brw_nir.c revision 7ec681f3
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_nir.h"
25#include "brw_shader.h"
26#include "dev/intel_debug.h"
27#include "compiler/glsl_types.h"
28#include "compiler/nir/nir_builder.h"
29#include "util/u_math.h"
30
31static bool
32remap_tess_levels(nir_builder *b, nir_intrinsic_instr *intr,
33                  GLenum primitive_mode)
34{
35   const int location = nir_intrinsic_base(intr);
36   const unsigned component = nir_intrinsic_component(intr);
37   bool out_of_bounds;
38
39   if (location == VARYING_SLOT_TESS_LEVEL_INNER) {
40      switch (primitive_mode) {
41      case GL_QUADS:
42         /* gl_TessLevelInner[0..1] lives at DWords 3-2 (reversed). */
43         nir_intrinsic_set_base(intr, 0);
44         nir_intrinsic_set_component(intr, 3 - component);
45         out_of_bounds = false;
46         break;
47      case GL_TRIANGLES:
48         /* gl_TessLevelInner[0] lives at DWord 4. */
49         nir_intrinsic_set_base(intr, 1);
50         out_of_bounds = component > 0;
51         break;
52      case GL_ISOLINES:
53         out_of_bounds = true;
54         break;
55      default:
56         unreachable("Bogus tessellation domain");
57      }
58   } else if (location == VARYING_SLOT_TESS_LEVEL_OUTER) {
59      if (primitive_mode == GL_ISOLINES) {
60         /* gl_TessLevelOuter[0..1] lives at DWords 6-7 (in order). */
61         nir_intrinsic_set_base(intr, 1);
62         nir_intrinsic_set_component(intr, 2 + nir_intrinsic_component(intr));
63         out_of_bounds = component > 1;
64      } else {
65         /* Triangles use DWords 7-5 (reversed); Quads use 7-4 (reversed) */
66         nir_intrinsic_set_base(intr, 1);
67         nir_intrinsic_set_component(intr, 3 - nir_intrinsic_component(intr));
68         out_of_bounds = component == 3 && primitive_mode == GL_TRIANGLES;
69      }
70   } else {
71      return false;
72   }
73
74   if (out_of_bounds) {
75      if (nir_intrinsic_infos[intr->intrinsic].has_dest) {
76         b->cursor = nir_before_instr(&intr->instr);
77         nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
78         nir_ssa_def_rewrite_uses(&intr->dest.ssa, undef);
79      }
80      nir_instr_remove(&intr->instr);
81   }
82
83   return true;
84}
85
86static bool
87is_input(nir_intrinsic_instr *intrin)
88{
89   return intrin->intrinsic == nir_intrinsic_load_input ||
90          intrin->intrinsic == nir_intrinsic_load_per_vertex_input ||
91          intrin->intrinsic == nir_intrinsic_load_interpolated_input;
92}
93
94static bool
95is_output(nir_intrinsic_instr *intrin)
96{
97   return intrin->intrinsic == nir_intrinsic_load_output ||
98          intrin->intrinsic == nir_intrinsic_load_per_vertex_output ||
99          intrin->intrinsic == nir_intrinsic_store_output ||
100          intrin->intrinsic == nir_intrinsic_store_per_vertex_output;
101}
102
103
104static bool
105remap_patch_urb_offsets(nir_block *block, nir_builder *b,
106                        const struct brw_vue_map *vue_map,
107                        GLenum tes_primitive_mode)
108{
109   const bool is_passthrough_tcs = b->shader->info.name &&
110      strcmp(b->shader->info.name, "passthrough TCS") == 0;
111
112   nir_foreach_instr_safe(instr, block) {
113      if (instr->type != nir_instr_type_intrinsic)
114         continue;
115
116      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
117
118      gl_shader_stage stage = b->shader->info.stage;
119
120      if ((stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) ||
121          (stage == MESA_SHADER_TESS_EVAL && is_input(intrin))) {
122
123         if (!is_passthrough_tcs &&
124             remap_tess_levels(b, intrin, tes_primitive_mode))
125            continue;
126
127         int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]];
128         assert(vue_slot != -1);
129         intrin->const_index[0] = vue_slot;
130
131         nir_src *vertex = nir_get_io_vertex_index_src(intrin);
132         if (vertex) {
133            if (nir_src_is_const(*vertex)) {
134               intrin->const_index[0] += nir_src_as_uint(*vertex) *
135                                         vue_map->num_per_vertex_slots;
136            } else {
137               b->cursor = nir_before_instr(&intrin->instr);
138
139               /* Multiply by the number of per-vertex slots. */
140               nir_ssa_def *vertex_offset =
141                  nir_imul(b,
142                           nir_ssa_for_src(b, *vertex, 1),
143                           nir_imm_int(b,
144                                       vue_map->num_per_vertex_slots));
145
146               /* Add it to the existing offset */
147               nir_src *offset = nir_get_io_offset_src(intrin);
148               nir_ssa_def *total_offset =
149                  nir_iadd(b, vertex_offset,
150                           nir_ssa_for_src(b, *offset, 1));
151
152               nir_instr_rewrite_src(&intrin->instr, offset,
153                                     nir_src_for_ssa(total_offset));
154            }
155         }
156      }
157   }
158   return true;
159}
160
161void
162brw_nir_lower_vs_inputs(nir_shader *nir,
163                        bool edgeflag_is_last,
164                        const uint8_t *vs_attrib_wa_flags)
165{
166   /* Start with the location of the variable's base. */
167   nir_foreach_shader_in_variable(var, nir)
168      var->data.driver_location = var->data.location;
169
170   /* Now use nir_lower_io to walk dereference chains.  Attribute arrays are
171    * loaded as one vec4 or dvec4 per element (or matrix column), depending on
172    * whether it is a double-precision type or not.
173    */
174   nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
175                nir_lower_io_lower_64bit_to_32);
176
177   /* This pass needs actual constants */
178   nir_opt_constant_folding(nir);
179
180   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
181
182   brw_nir_apply_attribute_workarounds(nir, vs_attrib_wa_flags);
183
184   /* The last step is to remap VERT_ATTRIB_* to actual registers */
185
186   /* Whether or not we have any system generated values.  gl_DrawID is not
187    * included here as it lives in its own vec4.
188    */
189   const bool has_sgvs =
190      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) ||
191      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
192      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) ||
193      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
194
195   const unsigned num_inputs = util_bitcount64(nir->info.inputs_read);
196
197   nir_foreach_function(function, nir) {
198      if (!function->impl)
199         continue;
200
201      nir_builder b;
202      nir_builder_init(&b, function->impl);
203
204      nir_foreach_block(block, function->impl) {
205         nir_foreach_instr_safe(instr, block) {
206            if (instr->type != nir_instr_type_intrinsic)
207               continue;
208
209            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
210
211            switch (intrin->intrinsic) {
212            case nir_intrinsic_load_first_vertex:
213            case nir_intrinsic_load_base_instance:
214            case nir_intrinsic_load_vertex_id_zero_base:
215            case nir_intrinsic_load_instance_id:
216            case nir_intrinsic_load_is_indexed_draw:
217            case nir_intrinsic_load_draw_id: {
218               b.cursor = nir_after_instr(&intrin->instr);
219
220               /* gl_VertexID and friends are stored by the VF as the last
221                * vertex element.  We convert them to load_input intrinsics at
222                * the right location.
