1/* 2 * Copyright © 2019 Google, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 */ 23 24#include "compiler/nir/nir.h" 25#include "compiler/nir/nir_builder.h" 26#include "util/u_math.h" 27#include "ir3_compiler.h" 28#include "ir3_nir.h" 29 30static inline bool 31get_ubo_load_range(nir_shader *nir, nir_intrinsic_instr *instr, 32 uint32_t alignment, struct ir3_ubo_range *r) 33{ 34 uint32_t offset = nir_intrinsic_range_base(instr); 35 uint32_t size = nir_intrinsic_range(instr); 36 37 /* If the offset is constant, the range is trivial (and NIR may not have 38 * figured it out). 39 */ 40 if (nir_src_is_const(instr->src[1])) { 41 offset = nir_src_as_uint(instr->src[1]); 42 size = nir_intrinsic_dest_components(instr) * 4; 43 } 44 45 /* If we haven't figured out the range accessed in the UBO, bail. */ 46 if (size == ~0) 47 return false; 48 49 r->start = ROUND_DOWN_TO(offset, alignment * 16); 50 r->end = ALIGN(offset + size, alignment * 16); 51 52 return true; 53} 54 55static bool 56get_ubo_info(nir_intrinsic_instr *instr, struct ir3_ubo_info *ubo) 57{ 58 if (nir_src_is_const(instr->src[0])) { 59 ubo->block = nir_src_as_uint(instr->src[0]); 60 ubo->bindless_base = 0; 61 ubo->bindless = false; 62 return true; 63 } else { 64 nir_intrinsic_instr *rsrc = ir3_bindless_resource(instr->src[0]); 65 if (rsrc && nir_src_is_const(rsrc->src[0])) { 66 ubo->block = nir_src_as_uint(rsrc->src[0]); 67 ubo->bindless_base = nir_intrinsic_desc_set(rsrc); 68 ubo->bindless = true; 69 return true; 70 } 71 } 72 return false; 73} 74 75/** 76 * Finds the given instruction's UBO load in the UBO upload plan, if any. 77 */ 78static const struct ir3_ubo_range * 79get_existing_range(nir_intrinsic_instr *instr, 80 const struct ir3_ubo_analysis_state *state, 81 struct ir3_ubo_range *r) 82{ 83 struct ir3_ubo_info ubo = {}; 84 85 if (!get_ubo_info(instr, &ubo)) 86 return NULL; 87 88 for (int i = 0; i < state->num_enabled; i++) { 89 const struct ir3_ubo_range *range = &state->range[i]; 90 if (!memcmp(&range->ubo, &ubo, sizeof(ubo)) && r->start >= range->start && 91 r->end <= range->end) { 92 return range; 93 } 94 } 95 96 return NULL; 97} 98 99/** 100 * Merges together neighboring/overlapping ranges in the range plan with a 101 * newly updated range. 102 */ 103static void 104merge_neighbors(struct ir3_ubo_analysis_state *state, int index) 105{ 106 struct ir3_ubo_range *a = &state->range[index]; 107 108 /* index is always the first slot that would have neighbored/overlapped with 109 * the new range. 110 */ 111 for (int i = index + 1; i < state->num_enabled; i++) { 112 struct ir3_ubo_range *b = &state->range[i]; 113 if (memcmp(&a->ubo, &b->ubo, sizeof(a->ubo))) 114 continue; 115 116 if (a->start > b->end || a->end < b->start) 117 continue; 118 119 /* Merge B into A. */ 120 a->start = MIN2(a->start, b->start); 121 a->end = MAX2(a->end, b->end); 122 123 /* Swap the last enabled range into B's now unused slot */ 124 *b = state->range[--state->num_enabled]; 125 } 126} 127 128/** 129 * During the first pass over the shader, makes the plan of which UBO upload 130 * should include the range covering this UBO load. 131 * 132 * We are passed in an upload_remaining of how much space is left for us in 133 * the const file, and we make sure our plan doesn't exceed that. 134 */ 135static void 136gather_ubo_ranges(nir_shader *nir, nir_intrinsic_instr *instr, 137 struct ir3_ubo_analysis_state *state, uint32_t alignment, 138 uint32_t *upload_remaining) 139{ 140 if (ir3_shader_debug & IR3_DBG_NOUBOOPT) 141 return; 142 143 struct ir3_ubo_info ubo = {}; 144 if (!get_ubo_info(instr, &ubo)) 145 return; 146 147 struct ir3_ubo_range r; 148 if (!get_ubo_load_range(nir, instr, alignment, &r)) 149 return; 150 151 /* See if there's an existing range for this UBO we want to merge into. */ 152 for (int i = 0; i < state->num_enabled; i++) { 153 struct ir3_ubo_range *plan_r = &state->range[i]; 154 if (memcmp(&plan_r->ubo, &ubo, sizeof(ubo))) 155 continue; 156 157 /* Don't extend existing uploads unless they're 158 * neighboring/overlapping. 