101e04c3fSmrg/* 201e04c3fSmrg * Copyright © 2011 Intel Corporation 301e04c3fSmrg * 401e04c3fSmrg * Permission is hereby granted, free of charge, to any person obtaining a 501e04c3fSmrg * copy of this software and associated documentation files (the "Software"), 601e04c3fSmrg * to deal in the Software without restriction, including without limitation 701e04c3fSmrg * the rights to use, copy, modify, merge, publish, distribute, sublicense, 801e04c3fSmrg * and/or sell copies of the Software, and to permit persons to whom the 901e04c3fSmrg * Software is furnished to do so, subject to the following conditions: 1001e04c3fSmrg * 1101e04c3fSmrg * The above copyright notice and this permission notice (including the next 1201e04c3fSmrg * paragraph) shall be included in all copies or substantial portions of the 1301e04c3fSmrg * Software. 1401e04c3fSmrg * 1501e04c3fSmrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 1601e04c3fSmrg * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 1701e04c3fSmrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 1801e04c3fSmrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 1901e04c3fSmrg * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 2001e04c3fSmrg * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 2101e04c3fSmrg * IN THE SOFTWARE. 2201e04c3fSmrg */ 2301e04c3fSmrg 2401e04c3fSmrg#include "brw_vec4.h" 2501e04c3fSmrg#include "brw_fs.h" 2601e04c3fSmrg#include "brw_cfg.h" 2701e04c3fSmrg#include "brw_nir.h" 2801e04c3fSmrg#include "brw_vec4_builder.h" 2901e04c3fSmrg#include "brw_vec4_vs.h" 3001e04c3fSmrg#include "brw_dead_control_flow.h" 317ec681f3Smrg#include "dev/intel_debug.h" 3201e04c3fSmrg#include "program/prog_parameter.h" 3301e04c3fSmrg#include "util/u_math.h" 3401e04c3fSmrg 3501e04c3fSmrg#define MAX_INSTRUCTION (1 << 30) 3601e04c3fSmrg 3701e04c3fSmrgusing namespace brw; 3801e04c3fSmrg 3901e04c3fSmrgnamespace brw { 4001e04c3fSmrg 4101e04c3fSmrgvoid 4201e04c3fSmrgsrc_reg::init() 4301e04c3fSmrg{ 4401e04c3fSmrg memset((void*)this, 0, sizeof(*this)); 4501e04c3fSmrg this->file = BAD_FILE; 4601e04c3fSmrg this->type = BRW_REGISTER_TYPE_UD; 4701e04c3fSmrg} 4801e04c3fSmrg 4901e04c3fSmrgsrc_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type) 5001e04c3fSmrg{ 5101e04c3fSmrg init(); 5201e04c3fSmrg 5301e04c3fSmrg this->file = file; 5401e04c3fSmrg this->nr = nr; 5501e04c3fSmrg if (type && (type->is_scalar() || type->is_vector() || type->is_matrix())) 5601e04c3fSmrg this->swizzle = brw_swizzle_for_size(type->vector_elements); 5701e04c3fSmrg else 5801e04c3fSmrg this->swizzle = BRW_SWIZZLE_XYZW; 5901e04c3fSmrg if (type) 6001e04c3fSmrg this->type = brw_type_for_base_type(type); 6101e04c3fSmrg} 6201e04c3fSmrg 6301e04c3fSmrg/** Generic unset register constructor. */ 6401e04c3fSmrgsrc_reg::src_reg() 6501e04c3fSmrg{ 6601e04c3fSmrg init(); 6701e04c3fSmrg} 6801e04c3fSmrg 6901e04c3fSmrgsrc_reg::src_reg(struct ::brw_reg reg) : 7001e04c3fSmrg backend_reg(reg) 7101e04c3fSmrg{ 7201e04c3fSmrg this->offset = 0; 7301e04c3fSmrg this->reladdr = NULL; 7401e04c3fSmrg} 7501e04c3fSmrg 7601e04c3fSmrgsrc_reg::src_reg(const dst_reg ®) : 7701e04c3fSmrg backend_reg(reg) 7801e04c3fSmrg{ 7901e04c3fSmrg this->reladdr = reg.reladdr; 8001e04c3fSmrg this->swizzle = brw_swizzle_for_mask(reg.writemask); 8101e04c3fSmrg} 8201e04c3fSmrg 8301e04c3fSmrgvoid 8401e04c3fSmrgdst_reg::init() 8501e04c3fSmrg{ 8601e04c3fSmrg memset((void*)this, 0, sizeof(*this)); 8701e04c3fSmrg this->file = BAD_FILE; 8801e04c3fSmrg this->type = BRW_REGISTER_TYPE_UD; 8901e04c3fSmrg this->writemask = WRITEMASK_XYZW; 9001e04c3fSmrg} 9101e04c3fSmrg 9201e04c3fSmrgdst_reg::dst_reg() 9301e04c3fSmrg{ 9401e04c3fSmrg init(); 9501e04c3fSmrg} 9601e04c3fSmrg 9701e04c3fSmrgdst_reg::dst_reg(enum brw_reg_file file, int nr) 9801e04c3fSmrg{ 9901e04c3fSmrg init(); 10001e04c3fSmrg 10101e04c3fSmrg this->file = file; 10201e04c3fSmrg this->nr = nr; 10301e04c3fSmrg} 10401e04c3fSmrg 10501e04c3fSmrgdst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type, 10601e04c3fSmrg unsigned writemask) 10701e04c3fSmrg{ 10801e04c3fSmrg init(); 10901e04c3fSmrg 11001e04c3fSmrg this->file = file; 11101e04c3fSmrg this->nr = nr; 11201e04c3fSmrg this->type = brw_type_for_base_type(type); 11301e04c3fSmrg this->writemask = writemask; 11401e04c3fSmrg} 11501e04c3fSmrg 11601e04c3fSmrgdst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type, 11701e04c3fSmrg unsigned writemask) 11801e04c3fSmrg{ 11901e04c3fSmrg init(); 12001e04c3fSmrg 12101e04c3fSmrg this->file = file; 12201e04c3fSmrg this->nr = nr; 12301e04c3fSmrg this->type = type; 12401e04c3fSmrg this->writemask = writemask; 12501e04c3fSmrg} 12601e04c3fSmrg 12701e04c3fSmrgdst_reg::dst_reg(struct ::brw_reg reg) : 12801e04c3fSmrg backend_reg(reg) 12901e04c3fSmrg{ 13001e04c3fSmrg this->offset = 0; 13101e04c3fSmrg this->reladdr = NULL; 13201e04c3fSmrg} 13301e04c3fSmrg 13401e04c3fSmrgdst_reg::dst_reg(const src_reg ®) : 13501e04c3fSmrg backend_reg(reg) 13601e04c3fSmrg{ 13701e04c3fSmrg this->writemask = brw_mask_for_swizzle(reg.swizzle); 13801e04c3fSmrg this->reladdr = reg.reladdr; 13901e04c3fSmrg} 14001e04c3fSmrg 14101e04c3fSmrgbool 14201e04c3fSmrgdst_reg::equals(const dst_reg &r) const 14301e04c3fSmrg{ 14401e04c3fSmrg return (this->backend_reg::equals(r) && 14501e04c3fSmrg (reladdr == r.reladdr || 14601e04c3fSmrg (reladdr && r.reladdr && reladdr->equals(*r.reladdr)))); 14701e04c3fSmrg} 14801e04c3fSmrg 14901e04c3fSmrgbool 1507ec681f3Smrgvec4_instruction::is_send_from_grf() const 15101e04c3fSmrg{ 15201e04c3fSmrg switch (opcode) { 15301e04c3fSmrg case SHADER_OPCODE_SHADER_TIME_ADD: 1547ec681f3Smrg case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7: 1559f464c52Smaya case VEC4_OPCODE_UNTYPED_ATOMIC: 1569f464c52Smaya case VEC4_OPCODE_UNTYPED_SURFACE_READ: 1579f464c52Smaya case VEC4_OPCODE_UNTYPED_SURFACE_WRITE: 15801e04c3fSmrg case VEC4_OPCODE_URB_READ: 15901e04c3fSmrg case TCS_OPCODE_URB_WRITE: 16001e04c3fSmrg case TCS_OPCODE_RELEASE_INPUT: 16101e04c3fSmrg case SHADER_OPCODE_BARRIER: 16201e04c3fSmrg return true; 16301e04c3fSmrg default: 16401e04c3fSmrg return false; 16501e04c3fSmrg } 16601e04c3fSmrg} 16701e04c3fSmrg 16801e04c3fSmrg/** 16901e04c3fSmrg * Returns true if this instruction's sources and destinations cannot 17001e04c3fSmrg * safely be the same register. 17101e04c3fSmrg * 17201e04c3fSmrg * In most cases, a register can be written over safely by the same 17301e04c3fSmrg * instruction that is its last use. For a single instruction, the 17401e04c3fSmrg * sources are dereferenced before writing of the destination starts 17501e04c3fSmrg * (naturally). 17601e04c3fSmrg * 17701e04c3fSmrg * However, there are a few cases where this can be problematic: 17801e04c3fSmrg * 17901e04c3fSmrg * - Virtual opcodes that translate to multiple instructions in the 18001e04c3fSmrg * code generator: if src == dst and one instruction writes the 18101e04c3fSmrg * destination before a later instruction reads the source, then 18201e04c3fSmrg * src will have been clobbered. 18301e04c3fSmrg * 18401e04c3fSmrg * The register allocator uses this information to set up conflicts between 18501e04c3fSmrg * GRF sources and the destination. 18601e04c3fSmrg */ 18701e04c3fSmrgbool 18801e04c3fSmrgvec4_instruction::has_source_and_destination_hazard() const 18901e04c3fSmrg{ 19001e04c3fSmrg switch (opcode) { 19101e04c3fSmrg case TCS_OPCODE_SET_INPUT_URB_OFFSETS: 19201e04c3fSmrg case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: 19301e04c3fSmrg case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: 19401e04c3fSmrg return true; 19501e04c3fSmrg default: 19601e04c3fSmrg /* 8-wide compressed DF operations are executed as two 4-wide operations, 19701e04c3fSmrg * so we have a src/dst hazard if the first half of the instruction 19801e04c3fSmrg * overwrites the source of the second half. Prevent this by marking 19901e04c3fSmrg * compressed instructions as having src/dst hazards, so the register 20001e04c3fSmrg * allocator assigns safe register regions for dst and srcs. 20101e04c3fSmrg */ 20201e04c3fSmrg return size_written > REG_SIZE; 20301e04c3fSmrg } 20401e04c3fSmrg} 20501e04c3fSmrg 20601e04c3fSmrgunsigned 20701e04c3fSmrgvec4_instruction::size_read(unsigned arg) const 20801e04c3fSmrg{ 20901e04c3fSmrg switch (opcode) { 21001e04c3fSmrg case SHADER_OPCODE_SHADER_TIME_ADD: 2119f464c52Smaya case VEC4_OPCODE_UNTYPED_ATOMIC: 2129f464c52Smaya case VEC4_OPCODE_UNTYPED_SURFACE_READ: 2139f464c52Smaya case VEC4_OPCODE_UNTYPED_SURFACE_WRITE: 21401e04c3fSmrg case TCS_OPCODE_URB_WRITE: 21501e04c3fSmrg if (arg == 0) 21601e04c3fSmrg return mlen * REG_SIZE; 21701e04c3fSmrg break; 2187ec681f3Smrg case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7: 21901e04c3fSmrg if (arg == 1) 22001e04c3fSmrg return mlen * REG_SIZE; 22101e04c3fSmrg break; 22201e04c3fSmrg default: 22301e04c3fSmrg break; 22401e04c3fSmrg } 22501e04c3fSmrg 22601e04c3fSmrg switch (src[arg].file) { 22701e04c3fSmrg case BAD_FILE: 22801e04c3fSmrg return 0; 22901e04c3fSmrg case IMM: 23001e04c3fSmrg case UNIFORM: 23101e04c3fSmrg return 4 * type_sz(src[arg].type); 23201e04c3fSmrg default: 23301e04c3fSmrg /* XXX - Represent actual vertical stride. */ 23401e04c3fSmrg return exec_size * type_sz(src[arg].type); 23501e04c3fSmrg } 23601e04c3fSmrg} 23701e04c3fSmrg 23801e04c3fSmrgbool 2397ec681f3Smrgvec4_instruction::can_do_source_mods(const struct intel_device_info *devinfo) 24001e04c3fSmrg{ 2417ec681f3Smrg if (devinfo->ver == 6 && is_math()) 24201e04c3fSmrg return false; 24301e04c3fSmrg 24401e04c3fSmrg if (is_send_from_grf()) 24501e04c3fSmrg return false; 24601e04c3fSmrg 24701e04c3fSmrg if (!backend_instruction::can_do_source_mods()) 24801e04c3fSmrg return false; 24901e04c3fSmrg 25001e04c3fSmrg return true; 25101e04c3fSmrg} 25201e04c3fSmrg 25301e04c3fSmrgbool 25401e04c3fSmrgvec4_instruction::can_do_cmod() 25501e04c3fSmrg{ 25601e04c3fSmrg if (!backend_instruction::can_do_cmod()) 25701e04c3fSmrg return false; 25801e04c3fSmrg 25901e04c3fSmrg /* The accumulator result appears to get used for the conditional modifier 26001e04c3fSmrg * generation. When negating a UD value, there is a 33rd bit generated for 26101e04c3fSmrg * the sign in the accumulator value, so now you can't check, for example, 26201e04c3fSmrg * equality with a 32-bit value. See piglit fs-op-neg-uvec4. 26301e04c3fSmrg */ 26401e04c3fSmrg for (unsigned i = 0; i < 3; i++) { 26501e04c3fSmrg if (src[i].file != BAD_FILE && 2667ec681f3Smrg brw_reg_type_is_unsigned_integer(src[i].type) && src[i].negate) 26701e04c3fSmrg return false; 26801e04c3fSmrg } 26901e04c3fSmrg 27001e04c3fSmrg return true; 27101e04c3fSmrg} 27201e04c3fSmrg 27301e04c3fSmrgbool 2747ec681f3Smrgvec4_instruction::can_do_writemask(const struct intel_device_info *devinfo) 27501e04c3fSmrg{ 27601e04c3fSmrg switch (opcode) { 2777ec681f3Smrg case SHADER_OPCODE_GFX4_SCRATCH_READ: 27801e04c3fSmrg case VEC4_OPCODE_DOUBLE_TO_F32: 27901e04c3fSmrg case VEC4_OPCODE_DOUBLE_TO_D32: 28001e04c3fSmrg case VEC4_OPCODE_DOUBLE_TO_U32: 28101e04c3fSmrg case VEC4_OPCODE_TO_DOUBLE: 28201e04c3fSmrg case VEC4_OPCODE_PICK_LOW_32BIT: 28301e04c3fSmrg case VEC4_OPCODE_PICK_HIGH_32BIT: 28401e04c3fSmrg case VEC4_OPCODE_SET_LOW_32BIT: 28501e04c3fSmrg case VEC4_OPCODE_SET_HIGH_32BIT: 28601e04c3fSmrg case VS_OPCODE_PULL_CONSTANT_LOAD: 2877ec681f3Smrg case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7: 28801e04c3fSmrg case TCS_OPCODE_SET_INPUT_URB_OFFSETS: 28901e04c3fSmrg case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: 29001e04c3fSmrg case TES_OPCODE_CREATE_INPUT_READ_HEADER: 29101e04c3fSmrg case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: 29201e04c3fSmrg case VEC4_OPCODE_URB_READ: 29301e04c3fSmrg case SHADER_OPCODE_MOV_INDIRECT: 29401e04c3fSmrg return false; 29501e04c3fSmrg default: 2967ec681f3Smrg /* The MATH instruction on Gfx6 only executes in align1 mode, which does 29701e04c3fSmrg * not support writemasking. 29801e04c3fSmrg */ 2997ec681f3Smrg if (devinfo->ver == 6 && is_math()) 30001e04c3fSmrg return false; 30101e04c3fSmrg 30201e04c3fSmrg if (is_tex()) 30301e04c3fSmrg return false; 30401e04c3fSmrg 30501e04c3fSmrg return true; 30601e04c3fSmrg } 30701e04c3fSmrg} 30801e04c3fSmrg 30901e04c3fSmrgbool 31001e04c3fSmrgvec4_instruction::can_change_types() const 31101e04c3fSmrg{ 31201e04c3fSmrg return dst.type == src[0].type && 31301e04c3fSmrg !src[0].abs && !src[0].negate && !saturate && 31401e04c3fSmrg (opcode == BRW_OPCODE_MOV || 31501e04c3fSmrg (opcode == BRW_OPCODE_SEL && 31601e04c3fSmrg dst.type == src[1].type && 31701e04c3fSmrg predicate != BRW_PREDICATE_NONE && 31801e04c3fSmrg !src[1].abs && !src[1].negate)); 31901e04c3fSmrg} 32001e04c3fSmrg 32101e04c3fSmrg/** 32201e04c3fSmrg * Returns how many MRFs an opcode will write over. 32301e04c3fSmrg * 32401e04c3fSmrg * Note that this is not the 0 or 1 implied writes in an actual gen 32501e04c3fSmrg * instruction -- the generate_* functions generate additional MOVs 32601e04c3fSmrg * for setup. 32701e04c3fSmrg */ 3287ec681f3Smrgunsigned 3297ec681f3Smrgvec4_instruction::implied_mrf_writes() const 33001e04c3fSmrg{ 3317ec681f3Smrg if (mlen == 0 || is_send_from_grf()) 33201e04c3fSmrg return 0; 33301e04c3fSmrg 3347ec681f3Smrg switch (opcode) { 33501e04c3fSmrg case SHADER_OPCODE_RCP: 33601e04c3fSmrg case SHADER_OPCODE_RSQ: 33701e04c3fSmrg case SHADER_OPCODE_SQRT: 33801e04c3fSmrg case SHADER_OPCODE_EXP2: 33901e04c3fSmrg case SHADER_OPCODE_LOG2: 34001e04c3fSmrg case SHADER_OPCODE_SIN: 34101e04c3fSmrg case SHADER_OPCODE_COS: 34201e04c3fSmrg return 1; 34301e04c3fSmrg case SHADER_OPCODE_INT_QUOTIENT: 34401e04c3fSmrg case SHADER_OPCODE_INT_REMAINDER: 34501e04c3fSmrg case SHADER_OPCODE_POW: 34601e04c3fSmrg case TCS_OPCODE_THREAD_END: 34701e04c3fSmrg return 2; 34801e04c3fSmrg case VS_OPCODE_URB_WRITE: 34901e04c3fSmrg return 1; 35001e04c3fSmrg case VS_OPCODE_PULL_CONSTANT_LOAD: 35101e04c3fSmrg return 2; 3527ec681f3Smrg case SHADER_OPCODE_GFX4_SCRATCH_READ: 35301e04c3fSmrg return 2; 3547ec681f3Smrg case SHADER_OPCODE_GFX4_SCRATCH_WRITE: 35501e04c3fSmrg return 3; 35601e04c3fSmrg case GS_OPCODE_URB_WRITE: 35701e04c3fSmrg case GS_OPCODE_URB_WRITE_ALLOCATE: 35801e04c3fSmrg case GS_OPCODE_THREAD_END: 35901e04c3fSmrg return 0; 36001e04c3fSmrg case GS_OPCODE_FF_SYNC: 36101e04c3fSmrg return 1; 36201e04c3fSmrg case TCS_OPCODE_URB_WRITE: 36301e04c3fSmrg return 0; 36401e04c3fSmrg case SHADER_OPCODE_SHADER_TIME_ADD: 36501e04c3fSmrg return 0; 36601e04c3fSmrg case SHADER_OPCODE_TEX: 36701e04c3fSmrg case SHADER_OPCODE_TXL: 36801e04c3fSmrg case SHADER_OPCODE_TXD: 36901e04c3fSmrg case SHADER_OPCODE_TXF: 37001e04c3fSmrg case SHADER_OPCODE_TXF_CMS: 37101e04c3fSmrg case SHADER_OPCODE_TXF_CMS_W: 37201e04c3fSmrg case SHADER_OPCODE_TXF_MCS: 37301e04c3fSmrg case SHADER_OPCODE_TXS: 37401e04c3fSmrg case SHADER_OPCODE_TG4: 37501e04c3fSmrg case SHADER_OPCODE_TG4_OFFSET: 37601e04c3fSmrg case SHADER_OPCODE_SAMPLEINFO: 37701e04c3fSmrg case SHADER_OPCODE_GET_BUFFER_SIZE: 3787ec681f3Smrg return header_size; 37901e04c3fSmrg default: 38001e04c3fSmrg unreachable("not reached"); 38101e04c3fSmrg } 38201e04c3fSmrg} 38301e04c3fSmrg 38401e04c3fSmrgbool 38501e04c3fSmrgsrc_reg::equals(const src_reg &r) const 38601e04c3fSmrg{ 38701e04c3fSmrg return (this->backend_reg::equals(r) && 38801e04c3fSmrg !reladdr && !r.reladdr); 38901e04c3fSmrg} 39001e04c3fSmrg 39101e04c3fSmrgbool 39201e04c3fSmrgsrc_reg::negative_equals(const src_reg &r) const 39301e04c3fSmrg{ 39401e04c3fSmrg return this->backend_reg::negative_equals(r) && 39501e04c3fSmrg !reladdr && !r.reladdr; 39601e04c3fSmrg} 39701e04c3fSmrg 39801e04c3fSmrgbool 39901e04c3fSmrgvec4_visitor::opt_vector_float() 40001e04c3fSmrg{ 40101e04c3fSmrg bool progress = false; 40201e04c3fSmrg 40301e04c3fSmrg foreach_block(block, cfg) { 4049f464c52Smaya unsigned last_reg = ~0u, last_offset = ~0u; 40501e04c3fSmrg enum brw_reg_file last_reg_file = BAD_FILE; 40601e04c3fSmrg 40701e04c3fSmrg uint8_t imm[4] = { 0 }; 40801e04c3fSmrg int inst_count = 0; 40901e04c3fSmrg vec4_instruction *imm_inst[4]; 41001e04c3fSmrg unsigned writemask = 0; 41101e04c3fSmrg enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F; 41201e04c3fSmrg 41301e04c3fSmrg