223                */
224               nir_intrinsic_instr *load =
225                  nir_intrinsic_instr_create(nir, nir_intrinsic_load_input);
226               load->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
227
228               nir_intrinsic_set_base(load, num_inputs);
229               switch (intrin->intrinsic) {
230               case nir_intrinsic_load_first_vertex:
231                  nir_intrinsic_set_component(load, 0);
232                  break;
233               case nir_intrinsic_load_base_instance:
234                  nir_intrinsic_set_component(load, 1);
235                  break;
236               case nir_intrinsic_load_vertex_id_zero_base:
237                  nir_intrinsic_set_component(load, 2);
238                  break;
239               case nir_intrinsic_load_instance_id:
240                  nir_intrinsic_set_component(load, 3);
241                  break;
242               case nir_intrinsic_load_draw_id:
243               case nir_intrinsic_load_is_indexed_draw:
244                  /* gl_DrawID and IsIndexedDraw are stored right after
245                   * gl_VertexID and friends if any of them exist.
246                   */
247                  nir_intrinsic_set_base(load, num_inputs + has_sgvs);
248                  if (intrin->intrinsic == nir_intrinsic_load_draw_id)
249                     nir_intrinsic_set_component(load, 0);
250                  else
251                     nir_intrinsic_set_component(load, 1);
252                  break;
253               default:
254                  unreachable("Invalid system value intrinsic");
255               }
256
257               load->num_components = 1;
258               nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, NULL);
259               nir_builder_instr_insert(&b, &load->instr);
260
261               nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
262                                        &load->dest.ssa);
263               nir_instr_remove(&intrin->instr);
264               break;
265            }
266
267            case nir_intrinsic_load_input: {
268               /* Attributes come in a contiguous block, ordered by their
269                * gl_vert_attrib value.  That means we can compute the slot
270                * number for an attribute by masking out the enabled attributes
271                * before it and counting the bits.
272                */
273               int attr = nir_intrinsic_base(intrin);
274               uint64_t inputs_read = nir->info.inputs_read;
275               int slot = -1;
276               if (edgeflag_is_last) {
277                  inputs_read &= ~BITFIELD64_BIT(VERT_ATTRIB_EDGEFLAG);
278                  if (attr == VERT_ATTRIB_EDGEFLAG)
279                     slot = num_inputs - 1;
280               }
281               if (slot == -1)
282                  slot = util_bitcount64(inputs_read &
283                                         BITFIELD64_MASK(attr));
284               nir_intrinsic_set_base(intrin, slot);
285               break;
286            }
287
288            default:
289               break; /* Nothing to do */
290            }
291         }
292      }
293   }
294}
295
296void
297brw_nir_lower_vue_inputs(nir_shader *nir,
298                         const struct brw_vue_map *vue_map)
299{
300   nir_foreach_shader_in_variable(var, nir)
301      var->data.driver_location = var->data.location;
302
303   /* Inputs are stored in vec4 slots, so use type_size_vec4(). */
304   nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
305                nir_lower_io_lower_64bit_to_32);
306
307   /* This pass needs actual constants */
308   nir_opt_constant_folding(nir);
309
310   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
311
312   nir_foreach_function(function, nir) {
313      if (!function->impl)
314         continue;
315
316      nir_foreach_block(block, function->impl) {
317         nir_foreach_instr(instr, block) {
318            if (instr->type != nir_instr_type_intrinsic)
319               continue;
320
321            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
322
323            if (intrin->intrinsic == nir_intrinsic_load_input ||
324                intrin->intrinsic == nir_intrinsic_load_per_vertex_input) {
325               /* Offset 0 is the VUE header, which contains
326                * VARYING_SLOT_LAYER [.y], VARYING_SLOT_VIEWPORT [.z], and
327                * VARYING_SLOT_PSIZ [.w].
328                */
329               int varying = nir_intrinsic_base(intrin);
330               int vue_slot;
331               switch (varying) {
332               case VARYING_SLOT_PSIZ:
333                  nir_intrinsic_set_base(intrin, 0);
334                  nir_intrinsic_set_component(intrin, 3);
335                  break;
336
337               default:
338                  vue_slot = vue_map->varying_to_slot[varying];
339                  assert(vue_slot != -1);
340                  nir_intrinsic_set_base(intrin, vue_slot);
341                  break;
342               }
343            }
344         }
345      }
346   }
347}
348
349void
350brw_nir_lower_tes_inputs(nir_shader *nir, const struct brw_vue_map *vue_map)
351{
352   nir_foreach_shader_in_variable(var, nir)
353      var->data.driver_location = var->data.location;
354
355   nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
356                nir_lower_io_lower_64bit_to_32);
357
358   /* This pass needs actual constants */
359   nir_opt_constant_folding(nir);
360
361   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
362
363   nir_foreach_function(function, nir) {
364      if (function->impl) {
365         nir_builder b;
366         nir_builder_init(&b, function->impl);
367         nir_foreach_block(block, function->impl) {
368            remap_patch_urb_offsets(block, &b, vue_map,
369                                    nir->info.tess.primitive_mode);
370         }
371      }
372   }
373}
374
375/**
376 * Convert interpolateAtOffset() offsets from [-0.5, +0.5] floating point
377 * offsets to integer [-8, +7] offsets (in units of 1/16th of a pixel).
378 *
379 * We clamp to +7/16 on the upper end of the range, since +0.5 isn't
380 * representable in a S0.4 value; a naive conversion would give us -8/16,
381 * which is the opposite of what was intended.
382 *
383 * This is allowed by GL_ARB_gpu_shader5's quantization rules:
384 *
385 *    "Not all values of <offset> may be supported; x and y offsets may
386 *     be rounded to fixed-point values with the number of fraction bits
387 *     given by the implementation-dependent constant
388 *     FRAGMENT_INTERPOLATION_OFFSET_BITS."
389 */
390static bool
391lower_barycentric_at_offset(nir_builder *b, nir_instr *instr, void *data)
392{
393   if (instr->type != nir_instr_type_intrinsic)
394      return false;
395
396   nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
397
398   if (intrin->intrinsic != nir_intrinsic_load_barycentric_at_offset)
399      return false;
400
401   b->cursor = nir_before_instr(instr);
402
403   assert(intrin->src[0].ssa);
404   nir_ssa_def *offset =
405      nir_imin(b, nir_imm_int(b, 7),
406               nir_f2i32(b, nir_fmul(b, nir_imm_float(b, 16),
407                                     intrin->src[0].ssa)));
408
409   nir_instr_rewrite_src(instr, &intrin->src[0], nir_src_for_ssa(offset));
410
411   return true;
412}
413
414void
415brw_nir_lower_fs_inputs(nir_shader *nir,
416                        const struct intel_device_info *devinfo,
417                        const struct brw_wm_prog_key *key)
418{
419   nir_foreach_shader_in_variable(var, nir) {
420      var->data.driver_location = var->data.location;
421
422      /* Apply default interpolation mode.
423       *
424       * Everything defaults to smooth except for the legacy GL color
425       * built-in variables, which might be flat depending on API state.