159 */ 160 if (r.start > plan_r->end || r.end < plan_r->start) 161 continue; 162 163 r.start = MIN2(r.start, plan_r->start); 164 r.end = MAX2(r.end, plan_r->end); 165 166 uint32_t added = (plan_r->start - r.start) + (r.end - plan_r->end); 167 if (added >= *upload_remaining) 168 return; 169 170 plan_r->start = r.start; 171 plan_r->end = r.end; 172 *upload_remaining -= added; 173 174 merge_neighbors(state, i); 175 return; 176 } 177 178 if (state->num_enabled == ARRAY_SIZE(state->range)) 179 return; 180 181 uint32_t added = r.end - r.start; 182 if (added >= *upload_remaining) 183 return; 184 185 struct ir3_ubo_range *plan_r = &state->range[state->num_enabled++]; 186 plan_r->ubo = ubo; 187 plan_r->start = r.start; 188 plan_r->end = r.end; 189 *upload_remaining -= added; 190} 191 192/* For indirect offset, it is common to see a pattern of multiple 193 * loads with the same base, but different constant offset, ie: 194 * 195 * vec1 32 ssa_33 = iadd ssa_base, const_offset 196 * vec4 32 ssa_34 = intrinsic load_uniform (ssa_33) (base=N, 0, 0) 197 * 198 * Detect this, and peel out the const_offset part, to end up with: 199 * 200 * vec4 32 ssa_34 = intrinsic load_uniform (ssa_base) (base=N+const_offset, 201 * 0, 0) 202 * 203 * Or similarly: 204 * 205 * vec1 32 ssa_33 = imad24_ir3 a, b, const_offset 206 * vec4 32 ssa_34 = intrinsic load_uniform (ssa_33) (base=N, 0, 0) 207 * 208 * Can be converted to: 209 * 210 * vec1 32 ssa_base = imul24 a, b 211 * vec4 32 ssa_34 = intrinsic load_uniform (ssa_base) (base=N+const_offset, 212 * 0, 0) 213 * 214 * This gives the other opt passes something much easier to work 215 * with (ie. not requiring value range tracking) 216 */ 217static void 218handle_partial_const(nir_builder *b, nir_ssa_def **srcp, int *offp) 219{ 220 if ((*srcp)->parent_instr->type != nir_instr_type_alu) 221 return; 222 223 nir_alu_instr *alu = nir_instr_as_alu((*srcp)->parent_instr); 224 225 if (alu->op == nir_op_imad24_ir3) { 226 /* This case is slightly more complicated as we need to 227 * replace the imad24_ir3 with an imul24: 228 */ 229 if (!nir_src_is_const(alu->src[2].src)) 230 return; 231 232 *offp += nir_src_as_uint(alu->src[2].src); 233 *srcp = nir_imul24(b, nir_ssa_for_alu_src(b, alu, 0), 234 nir_ssa_for_alu_src(b, alu, 1)); 235 236 return; 237 } 238 239 if (alu->op != nir_op_iadd) 240 return; 241 242 if (!(alu->src[0].src.is_ssa && alu->src[1].src.is_ssa)) 243 return; 244 245 if (nir_src_is_const(alu->src[0].src)) { 246 *offp += nir_src_as_uint(alu->src[0].src); 247 *srcp = alu->src[1].src.ssa; 248 } else if (nir_src_is_const(alu->src[1].src)) { 249 *srcp = alu->src[0].src.ssa; 250 *offp += nir_src_as_uint(alu->src[1].src); 251 } 252} 253 254/* Tracks the maximum bindful UBO accessed so that we reduce the UBO 255 * descriptors emitted in the fast path for GL. 256 */ 257static void 258track_ubo_use(nir_intrinsic_instr *instr, nir_builder *b, int *num_ubos) 259{ 260 if (ir3_bindless_resource(instr->src[0])) { 261 assert(!b->shader->info.first_ubo_is_default_ubo); /* only set for GL */ 262 return; 263 } 264 265 if (nir_src_is_const(instr->src[0])) { 266 int block = nir_src_as_uint(instr->src[0]); 267 *num_ubos = MAX2(*num_ubos, block + 1); 268 } else { 269 *num_ubos = b->shader->info.num_ubos; 270 } 271} 272 273static bool 274lower_ubo_load_to_uniform(nir_intrinsic_instr *instr, nir_builder *b, 275 const struct ir3_ubo_analysis_state *state, 276 int *num_ubos, uint32_t alignment) 277{ 278 b->cursor = nir_before_instr(&instr->instr); 279 280 struct ir3_ubo_range r; 281 if (!get_ubo_load_range(b->shader, instr, alignment, &r)) { 282 track_ubo_use(instr, b, num_ubos); 283 return false; 284 } 285 286 /* We don't lower dynamic block index UBO loads to load_uniform, but we 287 * could probably with some effort determine a block stride in number of 288 * registers. 