 431 */ 432 this->block.min_strength = strength_return; 433 434 /* The CONTAINED_JUMPS_LOWERED postcondition is already 435 * satisfied, because jump statements can't contain other 436 * statements. 437 */ 438 } 439 440 virtual void visit(class ir_discard * ir) 441 { 442 /* Nothing needs to be done. The ANALYSIS and 443 * DEAD_CODE_ELIMINATION postconditions are already satisfied, 444 * because discard statements are ignored by this optimization 445 * pass. The CONTAINED_JUMPS_LOWERED postcondition is already 446 * satisfied, because discard statements can't contain other 447 * statements. 448 */ 449 (void) ir; 450 } 451 452 enum jump_strength get_jump_strength(ir_instruction* ir) 453 { 454 if(!ir) 455 return strength_none; 456 else if(ir->ir_type == ir_type_loop_jump) { 457 if(((ir_loop_jump*)ir)->is_break()) 458 return strength_break; 459 else 460 return strength_continue; 461 } else if(ir->ir_type == ir_type_return) 462 return strength_return; 463 else 464 return strength_none; 465 } 466 467 bool should_lower_jump(ir_jump* ir) 468 { 469 unsigned strength = get_jump_strength(ir); 470 bool lower; 471 switch(strength) 472 { 473 case strength_none: 474 lower = false; /* don't change this, code relies on it */ 475 break; 476 case strength_continue: 477 lower = lower_continue; 478 break; 479 case strength_break: 480 assert(this->loop.loop); 481 /* never lower "canonical break" */ 482 if(ir->get_next()->is_tail_sentinel() && (this->loop.nesting_depth == 0 483 || (this->loop.nesting_depth == 1 && this->loop.in_if_at_the_end_of_the_loop))) 484 lower = false; 485 else 486 lower = lower_break; 487 break; 488 case strength_return: 489 /* never lower return at the end of a this->function */ 490 if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel()) 491 lower = false; 492 else 493 lower = this->function.lower_return; 494 break; 495 } 496 return lower; 497 } 498 499 block_record visit_block(exec_list* list) 500 { 501 /* Note: since visiting a node may change that node's next 502 * pointer, we can't use visit_exec_list(), because 503 * visit_exec_list() caches the node's next pointer before 504 * visiting it. So we use foreach_in_list() instead. 505 * 506 * foreach_in_list() isn't safe if the node being visited gets 507 * removed, but fortunately this visitor doesn't do that. 508 */ 509 510 block_record saved_block = this->block; 511 this->block = block_record(); 512 foreach_in_list(ir_instruction, node, list) { 513 node->accept(this); 514 } 515 block_record ret = this->block; 516 this->block = saved_block; 517 return ret; 518 } 519 520 virtual void visit(ir_if *ir) 521 { 522 if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel()) 523 this->loop.in_if_at_the_end_of_the_loop = true; 524 525 ++this->function.nesting_depth; 526 ++this->loop.nesting_depth; 527 528 block_record block_records[2]; 529 ir_jump* jumps[2]; 530 531 /* Recursively lower nested jumps. This satisfies the 532 * CONTAINED_JUMPS_LOWERED postcondition, except in the case of 533 * unconditional jumps at the end of ir->then_instructions and 534 * ir->else_instructions, which are handled below. 535 */ 536 block_records[0] = visit_block(&ir->then_instructions); 537 block_records[1] = visit_block(&ir->else_instructions); 538 539retry: /* we get here if we put code after the if inside a branch */ 540 541 /* Determine which of ir->then_instructions and 542 * ir->else_instructions end with an unconditional jump. 543 */ 544 for(unsigned i = 0; i < 2; ++i) { 545 exec_list& list = i ? ir->else_instructions : ir->then_instructions; 546 jumps[i] = 0; 547 if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail())) 548 jumps[i] = (ir_jump*)list.get_tail(); 549 } 550 551 /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED 552 * postcondition by lowering jumps in both then_instructions and 553 * else_instructions. 554 */ 555 for(;;) { 556 /* Determine the types of the jumps that terminate 557 * ir->then_instructions and ir->else_instructions. 