426       */
427      if (var->data.interpolation == INTERP_MODE_NONE) {
428         const bool flat = key->flat_shade &&
429            (var->data.location == VARYING_SLOT_COL0 ||
430             var->data.location == VARYING_SLOT_COL1);
431
432         var->data.interpolation = flat ? INTERP_MODE_FLAT
433                                        : INTERP_MODE_SMOOTH;
434      }
435
436      /* On Ironlake and below, there is only one interpolation mode.
437       * Centroid interpolation doesn't mean anything on this hardware --
438       * there is no multisampling.
439       */
440      if (devinfo->ver < 6) {
441         var->data.centroid = false;
442         var->data.sample = false;
443      }
444   }
445
446   nir_lower_io_options lower_io_options = nir_lower_io_lower_64bit_to_32;
447   if (key->persample_interp)
448      lower_io_options |= nir_lower_io_force_sample_interpolation;
449
450   nir_lower_io(nir, nir_var_shader_in, type_size_vec4, lower_io_options);
451   if (devinfo->ver >= 11)
452      nir_lower_interpolation(nir, ~0);
453
454   nir_shader_instructions_pass(nir, lower_barycentric_at_offset,
455                                nir_metadata_block_index |
456                                nir_metadata_dominance,
457                                NULL);
458
459   /* This pass needs actual constants */
460   nir_opt_constant_folding(nir);
461
462   nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
463}
464
465void
466brw_nir_lower_vue_outputs(nir_shader *nir)
467{
468   nir_foreach_shader_out_variable(var, nir) {
469      var->data.driver_location = var->data.location;
470   }
471
472   nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
473                nir_lower_io_lower_64bit_to_32);
474}
475
476void
477brw_nir_lower_tcs_outputs(nir_shader *nir, const struct brw_vue_map *vue_map,
478                          GLenum tes_primitive_mode)
479{
480   nir_foreach_shader_out_variable(var, nir) {
481      var->data.driver_location = var->data.location;
482   }
483
484   nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
485                nir_lower_io_lower_64bit_to_32);
486
487   /* This pass needs actual constants */
488   nir_opt_constant_folding(nir);
489
490   nir_io_add_const_offset_to_base(nir, nir_var_shader_out);
491
492   nir_foreach_function(function, nir) {
493      if (function->impl) {
494         nir_builder b;
495         nir_builder_init(&b, function->impl);
496         nir_foreach_block(block, function->impl) {
497            remap_patch_urb_offsets(block, &b, vue_map, tes_primitive_mode);
498         }
499      }
500   }
501}
502
503void
504brw_nir_lower_fs_outputs(nir_shader *nir)
505{
506   nir_foreach_shader_out_variable(var, nir) {
507      var->data.driver_location =
508         SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) |
509         SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION);
510   }
511
512   nir_lower_io(nir, nir_var_shader_out, type_size_dvec4, 0);
513}
514
515#define OPT(pass, ...) ({                                  \
516   bool this_progress = false;                             \
517   NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__);      \
518   if (this_progress)                                      \
519      progress = true;                                     \
520   this_progress;                                          \
521})
522
523void
524brw_nir_optimize(nir_shader *nir, const struct brw_compiler *compiler,
525                 bool is_scalar, bool allow_copies)
526{
527   bool progress;
528   unsigned lower_flrp =
529      (nir->options->lower_flrp16 ? 16 : 0) |
530      (nir->options->lower_flrp32 ? 32 : 0) |
531      (nir->options->lower_flrp64 ? 64 : 0);
532
533   do {
534      progress = false;
535      OPT(nir_split_array_vars, nir_var_function_temp);
536      OPT(nir_shrink_vec_array_vars, nir_var_function_temp);
537      OPT(nir_opt_deref);
538      OPT(nir_lower_vars_to_ssa);
539      if (allow_copies) {
540         /* Only run this pass in the first call to brw_nir_optimize.  Later
541          * calls assume that we've lowered away any copy_deref instructions
542          * and we don't want to introduce any more.
543          */
544         OPT(nir_opt_find_array_copies);
545      }
546      OPT(nir_opt_copy_prop_vars);
547      OPT(nir_opt_dead_write_vars);
548      OPT(nir_opt_combine_stores, nir_var_all);
549
550      if (is_scalar) {
551         OPT(nir_lower_alu_to_scalar, NULL, NULL);
552      } else {
553         OPT(nir_opt_shrink_vectors, true);
554      }
555
556      OPT(nir_copy_prop);
557
558      if (is_scalar) {
559         OPT(nir_lower_phis_to_scalar, false);
560      }
561
562      OPT(nir_copy_prop);
563      OPT(nir_opt_dce);
564      OPT(nir_opt_cse);
565      OPT(nir_opt_combine_stores, nir_var_all);
566
567      /* Passing 0 to the peephole select pass causes it to convert
568       * if-statements that contain only move instructions in the branches
569       * regardless of the count.
570       *
571       * Passing 1 to the peephole select pass causes it to convert
572       * if-statements that contain at most a single ALU instruction (total)
573       * in both branches.  Before Gfx6, some math instructions were
574       * prohibitively expensive and the results of compare operations need an
575       * extra resolve step.  For these reasons, this pass is more harmful
576       * than good on those platforms.
577       *
578       * For indirect loads of uniforms (push constants), we assume that array
579       * indices will nearly always be in bounds and the cost of the load is
580       * low.  Therefore there shouldn't be a performance benefit to avoid it.
581       * However, in vec4 tessellation shaders, these loads operate by
582       * actually pulling from memory.
583       */
584      const bool is_vec4_tessellation = !is_scalar &&
585         (nir->info.stage == MESA_SHADER_TESS_CTRL ||
586          nir->info.stage == MESA_SHADER_TESS_EVAL);
587      OPT(nir_opt_peephole_select, 0, !is_vec4_tessellation, false);
588      OPT(nir_opt_peephole_select, 8, !is_vec4_tessellation,
589          compiler->devinfo->ver >= 6);
590
591      OPT(nir_opt_intrinsics);
592      OPT(nir_opt_idiv_const, 32);
593      OPT(nir_opt_algebraic);
594      OPT(nir_opt_constant_folding);
595
596      if (lower_flrp != 0) {
597         if (OPT(nir_lower_flrp,
598                 lower_flrp,
599                 false /* always_precise */)) {
600            OPT(nir_opt_constant_folding);
601         }
602
603         /* Nothing should rematerialize any flrps, so we only need to do this
604          * lowering once.
605          */
606         lower_flrp = 0;
607      }
608
609      OPT(nir_opt_dead_cf);
610      if (OPT(nir_opt_trivial_continues)) {
611         /* If nir_opt_trivial_continues makes progress, then we need to clean
612          * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
613          * to make progress.
614          */
615         OPT(nir_copy_prop);
616         OPT(nir_opt_dce);
617      }
618      OPT(nir_opt_if, false);
619      OPT(nir_opt_conditional_discard);
620      if (nir->options->max_unroll_iterations != 0) {
621         OPT(nir_opt_loop_unroll);
622      }
623      OPT(nir_opt_remove_phis);
624      OPT(nir_opt_gcm, false);
625      OPT(nir_opt_undef);
626      OPT(nir_lower_pack);
627   } while (progress);
628
629   /* Workaround Gfxbench unused local sampler variable which will trigger an
630    * assert in the opt_large_constants pass.