foreach_inst_in_block_safe(vec4_instruction, inst, block) { 41401e04c3fSmrg int vf = -1; 4159f464c52Smaya enum brw_reg_type need_type = BRW_REGISTER_TYPE_LAST; 41601e04c3fSmrg 41701e04c3fSmrg /* Look for unconditional MOVs from an immediate with a partial 41801e04c3fSmrg * writemask. Skip type-conversion MOVs other than integer 0, 41901e04c3fSmrg * where the type doesn't matter. See if the immediate can be 42001e04c3fSmrg * represented as a VF. 42101e04c3fSmrg */ 42201e04c3fSmrg if (inst->opcode == BRW_OPCODE_MOV && 42301e04c3fSmrg inst->src[0].file == IMM && 42401e04c3fSmrg inst->predicate == BRW_PREDICATE_NONE && 42501e04c3fSmrg inst->dst.writemask != WRITEMASK_XYZW && 42601e04c3fSmrg type_sz(inst->src[0].type) < 8 && 42701e04c3fSmrg (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) { 42801e04c3fSmrg 42901e04c3fSmrg vf = brw_float_to_vf(inst->src[0].d); 43001e04c3fSmrg need_type = BRW_REGISTER_TYPE_D; 43101e04c3fSmrg 43201e04c3fSmrg if (vf == -1) { 43301e04c3fSmrg vf = brw_float_to_vf(inst->src[0].f); 43401e04c3fSmrg need_type = BRW_REGISTER_TYPE_F; 43501e04c3fSmrg } 43601e04c3fSmrg } else { 4379f464c52Smaya last_reg = ~0u; 43801e04c3fSmrg } 43901e04c3fSmrg 44001e04c3fSmrg /* If this wasn't a MOV, or the destination register doesn't match, 44101e04c3fSmrg * or we have to switch destination types, then this breaks our 44201e04c3fSmrg * sequence. Combine anything we've accumulated so far. 44301e04c3fSmrg */ 44401e04c3fSmrg if (last_reg != inst->dst.nr || 44501e04c3fSmrg last_offset != inst->dst.offset || 44601e04c3fSmrg last_reg_file != inst->dst.file || 44701e04c3fSmrg (vf > 0 && dest_type != need_type)) { 44801e04c3fSmrg 44901e04c3fSmrg if (inst_count > 1) { 45001e04c3fSmrg unsigned vf; 45101e04c3fSmrg memcpy(&vf, imm, sizeof(vf)); 45201e04c3fSmrg vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf)); 45301e04c3fSmrg mov->dst.type = dest_type; 45401e04c3fSmrg mov->dst.writemask = writemask; 45501e04c3fSmrg inst->insert_before(block, mov); 45601e04c3fSmrg 45701e04c3fSmrg for (int i = 0; i < inst_count; i++) { 45801e04c3fSmrg imm_inst[i]->remove(block); 45901e04c3fSmrg } 46001e04c3fSmrg 46101e04c3fSmrg progress = true; 46201e04c3fSmrg } 46301e04c3fSmrg 46401e04c3fSmrg inst_count = 0; 4659f464c52Smaya last_reg = ~0u;; 46601e04c3fSmrg writemask = 0; 46701e04c3fSmrg dest_type = BRW_REGISTER_TYPE_F; 46801e04c3fSmrg 46901e04c3fSmrg for (int i = 0; i < 4; i++) { 47001e04c3fSmrg imm[i] = 0; 47101e04c3fSmrg } 47201e04c3fSmrg } 47301e04c3fSmrg 47401e04c3fSmrg /* Record this instruction's value (if it was representable). */ 47501e04c3fSmrg if (vf != -1) { 47601e04c3fSmrg if ((inst->dst.writemask & WRITEMASK_X) != 0) 47701e04c3fSmrg imm[0] = vf; 47801e04c3fSmrg if ((inst->dst.writemask & WRITEMASK_Y) != 0) 47901e04c3fSmrg imm[1] = vf; 48001e04c3fSmrg if ((inst->dst.writemask & WRITEMASK_Z) != 0) 48101e04c3fSmrg imm[2] = vf; 48201e04c3fSmrg if ((inst->dst.writemask & WRITEMASK_W) != 0) 48301e04c3fSmrg imm[3] = vf; 48401e04c3fSmrg 48501e04c3fSmrg writemask |= inst->dst.writemask; 48601e04c3fSmrg imm_inst[inst_count++] = inst; 48701e04c3fSmrg 48801e04c3fSmrg last_reg = inst->dst.nr; 48901e04c3fSmrg last_offset = inst->dst.offset; 49001e04c3fSmrg last_reg_file = inst->dst.file; 49101e04c3fSmrg if (vf > 0) 49201e04c3fSmrg dest_type = need_type; 49301e04c3fSmrg } 49401e04c3fSmrg } 49501e04c3fSmrg } 49601e04c3fSmrg 49701e04c3fSmrg if (progress) 4987ec681f3Smrg invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 49901e04c3fSmrg 50001e04c3fSmrg return progress; 50101e04c3fSmrg} 50201e04c3fSmrg 50301e04c3fSmrg/* Replaces unused channels of a swizzle with channels that are used. 50401e04c3fSmrg * 50501e04c3fSmrg * For instance, this pass transforms 50601e04c3fSmrg * 50701e04c3fSmrg * mov vgrf4.yz, vgrf5.wxzy 50801e04c3fSmrg * 50901e04c3fSmrg * into 51001e04c3fSmrg * 51101e04c3fSmrg * mov vgrf4.yz, vgrf5.xxzx 51201e04c3fSmrg * 51301e04c3fSmrg * This eliminates false uses of some channels, letting dead code elimination 51401e04c3fSmrg * remove the instructions that wrote them. 51501e04c3fSmrg */ 51601e04c3fSmrgbool 51701e04c3fSmrgvec4_visitor::opt_reduce_swizzle() 51801e04c3fSmrg{ 51901e04c3fSmrg bool progress = false; 52001e04c3fSmrg 52101e04c3fSmrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 52201e04c3fSmrg if (inst->dst.file == BAD_FILE || 52301e04c3fSmrg inst->dst.file == ARF || 52401e04c3fSmrg inst->dst.file == FIXED_GRF || 52501e04c3fSmrg inst->is_send_from_grf()) 52601e04c3fSmrg continue; 52701e04c3fSmrg 52801e04c3fSmrg unsigned swizzle; 52901e04c3fSmrg 53001e04c3fSmrg /* Determine which channels of the sources are read. */ 53101e04c3fSmrg switch (inst->opcode) { 53201e04c3fSmrg case VEC4_OPCODE_PACK_BYTES: 53301e04c3fSmrg case BRW_OPCODE_DP4: 53401e04c3fSmrg case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0, 53501e04c3fSmrg * but all four of src1. 53601e04c3fSmrg */ 53701e04c3fSmrg swizzle = brw_swizzle_for_size(4); 53801e04c3fSmrg break; 53901e04c3fSmrg case BRW_OPCODE_DP3: 54001e04c3fSmrg swizzle = brw_swizzle_for_size(3); 54101e04c3fSmrg break; 54201e04c3fSmrg case BRW_OPCODE_DP2: 54301e04c3fSmrg swizzle = brw_swizzle_for_size(2); 54401e04c3fSmrg break; 54501e04c3fSmrg 54601e04c3fSmrg case VEC4_OPCODE_TO_DOUBLE: 54701e04c3fSmrg case VEC4_OPCODE_DOUBLE_TO_F32: 54801e04c3fSmrg case VEC4_OPCODE_DOUBLE_TO_D32: 54901e04c3fSmrg case VEC4_OPCODE_DOUBLE_TO_U32: 55001e04c3fSmrg case VEC4_OPCODE_PICK_LOW_32BIT: 55101e04c3fSmrg case VEC4_OPCODE_PICK_HIGH_32BIT: 55201e04c3fSmrg case VEC4_OPCODE_SET_LOW_32BIT: 55301e04c3fSmrg case VEC4_OPCODE_SET_HIGH_32BIT: 55401e04c3fSmrg swizzle = brw_swizzle_for_size(4); 55501e04c3fSmrg break; 55601e04c3fSmrg 55701e04c3fSmrg default: 55801e04c3fSmrg swizzle = brw_swizzle_for_mask(inst->dst.writemask); 55901e04c3fSmrg break; 56001e04c3fSmrg } 56101e04c3fSmrg 56201e04c3fSmrg /* Update sources' swizzles. */ 56301e04c3fSmrg for (int i = 0; i < 3; i++) { 56401e04c3fSmrg if (inst->src[i].file != VGRF && 56501e04c3fSmrg inst->src[i].file != ATTR && 56601e04c3fSmrg inst->src[i].file != UNIFORM) 56701e04c3fSmrg continue; 56801e04c3fSmrg 56901e04c3fSmrg const unsigned new_swizzle = 57001e04c3fSmrg brw_compose_swizzle(swizzle, inst->src[i].swizzle); 57101e04c3fSmrg if (inst->src[i].swizzle != new_swizzle) { 57201e04c3fSmrg inst->src[i].swizzle = new_swizzle; 57301e04c3fSmrg progress = true; 57401e04c3fSmrg } 57501e04c3fSmrg } 57601e04c3fSmrg } 57701e04c3fSmrg 57801e04c3fSmrg if (progress) 5797ec681f3Smrg invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL); 58001e04c3fSmrg 58101e04c3fSmrg return progress; 58201e04c3fSmrg} 58301e04c3fSmrg 58401e04c3fSmrgvoid 58501e04c3fSmrgvec4_visitor::split_uniform_registers() 58601e04c3fSmrg{ 58701e04c3fSmrg /* Prior to this, uniforms have been in an array sized according to 58801e04c3fSmrg * the number of vector uniforms present, sparsely filled (so an 58901e04c3fSmrg * aggregate results in reg indices being skipped over). Now we're 59001e04c3fSmrg * going to cut those aggregates up so each .nr index is one 59101e04c3fSmrg * vector. The goal is to make elimination of unused uniform 59201e04c3fSmrg * components easier later. 59301e04c3fSmrg */ 59401e04c3fSmrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 59501e04c3fSmrg for (int i = 0 ; i < 3; i++) { 5967ec681f3Smrg if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START) 59701e04c3fSmrg continue; 59801e04c3fSmrg 59901e04c3fSmrg assert(!inst->src[i].reladdr); 60001e04c3fSmrg 60101e04c3fSmrg inst->src[i].nr += inst->src[i].offset / 16; 60201e04c3fSmrg inst->src[i].offset %= 16; 60301e04c3fSmrg } 60401e04c3fSmrg } 60501e04c3fSmrg} 60601e04c3fSmrg 60701e04c3fSmrg/* This function returns the register number where we placed the uniform */ 60801e04c3fSmrgstatic int 60901e04c3fSmrgset_push_constant_loc(const int nr_uniforms, int *new_uniform_count, 61001e04c3fSmrg const int src, const int size, const int channel_size, 61101e04c3fSmrg int *new_loc, int *new_chan, 61201e04c3fSmrg int *new_chans_used) 61301e04c3fSmrg{ 61401e04c3fSmrg int dst; 61501e04c3fSmrg /* Find the lowest place we can slot this uniform in. */ 61601e04c3fSmrg for (dst = 0; dst < nr_uniforms; dst++) { 61701e04c3fSmrg if (ALIGN(new_chans_used[dst], channel_size) + size <= 4) 61801e04c3fSmrg break; 61901e04c3fSmrg } 62001e04c3fSmrg 62101e04c3fSmrg assert(dst < nr_uniforms); 62201e04c3fSmrg 62301e04c3fSmrg new_loc[src] = dst; 62401e04c3fSmrg new_chan[src] = ALIGN(new_chans_used[dst], channel_size); 62501e04c3fSmrg new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size; 62601e04c3fSmrg 62701e04c3fSmrg *new_uniform_count = MAX2(*new_uniform_count, dst + 1); 62801e04c3fSmrg return dst; 62901e04c3fSmrg} 63001e04c3fSmrg 63101e04c3fSmrgvoid 63201e04c3fSmrgvec4_visitor::pack_uniform_registers() 63301e04c3fSmrg{ 6347ec681f3Smrg if (!compiler->compact_params) 6357ec681f3Smrg return; 6367ec681f3Smrg 63701e04c3fSmrg uint8_t chans_used[this->uniforms]; 63801e04c3fSmrg int new_loc[this->uniforms]; 63901e04c3fSmrg int new_chan[this->uniforms]; 64001e04c3fSmrg bool is_aligned_to_dvec4[this->uniforms]; 64101e04c3fSmrg int new_chans_used[this->uniforms]; 64201e04c3fSmrg int channel_sizes[this->uniforms]; 64301e04c3fSmrg 64401e04c3fSmrg memset(chans_used, 0, sizeof(chans_used)); 64501e04c3fSmrg memset(new_loc, 0, sizeof(new_loc)); 64601e04c3fSmrg memset(new_chan, 0, sizeof(new_chan)); 64701e04c3fSmrg memset(new_chans_used, 0, sizeof(new_chans_used)); 64801e04c3fSmrg memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4)); 64901e04c3fSmrg memset(channel_sizes, 0, sizeof(channel_sizes)); 65001e04c3fSmrg 65101e04c3fSmrg /* Find which uniform vectors are actually used by the program. We 65201e04c3fSmrg * expect unused vector elements when we've moved array access out 65301e04c3fSmrg * to pull constants, and from some GLSL code generators like wine. 65401e04c3fSmrg */ 65501e04c3fSmrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 65601e04c3fSmrg unsigned readmask; 65701e04c3fSmrg switch (inst->opcode) { 65801e04c3fSmrg case VEC4_OPCODE_PACK_BYTES: 65901e04c3fSmrg case BRW_OPCODE_DP4: 66001e04c3fSmrg case BRW_OPCODE_DPH: 66101e04c3fSmrg readmask = 0xf; 66201e04c3fSmrg break; 66301e04c3fSmrg case BRW_OPCODE_DP3: 66401e04c3fSmrg readmask = 0x7; 66501e04c3fSmrg break; 66601e04c3fSmrg case BRW_OPCODE_DP2: 66701e04c3fSmrg readmask = 0x3; 66801e04c3fSmrg break; 66901e04c3fSmrg default: 67001e04c3fSmrg readmask = inst->dst.writemask; 67101e04c3fSmrg break; 67201e04c3fSmrg } 67301e04c3fSmrg 67401e04c3fSmrg for (int i = 0 ; i < 3; i++) { 6757ec681f3Smrg if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START) 67601e04c3fSmrg continue; 67701e04c3fSmrg 67801e04c3fSmrg assert(type_sz(inst->src[i].type) % 4 == 0); 67901e04c3fSmrg int channel_size = type_sz(inst->src[i].type) / 4; 68001e04c3fSmrg 68101e04c3fSmrg int reg = inst->src[i].nr; 68201e04c3fSmrg for (int c = 0; c < 4; c++) { 68301e04c3fSmrg if (!(readmask & (1 << c))) 68401e04c3fSmrg continue; 68501e04c3fSmrg 68601e04c3fSmrg unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1; 68701e04c3fSmrg unsigned used = MAX2(chans_used[reg], channel * channel_size); 68801e04c3fSmrg if (used <= 4) { 68901e04c3fSmrg chans_used[reg] = used; 69001e04c3fSmrg channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size); 69101e04c3fSmrg } else { 69201e04c3fSmrg is_aligned_to_dvec4[reg] = true; 69301e04c3fSmrg is_aligned_to_dvec4[reg + 1] = true; 69401e04c3fSmrg chans_used[reg + 1] = used - 4; 69501e04c3fSmrg channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size); 69601e04c3fSmrg } 69701e04c3fSmrg } 69801e04c3fSmrg } 69901e04c3fSmrg 70001e04c3fSmrg if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && 70101e04c3fSmrg inst->src[0].file == UNIFORM) { 70201e04c3fSmrg assert(inst->src[2].file == BRW_IMMEDIATE_VALUE); 70301e04c3fSmrg assert(inst->src[0].subnr == 0); 70401e04c3fSmrg 70501e04c3fSmrg unsigned bytes_read = inst->src[2].ud; 70601e04c3fSmrg assert(bytes_read % 4 == 0); 70701e04c3fSmrg unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16); 70801e04c3fSmrg 70901e04c3fSmrg /* We just mark every register touched by a MOV_INDIRECT as being 71001e04c3fSmrg * fully used. This ensures that it doesn't broken up piecewise by 71101e04c3fSmrg * the next part of our packing algorithm. 71201e04c3fSmrg */ 71301e04c3fSmrg int reg = inst->src[0].nr; 71401e04c3fSmrg int channel_size = type_sz(inst->src[0].type) / 4; 71501e04c3fSmrg for (unsigned i = 0; i < vec4s_read; i++) { 71601e04c3fSmrg chans_used[reg + i] = 4; 71701e04c3fSmrg channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size); 71801e04c3fSmrg } 71901e04c3fSmrg } 72001e04c3fSmrg } 72101e04c3fSmrg 72201e04c3fSmrg int new_uniform_count = 0; 72301e04c3fSmrg 72401e04c3fSmrg /* As the uniforms are going to be reordered, take the data from a temporary 72501e04c3fSmrg * copy of the original param[]. 72601e04c3fSmrg */ 72701e04c3fSmrg uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params); 72801e04c3fSmrg memcpy(param, stage_prog_data->param, 72901e04c3fSmrg sizeof(uint32_t) * stage_prog_data->nr_params); 73001e04c3fSmrg 73101e04c3fSmrg /* Now, figure out a packing of the live uniform vectors into our 73201e04c3fSmrg * push constants. Start with dvec{3,4} because they are aligned to 73301e04c3fSmrg * dvec4 size (2 vec4). 73401e04c3fSmrg */ 73501e04c3fSmrg for (int src = 0; src < uniforms; src++) { 73601e04c3fSmrg int size = chans_used[src]; 73701e04c3fSmrg 73801e04c3fSmrg if (size == 0 || !is_aligned_to_dvec4[src]) 73901e04c3fSmrg continue; 74001e04c3fSmrg 74101e04c3fSmrg /* dvec3 are aligned to dvec4 size, apply the alignment of the size 74201e04c3fSmrg * to 4 to avoid moving last component of a dvec3 to the available 74301e04c3fSmrg * location at the end of a previous dvec3. These available locations 74401e04c3fSmrg * could be filled by smaller variables in next loop. 74501e04c3fSmrg */ 74601e04c3fSmrg size = ALIGN(size, 4); 74701e04c3fSmrg int dst = set_push_constant_loc(uniforms, &new_uniform_count, 74801e04c3fSmrg src, size, channel_sizes[src], 74901e04c3fSmrg new_loc, new_chan, 75001e04c3fSmrg new_chans_used); 75101e04c3fSmrg /* Move the references to the data */ 75201e04c3fSmrg for (int j = 0; j < size; j++) { 75301e04c3fSmrg stage_prog_data->param[dst * 4 + new_chan[src] + j] = 75401e04c3fSmrg param[src * 4 + j]; 75501e04c3fSmrg } 75601e04c3fSmrg } 75701e04c3fSmrg 75801e04c3fSmrg /* Continue with the rest of data, which is aligned to vec4. */ 75901e04c3fSmrg for (int src = 0; src < uniforms; src++) { 76001e04c3fSmrg int size = chans_used[src]; 76101e04c3fSmrg 76201e04c3fSmrg if (size == 0 || is_aligned_to_dvec4[src]) 76301e04c3fSmrg continue; 76401e04c3fSmrg 76501e04c3fSmrg int dst = set_push_constant_loc(uniforms, &new_uniform_count, 76601e04c3fSmrg src, size, channel_sizes[src], 76701e04c3fSmrg new_loc, new_chan, 76801e04c3fSmrg new_chans_used); 76901e04c3fSmrg /* Move the references to the data */ 77001e04c3fSmrg for (int j = 0; j < size; j++) { 77101e04c3fSmrg stage_prog_data->param[dst * 4 + new_chan[src] + j] = 77201e04c3fSmrg param[src * 4 + j]; 77301e04c3fSmrg } 77401e04c3fSmrg } 77501e04c3fSmrg 77601e04c3fSmrg ralloc_free(param); 77701e04c3fSmrg this->uniforms = new_uniform_count; 7787ec681f3Smrg stage_prog_data->nr_params = new_uniform_count * 4; 77901e04c3fSmrg 78001e04c3fSmrg /* Now, update the instructions for our repacked uniforms. */ 78101e04c3fSmrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 78201e04c3fSmrg for (int i = 0 ; i < 3; i++) { 78301e04c3fSmrg int src = inst->src[i].nr; 78401e04c3fSmrg 7857ec681f3Smrg if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START) 78601e04c3fSmrg continue; 78701e04c3fSmrg 78801e04c3fSmrg int chan = new_chan[src] / channel_sizes[src]; 78901e04c3fSmrg inst->src[i].nr = new_loc[src]; 79001e04c3fSmrg inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan); 79101e04c3fSmrg } 79201e04c3fSmrg } 79301e04c3fSmrg} 79401e04c3fSmrg 79501e04c3fSmrg/** 79601e04c3fSmrg * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a). 