1/*
2 * Copyright (C) 2021 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24#include "ir3_compiler.h"
25#include "ir3_ra.h"
26#include "ralloc.h"
27
28/* This pass "merges" compatible phi-web SSA values. First, we insert a bunch
29 * of parallelcopy's to trivially turn the program into CSSA form. Then we
30 * try to "merge" SSA def's into "merge sets" which could be allocated to a
31 * single register in order to eliminate copies. First we merge phi nodes,
32 * which should always succeed because of the parallelcopy's we inserted, and
33 * then we try to coalesce the copies we introduced.
34 *
35 * The merged registers are used for three purposes:
36 *
37 * 1. We always use the same pvtmem slot for spilling all SSA defs in each
38 * merge set. This prevents us from having to insert memory-to-memory copies
39 * in the spiller and makes sure we don't insert unecessary copies.
40 * 2. When two values are live at the same time, part of the same merge
41 * set, and they overlap each other in the merge set, they always occupy
42 * overlapping physical registers in RA. This reduces register pressure and
43 * copies in several important scenarios:
44 *	- When sources of a collect are used later by something else, we don't
45 *	have to introduce copies.
46 *	- We can handle sequences of extracts that "explode" a vector into its
47 *	components without any additional copying.
48 * 3. We use the merge sets for affinities in register allocation: That is, we
49 * try to allocate all the definitions in the same merge set to the
50 * same/compatible registers. This helps us e.g. allocate sources of a collect
51 * to contiguous registers without too much special code in RA.
52 *
53 * In a "normal" register allocator, or when spilling, we'd just merge
54 * registers in the same merge set to the same register, but with SSA-based
55 * register allocation we may have to split the live interval.
56 *
57 * The implementation is based on "Revisiting Out-of-SSA Translation for
58 * Correctness, CodeQuality, and Efficiency," and is broadly similar to the
59 * implementation in nir_from_ssa, with the twist that we also try to coalesce
60 * META_SPLIT and META_COLLECT. This makes this pass more complicated but
61 * prevents us from needing to handle these specially in RA and the spiller,
62 * which are already complicated enough. This also forces us to implement that
63 * value-comparison optimization they explain, as without it we wouldn't be
64 * able to coalesce META_SPLIT even in the simplest of cases.
65 */
66
67/* In order to dynamically reconstruct the dominance forest, we need the
68 * instructions ordered by a preorder traversal of the dominance tree:
69 */
70
71static unsigned
72index_instrs(struct ir3_block *block, unsigned index)
73{
74   foreach_instr (instr, &block->instr_list)
75      instr->ip = index++;
76
77   for (unsigned i = 0; i < block->dom_children_count; i++)
78      index = index_instrs(block->dom_children[i], index);
79
80   return index;
81}
82
83/* Definitions within a merge set are ordered by instr->ip as set above: */
84
85static bool
86def_after(struct ir3_register *a, struct ir3_register *b)
87{
88   return a->instr->ip > b->instr->ip;
89}
90
91static bool
92def_dominates(struct ir3_register *a, struct ir3_register *b)
93{
94   if (def_after(a, b)) {
95      return false;
96   } else if (a->instr->block == b->instr->block) {
97      return def_after(b, a);
98   } else {
99      return ir3_block_dominates(a->instr->block, b->instr->block);
100   }
101}
102
103/* This represents a region inside a register. The offset is relative to the
104 * start of the register, and offset + size <= size(reg).
105 */
106struct def_value {
107   struct ir3_register *reg;
108   unsigned offset, size;
109};
110
111/* Chase any copies to get the source of a region inside a register. This is
112 * Value(a) in the paper.