558 */ 559 jump_strength jump_strengths[2]; 560 561 for(unsigned i = 0; i < 2; ++i) { 562 if(jumps[i]) { 563 jump_strengths[i] = block_records[i].min_strength; 564 assert(jump_strengths[i] == get_jump_strength(jumps[i])); 565 } else 566 jump_strengths[i] = strength_none; 567 } 568 569 /* If both code paths end in a jump, and the jumps are the 570 * same, and we are pulling out jumps, replace them with a 571 * single jump that comes after the if instruction. The new 572 * jump will be visited next, and it will be lowered if 573 * necessary by the loop or conditional that encloses it. 574 */ 575 if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) { 576 bool unify = true; 577 if(jump_strengths[0] == strength_continue) 578 ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue)); 579 else if(jump_strengths[0] == strength_break) 580 ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break)); 581 /* FINISHME: unify returns with identical expressions */ 582 else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void()) 583 ir->insert_after(new(ir) ir_return(NULL)); 584 else 585 unify = false; 586 587 if(unify) { 588 jumps[0]->remove(); 589 jumps[1]->remove(); 590 this->progress = true; 591 592 /* Update jumps[] to reflect the fact that the jumps 593 * are gone, and update block_records[] to reflect the 594 * fact that control can now flow to the next 595 * instruction. 596 */ 597 jumps[0] = 0; 598 jumps[1] = 0; 599 block_records[0].min_strength = strength_none; 600 block_records[1].min_strength = strength_none; 601 602 /* The CONTAINED_JUMPS_LOWERED postcondition is now 603 * satisfied, so we can break out of the loop. 604 */ 605 break; 606 } 607 } 608 609 /* lower a jump: if both need to lowered, start with the strongest one, so that 610 * we might later unify the lowered version with the other one 611 */ 612 bool should_lower[2]; 613 for(unsigned i = 0; i < 2; ++i) 614 should_lower[i] = should_lower_jump(jumps[i]); 615 616 int lower; 617 if(should_lower[1] && should_lower[0]) 618 lower = jump_strengths[1] > jump_strengths[0]; 619 else if(should_lower[0]) 620 lower = 0; 621 else if(should_lower[1]) 622 lower = 1; 623 else 624 /* Neither code path ends in a jump that needs to be 625 * lowered, so the CONTAINED_JUMPS_LOWERED postcondition 626 * is satisfied and we can break out of the loop. 627 */ 628 break; 629 630 if(jump_strengths[lower] == strength_return) { 631 /* To lower a return, we create a return flag (if the 632 * function doesn't have one already) and add instructions 633 * that: 1. store the return value (if this function has a 634 * non-void return) and 2. set the return flag 635 */ 636 insert_lowered_return((ir_return*)jumps[lower]); 637 if(this->loop.loop) { 638 /* If we are in a loop, replace the return instruction 639 * with a break instruction, and then loop so that the 640 * break instruction can be lowered if necessary. 641 */ 642 ir_loop_jump* lowered = 0; 643 lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break); 644 /* Note: we must update block_records and jumps to 645 * reflect the fact that the control path has been 646 * altered from a return to a break. 647 */ 648 block_records[lower].min_strength = strength_break; 649 jumps[lower]->replace_with(lowered); 650 jumps[lower] = lowered; 651 } else { 652 /* If we are not in a loop, we then proceed as we would 653 * for a continue statement (set the execute flag to 654 * false to prevent the rest of the function from 655 * executing). 656 */ 657 goto lower_continue; 658 } 659 this->progress = true; 660 } else if(jump_strengths[lower] == strength_break) { 661 /* To lower a break, we create a break flag (if the loop 662 * doesn't have one already) and add an instruction that 663 * sets it. 664 * 665 * Then we proceed as we would for a continue statement 666 * (set the execute flag to false to prevent the rest of 667 * the loop body from executing). 668 * 669 * The visit() function for the loop will ensure that the 670 * break flag is checked after executing the loop body. 671 */ 672 jumps[lower]->insert_before(create_lowered_break()); 673 goto lower_continue; 674 } else if(jump_strengths[lower] == strength_continue) { 675lower_continue: 676 /* To lower a continue, we create an execute flag (if the 677 * loop doesn't have one already) and replace the continue 678 * with an instruction that clears it. 679 * 680 * Note that this code path gets exercised when lowering 681 * return statements that are not inside a loop, so 682 * this->loop must be initialized even outside of loops. 