brw_vec4.cpp revision 7ec681f3
1/*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_vec4.h"
25#include "brw_fs.h"
26#include "brw_cfg.h"
27#include "brw_nir.h"
28#include "brw_vec4_builder.h"
29#include "brw_vec4_vs.h"
30#include "brw_dead_control_flow.h"
31#include "dev/intel_debug.h"
32#include "program/prog_parameter.h"
33#include "util/u_math.h"
34
35#define MAX_INSTRUCTION (1 << 30)
36
37using namespace brw;
38
39namespace brw {
40
41void
42src_reg::init()
43{
44   memset((void*)this, 0, sizeof(*this));
45   this->file = BAD_FILE;
46   this->type = BRW_REGISTER_TYPE_UD;
47}
48
49src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
50{
51   init();
52
53   this->file = file;
54   this->nr = nr;
55   if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
56      this->swizzle = brw_swizzle_for_size(type->vector_elements);
57   else
58      this->swizzle = BRW_SWIZZLE_XYZW;
59   if (type)
60      this->type = brw_type_for_base_type(type);
61}
62
63/** Generic unset register constructor. */
64src_reg::src_reg()
65{
66   init();
67}
68
69src_reg::src_reg(struct ::brw_reg reg) :
70   backend_reg(reg)
71{
72   this->offset = 0;
73   this->reladdr = NULL;
74}
75
76src_reg::src_reg(const dst_reg &reg) :
77   backend_reg(reg)
78{
79   this->reladdr = reg.reladdr;
80   this->swizzle = brw_swizzle_for_mask(reg.writemask);
81}
82
83void
84dst_reg::init()
85{
86   memset((void*)this, 0, sizeof(*this));
87   this->file = BAD_FILE;
88   this->type = BRW_REGISTER_TYPE_UD;
89   this->writemask = WRITEMASK_XYZW;
90}
91
92dst_reg::dst_reg()
93{
94   init();
95}
96
97dst_reg::dst_reg(enum brw_reg_file file, int nr)
98{
99   init();
100
101   this->file = file;
102   this->nr = nr;
103}
104
105dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
106                 unsigned writemask)
107{
108   init();
109
110   this->file = file;
111   this->nr = nr;
112   this->type = brw_type_for_base_type(type);
113   this->writemask = writemask;
114}
115
116dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
117                 unsigned writemask)
118{
119   init();
120
121   this->file = file;
122   this->nr = nr;
123   this->type = type;
124   this->writemask = writemask;
125}
126
127dst_reg::dst_reg(struct ::brw_reg reg) :
128   backend_reg(reg)
129{
130   this->offset = 0;
131   this->reladdr = NULL;
132}
133
134dst_reg::dst_reg(const src_reg &reg) :
135   backend_reg(reg)
136{
137   this->writemask = brw_mask_for_swizzle(reg.swizzle);
138   this->reladdr = reg.reladdr;
139}
140
141bool
142dst_reg::equals(const dst_reg &r) const
143{
144   return (this->backend_reg::equals(r) &&
145           (reladdr == r.reladdr ||
146            (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
147}
148
149bool
150vec4_instruction::is_send_from_grf() const
151{
152   switch (opcode) {
153   case SHADER_OPCODE_SHADER_TIME_ADD:
154   case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
155   case VEC4_OPCODE_UNTYPED_ATOMIC:
156   case VEC4_OPCODE_UNTYPED_SURFACE_READ:
157   case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
158   case VEC4_OPCODE_URB_READ:
159   case TCS_OPCODE_URB_WRITE:
160   case TCS_OPCODE_RELEASE_INPUT:
161   case SHADER_OPCODE_BARRIER:
162      return true;
163   default:
164      return false;
165   }
166}
167
168/**
169 * Returns true if this instruction's sources and destinations cannot
170 * safely be the same register.
171 *
172 * In most cases, a register can be written over safely by the same
173 * instruction that is its last use.  For a single instruction, the
174 * sources are dereferenced before writing of the destination starts
175 * (naturally).
176 *
177 * However, there are a few cases where this can be problematic:
178 *
179 * - Virtual opcodes that translate to multiple instructions in the
180 *   code generator: if src == dst and one instruction writes the
181 *   destination before a later instruction reads the source, then
182 *   src will have been clobbered.
183 *
184 * The register allocator uses this information to set up conflicts between
185 * GRF sources and the destination.
186 */
187bool
188vec4_instruction::has_source_and_destination_hazard() const
189{
190   switch (opcode) {
191   case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
192   case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
193   case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
194      return true;
195   default:
196      /* 8-wide compressed DF operations are executed as two 4-wide operations,
197       * so we have a src/dst hazard if the first half of the instruction
198       * overwrites the source of the second half. Prevent this by marking
199       * compressed instructions as having src/dst hazards, so the register
200       * allocator assigns safe register regions for dst and srcs.
201       */
202      return size_written > REG_SIZE;
203   }
204}
205
206unsigned
207vec4_instruction::size_read(unsigned arg) const
208{
209   switch (opcode) {
210   case SHADER_OPCODE_SHADER_TIME_ADD:
211   case VEC4_OPCODE_UNTYPED_ATOMIC:
212   case VEC4_OPCODE_UNTYPED_SURFACE_READ:
213   case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
214   case TCS_OPCODE_URB_WRITE:
215      if (arg == 0)
216         return mlen * REG_SIZE;
217      break;
218   case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
219      if (arg == 1)
220         return mlen * REG_SIZE;
221      break;
222   default:
223      break;
224   }
225
226   switch (src[arg].file) {
227   case BAD_FILE:
228      return 0;
229   case IMM:
230   case UNIFORM:
231      return 4 * type_sz(src[arg].type);
232   default:
233      /* XXX - Represent actual vertical stride. */
234      return exec_size * type_sz(src[arg].type);
235   }
236}
237
238bool
239vec4_instruction::can_do_source_mods(const struct intel_device_info *devinfo)
240{
241   if (devinfo->ver == 6 && is_math())
242      return false;
243
244   if (is_send_from_grf())
245      return false;
246
247   if (!backend_instruction::can_do_source_mods())
248      return false;
249
250   return true;
251}
252
253bool
254vec4_instruction::can_do_cmod()
255{
256   if (!backend_instruction::can_do_cmod())
257      return false;
258
259   /* The accumulator result appears to get used for the conditional modifier
260    * generation.  When negating a UD value, there is a 33rd bit generated for
261    * the sign in the accumulator value, so now you can't check, for example,
262    * equality with a 32-bit value.  See piglit fs-op-neg-uvec4.
263    */
264   for (unsigned i = 0; i < 3; i++) {
265      if (src[i].file != BAD_FILE &&
266          brw_reg_type_is_unsigned_integer(src[i].type) && src[i].negate)
267         return false;
268   }
269
270   return true;
271}
272
273bool
274vec4_instruction::can_do_writemask(const struct intel_device_info *devinfo)
275{
276   switch (opcode) {
277   case SHADER_OPCODE_GFX4_SCRATCH_READ:
278   case VEC4_OPCODE_DOUBLE_TO_F32:
279   case VEC4_OPCODE_DOUBLE_TO_D32:
280   case VEC4_OPCODE_DOUBLE_TO_U32:
281   case VEC4_OPCODE_TO_DOUBLE:
282   case VEC4_OPCODE_PICK_LOW_32BIT:
283   case VEC4_OPCODE_PICK_HIGH_32BIT:
284   case VEC4_OPCODE_SET_LOW_32BIT:
285   case VEC4_OPCODE_SET_HIGH_32BIT:
286   case VS_OPCODE_PULL_CONSTANT_LOAD:
287   case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
288   case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
289   case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
290   case TES_OPCODE_CREATE_INPUT_READ_HEADER:
291   case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
292   case VEC4_OPCODE_URB_READ:
293   case SHADER_OPCODE_MOV_INDIRECT:
294      return false;
295   default:
296      /* The MATH instruction on Gfx6 only executes in align1 mode, which does
297       * not support writemasking.
298       */
299      if (devinfo->ver == 6 && is_math())
300         return false;
301
302      if (is_tex())
303         return false;
304
305      return true;
306   }
307}
308
309bool
310vec4_instruction::can_change_types() const
311{
312   return dst.type == src[0].type &&
313          !src[0].abs && !src[0].negate && !saturate &&
314          (opcode == BRW_OPCODE_MOV ||
315           (opcode == BRW_OPCODE_SEL &&
316            dst.type == src[1].type &&
317            predicate != BRW_PREDICATE_NONE &&
318            !src[1].abs && !src[1].negate));
319}
320
321/**
322 * Returns how many MRFs an opcode will write over.
323 *
324 * Note that this is not the 0 or 1 implied writes in an actual gen
325 * instruction -- the generate_* functions generate additional MOVs
326 * for setup.