113 */
114static struct def_value
115chase_copies(struct def_value value)
116{
117   while (true) {
118      struct ir3_instruction *instr = value.reg->instr;
119      if (instr->opc == OPC_META_SPLIT) {
120         value.offset += instr->split.off * reg_elem_size(value.reg);
121         value.reg = instr->srcs[0]->def;
122      } else if (instr->opc == OPC_META_COLLECT) {
123         if (value.offset % reg_elem_size(value.reg) != 0 ||
124             value.size > reg_elem_size(value.reg) ||
125             value.offset + value.size > reg_size(value.reg))
126            break;
127         struct ir3_register *src =
128            instr->srcs[value.offset / reg_elem_size(value.reg)];
129         if (!src->def)
130            break;
131         value.offset = 0;
132         value.reg = src->def;
133      } else {
134         /* TODO: parallelcopy */
135         break;
136      }
137   }
138
139   return value;
140}
141
142/* This represents an entry in the merge set, and consists of a register +
143 * offset from the merge set base.
144 */
145struct merge_def {
146   struct ir3_register *reg;
147   unsigned offset;
148};
149
150static bool
151can_skip_interference(const struct merge_def *a, const struct merge_def *b)
152{
153   unsigned a_start = a->offset;
154   unsigned b_start = b->offset;
155   unsigned a_end = a_start + reg_size(a->reg);
156   unsigned b_end = b_start + reg_size(b->reg);
157
158   /* Registers that don't overlap never interfere */
159   if (a_end <= b_start || b_end <= a_start)
160      return true;
161
162   /* Disallow skipping interference unless one definition contains the
163    * other. This restriction is important for register allocation, because
164    * it means that at any given point in the program, the live values in a
165    * given merge set will form a tree. If they didn't, then one live value
166    * would partially overlap another, and they would have overlapping live
167    * ranges because they're live at the same point. This simplifies register
168    * allocation and spilling.
169    */
170   if (!((a_start <= b_start && a_end >= b_end) ||
171         (b_start <= a_start && b_end >= a_end)))
172      return false;
173
174   /* For each register, chase the intersection of a and b to find the
175    * ultimate source.
176    */
177   unsigned start = MAX2(a_start, b_start);
178   unsigned end = MIN2(a_end, b_end);
179   struct def_value a_value = chase_copies((struct def_value){
180      .reg = a->reg,
181      .offset = start - a_start,
182      .size = end - start,
183   });
184   struct def_value b_value = chase_copies((struct def_value){
185      .reg = b->reg,
186      .offset = start - b_start,
187      .size = end - start,
188   });
189   return a_value.reg == b_value.reg && a_value.offset == b_value.offset;
190}
191
192static struct ir3_merge_set *
193get_merge_set(struct ir3_register *def)
194{
195   if (def->merge_set)
196      return def->merge_set;
197
198   struct ir3_merge_set *set = ralloc(def, struct ir3_merge_set);
199   set->preferred_reg = ~0;
200   set->interval_start = ~0;
201   set->spill_slot = ~0;
202   set->size = reg_size(def);
203   set->alignment = (def->flags & IR3_REG_HALF) ? 1 : 2;
204   set->regs_count = 1;
205   set->regs = ralloc(set, struct ir3_register *);
206   set->regs[0] = def;
207
208   return set;
209}
210
211/* Merges b into a */
212static struct ir3_merge_set *
213merge_merge_sets(struct ir3_merge_set *a, struct ir3_merge_set *b, int b_offset)
214{
215   if (b_offset < 0)
216      return merge_merge_sets(b, a, -b_offset);
217
218   struct ir3_register **new_regs =
219      rzalloc_array(a, struct ir3_register *, a->regs_count + b->regs_count);
220
221   unsigned a_index = 0, b_index = 0, new_index = 0;
222   for (; a_index < a->regs_count || b_index < b->regs_count; new_index++) {
223      if (b_index < b->regs_count &&
224          (a_index == a->regs_count ||
225           def_after(a->regs[a_index], b->regs[b_index]))) {
226         new_regs[new_index] = b->regs[b_index++];
227         new_regs[new_index]->merge_set_offset += b_offset;
228      } else {
229         new_regs[new_index] = a->regs[a_index++];
230      }
231      new_regs[new_index]->merge_set = a;
232   }
233
234   assert(new_index == a->regs_count + b->regs_count);
235
236   /* Technically this should be the lcm, but because alignment is only 1 or
237    * 2 so far this should be ok.
