1/*
2 * Copyright (C) 2017-2018 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 *    Rob Clark <robclark@freedesktop.org>
25 */
26
27#define GPU 600
28
29#include "ir3_context.h"
30#include "ir3_image.h"
31
32/*
33 * Handlers for instructions changed/added in a6xx:
34 *
35 * Starting with a6xx, isam and stbi is used for SSBOs as well; stbi and the
36 * atomic instructions (used for both SSBO and image) use a new instruction
37 * encoding compared to a4xx/a5xx.
38 */
39
40/* src[] = { buffer_index, offset }. No const_index */
41static void
42emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
43                         struct ir3_instruction **dst)
44{
45   struct ir3_block *b = ctx->block;
46   struct ir3_instruction *offset;
47   struct ir3_instruction *ldib;
48
49   offset = ir3_get_src(ctx, &intr->src[2])[0];
50
51   ldib = ir3_LDIB(b, ir3_ssbo_to_ibo(ctx, intr->src[0]), 0, offset, 0);
52   ldib->dsts[0]->wrmask = MASK(intr->num_components);
53   ldib->cat6.iim_val = intr->num_components;
54   ldib->cat6.d = 1;
55   ldib->cat6.type = intr->dest.ssa.bit_size == 16 ? TYPE_U16 : TYPE_U32;
56   ldib->barrier_class = IR3_BARRIER_BUFFER_R;
57   ldib->barrier_conflict = IR3_BARRIER_BUFFER_W;
58   ir3_handle_bindless_cat6(ldib, intr->src[0]);
59   ir3_handle_nonuniform(ldib, intr);
60
61   ir3_split_dest(b, dst, ldib, 0, intr->num_components);
62}
63
64/* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
65static void
66emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
67{
68   struct ir3_block *b = ctx->block;
69   struct ir3_instruction *stib, *val, *offset;
70   unsigned wrmask = nir_intrinsic_write_mask(intr);
71   unsigned ncomp = ffs(~wrmask) - 1;
72
73   assert(wrmask == BITFIELD_MASK(intr->num_components));
74
75   /* src0 is offset, src1 is value:
76    */
77   val = ir3_create_collect(b, ir3_get_src(ctx, &intr->src[0]), ncomp);
78   offset = ir3_get_src(ctx, &intr->src[3])[0];
79
80   stib = ir3_STIB(b, ir3_ssbo_to_ibo(ctx, intr->src[1]), 0, offset, 0, val, 0);
81   stib->cat6.iim_val = ncomp;
82   stib->cat6.d = 1;
83   stib->cat6.type = intr->src[0].ssa->bit_size == 16 ? TYPE_U16 : TYPE_U32;
84   stib->barrier_class = IR3_BARRIER_BUFFER_W;
85   stib->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
86   ir3_handle_bindless_cat6(stib, intr->src[1]);
87   ir3_handle_nonuniform(stib, intr);
88
89   array_insert(b, b->keeps, stib);
90}
91
92/*
93 * SSBO atomic intrinsics
94 *
95 * All of the SSBO atomic memory operations read a value from memory,
96 * compute a new value using one of the operations below, write the new
97 * value to memory, and return the original value read.
98 *
99 * All operations take 3 sources except CompSwap that takes 4. These
100 * sources represent:
101 *
102 * 0: The SSBO buffer index.
103 * 1: The offset into the SSBO buffer of the variable that the atomic
104 *    operation will operate on.
105 * 2: The data parameter to the atomic function (i.e. the value to add
106 *    in ssbo_atomic_add, etc).
107 * 3: For CompSwap only: the second data parameter.
108 */
109static struct ir3_instruction *
110emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
111{
112   struct ir3_block *b = ctx->block;
113   struct ir3_instruction *atomic, *ibo, *src0, *src1, *data, *dummy;
114   type_t type = TYPE_U32;
115
116   ibo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
117
118   data = ir3_get_src(ctx, &intr->src[2])[0];
119
120   /* So this gets a bit creative:
121    *
122    *    src0    - vecN offset/coords
123    *    src1.x  - is actually destination register
124    *    src1.y  - is 'data' except for cmpxchg where src2.y is 'compare'
125    *    src1.z  - is 'data' for cmpxchg
126    *
127    * The combining src and dest kinda doesn't work out so well with how
128    * scheduling and RA work. So we create a dummy src2 which is tied to the
129    * destination in RA (i.e. must be allocated to the same vec2/vec3
130    * register) and then immediately extract the first component.