683 */ 684 ir_variable* execute_flag = this->loop.get_execute_flag(); 685 jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false))); 686 /* Note: we must update block_records and jumps to reflect 687 * the fact that the control path has been altered to an 688 * instruction that clears the execute flag. 689 */ 690 jumps[lower] = 0; 691 block_records[lower].min_strength = strength_always_clears_execute_flag; 692 block_records[lower].may_clear_execute_flag = true; 693 this->progress = true; 694 695 /* Let the loop run again, in case the other branch of the 696 * if needs to be lowered too. 697 */ 698 } 699 } 700 701 /* move out a jump out if possible */ 702 if(pull_out_jumps) { 703 /* If one of the branches ends in a jump, and control cannot 704 * fall out the bottom of the other branch, then we can move 705 * the jump after the if. 706 * 707 * Set move_out to the branch we are moving a jump out of. 708 */ 709 int move_out = -1; 710 if(jumps[0] && block_records[1].min_strength >= strength_continue) 711 move_out = 0; 712 else if(jumps[1] && block_records[0].min_strength >= strength_continue) 713 move_out = 1; 714 715 if(move_out >= 0) 716 { 717 jumps[move_out]->remove(); 718 ir->insert_after(jumps[move_out]); 719 /* Note: we must update block_records and jumps to reflect 720 * the fact that the jump has been moved out of the if. 721 */ 722 jumps[move_out] = 0; 723 block_records[move_out].min_strength = strength_none; 724 this->progress = true; 725 } 726 } 727 728 /* Now satisfy the ANALYSIS postcondition by setting 729 * this->block.min_strength and 730 * this->block.may_clear_execute_flag based on the 731 * characteristics of the two branches. 732 */ 733 if(block_records[0].min_strength < block_records[1].min_strength) 734 this->block.min_strength = block_records[0].min_strength; 735 else 736 this->block.min_strength = block_records[1].min_strength; 737 this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag; 738 739 /* Now we need to clean up the instructions that follow the 740 * if. 741 * 742 * If those instructions are unreachable, then satisfy the 743 * DEAD_CODE_ELIMINATION postcondition by eliminating them. 744 * Otherwise that postcondition is already satisfied. 745 */ 746 if(this->block.min_strength) 747 truncate_after_instruction(ir); 748 else if(this->block.may_clear_execute_flag) 749 { 750 /* If the "if" instruction might clear the execute flag, then 751 * we need to guard any instructions that follow so that they 752 * are only executed if the execute flag is set. 753 * 754 * If one of the branches of the "if" always clears the 755 * execute flag, and the other branch never clears it, then 756 * this is easy: just move all the instructions following the 757 * "if" into the branch that never clears it. 758 */ 759 int move_into = -1; 760 if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag) 761 move_into = 1; 762 else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag) 763 move_into = 0; 764 765 if(move_into >= 0) { 766 assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */ 767 768 exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions; 769 exec_node* next = ir->get_next(); 770 if(!next->is_tail_sentinel()) { 771 move_outer_block_inside(ir, list); 772 773 /* If any instructions moved, then we need to visit 774 * them (since they are now inside the "if"). Since 775 * block_records[move_into] is in its default state 776 * (see assertion above), we can safely replace 777 * block_records[move_into] with the result of this 778 * analysis. 779 */ 780 exec_list list; 781 list.head_sentinel.next = next; 782 block_records[move_into] = visit_block(&list); 783 784 /* 785 * Then we need to re-start our jump lowering, since one 786 * of the instructions we moved might be a jump that 787 * needs to be lowered. 788 */ 789 this->progress = true; 790 goto retry; 791 } 792 } else { 793 /* If we get here, then the simple case didn't apply; we 794 * need to actually guard the instructions that follow. 