327 */
328unsigned
329vec4_instruction::implied_mrf_writes() const
330{
331   if (mlen == 0 || is_send_from_grf())
332      return 0;
333
334   switch (opcode) {
335   case SHADER_OPCODE_RCP:
336   case SHADER_OPCODE_RSQ:
337   case SHADER_OPCODE_SQRT:
338   case SHADER_OPCODE_EXP2:
339   case SHADER_OPCODE_LOG2:
340   case SHADER_OPCODE_SIN:
341   case SHADER_OPCODE_COS:
342      return 1;
343   case SHADER_OPCODE_INT_QUOTIENT:
344   case SHADER_OPCODE_INT_REMAINDER:
345   case SHADER_OPCODE_POW:
346   case TCS_OPCODE_THREAD_END:
347      return 2;
348   case VS_OPCODE_URB_WRITE:
349      return 1;
350   case VS_OPCODE_PULL_CONSTANT_LOAD:
351      return 2;
352   case SHADER_OPCODE_GFX4_SCRATCH_READ:
353      return 2;
354   case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
355      return 3;
356   case GS_OPCODE_URB_WRITE:
357   case GS_OPCODE_URB_WRITE_ALLOCATE:
358   case GS_OPCODE_THREAD_END:
359      return 0;
360   case GS_OPCODE_FF_SYNC:
361      return 1;
362   case TCS_OPCODE_URB_WRITE:
363      return 0;
364   case SHADER_OPCODE_SHADER_TIME_ADD:
365      return 0;
366   case SHADER_OPCODE_TEX:
367   case SHADER_OPCODE_TXL:
368   case SHADER_OPCODE_TXD:
369   case SHADER_OPCODE_TXF:
370   case SHADER_OPCODE_TXF_CMS:
371   case SHADER_OPCODE_TXF_CMS_W:
372   case SHADER_OPCODE_TXF_MCS:
373   case SHADER_OPCODE_TXS:
374   case SHADER_OPCODE_TG4:
375   case SHADER_OPCODE_TG4_OFFSET:
376   case SHADER_OPCODE_SAMPLEINFO:
377   case SHADER_OPCODE_GET_BUFFER_SIZE:
378      return header_size;
379   default:
380      unreachable("not reached");
381   }
382}
383
384bool
385src_reg::equals(const src_reg &r) const
386{
387   return (this->backend_reg::equals(r) &&
388	   !reladdr && !r.reladdr);
389}
390
391bool
392src_reg::negative_equals(const src_reg &r) const
393{
394   return this->backend_reg::negative_equals(r) &&
395          !reladdr && !r.reladdr;
396}
397
398bool
399vec4_visitor::opt_vector_float()
400{
401   bool progress = false;
402
403   foreach_block(block, cfg) {
404      unsigned last_reg = ~0u, last_offset = ~0u;
405      enum brw_reg_file last_reg_file = BAD_FILE;
406
407      uint8_t imm[4] = { 0 };
408      int inst_count = 0;
409      vec4_instruction *imm_inst[4];
410      unsigned writemask = 0;
411      enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
412
413      foreach_inst_in_block_safe(vec4_instruction, inst, block) {
414         int vf = -1;
415         enum brw_reg_type need_type = BRW_REGISTER_TYPE_LAST;
416
417         /* Look for unconditional MOVs from an immediate with a partial
418          * writemask.  Skip type-conversion MOVs other than integer 0,
419          * where the type doesn't matter.  See if the immediate can be
420          * represented as a VF.
421          */
422         if (inst->opcode == BRW_OPCODE_MOV &&
423             inst->src[0].file == IMM &&
424             inst->predicate == BRW_PREDICATE_NONE &&
425             inst->dst.writemask != WRITEMASK_XYZW &&
426             type_sz(inst->src[0].type) < 8 &&
427             (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
428
429            vf = brw_float_to_vf(inst->src[0].d);
430            need_type = BRW_REGISTER_TYPE_D;
431
432            if (vf == -1) {
433               vf = brw_float_to_vf(inst->src[0].f);
434               need_type = BRW_REGISTER_TYPE_F;
435            }
436         } else {
437            last_reg = ~0u;
438         }
439
440         /* If this wasn't a MOV, or the destination register doesn't match,
441          * or we have to switch destination types, then this breaks our
442          * sequence.  Combine anything we've accumulated so far.
443          */
444         if (last_reg != inst->dst.nr ||
445             last_offset != inst->dst.offset ||
446             last_reg_file != inst->dst.file ||
447             (vf > 0 && dest_type != need_type)) {
448
449            if (inst_count > 1) {
450               unsigned vf;
451               memcpy(&vf, imm, sizeof(vf));
452               vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
453               mov->dst.type = dest_type;
454               mov->dst.writemask = writemask;
455               inst->insert_before(block, mov);
456
457               for (int i = 0; i < inst_count; i++) {
458                  imm_inst[i]->remove(block);
459               }
460
461               progress = true;
462            }
463
464            inst_count = 0;
465            last_reg = ~0u;;
466            writemask = 0;
467            dest_type = BRW_REGISTER_TYPE_F;
468
469            for (int i = 0; i < 4; i++) {
470               imm[i] = 0;
471            }
472         }
473
474         /* Record this instruction's value (if it was representable). */
475         if (vf != -1) {
476            if ((inst->dst.writemask & WRITEMASK_X) != 0)
477               imm[0] = vf;
478            if ((inst->dst.writemask & WRITEMASK_Y) != 0)
479               imm[1] = vf;
480            if ((inst->dst.writemask & WRITEMASK_Z) != 0)
481               imm[2] = vf;
482            if ((inst->dst.writemask & WRITEMASK_W) != 0)
483               imm[3] = vf;
484
485            writemask |= inst->dst.writemask;
486            imm_inst[inst_count++] = inst;
487
488            last_reg = inst->dst.nr;
489            last_offset = inst->dst.offset;
490            last_reg_file = inst->dst.file;
491            if (vf > 0)
492               dest_type = need_type;
493         }
494      }
495   }
496
497   if (progress)
498      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
499
500   return progress;
501}
502
503/* Replaces unused channels of a swizzle with channels that are used.
504 *
505 * For instance, this pass transforms
506 *
507 *    mov vgrf4.yz, vgrf5.wxzy
508 *
509 * into
510 *
511 *    mov vgrf4.yz, vgrf5.xxzx
512 *
513 * This eliminates false uses of some channels, letting dead code elimination
514 * remove the instructions that wrote them.
515 */
516bool
517vec4_visitor::opt_reduce_swizzle()
518{
519   bool progress = false;
520
521   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
522      if (inst->dst.file == BAD_FILE ||
523          inst->dst.file == ARF ||
524          inst->dst.file == FIXED_GRF ||
525          inst->is_send_from_grf())
526         continue;
527
528      unsigned swizzle;
529
530      /* Determine which channels of the sources are read. */
531      switch (inst->opcode) {
532      case VEC4_OPCODE_PACK_BYTES:
533      case BRW_OPCODE_DP4:
534      case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
535                            *           but all four of src1.
536                            */
537         swizzle = brw_swizzle_for_size(4);
538         break;
539      case BRW_OPCODE_DP3:
540         swizzle = brw_swizzle_for_size(3);
541         break;
542      case BRW_OPCODE_DP2:
543         swizzle = brw_swizzle_for_size(2);
544         break;
545
546      case VEC4_OPCODE_TO_DOUBLE:
547      case VEC4_OPCODE_DOUBLE_TO_F32:
548      case VEC4_OPCODE_DOUBLE_TO_D32:
549      case VEC4_OPCODE_DOUBLE_TO_U32:
550      case VEC4_OPCODE_PICK_LOW_32BIT:
551      case VEC4_OPCODE_PICK_HIGH_32BIT:
552      case VEC4_OPCODE_SET_LOW_32BIT:
553      case VEC4_OPCODE_SET_HIGH_32BIT:
554         swizzle = brw_swizzle_for_size(4);
555         break;
556
557      default:
558         swizzle = brw_swizzle_for_mask(inst->dst.writemask);
559         break;
560      }
561
562      /* Update sources' swizzles. */
563      for (int i = 0; i < 3; i++) {
564         if (inst->src[i].file != VGRF &&
565             inst->src[i].file != ATTR &&
566             inst->src[i].file != UNIFORM)
567            continue;
568
569         const unsigned new_swizzle =
570            brw_compose_swizzle(swizzle, inst->src[i].swizzle);
571         if (inst->src[i].swizzle != new_swizzle) {
572            inst->src[i].swizzle = new_swizzle;
573            progress = true;
574         }
575      }
576   }
577
578   if (progress)
579      invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
580
581   return progress;
582}
583
584void
585vec4_visitor::split_uniform_registers()
586{
587   /* Prior to this, uniforms have been in an array sized according to
588    * the number of vector uniforms present, sparsely filled (so an
589    * aggregate results in reg indices being skipped over).  Now we're
590    * going to cut those aggregates up so each .nr index is one
591    * vector.  The goal is to make elimination of unused uniform
592    * components easier later.