131    *
132    * Note that nir already multiplies the offset by four
133    */
134   dummy = create_immed(b, 0);
135
136   if (intr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap_ir3) {
137      src0 = ir3_get_src(ctx, &intr->src[4])[0];
138      struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[3])[0];
139      src1 = ir3_collect(b, dummy, compare, data);
140   } else {
141      src0 = ir3_get_src(ctx, &intr->src[3])[0];
142      src1 = ir3_collect(b, dummy, data);
143   }
144
145   switch (intr->intrinsic) {
146   case nir_intrinsic_ssbo_atomic_add_ir3:
147      atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0);
148      break;
149   case nir_intrinsic_ssbo_atomic_imin_ir3:
150      atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
151      type = TYPE_S32;
152      break;
153   case nir_intrinsic_ssbo_atomic_umin_ir3:
154      atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
155      break;
156   case nir_intrinsic_ssbo_atomic_imax_ir3:
157      atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
158      type = TYPE_S32;
159      break;
160   case nir_intrinsic_ssbo_atomic_umax_ir3:
161      atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
162      break;
163   case nir_intrinsic_ssbo_atomic_and_ir3:
164      atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0);
165      break;
166   case nir_intrinsic_ssbo_atomic_or_ir3:
167      atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0);
168      break;
169   case nir_intrinsic_ssbo_atomic_xor_ir3:
170      atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0);
171      break;
172   case nir_intrinsic_ssbo_atomic_exchange_ir3:
173      atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0);
174      break;
175   case nir_intrinsic_ssbo_atomic_comp_swap_ir3:
176      atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0);
177      break;
178   default:
179      unreachable("boo");
180   }
181
182   atomic->cat6.iim_val = 1;
183   atomic->cat6.d = 1;
184   atomic->cat6.type = type;
185   atomic->barrier_class = IR3_BARRIER_BUFFER_W;
186   atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
187   ir3_handle_bindless_cat6(atomic, intr->src[0]);
188
189   /* even if nothing consume the result, we can't DCE the instruction: */
190   array_insert(b, b->keeps, atomic);
191
192   atomic->dsts[0]->wrmask = src1->dsts[0]->wrmask;
193   ir3_reg_tie(atomic->dsts[0], atomic->srcs[2]);
194   struct ir3_instruction *split;
195   ir3_split_dest(b, &split, atomic, 0, 1);
196   return split;
197}
198
199/* src[] = { deref, coord, sample_index }. const_index[] = {} */
200static void
201emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
202                          struct ir3_instruction **dst)
203{
204   struct ir3_block *b = ctx->block;
205   struct ir3_instruction *ldib;
206   struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
207   unsigned ncoords = ir3_get_image_coords(intr, NULL);
208
209   ldib = ir3_LDIB(b, ir3_image_to_ibo(ctx, intr->src[0]), 0,
210                   ir3_create_collect(b, coords, ncoords), 0);
211   ldib->dsts[0]->wrmask = MASK(intr->num_components);
212   ldib->cat6.iim_val = intr->num_components;
213   ldib->cat6.d = ncoords;
214   ldib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
215   ldib->cat6.typed = true;
216   ldib->barrier_class = IR3_BARRIER_IMAGE_R;
217   ldib->barrier_conflict = IR3_BARRIER_IMAGE_W;
218   ir3_handle_bindless_cat6(ldib, intr->src[0]);
219   ir3_handle_nonuniform(ldib, intr);
220
221   ir3_split_dest(b, dst, ldib, 0, intr->num_components);
222}
223
224/* src[] = { deref, coord, sample_index, value }. const_index[] = {} */
225static void
226emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
227{
228   struct ir3_block *b = ctx->block;
229   struct ir3_instruction *stib;
230   struct ir3_instruction *const *value = ir3_get_src(ctx, &intr->src[3]);
231   struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
232   unsigned ncoords = ir3_get_image_coords(intr, NULL);
233   enum pipe_format format = nir_intrinsic_format(intr);
