si_fence.c revision 9f464c52
1/* 2 * Copyright 2013-2017 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 * 24 */ 25 26#include <libsync.h> 27 28#include "util/os_time.h" 29#include "util/u_memory.h" 30#include "util/u_queue.h" 31#include "util/u_upload_mgr.h" 32 33#include "si_build_pm4.h" 34 35struct si_fine_fence { 36 struct si_resource *buf; 37 unsigned offset; 38}; 39 40struct si_multi_fence { 41 struct pipe_reference reference; 42 struct pipe_fence_handle *gfx; 43 struct pipe_fence_handle *sdma; 44 struct tc_unflushed_batch_token *tc_token; 45 struct util_queue_fence ready; 46 47 /* If the context wasn't flushed at fence creation, this is non-NULL. */ 48 struct { 49 struct si_context *ctx; 50 unsigned ib_index; 51 } gfx_unflushed; 52 53 struct si_fine_fence fine; 54}; 55 56/** 57 * Write an EOP event. 58 * 59 * \param event EVENT_TYPE_* 60 * \param event_flags Optional cache flush flags (TC) 61 * \param dst_sel MEM or TC_L2 62 * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM 63 * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS 64 * \param buf Buffer 65 * \param va GPU address 66 * \param old_value Previous fence value (for a bug workaround) 67 * \param new_value Fence value to write for this event. 68 */ 69void si_cp_release_mem(struct si_context *ctx, 70 unsigned event, unsigned event_flags, 71 unsigned dst_sel, unsigned int_sel, unsigned data_sel, 72 struct si_resource *buf, uint64_t va, 73 uint32_t new_fence, unsigned query_type) 74{ 75 struct radeon_cmdbuf *cs = ctx->gfx_cs; 76 unsigned op = EVENT_TYPE(event) | 77 EVENT_INDEX(event == V_028A90_CS_DONE || 78 event == V_028A90_PS_DONE ? 6 : 5) | 79 event_flags; 80 unsigned sel = EOP_DST_SEL(dst_sel) | 81 EOP_INT_SEL(int_sel) | 82 EOP_DATA_SEL(data_sel); 83 84 if (ctx->chip_class >= GFX9) { 85 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion 86 * counters) must immediately precede every timestamp event to 87 * prevent a GPU hang on GFX9. 88 * 89 * Occlusion queries don't need to do it here, because they 90 * always do ZPASS_DONE before the timestamp. 91 */ 92 if (ctx->chip_class == GFX9 && 93 query_type != PIPE_QUERY_OCCLUSION_COUNTER && 94 query_type != PIPE_QUERY_OCCLUSION_PREDICATE && 95 query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { 96 struct si_resource *scratch = ctx->eop_bug_scratch; 97 98 assert(16 * ctx->screen->info.num_render_backends <= 99 scratch->b.b.width0); 100 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); 101 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); 102 radeon_emit(cs, scratch->gpu_address); 103 radeon_emit(cs, scratch->gpu_address >> 32); 104 105 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, 106 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); 107 } 108 109 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0)); 110 radeon_emit(cs, op); 111 radeon_emit(cs, sel); 112 radeon_emit(cs, va); /* address lo */ 113 radeon_emit(cs, va >> 32); /* address hi */ 114 radeon_emit(cs, new_fence); /* immediate data lo */ 115 radeon_emit(cs, 0); /* immediate data hi */ 116 radeon_emit(cs, 0); /* unused */ 117 } else { 118 if (ctx->chip_class == CIK || 119 ctx->chip_class == VI) { 120 struct si_resource *scratch = ctx->eop_bug_scratch; 121 uint64_t va = scratch->gpu_address; 122 123 /* Two EOP events are required to make all engines go idle 124 * (and optional cache flushes executed) before the timestamp 125 * is written. 