631    */
632   OPT(nir_remove_dead_variables, nir_var_function_temp, NULL);
633}
634
635static unsigned
636lower_bit_size_callback(const nir_instr *instr, UNUSED void *data)
637{
638   const struct brw_compiler *compiler = (const struct brw_compiler *) data;
639   const struct intel_device_info *devinfo = compiler->devinfo;
640
641   switch (instr->type) {
642   case nir_instr_type_alu: {
643      nir_alu_instr *alu = nir_instr_as_alu(instr);
644      assert(alu->dest.dest.is_ssa);
645      if (alu->dest.dest.ssa.bit_size >= 32)
646         return 0;
647
648      /* Note: nir_op_iabs and nir_op_ineg are not lowered here because the
649       * 8-bit ABS or NEG instruction should eventually get copy propagated
650       * into the MOV that does the type conversion.  This results in far
651       * fewer MOV instructions.
652       */
653      switch (alu->op) {
654      case nir_op_idiv:
655      case nir_op_imod:
656      case nir_op_irem:
657      case nir_op_udiv:
658      case nir_op_umod:
659      case nir_op_fceil:
660      case nir_op_ffloor:
661      case nir_op_ffract:
662      case nir_op_fround_even:
663      case nir_op_ftrunc:
664         return 32;
665      case nir_op_frcp:
666      case nir_op_frsq:
667      case nir_op_fsqrt:
668      case nir_op_fpow:
669      case nir_op_fexp2:
670      case nir_op_flog2:
671      case nir_op_fsin:
672      case nir_op_fcos:
673         return devinfo->ver < 9 ? 32 : 0;
674      case nir_op_isign:
675         assert(!"Should have been lowered by nir_opt_algebraic.");
676         return 0;
677      default:
678         if (nir_op_infos[alu->op].num_inputs >= 2 &&
679             alu->dest.dest.ssa.bit_size == 8)
680            return 16;
681
682         if (nir_alu_instr_is_comparison(alu) &&
683             alu->src[0].src.ssa->bit_size == 8)
684            return 16;
685
686         return 0;
687      }
688      break;
689   }
690
691   case nir_instr_type_intrinsic: {
692      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
693      switch (intrin->intrinsic) {
694      case nir_intrinsic_read_invocation:
695      case nir_intrinsic_read_first_invocation:
696      case nir_intrinsic_vote_feq:
697      case nir_intrinsic_vote_ieq:
698      case nir_intrinsic_shuffle:
699      case nir_intrinsic_shuffle_xor:
700      case nir_intrinsic_shuffle_up:
701      case nir_intrinsic_shuffle_down:
702      case nir_intrinsic_quad_broadcast:
703      case nir_intrinsic_quad_swap_horizontal:
704      case nir_intrinsic_quad_swap_vertical:
705      case nir_intrinsic_quad_swap_diagonal:
706         if (intrin->src[0].ssa->bit_size == 8)
707            return 16;
708         return 0;
709
710      case nir_intrinsic_reduce:
711      case nir_intrinsic_inclusive_scan:
712      case nir_intrinsic_exclusive_scan:
713         /* There are a couple of register region issues that make things
714          * complicated for 8-bit types:
715          *
716          *    1. Only raw moves are allowed to write to a packed 8-bit
717          *       destination.
718          *    2. If we use a strided destination, the efficient way to do
719          *       scan operations ends up using strides that are too big to
720          *       encode in an instruction.
721          *
722          * To get around these issues, we just do all 8-bit scan operations
723          * in 16 bits.  It's actually fewer instructions than what we'd have
724          * to do if we were trying to do it in native 8-bit types and the
725          * results are the same once we truncate to 8 bits at the end.
726          */
727         if (intrin->dest.ssa.bit_size == 8)
728            return 16;
729         return 0;
730
731      default:
732         return 0;
733      }
734      break;
735   }
736
737   case nir_instr_type_phi: {
738      nir_phi_instr *phi = nir_instr_as_phi(instr);
739      if (phi->dest.ssa.bit_size == 8)
740         return 16;
741      return 0;
742   }
743
744   default:
745      return 0;
746   }
747}
748
749/* Does some simple lowering and runs the standard suite of optimizations
750 *
751 * This is intended to be called more-or-less directly after you get the
752 * shader out of GLSL or some other source.  While it is geared towards i965,
753 * it is not at all generator-specific except for the is_scalar flag.  Even
754 * there, it is safe to call with is_scalar = false for a shader that is
755 * intended for the FS backend as long as nir_optimize is called again with
756 * is_scalar = true to scalarize everything prior to code gen.
757 */
758void
759brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir,
760                   const nir_shader *softfp64)
761{
762   const struct intel_device_info *devinfo = compiler->devinfo;
763   UNUSED bool progress; /* Written by OPT */
764
765   const bool is_scalar = compiler->scalar_stage[nir->info.stage];
766
767   nir_validate_ssa_dominance(nir, "before brw_preprocess_nir");
768
769   if (is_scalar) {
770      OPT(nir_lower_alu_to_scalar, NULL, NULL);
771   }
772
773   if (nir->info.stage == MESA_SHADER_GEOMETRY)
774      OPT(nir_lower_gs_intrinsics, 0);
775
776   /* See also brw_nir_trig_workarounds.py */
777   if (compiler->precise_trig &&
778       !(devinfo->ver >= 10 || devinfo->is_kabylake))
779      OPT(brw_nir_apply_trig_workarounds);
780
781   if (devinfo->ver >= 12)
782      OPT(brw_nir_clamp_image_1d_2d_array_sizes);
783
784   const nir_lower_tex_options tex_options = {
785      .lower_txp = ~0,
786      .lower_txf_offset = true,
787      .lower_rect_offset = true,
788      .lower_txd_cube_map = true,
789      .lower_txd_3d = devinfo->verx10 >= 125,
790      .lower_txb_shadow_clamp = true,
791      .lower_txd_shadow_clamp = true,
792      .lower_txd_offset_clamp = true,
793      .lower_tg4_offsets = true,
794      .lower_txs_lod = true, /* Wa_14012320009 */
795   };
796
797   OPT(nir_lower_tex, &tex_options);
798   OPT(nir_normalize_cubemap_coords);
799
800   OPT(nir_lower_global_vars_to_local);
801
802   OPT(nir_split_var_copies);
803   OPT(nir_split_struct_vars, nir_var_function_temp);
804
805   brw_nir_optimize(nir, compiler, is_scalar, true);
806
807   OPT(nir_lower_doubles, softfp64, nir->options->lower_doubles_options);
808   OPT(nir_lower_int64);
809
810   OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
811
812   if (is_scalar) {
813      OPT(nir_lower_load_const_to_scalar);
814   }
815
816   /* Lower a bunch of stuff */
817   OPT(nir_lower_var_copies);
818
819   /* This needs to be run after the first optimization pass but before we
820    * lower indirect derefs away
821    */
822   if (compiler->supports_shader_constants) {
823      OPT(nir_opt_large_constants, NULL, 32);
824   }
825
826   OPT(nir_lower_system_values);
827   OPT(nir_lower_compute_system_values, NULL);
828
829   const nir_lower_subgroups_options subgroups_options = {
830      .ballot_bit_size = 32,
831      .ballot_components = 1,
832      .lower_to_scalar = true,
833      .lower_vote_trivial = !is_scalar,
834      .lower_shuffle = true,
835      .lower_quad_broadcast_dynamic = true,
836      .lower_elect = true,
837   };
838   OPT(nir_lower_subgroups, &subgroups_options);
839
840   OPT(nir_lower_clip_cull_distance_arrays);
841
842   nir_variable_mode indirect_mask =
843      brw_nir_no_indirect_mask(compiler, nir->info.stage);
844   OPT(nir_lower_indirect_derefs, indirect_mask, UINT32_MAX);
845
846   /* Even in cases where we can handle indirect temporaries via scratch, we
847    * it can still be expensive.  Lower indirects on small arrays to
848    * conditional load/stores.