795 * 796 * To avoid creating unnecessarily-deep nesting, first 797 * look through the instructions that follow and unwrap 798 * any instructions that that are already wrapped in the 799 * appropriate guard. 800 */ 801 ir_instruction* ir_after; 802 for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();) 803 { 804 ir_if* ir_if = ir_after->as_if(); 805 if(ir_if && ir_if->else_instructions.is_empty()) { 806 ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable(); 807 if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) { 808 ir_instruction* ir_next = (ir_instruction*)ir_after->get_next(); 809 ir_after->insert_before(&ir_if->then_instructions); 810 ir_after->remove(); 811 ir_after = ir_next; 812 continue; 813 } 814 } 815 ir_after = (ir_instruction*)ir_after->get_next(); 816 817 /* only set this if we find any unprotected instruction */ 818 this->progress = true; 819 } 820 821 /* Then, wrap all the instructions that follow in a single 822 * guard. 823 */ 824 if(!ir->get_next()->is_tail_sentinel()) { 825 assert(this->loop.execute_flag); 826 ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag)); 827 move_outer_block_inside(ir, &if_execute->then_instructions); 828 ir->insert_after(if_execute); 829 } 830 } 831 } 832 --this->loop.nesting_depth; 833 --this->function.nesting_depth; 834 } 835 836 virtual void visit(ir_loop *ir) 837 { 838 /* Visit the body of the loop, with a fresh data structure in 839 * this->loop so that the analysis we do here won't bleed into 840 * enclosing loops. 841 * 842 * We assume that all code after a loop is reachable from the 843 * loop (see comments on enum jump_strength), so the 844 * DEAD_CODE_ELIMINATION postcondition is automatically 845 * satisfied, as is the block.min_strength portion of the 846 * ANALYSIS postcondition. 847 * 848 * The block.may_clear_execute_flag portion of the ANALYSIS 849 * postcondition is automatically satisfied because execute 850 * flags do not propagate outside of loops. 851 * 852 * The loop.may_set_return_flag portion of the ANALYSIS 853 * postcondition is handled below. 854 */ 855 ++this->function.nesting_depth; 856 loop_record saved_loop = this->loop; 857 this->loop = loop_record(this->function.signature, ir); 858 859 /* Recursively lower nested jumps. This satisfies the 860 * CONTAINED_JUMPS_LOWERED postcondition, except in the case of 861 * an unconditional continue or return at the bottom of the 862 * loop, which are handled below. 863 */ 864 block_record body = visit_block(&ir->body_instructions); 865 866 /* If the loop ends in an unconditional continue, eliminate it 867 * because it is redundant. 868 */ 869 ir_instruction *ir_last 870 = (ir_instruction *) ir->body_instructions.get_tail(); 871 if (get_jump_strength(ir_last) == strength_continue) { 872 ir_last->remove(); 873 } 874 875 /* If the loop ends in an unconditional return, and we are 876 * lowering returns, lower it. 877 */ 878 if (this->function.lower_return) 879 lower_return_unconditionally(ir_last); 880 881 if(body.min_strength >= strength_break) { 882 /* FINISHME: If the min_strength of the loop body is 883 * strength_break or strength_return, that means that it 884 * isn't a loop at all, since control flow always leaves the 885 * body of the loop via break or return. In principle the 886 * loop could be eliminated in this case. This optimization 887 * is not implemented yet. 888 */ 889 } 890 891 if(this->loop.break_flag) { 892 /* We only get here if we are lowering breaks */ 893 assert (lower_break); 894 895 /* If a break flag was generated while visiting the body of 896 * the loop, then at least one break was lowered, so we need 897 * to generate an if statement at the end of the loop that 898 * does a "break" if the break flag is set. The break we 899 * generate won't violate the CONTAINED_JUMPS_LOWERED 900 * postcondition, because should_lower_jump() always returns 901 * false for a break that happens at the end of a loop. 902 * 903 * However, if the loop already ends in a conditional or 904 * unconditional break, then we need to lower that break, 905 * because it won't be at the end of the loop anymore. 