126 */ 127 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); 128 radeon_emit(cs, op); 129 radeon_emit(cs, va); 130 radeon_emit(cs, ((va >> 32) & 0xffff) | sel); 131 radeon_emit(cs, 0); /* immediate data */ 132 radeon_emit(cs, 0); /* unused */ 133 134 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, 135 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); 136 } 137 138 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); 139 radeon_emit(cs, op); 140 radeon_emit(cs, va); 141 radeon_emit(cs, ((va >> 32) & 0xffff) | sel); 142 radeon_emit(cs, new_fence); /* immediate data */ 143 radeon_emit(cs, 0); /* unused */ 144 } 145 146 if (buf) { 147 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE, 148 RADEON_PRIO_QUERY); 149 } 150} 151 152unsigned si_cp_write_fence_dwords(struct si_screen *screen) 153{ 154 unsigned dwords = 6; 155 156 if (screen->info.chip_class == CIK || 157 screen->info.chip_class == VI) 158 dwords *= 2; 159 160 return dwords; 161} 162 163void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, 164 uint64_t va, uint32_t ref, uint32_t mask, unsigned flags) 165{ 166 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); 167 radeon_emit(cs, WAIT_REG_MEM_MEM_SPACE(1) | flags); 168 radeon_emit(cs, va); 169 radeon_emit(cs, va >> 32); 170 radeon_emit(cs, ref); /* reference value */ 171 radeon_emit(cs, mask); /* mask */ 172 radeon_emit(cs, 4); /* poll interval */ 173} 174 175static void si_add_fence_dependency(struct si_context *sctx, 176 struct pipe_fence_handle *fence) 177{ 178 struct radeon_winsys *ws = sctx->ws; 179 180 if (sctx->dma_cs) 181 ws->cs_add_fence_dependency(sctx->dma_cs, fence); 182 ws->cs_add_fence_dependency(sctx->gfx_cs, fence); 183} 184 185static void si_add_syncobj_signal(struct si_context *sctx, 186 struct pipe_fence_handle *fence) 187{ 188 sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence); 189} 190 191static void si_fence_reference(struct pipe_screen *screen, 192 struct pipe_fence_handle **dst, 193 struct pipe_fence_handle *src) 194{ 195 struct radeon_winsys *ws = ((struct si_screen*)screen)->ws; 196 struct si_multi_fence **sdst = (struct si_multi_fence **)dst; 197 struct si_multi_fence *ssrc = (struct si_multi_fence *)src; 198 199 if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) { 200 ws->fence_reference(&(*sdst)->gfx, NULL); 201 ws->fence_reference(&(*sdst)->sdma, NULL); 202 tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL); 203 si_resource_reference(&(*sdst)->fine.buf, NULL); 204 FREE(*sdst); 205 } 206 *sdst = ssrc; 207} 208 209static struct si_multi_fence *si_create_multi_fence() 210{ 211 struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence); 212 if (!fence) 213 return NULL; 214 215 pipe_reference_init(&fence->reference, 1); 216 util_queue_fence_init(&fence->ready); 217 218 return fence; 219} 220 221struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx, 222 struct tc_unflushed_batch_token *tc_token) 223{ 224 struct si_multi_fence *fence = si_create_multi_fence(); 225 if (!fence) 226 return NULL; 227 228 util_queue_fence_reset(&fence->ready); 229 tc_unflushed_batch_token_reference(&fence->tc_token, tc_token); 230 231 return (struct pipe_fence_handle *)fence; 232} 233 234static bool si_fine_fence_signaled(struct radeon_winsys *rws, 235 const struct si_fine_fence *fine) 236{ 237 char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ | 238 PIPE_TRANSFER_UNSYNCHRONIZED); 239 if (!map) 240 return false; 241 242 uint32_t *fence = (uint32_t*)(map + fine->offset); 243 return *fence != 0; 244} 245 246static void si_fine_fence_set(struct si_context *ctx, 247 struct si_fine_fence *fine, 248 unsigned flags) 249{ 250 uint32_t *fence_ptr; 251 252 assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1); 253 254 /* Use cached system memory for the fence. */ 255 u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, 256 &fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr); 257 if (!fine->buf) 258 return; 259 260 *fence_ptr = 0; 261 262 if (flags & PIPE_FLUSH_TOP_OF_PIPE) { 263 uint32_t value = 0x80000000; 264 265 si_cp_write_data(ctx, fine->buf, fine->offset, 4, 266 V_370_MEM, V_370_PFP, &value); 267 } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) { 268 uint64_t fence_va = fine->buf->gpu_address + fine->offset; 269 270 