1/************************************************************************** 2 * 3 * Copyright 2007 VMware, Inc. 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR 22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28/* 29 * Binning code for lines 30 */ 31 32#include "util/u_math.h" 33#include "util/u_memory.h" 34#include "lp_perf.h" 35#include "lp_setup_context.h" 36#include "lp_rast.h" 37#include "lp_state_fs.h" 38#include "lp_state_setup.h" 39#include "lp_context.h" 40#include "draw/draw_context.h" 41 42#define NUM_CHANNELS 4 43 44struct lp_line_info { 45 46 float dx; 47 float dy; 48 float oneoverarea; 49 boolean frontfacing; 50 51 const float (*v1)[4]; 52 const float (*v2)[4]; 53 54 float (*a0)[4]; 55 float (*dadx)[4]; 56 float (*dady)[4]; 57}; 58 59 60/** 61 * Compute a0 for a constant-valued coefficient (GL_FLAT shading). 62 */ 63static void constant_coef( struct lp_setup_context *setup, 64 struct lp_line_info *info, 65 unsigned slot, 66 const float value, 67 unsigned i ) 68{ 69 info->a0[slot][i] = value; 70 info->dadx[slot][i] = 0.0f; 71 info->dady[slot][i] = 0.0f; 72} 73 74 75/** 76 * Compute a0, dadx and dady for a linearly interpolated coefficient, 77 * for a triangle. 78 */ 79static void linear_coef( struct lp_setup_context *setup, 80 struct lp_line_info *info, 81 unsigned slot, 82 unsigned vert_attr, 83 unsigned i) 84{ 85 float a1 = info->v1[vert_attr][i]; 86 float a2 = info->v2[vert_attr][i]; 87 88 float da21 = a1 - a2; 89 float dadx = da21 * info->dx * info->oneoverarea; 90 float dady = da21 * info->dy * info->oneoverarea; 91 92 info->dadx[slot][i] = dadx; 93 info->dady[slot][i] = dady; 94 95 info->a0[slot][i] = (a1 - 96 (dadx * (info->v1[0][0] - setup->pixel_offset) + 97 dady * (info->v1[0][1] - setup->pixel_offset))); 98} 99 100 101/** 102 * Compute a0, dadx and dady for a perspective-corrected interpolant, 103 * for a triangle. 104 * We basically multiply the vertex value by 1/w before computing 105 * the plane coefficients (a0, dadx, dady). 106 * Later, when we compute the value at a particular fragment position we'll 107 * divide the interpolated value by the interpolated W at that fragment. 108 */ 109static void perspective_coef( struct lp_setup_context *setup, 110 struct lp_line_info *info, 111 unsigned slot, 112 unsigned vert_attr, 113 unsigned i) 114{ 115 /* premultiply by 1/w (v[0][3] is always 1/w): 116 */ 117 float a1 = info->v1[vert_attr][i] * info->v1[0][3]; 118 float a2 = info->v2[vert_attr][i] * info->v2[0][3]; 119 120 float da21 = a1 - a2; 121 float dadx = da21 * info->dx * info->oneoverarea; 122 float dady = da21 * info->dy * info->oneoverarea; 123 124 info->dadx[slot][i] = dadx; 125 info->dady[slot][i] = dady; 126 127 info->a0[slot][i] = (a1 - 128 (dadx * (info->v1[0][0] - setup->pixel_offset) + 129 dady * (info->v1[0][1] - setup->pixel_offset))); 130} 131 132static void 133setup_fragcoord_coef( struct lp_setup_context *setup, 134 struct lp_line_info *info, 135 unsigned slot, 136 unsigned usage_mask) 137{ 138 /*X*/ 139 if (usage_mask & TGSI_WRITEMASK_X) { 140 info->a0[slot][0] = 0.0; 141 info->dadx[slot][0] = 1.0; 142 info->dady[slot][0] = 0.0; 143 } 144 145 /*Y*/ 146 if (usage_mask & TGSI_WRITEMASK_Y) { 147 info->a0[slot][1] = 0.0; 148 info->dadx[slot][1] = 0.0; 149 info->dady[slot][1] = 1.0; 150 } 151 152 /*Z*/ 153 if (usage_mask & TGSI_WRITEMASK_Z) { 154 linear_coef(setup, info, slot, 0, 2); 155 } 156 157 /*W*/ 158 if (usage_mask & TGSI_WRITEMASK_W) { 159 linear_coef(setup, info, slot, 0, 3); 160 } 161} 162 163/** 164 * Compute the tri->coef[] array dadx, dady, a0 values. 