79701e04c3fSmrg * 79801e04c3fSmrg * While GLSL IR also performs this optimization, we end up with it in 79901e04c3fSmrg * our instruction stream for a couple of reasons. One is that we 80001e04c3fSmrg * sometimes generate silly instructions, for example in array access 80101e04c3fSmrg * where we'll generate "ADD offset, index, base" even if base is 0. 80201e04c3fSmrg * The other is that GLSL IR's constant propagation doesn't track the 80301e04c3fSmrg * components of aggregates, so some VS patterns (initialize matrix to 80401e04c3fSmrg * 0, accumulate in vertex blending factors) end up breaking down to 80501e04c3fSmrg * instructions involving 0. 80601e04c3fSmrg */ 80701e04c3fSmrgbool 80801e04c3fSmrgvec4_visitor::opt_algebraic() 80901e04c3fSmrg{ 81001e04c3fSmrg bool progress = false; 81101e04c3fSmrg 81201e04c3fSmrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 81301e04c3fSmrg switch (inst->opcode) { 81401e04c3fSmrg case BRW_OPCODE_MOV: 81501e04c3fSmrg if (inst->src[0].file != IMM) 81601e04c3fSmrg break; 81701e04c3fSmrg 81801e04c3fSmrg if (inst->saturate) { 81901e04c3fSmrg /* Full mixed-type saturates don't happen. However, we can end up 82001e04c3fSmrg * with things like: 82101e04c3fSmrg * 82201e04c3fSmrg * mov.sat(8) g21<1>DF -1F 82301e04c3fSmrg * 82401e04c3fSmrg * Other mixed-size-but-same-base-type cases may also be possible. 82501e04c3fSmrg */ 82601e04c3fSmrg if (inst->dst.type != inst->src[0].type && 82701e04c3fSmrg inst->dst.type != BRW_REGISTER_TYPE_DF && 82801e04c3fSmrg inst->src[0].type != BRW_REGISTER_TYPE_F) 82901e04c3fSmrg assert(!"unimplemented: saturate mixed types"); 83001e04c3fSmrg 83101e04c3fSmrg if (brw_saturate_immediate(inst->src[0].type, 83201e04c3fSmrg &inst->src[0].as_brw_reg())) { 83301e04c3fSmrg inst->saturate = false; 83401e04c3fSmrg progress = true; 83501e04c3fSmrg } 83601e04c3fSmrg } 83701e04c3fSmrg break; 83801e04c3fSmrg 83901e04c3fSmrg case BRW_OPCODE_OR: 84001e04c3fSmrg if (inst->src[1].is_zero()) { 84101e04c3fSmrg inst->opcode = BRW_OPCODE_MOV; 84201e04c3fSmrg inst->src[1] = src_reg(); 84301e04c3fSmrg progress = true; 84401e04c3fSmrg } 84501e04c3fSmrg break; 84601e04c3fSmrg 84701e04c3fSmrg case VEC4_OPCODE_UNPACK_UNIFORM: 84801e04c3fSmrg if (inst->src[0].file != UNIFORM) { 84901e04c3fSmrg inst->opcode = BRW_OPCODE_MOV; 85001e04c3fSmrg progress = true; 85101e04c3fSmrg } 85201e04c3fSmrg break; 85301e04c3fSmrg 85401e04c3fSmrg case BRW_OPCODE_ADD: 85501e04c3fSmrg if (inst->src[1].is_zero()) { 85601e04c3fSmrg inst->opcode = BRW_OPCODE_MOV; 85701e04c3fSmrg inst->src[1] = src_reg(); 85801e04c3fSmrg progress = true; 85901e04c3fSmrg } 86001e04c3fSmrg break; 86101e04c3fSmrg 86201e04c3fSmrg case BRW_OPCODE_MUL: 86301e04c3fSmrg if (inst->src[1].is_zero()) { 86401e04c3fSmrg inst->opcode = BRW_OPCODE_MOV; 86501e04c3fSmrg switch (inst->src[0].type) { 86601e04c3fSmrg case BRW_REGISTER_TYPE_F: 86701e04c3fSmrg inst->src[0] = brw_imm_f(0.0f); 86801e04c3fSmrg break; 86901e04c3fSmrg case BRW_REGISTER_TYPE_D: 87001e04c3fSmrg inst->src[0] = brw_imm_d(0); 87101e04c3fSmrg break; 87201e04c3fSmrg case BRW_REGISTER_TYPE_UD: 87301e04c3fSmrg inst->src[0] = brw_imm_ud(0u); 87401e04c3fSmrg break; 87501e04c3fSmrg default: 87601e04c3fSmrg unreachable("not reached"); 87701e04c3fSmrg } 87801e04c3fSmrg inst->src[1] = src_reg(); 87901e04c3fSmrg progress = true; 88001e04c3fSmrg } else if (inst->src[1].is_one()) { 88101e04c3fSmrg inst->opcode = BRW_OPCODE_MOV; 88201e04c3fSmrg inst->src[1] = src_reg(); 88301e04c3fSmrg progress = true; 88401e04c3fSmrg } else if (inst->src[1].is_negative_one()) { 88501e04c3fSmrg inst->opcode = BRW_OPCODE_MOV; 88601e04c3fSmrg inst->src[0].negate = !inst->src[0].negate; 88701e04c3fSmrg inst->src[1] = src_reg(); 88801e04c3fSmrg progress = true; 88901e04c3fSmrg } 89001e04c3fSmrg break; 89101e04c3fSmrg case SHADER_OPCODE_BROADCAST: 89201e04c3fSmrg if (is_uniform(inst->src[0]) || 89301e04c3fSmrg inst->src[1].is_zero()) { 89401e04c3fSmrg inst->opcode = BRW_OPCODE_MOV; 89501e04c3fSmrg inst->src[1] = src_reg(); 89601e04c3fSmrg inst->force_writemask_all = true; 89701e04c3fSmrg progress = true; 89801e04c3fSmrg } 89901e04c3fSmrg break; 90001e04c3fSmrg 90101e04c3fSmrg default: 90201e04c3fSmrg break; 90301e04c3fSmrg } 90401e04c3fSmrg } 90501e04c3fSmrg 90601e04c3fSmrg if (progress) 9077ec681f3Smrg invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW | 9087ec681f3Smrg DEPENDENCY_INSTRUCTION_DETAIL); 90901e04c3fSmrg 91001e04c3fSmrg return progress; 91101e04c3fSmrg} 91201e04c3fSmrg 91301e04c3fSmrg/** 91401e04c3fSmrg * Only a limited number of hardware registers may be used for push 91501e04c3fSmrg * constants, so this turns access to the overflowed constants into 91601e04c3fSmrg * pull constants. 91701e04c3fSmrg */ 91801e04c3fSmrgvoid 91901e04c3fSmrgvec4_visitor::move_push_constants_to_pull_constants() 92001e04c3fSmrg{ 92101e04c3fSmrg int pull_constant_loc[this->uniforms]; 92201e04c3fSmrg 9237ec681f3Smrg const int max_uniform_components = push_length * 8; 9247ec681f3Smrg 92501e04c3fSmrg if (this->uniforms * 4 <= max_uniform_components) 92601e04c3fSmrg return; 92701e04c3fSmrg 9287ec681f3Smrg assert(compiler->supports_pull_constants); 9297ec681f3Smrg assert(compiler->compact_params); 9307ec681f3Smrg 9317ec681f3Smrg /* If we got here, we also can't have any push ranges */ 9327ec681f3Smrg for (unsigned i = 0; i < 4; i++) 9337ec681f3Smrg assert(prog_data->base.ubo_ranges[i].length == 0); 9347ec681f3Smrg 93501e04c3fSmrg /* Make some sort of choice as to which uniforms get sent to pull 93601e04c3fSmrg * constants. We could potentially do something clever here like 93701e04c3fSmrg * look for the most infrequently used uniform vec4s, but leave 93801e04c3fSmrg * that for later. 93901e04c3fSmrg */ 94001e04c3fSmrg for (int i = 0; i < this->uniforms * 4; i += 4) { 94101e04c3fSmrg pull_constant_loc[i / 4] = -1; 94201e04c3fSmrg 94301e04c3fSmrg if (i >= max_uniform_components) { 94401e04c3fSmrg uint32_t *values = &stage_prog_data->param[i]; 94501e04c3fSmrg 94601e04c3fSmrg /* Try to find an existing copy of this uniform in the pull 94701e04c3fSmrg * constants if it was part of an array access already. 94801e04c3fSmrg */ 94901e04c3fSmrg for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) { 95001e04c3fSmrg int matches; 95101e04c3fSmrg 95201e04c3fSmrg for (matches = 0; matches < 4; matches++) { 95301e04c3fSmrg if (stage_prog_data->pull_param[j + matches] != values[matches]) 95401e04c3fSmrg break; 95501e04c3fSmrg } 95601e04c3fSmrg 95701e04c3fSmrg if (matches == 4) { 95801e04c3fSmrg pull_constant_loc[i / 4] = j / 4; 95901e04c3fSmrg break; 96001e04c3fSmrg } 96101e04c3fSmrg } 96201e04c3fSmrg 96301e04c3fSmrg if (pull_constant_loc[i / 4] == -1) { 96401e04c3fSmrg assert(stage_prog_data->nr_pull_params % 4 == 0); 96501e04c3fSmrg pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4; 96601e04c3fSmrg 96701e04c3fSmrg for (int j = 0; j < 4; j++) { 96801e04c3fSmrg stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] = 96901e04c3fSmrg values[j]; 97001e04c3fSmrg } 97101e04c3fSmrg } 97201e04c3fSmrg } 97301e04c3fSmrg } 97401e04c3fSmrg 97501e04c3fSmrg /* Now actually rewrite usage of the things we've moved to pull 97601e04c3fSmrg * constants. 97701e04c3fSmrg */ 97801e04c3fSmrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 97901e04c3fSmrg for (int i = 0 ; i < 3; i++) { 9807ec681f3Smrg if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START || 98101e04c3fSmrg pull_constant_loc[inst->src[i].nr] == -1) 98201e04c3fSmrg continue; 98301e04c3fSmrg 98401e04c3fSmrg int uniform = inst->src[i].nr; 98501e04c3fSmrg 98601e04c3fSmrg const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ? 98701e04c3fSmrg glsl_type::dvec4_type : glsl_type::vec4_type; 98801e04c3fSmrg dst_reg temp = dst_reg(this, temp_type); 98901e04c3fSmrg 99001e04c3fSmrg emit_pull_constant_load(block, inst, temp, inst->src[i], 99101e04c3fSmrg pull_constant_loc[uniform], src_reg()); 99201e04c3fSmrg 99301e04c3fSmrg inst->src[i].file = temp.file; 99401e04c3fSmrg inst->src[i].nr = temp.nr; 99501e04c3fSmrg inst->src[i].offset %= 16; 99601e04c3fSmrg inst->src[i].reladdr = NULL; 99701e04c3fSmrg } 99801e04c3fSmrg } 99901e04c3fSmrg 100001e04c3fSmrg /* Repack push constants to remove the now-unused ones. */ 100101e04c3fSmrg pack_uniform_registers(); 100201e04c3fSmrg} 100301e04c3fSmrg 100401e04c3fSmrg/* Conditions for which we want to avoid setting the dependency control bits */ 100501e04c3fSmrgbool 100601e04c3fSmrgvec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst) 100701e04c3fSmrg{ 100801e04c3fSmrg#define IS_DWORD(reg) \ 100901e04c3fSmrg (reg.type == BRW_REGISTER_TYPE_UD || \ 101001e04c3fSmrg reg.type == BRW_REGISTER_TYPE_D) 101101e04c3fSmrg 101201e04c3fSmrg#define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8) 101301e04c3fSmrg 10147ec681f3Smrg if (devinfo->ver >= 7) { 101501e04c3fSmrg if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) || 101601e04c3fSmrg IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2])) 101701e04c3fSmrg return true; 101801e04c3fSmrg } 101901e04c3fSmrg 102001e04c3fSmrg#undef IS_64BIT 102101e04c3fSmrg#undef IS_DWORD 102201e04c3fSmrg 102301e04c3fSmrg /* 102401e04c3fSmrg * mlen: 102501e04c3fSmrg * In the presence of send messages, totally interrupt dependency 102601e04c3fSmrg * control. They're long enough that the chance of dependency 102701e04c3fSmrg * control around them just doesn't matter. 102801e04c3fSmrg * 102901e04c3fSmrg * predicate: 103001e04c3fSmrg * From the Ivy Bridge PRM, volume 4 part 3.7, page 80: 103101e04c3fSmrg * When a sequence of NoDDChk and NoDDClr are used, the last instruction that 103201e04c3fSmrg * completes the scoreboard clear must have a non-zero execution mask. This 103301e04c3fSmrg * means, if any kind of predication can change the execution mask or channel 103401e04c3fSmrg * enable of the last instruction, the optimization must be avoided. This is 103501e04c3fSmrg * to avoid instructions being shot down the pipeline when no writes are 103601e04c3fSmrg * required. 103701e04c3fSmrg * 103801e04c3fSmrg * math: 103901e04c3fSmrg * Dependency control does not work well over math instructions. 104001e04c3fSmrg * NB: Discovered empirically 104101e04c3fSmrg */ 104201e04c3fSmrg return (inst->mlen || inst->predicate || inst->is_math()); 104301e04c3fSmrg} 104401e04c3fSmrg 104501e04c3fSmrg/** 104601e04c3fSmrg * Sets the dependency control fields on instructions after register 104701e04c3fSmrg * allocation and before the generator is run. 104801e04c3fSmrg * 104901e04c3fSmrg * When you have a sequence of instructions like: 105001e04c3fSmrg * 105101e04c3fSmrg * DP4 temp.x vertex uniform[0] 105201e04c3fSmrg * DP4 temp.y vertex uniform[0] 105301e04c3fSmrg * DP4 temp.z vertex uniform[0] 105401e04c3fSmrg * DP4 temp.w vertex uniform[0] 105501e04c3fSmrg * 105601e04c3fSmrg * The hardware doesn't know that it can actually run the later instructions 105701e04c3fSmrg * while the previous ones are in flight, producing stalls. However, we have 105801e04c3fSmrg * manual fields we can set in the instructions that let it do so. 105901e04c3fSmrg */ 106001e04c3fSmrgvoid 106101e04c3fSmrgvec4_visitor::opt_set_dependency_control() 106201e04c3fSmrg{ 106301e04c3fSmrg vec4_instruction *last_grf_write[BRW_MAX_GRF]; 106401e04c3fSmrg uint8_t grf_channels_written[BRW_MAX_GRF]; 106501e04c3fSmrg vec4_instruction *last_mrf_write[BRW_MAX_GRF]; 106601e04c3fSmrg uint8_t mrf_channels_written[BRW_MAX_GRF]; 106701e04c3fSmrg 106801e04c3fSmrg assert(prog_data->total_grf || 106901e04c3fSmrg !"Must be called after register allocation"); 107001e04c3fSmrg 107101e04c3fSmrg foreach_block (block, cfg) { 107201e04c3fSmrg memset(last_grf_write, 0, sizeof(last_grf_write)); 107301e04c3fSmrg memset(last_mrf_write, 0, sizeof(last_mrf_write)); 107401e04c3fSmrg 107501e04c3fSmrg foreach_inst_in_block (vec4_instruction, inst, block) { 107601e04c3fSmrg /* If we read from a register that we were doing dependency control 107701e04c3fSmrg * on, don't do dependency control across the read. 107801e04c3fSmrg */ 107901e04c3fSmrg for (int i = 0; i < 3; i++) { 108001e04c3fSmrg int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE; 108101e04c3fSmrg if (inst->src[i].file == VGRF) { 108201e04c3fSmrg last_grf_write[reg] = NULL; 108301e04c3fSmrg } else if (inst->src[i].file == FIXED_GRF) { 108401e04c3fSmrg memset(last_grf_write, 0, sizeof(last_grf_write)); 108501e04c3fSmrg break; 108601e04c3fSmrg } 108701e04c3fSmrg assert(inst->src[i].file != MRF); 108801e04c3fSmrg } 108901e04c3fSmrg 109001e04c3fSmrg if (is_dep_ctrl_unsafe(inst)) { 109101e04c3fSmrg memset(last_grf_write, 0, sizeof(last_grf_write)); 109201e04c3fSmrg memset(last_mrf_write, 0, sizeof(last_mrf_write)); 109301e04c3fSmrg continue; 109401e04c3fSmrg } 109501e04c3fSmrg 109601e04c3fSmrg /* Now, see if we can do dependency control for this instruction 109701e04c3fSmrg * against a previous one writing to its destination. 109801e04c3fSmrg */ 109901e04c3fSmrg int reg = inst->dst.nr + inst->dst.offset / REG_SIZE; 110001e04c3fSmrg if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) { 110101e04c3fSmrg if (last_grf_write[reg] && 110201e04c3fSmrg last_grf_write[reg]->dst.offset == inst->dst.offset && 110301e04c3fSmrg !(inst->dst.writemask & grf_channels_written[reg])) { 110401e04c3fSmrg last_grf_write[reg]->no_dd_clear = true; 110501e04c3fSmrg inst->no_dd_check = true; 110601e04c3fSmrg } else { 110701e04c3fSmrg grf_channels_written[reg] = 0; 110801e04c3fSmrg } 110901e04c3fSmrg 111001e04c3fSmrg last_grf_write[reg] = inst; 111101e04c3fSmrg grf_channels_written[reg] |= inst->dst.writemask; 111201e04c3fSmrg } else if (inst->dst.file == MRF) { 111301e04c3fSmrg if (last_mrf_write[reg] && 111401e04c3fSmrg last_mrf_write[reg]->dst.offset == inst->dst.offset && 111501e04c3fSmrg !(inst->dst.writemask & mrf_channels_written[reg])) { 111601e04c3fSmrg last_mrf_write[reg]->no_dd_clear = true; 111701e04c3fSmrg inst->no_dd_check = true; 111801e04c3fSmrg } else { 111901e04c3fSmrg mrf_channels_written[reg] = 0; 112001e04c3fSmrg } 112101e04c3fSmrg 112201e04c3fSmrg last_mrf_write[reg] = inst; 112301e04c3fSmrg mrf_channels_written[reg] |= inst->dst.writemask; 112401e04c3fSmrg } 112501e04c3fSmrg } 112601e04c3fSmrg } 112701e04c3fSmrg} 112801e04c3fSmrg 112901e04c3fSmrgbool 11307ec681f3Smrgvec4_instruction::can_reswizzle(const struct intel_device_info *devinfo, 113101e04c3fSmrg int dst_writemask, 113201e04c3fSmrg int swizzle, 113301e04c3fSmrg int swizzle_mask) 113401e04c3fSmrg{ 11357ec681f3Smrg /* Gfx6 MATH instructions can not execute in align16 mode, so swizzles 113601e04c3fSmrg * are not allowed. 113701e04c3fSmrg */ 11387ec681f3Smrg if (devinfo->ver == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW) 113901e04c3fSmrg return false; 114001e04c3fSmrg 11419f464c52Smaya /* If we write to the flag register changing the swizzle would change 11429f464c52Smaya * what channels are written to the flag register. 11439f464c52Smaya */ 11447ec681f3Smrg if (writes_flag(devinfo)) 11459f464c52Smaya return false; 11469f464c52Smaya 114701e04c3fSmrg /* We can't swizzle implicit accumulator access. We'd have to 114801e04c3fSmrg * reswizzle the producer of the accumulator value in addition 114901e04c3fSmrg * to the consumer (i.e. both MUL and MACH). Just skip this. 115001e04c3fSmrg */ 115101e04c3fSmrg if (reads_accumulator_implicitly()) 115201e04c3fSmrg return false; 115301e04c3fSmrg 115401e04c3fSmrg if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW) 115501e04c3fSmrg return false; 115601e04c3fSmrg 115701e04c3fSmrg /* If this instruction sets anything not referenced by swizzle, then we'd 115801e04c3fSmrg * totally break it when we reswizzle. 115901e04c3fSmrg */ 116001e04c3fSmrg if (dst.writemask & ~swizzle_mask) 116101e04c3fSmrg return false; 116201e04c3fSmrg 116301e04c3fSmrg if (mlen > 0) 116401e04c3fSmrg return false; 116501e04c3fSmrg 116601e04c3fSmrg for (int i = 0; i < 3; i++) { 116701e04c3fSmrg if (src[i].is_accumulator()) 116801e04c3fSmrg return false; 116901e04c3fSmrg } 117001e04c3fSmrg 117101e04c3fSmrg return true; 117201e04c3fSmrg} 117301e04c3fSmrg 117401e04c3fSmrg/** 117501e04c3fSmrg * For any channels in the swizzle's source that were populated by this 117601e04c3fSmrg * instruction, rewrite the instruction to put the appropriate result directly 117701e04c3fSmrg * in those channels. 