si_fence.c revision 9f464c52
1/*
2 * Copyright 2013-2017 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 */
25
26#include <libsync.h>
27
28#include "util/os_time.h"
29#include "util/u_memory.h"
30#include "util/u_queue.h"
31#include "util/u_upload_mgr.h"
32
33#include "si_build_pm4.h"
34
35struct si_fine_fence {
36	struct si_resource *buf;
37	unsigned offset;
38};
39
40struct si_multi_fence {
41	struct pipe_reference reference;
42	struct pipe_fence_handle *gfx;
43	struct pipe_fence_handle *sdma;
44	struct tc_unflushed_batch_token *tc_token;
45	struct util_queue_fence ready;
46
47	/* If the context wasn't flushed at fence creation, this is non-NULL. */
48	struct {
49		struct si_context *ctx;
50		unsigned ib_index;
51	} gfx_unflushed;
52
53	struct si_fine_fence fine;
54};
55
56/**
57 * Write an EOP event.
58 *
59 * \param event		EVENT_TYPE_*
60 * \param event_flags	Optional cache flush flags (TC)
61 * \param dst_sel       MEM or TC_L2
62 * \param int_sel       NONE or SEND_DATA_AFTER_WR_CONFIRM
63 * \param data_sel	DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
64 * \param buf		Buffer
65 * \param va		GPU address
66 * \param old_value	Previous fence value (for a bug workaround)
67 * \param new_value	Fence value to write for this event.
68 */
69void si_cp_release_mem(struct si_context *ctx,
70		       unsigned event, unsigned event_flags,
71		       unsigned dst_sel, unsigned int_sel, unsigned data_sel,
72		       struct si_resource *buf, uint64_t va,
73		       uint32_t new_fence, unsigned query_type)
74{
75	struct radeon_cmdbuf *cs = ctx->gfx_cs;
76	unsigned op = EVENT_TYPE(event) |
77		      EVENT_INDEX(event == V_028A90_CS_DONE ||
78				  event == V_028A90_PS_DONE ? 6 : 5) |
79		      event_flags;
80	unsigned sel = EOP_DST_SEL(dst_sel) |
81		       EOP_INT_SEL(int_sel) |
82		       EOP_DATA_SEL(data_sel);
83
84	if (ctx->chip_class >= GFX9) {
85		/* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
86		 * counters) must immediately precede every timestamp event to
87		 * prevent a GPU hang on GFX9.
88		 *
89		 * Occlusion queries don't need to do it here, because they
90		 * always do ZPASS_DONE before the timestamp.
91		 */
92		if (ctx->chip_class == GFX9 &&
93		    query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
94		    query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
95		    query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
96			struct si_resource *scratch = ctx->eop_bug_scratch;
97
98			assert(16 * ctx->screen->info.num_render_backends <=
99			       scratch->b.b.width0);
100			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
101			radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
102			radeon_emit(cs, scratch->gpu_address);
103			radeon_emit(cs, scratch->gpu_address >> 32);
104
105			radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch,
106						  RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
107		}
108
109		radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0));
110		radeon_emit(cs, op);
111		radeon_emit(cs, sel);
112		radeon_emit(cs, va);		/* address lo */
113		radeon_emit(cs, va >> 32);	/* address hi */
114		radeon_emit(cs, new_fence);	/* immediate data lo */
115		radeon_emit(cs, 0); /* immediate data hi */
116		radeon_emit(cs, 0); /* unused */
117	} else {
118		if (ctx->chip_class == CIK ||
119		    ctx->chip_class == VI) {
120			struct si_resource *scratch = ctx->eop_bug_scratch;
121			uint64_t va = scratch->gpu_address;
122
123			/* Two EOP events are required to make all engines go idle
124			 * (and optional cache flushes executed) before the timestamp
125			 * is written.