165 */ 166static void setup_line_coefficients( struct lp_setup_context *setup, 167 struct lp_line_info *info) 168{ 169 const struct lp_setup_variant_key *key = &setup->setup.variant->key; 170 unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ; 171 unsigned slot; 172 173 /* setup interpolation for all the remaining attributes: 174 */ 175 for (slot = 0; slot < key->num_inputs; slot++) { 176 unsigned vert_attr = key->inputs[slot].src_index; 177 unsigned usage_mask = key->inputs[slot].usage_mask; 178 unsigned i; 179 180 switch (key->inputs[slot].interp) { 181 case LP_INTERP_CONSTANT: 182 if (key->flatshade_first) { 183 for (i = 0; i < NUM_CHANNELS; i++) 184 if (usage_mask & (1 << i)) 185 constant_coef(setup, info, slot+1, info->v1[vert_attr][i], i); 186 } 187 else { 188 for (i = 0; i < NUM_CHANNELS; i++) 189 if (usage_mask & (1 << i)) 190 constant_coef(setup, info, slot+1, info->v2[vert_attr][i], i); 191 } 192 break; 193 194 case LP_INTERP_LINEAR: 195 for (i = 0; i < NUM_CHANNELS; i++) 196 if (usage_mask & (1 << i)) 197 linear_coef(setup, info, slot+1, vert_attr, i); 198 break; 199 200 case LP_INTERP_PERSPECTIVE: 201 for (i = 0; i < NUM_CHANNELS; i++) 202 if (usage_mask & (1 << i)) 203 perspective_coef(setup, info, slot+1, vert_attr, i); 204 fragcoord_usage_mask |= TGSI_WRITEMASK_W; 205 break; 206 207 case LP_INTERP_POSITION: 208 /* 209 * The generated pixel interpolators will pick up the coeffs from 210 * slot 0, so all need to ensure that the usage mask is covers all 211 * usages. 212 */ 213 fragcoord_usage_mask |= usage_mask; 214 break; 215 216 case LP_INTERP_FACING: 217 for (i = 0; i < NUM_CHANNELS; i++) 218 if (usage_mask & (1 << i)) 219 constant_coef(setup, info, slot+1, 220 info->frontfacing ? 1.0f : -1.0f, i); 221 break; 222 223 default: 224 assert(0); 225 } 226 } 227 228 /* The internal position input is in slot zero: 229 */ 230 setup_fragcoord_coef(setup, info, 0, 231 fragcoord_usage_mask); 232} 233 234 235 236static inline int subpixel_snap( float a ) 237{ 238 return util_iround(FIXED_ONE * a); 239} 240 241 242/** 243 * Print line vertex attribs (for debug). 244 */ 245static void 246print_line(struct lp_setup_context *setup, 247 const float (*v1)[4], 248 const float (*v2)[4]) 249{ 250 const struct lp_setup_variant_key *key = &setup->setup.variant->key; 251 uint i; 252 253 debug_printf("llvmpipe line\n"); 254 for (i = 0; i < 1 + key->num_inputs; i++) { 255 debug_printf(" v1[%d]: %f %f %f %f\n", i, 256 v1[i][0], v1[i][1], v1[i][2], v1[i][3]); 257 } 258 for (i = 0; i < 1 + key->num_inputs; i++) { 259 debug_printf(" v2[%d]: %f %f %f %f\n", i, 260 v2[i][0], v2[i][1], v2[i][2], v2[i][3]); 261 } 262} 263 264 265static inline boolean sign(float x){ 266 return x >= 0; 267} 268 269 270/* Used on positive floats only: 271 */ 272static inline float fracf(float f) 273{ 274 return f - floorf(f); 275} 276 277 278 279static boolean 280try_setup_line( struct lp_setup_context *setup, 281 const float (*v1)[4], 282 const float (*v2)[4]) 283{ 284 struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe; 285 struct lp_scene *scene = setup->scene; 286 const struct lp_setup_variant_key *key = &setup->setup.variant->key; 287 struct lp_rast_triangle *line; 288 struct lp_rast_plane *plane; 289 struct lp_line_info info; 290 float width = MAX2(1.0, setup->line_width); 291 const struct u_rect *scissor; 292 struct u_rect bbox, bboxpos; 293 boolean s_planes[4]; 294 unsigned tri_bytes; 295 int x[4]; 296 int y[4]; 297 int i; 298 int nr_planes = 4; 299 unsigned viewport_index = 0; 300 unsigned layer = 0; 301 float pixel_offset = setup->multisample ? 0.0 : setup->pixel_offset; 302 /* linewidth should be interpreted as integer */ 303 int fixed_width = util_iround(width) * FIXED_ONE; 304 305 float x_offset=0; 306 float y_offset=0; 307 float x_offset_end=0; 308 float y_offset_end=0; 309 310 float x1diff; 311 float y1diff; 312 float x2diff; 313 float y2diff; 314 float dx, dy; 315 float area; 316 const float (*pv)[4]; 317 318 boolean draw_start; 319 boolean draw_end; 320 boolean will_draw_start; 321 boolean will_draw_end; 322 323 if (lp_context->active_statistics_queries) { 324 lp_context->pipeline_statistics.c_primitives++; 325 } 326 327 if (0) 328 print_line(setup, v1, v2); 329 330 if (setup->flatshade_first) { 331 pv = v1; 332 } 333 else { 334 pv = v2; 335 } 336 if (setup->viewport_index_slot > 0) { 337 unsigned *udata = (unsigned*)pv[setup->viewport_index_slot]; 338 viewport_index = lp_clamp_viewport_idx(*udata); 339 } 340 if (setup->layer_slot > 0) { 341 layer = *(unsigned*)pv[setup->layer_slot]; 342 layer = MIN2(layer, scene->fb_max_layer); 343 } 344 345 dx = v1[0][0] - v2[0][0]; 346 dy = v1[0][1] - v2[0][1]; 347 area = (dx * dx + dy * dy); 348 if (area == 0) { 349 LP_COUNT(nr_culled_tris); 350 return TRUE; 351 } 352 353 info.oneoverarea = 1.0f / area; 354 info.dx = dx; 355 info.dy = dy; 356 info.v1 = v1; 357 info.v2 = v2; 358 359 360 if (setup->rectangular_lines) { 361 float scale = (setup->line_width * 0.5f) / sqrtf(area); 362 int tx = subpixel_snap(-dy * scale); 363 int ty = subpixel_snap(+dx * scale); 364 365 x[0] = subpixel_snap(v1[0][0] - pixel_offset) - tx; 366 x[1] = subpixel_snap(v2[0][0] - pixel_offset) - tx; 367 x[2] = subpixel_snap(v2[0][0] - pixel_offset) + tx; 368 x[3] = subpixel_snap(v1[0][0] - pixel_offset) + tx; 369 370 y[0] = subpixel_snap(v1[0][1] - pixel_offset) - ty; 371 y[1] = subpixel_snap(v2[0][1] - pixel_offset) - ty; 372 y[2] = subpixel_snap(v2[0][1] - pixel_offset) + ty; 373 y[3] = subpixel_snap(v1[0][1] - pixel_offset) + ty; 374 } else if (fabsf(dx) >= fabsf(dy)) { 375 float dydx = dy / dx; 376 377 /* X-MAJOR LINE */ 378 x1diff = v1[0][0] - floorf(v1[0][0]) - 0.5f; 379 y1diff = v1[0][1] - floorf(v1[0][1]) - 0.5f; 380 x2diff = v2[0][0] - floorf(v2[0][0]) - 0.5f; 381 y2diff = v2[0][1] - floorf(v2[0][1]) - 0.5f; 382 383 if (y2diff==-0.5 && dy<0){ 384 y2diff = 0.5; 385 } 386 387 /* 388 * Diamond exit rule test for starting point 389 */ 390 if (fabsf(x1diff) + fabsf(y1diff) < 0.5) { 391 draw_start = TRUE; 392 } 393 else if (sign(x1diff) == sign(-dx)) { 394 draw_start = FALSE; 395 } 396 else if (sign(-y1diff) != sign(dy)) { 397 draw_start = TRUE; 398 } 399 else { 400 /* do intersection test */ 401 float yintersect = fracf(v1[0][1]) + x1diff * dydx; 402 draw_start = (yintersect < 1.0 && yintersect > 0.0); 403 } 404 405 406 /* 407 * Diamond exit rule test for ending point 408 */ 