117801e04c3fSmrg * 117901e04c3fSmrg * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x 118001e04c3fSmrg */ 118101e04c3fSmrgvoid 118201e04c3fSmrgvec4_instruction::reswizzle(int dst_writemask, int swizzle) 118301e04c3fSmrg{ 118401e04c3fSmrg /* Destination write mask doesn't correspond to source swizzle for the dot 118501e04c3fSmrg * product and pack_bytes instructions. 118601e04c3fSmrg */ 118701e04c3fSmrg if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH && 118801e04c3fSmrg opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 && 118901e04c3fSmrg opcode != VEC4_OPCODE_PACK_BYTES) { 119001e04c3fSmrg for (int i = 0; i < 3; i++) { 11919f464c52Smaya if (src[i].file == BAD_FILE) 119201e04c3fSmrg continue; 119301e04c3fSmrg 11949f464c52Smaya if (src[i].file == IMM) { 11959f464c52Smaya assert(src[i].type != BRW_REGISTER_TYPE_V && 11969f464c52Smaya src[i].type != BRW_REGISTER_TYPE_UV); 11979f464c52Smaya 11989f464c52Smaya /* Vector immediate types need to be reswizzled. */ 11999f464c52Smaya if (src[i].type == BRW_REGISTER_TYPE_VF) { 12009f464c52Smaya const unsigned imm[] = { 12019f464c52Smaya (src[i].ud >> 0) & 0x0ff, 12029f464c52Smaya (src[i].ud >> 8) & 0x0ff, 12039f464c52Smaya (src[i].ud >> 16) & 0x0ff, 12049f464c52Smaya (src[i].ud >> 24) & 0x0ff, 12059f464c52Smaya }; 12069f464c52Smaya 12079f464c52Smaya src[i] = brw_imm_vf4(imm[BRW_GET_SWZ(swizzle, 0)], 12089f464c52Smaya imm[BRW_GET_SWZ(swizzle, 1)], 12099f464c52Smaya imm[BRW_GET_SWZ(swizzle, 2)], 12109f464c52Smaya imm[BRW_GET_SWZ(swizzle, 3)]); 12119f464c52Smaya } 12129f464c52Smaya 12139f464c52Smaya continue; 12149f464c52Smaya } 12159f464c52Smaya 121601e04c3fSmrg src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle); 121701e04c3fSmrg } 121801e04c3fSmrg } 121901e04c3fSmrg 122001e04c3fSmrg /* Apply the specified swizzle and writemask to the original mask of 122101e04c3fSmrg * written components. 122201e04c3fSmrg */ 122301e04c3fSmrg dst.writemask = dst_writemask & 122401e04c3fSmrg brw_apply_swizzle_to_mask(swizzle, dst.writemask); 122501e04c3fSmrg} 122601e04c3fSmrg 122701e04c3fSmrg/* 122801e04c3fSmrg * Tries to reduce extra MOV instructions by taking temporary GRFs that get 122901e04c3fSmrg * just written and then MOVed into another reg and making the original write 123001e04c3fSmrg * of the GRF write directly to the final destination instead. 123101e04c3fSmrg */ 123201e04c3fSmrgbool 123301e04c3fSmrgvec4_visitor::opt_register_coalesce() 123401e04c3fSmrg{ 123501e04c3fSmrg bool progress = false; 123601e04c3fSmrg int next_ip = 0; 12377ec681f3Smrg const vec4_live_variables &live = live_analysis.require(); 123801e04c3fSmrg 123901e04c3fSmrg foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) { 124001e04c3fSmrg int ip = next_ip; 124101e04c3fSmrg next_ip++; 124201e04c3fSmrg 124301e04c3fSmrg if (inst->opcode != BRW_OPCODE_MOV || 124401e04c3fSmrg (inst->dst.file != VGRF && inst->dst.file != MRF) || 124501e04c3fSmrg inst->predicate || 124601e04c3fSmrg inst->src[0].file != VGRF || 124701e04c3fSmrg inst->dst.type != inst->src[0].type || 124801e04c3fSmrg inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr) 124901e04c3fSmrg continue; 125001e04c3fSmrg 125101e04c3fSmrg /* Remove no-op MOVs */ 125201e04c3fSmrg if (inst->dst.file == inst->src[0].file && 125301e04c3fSmrg inst->dst.nr == inst->src[0].nr && 125401e04c3fSmrg inst->dst.offset == inst->src[0].offset) { 125501e04c3fSmrg bool is_nop_mov = true; 125601e04c3fSmrg 125701e04c3fSmrg for (unsigned c = 0; c < 4; c++) { 125801e04c3fSmrg if ((inst->dst.writemask & (1 << c)) == 0) 125901e04c3fSmrg continue; 126001e04c3fSmrg 126101e04c3fSmrg if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) { 126201e04c3fSmrg is_nop_mov = false; 126301e04c3fSmrg break; 126401e04c3fSmrg } 126501e04c3fSmrg } 126601e04c3fSmrg 126701e04c3fSmrg if (is_nop_mov) { 126801e04c3fSmrg inst->remove(block); 126901e04c3fSmrg progress = true; 127001e04c3fSmrg continue; 127101e04c3fSmrg } 127201e04c3fSmrg } 127301e04c3fSmrg 127401e04c3fSmrg bool to_mrf = (inst->dst.file == MRF); 127501e04c3fSmrg 127601e04c3fSmrg /* Can't coalesce this GRF if someone else was going to 127701e04c3fSmrg * read it later. 127801e04c3fSmrg */ 12797ec681f3Smrg if (live.var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip) 128001e04c3fSmrg continue; 128101e04c3fSmrg 128201e04c3fSmrg /* We need to check interference with the final destination between this 128301e04c3fSmrg * instruction and the earliest instruction involved in writing the GRF 128401e04c3fSmrg * we're eliminating. To do that, keep track of which of our source 128501e04c3fSmrg * channels we've seen initialized. 128601e04c3fSmrg */ 128701e04c3fSmrg const unsigned chans_needed = 128801e04c3fSmrg brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle, 128901e04c3fSmrg inst->dst.writemask); 129001e04c3fSmrg unsigned chans_remaining = chans_needed; 129101e04c3fSmrg 129201e04c3fSmrg /* Now walk up the instruction stream trying to see if we can rewrite 129301e04c3fSmrg * everything writing to the temporary to write into the destination 129401e04c3fSmrg * instead. 129501e04c3fSmrg */ 129601e04c3fSmrg vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev; 129701e04c3fSmrg foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst, 129801e04c3fSmrg inst) { 129901e04c3fSmrg _scan_inst = scan_inst; 130001e04c3fSmrg 130101e04c3fSmrg if (regions_overlap(inst->src[0], inst->size_read(0), 130201e04c3fSmrg scan_inst->dst, scan_inst->size_written)) { 130301e04c3fSmrg /* Found something writing to the reg we want to coalesce away. */ 130401e04c3fSmrg if (to_mrf) { 130501e04c3fSmrg /* SEND instructions can't have MRF as a destination. */ 130601e04c3fSmrg if (scan_inst->mlen) 130701e04c3fSmrg break; 130801e04c3fSmrg 13097ec681f3Smrg if (devinfo->ver == 6) { 13107ec681f3Smrg /* gfx6 math instructions must have the destination be 131101e04c3fSmrg * VGRF, so no compute-to-MRF for them. 131201e04c3fSmrg */ 131301e04c3fSmrg if (scan_inst->is_math()) { 131401e04c3fSmrg break; 131501e04c3fSmrg } 131601e04c3fSmrg } 131701e04c3fSmrg } 131801e04c3fSmrg 131901e04c3fSmrg /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1) 132001e04c3fSmrg * instructions, and this optimization pass is not capable of 132101e04c3fSmrg * handling that. Bail on these instructions and hope that some 132201e04c3fSmrg * later optimization pass can do the right thing after they are 132301e04c3fSmrg * expanded. 132401e04c3fSmrg */ 132501e04c3fSmrg if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2) 132601e04c3fSmrg break; 132701e04c3fSmrg 132801e04c3fSmrg /* This doesn't handle saturation on the instruction we 132901e04c3fSmrg * want to coalesce away if the register types do not match. 133001e04c3fSmrg * But if scan_inst is a non type-converting 'mov', we can fix 133101e04c3fSmrg * the types later. 133201e04c3fSmrg */ 133301e04c3fSmrg if (inst->saturate && 133401e04c3fSmrg inst->dst.type != scan_inst->dst.type && 133501e04c3fSmrg !(scan_inst->opcode == BRW_OPCODE_MOV && 133601e04c3fSmrg scan_inst->dst.type == scan_inst->src[0].type)) 133701e04c3fSmrg break; 133801e04c3fSmrg 133901e04c3fSmrg /* Only allow coalescing between registers of the same type size. 134001e04c3fSmrg * Otherwise we would need to make the pass aware of the fact that 134101e04c3fSmrg * channel sizes are different for single and double precision. 134201e04c3fSmrg */ 134301e04c3fSmrg if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type)) 134401e04c3fSmrg break; 134501e04c3fSmrg 134601e04c3fSmrg /* Check that scan_inst writes the same amount of data as the 134701e04c3fSmrg * instruction, otherwise coalescing would lead to writing a 134801e04c3fSmrg * different (larger or smaller) region of the destination 134901e04c3fSmrg */ 135001e04c3fSmrg if (scan_inst->size_written != inst->size_written) 135101e04c3fSmrg break; 135201e04c3fSmrg 135301e04c3fSmrg /* If we can't handle the swizzle, bail. */ 135401e04c3fSmrg if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask, 135501e04c3fSmrg inst->src[0].swizzle, 135601e04c3fSmrg chans_needed)) { 135701e04c3fSmrg break; 135801e04c3fSmrg } 135901e04c3fSmrg 136001e04c3fSmrg /* This only handles coalescing writes of 8 channels (1 register 136101e04c3fSmrg * for single-precision and 2 registers for double-precision) 136201e04c3fSmrg * starting at the source offset of the copy instruction. 136301e04c3fSmrg */ 136401e04c3fSmrg if (DIV_ROUND_UP(scan_inst->size_written, 136501e04c3fSmrg type_sz(scan_inst->dst.type)) > 8 || 136601e04c3fSmrg scan_inst->dst.offset != inst->src[0].offset) 136701e04c3fSmrg break; 136801e04c3fSmrg 136901e04c3fSmrg /* Mark which channels we found unconditional writes for. */ 137001e04c3fSmrg if (!scan_inst->predicate) 137101e04c3fSmrg chans_remaining &= ~scan_inst->dst.writemask; 137201e04c3fSmrg 137301e04c3fSmrg if (chans_remaining == 0) 137401e04c3fSmrg break; 137501e04c3fSmrg } 137601e04c3fSmrg 137701e04c3fSmrg /* You can't read from an MRF, so if someone else reads our MRF's 137801e04c3fSmrg * source GRF that we wanted to rewrite, that stops us. If it's a 137901e04c3fSmrg * GRF we're trying to coalesce to, we don't actually handle 138001e04c3fSmrg * rewriting sources so bail in that case as well. 138101e04c3fSmrg */ 138201e04c3fSmrg bool interfered = false; 138301e04c3fSmrg for (int i = 0; i < 3; i++) { 138401e04c3fSmrg if (regions_overlap(inst->src[0], inst->size_read(0), 138501e04c3fSmrg scan_inst->src[i], scan_inst->size_read(i))) 138601e04c3fSmrg interfered = true; 138701e04c3fSmrg } 138801e04c3fSmrg if (interfered) 138901e04c3fSmrg break; 139001e04c3fSmrg 139101e04c3fSmrg /* If somebody else writes the same channels of our destination here, 139201e04c3fSmrg * we can't coalesce before that. 139301e04c3fSmrg */ 139401e04c3fSmrg if (regions_overlap(inst->dst, inst->size_written, 139501e04c3fSmrg scan_inst->dst, scan_inst->size_written) && 139601e04c3fSmrg (inst->dst.writemask & scan_inst->dst.writemask) != 0) { 139701e04c3fSmrg break; 139801e04c3fSmrg } 139901e04c3fSmrg 140001e04c3fSmrg /* Check for reads of the register we're trying to coalesce into. We 140101e04c3fSmrg * can't go rewriting instructions above that to put some other value 140201e04c3fSmrg * in the register instead. 140301e04c3fSmrg */ 140401e04c3fSmrg if (to_mrf && scan_inst->mlen > 0) { 14059f464c52Smaya unsigned start = scan_inst->base_mrf; 14069f464c52Smaya unsigned end = scan_inst->base_mrf + scan_inst->mlen; 14079f464c52Smaya 14089f464c52Smaya if (inst->dst.nr >= start && inst->dst.nr < end) { 140901e04c3fSmrg break; 141001e04c3fSmrg } 141101e04c3fSmrg } else { 141201e04c3fSmrg for (int i = 0; i < 3; i++) { 141301e04c3fSmrg if (regions_overlap(inst->dst, inst->size_written, 141401e04c3fSmrg scan_inst->src[i], scan_inst->size_read(i))) 141501e04c3fSmrg interfered = true; 141601e04c3fSmrg } 141701e04c3fSmrg if (interfered) 141801e04c3fSmrg break; 141901e04c3fSmrg } 142001e04c3fSmrg } 142101e04c3fSmrg 142201e04c3fSmrg if (chans_remaining == 0) { 142301e04c3fSmrg /* If we've made it here, we have an MOV we want to coalesce out, and 142401e04c3fSmrg * a scan_inst pointing to the earliest instruction involved in 142501e04c3fSmrg * computing the value. Now go rewrite the instruction stream 142601e04c3fSmrg * between the two. 142701e04c3fSmrg */ 142801e04c3fSmrg vec4_instruction *scan_inst = _scan_inst; 142901e04c3fSmrg while (scan_inst != inst) { 143001e04c3fSmrg if (scan_inst->dst.file == VGRF && 143101e04c3fSmrg scan_inst->dst.nr == inst->src[0].nr && 143201e04c3fSmrg scan_inst->dst.offset == inst->src[0].offset) { 143301e04c3fSmrg scan_inst->reswizzle(inst->dst.writemask, 143401e04c3fSmrg inst->src[0].swizzle); 143501e04c3fSmrg scan_inst->dst.file = inst->dst.file; 143601e04c3fSmrg scan_inst->dst.nr = inst->dst.nr; 143701e04c3fSmrg scan_inst->dst.offset = inst->dst.offset; 143801e04c3fSmrg if (inst->saturate && 143901e04c3fSmrg inst->dst.type != scan_inst->dst.type) { 144001e04c3fSmrg /* If we have reached this point, scan_inst is a non 144101e04c3fSmrg * type-converting 'mov' and we can modify its register types 144201e04c3fSmrg * to match the ones in inst. Otherwise, we could have an 144301e04c3fSmrg * incorrect saturation result. 144401e04c3fSmrg */ 144501e04c3fSmrg scan_inst->dst.type = inst->dst.type; 144601e04c3fSmrg scan_inst->src[0].type = inst->src[0].type; 144701e04c3fSmrg } 144801e04c3fSmrg scan_inst->saturate |= inst->saturate; 144901e04c3fSmrg } 145001e04c3fSmrg scan_inst = (vec4_instruction *)scan_inst->next; 145101e04c3fSmrg } 145201e04c3fSmrg inst->remove(block); 145301e04c3fSmrg progress = true; 145401e04c3fSmrg } 145501e04c3fSmrg } 145601e04c3fSmrg 145701e04c3fSmrg if (progress) 14587ec681f3Smrg invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 145901e04c3fSmrg 146001e04c3fSmrg return progress; 146101e04c3fSmrg} 146201e04c3fSmrg 146301e04c3fSmrg/** 146401e04c3fSmrg * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control 146501e04c3fSmrg * flow. We could probably do better here with some form of divergence 146601e04c3fSmrg * analysis. 146701e04c3fSmrg */ 146801e04c3fSmrgbool 146901e04c3fSmrgvec4_visitor::eliminate_find_live_channel() 147001e04c3fSmrg{ 147101e04c3fSmrg bool progress = false; 147201e04c3fSmrg unsigned depth = 0; 147301e04c3fSmrg 147401e04c3fSmrg if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) { 147501e04c3fSmrg /* The optimization below assumes that channel zero is live on thread 147601e04c3fSmrg * dispatch, which may not be the case if the fixed function dispatches 147701e04c3fSmrg * threads sparsely. 147801e04c3fSmrg */ 147901e04c3fSmrg return false; 148001e04c3fSmrg } 148101e04c3fSmrg 148201e04c3fSmrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 148301e04c3fSmrg switch (inst->opcode) { 148401e04c3fSmrg case BRW_OPCODE_IF: 148501e04c3fSmrg case BRW_OPCODE_DO: 148601e04c3fSmrg depth++; 148701e04c3fSmrg break; 148801e04c3fSmrg 148901e04c3fSmrg case BRW_OPCODE_ENDIF: 149001e04c3fSmrg case BRW_OPCODE_WHILE: 149101e04c3fSmrg depth--; 149201e04c3fSmrg break; 149301e04c3fSmrg 149401e04c3fSmrg case SHADER_OPCODE_FIND_LIVE_CHANNEL: 149501e04c3fSmrg if (depth == 0) { 149601e04c3fSmrg inst->opcode = BRW_OPCODE_MOV; 149701e04c3fSmrg inst->src[0] = brw_imm_d(0); 149801e04c3fSmrg inst->force_writemask_all = true; 149901e04c3fSmrg progress = true; 150001e04c3fSmrg } 150101e04c3fSmrg break; 150201e04c3fSmrg 150301e04c3fSmrg default: 150401e04c3fSmrg break; 150501e04c3fSmrg } 150601e04c3fSmrg } 150701e04c3fSmrg 15087ec681f3Smrg if (progress) 15097ec681f3Smrg invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL); 15107ec681f3Smrg 151101e04c3fSmrg return progress; 151201e04c3fSmrg} 151301e04c3fSmrg 151401e04c3fSmrg/** 151501e04c3fSmrg * Splits virtual GRFs requesting more than one contiguous physical register. 151601e04c3fSmrg * 151701e04c3fSmrg * We initially create large virtual GRFs for temporary structures, arrays, 151801e04c3fSmrg * and matrices, so that the visitor functions can add offsets to work their 151901e04c3fSmrg * way down to the actual member being accessed. But when it comes to 152001e04c3fSmrg * optimization, we'd like to treat each register as individual storage if 152101e04c3fSmrg * possible. 152201e04c3fSmrg * 152301e04c3fSmrg * So far, the only thing that might prevent splitting is a send message from 152401e04c3fSmrg * a GRF on IVB. 152501e04c3fSmrg */ 152601e04c3fSmrgvoid 152701e04c3fSmrgvec4_visitor::split_virtual_grfs() 152801e04c3fSmrg{ 152901e04c3fSmrg int num_vars = this->alloc.count; 153001e04c3fSmrg int new_virtual_grf[num_vars]; 153101e04c3fSmrg bool split_grf[num_vars]; 153201e04c3fSmrg 153301e04c3fSmrg memset(new_virtual_grf, 0, sizeof(new_virtual_grf)); 153401e04c3fSmrg 153501e04c3fSmrg /* Try to split anything > 0 sized. */ 153601e04c3fSmrg for (int i = 0; i < num_vars; i++) { 153701e04c3fSmrg split_grf[i] = this->alloc.sizes[i] != 1; 153801e04c3fSmrg } 153901e04c3fSmrg 154001e04c3fSmrg /* Check that the instructions are compatible with the registers we're trying 154101e04c3fSmrg * to split. 