126			 */
127			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
128			radeon_emit(cs, op);
129			radeon_emit(cs, va);
130			radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
131			radeon_emit(cs, 0); /* immediate data */
132			radeon_emit(cs, 0); /* unused */
133
134			radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch,
135						  RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
136		}
137
138		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
139		radeon_emit(cs, op);
140		radeon_emit(cs, va);
141		radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
142		radeon_emit(cs, new_fence); /* immediate data */
143		radeon_emit(cs, 0); /* unused */
144	}
145
146	if (buf) {
147		radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE,
148					  RADEON_PRIO_QUERY);
149	}
150}
151
152unsigned si_cp_write_fence_dwords(struct si_screen *screen)
153{
154	unsigned dwords = 6;
155
156	if (screen->info.chip_class == CIK ||
157	    screen->info.chip_class == VI)
158		dwords *= 2;
159
160	return dwords;
161}
162
163void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs,
164		    uint64_t va, uint32_t ref, uint32_t mask, unsigned flags)
165{
166	radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
167	radeon_emit(cs, WAIT_REG_MEM_MEM_SPACE(1) | flags);
168	radeon_emit(cs, va);
169	radeon_emit(cs, va >> 32);
170	radeon_emit(cs, ref); /* reference value */
171	radeon_emit(cs, mask); /* mask */
172	radeon_emit(cs, 4); /* poll interval */
173}
174
175static void si_add_fence_dependency(struct si_context *sctx,
176				    struct pipe_fence_handle *fence)
177{
178	struct radeon_winsys *ws = sctx->ws;
179
180	if (sctx->dma_cs)
181		ws->cs_add_fence_dependency(sctx->dma_cs, fence);
182	ws->cs_add_fence_dependency(sctx->gfx_cs, fence);
183}
184
185static void si_add_syncobj_signal(struct si_context *sctx,
186				  struct pipe_fence_handle *fence)
187{
188	sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence);
189}
190
191static void si_fence_reference(struct pipe_screen *screen,
192			       struct pipe_fence_handle **dst,
193			       struct pipe_fence_handle *src)
194{
195	struct radeon_winsys *ws = ((struct si_screen*)screen)->ws;
196	struct si_multi_fence **sdst = (struct si_multi_fence **)dst;
197	struct si_multi_fence *ssrc = (struct si_multi_fence *)src;
198
199	if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) {
200		ws->fence_reference(&(*sdst)->gfx, NULL);
201		ws->fence_reference(&(*sdst)->sdma, NULL);
202		tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL);
203		si_resource_reference(&(*sdst)->fine.buf, NULL);
204		FREE(*sdst);
205	}
206        *sdst = ssrc;
207}
208
209static struct si_multi_fence *si_create_multi_fence()
210{
211	struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence);
212	if (!fence)
213		return NULL;
214
215	pipe_reference_init(&fence->reference, 1);
216	util_queue_fence_init(&fence->ready);
217
218	return fence;
219}
220
221struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
222					  struct tc_unflushed_batch_token *tc_token)
223{
224	struct si_multi_fence *fence = si_create_multi_fence();
225	if (!fence)
226		return NULL;
227
228	util_queue_fence_reset(&fence->ready);
229	tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
230
231	return (struct pipe_fence_handle *)fence;
232}
233
234static bool si_fine_fence_signaled(struct radeon_winsys *rws,
235				   const struct si_fine_fence *fine)
236{
237	char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ |
238							  PIPE_TRANSFER_UNSYNCHRONIZED);
239	if (!map)
240		return false;
241
242	uint32_t *fence = (uint32_t*)(map + fine->offset);
243	return *fence != 0;
244}
245
246static void si_fine_fence_set(struct si_context *ctx,
247			      struct si_fine_fence *fine,
248			      unsigned flags)
249{
250	uint32_t *fence_ptr;
251
252	assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
253
254	/* Use cached system memory for the fence. */
255	u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4,
256		       &fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
257	if (!fine->buf)
258		return;
259
260	*fence_ptr = 0;
261
262	if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
263		uint32_t value = 0x80000000;
264
265		si_cp_write_data(ctx, fine->buf, fine->offset, 4,
266				 V_370_MEM, V_370_PFP, &value);
267	} else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
268		uint64_t fence_va = fine->buf->gpu_address + fine->offset;
269
270		radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf,
271					  RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
272		si_cp_release_mem(ctx,
273				  V_028A90_BOTTOM_OF_PIPE_TS, 0,
274				  EOP_DST_SEL_MEM, EOP_INT_SEL_NONE,
275				  EOP_DATA_SEL_VALUE_32BIT,
276				  NULL, fence_va, 0x80000000,
277				  PIPE_QUERY_GPU_FINISHED);
278	} else {
279		assert(false);
280	}
281}
282
283static boolean si_fence_finish(struct pipe_screen *screen,
284			       struct pipe_context *ctx,
285			       struct pipe_fence_handle *fence,
286			       uint64_t timeout)
287{
288	struct radeon_winsys *rws = ((struct si_screen*)screen)->ws;
289	struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
290	struct si_context *sctx;
291	int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
292
293	ctx = threaded_context_unwrap_sync(ctx);
294	sctx = (struct si_context*)(ctx ? ctx : NULL);
295
296	if (!util_queue_fence_is_signalled(&sfence->ready)) {
297		if (sfence->tc_token) {
298			/* Ensure that si_flush_from_st will be called for
299			 * this fence, but only if we're in the API thread
300			 * where the context is current.