849    *
850    * The threshold of 16 was chosen semi-arbitrarily.  The idea is that an
851    * indirect on an array of 16 elements is about 30 instructions at which
852    * point, you may be better off doing a send.  With a SIMD8 program, 16
853    * floats is 1/8 of the entire register file.  Any array larger than that
854    * is likely to cause pressure issues.  Also, this value is sufficiently
855    * high that the benchmarks known to suffer from large temporary array
856    * issues are helped but nothing else in shader-db is hurt except for maybe
857    * that one kerbal space program shader.
858    */
859   if (is_scalar && !(indirect_mask & nir_var_function_temp))
860      OPT(nir_lower_indirect_derefs, nir_var_function_temp, 16);
861
862   /* Lower array derefs of vectors for SSBO and UBO loads.  For both UBOs and
863    * SSBOs, our back-end is capable of loading an entire vec4 at a time and
864    * we would like to take advantage of that whenever possible regardless of
865    * whether or not the app gives us full loads.  This should allow the
866    * optimizer to combine UBO and SSBO load operations and save us some send
867    * messages.
868    */
869   OPT(nir_lower_array_deref_of_vec,
870       nir_var_mem_ubo | nir_var_mem_ssbo,
871       nir_lower_direct_array_deref_of_vec_load);
872
873   /* Get rid of split copies */
874   brw_nir_optimize(nir, compiler, is_scalar, false);
875}
876
877void
878brw_nir_link_shaders(const struct brw_compiler *compiler,
879                     nir_shader *producer, nir_shader *consumer)
880{
881   nir_lower_io_arrays_to_elements(producer, consumer);
882   nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
883   nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
884
885   const bool p_is_scalar = compiler->scalar_stage[producer->info.stage];
886   const bool c_is_scalar = compiler->scalar_stage[consumer->info.stage];
887
888   if (p_is_scalar && c_is_scalar) {
889      NIR_PASS_V(producer, nir_lower_io_to_scalar_early, nir_var_shader_out);
890      NIR_PASS_V(consumer, nir_lower_io_to_scalar_early, nir_var_shader_in);
891      brw_nir_optimize(producer, compiler, p_is_scalar, false);
892      brw_nir_optimize(consumer, compiler, c_is_scalar, false);
893   }
894
895   if (nir_link_opt_varyings(producer, consumer))
896      brw_nir_optimize(consumer, compiler, c_is_scalar, false);
897
898   NIR_PASS_V(producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
899   NIR_PASS_V(consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
900
901   if (nir_remove_unused_varyings(producer, consumer)) {
902      NIR_PASS_V(producer, nir_lower_global_vars_to_local);
903      NIR_PASS_V(consumer, nir_lower_global_vars_to_local);
904
905      /* The backend might not be able to handle indirects on
906       * temporaries so we need to lower indirects on any of the
907       * varyings we have demoted here.
908       */
909      NIR_PASS_V(producer, nir_lower_indirect_derefs,
910                 brw_nir_no_indirect_mask(compiler, producer->info.stage),
911                 UINT32_MAX);
912      NIR_PASS_V(consumer, nir_lower_indirect_derefs,
913                 brw_nir_no_indirect_mask(compiler, consumer->info.stage),
914                 UINT32_MAX);
915
916      brw_nir_optimize(producer, compiler, p_is_scalar, false);
917      brw_nir_optimize(consumer, compiler, c_is_scalar, false);
918   }
919
920   NIR_PASS_V(producer, nir_lower_io_to_vector, nir_var_shader_out);
921   NIR_PASS_V(producer, nir_opt_combine_stores, nir_var_shader_out);
922   NIR_PASS_V(consumer, nir_lower_io_to_vector, nir_var_shader_in);
923
924   if (producer->info.stage != MESA_SHADER_TESS_CTRL) {
925      /* Calling lower_io_to_vector creates output variable writes with
926       * write-masks.  On non-TCS outputs, the back-end can't handle it and we
927       * need to call nir_lower_io_to_temporaries to get rid of them.  This,
928       * in turn, creates temporary variables and extra copy_deref intrinsics
929       * that we need to clean up.
930       */
931      NIR_PASS_V(producer, nir_lower_io_to_temporaries,
932                 nir_shader_get_entrypoint(producer), true, false);
933      NIR_PASS_V(producer, nir_lower_global_vars_to_local);
934      NIR_PASS_V(producer, nir_split_var_copies);
935      NIR_PASS_V(producer, nir_lower_var_copies);
936   }
937}
938
939static bool
940brw_nir_should_vectorize_mem(unsigned align_mul, unsigned align_offset,
941                             unsigned bit_size,
942                             unsigned num_components,
943                             nir_intrinsic_instr *low,
944                             nir_intrinsic_instr *high,
945                             void *data)
946{
947   /* Don't combine things to generate 64-bit loads/stores.  We have to split
948    * those back into 32-bit ones anyway and UBO loads aren't split in NIR so
949    * we don't want to make a mess for the back-end.
950    */
951   if (bit_size > 32)
952      return false;
953
954   /* We can handle at most a vec4 right now.  Anything bigger would get
955    * immediately split by brw_nir_lower_mem_access_bit_sizes anyway.
956    */
957   if (num_components > 4)
958      return false;
959
960
961   uint32_t align;
962   if (align_offset)
963      align = 1 << (ffs(align_offset) - 1);
964   else
965      align = align_mul;
966
967   if (align < bit_size / 8)
968      return false;
969
970   return true;
971}
972
973static
974bool combine_all_barriers(nir_intrinsic_instr *a,
975                          nir_intrinsic_instr *b,
976                          void *data)
977{
978   /* Translation to backend IR will get rid of modes we don't care about, so
979    * no harm in always combining them.
980    *
981    * TODO: While HW has only ACQUIRE|RELEASE fences, we could improve the
982    * scheduling so that it can take advantage of the different semantics.