154201e04c3fSmrg */ 154301e04c3fSmrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 154401e04c3fSmrg if (inst->dst.file == VGRF && regs_written(inst) > 1) 154501e04c3fSmrg split_grf[inst->dst.nr] = false; 154601e04c3fSmrg 154701e04c3fSmrg for (int i = 0; i < 3; i++) { 154801e04c3fSmrg if (inst->src[i].file == VGRF && regs_read(inst, i) > 1) 154901e04c3fSmrg split_grf[inst->src[i].nr] = false; 155001e04c3fSmrg } 155101e04c3fSmrg } 155201e04c3fSmrg 155301e04c3fSmrg /* Allocate new space for split regs. Note that the virtual 155401e04c3fSmrg * numbers will be contiguous. 155501e04c3fSmrg */ 155601e04c3fSmrg for (int i = 0; i < num_vars; i++) { 155701e04c3fSmrg if (!split_grf[i]) 155801e04c3fSmrg continue; 155901e04c3fSmrg 156001e04c3fSmrg new_virtual_grf[i] = alloc.allocate(1); 156101e04c3fSmrg for (unsigned j = 2; j < this->alloc.sizes[i]; j++) { 156201e04c3fSmrg unsigned reg = alloc.allocate(1); 156301e04c3fSmrg assert(reg == new_virtual_grf[i] + j - 1); 156401e04c3fSmrg (void) reg; 156501e04c3fSmrg } 156601e04c3fSmrg this->alloc.sizes[i] = 1; 156701e04c3fSmrg } 156801e04c3fSmrg 156901e04c3fSmrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 157001e04c3fSmrg if (inst->dst.file == VGRF && split_grf[inst->dst.nr] && 157101e04c3fSmrg inst->dst.offset / REG_SIZE != 0) { 157201e04c3fSmrg inst->dst.nr = (new_virtual_grf[inst->dst.nr] + 157301e04c3fSmrg inst->dst.offset / REG_SIZE - 1); 157401e04c3fSmrg inst->dst.offset %= REG_SIZE; 157501e04c3fSmrg } 157601e04c3fSmrg for (int i = 0; i < 3; i++) { 157701e04c3fSmrg if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] && 157801e04c3fSmrg inst->src[i].offset / REG_SIZE != 0) { 157901e04c3fSmrg inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] + 158001e04c3fSmrg inst->src[i].offset / REG_SIZE - 1); 158101e04c3fSmrg inst->src[i].offset %= REG_SIZE; 158201e04c3fSmrg } 158301e04c3fSmrg } 158401e04c3fSmrg } 15857ec681f3Smrg invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES); 158601e04c3fSmrg} 158701e04c3fSmrg 158801e04c3fSmrgvoid 15897ec681f3Smrgvec4_visitor::dump_instruction(const backend_instruction *be_inst) const 159001e04c3fSmrg{ 159101e04c3fSmrg dump_instruction(be_inst, stderr); 159201e04c3fSmrg} 159301e04c3fSmrg 159401e04c3fSmrgvoid 15957ec681f3Smrgvec4_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const 159601e04c3fSmrg{ 15977ec681f3Smrg const vec4_instruction *inst = (const vec4_instruction *)be_inst; 159801e04c3fSmrg 159901e04c3fSmrg if (inst->predicate) { 160001e04c3fSmrg fprintf(file, "(%cf%d.%d%s) ", 160101e04c3fSmrg inst->predicate_inverse ? '-' : '+', 160201e04c3fSmrg inst->flag_subreg / 2, 160301e04c3fSmrg inst->flag_subreg % 2, 160401e04c3fSmrg pred_ctrl_align16[inst->predicate]); 160501e04c3fSmrg } 160601e04c3fSmrg 160701e04c3fSmrg fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode), 160801e04c3fSmrg inst->exec_size); 160901e04c3fSmrg if (inst->saturate) 161001e04c3fSmrg fprintf(file, ".sat"); 161101e04c3fSmrg if (inst->conditional_mod) { 161201e04c3fSmrg fprintf(file, "%s", conditional_modifier[inst->conditional_mod]); 161301e04c3fSmrg if (!inst->predicate && 16147ec681f3Smrg (devinfo->ver < 5 || (inst->opcode != BRW_OPCODE_SEL && 161501e04c3fSmrg inst->opcode != BRW_OPCODE_CSEL && 161601e04c3fSmrg inst->opcode != BRW_OPCODE_IF && 161701e04c3fSmrg inst->opcode != BRW_OPCODE_WHILE))) { 161801e04c3fSmrg fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2); 161901e04c3fSmrg } 162001e04c3fSmrg } 162101e04c3fSmrg fprintf(file, " "); 162201e04c3fSmrg 162301e04c3fSmrg switch (inst->dst.file) { 162401e04c3fSmrg case VGRF: 162501e04c3fSmrg fprintf(file, "vgrf%d", inst->dst.nr); 162601e04c3fSmrg break; 162701e04c3fSmrg case FIXED_GRF: 162801e04c3fSmrg fprintf(file, "g%d", inst->dst.nr); 162901e04c3fSmrg break; 163001e04c3fSmrg case MRF: 163101e04c3fSmrg fprintf(file, "m%d", inst->dst.nr); 163201e04c3fSmrg break; 163301e04c3fSmrg case ARF: 163401e04c3fSmrg switch (inst->dst.nr) { 163501e04c3fSmrg case BRW_ARF_NULL: 163601e04c3fSmrg fprintf(file, "null"); 163701e04c3fSmrg break; 163801e04c3fSmrg case BRW_ARF_ADDRESS: 163901e04c3fSmrg fprintf(file, "a0.%d", inst->dst.subnr); 164001e04c3fSmrg break; 164101e04c3fSmrg case BRW_ARF_ACCUMULATOR: 164201e04c3fSmrg fprintf(file, "acc%d", inst->dst.subnr); 164301e04c3fSmrg break; 164401e04c3fSmrg case BRW_ARF_FLAG: 164501e04c3fSmrg fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 164601e04c3fSmrg break; 164701e04c3fSmrg default: 164801e04c3fSmrg fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 164901e04c3fSmrg break; 165001e04c3fSmrg } 165101e04c3fSmrg break; 165201e04c3fSmrg case BAD_FILE: 165301e04c3fSmrg fprintf(file, "(null)"); 165401e04c3fSmrg break; 165501e04c3fSmrg case IMM: 165601e04c3fSmrg case ATTR: 165701e04c3fSmrg case UNIFORM: 165801e04c3fSmrg unreachable("not reached"); 165901e04c3fSmrg } 166001e04c3fSmrg if (inst->dst.offset || 166101e04c3fSmrg (inst->dst.file == VGRF && 166201e04c3fSmrg alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) { 166301e04c3fSmrg const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE); 166401e04c3fSmrg fprintf(file, "+%d.%d", inst->dst.offset / reg_size, 166501e04c3fSmrg inst->dst.offset % reg_size); 166601e04c3fSmrg } 166701e04c3fSmrg if (inst->dst.writemask != WRITEMASK_XYZW) { 166801e04c3fSmrg fprintf(file, "."); 166901e04c3fSmrg if (inst->dst.writemask & 1) 167001e04c3fSmrg fprintf(file, "x"); 167101e04c3fSmrg if (inst->dst.writemask & 2) 167201e04c3fSmrg fprintf(file, "y"); 167301e04c3fSmrg if (inst->dst.writemask & 4) 167401e04c3fSmrg fprintf(file, "z"); 167501e04c3fSmrg if (inst->dst.writemask & 8) 167601e04c3fSmrg fprintf(file, "w"); 167701e04c3fSmrg } 167801e04c3fSmrg fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type)); 167901e04c3fSmrg 168001e04c3fSmrg if (inst->src[0].file != BAD_FILE) 168101e04c3fSmrg fprintf(file, ", "); 168201e04c3fSmrg 168301e04c3fSmrg for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) { 168401e04c3fSmrg if (inst->src[i].negate) 168501e04c3fSmrg fprintf(file, "-"); 168601e04c3fSmrg if (inst->src[i].abs) 168701e04c3fSmrg fprintf(file, "|"); 168801e04c3fSmrg switch (inst->src[i].file) { 168901e04c3fSmrg case VGRF: 169001e04c3fSmrg fprintf(file, "vgrf%d", inst->src[i].nr); 169101e04c3fSmrg break; 169201e04c3fSmrg case FIXED_GRF: 169301e04c3fSmrg fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr); 169401e04c3fSmrg break; 169501e04c3fSmrg case ATTR: 169601e04c3fSmrg fprintf(file, "attr%d", inst->src[i].nr); 169701e04c3fSmrg break; 169801e04c3fSmrg case UNIFORM: 169901e04c3fSmrg fprintf(file, "u%d", inst->src[i].nr); 170001e04c3fSmrg break; 170101e04c3fSmrg case IMM: 170201e04c3fSmrg switch (inst->src[i].type) { 170301e04c3fSmrg case BRW_REGISTER_TYPE_F: 170401e04c3fSmrg fprintf(file, "%fF", inst->src[i].f); 170501e04c3fSmrg break; 170601e04c3fSmrg case BRW_REGISTER_TYPE_DF: 170701e04c3fSmrg fprintf(file, "%fDF", inst->src[i].df); 170801e04c3fSmrg break; 170901e04c3fSmrg case BRW_REGISTER_TYPE_D: 171001e04c3fSmrg fprintf(file, "%dD", inst->src[i].d); 171101e04c3fSmrg break; 171201e04c3fSmrg case BRW_REGISTER_TYPE_UD: 171301e04c3fSmrg fprintf(file, "%uU", inst->src[i].ud); 171401e04c3fSmrg break; 171501e04c3fSmrg case BRW_REGISTER_TYPE_VF: 171601e04c3fSmrg fprintf(file, "[%-gF, %-gF, %-gF, %-gF]", 171701e04c3fSmrg brw_vf_to_float((inst->src[i].ud >> 0) & 0xff), 171801e04c3fSmrg brw_vf_to_float((inst->src[i].ud >> 8) & 0xff), 171901e04c3fSmrg brw_vf_to_float((inst->src[i].ud >> 16) & 0xff), 172001e04c3fSmrg brw_vf_to_float((inst->src[i].ud >> 24) & 0xff)); 172101e04c3fSmrg break; 172201e04c3fSmrg default: 172301e04c3fSmrg fprintf(file, "???"); 172401e04c3fSmrg break; 172501e04c3fSmrg } 172601e04c3fSmrg break; 172701e04c3fSmrg case ARF: 172801e04c3fSmrg switch (inst->src[i].nr) { 172901e04c3fSmrg case BRW_ARF_NULL: 173001e04c3fSmrg fprintf(file, "null"); 173101e04c3fSmrg break; 173201e04c3fSmrg case BRW_ARF_ADDRESS: 173301e04c3fSmrg fprintf(file, "a0.%d", inst->src[i].subnr); 173401e04c3fSmrg break; 173501e04c3fSmrg case BRW_ARF_ACCUMULATOR: 173601e04c3fSmrg fprintf(file, "acc%d", inst->src[i].subnr); 173701e04c3fSmrg break; 173801e04c3fSmrg case BRW_ARF_FLAG: 173901e04c3fSmrg fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 174001e04c3fSmrg break; 174101e04c3fSmrg default: 174201e04c3fSmrg fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 174301e04c3fSmrg break; 174401e04c3fSmrg } 174501e04c3fSmrg break; 174601e04c3fSmrg case BAD_FILE: 174701e04c3fSmrg fprintf(file, "(null)"); 174801e04c3fSmrg break; 174901e04c3fSmrg case MRF: 175001e04c3fSmrg unreachable("not reached"); 175101e04c3fSmrg } 175201e04c3fSmrg 175301e04c3fSmrg if (inst->src[i].offset || 175401e04c3fSmrg (inst->src[i].file == VGRF && 175501e04c3fSmrg alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) { 175601e04c3fSmrg const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE); 175701e04c3fSmrg fprintf(file, "+%d.%d", inst->src[i].offset / reg_size, 175801e04c3fSmrg inst->src[i].offset % reg_size); 175901e04c3fSmrg } 176001e04c3fSmrg 176101e04c3fSmrg if (inst->src[i].file != IMM) { 176201e04c3fSmrg static const char *chans[4] = {"x", "y", "z", "w"}; 176301e04c3fSmrg fprintf(file, "."); 176401e04c3fSmrg for (int c = 0; c < 4; c++) { 176501e04c3fSmrg fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]); 176601e04c3fSmrg } 176701e04c3fSmrg } 176801e04c3fSmrg 176901e04c3fSmrg if (inst->src[i].abs) 177001e04c3fSmrg fprintf(file, "|"); 177101e04c3fSmrg 177201e04c3fSmrg if (inst->src[i].file != IMM) { 177301e04c3fSmrg fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type)); 177401e04c3fSmrg } 177501e04c3fSmrg 177601e04c3fSmrg if (i < 2 && inst->src[i + 1].file != BAD_FILE) 177701e04c3fSmrg fprintf(file, ", "); 177801e04c3fSmrg } 177901e04c3fSmrg 178001e04c3fSmrg if (inst->force_writemask_all) 178101e04c3fSmrg fprintf(file, " NoMask"); 178201e04c3fSmrg 178301e04c3fSmrg if (inst->exec_size != 8) 178401e04c3fSmrg fprintf(file, " group%d", inst->group); 178501e04c3fSmrg 178601e04c3fSmrg fprintf(file, "\n"); 178701e04c3fSmrg} 178801e04c3fSmrg 178901e04c3fSmrg 179001e04c3fSmrgint 179101e04c3fSmrgvec4_vs_visitor::setup_attributes(int payload_reg) 179201e04c3fSmrg{ 179301e04c3fSmrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 179401e04c3fSmrg for (int i = 0; i < 3; i++) { 179501e04c3fSmrg if (inst->src[i].file == ATTR) { 179601e04c3fSmrg assert(inst->src[i].offset % REG_SIZE == 0); 179701e04c3fSmrg int grf = payload_reg + inst->src[i].nr + 179801e04c3fSmrg inst->src[i].offset / REG_SIZE; 179901e04c3fSmrg 180001e04c3fSmrg struct brw_reg reg = brw_vec8_grf(grf, 0); 180101e04c3fSmrg reg.swizzle = inst->src[i].swizzle; 180201e04c3fSmrg reg.type = inst->src[i].type; 180301e04c3fSmrg reg.abs = inst->src[i].abs; 180401e04c3fSmrg reg.negate = inst->src[i].negate; 180501e04c3fSmrg inst->src[i] = reg; 180601e04c3fSmrg } 180701e04c3fSmrg } 180801e04c3fSmrg } 180901e04c3fSmrg 181001e04c3fSmrg return payload_reg + vs_prog_data->nr_attribute_slots; 181101e04c3fSmrg} 181201e04c3fSmrg 18137ec681f3Smrgvoid 18147ec681f3Smrgvec4_visitor::setup_push_ranges() 18157ec681f3Smrg{ 18167ec681f3Smrg /* Only allow 32 registers (256 uniform components) as push constants, 18177ec681f3Smrg * which is the limit on gfx6. 18187ec681f3Smrg * 18197ec681f3Smrg * If changing this value, note the limitation about total_regs in 18207ec681f3Smrg * brw_curbe.c. 18217ec681f3Smrg */ 18227ec681f3Smrg const unsigned max_push_length = 32; 18237ec681f3Smrg 18247ec681f3Smrg push_length = DIV_ROUND_UP(prog_data->base.nr_params, 8); 18257ec681f3Smrg push_length = MIN2(push_length, max_push_length); 18267ec681f3Smrg 18277ec681f3Smrg /* Shrink UBO push ranges so it all fits in max_push_length */ 18287ec681f3Smrg for (unsigned i = 0; i < 4; i++) { 18297ec681f3Smrg struct brw_ubo_range *range = &prog_data->base.ubo_ranges[i]; 18307ec681f3Smrg 18317ec681f3Smrg if (push_length + range->length > max_push_length) 18327ec681f3Smrg range->length = max_push_length - push_length; 18337ec681f3Smrg 18347ec681f3Smrg push_length += range->length; 18357ec681f3Smrg } 18367ec681f3Smrg assert(push_length <= max_push_length); 18377ec681f3Smrg} 18387ec681f3Smrg 183901e04c3fSmrgint 184001e04c3fSmrgvec4_visitor::setup_uniforms(int reg) 184101e04c3fSmrg{ 18427ec681f3Smrg /* It's possible that uniform compaction will shrink further than expected 18437ec681f3Smrg * so we re-compute the layout and set up our UBO push starts. 18447ec681f3Smrg */ 18457ec681f3Smrg const unsigned old_push_length = push_length; 18467ec681f3Smrg push_length = DIV_ROUND_UP(prog_data->base.nr_params, 8); 18477ec681f3Smrg for (unsigned i = 0; i < 4; i++) { 18487ec681f3Smrg ubo_push_start[i] = push_length; 18497ec681f3Smrg push_length += stage_prog_data->ubo_ranges[i].length; 18507ec681f3Smrg } 18517ec681f3Smrg assert(push_length <= old_push_length); 18527ec681f3Smrg if (push_length < old_push_length) 18537ec681f3Smrg assert(compiler->compact_params); 185401e04c3fSmrg 18557ec681f3Smrg /* The pre-gfx6 VS requires that some push constants get loaded no 185601e04c3fSmrg * matter what, or the GPU would hang. 185701e04c3fSmrg */ 18587ec681f3Smrg if (devinfo->ver < 6 && push_length == 0) { 185901e04c3fSmrg brw_stage_prog_data_add_params(stage_prog_data, 4); 186001e04c3fSmrg for (unsigned int i = 0; i < 4; i++) { 186101e04c3fSmrg unsigned int slot = this->uniforms * 4 + i; 186201e04c3fSmrg stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO; 186301e04c3fSmrg } 18647ec681f3Smrg push_length = 1; 186501e04c3fSmrg } 186601e04c3fSmrg 18677ec681f3Smrg prog_data->base.dispatch_grf_start_reg = reg; 18687ec681f3Smrg prog_data->base.curb_read_length = push_length; 186901e04c3fSmrg 18707ec681f3Smrg return reg + push_length; 187101e04c3fSmrg} 187201e04c3fSmrg 187301e04c3fSmrgvoid 187401e04c3fSmrgvec4_vs_visitor::setup_payload(void) 187501e04c3fSmrg{ 187601e04c3fSmrg int reg = 0; 187701e04c3fSmrg 187801e04c3fSmrg /* The payload always contains important data in g0, which contains 187901e04c3fSmrg * the URB handles that are passed on to the URB write at the end 188001e04c3fSmrg * of the thread. So, we always start push constants at g1. 188101e04c3fSmrg */ 188201e04c3fSmrg reg++; 188301e04c3fSmrg 188401e04c3fSmrg reg = setup_uniforms(reg); 188501e04c3fSmrg 188601e04c3fSmrg reg = setup_attributes(reg); 188701e04c3fSmrg 188801e04c3fSmrg this->first_non_payload_grf = reg; 188901e04c3fSmrg} 189001e04c3fSmrg 189101e04c3fSmrgbool 189201e04c3fSmrgvec4_visitor::lower_minmax() 189301e04c3fSmrg{ 18947ec681f3Smrg assert(devinfo->ver < 6); 189501e04c3fSmrg 189601e04c3fSmrg bool progress = false; 189701e04c3fSmrg 189801e04c3fSmrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 189901e04c3fSmrg const vec4_builder ibld(this, block, inst); 190001e04c3fSmrg 190101e04c3fSmrg if (inst->opcode == BRW_OPCODE_SEL && 190201e04c3fSmrg inst->predicate == BRW_PREDICATE_NONE) { 19037ec681f3Smrg /* If src1 is an immediate value that is not NaN, then it can't be 19047ec681f3Smrg * NaN. In that case, emit CMP because it is much better for cmod 19057ec681f3Smrg * propagation. Likewise if src1 is not float. Gfx4 and Gfx5 don't 19067ec681f3Smrg * support HF or DF, so it is not necessary to check for those. 190701e04c3fSmrg */ 19087ec681f3Smrg if (inst->src[1].type != BRW_REGISTER_TYPE_F || 19097ec681f3Smrg (inst->src[1].file == IMM && !isnan(inst->src[1].f))) { 19107ec681f3Smrg ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1], 19117ec681f3Smrg inst->conditional_mod); 19127ec681f3Smrg } else { 19137ec681f3Smrg ibld.CMPN(ibld.null_reg_d(), inst->src[0], inst->src[1], 19147ec681f3Smrg inst->conditional_mod); 19157ec681f3Smrg } 191601e04c3fSmrg inst->predicate = BRW_PREDICATE_NORMAL; 191701e04c3fSmrg inst->conditional_mod = BRW_CONDITIONAL_NONE; 191801e04c3fSmrg 191901e04c3fSmrg progress = true; 192001e04c3fSmrg } 192101e04c3fSmrg } 192201e04c3fSmrg 192301e04c3fSmrg if (progress) 19247ec681f3Smrg invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 192501e04c3fSmrg 192601e04c3fSmrg return progress; 192701e04c3fSmrg} 192801e04c3fSmrg 192901e04c3fSmrgsrc_reg 193001e04c3fSmrgvec4_visitor::get_timestamp() 193101e04c3fSmrg{ 19327ec681f3Smrg assert(devinfo->ver == 7); 193301e04c3fSmrg 193401e04c3fSmrg src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE, 193501e04c3fSmrg BRW_ARF_TIMESTAMP, 193601e04c3fSmrg 0, 193701e04c3fSmrg 0, 193801e04c3fSmrg 0, 193901e04c3fSmrg BRW_REGISTER_TYPE_UD, 194001e04c3fSmrg BRW_VERTICAL_STRIDE_0, 194101e04c3fSmrg BRW_WIDTH_4, 194201e04c3fSmrg BRW_HORIZONTAL_STRIDE_4, 194301e04c3fSmrg BRW_SWIZZLE_XYZW, 194401e04c3fSmrg WRITEMASK_XYZW)); 194501e04c3fSmrg 194601e04c3fSmrg dst_reg dst = dst_reg(this, glsl_type::uvec4_type); 194701e04c3fSmrg 194801e04c3fSmrg vec4_instruction *mov = emit(MOV(dst, ts)); 194901e04c3fSmrg /* We want to read the 3 fields we care about (mostly field 0, but also 2) 195001e04c3fSmrg * even if it's not enabled in the dispatch. 