301			 *
302			 * Note that the batch containing the flush may already
303			 * be in flight in the driver thread, so the fence
304			 * may not be ready yet when this call returns.
305			 */
306			threaded_context_flush(ctx, sfence->tc_token,
307					       timeout == 0);
308		}
309
310		if (!timeout)
311			return false;
312
313		if (timeout == PIPE_TIMEOUT_INFINITE) {
314			util_queue_fence_wait(&sfence->ready);
315		} else {
316			if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout))
317				return false;
318		}
319
320		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
321			int64_t time = os_time_get_nano();
322			timeout = abs_timeout > time ? abs_timeout - time : 0;
323		}
324	}
325
326	if (sfence->sdma) {
327		if (!rws->fence_wait(rws, sfence->sdma, timeout))
328			return false;
329
330		/* Recompute the timeout after waiting. */
331		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
332			int64_t time = os_time_get_nano();
333			timeout = abs_timeout > time ? abs_timeout - time : 0;
334		}
335	}
336
337	if (!sfence->gfx)
338		return true;
339
340	if (sfence->fine.buf &&
341	    si_fine_fence_signaled(rws, &sfence->fine)) {
342		rws->fence_reference(&sfence->gfx, NULL);
343		si_resource_reference(&sfence->fine.buf, NULL);
344		return true;
345	}
346
347	/* Flush the gfx IB if it hasn't been flushed yet. */
348	if (sctx && sfence->gfx_unflushed.ctx == sctx &&
349	    sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
350		/* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
351		 * spec says:
352		 *
353		 *    "If the sync object being blocked upon will not be
354		 *     signaled in finite time (for example, by an associated
355		 *     fence command issued previously, but not yet flushed to
356		 *     the graphics pipeline), then ClientWaitSync may hang
357		 *     forever. To help prevent this behavior, if
358		 *     ClientWaitSync is called and all of the following are
359		 *     true:
360		 *
361		 *     * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
362		 *     * sync is unsignaled when ClientWaitSync is called,
363		 *     * and the calls to ClientWaitSync and FenceSync were
364		 *       issued from the same context,
365		 *
366		 *     then the GL will behave as if the equivalent of Flush
367		 *     were inserted immediately after the creation of sync."
368		 *
369		 * This means we need to flush for such fences even when we're
370		 * not going to wait.