409 if (fabsf(x2diff) + fabsf(y2diff) < 0.5) { 410 draw_end = FALSE; 411 } 412 else if (sign(x2diff) != sign(-dx)) { 413 draw_end = FALSE; 414 } 415 else if (sign(-y2diff) == sign(dy)) { 416 draw_end = TRUE; 417 } 418 else { 419 /* do intersection test */ 420 float yintersect = fracf(v2[0][1]) + x2diff * dydx; 421 draw_end = (yintersect < 1.0 && yintersect > 0.0); 422 } 423 424 /* Are we already drawing start/end? 425 */ 426 will_draw_start = sign(-x1diff) != sign(dx); 427 will_draw_end = (sign(x2diff) == sign(-dx)) || x2diff==0; 428 429 /* interpolate using the preferred wide-lines formula */ 430 info.dx *= 1 + dydx * dydx; 431 info.dy = 0; 432 433 if (dx < 0) { 434 /* if v2 is to the right of v1, swap pointers */ 435 const float (*temp)[4] = v1; 436 v1 = v2; 437 v2 = temp; 438 dx = -dx; 439 dy = -dy; 440 /* Otherwise shift planes appropriately */ 441 if (will_draw_start != draw_start) { 442 x_offset_end = - x1diff - 0.5; 443 y_offset_end = x_offset_end * dydx; 444 445 } 446 if (will_draw_end != draw_end) { 447 x_offset = - x2diff - 0.5; 448 y_offset = x_offset * dydx; 449 } 450 451 } 452 else{ 453 /* Otherwise shift planes appropriately */ 454 if (will_draw_start != draw_start) { 455 x_offset = - x1diff + 0.5; 456 y_offset = x_offset * dydx; 457 } 458 if (will_draw_end != draw_end) { 459 x_offset_end = - x2diff + 0.5; 460 y_offset_end = x_offset_end * dydx; 461 } 462 } 463 464 /* x/y positions in fixed point */ 465 x[0] = subpixel_snap(v1[0][0] + x_offset - pixel_offset); 466 x[1] = subpixel_snap(v2[0][0] + x_offset_end - pixel_offset); 467 x[2] = subpixel_snap(v2[0][0] + x_offset_end - pixel_offset); 468 x[3] = subpixel_snap(v1[0][0] + x_offset - pixel_offset); 469 470 y[0] = subpixel_snap(v1[0][1] + y_offset - pixel_offset) - fixed_width/2; 471 y[1] = subpixel_snap(v2[0][1] + y_offset_end - pixel_offset) - fixed_width/2; 472 y[2] = subpixel_snap(v2[0][1] + y_offset_end - pixel_offset) + fixed_width/2; 473 y[3] = subpixel_snap(v1[0][1] + y_offset - pixel_offset) + fixed_width/2; 474 475 } 476 else { 477 const float dxdy = dx / dy; 478 479 /* Y-MAJOR LINE */ 480 x1diff = v1[0][0] - floorf(v1[0][0]) - 0.5f; 481 y1diff = v1[0][1] - floorf(v1[0][1]) - 0.5f; 482 x2diff = v2[0][0] - floorf(v2[0][0]) - 0.5f; 483 y2diff = v2[0][1] - floorf(v2[0][1]) - 0.5f; 484 485 if (x2diff==-0.5 && dx<0) { 486 x2diff = 0.5; 487 } 488 489 /* 490 * Diamond exit rule test for starting point 491 */ 492 if (fabsf(x1diff) + fabsf(y1diff) < 0.5) { 493 draw_start = TRUE; 494 } 495 else if (sign(-y1diff) == sign(dy)) { 496 draw_start = FALSE; 497 } 498 else if (sign(x1diff) != sign(-dx)) { 499 draw_start = TRUE; 500 } 501 else { 502 /* do intersection test */ 503 float xintersect = fracf(v1[0][0]) + y1diff * dxdy; 504 draw_start = (xintersect < 1.0 && xintersect > 0.0); 505 } 506 507 /* 508 * Diamond exit rule test for ending point 509 */ 510 if (fabsf(x2diff) + fabsf(y2diff) < 0.5) { 511 draw_end = FALSE; 512 } 513 else if (sign(-y2diff) != sign(dy) ) { 514 draw_end = FALSE; 515 } 516 else if (sign(x2diff) == sign(-dx) ) { 517 draw_end = TRUE; 518 } 519 else { 520 /* do intersection test */ 521 float xintersect = fracf(v2[0][0]) + y2diff * dxdy; 522 draw_end = (xintersect < 1.0 && xintersect >= 0.0); 523 } 524 525 /* Are we already drawing start/end? 526 */ 527 will_draw_start = sign(y1diff) == sign(dy); 