195101e04c3fSmrg */ 195201e04c3fSmrg mov->force_writemask_all = true; 195301e04c3fSmrg 195401e04c3fSmrg return src_reg(dst); 195501e04c3fSmrg} 195601e04c3fSmrg 195701e04c3fSmrgvoid 195801e04c3fSmrgvec4_visitor::emit_shader_time_begin() 195901e04c3fSmrg{ 196001e04c3fSmrg current_annotation = "shader time start"; 196101e04c3fSmrg shader_start_time = get_timestamp(); 196201e04c3fSmrg} 196301e04c3fSmrg 196401e04c3fSmrgvoid 196501e04c3fSmrgvec4_visitor::emit_shader_time_end() 196601e04c3fSmrg{ 196701e04c3fSmrg current_annotation = "shader time end"; 196801e04c3fSmrg src_reg shader_end_time = get_timestamp(); 196901e04c3fSmrg 197001e04c3fSmrg 197101e04c3fSmrg /* Check that there weren't any timestamp reset events (assuming these 197201e04c3fSmrg * were the only two timestamp reads that happened). 197301e04c3fSmrg */ 197401e04c3fSmrg src_reg reset_end = shader_end_time; 197501e04c3fSmrg reset_end.swizzle = BRW_SWIZZLE_ZZZZ; 197601e04c3fSmrg vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u))); 197701e04c3fSmrg test->conditional_mod = BRW_CONDITIONAL_Z; 197801e04c3fSmrg 197901e04c3fSmrg emit(IF(BRW_PREDICATE_NORMAL)); 198001e04c3fSmrg 198101e04c3fSmrg /* Take the current timestamp and get the delta. */ 198201e04c3fSmrg shader_start_time.negate = true; 198301e04c3fSmrg dst_reg diff = dst_reg(this, glsl_type::uint_type); 198401e04c3fSmrg emit(ADD(diff, shader_start_time, shader_end_time)); 198501e04c3fSmrg 198601e04c3fSmrg /* If there were no instructions between the two timestamp gets, the diff 198701e04c3fSmrg * is 2 cycles. Remove that overhead, so I can forget about that when 198801e04c3fSmrg * trying to determine the time taken for single instructions. 198901e04c3fSmrg */ 199001e04c3fSmrg emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u))); 199101e04c3fSmrg 199201e04c3fSmrg emit_shader_time_write(0, src_reg(diff)); 199301e04c3fSmrg emit_shader_time_write(1, brw_imm_ud(1u)); 199401e04c3fSmrg emit(BRW_OPCODE_ELSE); 199501e04c3fSmrg emit_shader_time_write(2, brw_imm_ud(1u)); 199601e04c3fSmrg emit(BRW_OPCODE_ENDIF); 199701e04c3fSmrg} 199801e04c3fSmrg 199901e04c3fSmrgvoid 200001e04c3fSmrgvec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value) 200101e04c3fSmrg{ 200201e04c3fSmrg dst_reg dst = 200301e04c3fSmrg dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2)); 200401e04c3fSmrg 200501e04c3fSmrg dst_reg offset = dst; 200601e04c3fSmrg dst_reg time = dst; 200701e04c3fSmrg time.offset += REG_SIZE; 200801e04c3fSmrg 200901e04c3fSmrg offset.type = BRW_REGISTER_TYPE_UD; 201001e04c3fSmrg int index = shader_time_index * 3 + shader_time_subindex; 201101e04c3fSmrg emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE))); 201201e04c3fSmrg 201301e04c3fSmrg time.type = BRW_REGISTER_TYPE_UD; 201401e04c3fSmrg emit(MOV(time, value)); 201501e04c3fSmrg 201601e04c3fSmrg vec4_instruction *inst = 201701e04c3fSmrg emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst)); 201801e04c3fSmrg inst->mlen = 2; 201901e04c3fSmrg} 202001e04c3fSmrg 202101e04c3fSmrgstatic bool 202201e04c3fSmrgis_align1_df(vec4_instruction *inst) 202301e04c3fSmrg{ 202401e04c3fSmrg switch (inst->opcode) { 202501e04c3fSmrg case VEC4_OPCODE_DOUBLE_TO_F32: 202601e04c3fSmrg case VEC4_OPCODE_DOUBLE_TO_D32: 202701e04c3fSmrg case VEC4_OPCODE_DOUBLE_TO_U32: 202801e04c3fSmrg case VEC4_OPCODE_TO_DOUBLE: 202901e04c3fSmrg case VEC4_OPCODE_PICK_LOW_32BIT: 203001e04c3fSmrg case VEC4_OPCODE_PICK_HIGH_32BIT: 203101e04c3fSmrg case VEC4_OPCODE_SET_LOW_32BIT: 203201e04c3fSmrg case VEC4_OPCODE_SET_HIGH_32BIT: 203301e04c3fSmrg return true; 203401e04c3fSmrg default: 203501e04c3fSmrg return false; 203601e04c3fSmrg } 203701e04c3fSmrg} 203801e04c3fSmrg 203901e04c3fSmrg/** 204001e04c3fSmrg * Three source instruction must have a GRF/MRF destination register. 204101e04c3fSmrg * ARF NULL is not allowed. Fix that up by allocating a temporary GRF. 204201e04c3fSmrg */ 204301e04c3fSmrgvoid 204401e04c3fSmrgvec4_visitor::fixup_3src_null_dest() 204501e04c3fSmrg{ 204601e04c3fSmrg bool progress = false; 204701e04c3fSmrg 204801e04c3fSmrg foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) { 204901e04c3fSmrg if (inst->is_3src(devinfo) && inst->dst.is_null()) { 205001e04c3fSmrg const unsigned size_written = type_sz(inst->dst.type); 205101e04c3fSmrg const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE); 205201e04c3fSmrg 205301e04c3fSmrg inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)), 205401e04c3fSmrg inst->dst.type); 205501e04c3fSmrg progress = true; 205601e04c3fSmrg } 205701e04c3fSmrg } 205801e04c3fSmrg 205901e04c3fSmrg if (progress) 20607ec681f3Smrg invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | 20617ec681f3Smrg DEPENDENCY_VARIABLES); 206201e04c3fSmrg} 206301e04c3fSmrg 206401e04c3fSmrgvoid 206501e04c3fSmrgvec4_visitor::convert_to_hw_regs() 206601e04c3fSmrg{ 206701e04c3fSmrg foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 206801e04c3fSmrg for (int i = 0; i < 3; i++) { 206901e04c3fSmrg class src_reg &src = inst->src[i]; 207001e04c3fSmrg struct brw_reg reg; 207101e04c3fSmrg switch (src.file) { 207201e04c3fSmrg case VGRF: { 207301e04c3fSmrg reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset); 207401e04c3fSmrg reg.type = src.type; 207501e04c3fSmrg reg.abs = src.abs; 207601e04c3fSmrg reg.negate = src.negate; 207701e04c3fSmrg break; 207801e04c3fSmrg } 207901e04c3fSmrg 208001e04c3fSmrg case UNIFORM: { 20817ec681f3Smrg if (src.nr >= UBO_START) { 20827ec681f3Smrg reg = byte_offset(brw_vec4_grf( 20837ec681f3Smrg prog_data->base.dispatch_grf_start_reg + 20847ec681f3Smrg ubo_push_start[src.nr - UBO_START] + 20857ec681f3Smrg src.offset / 32, 0), 20867ec681f3Smrg src.offset % 32); 20877ec681f3Smrg } else { 20887ec681f3Smrg reg = byte_offset(brw_vec4_grf( 20897ec681f3Smrg prog_data->base.dispatch_grf_start_reg + 20907ec681f3Smrg src.nr / 2, src.nr % 2 * 4), 20917ec681f3Smrg src.offset); 20927ec681f3Smrg } 20937ec681f3Smrg reg = stride(reg, 0, 4, 1); 209401e04c3fSmrg reg.type = src.type; 209501e04c3fSmrg reg.abs = src.abs; 209601e04c3fSmrg reg.negate = src.negate; 209701e04c3fSmrg 209801e04c3fSmrg /* This should have been moved to pull constants. */ 209901e04c3fSmrg assert(!src.reladdr); 210001e04c3fSmrg break; 210101e04c3fSmrg } 210201e04c3fSmrg 210301e04c3fSmrg case FIXED_GRF: 210401e04c3fSmrg if (type_sz(src.type) == 8) { 210501e04c3fSmrg reg = src.as_brw_reg(); 210601e04c3fSmrg break; 210701e04c3fSmrg } 21087ec681f3Smrg FALLTHROUGH; 210901e04c3fSmrg case ARF: 211001e04c3fSmrg case IMM: 211101e04c3fSmrg continue; 211201e04c3fSmrg 211301e04c3fSmrg case BAD_FILE: 211401e04c3fSmrg /* Probably unused. */ 211501e04c3fSmrg reg = brw_null_reg(); 211601e04c3fSmrg reg = retype(reg, src.type); 211701e04c3fSmrg break; 211801e04c3fSmrg 211901e04c3fSmrg case MRF: 212001e04c3fSmrg case ATTR: 212101e04c3fSmrg unreachable("not reached"); 212201e04c3fSmrg } 212301e04c3fSmrg 212401e04c3fSmrg apply_logical_swizzle(®, inst, i); 212501e04c3fSmrg src = reg; 212601e04c3fSmrg 212701e04c3fSmrg /* From IVB PRM, vol4, part3, "General Restrictions on Regioning 212801e04c3fSmrg * Parameters": 212901e04c3fSmrg * 213001e04c3fSmrg * "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set 213101e04c3fSmrg * to Width * HorzStride." 213201e04c3fSmrg * 213301e04c3fSmrg * We can break this rule with DF sources on DF align1 213401e04c3fSmrg * instructions, because the exec_size would be 4 and width is 4. 213501e04c3fSmrg * As we know we are not accessing to next GRF, it is safe to 213601e04c3fSmrg * set vstride to the formula given by the rule itself. 213701e04c3fSmrg */ 213801e04c3fSmrg if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width) 213901e04c3fSmrg src.vstride = src.width + src.hstride; 214001e04c3fSmrg } 214101e04c3fSmrg 214201e04c3fSmrg if (inst->is_3src(devinfo)) { 214301e04c3fSmrg /* 3-src instructions with scalar sources support arbitrary subnr, 214401e04c3fSmrg * but don't actually use swizzles. Convert swizzle into subnr. 214501e04c3fSmrg * Skip this for double-precision instructions: RepCtrl=1 is not 214601e04c3fSmrg * allowed for them and needs special handling. 214701e04c3fSmrg */ 214801e04c3fSmrg for (int i = 0; i < 3; i++) { 214901e04c3fSmrg if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 && 215001e04c3fSmrg type_sz(inst->src[i].type) < 8) { 215101e04c3fSmrg assert(brw_is_single_value_swizzle(inst->src[i].swizzle)); 215201e04c3fSmrg inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0); 215301e04c3fSmrg } 215401e04c3fSmrg } 215501e04c3fSmrg } 215601e04c3fSmrg 215701e04c3fSmrg dst_reg &dst = inst->dst; 215801e04c3fSmrg struct brw_reg reg; 215901e04c3fSmrg 216001e04c3fSmrg switch (inst->dst.file) { 216101e04c3fSmrg case VGRF: 216201e04c3fSmrg reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset); 216301e04c3fSmrg reg.type = dst.type; 216401e04c3fSmrg reg.writemask = dst.writemask; 216501e04c3fSmrg break; 216601e04c3fSmrg 216701e04c3fSmrg case MRF: 216801e04c3fSmrg reg = byte_offset(brw_message_reg(dst.nr), dst.offset); 21697ec681f3Smrg assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->ver)); 217001e04c3fSmrg reg.type = dst.type; 217101e04c3fSmrg reg.writemask = dst.writemask; 217201e04c3fSmrg break; 217301e04c3fSmrg 217401e04c3fSmrg case ARF: 217501e04c3fSmrg case FIXED_GRF: 217601e04c3fSmrg reg = dst.as_brw_reg(); 217701e04c3fSmrg break; 217801e04c3fSmrg 217901e04c3fSmrg case BAD_FILE: 218001e04c3fSmrg reg = brw_null_reg(); 218101e04c3fSmrg reg = retype(reg, dst.type); 218201e04c3fSmrg break; 218301e04c3fSmrg 218401e04c3fSmrg case IMM: 218501e04c3fSmrg case ATTR: 218601e04c3fSmrg case UNIFORM: 218701e04c3fSmrg unreachable("not reached"); 218801e04c3fSmrg } 218901e04c3fSmrg 219001e04c3fSmrg dst = reg; 219101e04c3fSmrg } 219201e04c3fSmrg} 219301e04c3fSmrg 219401e04c3fSmrgstatic bool 219501e04c3fSmrgstage_uses_interleaved_attributes(unsigned stage, 219601e04c3fSmrg enum shader_dispatch_mode dispatch_mode) 219701e04c3fSmrg{ 219801e04c3fSmrg switch (stage) { 219901e04c3fSmrg case MESA_SHADER_TESS_EVAL: 220001e04c3fSmrg return true; 220101e04c3fSmrg case MESA_SHADER_GEOMETRY: 220201e04c3fSmrg return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT; 220301e04c3fSmrg default: 220401e04c3fSmrg return false; 220501e04c3fSmrg } 220601e04c3fSmrg} 220701e04c3fSmrg 220801e04c3fSmrg/** 220901e04c3fSmrg * Get the closest native SIMD width supported by the hardware for instruction 221001e04c3fSmrg * \p inst. The instruction will be left untouched by 221101e04c3fSmrg * vec4_visitor::lower_simd_width() if the returned value matches the 221201e04c3fSmrg * instruction's original execution size. 221301e04c3fSmrg */ 221401e04c3fSmrgstatic unsigned 22157ec681f3Smrgget_lowered_simd_width(const struct intel_device_info *devinfo, 221601e04c3fSmrg enum shader_dispatch_mode dispatch_mode, 221701e04c3fSmrg unsigned stage, const vec4_instruction *inst) 221801e04c3fSmrg{ 221901e04c3fSmrg /* Do not split some instructions that require special handling */ 222001e04c3fSmrg switch (inst->opcode) { 22217ec681f3Smrg case SHADER_OPCODE_GFX4_SCRATCH_READ: 22227ec681f3Smrg case SHADER_OPCODE_GFX4_SCRATCH_WRITE: 222301e04c3fSmrg return inst->exec_size; 222401e04c3fSmrg default: 222501e04c3fSmrg break; 222601e04c3fSmrg } 222701e04c3fSmrg 222801e04c3fSmrg unsigned lowered_width = MIN2(16, inst->exec_size); 222901e04c3fSmrg 223001e04c3fSmrg /* We need to split some cases of double-precision instructions that write 22317ec681f3Smrg * 2 registers. We only need to care about this in gfx7 because that is the 223201e04c3fSmrg * only hardware that implements fp64 in Align16. 223301e04c3fSmrg */ 22347ec681f3Smrg if (devinfo->ver == 7 && inst->size_written > REG_SIZE) { 223501e04c3fSmrg /* Align16 8-wide double-precision SEL does not work well. Verified 223601e04c3fSmrg * empirically. 223701e04c3fSmrg */ 223801e04c3fSmrg if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8) 223901e04c3fSmrg lowered_width = MIN2(lowered_width, 4); 224001e04c3fSmrg 224101e04c3fSmrg /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct 224201e04c3fSmrg * Register Addressing: 224301e04c3fSmrg * 224401e04c3fSmrg * "When destination spans two registers, the source MUST span two 224501e04c3fSmrg * registers." 224601e04c3fSmrg */ 224701e04c3fSmrg for (unsigned i = 0; i < 3; i++) { 224801e04c3fSmrg if (inst->src[i].file == BAD_FILE) 224901e04c3fSmrg continue; 225001e04c3fSmrg if (inst->size_read(i) <= REG_SIZE) 225101e04c3fSmrg lowered_width = MIN2(lowered_width, 4); 225201e04c3fSmrg 225301e04c3fSmrg /* Interleaved attribute setups use a vertical stride of 0, which 22547ec681f3Smrg * makes them hit the associated instruction decompression bug in gfx7. 225501e04c3fSmrg * Split them to prevent this. 225601e04c3fSmrg */ 225701e04c3fSmrg if (inst->src[i].file == ATTR && 225801e04c3fSmrg stage_uses_interleaved_attributes(stage, dispatch_mode)) 225901e04c3fSmrg lowered_width = MIN2(lowered_width, 4); 226001e04c3fSmrg } 226101e04c3fSmrg } 226201e04c3fSmrg 226301e04c3fSmrg /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since 226401e04c3fSmrg * it doesn't support compression in Align16 mode, no matter if it has 226501e04c3fSmrg * force_writemask_all enabled or disabled (the latter is affected by the 22667ec681f3Smrg * compressed instruction bug in gfx7, which is another reason to enforce 226701e04c3fSmrg * this limit). 226801e04c3fSmrg */ 22697ec681f3Smrg if (devinfo->verx10 == 70 && 227001e04c3fSmrg (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) 227101e04c3fSmrg lowered_width = MIN2(lowered_width, 4); 227201e04c3fSmrg 227301e04c3fSmrg return lowered_width; 227401e04c3fSmrg} 227501e04c3fSmrg 227601e04c3fSmrgstatic bool 227701e04c3fSmrgdst_src_regions_overlap(vec4_instruction *inst) 227801e04c3fSmrg{ 227901e04c3fSmrg if (inst->size_written == 0) 228001e04c3fSmrg return false; 228101e04c3fSmrg 228201e04c3fSmrg unsigned dst_start = inst->dst.offset; 228301e04c3fSmrg unsigned dst_end = dst_start + inst->size_written - 1; 228401e04c3fSmrg for (int i = 0; i < 3; i++) { 228501e04c3fSmrg if (inst->src[i].file == BAD_FILE) 228601e04c3fSmrg continue; 228701e04c3fSmrg 228801e04c3fSmrg if (inst->dst.file != inst->src[i].file || 228901e04c3fSmrg inst->dst.nr != inst->src[i].nr) 229001e04c3fSmrg continue; 229101e04c3fSmrg 229201e04c3fSmrg unsigned src_start = inst->src[i].offset; 229301e04c3fSmrg unsigned src_end = src_start + inst->size_read(i) - 1; 229401e04c3fSmrg 229501e04c3fSmrg if ((dst_start >= src_start && dst_start <= src_end) || 229601e04c3fSmrg (dst_end >= src_start && dst_end <= src_end) || 229701e04c3fSmrg (dst_start <= src_start && dst_end >= src_end)) { 229801e04c3fSmrg return true; 229901e04c3fSmrg } 230001e04c3fSmrg } 230101e04c3fSmrg 230201e04c3fSmrg return false; 230301e04c3fSmrg} 230401e04c3fSmrg 230501e04c3fSmrgbool 230601e04c3fSmrgvec4_visitor::lower_simd_width() 230701e04c3fSmrg{ 230801e04c3fSmrg bool progress = false; 230901e04c3fSmrg 231001e04c3fSmrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 231101e04c3fSmrg const unsigned lowered_width = 231201e04c3fSmrg get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst); 231301e04c3fSmrg assert(lowered_width <= inst->exec_size); 231401e04c3fSmrg if (lowered_width == inst->exec_size) 231501e04c3fSmrg continue; 231601e04c3fSmrg 231701e04c3fSmrg /* We need to deal with source / destination overlaps when splitting. 