593    */
594   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
595      for (int i = 0 ; i < 3; i++) {
596         if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START)
597	    continue;
598
599	 assert(!inst->src[i].reladdr);
600
601         inst->src[i].nr += inst->src[i].offset / 16;
602	 inst->src[i].offset %= 16;
603      }
604   }
605}
606
607/* This function returns the register number where we placed the uniform */
608static int
609set_push_constant_loc(const int nr_uniforms, int *new_uniform_count,
610                      const int src, const int size, const int channel_size,
611                      int *new_loc, int *new_chan,
612                      int *new_chans_used)
613{
614   int dst;
615   /* Find the lowest place we can slot this uniform in. */
616   for (dst = 0; dst < nr_uniforms; dst++) {
617      if (ALIGN(new_chans_used[dst], channel_size) + size <= 4)
618         break;
619   }
620
621   assert(dst < nr_uniforms);
622
623   new_loc[src] = dst;
624   new_chan[src] = ALIGN(new_chans_used[dst], channel_size);
625   new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size;
626
627   *new_uniform_count = MAX2(*new_uniform_count, dst + 1);
628   return dst;
629}
630
631void
632vec4_visitor::pack_uniform_registers()
633{
634   if (!compiler->compact_params)
635      return;
636
637   uint8_t chans_used[this->uniforms];
638   int new_loc[this->uniforms];
639   int new_chan[this->uniforms];
640   bool is_aligned_to_dvec4[this->uniforms];
641   int new_chans_used[this->uniforms];
642   int channel_sizes[this->uniforms];
643
644   memset(chans_used, 0, sizeof(chans_used));
645   memset(new_loc, 0, sizeof(new_loc));
646   memset(new_chan, 0, sizeof(new_chan));
647   memset(new_chans_used, 0, sizeof(new_chans_used));
648   memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4));
649   memset(channel_sizes, 0, sizeof(channel_sizes));
650
651   /* Find which uniform vectors are actually used by the program.  We
652    * expect unused vector elements when we've moved array access out
653    * to pull constants, and from some GLSL code generators like wine.
654    */
655   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
656      unsigned readmask;
657      switch (inst->opcode) {
658      case VEC4_OPCODE_PACK_BYTES:
659      case BRW_OPCODE_DP4:
660      case BRW_OPCODE_DPH:
661         readmask = 0xf;
662         break;
663      case BRW_OPCODE_DP3:
664         readmask = 0x7;
665         break;
666      case BRW_OPCODE_DP2:
667         readmask = 0x3;
668         break;
669      default:
670         readmask = inst->dst.writemask;
671         break;
672      }
673
674      for (int i = 0 ; i < 3; i++) {
675         if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START)
676            continue;
677
678         assert(type_sz(inst->src[i].type) % 4 == 0);
679         int channel_size = type_sz(inst->src[i].type) / 4;
680
681         int reg = inst->src[i].nr;
682         for (int c = 0; c < 4; c++) {
683            if (!(readmask & (1 << c)))
684               continue;
685
686            unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1;
687            unsigned used = MAX2(chans_used[reg], channel * channel_size);
688            if (used <= 4) {
689               chans_used[reg] = used;
690               channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size);
691            } else {
692               is_aligned_to_dvec4[reg] = true;
693               is_aligned_to_dvec4[reg + 1] = true;
694               chans_used[reg + 1] = used - 4;
695               channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size);
696            }
697         }
698      }
699
700      if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
701          inst->src[0].file == UNIFORM) {
702         assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
703         assert(inst->src[0].subnr == 0);
704
705         unsigned bytes_read = inst->src[2].ud;
706         assert(bytes_read % 4 == 0);
707         unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
708
709         /* We just mark every register touched by a MOV_INDIRECT as being
710          * fully used.  This ensures that it doesn't broken up piecewise by
711          * the next part of our packing algorithm.
712          */
713         int reg = inst->src[0].nr;
714         int channel_size = type_sz(inst->src[0].type) / 4;
715         for (unsigned i = 0; i < vec4s_read; i++) {
716            chans_used[reg + i] = 4;
717            channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size);
718         }
719      }
720   }
721
722   int new_uniform_count = 0;
723
724   /* As the uniforms are going to be reordered, take the data from a temporary
725    * copy of the original param[].
726    */
727   uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params);
728   memcpy(param, stage_prog_data->param,
729          sizeof(uint32_t) * stage_prog_data->nr_params);
730
731   /* Now, figure out a packing of the live uniform vectors into our
732    * push constants. Start with dvec{3,4} because they are aligned to
733    * dvec4 size (2 vec4).
734    */
735   for (int src = 0; src < uniforms; src++) {
736      int size = chans_used[src];
737
738      if (size == 0 || !is_aligned_to_dvec4[src])
739         continue;
740
741      /* dvec3 are aligned to dvec4 size, apply the alignment of the size
742       * to 4 to avoid moving last component of a dvec3 to the available
743       * location at the end of a previous dvec3. These available locations
744       * could be filled by smaller variables in next loop.
745       */
746      size = ALIGN(size, 4);
747      int dst = set_push_constant_loc(uniforms, &new_uniform_count,
748                                      src, size, channel_sizes[src],
749                                      new_loc, new_chan,
750                                      new_chans_used);
751      /* Move the references to the data */
752      for (int j = 0; j < size; j++) {
753         stage_prog_data->param[dst * 4 + new_chan[src] + j] =
754            param[src * 4 + j];
755      }
756   }
757
758   /* Continue with the rest of data, which is aligned to vec4. */
759   for (int src = 0; src < uniforms; src++) {
760      int size = chans_used[src];
761
762      if (size == 0 || is_aligned_to_dvec4[src])
763         continue;
764
765      int dst = set_push_constant_loc(uniforms, &new_uniform_count,
766                                      src, size, channel_sizes[src],
767                                      new_loc, new_chan,
768                                      new_chans_used);
769      /* Move the references to the data */
770      for (int j = 0; j < size; j++) {
771         stage_prog_data->param[dst * 4 + new_chan[src] + j] =
772            param[src * 4 + j];
773      }
774   }
775
776   ralloc_free(param);
777   this->uniforms = new_uniform_count;
778   stage_prog_data->nr_params = new_uniform_count * 4;
779
780   /* Now, update the instructions for our repacked uniforms. */
781   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
782      for (int i = 0 ; i < 3; i++) {
783         int src = inst->src[i].nr;
784
785         if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START)
786            continue;
787
788         int chan = new_chan[src] / channel_sizes[src];
789         inst->src[i].nr = new_loc[src];
790         inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan);
791      }
792   }
793}
794
795/**
796 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
797 *
798 * While GLSL IR also performs this optimization, we end up with it in
799 * our instruction stream for a couple of reasons.  One is that we
800 * sometimes generate silly instructions, for example in array access
801 * where we'll generate "ADD offset, index, base" even if base is 0.
802 * The other is that GLSL IR's constant propagation doesn't track the
803 * components of aggregates, so some VS patterns (initialize matrix to
804 * 0, accumulate in vertex blending factors) end up breaking down to
805 * instructions involving 0.
806 */
807bool
808vec4_visitor::opt_algebraic()
809{
810   bool progress = false;
811
812   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
813      switch (inst->opcode) {
814      case BRW_OPCODE_MOV:
815         if (inst->src[0].file != IMM)
816            break;
817
818         if (inst->saturate) {
819            /* Full mixed-type saturates don't happen.  However, we can end up
820             * with things like:
821             *
822             *    mov.sat(8) g21<1>DF       -1F
823             *
824             * Other mixed-size-but-same-base-type cases may also be possible.