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf, 271 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); 272 si_cp_release_mem(ctx, 273 V_028A90_BOTTOM_OF_PIPE_TS, 0, 274 EOP_DST_SEL_MEM, EOP_INT_SEL_NONE, 275 EOP_DATA_SEL_VALUE_32BIT, 276 NULL, fence_va, 0x80000000, 277 PIPE_QUERY_GPU_FINISHED); 278 } else { 279 assert(false); 280 } 281} 282 283static boolean si_fence_finish(struct pipe_screen *screen, 284 struct pipe_context *ctx, 285 struct pipe_fence_handle *fence, 286 uint64_t timeout) 287{ 288 struct radeon_winsys *rws = ((struct si_screen*)screen)->ws; 289 struct si_multi_fence *sfence = (struct si_multi_fence *)fence; 290 struct si_context *sctx; 291 int64_t abs_timeout = os_time_get_absolute_timeout(timeout); 292 293 ctx = threaded_context_unwrap_sync(ctx); 294 sctx = (struct si_context*)(ctx ? ctx : NULL); 295 296 if (!util_queue_fence_is_signalled(&sfence->ready)) { 297 if (sfence->tc_token) { 298 /* Ensure that si_flush_from_st will be called for 299 * this fence, but only if we're in the API thread 300 * where the context is current. 301 * 302 * Note that the batch containing the flush may already 303 * be in flight in the driver thread, so the fence 304 * may not be ready yet when this call returns. 305 */ 306 threaded_context_flush(ctx, sfence->tc_token, 307 timeout == 0); 308 } 309 310 if (!timeout) 311 return false; 312 313 if (timeout == PIPE_TIMEOUT_INFINITE) { 314 util_queue_fence_wait(&sfence->ready); 315 } else { 316 if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout)) 317 return false; 318 } 319 320 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 321 int64_t time = os_time_get_nano(); 322 timeout = abs_timeout > time ? abs_timeout - time : 0; 323 } 324 } 325 326 if (sfence->sdma) { 327 if (!rws->fence_wait(rws, sfence->sdma, timeout)) 328 return false; 329 330 /* Recompute the timeout after waiting. */ 331 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 332 int64_t time = os_time_get_nano(); 333 timeout = abs_timeout > time ? abs_timeout - time : 0; 334 } 335 } 336 337 if (!sfence->gfx) 338 return true; 339 340 if (sfence->fine.buf && 341 si_fine_fence_signaled(rws, &sfence->fine)) { 342 rws->fence_reference(&sfence->gfx, NULL); 343 si_resource_reference(&sfence->fine.buf, NULL); 344 return true; 345 } 346 347 /* Flush the gfx IB if it hasn't been flushed yet. */ 348 if (sctx && sfence->gfx_unflushed.ctx == sctx && 349 sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) { 350 /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile) 351 * spec says: 352 * 353 * "If the sync object being blocked upon will not be 354 * signaled in finite time (for example, by an associated 355 * fence command issued previously, but not yet flushed to 356 * the graphics pipeline), then ClientWaitSync may hang 357 * forever. To help prevent this behavior, if 358 * ClientWaitSync is called and all of the following are 359 * true: 360 * 361 * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, 362 * * sync is unsignaled when ClientWaitSync is called, 363 * * and the calls to ClientWaitSync and FenceSync were 364 * issued from the same context, 365 * 366 * then the GL will behave as if the equivalent of Flush 367 * were inserted immediately after the creation of sync." 368 * 369 * This means we need to flush for such fences even when we're 370 * not going to wait. 371 */ 372 si_flush_gfx_cs(sctx, 373 (timeout ? 