289 */ 290 const struct ir3_ubo_range *range = get_existing_range(instr, state, &r); 291 if (!range) { 292 track_ubo_use(instr, b, num_ubos); 293 return false; 294 } 295 296 nir_ssa_def *ubo_offset = nir_ssa_for_src(b, instr->src[1], 1); 297 int const_offset = 0; 298 299 handle_partial_const(b, &ubo_offset, &const_offset); 300 301 /* UBO offset is in bytes, but uniform offset is in units of 302 * dwords, so we need to divide by 4 (right-shift by 2). For ldc the 303 * offset is in units of 16 bytes, so we need to multiply by 4. And 304 * also the same for the constant part of the offset: 305 */ 306 const int shift = -2; 307 nir_ssa_def *new_offset = ir3_nir_try_propagate_bit_shift(b, ubo_offset, -2); 308 nir_ssa_def *uniform_offset = NULL; 309 if (new_offset) { 310 uniform_offset = new_offset; 311 } else { 312 uniform_offset = shift > 0 313 ? nir_ishl(b, ubo_offset, nir_imm_int(b, shift)) 314 : nir_ushr(b, ubo_offset, nir_imm_int(b, -shift)); 315 } 316 317 debug_assert(!(const_offset & 0x3)); 318 const_offset >>= 2; 319 320 const int range_offset = ((int)range->offset - (int)range->start) / 4; 321 const_offset += range_offset; 322 323 /* The range_offset could be negative, if if only part of the UBO 324 * block is accessed, range->start can be greater than range->offset. 325 * But we can't underflow const_offset. If necessary we need to 326 * insert nir instructions to compensate (which can hopefully be 327 * optimized away) 328 */ 329 if (const_offset < 0) { 330 uniform_offset = nir_iadd_imm(b, uniform_offset, const_offset); 331 const_offset = 0; 332 } 333 334 nir_ssa_def *uniform = 335 nir_load_uniform(b, instr->num_components, instr->dest.ssa.bit_size, 336 uniform_offset, .base = const_offset); 337 338 nir_ssa_def_rewrite_uses(&instr->dest.ssa, uniform); 339 340 nir_instr_remove(&instr->instr); 341 342 return true; 343} 344 345static bool 346instr_is_load_ubo(nir_instr *instr) 347{ 348 if (instr->type != nir_instr_type_intrinsic) 349 return false; 350 351 nir_intrinsic_op op = nir_instr_as_intrinsic(instr)->intrinsic; 352 353 /* nir_lower_ubo_vec4 happens after this pass. */ 354 assert(op != nir_intrinsic_load_ubo_vec4); 355 356 return op == nir_intrinsic_load_ubo; 357} 358 359void 360ir3_nir_analyze_ubo_ranges(nir_shader *nir, struct ir3_shader_variant *v) 361{ 362 struct ir3_const_state *const_state = ir3_const_state(v); 363 struct ir3_ubo_analysis_state *state = &const_state->ubo_state; 364 struct ir3_compiler *compiler = v->shader->compiler; 365 366 /* Limit our uploads to the amount of constant buffer space available in 367 * the hardware, minus what the shader compiler may need for various 368 * driver params. We do this UBO-to-push-constant before the real 369 * allocation of the driver params' const space, because UBO pointers can 370 * be driver params but this pass usually eliminatings them. 371 */ 372 struct ir3_const_state worst_case_const_state = {}; 373 ir3_setup_const_state(nir, v, &worst_case_const_state); 374 const uint32_t max_upload = 375 (ir3_max_const(v) - worst_case_const_state.offsets.immediate) * 16; 376 377 memset(state, 0, sizeof(*state)); 378 379 uint32_t upload_remaining = max_upload; 380 nir_foreach_function (function, nir) { 381 if (function->impl) { 382 nir_foreach_block (block, function->impl) { 383 nir_foreach_instr (instr, block) { 384 if (instr_is_load_ubo(instr)) 385 gather_ubo_ranges(nir, nir_instr_as_intrinsic(instr), state, 386 compiler->const_upload_unit, 387 &upload_remaining); 388 } 389 } 390 } 391 } 392 393 /* For now, everything we upload is accessed statically and thus will be 394 * used by the shader. Once we can upload dynamically indexed data, we may 395 * upload sparsely accessed arrays, at which point we probably want to 396 * give priority to smaller UBOs, on the assumption that big UBOs will be 397 * accessed dynamically. Alternatively, we can track statically and 398 * dynamically accessed ranges separately and upload static rangtes 399 * first. 