brw_cfg.cpp revision 9f464c52
1/* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28#include "brw_cfg.h" 29 30/** @file brw_cfg.cpp 31 * 32 * Walks the shader instructions generated and creates a set of basic 33 * blocks with successor/predecessor edges connecting them. 34 */ 35 36static bblock_t * 37pop_stack(exec_list *list) 38{ 39 bblock_link *link = (bblock_link *)list->get_tail(); 40 bblock_t *block = link->block; 41 link->link.remove(); 42 43 return block; 44} 45 46static exec_node * 47link(void *mem_ctx, bblock_t *block) 48{ 49 bblock_link *l = new(mem_ctx) bblock_link(block); 50 return &l->link; 51} 52 53bblock_t::bblock_t(cfg_t *cfg) : 54 cfg(cfg), idom(NULL), start_ip(0), end_ip(0), num(0), cycle_count(0) 55{ 56 instructions.make_empty(); 57 parents.make_empty(); 58 children.make_empty(); 59} 60 61void 62bblock_t::add_successor(void *mem_ctx, bblock_t *successor) 63{ 64 successor->parents.push_tail(::link(mem_ctx, this)); 65 children.push_tail(::link(mem_ctx, successor)); 66} 67 68bool 69bblock_t::is_predecessor_of(const bblock_t *block) const 70{ 71 foreach_list_typed_safe (bblock_link, parent, link, &block->parents) { 72 if (parent->block == this) { 73 return true; 74 } 75 } 76 77 return false; 78} 79 80bool 81bblock_t::is_successor_of(const bblock_t *block) const 82{ 83 foreach_list_typed_safe (bblock_link, child, link, &block->children) { 84 if (child->block == this) { 85 return true; 86 } 87 } 88 89 return false; 90} 91 92static bool 93ends_block(const backend_instruction *inst) 94{ 95 enum opcode op = inst->opcode; 96 97 return op == BRW_OPCODE_IF || 98 op == BRW_OPCODE_ELSE || 99 op == BRW_OPCODE_CONTINUE || 100 op == BRW_OPCODE_BREAK || 101 op == BRW_OPCODE_DO || 102 op == BRW_OPCODE_WHILE; 103} 104 105static bool 106starts_block(const backend_instruction *inst) 107{ 108 enum opcode op = inst->opcode; 109 110 return op == BRW_OPCODE_DO || 111 op == BRW_OPCODE_ENDIF; 112} 113 114bool 115bblock_t::can_combine_with(const bblock_t *that) const 116{ 117 if ((const bblock_t *)this->link.next != that) 118 return false; 119 120 if (ends_block(this->end()) || 121 starts_block(that->start())) 122 return false; 123 124 return true; 125} 126 127void 128bblock_t::combine_with(bblock_t *that) 129{ 130 assert(this->can_combine_with(that)); 131 foreach_list_typed (bblock_link, link, link, &that->parents) { 132 assert(link->block == this); 133 } 134 135 this->end_ip = that->end_ip; 136 this->instructions.append_list(&that->instructions); 137 138 this->cfg->remove_block(that); 139} 140 141void 142bblock_t::dump(backend_shader *s) const 143{ 144 int ip = this->start_ip; 145 foreach_inst_in_block(backend_instruction, inst, this) { 146 fprintf(stderr, "%5d: ", ip); 147 s->dump_instruction(inst); 148 ip++; 149 } 150} 151 152cfg_t::cfg_t(exec_list *instructions) 153{ 154 mem_ctx = ralloc_context(NULL); 155 block_list.make_empty(); 156 blocks = NULL; 157 num_blocks = 0; 158 idom_dirty = true; 159 cycle_count = 0; 160 161 bblock_t *cur = NULL; 162 int ip = 0; 163 164 bblock_t *entry = new_block(); 165 bblock_t *cur_if = NULL; /**< BB ending with IF. */ 166 bblock_t *cur_else = NULL; /**< BB ending with ELSE. */ 167 bblock_t *cur_endif = NULL; /**< BB starting with ENDIF. */ 168 bblock_t *cur_do = NULL; /**< BB starting with DO. */ 169 bblock_t *cur_while = NULL; /**< BB immediately following WHILE. */ 170 exec_list if_stack, else_stack, do_stack, while_stack; 171 bblock_t *next; 172 173 set_next_block(&cur, entry, ip); 174 175 foreach_in_list_safe(backend_instruction, inst, instructions) { 176 /* set_next_block wants the post-incremented ip */ 177 ip++; 178 179 inst->exec_node::remove(); 180 181 switch (inst->opcode) { 182 case BRW_OPCODE_IF: 183 cur->instructions.push_tail(inst); 184 185 /* Push our information onto a stack so we can recover from 186 * nested ifs. 187 */ 188 if_stack.push_tail(link(mem_ctx, cur_if)); 189 else_stack.push_tail(link(mem_ctx, cur_else)); 190 191 cur_if = cur; 192 cur_else = NULL; 193 cur_endif = NULL; 194 195 /* Set up our immediately following block, full of "then" 196 * instructions. 