825             */
826            if (inst->dst.type != inst->src[0].type &&
827                inst->dst.type != BRW_REGISTER_TYPE_DF &&
828                inst->src[0].type != BRW_REGISTER_TYPE_F)
829               assert(!"unimplemented: saturate mixed types");
830
831            if (brw_saturate_immediate(inst->src[0].type,
832                                       &inst->src[0].as_brw_reg())) {
833               inst->saturate = false;
834               progress = true;
835            }
836         }
837         break;
838
839      case BRW_OPCODE_OR:
840         if (inst->src[1].is_zero()) {
841            inst->opcode = BRW_OPCODE_MOV;
842            inst->src[1] = src_reg();
843            progress = true;
844         }
845         break;
846
847      case VEC4_OPCODE_UNPACK_UNIFORM:
848         if (inst->src[0].file != UNIFORM) {
849            inst->opcode = BRW_OPCODE_MOV;
850            progress = true;
851         }
852         break;
853
854      case BRW_OPCODE_ADD:
855	 if (inst->src[1].is_zero()) {
856	    inst->opcode = BRW_OPCODE_MOV;
857	    inst->src[1] = src_reg();
858	    progress = true;
859	 }
860	 break;
861
862      case BRW_OPCODE_MUL:
863	 if (inst->src[1].is_zero()) {
864	    inst->opcode = BRW_OPCODE_MOV;
865	    switch (inst->src[0].type) {
866	    case BRW_REGISTER_TYPE_F:
867	       inst->src[0] = brw_imm_f(0.0f);
868	       break;
869	    case BRW_REGISTER_TYPE_D:
870	       inst->src[0] = brw_imm_d(0);
871	       break;
872	    case BRW_REGISTER_TYPE_UD:
873	       inst->src[0] = brw_imm_ud(0u);
874	       break;
875	    default:
876	       unreachable("not reached");
877	    }
878	    inst->src[1] = src_reg();
879	    progress = true;
880	 } else if (inst->src[1].is_one()) {
881	    inst->opcode = BRW_OPCODE_MOV;
882	    inst->src[1] = src_reg();
883	    progress = true;
884         } else if (inst->src[1].is_negative_one()) {
885            inst->opcode = BRW_OPCODE_MOV;
886            inst->src[0].negate = !inst->src[0].negate;
887            inst->src[1] = src_reg();
888            progress = true;
889	 }
890	 break;
891      case SHADER_OPCODE_BROADCAST:
892         if (is_uniform(inst->src[0]) ||
893             inst->src[1].is_zero()) {
894            inst->opcode = BRW_OPCODE_MOV;
895            inst->src[1] = src_reg();
896            inst->force_writemask_all = true;
897            progress = true;
898         }
899         break;
900
901      default:
902	 break;
903      }
904   }
905
906   if (progress)
907      invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
908                          DEPENDENCY_INSTRUCTION_DETAIL);
909
910   return progress;
911}
912
913/**
914 * Only a limited number of hardware registers may be used for push
915 * constants, so this turns access to the overflowed constants into
916 * pull constants.
917 */
918void
919vec4_visitor::move_push_constants_to_pull_constants()
920{
921   int pull_constant_loc[this->uniforms];
922
923   const int max_uniform_components = push_length * 8;
924
925   if (this->uniforms * 4 <= max_uniform_components)
926      return;
927
928   assert(compiler->supports_pull_constants);
929   assert(compiler->compact_params);
930
931   /* If we got here, we also can't have any push ranges */
932   for (unsigned i = 0; i < 4; i++)
933      assert(prog_data->base.ubo_ranges[i].length == 0);
934
935   /* Make some sort of choice as to which uniforms get sent to pull
936    * constants.  We could potentially do something clever here like
937    * look for the most infrequently used uniform vec4s, but leave
938    * that for later.
939    */
940   for (int i = 0; i < this->uniforms * 4; i += 4) {
941      pull_constant_loc[i / 4] = -1;
942
943      if (i >= max_uniform_components) {
944         uint32_t *values = &stage_prog_data->param[i];
945
946         /* Try to find an existing copy of this uniform in the pull
947          * constants if it was part of an array access already.
948          */
949         for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
950            int matches;
951
952            for (matches = 0; matches < 4; matches++) {
953               if (stage_prog_data->pull_param[j + matches] != values[matches])
954                  break;
955            }
956
957            if (matches == 4) {
958               pull_constant_loc[i / 4] = j / 4;
959               break;
960            }
961         }
962
963         if (pull_constant_loc[i / 4] == -1) {
964            assert(stage_prog_data->nr_pull_params % 4 == 0);
965            pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
966
967            for (int j = 0; j < 4; j++) {
968               stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
969                  values[j];
970            }
971         }
972      }
973   }
974
975   /* Now actually rewrite usage of the things we've moved to pull
976    * constants.
977    */
978   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
979      for (int i = 0 ; i < 3; i++) {
980         if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START ||
981             pull_constant_loc[inst->src[i].nr] == -1)
982            continue;
983
984         int uniform = inst->src[i].nr;
985
986         const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ?
987            glsl_type::dvec4_type : glsl_type::vec4_type;
988         dst_reg temp = dst_reg(this, temp_type);
989
990         emit_pull_constant_load(block, inst, temp, inst->src[i],
991                                 pull_constant_loc[uniform], src_reg());
992
993         inst->src[i].file = temp.file;
994         inst->src[i].nr = temp.nr;
995         inst->src[i].offset %= 16;
996         inst->src[i].reladdr = NULL;
997      }
998   }
999
1000   /* Repack push constants to remove the now-unused ones. */
1001   pack_uniform_registers();
1002}
1003
1004/* Conditions for which we want to avoid setting the dependency control bits */
1005bool
1006vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
1007{
1008#define IS_DWORD(reg) \
1009   (reg.type == BRW_REGISTER_TYPE_UD || \
1010    reg.type == BRW_REGISTER_TYPE_D)
1011
1012#define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
1013
1014   if (devinfo->ver >= 7) {
1015      if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
1016          IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
1017      return true;
1018   }
1019
1020#undef IS_64BIT
1021#undef IS_DWORD
1022
1023   /*
1024    * mlen:
1025    * In the presence of send messages, totally interrupt dependency
1026    * control. They're long enough that the chance of dependency
1027    * control around them just doesn't matter.
1028    *
1029    * predicate:
1030    * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
1031    * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
1032    * completes the scoreboard clear must have a non-zero execution mask. This
1033    * means, if any kind of predication can change the execution mask or channel
1034    * enable of the last instruction, the optimization must be avoided. This is
1035    * to avoid instructions being shot down the pipeline when no writes are
1036    * required.
1037    *
1038    * math:
1039    * Dependency control does not work well over math instructions.
1040    * NB: Discovered empirically
1041    */
1042   return (inst->mlen || inst->predicate || inst->is_math());
1043}
1044
1045/**
1046 * Sets the dependency control fields on instructions after register
1047 * allocation and before the generator is run.
1048 *
1049 * When you have a sequence of instructions like:
1050 *
1051 * DP4 temp.x vertex uniform[0]
1052 * DP4 temp.y vertex uniform[0]
1053 * DP4 temp.z vertex uniform[0]
1054 * DP4 temp.w vertex uniform[0]
1055 *
1056 * The hardware doesn't know that it can actually run the later instructions
1057 * while the previous ones are in flight, producing stalls.  However, we have
1058 * manual fields we can set in the instructions that let it do so.
1059 */
1060void
1061vec4_visitor::opt_set_dependency_control()
1062{
1063   vec4_instruction *last_grf_write[BRW_MAX_GRF];
1064   uint8_t grf_channels_written[BRW_MAX_GRF];
1065   vec4_instruction *last_mrf_write[BRW_MAX_GRF];
1066   uint8_t mrf_channels_written[BRW_MAX_GRF];
1067
1068   assert(prog_data->total_grf ||
1069          !"Must be called after register allocation");
1070
1071   foreach_block (block, cfg) {
1072      memset(last_grf_write, 0, sizeof(last_grf_write));
1073      memset(last_mrf_write, 0, sizeof(last_mrf_write));
1074
1075      foreach_inst_in_block (vec4_instruction, inst, block) {
1076         /* If we read from a register that we were doing dependency control
1077          * on, don't do dependency control across the read.
1078          */
1079         for (int i = 0; i < 3; i++) {
1080            int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
1081            if (inst->src[i].file == VGRF) {
1082               last_grf_write[reg] = NULL;
1083            } else if (inst->src[i].file == FIXED_GRF) {
1084               memset(last_grf_write, 0, sizeof(last_grf_write));
1085               break;
1086            }
1087            assert(inst->src[i].file != MRF);
1088         }
1089
1090         if (is_dep_ctrl_unsafe(inst)) {
1091            memset(last_grf_write, 0, sizeof(last_grf_write));
1092            memset(last_mrf_write, 0, sizeof(last_mrf_write));
1093            continue;
1094         }
1095
1096         /* Now, see if we can do dependency control for this instruction
1097          * against a previous one writing to its destination.
1098          */
1099         int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
1100         if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
1101            if (last_grf_write[reg] &&
1102                last_grf_write[reg]->dst.offset == inst->dst.offset &&
1103                !(inst->dst.writemask & grf_channels_written[reg])) {
1104               last_grf_write[reg]->no_dd_clear = true;
1105               inst->no_dd_check = true;
1106            } else {
1107               grf_channels_written[reg] = 0;
1108            }
1109
1110            last_grf_write[reg] = inst;
1111            grf_channels_written[reg] |= inst->dst.writemask;
1112         } else if (inst->dst.file == MRF) {
1113            if (last_mrf_write[reg] &&
1114                last_mrf_write[reg]->dst.offset == inst->dst.offset &&
1115                !(inst->dst.writemask & mrf_channels_written[reg])) {
1116               last_mrf_write[reg]->no_dd_clear = true;
1117               inst->no_dd_check = true;
1118            } else {
1119               mrf_channels_written[reg] = 0;
1120            }
1121
1122            last_mrf_write[reg] = inst;
1123            mrf_channels_written[reg] |= inst->dst.writemask;
1124         }
1125      }
1126   }
1127}
1128
1129bool
1130vec4_instruction::can_reswizzle(const struct intel_device_info *devinfo,
1131                                int dst_writemask,
1132                                int swizzle,
1133                                int swizzle_mask)
1134{
1135   /* Gfx6 MATH instructions can not execute in align16 mode, so swizzles
1136    * are not allowed.