234   unsigned ncomp = ir3_get_num_components_for_image_format(format);
235
236   /* src0 is offset, src1 is value:
237    */
238   stib = ir3_STIB(b, ir3_image_to_ibo(ctx, intr->src[0]), 0,
239                   ir3_create_collect(b, coords, ncoords), 0,
240                   ir3_create_collect(b, value, ncomp), 0);
241   stib->cat6.iim_val = ncomp;
242   stib->cat6.d = ncoords;
243   stib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
244   stib->cat6.typed = true;
245   stib->barrier_class = IR3_BARRIER_IMAGE_W;
246   stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
247   ir3_handle_bindless_cat6(stib, intr->src[0]);
248   ir3_handle_nonuniform(stib, intr);
249
250   array_insert(b, b->keeps, stib);
251}
252
253/* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */
254static struct ir3_instruction *
255emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
256{
257   struct ir3_block *b = ctx->block;
258   struct ir3_instruction *atomic, *ibo, *src0, *src1, *dummy;
259   struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
260   struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[3])[0];
261   unsigned ncoords = ir3_get_image_coords(intr, NULL);
262
263   ibo = ir3_image_to_ibo(ctx, intr->src[0]);
264
265   /* So this gets a bit creative:
266    *
267    *    src0    - vecN offset/coords
268    *    src1.x  - is actually destination register
269    *    src1.y  - is 'value' except for cmpxchg where src2.y is 'compare'
270    *    src1.z  - is 'value' for cmpxchg
271    *
272    * The combining src and dest kinda doesn't work out so well with how
273    * scheduling and RA work. So we create a dummy src2 which is tied to the
274    * destination in RA (i.e. must be allocated to the same vec2/vec3
275    * register) and then immediately extract the first component.
276    */
277   dummy = create_immed(b, 0);
278   src0 = ir3_create_collect(b, coords, ncoords);
279
280   if (intr->intrinsic == nir_intrinsic_image_atomic_comp_swap ||
281       intr->intrinsic == nir_intrinsic_bindless_image_atomic_comp_swap) {
282      struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[4])[0];
283      src1 = ir3_collect(b, dummy, compare, value);
284   } else {
285      src1 = ir3_collect(b, dummy, value);
286   }
287
288   switch (intr->intrinsic) {
289   case nir_intrinsic_image_atomic_add:
290   case nir_intrinsic_bindless_image_atomic_add:
291      atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0);
292      break;
293   case nir_intrinsic_image_atomic_imin:
294   case nir_intrinsic_image_atomic_umin:
295   case nir_intrinsic_bindless_image_atomic_imin:
296   case nir_intrinsic_bindless_image_atomic_umin:
297      atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
298      break;
299   case nir_intrinsic_image_atomic_imax:
300   case nir_intrinsic_image_atomic_umax:
301   case nir_intrinsic_bindless_image_atomic_imax:
302   case nir_intrinsic_bindless_image_atomic_umax:
303      atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
304      break;
305   case nir_intrinsic_image_atomic_and:
306   case nir_intrinsic_bindless_image_atomic_and:
307      atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0);
308      break;
309   case nir_intrinsic_image_atomic_or:
310   case nir_intrinsic_bindless_image_atomic_or:
311      atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0);
312      break;
313   case nir_intrinsic_image_atomic_xor:
314   case nir_intrinsic_bindless_image_atomic_xor:
315      atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0);
316      break;
317   case nir_intrinsic_image_atomic_exchange:
318   case nir_intrinsic_bindless_image_atomic_exchange:
319      atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0);
320      break;
321   case nir_intrinsic_image_atomic_comp_swap:
322   case nir_intrinsic_bindless_image_atomic_comp_swap:
323      atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0);
324      break;
325   default:
326      unreachable("boo");
327   }
328
329   atomic->cat6.iim_val = 1;
330   atomic->cat6.d = ncoords;