0 : PIPE_FLUSH_ASYNC) | 374 RADEON_FLUSH_START_NEXT_GFX_IB_NOW, 375 NULL); 376 sfence->gfx_unflushed.ctx = NULL; 377 378 if (!timeout) 379 return false; 380 381 /* Recompute the timeout after all that. */ 382 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 383 int64_t time = os_time_get_nano(); 384 timeout = abs_timeout > time ? abs_timeout - time : 0; 385 } 386 } 387 388 if (rws->fence_wait(rws, sfence->gfx, timeout)) 389 return true; 390 391 /* Re-check in case the GPU is slow or hangs, but the commands before 392 * the fine-grained fence have completed. */ 393 if (sfence->fine.buf && 394 si_fine_fence_signaled(rws, &sfence->fine)) 395 return true; 396 397 return false; 398} 399 400static void si_create_fence_fd(struct pipe_context *ctx, 401 struct pipe_fence_handle **pfence, int fd, 402 enum pipe_fd_type type) 403{ 404 struct si_screen *sscreen = (struct si_screen*)ctx->screen; 405 struct radeon_winsys *ws = sscreen->ws; 406 struct si_multi_fence *sfence; 407 408 *pfence = NULL; 409 410 sfence = si_create_multi_fence(); 411 if (!sfence) 412 return; 413 414 switch (type) { 415 case PIPE_FD_TYPE_NATIVE_SYNC: 416 if (!sscreen->info.has_fence_to_handle) 417 goto finish; 418 419 sfence->gfx = ws->fence_import_sync_file(ws, fd); 420 break; 421 422 case PIPE_FD_TYPE_SYNCOBJ: 423 if (!sscreen->info.has_syncobj) 424 goto finish; 425 426 sfence->gfx = ws->fence_import_syncobj(ws, fd); 427 break; 428 429 default: 430 unreachable("bad fence fd type when importing"); 431 } 432 433finish: 434 if (!sfence->gfx) { 435 FREE(sfence); 436 return; 437 } 438 439 *pfence = (struct pipe_fence_handle*)sfence; 440} 441 442static int si_fence_get_fd(struct pipe_screen *screen, 443 struct pipe_fence_handle *fence) 444{ 445 struct si_screen *sscreen = (struct si_screen*)screen; 446 struct radeon_winsys *ws = sscreen->ws; 447 struct si_multi_fence *sfence = (struct si_multi_fence *)fence; 448 int gfx_fd = -1, sdma_fd = -1; 449 450 if (!sscreen->info.has_fence_to_handle) 451 return -1; 452 453 util_queue_fence_wait(&sfence->ready); 454 455 /* Deferred fences aren't supported. */ 456 assert(!sfence->gfx_unflushed.ctx); 457 if (sfence->gfx_unflushed.ctx) 458 return -1; 459 460 if (sfence->sdma) { 461 sdma_fd = ws->fence_export_sync_file(ws, sfence->sdma); 462 if (sdma_fd == -1) 463 return -1; 464 } 465 if (sfence->gfx) { 466 gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx); 467 if (gfx_fd == -1) { 468 if (sdma_fd != -1) 469 close(sdma_fd); 470 return -1; 471 } 472 } 473 474 /* If we don't have FDs at this point, it means we don't have fences 475 * either. */ 476 if (sdma_fd == -1 && gfx_fd == -1) 477 return ws->export_signalled_sync_file(ws); 478 if (sdma_fd == -1) 479 return gfx_fd; 480 if (gfx_fd == -1) 481 return sdma_fd; 482 483 /* Get a fence that will be a combination of both fences. */ 484 sync_accumulate("radeonsi", &gfx_fd, sdma_fd); 485 close(sdma_fd); 486 return gfx_fd; 487} 488 489static void si_flush_from_st(struct pipe_context *ctx, 490 struct pipe_fence_handle **fence, 491 unsigned flags) 492{ 493 struct pipe_screen *screen = ctx->screen; 494 struct si_context *sctx = (struct si_context *)ctx; 495 struct radeon_winsys *ws = sctx->ws; 496 struct pipe_fence_handle *gfx_fence = NULL; 497 struct pipe_fence_handle *sdma_fence = NULL; 498 bool deferred_fence = false; 499 struct si_fine_fence fine = {}; 500 unsigned rflags = PIPE_FLUSH_ASYNC; 501 502 if (flags & PIPE_FLUSH_END_OF_FRAME) 503 rflags |= PIPE_FLUSH_END_OF_FRAME; 504 505 if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) { 506 assert(flags & PIPE_FLUSH_DEFERRED); 507 assert(fence); 508 509 si_fine_fence_set(sctx, &fine, flags); 510 } 511 512 /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */ 513 if (sctx->dma_cs) 514 si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL); 515 516 if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) { 517 if (fence) 518 ws->fence_reference(&gfx_fence, sctx->last_gfx_fence); 519 if (!(flags & PIPE_FLUSH_DEFERRED)) 520 ws->cs_sync_flush(sctx->gfx_cs); 521 } else { 522 /* Instead of flushing, create a deferred fence. Constraints: 523 * - The state tracker must allow a deferred flush. 524 * - The state tracker must request a fence. 525 * - fence_get_fd is not allowed. 526 * Thread safety in fence_finish must be ensured by the state tracker. 