1137    */
1138   if (devinfo->ver == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
1139      return false;
1140
1141   /* If we write to the flag register changing the swizzle would change
1142    * what channels are written to the flag register.
1143    */
1144   if (writes_flag(devinfo))
1145      return false;
1146
1147   /* We can't swizzle implicit accumulator access.  We'd have to
1148    * reswizzle the producer of the accumulator value in addition
1149    * to the consumer (i.e. both MUL and MACH).  Just skip this.
1150    */
1151   if (reads_accumulator_implicitly())
1152      return false;
1153
1154   if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
1155      return false;
1156
1157   /* If this instruction sets anything not referenced by swizzle, then we'd
1158    * totally break it when we reswizzle.
1159    */
1160   if (dst.writemask & ~swizzle_mask)
1161      return false;
1162
1163   if (mlen > 0)
1164      return false;
1165
1166   for (int i = 0; i < 3; i++) {
1167      if (src[i].is_accumulator())
1168         return false;
1169   }
1170
1171   return true;
1172}
1173
1174/**
1175 * For any channels in the swizzle's source that were populated by this
1176 * instruction, rewrite the instruction to put the appropriate result directly
1177 * in those channels.
1178 *
1179 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1180 */
1181void
1182vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1183{
1184   /* Destination write mask doesn't correspond to source swizzle for the dot
1185    * product and pack_bytes instructions.
1186    */
1187   if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1188       opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
1189       opcode != VEC4_OPCODE_PACK_BYTES) {
1190      for (int i = 0; i < 3; i++) {
1191         if (src[i].file == BAD_FILE)
1192            continue;
1193
1194         if (src[i].file == IMM) {
1195            assert(src[i].type != BRW_REGISTER_TYPE_V &&
1196                   src[i].type != BRW_REGISTER_TYPE_UV);
1197
1198            /* Vector immediate types need to be reswizzled. */
1199            if (src[i].type == BRW_REGISTER_TYPE_VF) {
1200               const unsigned imm[] = {
1201                  (src[i].ud >>  0) & 0x0ff,
1202                  (src[i].ud >>  8) & 0x0ff,
1203                  (src[i].ud >> 16) & 0x0ff,
1204                  (src[i].ud >> 24) & 0x0ff,
1205               };
1206
1207               src[i] = brw_imm_vf4(imm[BRW_GET_SWZ(swizzle, 0)],
1208                                    imm[BRW_GET_SWZ(swizzle, 1)],
1209                                    imm[BRW_GET_SWZ(swizzle, 2)],
1210                                    imm[BRW_GET_SWZ(swizzle, 3)]);
1211            }
1212
1213            continue;
1214         }
1215
1216         src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
1217      }
1218   }
1219
1220   /* Apply the specified swizzle and writemask to the original mask of
1221    * written components.
1222    */
1223   dst.writemask = dst_writemask &
1224                   brw_apply_swizzle_to_mask(swizzle, dst.writemask);
1225}
1226
1227/*
1228 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1229 * just written and then MOVed into another reg and making the original write
1230 * of the GRF write directly to the final destination instead.
1231 */
1232bool
1233vec4_visitor::opt_register_coalesce()
1234{
1235   bool progress = false;
1236   int next_ip = 0;
1237   const vec4_live_variables &live = live_analysis.require();
1238
1239   foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1240      int ip = next_ip;
1241      next_ip++;
1242
1243      if (inst->opcode != BRW_OPCODE_MOV ||
1244          (inst->dst.file != VGRF && inst->dst.file != MRF) ||
1245	  inst->predicate ||
1246	  inst->src[0].file != VGRF ||
1247	  inst->dst.type != inst->src[0].type ||
1248	  inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1249	 continue;
1250
1251      /* Remove no-op MOVs */
1252      if (inst->dst.file == inst->src[0].file &&
1253          inst->dst.nr == inst->src[0].nr &&
1254          inst->dst.offset == inst->src[0].offset) {
1255         bool is_nop_mov = true;
1256
1257         for (unsigned c = 0; c < 4; c++) {
1258            if ((inst->dst.writemask & (1 << c)) == 0)
1259               continue;
1260
1261            if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
1262               is_nop_mov = false;
1263               break;
1264            }
1265         }
1266
1267         if (is_nop_mov) {
1268            inst->remove(block);
1269            progress = true;
1270            continue;
1271         }
1272      }
1273
1274      bool to_mrf = (inst->dst.file == MRF);
1275
1276      /* Can't coalesce this GRF if someone else was going to
1277       * read it later.
1278       */
1279      if (live.var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
1280	 continue;
1281
1282      /* We need to check interference with the final destination between this
1283       * instruction and the earliest instruction involved in writing the GRF
1284       * we're eliminating.  To do that, keep track of which of our source
1285       * channels we've seen initialized.
1286       */
1287      const unsigned chans_needed =
1288         brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1289                                       inst->dst.writemask);
1290      unsigned chans_remaining = chans_needed;
1291
1292      /* Now walk up the instruction stream trying to see if we can rewrite
1293       * everything writing to the temporary to write into the destination
1294       * instead.
1295       */
1296      vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1297      foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1298                                                  inst) {
1299         _scan_inst = scan_inst;
1300
1301         if (regions_overlap(inst->src[0], inst->size_read(0),
1302                             scan_inst->dst, scan_inst->size_written)) {
1303            /* Found something writing to the reg we want to coalesce away. */
1304            if (to_mrf) {
1305               /* SEND instructions can't have MRF as a destination. */
1306               if (scan_inst->mlen)
1307                  break;
1308
1309               if (devinfo->ver == 6) {
1310                  /* gfx6 math instructions must have the destination be
1311                   * VGRF, so no compute-to-MRF for them.
1312                   */
1313                  if (scan_inst->is_math()) {
1314                     break;
1315                  }
1316               }
1317            }
1318
1319            /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1)
1320             * instructions, and this optimization pass is not capable of
1321             * handling that.  Bail on these instructions and hope that some
1322             * later optimization pass can do the right thing after they are
1323             * expanded.
1324             */
1325            if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2)
1326               break;
1327
1328            /* This doesn't handle saturation on the instruction we
1329             * want to coalesce away if the register types do not match.
1330             * But if scan_inst is a non type-converting 'mov', we can fix
1331             * the types later.
1332             */
1333            if (inst->saturate &&
1334                inst->dst.type != scan_inst->dst.type &&
1335                !(scan_inst->opcode == BRW_OPCODE_MOV &&
1336                  scan_inst->dst.type == scan_inst->src[0].type))
1337               break;
1338
1339            /* Only allow coalescing between registers of the same type size.
1340             * Otherwise we would need to make the pass aware of the fact that
1341             * channel sizes are different for single and double precision.
1342             */
1343            if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
1344               break;
1345
1346            /* Check that scan_inst writes the same amount of data as the
1347             * instruction, otherwise coalescing would lead to writing a
1348             * different (larger or smaller) region of the destination
1349             */
1350            if (scan_inst->size_written != inst->size_written)
1351               break;
1352
1353            /* If we can't handle the swizzle, bail. */
1354            if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1355                                          inst->src[0].swizzle,
1356                                          chans_needed)) {
1357               break;
1358            }
1359
1360            /* This only handles coalescing writes of 8 channels (1 register
1361             * for single-precision and 2 registers for double-precision)
1362             * starting at the source offset of the copy instruction.
1363             */
1364            if (DIV_ROUND_UP(scan_inst->size_written,
1365                             type_sz(scan_inst->dst.type)) > 8 ||
1366                scan_inst->dst.offset != inst->src[0].offset)
1367               break;
1368
1369	    /* Mark which channels we found unconditional writes for. */
1370	    if (!scan_inst->predicate)
1371               chans_remaining &= ~scan_inst->dst.writemask;
1372
1373	    if (chans_remaining == 0)
1374	       break;
1375	 }
1376
1377         /* You can't read from an MRF, so if someone else reads our MRF's
1378          * source GRF that we wanted to rewrite, that stops us.  If it's a
1379          * GRF we're trying to coalesce to, we don't actually handle
1380          * rewriting sources so bail in that case as well.
1381          */
1382	 bool interfered = false;
1383	 for (int i = 0; i < 3; i++) {
1384            if (regions_overlap(inst->src[0], inst->size_read(0),
1385                                scan_inst->src[i], scan_inst->size_read(i)))
1386	       interfered = true;
1387	 }
1388	 if (interfered)
1389	    break;
1390
1391         /* If somebody else writes the same channels of our destination here,
1392          * we can't coalesce before that.
1393          */
1394         if (regions_overlap(inst->dst, inst->size_written,
1395                             scan_inst->dst, scan_inst->size_written) &&
1396             (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1397            break;
1398         }
1399
1400         /* Check for reads of the register we're trying to coalesce into.  We
1401          * can't go rewriting instructions above that to put some other value
1402          * in the register instead.