983    */
984   nir_intrinsic_set_memory_modes(a, nir_intrinsic_memory_modes(a) |
985                                     nir_intrinsic_memory_modes(b));
986   nir_intrinsic_set_memory_semantics(a, nir_intrinsic_memory_semantics(a) |
987                                         nir_intrinsic_memory_semantics(b));
988   nir_intrinsic_set_memory_scope(a, MAX2(nir_intrinsic_memory_scope(a),
989                                          nir_intrinsic_memory_scope(b)));
990   return true;
991}
992
993static void
994brw_vectorize_lower_mem_access(nir_shader *nir,
995                               const struct brw_compiler *compiler,
996                               bool is_scalar,
997                               bool robust_buffer_access)
998{
999   const struct intel_device_info *devinfo = compiler->devinfo;
1000   bool progress = false;
1001
1002   if (is_scalar) {
1003      nir_load_store_vectorize_options options = {
1004         .modes = nir_var_mem_ubo | nir_var_mem_ssbo |
1005                  nir_var_mem_global | nir_var_mem_shared,
1006         .callback = brw_nir_should_vectorize_mem,
1007         .robust_modes = (nir_variable_mode)0,
1008      };
1009
1010      if (robust_buffer_access) {
1011         options.robust_modes = nir_var_mem_ubo | nir_var_mem_ssbo |
1012                                nir_var_mem_global;
1013      }
1014
1015      OPT(nir_opt_load_store_vectorize, &options);
1016   }
1017
1018   OPT(brw_nir_lower_mem_access_bit_sizes, devinfo);
1019
1020   while (progress) {
1021      progress = false;
1022
1023      OPT(nir_lower_pack);
1024      OPT(nir_copy_prop);
1025      OPT(nir_opt_dce);
1026      OPT(nir_opt_cse);
1027      OPT(nir_opt_algebraic);
1028      OPT(nir_opt_constant_folding);
1029   }
1030}
1031
1032static bool
1033nir_shader_has_local_variables(const nir_shader *nir)
1034{
1035   nir_foreach_function(func, nir) {
1036      if (func->impl && !exec_list_is_empty(&func->impl->locals))
1037         return true;
1038   }
1039
1040   return false;
1041}
1042
1043/* Prepare the given shader for codegen
1044 *
1045 * This function is intended to be called right before going into the actual
1046 * backend and is highly backend-specific.  Also, once this function has been
1047 * called on a shader, it will no longer be in SSA form so most optimizations
1048 * will not work.
1049 */
1050void
1051brw_postprocess_nir(nir_shader *nir, const struct brw_compiler *compiler,
1052                    bool is_scalar, bool debug_enabled,
1053                    bool robust_buffer_access)
1054{
1055   const struct intel_device_info *devinfo = compiler->devinfo;
1056
1057   UNUSED bool progress; /* Written by OPT */
1058
1059   OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
1060
1061   OPT(brw_nir_lower_scoped_barriers);
1062   OPT(nir_opt_combine_memory_barriers, combine_all_barriers, NULL);
1063
1064   do {
1065      progress = false;
1066      OPT(nir_opt_algebraic_before_ffma);
1067   } while (progress);
1068
1069   if (devinfo->verx10 >= 125) {
1070      const nir_lower_idiv_options options = {
1071         .imprecise_32bit_lowering = false,
1072         .allow_fp16 = false
1073      };
1074      OPT(nir_lower_idiv, &options);
1075   }
1076
1077   brw_nir_optimize(nir, compiler, is_scalar, false);
1078
1079   if (is_scalar && nir_shader_has_local_variables(nir)) {
1080      OPT(nir_lower_vars_to_explicit_types, nir_var_function_temp,
1081          glsl_get_natural_size_align_bytes);
1082      OPT(nir_lower_explicit_io, nir_var_function_temp,
1083          nir_address_format_32bit_offset);
1084      brw_nir_optimize(nir, compiler, is_scalar, false);
1085   }
1086
1087   brw_vectorize_lower_mem_access(nir, compiler, is_scalar,
1088                                  robust_buffer_access);
1089
1090   if (OPT(nir_lower_int64))
1091      brw_nir_optimize(nir, compiler, is_scalar, false);
1092
1093   if (devinfo->ver >= 6) {
1094      /* Try and fuse multiply-adds */
1095      OPT(brw_nir_opt_peephole_ffma);
1096   }
1097
1098   if (OPT(nir_opt_comparison_pre)) {
1099      OPT(nir_copy_prop);
1100      OPT(nir_opt_dce);
1101      OPT(nir_opt_cse);
1102
1103      /* Do the select peepehole again.  nir_opt_comparison_pre (combined with
1104       * the other optimization passes) will have removed at least one
1105       * instruction from one of the branches of the if-statement, so now it
1106       * might be under the threshold of conversion to bcsel.
1107       *
1108       * See brw_nir_optimize for the explanation of is_vec4_tessellation.
1109       */
1110      const bool is_vec4_tessellation = !is_scalar &&
1111         (nir->info.stage == MESA_SHADER_TESS_CTRL ||
1112          nir->info.stage == MESA_SHADER_TESS_EVAL);
1113      OPT(nir_opt_peephole_select, 0, is_vec4_tessellation, false);
1114      OPT(nir_opt_peephole_select, 1, is_vec4_tessellation,
1115          compiler->devinfo->ver >= 6);
1116   }
1117
1118   do {
1119      progress = false;
1120      if (OPT(nir_opt_algebraic_late)) {
1121         /* At this late stage, anything that makes more constants will wreak
1122          * havok on the vec4 backend.  The handling of constants in the vec4
1123          * backend is not good.
1124          */
1125         if (is_scalar)
1126            OPT(nir_opt_constant_folding);
1127
1128         OPT(nir_copy_prop);
1129         OPT(nir_opt_dce);
1130         OPT(nir_opt_cse);
1131      }
1132   } while (progress);
1133
1134
1135   OPT(brw_nir_lower_conversions);
1136
1137   if (is_scalar)
1138      OPT(nir_lower_alu_to_scalar, NULL, NULL);
1139
1140   while (OPT(nir_opt_algebraic_distribute_src_mods)) {
1141      OPT(nir_copy_prop);
1142      OPT(nir_opt_dce);
1143      OPT(nir_opt_cse);
1144   }
1145
1146   OPT(nir_copy_prop);
1147   OPT(nir_opt_dce);
1148   OPT(nir_opt_move, nir_move_comparisons);
1149   OPT(nir_opt_dead_cf);
1150
1151   OPT(nir_lower_bool_to_int32);
1152   OPT(nir_copy_prop);
1153   OPT(nir_opt_dce);
1154
1155   OPT(nir_lower_locals_to_regs);
1156
1157   if (unlikely(debug_enabled)) {
1158      /* Re-index SSA defs so we print more sensible numbers. */
1159      nir_foreach_function(function, nir) {
1160         if (function->impl)
1161            nir_index_ssa_defs(function->impl);
1162      }
1163
1164      fprintf(stderr, "NIR (SSA form) for %s shader:\n",
1165              _mesa_shader_stage_to_string(nir->info.stage));
1166      nir_print_shader(nir, stderr);
1167   }
1168
1169   nir_validate_ssa_dominance(nir, "before nir_convert_from_ssa");
1170
1171   OPT(nir_convert_from_ssa, true);
1172
1173   if (!is_scalar) {
1174      OPT(nir_move_vec_src_uses_to_dest);
1175      OPT(nir_lower_vec_to_movs, NULL, NULL);
1176   }
1177
1178   OPT(nir_opt_dce);
1179
1180   if (OPT(nir_opt_rematerialize_compares))
1181      OPT(nir_opt_dce);
1182
1183   /* This is the last pass we run before we start emitting stuff.  It
1184    * determines when we need to insert boolean resolves on Gen <= 5.  We
1185    * run it last because it stashes data in instr->pass_flags and we don't
1186    * want that to be squashed by other NIR passes.