238    */
239   a->alignment = MAX2(a->alignment, b->alignment);
240   a->regs_count += b->regs_count;
241   ralloc_free(a->regs);
242   a->regs = new_regs;
243   a->size = MAX2(a->size, b->size + b_offset);
244
245   return a;
246}
247
248static bool
249merge_sets_interfere(struct ir3_liveness *live, struct ir3_merge_set *a,
250                     struct ir3_merge_set *b, int b_offset)
251{
252   if (b_offset < 0)
253      return merge_sets_interfere(live, b, a, -b_offset);
254
255   struct merge_def dom[a->regs_count + b->regs_count];
256   unsigned a_index = 0, b_index = 0;
257   int dom_index = -1;
258
259   /* Reject trying to merge the sets if the alignment doesn't work out */
260   if (b_offset % a->alignment != 0)
261      return true;
262
263   while (a_index < a->regs_count || b_index < b->regs_count) {
264      struct merge_def current;
265      if (a_index == a->regs_count) {
266         current.reg = b->regs[b_index];
267         current.offset = current.reg->merge_set_offset + b_offset;
268         b_index++;
269      } else if (b_index == b->regs_count) {
270         current.reg = a->regs[a_index];
271         current.offset = current.reg->merge_set_offset;
272         a_index++;
273      } else {
274         if (def_after(b->regs[b_index], a->regs[a_index])) {
275            current.reg = a->regs[a_index];
276            current.offset = current.reg->merge_set_offset;
277            a_index++;
278         } else {
279            current.reg = b->regs[b_index];
280            current.offset = current.reg->merge_set_offset + b_offset;
281            b_index++;
282         }
283      }
284
285      while (dom_index >= 0 &&
286             !def_dominates(dom[dom_index].reg, current.reg)) {
287         dom_index--;
288      }
289
290      /* TODO: in the original paper, just dom[dom_index] needs to be
291       * checked for interference. We implement the value-chasing extension
292       * as well as support for sub-registers, which complicates this
293       * significantly because it's no longer the case that if a dominates b
294       * dominates c and a and b don't interfere then we only need to check
295       * interference between b and c to be sure a and c don't interfere --
296       * this means we may have to check for interference against values
297       * higher in the stack then dom[dom_index]. In the paper there's a
298       * description of a way to do less interference tests with the
299       * value-chasing extension, but we'd have to come up with something
300       * ourselves for handling the similar problems that come up with
301       * allowing values to contain subregisters. For now we just test
302       * everything in the stack.
303       */
304      for (int i = 0; i <= dom_index; i++) {
305         if (can_skip_interference(&current, &dom[i]))
306            continue;
307
308         /* Ok, now we actually have to check interference. Since we know
309          * that dom[i] dominates current, this boils down to checking
310          * whether dom[i] is live after current.
311          */
312         if (ir3_def_live_after(live, dom[i].reg, current.reg->instr))
313            return true;
314      }
315
316      dom[++dom_index] = current;
317   }
318
319   return false;
320}
321
322static void
323try_merge_defs(struct ir3_liveness *live, struct ir3_register *a,
324               struct ir3_register *b, unsigned b_offset)
325{
326   struct ir3_merge_set *a_set = get_merge_set(a);
327   struct ir3_merge_set *b_set = get_merge_set(b);
328
329   if (a_set == b_set) {
330      /* Note: Even in this case we may not always successfully be able to
331       * coalesce this copy, if the offsets don't line up. But in any
332       * case, we can't do anything.