400 */ 401 402 uint32_t offset = v->shader->num_reserved_user_consts * 16; 403 for (uint32_t i = 0; i < state->num_enabled; i++) { 404 uint32_t range_size = state->range[i].end - state->range[i].start; 405 406 debug_assert(offset <= max_upload); 407 state->range[i].offset = offset; 408 assert(offset <= max_upload); 409 offset += range_size; 410 } 411 state->size = offset; 412} 413 414bool 415ir3_nir_lower_ubo_loads(nir_shader *nir, struct ir3_shader_variant *v) 416{ 417 struct ir3_compiler *compiler = v->shader->compiler; 418 /* For the binning pass variant, we re-use the corresponding draw-pass 419 * variants const_state and ubo state. To make these clear, in this 420 * pass it is const (read-only) 421 */ 422 const struct ir3_const_state *const_state = ir3_const_state(v); 423 const struct ir3_ubo_analysis_state *state = &const_state->ubo_state; 424 425 int num_ubos = 0; 426 bool progress = false; 427 nir_foreach_function (function, nir) { 428 if (function->impl) { 429 nir_builder builder; 430 nir_builder_init(&builder, function->impl); 431 nir_foreach_block (block, function->impl) { 432 nir_foreach_instr_safe (instr, block) { 433 if (!instr_is_load_ubo(instr)) 434 continue; 435 progress |= lower_ubo_load_to_uniform( 436 nir_instr_as_intrinsic(instr), &builder, state, &num_ubos, 437 compiler->const_upload_unit); 438 } 439 } 440 441 nir_metadata_preserve( 442 function->impl, nir_metadata_block_index | nir_metadata_dominance); 443 } 444 } 445 /* Update the num_ubos field for GL (first_ubo_is_default_ubo). With 446 * Vulkan's bindless, we don't use the num_ubos field, so we can leave it 447 * incremented. 448 */ 449 if (nir->info.first_ubo_is_default_ubo) 450 nir->info.num_ubos = num_ubos; 451 452 return progress; 453} 454 455static bool 456fixup_load_uniform_filter(const nir_instr *instr, const void *arg) 457{ 458 if (instr->type != nir_instr_type_intrinsic) 459 return false; 460 return nir_instr_as_intrinsic(instr)->intrinsic == 461 nir_intrinsic_load_uniform; 462} 463 464static nir_ssa_def * 465fixup_load_uniform_instr(struct nir_builder *b, nir_instr *instr, void *arg) 466{ 467 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); 468 469 /* We don't need to worry about non-indirect case: */ 470 if (nir_src_is_const(intr->src[0])) 471 return NULL; 472 473 const unsigned base_offset_limit = (1 << 9); /* 9 bits */ 474 unsigned base_offset = nir_intrinsic_base(intr); 475 476 /* Or cases were base offset is lower than the hw limit: */ 477 if (base_offset < base_offset_limit) 478 return NULL; 479 480 b->cursor = nir_before_instr(instr); 481 482 nir_ssa_def *offset = nir_ssa_for_src(b, intr->src[0], 1); 483 484 /* We'd like to avoid a sequence like: 485 * 486 * vec4 32 ssa_18 = intrinsic load_uniform (ssa_4) (1024, 0, 0) 487 * vec4 32 ssa_19 = intrinsic load_uniform (ssa_4) (1072, 0, 0) 488 * vec4 32 ssa_20 = intrinsic load_uniform (ssa_4) (1120, 0, 0) 489 * 490 * From turning into a unique offset value (which requires reloading 491 * a0.x for each instruction). So instead of just adding the constant 492 * base_offset to the non-const offset, be a bit more clever and only 493 * extract the part that cannot be encoded. Afterwards CSE should 494 * turn the result into: 495 * 496 * vec1 32 ssa_5 = load_const (1024) 497 * vec4 32 ssa_6 = iadd ssa4_, ssa_5 498 * vec4 32 ssa_18 = intrinsic load_uniform (ssa_5) (0, 0, 0) 499 * vec4 32 ssa_19 = intrinsic load_uniform (ssa_5) (48, 0, 0) 500 * vec4 32 ssa_20 = intrinsic load_uniform (ssa_5) (96, 0, 0) 501 */ 502 unsigned new_base_offset = base_offset % base_offset_limit; 503 504 nir_intrinsic_set_base(intr, new_base_offset); 505 offset = nir_iadd_imm(b, offset, base_offset - new_base_offset); 506 507 nir_instr_rewrite_src(instr, &intr->src[0], nir_src_for_ssa(offset)); 508 509 return NIR_LOWER_INSTR_PROGRESS; 510} 511 512/** 513 * For relative CONST file access, we can only encode 10b worth of fixed offset, 514 * so in cases where the base offset is larger, we need to peel it out into 515 * ALU instructions. 