1403          */
1404         if (to_mrf && scan_inst->mlen > 0) {
1405            unsigned start = scan_inst->base_mrf;
1406            unsigned end = scan_inst->base_mrf + scan_inst->mlen;
1407
1408            if (inst->dst.nr >= start && inst->dst.nr < end) {
1409               break;
1410            }
1411         } else {
1412            for (int i = 0; i < 3; i++) {
1413               if (regions_overlap(inst->dst, inst->size_written,
1414                                   scan_inst->src[i], scan_inst->size_read(i)))
1415                  interfered = true;
1416            }
1417            if (interfered)
1418               break;
1419         }
1420      }
1421
1422      if (chans_remaining == 0) {
1423	 /* If we've made it here, we have an MOV we want to coalesce out, and
1424	  * a scan_inst pointing to the earliest instruction involved in
1425	  * computing the value.  Now go rewrite the instruction stream
1426	  * between the two.
1427	  */
1428         vec4_instruction *scan_inst = _scan_inst;
1429	 while (scan_inst != inst) {
1430	    if (scan_inst->dst.file == VGRF &&
1431                scan_inst->dst.nr == inst->src[0].nr &&
1432		scan_inst->dst.offset == inst->src[0].offset) {
1433               scan_inst->reswizzle(inst->dst.writemask,
1434                                    inst->src[0].swizzle);
1435	       scan_inst->dst.file = inst->dst.file;
1436               scan_inst->dst.nr = inst->dst.nr;
1437	       scan_inst->dst.offset = inst->dst.offset;
1438               if (inst->saturate &&
1439                   inst->dst.type != scan_inst->dst.type) {
1440                  /* If we have reached this point, scan_inst is a non
1441                   * type-converting 'mov' and we can modify its register types
1442                   * to match the ones in inst. Otherwise, we could have an
1443                   * incorrect saturation result.
1444                   */
1445                  scan_inst->dst.type = inst->dst.type;
1446                  scan_inst->src[0].type = inst->src[0].type;
1447               }
1448	       scan_inst->saturate |= inst->saturate;
1449	    }
1450	    scan_inst = (vec4_instruction *)scan_inst->next;
1451	 }
1452	 inst->remove(block);
1453	 progress = true;
1454      }
1455   }
1456
1457   if (progress)
1458      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1459
1460   return progress;
1461}
1462
1463/**
1464 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1465 * flow.  We could probably do better here with some form of divergence
1466 * analysis.
1467 */
1468bool
1469vec4_visitor::eliminate_find_live_channel()
1470{
1471   bool progress = false;
1472   unsigned depth = 0;
1473
1474   if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
1475      /* The optimization below assumes that channel zero is live on thread
1476       * dispatch, which may not be the case if the fixed function dispatches
1477       * threads sparsely.
1478       */
1479      return false;
1480   }
1481
1482   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1483      switch (inst->opcode) {
1484      case BRW_OPCODE_IF:
1485      case BRW_OPCODE_DO:
1486         depth++;
1487         break;
1488
1489      case BRW_OPCODE_ENDIF:
1490      case BRW_OPCODE_WHILE:
1491         depth--;
1492         break;
1493
1494      case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1495         if (depth == 0) {
1496            inst->opcode = BRW_OPCODE_MOV;
1497            inst->src[0] = brw_imm_d(0);
1498            inst->force_writemask_all = true;
1499            progress = true;
1500         }
1501         break;
1502
1503      default:
1504         break;
1505      }
1506   }
1507
1508   if (progress)
1509      invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
1510
1511   return progress;
1512}
1513
1514/**
1515 * Splits virtual GRFs requesting more than one contiguous physical register.
1516 *
1517 * We initially create large virtual GRFs for temporary structures, arrays,
1518 * and matrices, so that the visitor functions can add offsets to work their
1519 * way down to the actual member being accessed.  But when it comes to
1520 * optimization, we'd like to treat each register as individual storage if
1521 * possible.
1522 *
1523 * So far, the only thing that might prevent splitting is a send message from
1524 * a GRF on IVB.
1525 */
1526void
1527vec4_visitor::split_virtual_grfs()
1528{
1529   int num_vars = this->alloc.count;
1530   int new_virtual_grf[num_vars];
1531   bool split_grf[num_vars];
1532
1533   memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1534
1535   /* Try to split anything > 0 sized. */
1536   for (int i = 0; i < num_vars; i++) {
1537      split_grf[i] = this->alloc.sizes[i] != 1;
1538   }
1539
1540   /* Check that the instructions are compatible with the registers we're trying
1541    * to split.
1542    */
1543   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1544      if (inst->dst.file == VGRF && regs_written(inst) > 1)
1545         split_grf[inst->dst.nr] = false;
1546
1547      for (int i = 0; i < 3; i++) {
1548         if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
1549            split_grf[inst->src[i].nr] = false;
1550      }
1551   }
1552
1553   /* Allocate new space for split regs.  Note that the virtual
1554    * numbers will be contiguous.
1555    */
1556   for (int i = 0; i < num_vars; i++) {
1557      if (!split_grf[i])
1558         continue;
1559
1560      new_virtual_grf[i] = alloc.allocate(1);
1561      for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1562         unsigned reg = alloc.allocate(1);
1563         assert(reg == new_virtual_grf[i] + j - 1);
1564         (void) reg;
1565      }
1566      this->alloc.sizes[i] = 1;
1567   }
1568
1569   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1570      if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
1571          inst->dst.offset / REG_SIZE != 0) {
1572         inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
1573                         inst->dst.offset / REG_SIZE - 1);
1574         inst->dst.offset %= REG_SIZE;
1575      }
1576      for (int i = 0; i < 3; i++) {
1577         if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
1578             inst->src[i].offset / REG_SIZE != 0) {
1579            inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
1580                                inst->src[i].offset / REG_SIZE - 1);
1581            inst->src[i].offset %= REG_SIZE;
1582         }
1583      }
1584   }
1585   invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
1586}
1587
1588void
1589vec4_visitor::dump_instruction(const backend_instruction *be_inst) const
1590{
1591   dump_instruction(be_inst, stderr);
1592}
1593
1594void
1595vec4_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
1596{
1597   const vec4_instruction *inst = (const vec4_instruction *)be_inst;
1598
1599   if (inst->predicate) {
1600      fprintf(file, "(%cf%d.%d%s) ",
1601              inst->predicate_inverse ? '-' : '+',
1602              inst->flag_subreg / 2,
1603              inst->flag_subreg % 2,
1604              pred_ctrl_align16[inst->predicate]);
1605   }
1606
1607   fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode),
1608           inst->exec_size);
1609   if (inst->saturate)
1610      fprintf(file, ".sat");
1611   if (inst->conditional_mod) {
1612      fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1613      if (!inst->predicate &&
1614          (devinfo->ver < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1615                                inst->opcode != BRW_OPCODE_CSEL &&
1616                                inst->opcode != BRW_OPCODE_IF &&
1617                                inst->opcode != BRW_OPCODE_WHILE))) {
1618         fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2);
1619      }
1620   }
1621   fprintf(file, " ");
1622
1623   switch (inst->dst.file) {
1624   case VGRF:
1625      fprintf(file, "vgrf%d", inst->dst.nr);
1626      break;
1627   case FIXED_GRF:
1628      fprintf(file, "g%d", inst->dst.nr);
1629      break;
1630   case MRF:
1631      fprintf(file, "m%d", inst->dst.nr);
1632      break;
1633   case ARF:
1634      switch (inst->dst.nr) {
1635      case BRW_ARF_NULL:
1636         fprintf(file, "null");
1637         break;
1638      case BRW_ARF_ADDRESS:
1639         fprintf(file, "a0.%d", inst->dst.subnr);
1640         break;
1641      case BRW_ARF_ACCUMULATOR:
1642         fprintf(file, "acc%d", inst->dst.subnr);
1643         break;
1644      case BRW_ARF_FLAG:
1645         fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1646         break;
1647      default:
1648         fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1649         break;
1650      }
1651      break;
1652   case BAD_FILE:
1653      fprintf(file, "(null)");
1654      break;
1655   case IMM:
1656   case ATTR:
1657   case UNIFORM:
1658      unreachable("not reached");
1659   }
1660   if (inst->dst.offset ||
1661       (inst->dst.file == VGRF &&
1662        alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
1663      const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
1664      fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
1665              inst->dst.offset % reg_size);
1666   }
1667   if (inst->dst.writemask != WRITEMASK_XYZW) {
1668      fprintf(file, ".");
1669      if (inst->dst.writemask & 1)
1670         fprintf(file, "x");
1671      if (inst->dst.writemask & 2)
1672         fprintf(file, "y");
1673      if (inst->dst.writemask & 4)
1674         fprintf(file, "z");
1675      if (inst->dst.writemask & 8)