1187    */
1188   if (devinfo->ver <= 5)
1189      brw_nir_analyze_boolean_resolves(nir);
1190
1191   nir_sweep(nir);
1192
1193   if (unlikely(debug_enabled)) {
1194      fprintf(stderr, "NIR (final form) for %s shader:\n",
1195              _mesa_shader_stage_to_string(nir->info.stage));
1196      nir_print_shader(nir, stderr);
1197   }
1198}
1199
1200static bool
1201brw_nir_apply_sampler_key(nir_shader *nir,
1202                          const struct brw_compiler *compiler,
1203                          const struct brw_sampler_prog_key_data *key_tex)
1204{
1205   const struct intel_device_info *devinfo = compiler->devinfo;
1206   nir_lower_tex_options tex_options = {
1207      .lower_txd_clamp_bindless_sampler = true,
1208      .lower_txd_clamp_if_sampler_index_not_lt_16 = true,
1209   };
1210
1211   /* Iron Lake and prior require lowering of all rectangle textures */
1212   if (devinfo->ver < 6)
1213      tex_options.lower_rect = true;
1214
1215   /* Prior to Broadwell, our hardware can't actually do GL_CLAMP */
1216   if (devinfo->ver < 8) {
1217      tex_options.saturate_s = key_tex->gl_clamp_mask[0];
1218      tex_options.saturate_t = key_tex->gl_clamp_mask[1];
1219      tex_options.saturate_r = key_tex->gl_clamp_mask[2];
1220   }
1221
1222   /* Prior to Haswell, we have to fake texture swizzle */
1223   for (unsigned s = 0; s < MAX_SAMPLERS; s++) {
1224      if (key_tex->swizzles[s] == SWIZZLE_NOOP)
1225         continue;
1226
1227      tex_options.swizzle_result |= BITFIELD_BIT(s);
1228      for (unsigned c = 0; c < 4; c++)
1229         tex_options.swizzles[s][c] = GET_SWZ(key_tex->swizzles[s], c);
1230   }
1231
1232   /* Prior to Haswell, we have to lower gradients on shadow samplers */
1233   tex_options.lower_txd_shadow = devinfo->verx10 <= 70;
1234
1235   tex_options.lower_y_uv_external = key_tex->y_uv_image_mask;
1236   tex_options.lower_y_u_v_external = key_tex->y_u_v_image_mask;
1237   tex_options.lower_yx_xuxv_external = key_tex->yx_xuxv_image_mask;
1238   tex_options.lower_xy_uxvx_external = key_tex->xy_uxvx_image_mask;
1239   tex_options.lower_ayuv_external = key_tex->ayuv_image_mask;
1240   tex_options.lower_xyuv_external = key_tex->xyuv_image_mask;
1241   tex_options.bt709_external = key_tex->bt709_mask;
1242   tex_options.bt2020_external = key_tex->bt2020_mask;
1243
1244   /* Setup array of scaling factors for each texture. */
1245   memcpy(&tex_options.scale_factors, &key_tex->scale_factors,
1246          sizeof(tex_options.scale_factors));
1247
1248   return nir_lower_tex(nir, &tex_options);
1249}
1250
1251static unsigned
1252get_subgroup_size(gl_shader_stage stage,
1253                  const struct brw_base_prog_key *key,
1254                  unsigned max_subgroup_size)
1255{
1256   switch (key->subgroup_size_type) {
1257   case BRW_SUBGROUP_SIZE_API_CONSTANT:
1258      /* We have to use the global constant size. */
1259      return BRW_SUBGROUP_SIZE;
1260
1261   case BRW_SUBGROUP_SIZE_UNIFORM:
1262      /* It has to be uniform across all invocations but can vary per stage
1263       * if we want.  This gives us a bit more freedom.
1264       *
1265       * For compute, brw_nir_apply_key is called per-dispatch-width so this
1266       * is the actual subgroup size and not a maximum.  However, we only
1267       * invoke one size of any given compute shader so it's still guaranteed
1268       * to be uniform across invocations.
1269       */
1270      return max_subgroup_size;
1271
1272   case BRW_SUBGROUP_SIZE_VARYING:
1273      /* The subgroup size is allowed to be fully varying.  For geometry
1274       * stages, we know it's always 8 which is max_subgroup_size so we can
1275       * return that.  For compute, brw_nir_apply_key is called once per
1276       * dispatch-width so max_subgroup_size is the real subgroup size.
1277       *
1278       * For fragment, we return 0 and let it fall through to the back-end
1279       * compiler.  This means we can't optimize based on subgroup size but
1280       * that's a risk the client took when it asked for a varying subgroup
1281       * size.
1282       */
1283      return stage == MESA_SHADER_FRAGMENT ? 0 : max_subgroup_size;
1284
1285   case BRW_SUBGROUP_SIZE_REQUIRE_8:
1286   case BRW_SUBGROUP_SIZE_REQUIRE_16:
1287   case BRW_SUBGROUP_SIZE_REQUIRE_32:
1288      assert(stage == MESA_SHADER_COMPUTE);
1289      /* These enum values are expressly chosen to be equal to the subgroup
1290       * size that they require.