231801e04c3fSmrg * The hardware supports reading from and writing to the same register 231901e04c3fSmrg * in the same instruction, but we need to be careful that each split 232001e04c3fSmrg * instruction we produce does not corrupt the source of the next. 232101e04c3fSmrg * 232201e04c3fSmrg * The easiest way to handle this is to make the split instructions write 232301e04c3fSmrg * to temporaries if there is an src/dst overlap and then move from the 232401e04c3fSmrg * temporaries to the original destination. We also need to consider 232501e04c3fSmrg * instructions that do partial writes via align1 opcodes, in which case 232601e04c3fSmrg * we need to make sure that the we initialize the temporary with the 232701e04c3fSmrg * value of the instruction's dst. 232801e04c3fSmrg */ 232901e04c3fSmrg bool needs_temp = dst_src_regions_overlap(inst); 233001e04c3fSmrg for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) { 233101e04c3fSmrg unsigned channel_offset = lowered_width * n; 233201e04c3fSmrg 233301e04c3fSmrg unsigned size_written = lowered_width * type_sz(inst->dst.type); 233401e04c3fSmrg 233501e04c3fSmrg /* Create the split instruction from the original so that we copy all 233601e04c3fSmrg * relevant instruction fields, then set the width and calculate the 233701e04c3fSmrg * new dst/src regions. 233801e04c3fSmrg */ 233901e04c3fSmrg vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst); 234001e04c3fSmrg linst->exec_size = lowered_width; 234101e04c3fSmrg linst->group = channel_offset; 234201e04c3fSmrg linst->size_written = size_written; 234301e04c3fSmrg 234401e04c3fSmrg /* Compute split dst region */ 234501e04c3fSmrg dst_reg dst; 234601e04c3fSmrg if (needs_temp) { 234701e04c3fSmrg unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE); 234801e04c3fSmrg dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)), 234901e04c3fSmrg inst->dst.type); 235001e04c3fSmrg if (inst->is_align1_partial_write()) { 235101e04c3fSmrg vec4_instruction *copy = MOV(dst, src_reg(inst->dst)); 235201e04c3fSmrg copy->exec_size = lowered_width; 235301e04c3fSmrg copy->group = channel_offset; 235401e04c3fSmrg copy->size_written = size_written; 235501e04c3fSmrg inst->insert_before(block, copy); 235601e04c3fSmrg } 235701e04c3fSmrg } else { 235801e04c3fSmrg dst = horiz_offset(inst->dst, channel_offset); 235901e04c3fSmrg } 236001e04c3fSmrg linst->dst = dst; 236101e04c3fSmrg 236201e04c3fSmrg /* Compute split source regions */ 236301e04c3fSmrg for (int i = 0; i < 3; i++) { 236401e04c3fSmrg if (linst->src[i].file == BAD_FILE) 236501e04c3fSmrg continue; 236601e04c3fSmrg 236701e04c3fSmrg bool is_interleaved_attr = 236801e04c3fSmrg linst->src[i].file == ATTR && 236901e04c3fSmrg stage_uses_interleaved_attributes(stage, 237001e04c3fSmrg prog_data->dispatch_mode); 237101e04c3fSmrg 237201e04c3fSmrg if (!is_uniform(linst->src[i]) && !is_interleaved_attr) 237301e04c3fSmrg linst->src[i] = horiz_offset(linst->src[i], channel_offset); 237401e04c3fSmrg } 237501e04c3fSmrg 237601e04c3fSmrg inst->insert_before(block, linst); 237701e04c3fSmrg 237801e04c3fSmrg /* If we used a temporary to store the result of the split 237901e04c3fSmrg * instruction, copy the result to the original destination 238001e04c3fSmrg */ 238101e04c3fSmrg if (needs_temp) { 238201e04c3fSmrg vec4_instruction *mov = 238301e04c3fSmrg MOV(offset(inst->dst, lowered_width, n), src_reg(dst)); 238401e04c3fSmrg mov->exec_size = lowered_width; 238501e04c3fSmrg mov->group = channel_offset; 238601e04c3fSmrg mov->size_written = size_written; 238701e04c3fSmrg mov->predicate = inst->predicate; 238801e04c3fSmrg inst->insert_before(block, mov); 238901e04c3fSmrg } 239001e04c3fSmrg } 239101e04c3fSmrg 239201e04c3fSmrg inst->remove(block); 239301e04c3fSmrg progress = true; 239401e04c3fSmrg } 239501e04c3fSmrg 239601e04c3fSmrg if (progress) 23977ec681f3Smrg invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 239801e04c3fSmrg 239901e04c3fSmrg return progress; 240001e04c3fSmrg} 240101e04c3fSmrg 240201e04c3fSmrgstatic brw_predicate 240301e04c3fSmrgscalarize_predicate(brw_predicate predicate, unsigned writemask) 240401e04c3fSmrg{ 240501e04c3fSmrg if (predicate != BRW_PREDICATE_NORMAL) 240601e04c3fSmrg return predicate; 240701e04c3fSmrg 240801e04c3fSmrg switch (writemask) { 240901e04c3fSmrg case WRITEMASK_X: 241001e04c3fSmrg return BRW_PREDICATE_ALIGN16_REPLICATE_X; 241101e04c3fSmrg case WRITEMASK_Y: 241201e04c3fSmrg return BRW_PREDICATE_ALIGN16_REPLICATE_Y; 241301e04c3fSmrg case WRITEMASK_Z: 241401e04c3fSmrg return BRW_PREDICATE_ALIGN16_REPLICATE_Z; 241501e04c3fSmrg case WRITEMASK_W: 241601e04c3fSmrg return BRW_PREDICATE_ALIGN16_REPLICATE_W; 241701e04c3fSmrg default: 241801e04c3fSmrg unreachable("invalid writemask"); 241901e04c3fSmrg } 242001e04c3fSmrg} 242101e04c3fSmrg 24227ec681f3Smrg/* Gfx7 has a hardware decompression bug that we can exploit to represent 242301e04c3fSmrg * handful of additional swizzles natively. 242401e04c3fSmrg */ 242501e04c3fSmrgstatic bool 24267ec681f3Smrgis_gfx7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg) 242701e04c3fSmrg{ 242801e04c3fSmrg switch (inst->src[arg].swizzle) { 242901e04c3fSmrg case BRW_SWIZZLE_XXXX: 243001e04c3fSmrg case BRW_SWIZZLE_YYYY: 243101e04c3fSmrg case BRW_SWIZZLE_ZZZZ: 243201e04c3fSmrg case BRW_SWIZZLE_WWWW: 243301e04c3fSmrg case BRW_SWIZZLE_XYXY: 243401e04c3fSmrg case BRW_SWIZZLE_YXYX: 243501e04c3fSmrg case BRW_SWIZZLE_ZWZW: 243601e04c3fSmrg case BRW_SWIZZLE_WZWZ: 243701e04c3fSmrg return true; 243801e04c3fSmrg default: 243901e04c3fSmrg return false; 244001e04c3fSmrg } 244101e04c3fSmrg} 244201e04c3fSmrg 244301e04c3fSmrg/* 64-bit sources use regions with a width of 2. These 2 elements in each row 244401e04c3fSmrg * can be addressed using 32-bit swizzles (which is what the hardware supports) 244501e04c3fSmrg * but it also means that the swizzle we apply on the first two components of a 244601e04c3fSmrg * dvec4 is coupled with the swizzle we use for the last 2. In other words, 244701e04c3fSmrg * only some specific swizzle combinations can be natively supported. 244801e04c3fSmrg * 244901e04c3fSmrg * FIXME: we can go an step further and implement even more swizzle 245001e04c3fSmrg * variations using only partial scalarization. 245101e04c3fSmrg * 245201e04c3fSmrg * For more details see: 245301e04c3fSmrg * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82 245401e04c3fSmrg */ 245501e04c3fSmrgbool 245601e04c3fSmrgvec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg) 245701e04c3fSmrg{ 245801e04c3fSmrg const src_reg &src = inst->src[arg]; 245901e04c3fSmrg assert(type_sz(src.type) == 8); 246001e04c3fSmrg 246101e04c3fSmrg /* Uniform regions have a vstride=0. Because we use 2-wide rows with 246201e04c3fSmrg * 64-bit regions it means that we cannot access components Z/W, so 246301e04c3fSmrg * return false for any such case. Interleaved attributes will also be 246401e04c3fSmrg * mapped to GRF registers with a vstride of 0, so apply the same 246501e04c3fSmrg * treatment. 246601e04c3fSmrg */ 246701e04c3fSmrg if ((is_uniform(src) || 246801e04c3fSmrg (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) && 246901e04c3fSmrg src.file == ATTR)) && 247001e04c3fSmrg (brw_mask_for_swizzle(src.swizzle) & 12)) 247101e04c3fSmrg return false; 247201e04c3fSmrg 247301e04c3fSmrg switch (src.swizzle) { 247401e04c3fSmrg case BRW_SWIZZLE_XYZW: 247501e04c3fSmrg case BRW_SWIZZLE_XXZZ: 247601e04c3fSmrg case BRW_SWIZZLE_YYWW: 247701e04c3fSmrg case BRW_SWIZZLE_YXWZ: 247801e04c3fSmrg return true; 247901e04c3fSmrg default: 24807ec681f3Smrg return devinfo->ver == 7 && is_gfx7_supported_64bit_swizzle(inst, arg); 248101e04c3fSmrg } 248201e04c3fSmrg} 248301e04c3fSmrg 248401e04c3fSmrgbool 248501e04c3fSmrgvec4_visitor::scalarize_df() 248601e04c3fSmrg{ 248701e04c3fSmrg bool progress = false; 248801e04c3fSmrg 248901e04c3fSmrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 249001e04c3fSmrg /* Skip DF instructions that operate in Align1 mode */ 249101e04c3fSmrg if (is_align1_df(inst)) 249201e04c3fSmrg continue; 249301e04c3fSmrg 249401e04c3fSmrg /* Check if this is a double-precision instruction */ 249501e04c3fSmrg bool is_double = type_sz(inst->dst.type) == 8; 249601e04c3fSmrg for (int arg = 0; !is_double && arg < 3; arg++) { 249701e04c3fSmrg is_double = inst->src[arg].file != BAD_FILE && 249801e04c3fSmrg type_sz(inst->src[arg].type) == 8; 249901e04c3fSmrg } 250001e04c3fSmrg 250101e04c3fSmrg if (!is_double) 250201e04c3fSmrg continue; 250301e04c3fSmrg 250401e04c3fSmrg /* Skip the lowering for specific regioning scenarios that we can 250501e04c3fSmrg * support natively. 250601e04c3fSmrg */ 250701e04c3fSmrg bool skip_lowering = true; 250801e04c3fSmrg 250901e04c3fSmrg /* XY and ZW writemasks operate in 32-bit, which means that they don't 251001e04c3fSmrg * have a native 64-bit representation and they should always be split. 251101e04c3fSmrg */ 251201e04c3fSmrg if (inst->dst.writemask == WRITEMASK_XY || 251301e04c3fSmrg inst->dst.writemask == WRITEMASK_ZW) { 251401e04c3fSmrg skip_lowering = false; 251501e04c3fSmrg } else { 251601e04c3fSmrg for (unsigned i = 0; i < 3; i++) { 251701e04c3fSmrg if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8) 251801e04c3fSmrg continue; 251901e04c3fSmrg skip_lowering = skip_lowering && is_supported_64bit_region(inst, i); 252001e04c3fSmrg } 252101e04c3fSmrg } 252201e04c3fSmrg 252301e04c3fSmrg if (skip_lowering) 252401e04c3fSmrg continue; 252501e04c3fSmrg 252601e04c3fSmrg /* Generate scalar instructions for each enabled channel */ 252701e04c3fSmrg for (unsigned chan = 0; chan < 4; chan++) { 252801e04c3fSmrg unsigned chan_mask = 1 << chan; 252901e04c3fSmrg if (!(inst->dst.writemask & chan_mask)) 253001e04c3fSmrg continue; 253101e04c3fSmrg 253201e04c3fSmrg vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst); 253301e04c3fSmrg 253401e04c3fSmrg for (unsigned i = 0; i < 3; i++) { 253501e04c3fSmrg unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan); 253601e04c3fSmrg scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz); 253701e04c3fSmrg } 253801e04c3fSmrg 253901e04c3fSmrg scalar_inst->dst.writemask = chan_mask; 254001e04c3fSmrg 254101e04c3fSmrg if (inst->predicate != BRW_PREDICATE_NONE) { 254201e04c3fSmrg scalar_inst->predicate = 254301e04c3fSmrg scalarize_predicate(inst->predicate, chan_mask); 254401e04c3fSmrg } 254501e04c3fSmrg 254601e04c3fSmrg inst->insert_before(block, scalar_inst); 254701e04c3fSmrg } 254801e04c3fSmrg 254901e04c3fSmrg inst->remove(block); 255001e04c3fSmrg progress = true; 255101e04c3fSmrg } 255201e04c3fSmrg 255301e04c3fSmrg if (progress) 25547ec681f3Smrg invalidate_analysis(DEPENDENCY_INSTRUCTIONS); 255501e04c3fSmrg 255601e04c3fSmrg return progress; 255701e04c3fSmrg} 255801e04c3fSmrg 255901e04c3fSmrgbool 256001e04c3fSmrgvec4_visitor::lower_64bit_mad_to_mul_add() 256101e04c3fSmrg{ 256201e04c3fSmrg bool progress = false; 256301e04c3fSmrg 256401e04c3fSmrg foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 256501e04c3fSmrg if (inst->opcode != BRW_OPCODE_MAD) 256601e04c3fSmrg continue; 256701e04c3fSmrg 256801e04c3fSmrg if (type_sz(inst->dst.type) != 8) 256901e04c3fSmrg continue; 257001e04c3fSmrg 257101e04c3fSmrg dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type); 257201e04c3fSmrg 257301e04c3fSmrg /* Use the copy constructor so we copy all relevant instruction fields 257401e04c3fSmrg * from the original mad into the add and mul instructions 257501e04c3fSmrg */ 257601e04c3fSmrg vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst); 257701e04c3fSmrg mul->opcode = BRW_OPCODE_MUL; 257801e04c3fSmrg mul->dst = mul_dst; 257901e04c3fSmrg mul->src[0] = inst->src[1]; 258001e04c3fSmrg mul->src[1] = inst->src[2]; 258101e04c3fSmrg mul->src[2].file = BAD_FILE; 258201e04c3fSmrg 258301e04c3fSmrg vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst); 258401e04c3fSmrg add->opcode = BRW_OPCODE_ADD; 258501e04c3fSmrg add->src[0] = src_reg(mul_dst); 258601e04c3fSmrg add->src[1] = inst->src[0]; 258701e04c3fSmrg add->src[2].file = BAD_FILE; 258801e04c3fSmrg 258901e04c3fSmrg inst->insert_before(block, mul); 259001e04c3fSmrg inst->insert_before(block, add); 259101e04c3fSmrg inst->remove(block); 259201e04c3fSmrg 259301e04c3fSmrg progress = true; 259401e04c3fSmrg } 259501e04c3fSmrg 259601e04c3fSmrg if (progress) 25977ec681f3Smrg invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 259801e04c3fSmrg 259901e04c3fSmrg return progress; 260001e04c3fSmrg} 260101e04c3fSmrg 260201e04c3fSmrg/* The align16 hardware can only do 32-bit swizzle channels, so we need to 260301e04c3fSmrg * translate the logical 64-bit swizzle channels that we use in the Vec4 IR 260401e04c3fSmrg * to 32-bit swizzle channels in hardware registers. 260501e04c3fSmrg * 260601e04c3fSmrg * @inst and @arg identify the original vec4 IR source operand we need to 260701e04c3fSmrg * translate the swizzle for and @hw_reg is the hardware register where we 260801e04c3fSmrg * will write the hardware swizzle to use. 260901e04c3fSmrg * 261001e04c3fSmrg * This pass assumes that Align16/DF instructions have been fully scalarized 261101e04c3fSmrg * previously so there is just one 64-bit swizzle channel to deal with for any 261201e04c3fSmrg * given Vec4 IR source. 261301e04c3fSmrg */ 261401e04c3fSmrgvoid 261501e04c3fSmrgvec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg, 261601e04c3fSmrg vec4_instruction *inst, int arg) 261701e04c3fSmrg{ 261801e04c3fSmrg src_reg reg = inst->src[arg]; 261901e04c3fSmrg 262001e04c3fSmrg if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE) 262101e04c3fSmrg return; 262201e04c3fSmrg 262301e04c3fSmrg /* If this is not a 64-bit operand or this is a scalar instruction we don't 262401e04c3fSmrg * need to do anything about the swizzles. 262501e04c3fSmrg */ 262601e04c3fSmrg if(type_sz(reg.type) < 8 || is_align1_df(inst)) { 262701e04c3fSmrg hw_reg->swizzle = reg.swizzle; 262801e04c3fSmrg return; 262901e04c3fSmrg } 263001e04c3fSmrg 263101e04c3fSmrg /* Take the 64-bit logical swizzle channel and translate it to 32-bit */ 263201e04c3fSmrg assert(brw_is_single_value_swizzle(reg.swizzle) || 263301e04c3fSmrg is_supported_64bit_region(inst, arg)); 263401e04c3fSmrg 263501e04c3fSmrg /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16 263601e04c3fSmrg * HW can only do 32-bit swizzle channels. 263701e04c3fSmrg */ 263801e04c3fSmrg hw_reg->width = BRW_WIDTH_2; 263901e04c3fSmrg 264001e04c3fSmrg if (is_supported_64bit_region(inst, arg) && 26417ec681f3Smrg !is_gfx7_supported_64bit_swizzle(inst, arg)) { 264201e04c3fSmrg /* Supported 64-bit swizzles are those such that their first two 264301e04c3fSmrg * components, when expanded to 32-bit swizzles, match the semantics 264401e04c3fSmrg * of the original 64-bit swizzle with 2-wide row regioning. 264501e04c3fSmrg */ 264601e04c3fSmrg unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); 264701e04c3fSmrg unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); 264801e04c3fSmrg hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, 264901e04c3fSmrg swizzle1 * 2, swizzle1 * 2 + 1); 265001e04c3fSmrg } else { 265101e04c3fSmrg /* If we got here then we have one of the following: 265201e04c3fSmrg * 265301e04c3fSmrg * 1. An unsupported swizzle, which should be single-value thanks to the 265401e04c3fSmrg * scalarization pass. 265501e04c3fSmrg * 26567ec681f3Smrg * 2. A gfx7 supported swizzle. These can be single-value or double-value 265701e04c3fSmrg * swizzles. If the latter, they are never cross-dvec2 channels. For 26587ec681f3Smrg * these we always need to activate the gfx7 vstride=0 exploit. 265901e04c3fSmrg */ 266001e04c3fSmrg unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); 266101e04c3fSmrg unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); 266201e04c3fSmrg assert((swizzle0 < 2) == (swizzle1 < 2)); 266301e04c3fSmrg 266401e04c3fSmrg /* To gain access to Z/W components we need to select the second half 266501e04c3fSmrg * of the register and then use a X/Y swizzle to select Z/W respectively. 