1676         fprintf(file, "w");
1677   }
1678   fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type));
1679
1680   if (inst->src[0].file != BAD_FILE)
1681      fprintf(file, ", ");
1682
1683   for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1684      if (inst->src[i].negate)
1685         fprintf(file, "-");
1686      if (inst->src[i].abs)
1687         fprintf(file, "|");
1688      switch (inst->src[i].file) {
1689      case VGRF:
1690         fprintf(file, "vgrf%d", inst->src[i].nr);
1691         break;
1692      case FIXED_GRF:
1693         fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
1694         break;
1695      case ATTR:
1696         fprintf(file, "attr%d", inst->src[i].nr);
1697         break;
1698      case UNIFORM:
1699         fprintf(file, "u%d", inst->src[i].nr);
1700         break;
1701      case IMM:
1702         switch (inst->src[i].type) {
1703         case BRW_REGISTER_TYPE_F:
1704            fprintf(file, "%fF", inst->src[i].f);
1705            break;
1706         case BRW_REGISTER_TYPE_DF:
1707            fprintf(file, "%fDF", inst->src[i].df);
1708            break;
1709         case BRW_REGISTER_TYPE_D:
1710            fprintf(file, "%dD", inst->src[i].d);
1711            break;
1712         case BRW_REGISTER_TYPE_UD:
1713            fprintf(file, "%uU", inst->src[i].ud);
1714            break;
1715         case BRW_REGISTER_TYPE_VF:
1716            fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1717                    brw_vf_to_float((inst->src[i].ud >>  0) & 0xff),
1718                    brw_vf_to_float((inst->src[i].ud >>  8) & 0xff),
1719                    brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
1720                    brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
1721            break;
1722         default:
1723            fprintf(file, "???");
1724            break;
1725         }
1726         break;
1727      case ARF:
1728         switch (inst->src[i].nr) {
1729         case BRW_ARF_NULL:
1730            fprintf(file, "null");
1731            break;
1732         case BRW_ARF_ADDRESS:
1733            fprintf(file, "a0.%d", inst->src[i].subnr);
1734            break;
1735         case BRW_ARF_ACCUMULATOR:
1736            fprintf(file, "acc%d", inst->src[i].subnr);
1737            break;
1738         case BRW_ARF_FLAG:
1739            fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1740            break;
1741         default:
1742            fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1743            break;
1744         }
1745         break;
1746      case BAD_FILE:
1747         fprintf(file, "(null)");
1748         break;
1749      case MRF:
1750         unreachable("not reached");
1751      }
1752
1753      if (inst->src[i].offset ||
1754          (inst->src[i].file == VGRF &&
1755           alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
1756         const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
1757         fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
1758                 inst->src[i].offset % reg_size);
1759      }
1760
1761      if (inst->src[i].file != IMM) {
1762         static const char *chans[4] = {"x", "y", "z", "w"};
1763         fprintf(file, ".");
1764         for (int c = 0; c < 4; c++) {
1765            fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1766         }
1767      }
1768
1769      if (inst->src[i].abs)
1770         fprintf(file, "|");
1771
1772      if (inst->src[i].file != IMM) {
1773         fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
1774      }
1775
1776      if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1777         fprintf(file, ", ");
1778   }
1779
1780   if (inst->force_writemask_all)
1781      fprintf(file, " NoMask");
1782
1783   if (inst->exec_size != 8)
1784      fprintf(file, " group%d", inst->group);
1785
1786   fprintf(file, "\n");
1787}
1788
1789
1790int
1791vec4_vs_visitor::setup_attributes(int payload_reg)
1792{
1793   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1794      for (int i = 0; i < 3; i++) {
1795         if (inst->src[i].file == ATTR) {
1796            assert(inst->src[i].offset % REG_SIZE == 0);
1797            int grf = payload_reg + inst->src[i].nr +
1798                      inst->src[i].offset / REG_SIZE;
1799
1800            struct brw_reg reg = brw_vec8_grf(grf, 0);
1801            reg.swizzle = inst->src[i].swizzle;
1802            reg.type = inst->src[i].type;
1803            reg.abs = inst->src[i].abs;
1804            reg.negate = inst->src[i].negate;
1805            inst->src[i] = reg;
1806         }
1807      }
1808   }
1809
1810   return payload_reg + vs_prog_data->nr_attribute_slots;
1811}
1812
1813void
1814vec4_visitor::setup_push_ranges()
1815{
1816   /* Only allow 32 registers (256 uniform components) as push constants,
1817    * which is the limit on gfx6.
1818    *
1819    * If changing this value, note the limitation about total_regs in
1820    * brw_curbe.c.
1821    */
1822   const unsigned max_push_length = 32;
1823
1824   push_length = DIV_ROUND_UP(prog_data->base.nr_params, 8);
1825   push_length = MIN2(push_length, max_push_length);
1826
1827   /* Shrink UBO push ranges so it all fits in max_push_length */
1828   for (unsigned i = 0; i < 4; i++) {
1829      struct brw_ubo_range *range = &prog_data->base.ubo_ranges[i];
1830
1831      if (push_length + range->length > max_push_length)
1832         range->length = max_push_length - push_length;
1833
1834      push_length += range->length;
1835   }
1836   assert(push_length <= max_push_length);
1837}
1838
1839int
1840vec4_visitor::setup_uniforms(int reg)
1841{
1842   /* It's possible that uniform compaction will shrink further than expected
1843    * so we re-compute the layout and set up our UBO push starts.
1844    */
1845   const unsigned old_push_length = push_length;
1846   push_length = DIV_ROUND_UP(prog_data->base.nr_params, 8);
1847   for (unsigned i = 0; i < 4; i++) {
1848      ubo_push_start[i] = push_length;
1849      push_length += stage_prog_data->ubo_ranges[i].length;
1850   }
1851   assert(push_length <= old_push_length);
1852   if (push_length < old_push_length)
1853      assert(compiler->compact_params);
1854
1855   /* The pre-gfx6 VS requires that some push constants get loaded no
1856    * matter what, or the GPU would hang.
1857    */
1858   if (devinfo->ver < 6 && push_length == 0) {
1859      brw_stage_prog_data_add_params(stage_prog_data, 4);
1860      for (unsigned int i = 0; i < 4; i++) {
1861	 unsigned int slot = this->uniforms * 4 + i;
1862	 stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO;
1863      }
1864      push_length = 1;
1865   }
1866
1867   prog_data->base.dispatch_grf_start_reg = reg;
1868   prog_data->base.curb_read_length = push_length;
1869
1870   return reg + push_length;
1871}
1872
1873void
1874vec4_vs_visitor::setup_payload(void)
1875{
1876   int reg = 0;
1877
1878   /* The payload always contains important data in g0, which contains
1879    * the URB handles that are passed on to the URB write at the end
1880    * of the thread.  So, we always start push constants at g1.
1881    */
1882   reg++;
1883
1884   reg = setup_uniforms(reg);
1885
1886   reg = setup_attributes(reg);
1887
1888   this->first_non_payload_grf = reg;
1889}
1890
1891bool
1892vec4_visitor::lower_minmax()
1893{
1894   assert(devinfo->ver < 6);
1895
1896   bool progress = false;
1897
1898   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1899      const vec4_builder ibld(this, block, inst);
1900
1901      if (inst->opcode == BRW_OPCODE_SEL &&
1902          inst->predicate == BRW_PREDICATE_NONE) {
1903         /* If src1 is an immediate value that is not NaN, then it can't be
1904          * NaN.  In that case, emit CMP because it is much better for cmod
1905          * propagation.  Likewise if src1 is not float.  Gfx4 and Gfx5 don't
1906          * support HF or DF, so it is not necessary to check for those.
1907          */
1908         if (inst->src[1].type != BRW_REGISTER_TYPE_F ||
1909             (inst->src[1].file == IMM && !isnan(inst->src[1].f))) {
1910            ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
1911                     inst->conditional_mod);
1912         } else {
1913            ibld.CMPN(ibld.null_reg_d(), inst->src[0], inst->src[1],
1914                      inst->conditional_mod);
1915         }
1916         inst->predicate = BRW_PREDICATE_NORMAL;
1917         inst->conditional_mod = BRW_CONDITIONAL_NONE;
1918
1919         progress = true;
1920      }
1921   }
1922
1923   if (progress)
1924      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1925
1926   return progress;
1927}
1928
1929src_reg
1930vec4_visitor::get_timestamp()
1931{
1932   assert(devinfo->ver == 7);
1933
1934   src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1935                                BRW_ARF_TIMESTAMP,
1936                                0,
1937                                0,
1938                                0,
1939                                BRW_REGISTER_TYPE_UD,
1940                                BRW_VERTICAL_STRIDE_0,
1941                                BRW_WIDTH_4,
1942                                BRW_HORIZONTAL_STRIDE_4,
1943                                BRW_SWIZZLE_XYZW,
1944                                WRITEMASK_XYZW));
1945
1946   dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1947
1948   vec4_instruction *mov = emit(MOV(dst, ts));
1949   /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1950    * even if it's not enabled in the dispatch.