906 */ 907 lower_final_breaks(&ir->body_instructions); 908 909 ir_if* break_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.break_flag)); 910 break_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break)); 911 ir->body_instructions.push_tail(break_if); 912 } 913 914 /* If the body of the loop may set the return flag, then at 915 * least one return was lowered to a break, so we need to ensure 916 * that the return flag is checked after the body of the loop is 917 * executed. 918 */ 919 if(this->loop.may_set_return_flag) { 920 assert(this->function.return_flag); 921 /* Generate the if statement to check the return flag */ 922 ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag)); 923 /* Note: we also need to propagate the knowledge that the 924 * return flag may get set to the outer context. This 925 * satisfies the loop.may_set_return_flag part of the 926 * ANALYSIS postcondition. 927 */ 928 saved_loop.may_set_return_flag = true; 929 if(saved_loop.loop) 930 /* If this loop is nested inside another one, then the if 931 * statement that we generated should break out of that 932 * loop if the return flag is set. Caller will lower that 933 * break statement if necessary. 934 */ 935 return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break)); 936 else { 937 /* Otherwise, ensure that the instructions that follow are only 938 * executed if the return flag is clear. We can do that by moving 939 * those instructions into the else clause of the generated if 940 * statement. 941 */ 942 move_outer_block_inside(ir, &return_if->else_instructions); 943 944 /* In case the loop is embedded inside an if add a new return to 945 * the return flag then branch and let a future pass tidy it up. 946 */ 947 if (this->function.signature->return_type->is_void()) 948 return_if->then_instructions.push_tail(new(ir) ir_return(NULL)); 949 else { 950 assert(this->function.return_value); 951 ir_variable* return_value = this->function.return_value; 952 return_if->then_instructions.push_tail( 953 new(ir) ir_return(new(ir) ir_dereference_variable(return_value))); 954 } 955 } 956 957 ir->insert_after(return_if); 958 } 959 960 this->loop = saved_loop; 961 --this->function.nesting_depth; 962 } 963 964 virtual void visit(ir_function_signature *ir) 965 { 966 /* these are not strictly necessary */ 967 assert(!this->function.signature); 968 assert(!this->loop.loop); 969 970 bool lower_return; 971 if (strcmp(ir->function_name(), "main") == 0) 972 lower_return = lower_main_return; 973 else 974 lower_return = lower_sub_return; 975 976 function_record saved_function = this->function; 977 loop_record saved_loop = this->loop; 978 this->function = function_record(ir, lower_return); 979 this->loop = loop_record(ir); 980 981 assert(!this->loop.loop); 982 983 /* Visit the body of the function to lower any jumps that occur 984 * in it, except possibly an unconditional return statement at 985 * the end of it. 986 */ 987 visit_block(&ir->body); 988 989 /* If the body ended in an unconditional return of non-void, 990 * then we don't need to lower it because it's the one canonical 991 * return. 992 * 993 * If the body ended in a return of void, eliminate it because 994 * it is redundant. 995 */ 996 if (ir->return_type->is_void() && 997 get_jump_strength((ir_instruction *) ir->body.get_tail())) { 998 ir_jump *jump = (ir_jump *) ir->body.get_tail(); 999 assert (jump->ir_type == ir_type_return); 1000 jump->remove(); 1001 } 1002 1003 if(this->function.return_value) 1004 ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value))); 1005 1006 this->loop = saved_loop; 1007 this->function = saved_function; 1008 } 1009 1010 virtual void visit(class ir_function * ir) 1011 { 1012 visit_block(&ir->signatures); 1013 } 1014}; 1015 1016} /* anonymous namespace */ 1017 1018bool 1019do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue, bool lower_break) 1020{ 1021 ir_lower_jumps_visitor v; 1022 v.pull_out_jumps = pull_out_jumps; 1023 v.lower_continue = lower_continue; 1024 v.lower_break = lower_break; 1025 v.lower_sub_return = lower_sub_return; 1026 v.lower_main_return = lower_main_return; 1027 1028 bool progress_ever = false; 1029 do { 1030 v.progress = false; 1031 visit_exec_list(instructions, &v); 1032 progress_ever = v.progress || progress_ever; 1033 } while (v.progress); 1034 1035 return progress_ever; 1036} 1037