197 */ 198 next = new_block(); 199 cur_if->add_successor(mem_ctx, next); 200 201 set_next_block(&cur, next, ip); 202 break; 203 204 case BRW_OPCODE_ELSE: 205 cur->instructions.push_tail(inst); 206 207 cur_else = cur; 208 209 next = new_block(); 210 assert(cur_if != NULL); 211 cur_if->add_successor(mem_ctx, next); 212 213 set_next_block(&cur, next, ip); 214 break; 215 216 case BRW_OPCODE_ENDIF: { 217 if (cur->instructions.is_empty()) { 218 /* New block was just created; use it. */ 219 cur_endif = cur; 220 } else { 221 cur_endif = new_block(); 222 223 cur->add_successor(mem_ctx, cur_endif); 224 225 set_next_block(&cur, cur_endif, ip - 1); 226 } 227 228 cur->instructions.push_tail(inst); 229 230 if (cur_else) { 231 cur_else->add_successor(mem_ctx, cur_endif); 232 } else { 233 assert(cur_if != NULL); 234 cur_if->add_successor(mem_ctx, cur_endif); 235 } 236 237 assert(cur_if->end()->opcode == BRW_OPCODE_IF); 238 assert(!cur_else || cur_else->end()->opcode == BRW_OPCODE_ELSE); 239 240 /* Pop the stack so we're in the previous if/else/endif */ 241 cur_if = pop_stack(&if_stack); 242 cur_else = pop_stack(&else_stack); 243 break; 244 } 245 case BRW_OPCODE_DO: 246 /* Push our information onto a stack so we can recover from 247 * nested loops. 248 */ 249 do_stack.push_tail(link(mem_ctx, cur_do)); 250 while_stack.push_tail(link(mem_ctx, cur_while)); 251 252 /* Set up the block just after the while. Don't know when exactly 253 * it will start, yet. 254 */ 255 cur_while = new_block(); 256 257 if (cur->instructions.is_empty()) { 258 /* New block was just created; use it. */ 259 cur_do = cur; 260 } else { 261 cur_do = new_block(); 262 263 cur->add_successor(mem_ctx, cur_do); 264 265 set_next_block(&cur, cur_do, ip - 1); 266 } 267 268 cur->instructions.push_tail(inst); 269 270 /* Represent divergent execution of the loop as a pair of alternative 271 * edges coming out of the DO instruction: For any physical iteration 272 * of the loop a given logical thread can either start off enabled 273 * (which is represented as the "next" successor), or disabled (if it 274 * has reached a non-uniform exit of the loop during a previous 275 * iteration, which is represented as the "cur_while" successor). 276 * 277 * The disabled edge will be taken by the logical thread anytime we 278 * arrive at the DO instruction through a back-edge coming from a 279 * conditional exit of the loop where divergent control flow started. 280 * 281 * This guarantees that there is a control-flow path from any 282 * divergence point of the loop into the convergence point 283 * (immediately past the WHILE instruction) such that it overlaps the 284 * whole IP region of divergent control flow (potentially the whole 285 * loop) *and* doesn't imply the execution of any instructions part 286 * of the loop (since the corresponding execution mask bit will be 287 * disabled for a diverging thread). 288 * 289 * This way we make sure that any variables that are live throughout 290 * the region of divergence for an inactive logical thread are also 291 * considered to interfere with any other variables assigned by 292 * active logical threads within the same physical region of the 293 * program, since otherwise we would risk cross-channel data 294 * corruption. 