371		 */
372		si_flush_gfx_cs(sctx,
373				(timeout ? 0 : PIPE_FLUSH_ASYNC) |
374				 RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
375				NULL);
376		sfence->gfx_unflushed.ctx = NULL;
377
378		if (!timeout)
379			return false;
380
381		/* Recompute the timeout after all that. */
382		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
383			int64_t time = os_time_get_nano();
384			timeout = abs_timeout > time ? abs_timeout - time : 0;
385		}
386	}
387
388	if (rws->fence_wait(rws, sfence->gfx, timeout))
389		return true;
390
391	/* Re-check in case the GPU is slow or hangs, but the commands before
392	 * the fine-grained fence have completed. */
393	if (sfence->fine.buf &&
394	    si_fine_fence_signaled(rws, &sfence->fine))
395		return true;
396
397	return false;
398}
399
400static void si_create_fence_fd(struct pipe_context *ctx,
401			       struct pipe_fence_handle **pfence, int fd,
402			       enum pipe_fd_type type)
403{
404	struct si_screen *sscreen = (struct si_screen*)ctx->screen;
405	struct radeon_winsys *ws = sscreen->ws;
406	struct si_multi_fence *sfence;
407
408	*pfence = NULL;
409
410	sfence = si_create_multi_fence();
411	if (!sfence)
412		return;
413
414	switch (type) {
415	case PIPE_FD_TYPE_NATIVE_SYNC:
416		if (!sscreen->info.has_fence_to_handle)
417			goto finish;
418
419		sfence->gfx = ws->fence_import_sync_file(ws, fd);
420		break;
421
422	case PIPE_FD_TYPE_SYNCOBJ:
423		if (!sscreen->info.has_syncobj)
424			goto finish;
425
426		sfence->gfx = ws->fence_import_syncobj(ws, fd);
427		break;
428
429	default:
430		unreachable("bad fence fd type when importing");
431	}
432
433finish:
434	if (!sfence->gfx) {
435		FREE(sfence);
436		return;
437	}
438
439	*pfence = (struct pipe_fence_handle*)sfence;
440}
441
442static int si_fence_get_fd(struct pipe_screen *screen,
443			   struct pipe_fence_handle *fence)
444{
445	struct si_screen *sscreen = (struct si_screen*)screen;
446	struct radeon_winsys *ws = sscreen->ws;
447	struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
448	int gfx_fd = -1, sdma_fd = -1;
449
450	if (!sscreen->info.has_fence_to_handle)
451		return -1;
452
453	util_queue_fence_wait(&sfence->ready);
454
455	/* Deferred fences aren't supported. */
456	assert(!sfence->gfx_unflushed.ctx);
457	if (sfence->gfx_unflushed.ctx)
458		return -1;
459
460	if (sfence->sdma) {
461		sdma_fd = ws->fence_export_sync_file(ws, sfence->sdma);
462		if (sdma_fd == -1)
463			return -1;
464	}
465	if (sfence->gfx) {
466		gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx);
467		if (gfx_fd == -1) {
468			if (sdma_fd != -1)
469				close(sdma_fd);
470			return -1;
471		}
472	}
473
474	/* If we don't have FDs at this point, it means we don't have fences
475	 * either. */
476	if (sdma_fd == -1 && gfx_fd == -1)
477		return ws->export_signalled_sync_file(ws);
478	if (sdma_fd == -1)
479		return gfx_fd;
480	if (gfx_fd == -1)
481		return sdma_fd;
482
483	/* Get a fence that will be a combination of both fences. */
484	sync_accumulate("radeonsi", &gfx_fd, sdma_fd);
485	close(sdma_fd);
486	return gfx_fd;
487}
488
489static void si_flush_from_st(struct pipe_context *ctx,
490			     struct pipe_fence_handle **fence,
491			     unsigned flags)
492{
493	struct pipe_screen *screen = ctx->screen;
494	struct si_context *sctx = (struct si_context *)ctx;
495	struct radeon_winsys *ws = sctx->ws;
496	struct pipe_fence_handle *gfx_fence = NULL;
497	struct pipe_fence_handle *sdma_fence = NULL;
498	bool deferred_fence = false;
499	struct si_fine_fence fine = {};
500	unsigned rflags = PIPE_FLUSH_ASYNC;
501
502	if (flags & PIPE_FLUSH_END_OF_FRAME)
503		rflags |= PIPE_FLUSH_END_OF_FRAME;
504
505	if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
506		assert(flags & PIPE_FLUSH_DEFERRED);
507		assert(fence);
508
509		si_fine_fence_set(sctx, &fine, flags);
510	}
511
512	/* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
513	if (sctx->dma_cs)
514		si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL);
515
516	if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
517		if (fence)
518			ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
519		if (!(flags & PIPE_FLUSH_DEFERRED))
520			ws->cs_sync_flush(sctx->gfx_cs);
521	} else {
522		/* Instead of flushing, create a deferred fence. Constraints:
523		 * - The state tracker must allow a deferred flush.
524		 * - The state tracker must request a fence.
525		 * - fence_get_fd is not allowed.