527 */ 528 if (flags & PIPE_FLUSH_DEFERRED && 529 !(flags & PIPE_FLUSH_FENCE_FD) && 530 fence) { 531 gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs); 532 deferred_fence = true; 533 } else { 534 si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL); 535 } 536 } 537 538 /* Both engines can signal out of order, so we need to keep both fences. */ 539 if (fence) { 540 struct si_multi_fence *multi_fence; 541 542 if (flags & TC_FLUSH_ASYNC) { 543 multi_fence = (struct si_multi_fence *)*fence; 544 assert(multi_fence); 545 } else { 546 multi_fence = si_create_multi_fence(); 547 if (!multi_fence) { 548 ws->fence_reference(&sdma_fence, NULL); 549 ws->fence_reference(&gfx_fence, NULL); 550 goto finish; 551 } 552 553 screen->fence_reference(screen, fence, NULL); 554 *fence = (struct pipe_fence_handle*)multi_fence; 555 } 556 557 /* If both fences are NULL, fence_finish will always return true. */ 558 multi_fence->gfx = gfx_fence; 559 multi_fence->sdma = sdma_fence; 560 561 if (deferred_fence) { 562 multi_fence->gfx_unflushed.ctx = sctx; 563 multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes; 564 } 565 566 multi_fence->fine = fine; 567 fine.buf = NULL; 568 569 if (flags & TC_FLUSH_ASYNC) { 570 util_queue_fence_signal(&multi_fence->ready); 571 tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL); 572 } 573 } 574 assert(!fine.buf); 575finish: 576 if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) { 577 if (sctx->dma_cs) 578 ws->cs_sync_flush(sctx->dma_cs); 579 ws->cs_sync_flush(sctx->gfx_cs); 580 } 581} 582 583static void si_fence_server_signal(struct pipe_context *ctx, 584 struct pipe_fence_handle *fence) 585{ 586 struct si_context *sctx = (struct si_context *)ctx; 587 struct si_multi_fence *sfence = (struct si_multi_fence *)fence; 588 589 /* We should have at least one syncobj to signal */ 590 assert(sfence->sdma || sfence->gfx); 591 592 if (sfence->sdma) 593 si_add_syncobj_signal(sctx, sfence->sdma); 594 if (sfence->gfx) 595 si_add_syncobj_signal(sctx, sfence->gfx); 596 597 /** 598 * The spec does not require a flush here. We insert a flush 599 * because syncobj based signals are not directly placed into 600 * the command stream. Instead the signal happens when the 601 * submission associated with the syncobj finishes execution. 602 * 603 * Therefore, we must make sure that we flush the pipe to avoid 604 * new work being emitted and getting executed before the signal 605 * operation. 606 */ 607 si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); 608} 609 610static void si_fence_server_sync(struct pipe_context *ctx, 611 struct pipe_fence_handle *fence) 612{ 613 struct si_context *sctx = (struct si_context *)ctx; 614 struct si_multi_fence *sfence = (struct si_multi_fence *)fence; 615 616 util_queue_fence_wait(&sfence->ready); 617 618 /* Unflushed fences from the same context are no-ops. */ 619 if (sfence->gfx_unflushed.ctx && 620 sfence->gfx_unflushed.ctx == sctx) 621 return; 622 623 /* All unflushed commands will not start execution before 624 * this fence dependency is signalled. 625 * 626 * Therefore we must flush before inserting the dependency 627 */ 628 si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); 629 630 if (sfence->sdma) 631 si_add_fence_dependency(sctx, sfence->sdma); 632 if (sfence->gfx) 633 si_add_fence_dependency(sctx, sfence->gfx); 634} 635 636void si_init_fence_functions(struct si_context *ctx) 637{ 638 ctx->b.flush = si_flush_from_st; 639 ctx->b.create_fence_fd = si_create_fence_fd; 640 ctx->b.fence_server_sync = si_fence_server_sync; 641 ctx->b.fence_server_signal = si_fence_server_signal; 642} 643 644void si_init_screen_fence_functions(struct si_screen *screen) 645{ 646 screen->b.fence_finish = si_fence_finish; 647 screen->b.fence_reference = si_fence_reference; 648 screen->b.fence_get_fd = si_fence_get_fd; 649} 650