295 */ 296 next = new_block(); 297 cur->add_successor(mem_ctx, next); 298 cur->add_successor(mem_ctx, cur_while); 299 set_next_block(&cur, next, ip); 300 break; 301 302 case BRW_OPCODE_CONTINUE: 303 cur->instructions.push_tail(inst); 304 305 /* A conditional CONTINUE may start a region of divergent control 306 * flow until the start of the next loop iteration (*not* until the 307 * end of the loop which is why the successor is not the top-level 308 * divergence point at cur_do). The live interval of any variable 309 * extending through a CONTINUE edge is guaranteed to overlap the 310 * whole region of divergent execution, because any variable live-out 311 * at the CONTINUE instruction will also be live-in at the top of the 312 * loop, and therefore also live-out at the bottom-most point of the 313 * loop which is reachable from the top (since a control flow path 314 * exists from a definition of the variable through this CONTINUE 315 * instruction, the top of the loop, the (reachable) bottom of the 316 * loop, the top of the loop again, into a use of the variable). 317 */ 318 assert(cur_do != NULL); 319 cur->add_successor(mem_ctx, cur_do->next()); 320 321 next = new_block(); 322 if (inst->predicate) 323 cur->add_successor(mem_ctx, next); 324 325 set_next_block(&cur, next, ip); 326 break; 327 328 case BRW_OPCODE_BREAK: 329 cur->instructions.push_tail(inst); 330 331 /* A conditional BREAK instruction may start a region of divergent 332 * control flow until the end of the loop if the condition is 333 * non-uniform, in which case the loop will execute additional 334 * iterations with the present channel disabled. We model this as a 335 * control flow path from the divergence point to the convergence 336 * point that overlaps the whole IP range of the loop and skips over 337 * the execution of any other instructions part of the loop. 338 * 339 * See the DO case for additional explanation. 340 */ 341 assert(cur_do != NULL); 342 cur->add_successor(mem_ctx, cur_do); 343 344 next = new_block(); 345 if (inst->predicate) 346 cur->add_successor(mem_ctx, next); 347 348 set_next_block(&cur, next, ip); 349 break; 350 351 case BRW_OPCODE_WHILE: 352 cur->instructions.push_tail(inst); 353 354 assert(cur_do != NULL && cur_while != NULL); 355 356 /* A conditional WHILE instruction may start a region of divergent 357 * control flow until the end of the loop, just like the BREAK 358 * instruction. See the BREAK case for more details. OTOH an 359 * unconditional WHILE instruction is non-divergent (just like an 360 * unconditional CONTINUE), and will necessarily lead to the 361 * execution of an additional iteration of the loop for all enabled 362 * channels, so we may skip over the divergence point at the top of 363 * the loop to keep the CFG as unambiguous as possible. 364 */ 365 cur->add_successor(mem_ctx, inst->predicate ? cur_do : 366 cur_do->next()); 367 368 set_next_block(&cur, cur_while, ip); 369 370 /* Pop the stack so we're in the previous loop */ 371 cur_do = pop_stack(&do_stack); 372 cur_while = pop_stack(&while_stack); 373 break; 374 375 default: 376 cur->instructions.push_tail(inst); 377 break; 378 } 379 } 380 381 cur->end_ip = ip - 1; 382 383 make_block_array(); 384} 385 386cfg_t::~cfg_t() 387{ 388 ralloc_free(mem_ctx); 389} 390 391void 392cfg_t::remove_block(bblock_t *block) 393{ 394 foreach_list_typed_safe (bblock_link, predecessor, link, &block->parents) { 395 /* Remove block from all of its predecessors' successor lists. */ 396 foreach_list_typed_safe (bblock_link, successor, link, 397 &predecessor->block->children) { 398 if (block == successor->block) { 399 successor->link.remove(); 400 ralloc_free(successor); 401 } 402 } 403 404 /* Add removed-block's successors to its predecessors' successor lists. */ 405 foreach_list_typed (bblock_link, successor, link, &block->children) { 406 if (!successor->block->is_successor_of(predecessor->block)) { 407 predecessor->block->children.push_tail(link(mem_ctx, 408 successor->block)); 409 } 410 } 411 } 412 413 foreach_list_typed_safe (bblock_link, successor, link, &block->children) { 414 /* Remove block from all of its childrens' parents lists. */ 415 foreach_list_typed_safe (bblock_link, predecessor, link, 416 &successor->block->parents) { 417 if (block == predecessor->block) { 418 predecessor->link.remove(); 419 ralloc_free(predecessor); 420 } 421 } 422 423 /* Add removed-block's predecessors to its successors' predecessor lists. */ 424 foreach_list_typed (bblock_link, predecessor, link, &block->parents) { 425 if (!predecessor->block->is_predecessor_of(successor->block)) { 426 successor->block->parents.push_tail(link(mem_ctx, 427 predecessor->block)); 428 } 429 } 430 } 431 432 block->link.remove(); 433 434 for (int b = block->num; b < this->num_blocks - 1; b++) { 435 this->blocks[b] = this->blocks[b + 1]; 436 this->blocks[b]->num = b; 437 } 438 439 this->blocks[this->num_blocks - 1]->num = this->num_blocks - 2; 440 this->num_blocks--; 441 idom_dirty = true; 442} 443 444bblock_t * 445cfg_t::new_block() 446{ 447 bblock_t *block = new(mem_ctx) bblock_t(this); 448 449 return block; 450} 451 452void 453cfg_t::set_next_block(bblock_t **cur, bblock_t *block, int ip) 454{ 455 if (*cur) { 456 (*cur)->end_ip = ip - 1; 457 } 458 459 block->start_ip = ip; 460 block->num = num_blocks++; 461 block_list.push_tail(&block->link); 462 *cur = block; 463} 464 465void 466cfg_t::make_block_array() 467{ 468 blocks = ralloc_array(mem_ctx, bblock_t *, num_blocks); 469 470 int i = 0; 471 foreach_block (block, this) { 472 blocks[i++] = block; 473 } 474 assert(i == num_blocks); 475} 476 477void 478cfg_t::dump(backend_shader *s) 479{ 480 if (idom_dirty) 481 calculate_idom(); 482 483 foreach_block (block, this) { 484 if (block->idom) 485 fprintf(stderr, "START B%d IDOM(B%d)", block->num, block->idom->num); 486 else 487 fprintf(stderr, "START B%d IDOM(none)", block->num); 488 489 foreach_list_typed(bblock_link, link, link, &block->parents) { 490 fprintf(stderr, " <-B%d", 491 link->block->num); 492 } 493 fprintf(stderr, "\n"); 494 if (s != NULL) 495 block->dump(s); 496 fprintf(stderr, "END B%d", block->num); 497 foreach_list_typed(bblock_link, link, link, &block->children) { 498 fprintf(stderr, " ->B%d", 499 link->block->num); 500 } 501 fprintf(stderr, "\n"); 502 } 503} 504 505/* Calculates the immediate dominator of each block, according to "A Simple, 506 * Fast Dominance Algorithm" by Keith D. Cooper, Timothy J. Harvey, and Ken 507 * Kennedy. 508 * 509 * The authors claim that for control flow graphs of sizes normally encountered 510 * (less than 1000 nodes) that this algorithm is significantly faster than 511 * others like Lengauer-Tarjan. 512 */ 513void 514cfg_t::calculate_idom() 515{ 516 foreach_block(block, this) { 517 block->idom = NULL; 518 } 519 blocks[0]->idom = blocks[0]; 520 521 bool changed; 522 do { 523 changed = false; 524 525 foreach_block(block, this) { 526 if (block->num == 0) 527 continue; 528 529 bblock_t *new_idom = NULL; 530 foreach_list_typed(bblock_link, parent, link, &block->parents) { 531 if (parent->block->idom) { 532 if (new_idom == NULL) { 533 new_idom = parent->block; 534 } else if (parent->block->idom != NULL) { 535 new_idom = intersect(parent->block, new_idom); 536 } 537 } 538 } 539 540 if (block->idom != new_idom) { 541 block->idom = new_idom; 542 changed = true; 543 } 544 } 545 } while (changed); 546 547 idom_dirty = false; 548} 549 550bblock_t * 551cfg_t::intersect(bblock_t *b1, bblock_t *b2) 552{ 553 /* Note, the comparisons here are the opposite of what the paper says 554 * because we index blocks from beginning -> end (i.e. reverse post-order) 555 * instead of post-order like they assume. 556 */ 557 while (b1->num != b2->num) { 558 while (b1->num > b2->num) 559 b1 = b1->idom; 560 while (b2->num > b1->num) 561 b2 = b2->idom; 562 } 563 assert(b1); 564 return b1; 565} 566 567void 568cfg_t::dump_cfg() 569{ 570 printf("digraph CFG {\n"); 571 for (int b = 0; b < num_blocks; b++) { 572 bblock_t *block = this->blocks[b]; 573 574 foreach_list_typed_safe (bblock_link, child, link, &block->children) { 575 printf("\t%d -> %d\n", b, child->block->num); 576 } 577 } 578 printf("}\n"); 579} 580 581void 582cfg_t::dump_domtree() 583{ 584 printf("digraph DominanceTree {\n"); 585 foreach_block(block, this) { 586 if (block->idom) { 587 printf("\t%d -> %d\n", block->idom->num, block->num); 588 } 589 } 590 printf("}\n"); 591} 592