266601e04c3fSmrg */ 266701e04c3fSmrg if (swizzle0 >= 2) { 266801e04c3fSmrg *hw_reg = suboffset(*hw_reg, 2); 266901e04c3fSmrg swizzle0 -= 2; 267001e04c3fSmrg swizzle1 -= 2; 267101e04c3fSmrg } 267201e04c3fSmrg 26737ec681f3Smrg /* All gfx7-specific supported swizzles require the vstride=0 exploit */ 26747ec681f3Smrg if (devinfo->ver == 7 && is_gfx7_supported_64bit_swizzle(inst, arg)) 267501e04c3fSmrg hw_reg->vstride = BRW_VERTICAL_STRIDE_0; 267601e04c3fSmrg 267701e04c3fSmrg /* Any 64-bit source with an offset at 16B is intended to address the 267801e04c3fSmrg * second half of a register and needs a vertical stride of 0 so we: 267901e04c3fSmrg * 268001e04c3fSmrg * 1. Don't violate register region restrictions. 26817ec681f3Smrg * 2. Activate the gfx7 instruction decompresion bug exploit when 268201e04c3fSmrg * execsize > 4 268301e04c3fSmrg */ 268401e04c3fSmrg if (hw_reg->subnr % REG_SIZE == 16) { 26857ec681f3Smrg assert(devinfo->ver == 7); 268601e04c3fSmrg hw_reg->vstride = BRW_VERTICAL_STRIDE_0; 268701e04c3fSmrg } 268801e04c3fSmrg 268901e04c3fSmrg hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, 269001e04c3fSmrg swizzle1 * 2, swizzle1 * 2 + 1); 269101e04c3fSmrg } 269201e04c3fSmrg} 269301e04c3fSmrg 26947ec681f3Smrgvoid 26957ec681f3Smrgvec4_visitor::invalidate_analysis(brw::analysis_dependency_class c) 26967ec681f3Smrg{ 26977ec681f3Smrg backend_shader::invalidate_analysis(c); 26987ec681f3Smrg live_analysis.invalidate(c); 26997ec681f3Smrg} 27007ec681f3Smrg 270101e04c3fSmrgbool 270201e04c3fSmrgvec4_visitor::run() 270301e04c3fSmrg{ 270401e04c3fSmrg if (shader_time_index >= 0) 270501e04c3fSmrg emit_shader_time_begin(); 270601e04c3fSmrg 27077ec681f3Smrg setup_push_ranges(); 27087ec681f3Smrg 27097ec681f3Smrg if (prog_data->base.zero_push_reg) { 27107ec681f3Smrg /* push_reg_mask_param is in uint32 params and UNIFORM is in vec4s */ 27117ec681f3Smrg const unsigned mask_param = stage_prog_data->push_reg_mask_param; 27127ec681f3Smrg src_reg mask = src_reg(dst_reg(UNIFORM, mask_param / 4)); 27137ec681f3Smrg assert(mask_param % 2 == 0); /* Should be 64-bit-aligned */ 27147ec681f3Smrg mask.swizzle = BRW_SWIZZLE4((mask_param + 0) % 4, 27157ec681f3Smrg (mask_param + 1) % 4, 27167ec681f3Smrg (mask_param + 0) % 4, 27177ec681f3Smrg (mask_param + 1) % 4); 27187ec681f3Smrg 27197ec681f3Smrg emit(VEC4_OPCODE_ZERO_OOB_PUSH_REGS, 27207ec681f3Smrg dst_reg(VGRF, alloc.allocate(3)), mask); 27217ec681f3Smrg } 27227ec681f3Smrg 272301e04c3fSmrg emit_prolog(); 272401e04c3fSmrg 272501e04c3fSmrg emit_nir_code(); 272601e04c3fSmrg if (failed) 272701e04c3fSmrg return false; 272801e04c3fSmrg base_ir = NULL; 272901e04c3fSmrg 273001e04c3fSmrg emit_thread_end(); 273101e04c3fSmrg 273201e04c3fSmrg calculate_cfg(); 273301e04c3fSmrg 273401e04c3fSmrg /* Before any optimization, push array accesses out to scratch 273501e04c3fSmrg * space where we need them to be. This pass may allocate new 273601e04c3fSmrg * virtual GRFs, so we want to do it early. It also makes sure 273701e04c3fSmrg * that we have reladdr computations available for CSE, since we'll 273801e04c3fSmrg * often do repeated subexpressions for those. 273901e04c3fSmrg */ 274001e04c3fSmrg move_grf_array_access_to_scratch(); 274101e04c3fSmrg move_uniform_array_access_to_pull_constants(); 274201e04c3fSmrg 274301e04c3fSmrg pack_uniform_registers(); 274401e04c3fSmrg move_push_constants_to_pull_constants(); 274501e04c3fSmrg split_virtual_grfs(); 274601e04c3fSmrg 274701e04c3fSmrg#define OPT(pass, args...) ({ \ 274801e04c3fSmrg pass_num++; \ 274901e04c3fSmrg bool this_progress = pass(args); \ 275001e04c3fSmrg \ 27517ec681f3Smrg if (INTEL_DEBUG(DEBUG_OPTIMIZER) && this_progress) { \ 275201e04c3fSmrg char filename[64]; \ 275301e04c3fSmrg snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \ 275401e04c3fSmrg stage_abbrev, nir->info.name, iteration, pass_num); \ 275501e04c3fSmrg \ 275601e04c3fSmrg backend_shader::dump_instructions(filename); \ 275701e04c3fSmrg } \ 275801e04c3fSmrg \ 275901e04c3fSmrg progress = progress || this_progress; \ 276001e04c3fSmrg this_progress; \ 276101e04c3fSmrg }) 276201e04c3fSmrg 276301e04c3fSmrg 27647ec681f3Smrg if (INTEL_DEBUG(DEBUG_OPTIMIZER)) { 276501e04c3fSmrg char filename[64]; 276601e04c3fSmrg snprintf(filename, 64, "%s-%s-00-00-start", 276701e04c3fSmrg stage_abbrev, nir->info.name); 276801e04c3fSmrg 276901e04c3fSmrg backend_shader::dump_instructions(filename); 277001e04c3fSmrg } 277101e04c3fSmrg 277201e04c3fSmrg bool progress; 277301e04c3fSmrg int iteration = 0; 277401e04c3fSmrg int pass_num = 0; 277501e04c3fSmrg do { 277601e04c3fSmrg progress = false; 277701e04c3fSmrg pass_num = 0; 277801e04c3fSmrg iteration++; 277901e04c3fSmrg 278001e04c3fSmrg OPT(opt_predicated_break, this); 278101e04c3fSmrg OPT(opt_reduce_swizzle); 278201e04c3fSmrg OPT(dead_code_eliminate); 278301e04c3fSmrg OPT(dead_control_flow_eliminate, this); 278401e04c3fSmrg OPT(opt_copy_propagation); 278501e04c3fSmrg OPT(opt_cmod_propagation); 278601e04c3fSmrg OPT(opt_cse); 278701e04c3fSmrg OPT(opt_algebraic); 278801e04c3fSmrg OPT(opt_register_coalesce); 278901e04c3fSmrg OPT(eliminate_find_live_channel); 279001e04c3fSmrg } while (progress); 279101e04c3fSmrg 279201e04c3fSmrg pass_num = 0; 279301e04c3fSmrg 279401e04c3fSmrg if (OPT(opt_vector_float)) { 279501e04c3fSmrg OPT(opt_cse); 279601e04c3fSmrg OPT(opt_copy_propagation, false); 279701e04c3fSmrg OPT(opt_copy_propagation, true); 279801e04c3fSmrg OPT(dead_code_eliminate); 279901e04c3fSmrg } 280001e04c3fSmrg 28017ec681f3Smrg if (devinfo->ver <= 5 && OPT(lower_minmax)) { 280201e04c3fSmrg OPT(opt_cmod_propagation); 280301e04c3fSmrg OPT(opt_cse); 280401e04c3fSmrg OPT(opt_copy_propagation); 280501e04c3fSmrg OPT(dead_code_eliminate); 280601e04c3fSmrg } 280701e04c3fSmrg 280801e04c3fSmrg if (OPT(lower_simd_width)) { 280901e04c3fSmrg OPT(opt_copy_propagation); 281001e04c3fSmrg OPT(dead_code_eliminate); 281101e04c3fSmrg } 281201e04c3fSmrg 281301e04c3fSmrg if (failed) 281401e04c3fSmrg return false; 281501e04c3fSmrg 281601e04c3fSmrg OPT(lower_64bit_mad_to_mul_add); 281701e04c3fSmrg 281801e04c3fSmrg /* Run this before payload setup because tesselation shaders 281901e04c3fSmrg * rely on it to prevent cross dvec2 regioning on DF attributes 282001e04c3fSmrg * that are setup so that XY are on the second half of register and 282101e04c3fSmrg * ZW are in the first half of the next. 282201e04c3fSmrg */ 282301e04c3fSmrg OPT(scalarize_df); 282401e04c3fSmrg 282501e04c3fSmrg setup_payload(); 282601e04c3fSmrg 28277ec681f3Smrg if (INTEL_DEBUG(DEBUG_SPILL_VEC4)) { 282801e04c3fSmrg /* Debug of register spilling: Go spill everything. */ 282901e04c3fSmrg const int grf_count = alloc.count; 283001e04c3fSmrg float spill_costs[alloc.count]; 283101e04c3fSmrg bool no_spill[alloc.count]; 283201e04c3fSmrg evaluate_spill_costs(spill_costs, no_spill); 283301e04c3fSmrg for (int i = 0; i < grf_count; i++) { 283401e04c3fSmrg if (no_spill[i]) 283501e04c3fSmrg continue; 283601e04c3fSmrg spill_reg(i); 283701e04c3fSmrg } 283801e04c3fSmrg 283901e04c3fSmrg /* We want to run this after spilling because 64-bit (un)spills need to 284001e04c3fSmrg * emit code to shuffle 64-bit data for the 32-bit scratch read/write 284101e04c3fSmrg * messages that can produce unsupported 64-bit swizzle regions. 284201e04c3fSmrg */ 284301e04c3fSmrg OPT(scalarize_df); 284401e04c3fSmrg } 284501e04c3fSmrg 284601e04c3fSmrg fixup_3src_null_dest(); 284701e04c3fSmrg 284801e04c3fSmrg bool allocated_without_spills = reg_allocate(); 284901e04c3fSmrg 285001e04c3fSmrg if (!allocated_without_spills) { 28517ec681f3Smrg brw_shader_perf_log(compiler, log_data, 28527ec681f3Smrg "%s shader triggered register spilling. " 28537ec681f3Smrg "Try reducing the number of live vec4 values " 28547ec681f3Smrg "to improve performance.\n", 28557ec681f3Smrg stage_name); 285601e04c3fSmrg 285701e04c3fSmrg while (!reg_allocate()) { 285801e04c3fSmrg if (failed) 285901e04c3fSmrg return false; 286001e04c3fSmrg } 286101e04c3fSmrg 286201e04c3fSmrg /* We want to run this after spilling because 64-bit (un)spills need to 286301e04c3fSmrg * emit code to shuffle 64-bit data for the 32-bit scratch read/write 286401e04c3fSmrg * messages that can produce unsupported 64-bit swizzle regions. 286501e04c3fSmrg */ 286601e04c3fSmrg OPT(scalarize_df); 286701e04c3fSmrg } 286801e04c3fSmrg 286901e04c3fSmrg opt_schedule_instructions(); 287001e04c3fSmrg 287101e04c3fSmrg opt_set_dependency_control(); 287201e04c3fSmrg 287301e04c3fSmrg convert_to_hw_regs(); 287401e04c3fSmrg 287501e04c3fSmrg if (last_scratch > 0) { 287601e04c3fSmrg prog_data->base.total_scratch = 287701e04c3fSmrg brw_get_scratch_size(last_scratch * REG_SIZE); 287801e04c3fSmrg } 287901e04c3fSmrg 288001e04c3fSmrg return !failed; 288101e04c3fSmrg} 288201e04c3fSmrg 288301e04c3fSmrg} /* namespace brw */ 288401e04c3fSmrg 288501e04c3fSmrgextern "C" { 288601e04c3fSmrg 288701e04c3fSmrgconst unsigned * 28887ec681f3Smrgbrw_compile_vs(const struct brw_compiler *compiler, 288901e04c3fSmrg void *mem_ctx, 28907ec681f3Smrg struct brw_compile_vs_params *params) 289101e04c3fSmrg{ 28927ec681f3Smrg struct nir_shader *nir = params->nir; 28937ec681f3Smrg const struct brw_vs_prog_key *key = params->key; 28947ec681f3Smrg struct brw_vs_prog_data *prog_data = params->prog_data; 28957ec681f3Smrg const bool debug_enabled = 28967ec681f3Smrg INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_VS); 28977ec681f3Smrg 28987ec681f3Smrg prog_data->base.base.stage = MESA_SHADER_VERTEX; 28997ec681f3Smrg 290001e04c3fSmrg const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX]; 29017ec681f3Smrg brw_nir_apply_key(nir, compiler, &key->base, 8, is_scalar); 290201e04c3fSmrg 290301e04c3fSmrg const unsigned *assembly = NULL; 290401e04c3fSmrg 29057ec681f3Smrg prog_data->inputs_read = nir->info.inputs_read; 29067ec681f3Smrg prog_data->double_inputs_read = nir->info.vs.double_inputs; 290701e04c3fSmrg 29087ec681f3Smrg brw_nir_lower_vs_inputs(nir, params->edgeflag_is_last, key->gl_attrib_wa_flags); 29097ec681f3Smrg brw_nir_lower_vue_outputs(nir); 29107ec681f3Smrg brw_postprocess_nir(nir, compiler, is_scalar, debug_enabled, 29117ec681f3Smrg key->base.robust_buffer_access); 291201e04c3fSmrg 291301e04c3fSmrg prog_data->base.clip_distance_mask = 29147ec681f3Smrg ((1 << nir->info.clip_distance_array_size) - 1); 291501e04c3fSmrg prog_data->base.cull_distance_mask = 29167ec681f3Smrg ((1 << nir->info.cull_distance_array_size) - 1) << 29177ec681f3Smrg nir->info.clip_distance_array_size; 291801e04c3fSmrg 291901e04c3fSmrg unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read); 292001e04c3fSmrg 292101e04c3fSmrg /* gl_VertexID and gl_InstanceID are system values, but arrive via an 292201e04c3fSmrg * incoming vertex attribute. So, add an extra slot. 292301e04c3fSmrg */ 29247ec681f3Smrg if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) || 29257ec681f3Smrg BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) || 29267ec681f3Smrg BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) || 29277ec681f3Smrg BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID)) { 292801e04c3fSmrg nr_attribute_slots++; 292901e04c3fSmrg } 293001e04c3fSmrg 293101e04c3fSmrg /* gl_DrawID and IsIndexedDraw share its very own vec4 */ 29327ec681f3Smrg if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID) || 29337ec681f3Smrg BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_IS_INDEXED_DRAW)) { 293401e04c3fSmrg nr_attribute_slots++; 293501e04c3fSmrg } 293601e04c3fSmrg 29377ec681f3Smrg if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_IS_INDEXED_DRAW)) 293801e04c3fSmrg prog_data->uses_is_indexed_draw = true; 293901e04c3fSmrg 29407ec681f3Smrg if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX)) 294101e04c3fSmrg prog_data->uses_firstvertex = true; 294201e04c3fSmrg 29437ec681f3Smrg if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE)) 294401e04c3fSmrg prog_data->uses_baseinstance = true; 294501e04c3fSmrg 29467ec681f3Smrg if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE)) 294701e04c3fSmrg prog_data->uses_vertexid = true; 294801e04c3fSmrg 29497ec681f3Smrg if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID)) 295001e04c3fSmrg prog_data->uses_instanceid = true; 295101e04c3fSmrg 29527ec681f3Smrg if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID)) 295301e04c3fSmrg prog_data->uses_drawid = true; 295401e04c3fSmrg 295501e04c3fSmrg /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry 295601e04c3fSmrg * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in 295701e04c3fSmrg * vec4 mode, the hardware appears to wedge unless we read something. 295801e04c3fSmrg */ 295901e04c3fSmrg if (is_scalar) 296001e04c3fSmrg prog_data->base.urb_read_length = 296101e04c3fSmrg DIV_ROUND_UP(nr_attribute_slots, 2); 296201e04c3fSmrg else 296301e04c3fSmrg prog_data->base.urb_read_length = 296401e04c3fSmrg DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2); 296501e04c3fSmrg 296601e04c3fSmrg prog_data->nr_attribute_slots = nr_attribute_slots; 296701e04c3fSmrg 296801e04c3fSmrg /* Since vertex shaders reuse the same VUE entry for inputs and outputs 296901e04c3fSmrg * (overwriting the original contents), we need to make sure the size is 297001e04c3fSmrg * the larger of the two. 297101e04c3fSmrg */ 297201e04c3fSmrg const unsigned vue_entries = 297301e04c3fSmrg MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots); 297401e04c3fSmrg 29757ec681f3Smrg if (compiler->devinfo->ver == 6) { 297601e04c3fSmrg prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8); 297701e04c3fSmrg } else { 297801e04c3fSmrg prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4); 297901e04c3fSmrg } 298001e04c3fSmrg 29817ec681f3Smrg if (unlikely(debug_enabled)) { 298201e04c3fSmrg fprintf(stderr, "VS Output "); 29837ec681f3Smrg brw_print_vue_map(stderr, &prog_data->base.vue_map, MESA_SHADER_VERTEX); 298401e04c3fSmrg } 298501e04c3fSmrg 298601e04c3fSmrg if (is_scalar) { 298701e04c3fSmrg prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8; 298801e04c3fSmrg 29897ec681f3Smrg fs_visitor v(compiler, params->log_data, mem_ctx, &key->base, 29907ec681f3Smrg &prog_data->base.base, nir, 8, 29917ec681f3Smrg params->shader_time ? params->shader_time_index : -1, 29927ec681f3Smrg debug_enabled); 299301e04c3fSmrg if (!v.run_vs()) { 29947ec681f3Smrg params->error_str = ralloc_strdup(mem_ctx, v.fail_msg); 299501e04c3fSmrg return NULL; 299601e04c3fSmrg } 299701e04c3fSmrg 299801e04c3fSmrg prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs; 299901e04c3fSmrg 30007ec681f3Smrg fs_generator g(compiler, params->log_data, mem_ctx, 30017ec681f3Smrg &prog_data->base.base, v.runtime_check_aads_emit, 30027ec681f3Smrg MESA_SHADER_VERTEX); 30037ec681f3Smrg if (unlikely(debug_enabled)) { 300401e04c3fSmrg const char *debug_name = 300501e04c3fSmrg ralloc_asprintf(mem_ctx, "%s vertex shader %s", 30067ec681f3Smrg nir->info.label ? nir->info.label : 300701e04c3fSmrg "unnamed", 30087ec681f3Smrg nir->info.name); 300901e04c3fSmrg 301001e04c3fSmrg g.enable_debug(debug_name); 301101e04c3fSmrg } 30127ec681f3Smrg g.generate_code(v.cfg, 8, v.shader_stats, 30137ec681f3Smrg v.performance_analysis.require(), params->stats); 30147ec681f3Smrg g.add_const_data(nir->constant_data, nir->constant_data_size); 301501e04c3fSmrg assembly = g.get_assembly(); 301601e04c3fSmrg } 301701e04c3fSmrg 301801e04c3fSmrg if (!assembly) { 301901e04c3fSmrg prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT; 302001e04c3fSmrg 30217ec681f3Smrg vec4_vs_visitor v(compiler, params->log_data, key, prog_data, 30227ec681f3Smrg nir, mem_ctx, 30237ec681f3Smrg params->shader_time ? params->shader_time_index : -1, 30247ec681f3Smrg debug_enabled); 302501e04c3fSmrg if (!v.run()) { 30267ec681f3Smrg params->error_str = ralloc_strdup(mem_ctx, v.fail_msg); 302701e04c3fSmrg return NULL; 302801e04c3fSmrg } 302901e04c3fSmrg 30307ec681f3Smrg assembly = brw_vec4_generate_assembly(compiler, params->log_data, mem_ctx, 30317ec681f3Smrg nir, &prog_data->base, 30327ec681f3Smrg v.cfg, 30337ec681f3Smrg v.performance_analysis.require(), 30347ec681f3Smrg params->stats, debug_enabled); 303501e04c3fSmrg } 303601e04c3fSmrg 303701e04c3fSmrg return assembly; 303801e04c3fSmrg} 303901e04c3fSmrg 304001e04c3fSmrg} /* extern "C" */ 3041