331   atomic->cat6.type = ir3_get_type_for_image_intrinsic(intr);
332   atomic->cat6.typed = true;
333   atomic->barrier_class = IR3_BARRIER_IMAGE_W;
334   atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
335   ir3_handle_bindless_cat6(atomic, intr->src[0]);
336
337   /* even if nothing consume the result, we can't DCE the instruction: */
338   array_insert(b, b->keeps, atomic);
339
340   atomic->dsts[0]->wrmask = src1->dsts[0]->wrmask;
341   ir3_reg_tie(atomic->dsts[0], atomic->srcs[2]);
342   struct ir3_instruction *split;
343   ir3_split_dest(b, &split, atomic, 0, 1);
344   return split;
345}
346
347static void
348emit_intrinsic_image_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
349                          struct ir3_instruction **dst)
350{
351   struct ir3_block *b = ctx->block;
352   struct ir3_instruction *ibo = ir3_image_to_ibo(ctx, intr->src[0]);
353   struct ir3_instruction *resinfo = ir3_RESINFO(b, ibo, 0);
354   resinfo->cat6.iim_val = 1;
355   resinfo->cat6.d = intr->num_components;
356   resinfo->cat6.type = TYPE_U32;
357   resinfo->cat6.typed = false;
358   /* resinfo has no writemask and always writes out 3 components: */
359   compile_assert(ctx, intr->num_components <= 3);
360   resinfo->dsts[0]->wrmask = MASK(3);
361   ir3_handle_bindless_cat6(resinfo, intr->src[0]);
362   ir3_handle_nonuniform(resinfo, intr);
363
364   ir3_split_dest(b, dst, resinfo, 0, intr->num_components);
365}
366
367static void
368emit_intrinsic_load_global_ir3(struct ir3_context *ctx,
369                               nir_intrinsic_instr *intr,
370                               struct ir3_instruction **dst)
371{
372   struct ir3_block *b = ctx->block;
373   unsigned dest_components = nir_intrinsic_dest_components(intr);
374   struct ir3_instruction *addr, *offset;
375
376   addr = ir3_collect(b, ir3_get_src(ctx, &intr->src[0])[0],
377                      ir3_get_src(ctx, &intr->src[0])[1]);
378
379   offset = ir3_get_src(ctx, &intr->src[1])[0];
380
381   struct ir3_instruction *load =
382      ir3_LDG_A(b, addr, 0, offset, 0, create_immed(b, 0), 0,
383                create_immed(b, 0), 0, create_immed(b, dest_components), 0);
384   load->cat6.type = TYPE_U32;
385   load->dsts[0]->wrmask = MASK(dest_components);
386
387   load->barrier_class = IR3_BARRIER_BUFFER_R;
388   load->barrier_conflict = IR3_BARRIER_BUFFER_W;
389
390   ir3_split_dest(b, dst, load, 0, dest_components);
391}
392
393static void
394emit_intrinsic_store_global_ir3(struct ir3_context *ctx,
395                                nir_intrinsic_instr *intr)
396{
397   struct ir3_block *b = ctx->block;
398   struct ir3_instruction *value, *addr, *offset;
399   unsigned ncomp = nir_intrinsic_src_components(intr, 0);
400
401   addr = ir3_collect(b, ir3_get_src(ctx, &intr->src[1])[0],
402                      ir3_get_src(ctx, &intr->src[1])[1]);
403
404   offset = ir3_get_src(ctx, &intr->src[2])[0];
405
406   value = ir3_create_collect(b, ir3_get_src(ctx, &intr->src[0]), ncomp);
407
408   struct ir3_instruction *stg =
409      ir3_STG_A(b, addr, 0, offset, 0, create_immed(b, 0), 0,
410                create_immed(b, 0), 0, value, 0, create_immed(b, ncomp), 0);
411   stg->cat6.type = TYPE_U32;
412   stg->cat6.iim_val = 1;
413
414   array_insert(b, b->keeps, stg);
415
416   stg->barrier_class = IR3_BARRIER_BUFFER_W;
417   stg->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
418}
419
420const struct ir3_context_funcs ir3_a6xx_funcs = {
421   .emit_intrinsic_load_ssbo = emit_intrinsic_load_ssbo,
422   .emit_intrinsic_store_ssbo = emit_intrinsic_store_ssbo,
423   .emit_intrinsic_atomic_ssbo = emit_intrinsic_atomic_ssbo,
424   .emit_intrinsic_load_image = emit_intrinsic_load_image,
425   .emit_intrinsic_store_image = emit_intrinsic_store_image,
426   .emit_intrinsic_atomic_image = emit_intrinsic_atomic_image,
427   .emit_intrinsic_image_size = emit_intrinsic_image_size,
428   .emit_intrinsic_load_global_ir3 = emit_intrinsic_load_global_ir3,
429   .emit_intrinsic_store_global_ir3 = emit_intrinsic_store_global_ir3,
430};
431