333       */
334      return;
335   }
336
337   int b_set_offset = a->merge_set_offset + b_offset - b->merge_set_offset;
338
339   if (!merge_sets_interfere(live, a_set, b_set, b_set_offset))
340      merge_merge_sets(a_set, b_set, b_set_offset);
341}
342
343void
344ir3_force_merge(struct ir3_register *a, struct ir3_register *b, int b_offset)
345{
346   struct ir3_merge_set *a_set = get_merge_set(a);
347   struct ir3_merge_set *b_set = get_merge_set(b);
348
349   if (a_set == b_set)
350      return;
351
352   int b_set_offset = a->merge_set_offset + b_offset - b->merge_set_offset;
353   merge_merge_sets(a_set, b_set, b_set_offset);
354}
355
356static void
357coalesce_phi(struct ir3_liveness *live, struct ir3_instruction *phi)
358{
359   for (unsigned i = 0; i < phi->srcs_count; i++) {
360      if (phi->srcs[i]->def)
361         try_merge_defs(live, phi->dsts[0], phi->srcs[i]->def, 0);
362   }
363}
364
365static void
366aggressive_coalesce_parallel_copy(struct ir3_liveness *live,
367                                  struct ir3_instruction *pcopy)
368{
369   for (unsigned i = 0; i < pcopy->dsts_count; i++) {
370      if (!(pcopy->srcs[i]->flags & IR3_REG_SSA))
371         continue;
372      try_merge_defs(live, pcopy->dsts[i], pcopy->srcs[i]->def, 0);
373   }
374}
375
376static void
377aggressive_coalesce_split(struct ir3_liveness *live,
378                          struct ir3_instruction *split)
379{
380   try_merge_defs(live, split->srcs[0]->def, split->dsts[0],
381                  split->split.off * reg_elem_size(split->dsts[0]));
382}
383
384static void
385aggressive_coalesce_collect(struct ir3_liveness *live,
386                            struct ir3_instruction *collect)
387{
388   for (unsigned i = 0, offset = 0; i < collect->srcs_count;
389        offset += reg_elem_size(collect->srcs[i]), i++) {
390      if (!(collect->srcs[i]->flags & IR3_REG_SSA))
391         continue;
392      try_merge_defs(live, collect->dsts[0], collect->srcs[i]->def, offset);
393   }
394}
395
396static void
397create_parallel_copy(struct ir3_block *block)
398{
399   for (unsigned i = 0; i < 2; i++) {
400      if (!block->successors[i])
401         continue;
402
403      struct ir3_block *succ = block->successors[i];
404
405      unsigned pred_idx = ir3_block_get_pred_index(succ, block);
406
407      unsigned phi_count = 0;
408      foreach_instr (phi, &succ->instr_list) {
409         if (phi->opc != OPC_META_PHI)
410            break;
411
412         /* Avoid undef */
413         if ((phi->srcs[pred_idx]->flags & IR3_REG_SSA) &&
414             !phi->srcs[pred_idx]->def)
415            continue;
416
417         /* We don't support critical edges. If we were to support them,
418          * we'd need to insert parallel copies after the phi node to solve
419          * the lost-copy problem.
420          */
421         assert(i == 0 && !block->successors[1]);
422         phi_count++;
423      }
424
425      if (phi_count == 0)
426         continue;
427
428      struct ir3_register *src[phi_count];
429      unsigned j = 0;
430      foreach_instr (phi, &succ->instr_list) {
431         if (phi->opc != OPC_META_PHI)
432            break;
433         if ((phi->srcs[pred_idx]->flags & IR3_REG_SSA) &&
434             !phi->srcs[pred_idx]->def)
435            continue;
436         src[j++] = phi->srcs[pred_idx];
437      }
438      assert(j == phi_count);
439
440      struct ir3_instruction *pcopy =
441         ir3_instr_create(block, OPC_META_PARALLEL_COPY, phi_count, phi_count);
442
443      for (j = 0; j < phi_count; j++) {
444         struct ir3_register *reg = __ssa_dst(pcopy);
445         reg->flags |= src[j]->flags & (IR3_REG_HALF | IR3_REG_ARRAY);
446         reg->size = src[j]->size;
447         reg->wrmask = src[j]->wrmask;
448      }
449
450      for (j = 0; j < phi_count; j++) {
451         pcopy->srcs[pcopy->srcs_count++] =
452            ir3_reg_clone(block->shader, src[j]);
453      }
454
455      j = 0;
456      foreach_instr (phi, &succ->instr_list) {