526		 * Thread safety in fence_finish must be ensured by the state tracker.
527		 */
528		if (flags & PIPE_FLUSH_DEFERRED &&
529		    !(flags & PIPE_FLUSH_FENCE_FD) &&
530		    fence) {
531			gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs);
532			deferred_fence = true;
533		} else {
534			si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
535		}
536	}
537
538	/* Both engines can signal out of order, so we need to keep both fences. */
539	if (fence) {
540		struct si_multi_fence *multi_fence;
541
542		if (flags & TC_FLUSH_ASYNC) {
543			multi_fence = (struct si_multi_fence *)*fence;
544			assert(multi_fence);
545		} else {
546			multi_fence = si_create_multi_fence();
547			if (!multi_fence) {
548				ws->fence_reference(&sdma_fence, NULL);
549				ws->fence_reference(&gfx_fence, NULL);
550				goto finish;
551			}
552
553			screen->fence_reference(screen, fence, NULL);
554			*fence = (struct pipe_fence_handle*)multi_fence;
555		}
556
557		/* If both fences are NULL, fence_finish will always return true. */
558		multi_fence->gfx = gfx_fence;
559		multi_fence->sdma = sdma_fence;
560
561		if (deferred_fence) {
562			multi_fence->gfx_unflushed.ctx = sctx;
563			multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
564		}
565
566		multi_fence->fine = fine;
567		fine.buf = NULL;
568
569		if (flags & TC_FLUSH_ASYNC) {
570			util_queue_fence_signal(&multi_fence->ready);
571			tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL);
572		}
573	}
574	assert(!fine.buf);
575finish:
576	if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) {
577		if (sctx->dma_cs)
578			ws->cs_sync_flush(sctx->dma_cs);
579		ws->cs_sync_flush(sctx->gfx_cs);
580	}
581}
582
583static void si_fence_server_signal(struct pipe_context *ctx,
584				   struct pipe_fence_handle *fence)
585{
586	struct si_context *sctx = (struct si_context *)ctx;
587	struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
588
589	/* We should have at least one syncobj to signal */
590	assert(sfence->sdma || sfence->gfx);
591
592	if (sfence->sdma)
593		si_add_syncobj_signal(sctx, sfence->sdma);
594	if (sfence->gfx)
595		si_add_syncobj_signal(sctx, sfence->gfx);
596
597	/**
598	 * The spec does not require a flush here. We insert a flush
599	 * because syncobj based signals are not directly placed into
600	 * the command stream. Instead the signal happens when the
601	 * submission associated with the syncobj finishes execution.
602	 *
603	 * Therefore, we must make sure that we flush the pipe to avoid
604	 * new work being emitted and getting executed before the signal
605	 * operation.
606	 */
607	si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
608}
609
610static void si_fence_server_sync(struct pipe_context *ctx,
611				 struct pipe_fence_handle *fence)
612{
613	struct si_context *sctx = (struct si_context *)ctx;
614	struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
615
616	util_queue_fence_wait(&sfence->ready);
617
618	/* Unflushed fences from the same context are no-ops. */
619	if (sfence->gfx_unflushed.ctx &&
620	    sfence->gfx_unflushed.ctx == sctx)
621		return;
622
623	/* All unflushed commands will not start execution before
624	 * this fence dependency is signalled.
625	 *
626	 * Therefore we must flush before inserting the dependency
627	 */
628	si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
629
630	if (sfence->sdma)
631		si_add_fence_dependency(sctx, sfence->sdma);
632	if (sfence->gfx)
633		si_add_fence_dependency(sctx, sfence->gfx);
634}
635
636void si_init_fence_functions(struct si_context *ctx)
637{
638	ctx->b.flush = si_flush_from_st;
639	ctx->b.create_fence_fd = si_create_fence_fd;
640	ctx->b.fence_server_sync = si_fence_server_sync;
641	ctx->b.fence_server_signal = si_fence_server_signal;
642}
643
644void si_init_screen_fence_functions(struct si_screen *screen)
645{
646	screen->b.fence_finish = si_fence_finish;
647	screen->b.fence_reference = si_fence_reference;
648	screen->b.fence_get_fd = si_fence_get_fd;
649}
650