528 will_draw_end = (sign(-y2diff) == sign(dy)) || y2diff==0; 529 530 /* interpolate using the preferred wide-lines formula */ 531 info.dx = 0; 532 info.dy *= 1 + dxdy * dxdy; 533 534 if (dy > 0) { 535 /* if v2 is on top of v1, swap pointers */ 536 const float (*temp)[4] = v1; 537 v1 = v2; 538 v2 = temp; 539 dx = -dx; 540 dy = -dy; 541 542 /* Otherwise shift planes appropriately */ 543 if (will_draw_start != draw_start) { 544 y_offset_end = - y1diff + 0.5; 545 x_offset_end = y_offset_end * dxdy; 546 } 547 if (will_draw_end != draw_end) { 548 y_offset = - y2diff + 0.5; 549 x_offset = y_offset * dxdy; 550 } 551 } 552 else { 553 /* Otherwise shift planes appropriately */ 554 if (will_draw_start != draw_start) { 555 y_offset = - y1diff - 0.5; 556 x_offset = y_offset * dxdy; 557 558 } 559 if (will_draw_end != draw_end) { 560 y_offset_end = - y2diff - 0.5; 561 x_offset_end = y_offset_end * dxdy; 562 } 563 } 564 565 /* x/y positions in fixed point */ 566 x[0] = subpixel_snap(v1[0][0] + x_offset - pixel_offset) - fixed_width/2; 567 x[1] = subpixel_snap(v2[0][0] + x_offset_end - pixel_offset) - fixed_width/2; 568 x[2] = subpixel_snap(v2[0][0] + x_offset_end - pixel_offset) + fixed_width/2; 569 x[3] = subpixel_snap(v1[0][0] + x_offset - pixel_offset) + fixed_width/2; 570 571 y[0] = subpixel_snap(v1[0][1] + y_offset - pixel_offset); 572 y[1] = subpixel_snap(v2[0][1] + y_offset_end - pixel_offset); 573 y[2] = subpixel_snap(v2[0][1] + y_offset_end - pixel_offset); 574 y[3] = subpixel_snap(v1[0][1] + y_offset - pixel_offset); 575 } 576 577 /* Bounding rectangle (in pixels) */ 578 { 579 /* Yes this is necessary to accurately calculate bounding boxes 580 * with the two fill-conventions we support. GL (normally) ends 581 * up needing a bottom-left fill convention, which requires 582 * slightly different rounding. 583 */ 584 int adj = (setup->bottom_edge_rule != 0) ? 1 : 0; 585 586 bbox.x0 = (MIN4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER; 587 bbox.x1 = (MAX4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER; 588 bbox.y0 = (MIN4(y[0], y[1], y[2], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER; 589 bbox.y1 = (MAX4(y[0], y[1], y[2], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER; 590 591 /* Inclusive coordinates: 592 */ 593 bbox.x1--; 594 bbox.y1--; 595 } 596 597 if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) { 598 if (0) debug_printf("no intersection\n"); 599 LP_COUNT(nr_culled_tris); 600 return TRUE; 601 } 602 603 bboxpos = bbox; 604 605 /* Can safely discard negative regions: 606 */ 607 bboxpos.x0 = MAX2(bboxpos.x0, 0); 608 bboxpos.y0 = MAX2(bboxpos.y0, 0); 609 610 nr_planes = 4; 611 /* 612 * Determine how many scissor planes we need, that is drop scissor 613 * edges if the bounding box of the tri is fully inside that edge. 614 */ 615 scissor = &setup->draw_regions[viewport_index]; 616 scissor_planes_needed(s_planes, &bboxpos, scissor); 617 nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3]; 618 619 line = lp_setup_alloc_triangle(scene, 620 key->num_inputs, 621 nr_planes, 622 &tri_bytes); 623 if (!line) 624 return FALSE; 625 626#ifdef DEBUG 627 line->v[0][0] = v1[0][0]; 628 line->v[1][0] = v2[0][0]; 629 line->v[0][1] = v1[0][1]; 630 line->v[1][1] = v2[0][1]; 631#endif 632 633 LP_COUNT(nr_tris); 634 635 /* calculate the deltas */ 636 plane = GET_PLANES(line); 637 plane[0].dcdy = x[0] - x[1]; 638 plane[1].dcdy = x[1] - x[2]; 639 plane[2].dcdy = x[2] - x[3]; 640 plane[3].dcdy = x[3] - x[0]; 641 642 plane[0].dcdx = y[0] - y[1]; 643 plane[1].dcdx = y[1] - y[2]; 644 plane[2].dcdx = y[2] - y[3]; 645 plane[3].dcdx = y[3] - y[0]; 646 647 if (draw_will_inject_frontface(lp_context->draw) && 648 setup->face_slot > 0) { 649 line->inputs.frontfacing = v1[setup->face_slot][0]; 650 } else { 651 line->inputs.frontfacing = TRUE; 652 } 653 654 /* Setup parameter interpolants: 655 */ 656 info.a0 = GET_A0(&line->inputs); 657 info.dadx = GET_DADX(&line->inputs); 658 info.dady = GET_DADY(&line->inputs); 659 info.frontfacing = line->inputs.frontfacing; 660 setup_line_coefficients(setup, &info); 661 662 line->inputs.disable = FALSE; 663 line->inputs.opaque = FALSE; 664 line->inputs.layer = layer; 665 line->inputs.viewport_index = viewport_index; 666 line->inputs.view_index = setup->view_index; 667 668 /* 669 * XXX: this code is mostly identical to the one in lp_setup_tri, except it 670 * uses 4 planes instead of 3. Could share the code (including the sse 671 * assembly, in fact we'd get the 4th plane for free). 672 * The only difference apart from storing the 4th plane would be some 673 * different shuffle for calculating dcdx/dcdy. 674 */ 675 for (i = 0; i < 4; i++) { 676 677 /* half-edge constants, will be iterated over the whole render 678 * target. 679 */ 680 plane[i].c = IMUL64(plane[i].dcdx, x[i]) - IMUL64(plane[i].dcdy, y[i]); 681 682 /* correct for top-left vs. bottom-left fill convention. 683 */ 684 if (plane[i].dcdx < 0) { 685 /* both fill conventions want this - adjust for left edges */ 686 plane[i].c++; 687 } 688 else if (plane[i].dcdx == 0) { 689 if (setup->bottom_edge_rule == 0) { 690 /* correct for top-left fill convention: 691 */ 692 if (plane[i].dcdy > 0) plane[i].c++; 693 } 694 else { 695 /* correct for bottom-left fill convention: 696 */ 697 if (plane[i].dcdy < 0) plane[i].c++; 698 } 699 } 700 701 plane[i].dcdx *= FIXED_ONE; 702 plane[i].dcdy *= FIXED_ONE; 703 704 /* find trivial reject offsets for each edge for a single-pixel 705 * sized block. These will be scaled up at each recursive level to 706 * match the active blocksize. Scaling in this way works best if 707 * the blocks are square. 708 */ 709 plane[i].eo = 0; 710 if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx; 711 if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy; 712 } 713 714 if (nr_planes > 4) { 715 lp_setup_add_scissor_planes(scissor, &plane[4], s_planes, setup->multisample); 716 } 717 718 return lp_setup_bin_triangle(setup, line, &bbox, &bboxpos, nr_planes, viewport_index); 719} 720 721 722static void lp_setup_line_discard(struct lp_setup_context *setup, 723 const float (*v0)[4], 724 const float (*v1)[4]) 725{ 726} 727 728static void lp_setup_line(struct lp_setup_context *setup, 729 const float (*v0)[4], 730 const float (*v1)[4]) 731{ 732 if (!try_setup_line(setup, v0, v1)) { 733 if (!lp_setup_flush_and_restart(setup)) 734 return; 735 736 if (!try_setup_line(setup, v0, v1)) 737 return; 738 } 739} 740 741 742void lp_setup_choose_line(struct lp_setup_context *setup) 743{ 744 if (setup->rasterizer_discard) { 745 setup->line = lp_setup_line_discard; 746 } else { 747 setup->line = lp_setup_line; 748 } 749} 750 751 752