457         if (phi->opc != OPC_META_PHI)
458            break;
459         if ((phi->srcs[pred_idx]->flags & IR3_REG_SSA) &&
460             !phi->srcs[pred_idx]->def)
461            continue;
462         phi->srcs[pred_idx]->def = pcopy->dsts[j];
463         phi->srcs[pred_idx]->flags = pcopy->dsts[j]->flags;
464         j++;
465      }
466      assert(j == phi_count);
467   }
468}
469
470void
471ir3_create_parallel_copies(struct ir3 *ir)
472{
473   foreach_block (block, &ir->block_list) {
474      create_parallel_copy(block);
475   }
476}
477
478static void
479index_merge_sets(struct ir3_liveness *live, struct ir3 *ir)
480{
481   unsigned offset = 0;
482   foreach_block (block, &ir->block_list) {
483      foreach_instr (instr, &block->instr_list) {
484         for (unsigned i = 0; i < instr->dsts_count; i++) {
485            struct ir3_register *dst = instr->dsts[i];
486
487            unsigned dst_offset;
488            struct ir3_merge_set *merge_set = dst->merge_set;
489            unsigned size = reg_size(dst);
490            if (merge_set) {
491               if (merge_set->interval_start == ~0) {
492                  merge_set->interval_start = offset;
493                  offset += merge_set->size;
494               }
495               dst_offset = merge_set->interval_start + dst->merge_set_offset;
496            } else {
497               dst_offset = offset;
498               offset += size;
499            }
500
501            dst->interval_start = dst_offset;
502            dst->interval_end = dst_offset + size;
503         }
504      }
505   }
506
507   live->interval_offset = offset;
508}
509
510#define RESET      "\x1b[0m"
511#define BLUE       "\x1b[0;34m"
512#define SYN_SSA(x) BLUE x RESET
513
514static void
515dump_merge_sets(struct ir3 *ir)
516{
517   d("merge sets:");
518   struct set *merge_sets = _mesa_pointer_set_create(NULL);
519   foreach_block (block, &ir->block_list) {
520      foreach_instr (instr, &block->instr_list) {
521         for (unsigned i = 0; i < instr->dsts_count; i++) {
522            struct ir3_register *dst = instr->dsts[i];
523
524            struct ir3_merge_set *merge_set = dst->merge_set;
525            if (!merge_set || _mesa_set_search(merge_sets, merge_set))
526               continue;
527
528            d("merge set, size %u, align %u:", merge_set->size,
529              merge_set->alignment);
530            for (unsigned j = 0; j < merge_set->regs_count; j++) {
531               struct ir3_register *reg = merge_set->regs[j];
532               d("\t" SYN_SSA("ssa_%u") ":%u, offset %u",
533                 reg->instr->serialno, reg->name, reg->merge_set_offset);
534            }
535
536            _mesa_set_add(merge_sets, merge_set);
537         }
538      }
539   }
540
541   ralloc_free(merge_sets);
542}
543
544void
545ir3_merge_regs(struct ir3_liveness *live, struct ir3 *ir)
546{
547   index_instrs(ir3_start_block(ir), 0);
548
549   /* First pass: coalesce phis, which must be together. */
550   foreach_block (block, &ir->block_list) {
551      foreach_instr (instr, &block->instr_list) {
552         if (instr->opc != OPC_META_PHI)
553            break;
554
555         coalesce_phi(live, instr);
556      }
557   }
558
559   /* Second pass: aggressively coalesce parallelcopy, split, collect */
560   foreach_block (block, &ir->block_list) {
561      foreach_instr (instr, &block->instr_list) {
562         switch (instr->opc) {
563         case OPC_META_SPLIT:
564            aggressive_coalesce_split(live, instr);
565            break;
566         case OPC_META_COLLECT:
567            aggressive_coalesce_collect(live, instr);
568            break;
569         case OPC_META_PARALLEL_COPY:
570            aggressive_coalesce_parallel_copy(live, instr);
571            break;
572         default:
573            break;
574         }
575      }
576   }
577
578   index_merge_sets(live, ir);
579
580   if (ir3_shader_debug & IR3_DBG_RAMSGS)
581      dump_merge_sets(ir);
582}
583