1291       */
1292      return key->subgroup_size_type;
1293   }
1294
1295   unreachable("Invalid subgroup size type");
1296}
1297
1298void
1299brw_nir_apply_key(nir_shader *nir,
1300                  const struct brw_compiler *compiler,
1301                  const struct brw_base_prog_key *key,
1302                  unsigned max_subgroup_size,
1303                  bool is_scalar)
1304{
1305   bool progress = false;
1306
1307   OPT(brw_nir_apply_sampler_key, compiler, &key->tex);
1308
1309   const nir_lower_subgroups_options subgroups_options = {
1310      .subgroup_size = get_subgroup_size(nir->info.stage, key,
1311                                         max_subgroup_size),
1312      .ballot_bit_size = 32,
1313      .ballot_components = 1,
1314      .lower_subgroup_masks = true,
1315   };
1316   OPT(nir_lower_subgroups, &subgroups_options);
1317
1318   if (progress)
1319      brw_nir_optimize(nir, compiler, is_scalar, false);
1320}
1321
1322enum brw_conditional_mod
1323brw_cmod_for_nir_comparison(nir_op op)
1324{
1325   switch (op) {
1326   case nir_op_flt:
1327   case nir_op_flt32:
1328   case nir_op_ilt:
1329   case nir_op_ilt32:
1330   case nir_op_ult:
1331   case nir_op_ult32:
1332      return BRW_CONDITIONAL_L;
1333
1334   case nir_op_fge:
1335   case nir_op_fge32:
1336   case nir_op_ige:
1337   case nir_op_ige32:
1338   case nir_op_uge:
1339   case nir_op_uge32:
1340      return BRW_CONDITIONAL_GE;
1341
1342   case nir_op_feq:
1343   case nir_op_feq32:
1344   case nir_op_ieq:
1345   case nir_op_ieq32:
1346   case nir_op_b32all_fequal2:
1347   case nir_op_b32all_iequal2:
1348   case nir_op_b32all_fequal3:
1349   case nir_op_b32all_iequal3:
1350   case nir_op_b32all_fequal4:
1351   case nir_op_b32all_iequal4:
1352      return BRW_CONDITIONAL_Z;
1353
1354   case nir_op_fneu:
1355   case nir_op_fneu32:
1356   case nir_op_ine:
1357   case nir_op_ine32:
1358   case nir_op_b32any_fnequal2:
1359   case nir_op_b32any_inequal2:
1360   case nir_op_b32any_fnequal3:
1361   case nir_op_b32any_inequal3:
1362   case nir_op_b32any_fnequal4:
1363   case nir_op_b32any_inequal4:
1364      return BRW_CONDITIONAL_NZ;
1365
1366   default:
1367      unreachable("Unsupported NIR comparison op");
1368   }
1369}
1370
1371uint32_t
1372brw_aop_for_nir_intrinsic(const nir_intrinsic_instr *atomic)
1373{
1374   switch (atomic->intrinsic) {
1375#define AOP_CASE(atom) \
1376   case nir_intrinsic_image_atomic_##atom:            \
1377   case nir_intrinsic_bindless_image_atomic_##atom:   \
1378   case nir_intrinsic_ssbo_atomic_##atom:             \
1379   case nir_intrinsic_shared_atomic_##atom:           \
1380   case nir_intrinsic_global_atomic_##atom
1381
1382   AOP_CASE(add): {
1383      unsigned src_idx;
1384      switch (atomic->intrinsic) {
1385      case nir_intrinsic_image_atomic_add:
1386      case nir_intrinsic_bindless_image_atomic_add:
1387         src_idx = 3;
1388         break;
1389      case nir_intrinsic_ssbo_atomic_add:
1390         src_idx = 2;
1391         break;
1392      case nir_intrinsic_shared_atomic_add:
1393      case nir_intrinsic_global_atomic_add:
1394         src_idx = 1;
1395         break;
1396      default:
1397         unreachable("Invalid add atomic opcode");
1398      }
1399
1400      if (nir_src_is_const(atomic->src[src_idx])) {
1401         int64_t add_val = nir_src_as_int(atomic->src[src_idx]);
1402         if (add_val == 1)
1403            return BRW_AOP_INC;
1404         else if (add_val == -1)
1405            return BRW_AOP_DEC;
1406      }
1407      return BRW_AOP_ADD;
1408   }
1409
1410   AOP_CASE(imin):         return BRW_AOP_IMIN;
1411   AOP_CASE(umin):         return BRW_AOP_UMIN;
1412   AOP_CASE(imax):         return BRW_AOP_IMAX;
1413   AOP_CASE(umax):         return BRW_AOP_UMAX;
1414   AOP_CASE(and):          return BRW_AOP_AND;
1415   AOP_CASE(or):           return BRW_AOP_OR;
1416   AOP_CASE(xor):          return BRW_AOP_XOR;
1417   AOP_CASE(exchange):     return BRW_AOP_MOV;
1418   AOP_CASE(comp_swap):    return BRW_AOP_CMPWR;
1419
1420#undef AOP_CASE
1421#define AOP_CASE(atom) \
1422   case nir_intrinsic_ssbo_atomic_##atom:          \
1423   case nir_intrinsic_shared_atomic_##atom:        \
1424   case nir_intrinsic_global_atomic_##atom
1425
1426   AOP_CASE(fmin):         return BRW_AOP_FMIN;
1427   AOP_CASE(fmax):         return BRW_AOP_FMAX;
1428   AOP_CASE(fcomp_swap):   return BRW_AOP_FCMPWR;
1429   AOP_CASE(fadd):         return BRW_AOP_FADD;
1430
1431#undef AOP_CASE
1432
1433   default:
1434      unreachable("Unsupported NIR atomic intrinsic");
1435   }
1436}
1437
1438enum brw_reg_type
1439brw_type_for_nir_type(const struct intel_device_info *devinfo,
1440                      nir_alu_type type)
1441{
1442   switch (type) {
1443   case nir_type_uint:
1444   case nir_type_uint32:
1445      return BRW_REGISTER_TYPE_UD;
1446   case nir_type_bool:
1447   case nir_type_int:
1448   case nir_type_bool32:
1449   case nir_type_int32:
1450      return BRW_REGISTER_TYPE_D;
1451   case nir_type_float:
1452   case nir_type_float32:
1453      return BRW_REGISTER_TYPE_F;
1454   case nir_type_float16:
1455      return BRW_REGISTER_TYPE_HF;
1456   case nir_type_float64:
1457      return BRW_REGISTER_TYPE_DF;
1458   case nir_type_int64:
1459      return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_Q;
1460   case nir_type_uint64:
1461      return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_UQ;
1462   case nir_type_int16:
1463      return BRW_REGISTER_TYPE_W;
1464   case nir_type_uint16:
1465      return BRW_REGISTER_TYPE_UW;
1466   case nir_type_int8:
1467      return BRW_REGISTER_TYPE_B;
1468   case nir_type_uint8:
1469      return BRW_REGISTER_TYPE_UB;
1470   default:
1471      unreachable("unknown type");
1472   }
1473
1474   return BRW_REGISTER_TYPE_F;
1475}
1476
1477nir_shader *
1478brw_nir_create_passthrough_tcs(void *mem_ctx, const struct brw_compiler *compiler,
1479                               const nir_shader_compiler_options *options,
1480                               const struct brw_tcs_prog_key *key)
1481{
1482   nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_TESS_CTRL,
1483                                                  options, "passthrough TCS");
1484   ralloc_steal(mem_ctx, b.shader);
1485   nir_shader *nir = b.shader;
1486   nir_variable *var;
1487   nir_ssa_def *load;
1488   nir_ssa_def *zero = nir_imm_int(&b, 0);
1489   nir_ssa_def *invoc_id = nir_load_invocation_id(&b);
1490
1491   nir->info.inputs_read = key->outputs_written &
1492      ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
1493   nir->info.outputs_written = key->outputs_written;
1494   nir->info.tess.tcs_vertices_out = key->input_vertices;
1495   nir->num_uniforms = 8 * sizeof(uint32_t);
1496
1497   var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_0");
1498   var->data.location = 0;
1499   var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_1");
1500   var->data.location = 1;
1501
1502   /* Write the patch URB header. */
1503   for (int i = 0; i <= 1; i++) {
1504      load = nir_load_uniform(&b, 4, 32, zero, .base = i * 4 * sizeof(uint32_t));
1505
1506      nir_store_output(&b, load, zero,
1507                       .base = VARYING_SLOT_TESS_LEVEL_INNER - i,
1508                       .write_mask = WRITEMASK_XYZW);
1509   }
1510
1511   /* Copy inputs to outputs. */
1512   uint64_t varyings = nir->info.inputs_read;
1513
1514   while (varyings != 0) {
1515      const int varying = ffsll(varyings) - 1;
1516
1517      load = nir_load_per_vertex_input(&b, 4, 32, invoc_id, zero, .base = varying);
1518
1519      nir_store_per_vertex_output(&b, load, invoc_id, zero,
1520                                  .base = varying,
1521                                  .write_mask = WRITEMASK_XYZW);
1522
1523      varyings &= ~BITFIELD64_BIT(varying);
1524   }
1525
1526   nir_validate_shader(nir, "in brw_nir_create_passthrough_tcs");
1527
1528   brw_preprocess_nir(compiler, nir, NULL);
1529
1530   return nir;
1531}
1532