516 * 517 * This should run late, after constant folding has had a chance to do it's 518 * thing, so we can actually know if it is an indirect uniform offset or not. 519 */ 520bool 521ir3_nir_fixup_load_uniform(nir_shader *nir) 522{ 523 return nir_shader_lower_instructions(nir, fixup_load_uniform_filter, 524 fixup_load_uniform_instr, NULL); 525} 526static nir_ssa_def * 527ir3_nir_lower_load_const_instr(nir_builder *b, nir_instr *in_instr, void *data) 528{ 529 struct ir3_const_state *const_state = data; 530 nir_intrinsic_instr *instr = nir_instr_as_intrinsic(in_instr); 531 532 /* Pick a UBO index to use as our constant data. Skip UBO 0 since that's 533 * reserved for gallium's cb0. 534 */ 535 if (const_state->constant_data_ubo == -1) { 536 if (b->shader->info.num_ubos == 0) 537 b->shader->info.num_ubos++; 538 const_state->constant_data_ubo = b->shader->info.num_ubos++; 539 } 540 541 unsigned num_components = instr->num_components; 542 if (nir_dest_bit_size(instr->dest) == 16) { 543 /* We can't do 16b loads -- either from LDC (32-bit only in any of our 544 * traces, and disasm that doesn't look like it really supports it) or 545 * from the constant file (where CONSTANT_DEMOTION_ENABLE means we get 546 * automatic 32b-to-16b conversions when we ask for 16b from it). 547 * Instead, we'll load 32b from a UBO and unpack from there. 548 */ 549 num_components = DIV_ROUND_UP(num_components, 2); 550 } 551 unsigned base = nir_intrinsic_base(instr); 552 nir_ssa_def *index = nir_imm_int(b, const_state->constant_data_ubo); 553 nir_ssa_def *offset = 554 nir_iadd_imm(b, nir_ssa_for_src(b, instr->src[0], 1), base); 555 556 nir_ssa_def *result = 557 nir_load_ubo(b, num_components, 32, index, offset, 558 .align_mul = nir_intrinsic_align_mul(instr), 559 .align_offset = nir_intrinsic_align_offset(instr), 560 .range_base = base, .range = nir_intrinsic_range(instr)); 561 562 if (nir_dest_bit_size(instr->dest) == 16) { 563 result = nir_bitcast_vector(b, result, 16); 564 result = nir_channels(b, result, BITSET_MASK(instr->num_components)); 565 } 566 567 return result; 568} 569 570static bool 571ir3_lower_load_const_filter(const nir_instr *instr, const void *data) 572{ 573 return (instr->type == nir_instr_type_intrinsic && 574 nir_instr_as_intrinsic(instr)->intrinsic == 575 nir_intrinsic_load_constant); 576} 577 578/* Lowers load_constant intrinsics to UBO accesses so we can run them through 579 * the general "upload to const file or leave as UBO access" code. 580 */ 581bool 582ir3_nir_lower_load_constant(nir_shader *nir, struct ir3_shader_variant *v) 583{ 584 struct ir3_const_state *const_state = ir3_const_state(v); 585 586 const_state->constant_data_ubo = -1; 587 588 bool progress = nir_shader_lower_instructions( 589 nir, ir3_lower_load_const_filter, ir3_nir_lower_load_const_instr, 590 const_state); 591 592 if (progress) { 593 struct ir3_compiler *compiler = v->shader->compiler; 594 595 /* Save a copy of the NIR constant data to the variant for 596 * inclusion in the final assembly. 597 */ 598 v->constant_data_size = 599 align(nir->constant_data_size, 600 compiler->const_upload_unit * 4 * sizeof(uint32_t)); 601 v->constant_data = rzalloc_size(v, v->constant_data_size); 602 memcpy(v->constant_data, nir->constant_data, nir->constant_data_size); 603 } 604 605 return progress; 606} 607