1951    */
1952   mov->force_writemask_all = true;
1953
1954   return src_reg(dst);
1955}
1956
1957void
1958vec4_visitor::emit_shader_time_begin()
1959{
1960   current_annotation = "shader time start";
1961   shader_start_time = get_timestamp();
1962}
1963
1964void
1965vec4_visitor::emit_shader_time_end()
1966{
1967   current_annotation = "shader time end";
1968   src_reg shader_end_time = get_timestamp();
1969
1970
1971   /* Check that there weren't any timestamp reset events (assuming these
1972    * were the only two timestamp reads that happened).
1973    */
1974   src_reg reset_end = shader_end_time;
1975   reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1976   vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
1977   test->conditional_mod = BRW_CONDITIONAL_Z;
1978
1979   emit(IF(BRW_PREDICATE_NORMAL));
1980
1981   /* Take the current timestamp and get the delta. */
1982   shader_start_time.negate = true;
1983   dst_reg diff = dst_reg(this, glsl_type::uint_type);
1984   emit(ADD(diff, shader_start_time, shader_end_time));
1985
1986   /* If there were no instructions between the two timestamp gets, the diff
1987    * is 2 cycles.  Remove that overhead, so I can forget about that when
1988    * trying to determine the time taken for single instructions.
1989    */
1990   emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
1991
1992   emit_shader_time_write(0, src_reg(diff));
1993   emit_shader_time_write(1, brw_imm_ud(1u));
1994   emit(BRW_OPCODE_ELSE);
1995   emit_shader_time_write(2, brw_imm_ud(1u));
1996   emit(BRW_OPCODE_ENDIF);
1997}
1998
1999void
2000vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
2001{
2002   dst_reg dst =
2003      dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
2004
2005   dst_reg offset = dst;
2006   dst_reg time = dst;
2007   time.offset += REG_SIZE;
2008
2009   offset.type = BRW_REGISTER_TYPE_UD;
2010   int index = shader_time_index * 3 + shader_time_subindex;
2011   emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE)));
2012
2013   time.type = BRW_REGISTER_TYPE_UD;
2014   emit(MOV(time, value));
2015
2016   vec4_instruction *inst =
2017      emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
2018   inst->mlen = 2;
2019}
2020
2021static bool
2022is_align1_df(vec4_instruction *inst)
2023{
2024   switch (inst->opcode) {
2025   case VEC4_OPCODE_DOUBLE_TO_F32:
2026   case VEC4_OPCODE_DOUBLE_TO_D32:
2027   case VEC4_OPCODE_DOUBLE_TO_U32:
2028   case VEC4_OPCODE_TO_DOUBLE:
2029   case VEC4_OPCODE_PICK_LOW_32BIT:
2030   case VEC4_OPCODE_PICK_HIGH_32BIT:
2031   case VEC4_OPCODE_SET_LOW_32BIT:
2032   case VEC4_OPCODE_SET_HIGH_32BIT:
2033      return true;
2034   default:
2035      return false;
2036   }
2037}
2038
2039/**
2040 * Three source instruction must have a GRF/MRF destination register.
2041 * ARF NULL is not allowed.  Fix that up by allocating a temporary GRF.
2042 */
2043void
2044vec4_visitor::fixup_3src_null_dest()
2045{
2046   bool progress = false;
2047
2048   foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
2049      if (inst->is_3src(devinfo) && inst->dst.is_null()) {
2050         const unsigned size_written = type_sz(inst->dst.type);
2051         const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2052
2053         inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2054                            inst->dst.type);
2055         progress = true;
2056      }
2057   }
2058
2059   if (progress)
2060      invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
2061                          DEPENDENCY_VARIABLES);
2062}
2063
2064void
2065vec4_visitor::convert_to_hw_regs()
2066{
2067   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
2068      for (int i = 0; i < 3; i++) {
2069         class src_reg &src = inst->src[i];
2070         struct brw_reg reg;
2071         switch (src.file) {
2072         case VGRF: {
2073            reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset);
2074            reg.type = src.type;
2075            reg.abs = src.abs;
2076            reg.negate = src.negate;
2077            break;
2078         }
2079
2080         case UNIFORM: {
2081            if (src.nr >= UBO_START) {
2082               reg = byte_offset(brw_vec4_grf(
2083                                    prog_data->base.dispatch_grf_start_reg +
2084                                    ubo_push_start[src.nr - UBO_START] +
2085                                    src.offset / 32, 0),
2086                                 src.offset % 32);
2087            } else {
2088               reg = byte_offset(brw_vec4_grf(
2089                                    prog_data->base.dispatch_grf_start_reg +
2090                                    src.nr / 2, src.nr % 2 * 4),
2091                                 src.offset);
2092            }
2093            reg = stride(reg, 0, 4, 1);
2094            reg.type = src.type;
2095            reg.abs = src.abs;
2096            reg.negate = src.negate;
2097
2098            /* This should have been moved to pull constants. */
2099            assert(!src.reladdr);
2100            break;
2101         }
2102
2103         case FIXED_GRF:
2104            if (type_sz(src.type) == 8) {
2105               reg = src.as_brw_reg();
2106               break;
2107            }
2108            FALLTHROUGH;
2109         case ARF:
2110         case IMM:
2111            continue;
2112
2113         case BAD_FILE:
2114            /* Probably unused. */
2115            reg = brw_null_reg();
2116            reg = retype(reg, src.type);
2117            break;
2118
2119         case MRF:
2120         case ATTR:
2121            unreachable("not reached");
2122         }
2123
2124         apply_logical_swizzle(&reg, inst, i);
2125         src = reg;
2126
2127         /* From IVB PRM, vol4, part3, "General Restrictions on Regioning
2128          * Parameters":
2129          *
2130          *   "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set
2131          *    to Width * HorzStride."
2132          *
2133          * We can break this rule with DF sources on DF align1
2134          * instructions, because the exec_size would be 4 and width is 4.
2135          * As we know we are not accessing to next GRF, it is safe to
2136          * set vstride to the formula given by the rule itself.
2137          */
2138         if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width)
2139            src.vstride = src.width + src.hstride;
2140      }
2141
2142      if (inst->is_3src(devinfo)) {
2143         /* 3-src instructions with scalar sources support arbitrary subnr,
2144          * but don't actually use swizzles.  Convert swizzle into subnr.
2145          * Skip this for double-precision instructions: RepCtrl=1 is not
2146          * allowed for them and needs special handling.
2147          */
2148         for (int i = 0; i < 3; i++) {
2149            if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
2150                type_sz(inst->src[i].type) < 8) {
2151               assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
2152               inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
2153            }
2154         }
2155      }
2156
2157      dst_reg &dst = inst->dst;
2158      struct brw_reg reg;
2159
2160      switch (inst->dst.file) {
2161      case VGRF:
2162         reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
2163         reg.type = dst.type;
2164         reg.writemask = dst.writemask;
2165         break;
2166
2167      case MRF:
2168         reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
2169         assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->ver));
2170         reg.type = dst.type;
2171         reg.writemask = dst.writemask;
2172         break;
2173
2174      case ARF:
2175      case FIXED_GRF:
2176         reg = dst.as_brw_reg();
2177         break;
2178
2179      case BAD_FILE:
2180         reg = brw_null_reg();
2181         reg = retype(reg, dst.type);
2182         break;
2183
2184      case IMM:
2185      case ATTR:
2186      case UNIFORM:
2187         unreachable("not reached");
2188      }
2189
2190      dst = reg;
2191   }
2192}
2193
2194static bool
2195stage_uses_interleaved_attributes(unsigned stage,
2196                                  enum shader_dispatch_mode dispatch_mode)
2197{
2198   switch (stage) {
2199   case MESA_SHADER_TESS_EVAL:
2200      return true;
2201   case MESA_SHADER_GEOMETRY:
2202      return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
2203   default:
2204      return false;
2205   }
2206}
2207
2208/**
2209 * Get the closest native SIMD width supported by the hardware for instruction
2210 * \p inst.  The instruction will be left untouched by
2211 * vec4_visitor::lower_simd_width() if the returned value matches the
2212 * instruction's original execution size.
2213 */
2214static unsigned
2215get_lowered_simd_width(const struct intel_device_info *devinfo,
2216                       enum shader_dispatch_mode dispatch_mode,
2217                       unsigned stage, const vec4_instruction *inst)
2218{
2219   /* Do not split some instructions that require special handling */
2220   switch (inst->opcode) {
2221   case SHADER_OPCODE_GFX4_SCRATCH_READ:
2222   case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
2223      return inst->exec_size;
2224   default:
2225      break;
2226   }
2227
2228   unsigned lowered_width = MIN2(16, inst->exec_size);
2229
2230   /* We need to split some cases of double-precision instructions that write
2231    * 2 registers. We only need to care about this in gfx7 because that is the
2232    * only hardware that implements fp64 in Align16.
2233    */
2234   if (devinfo->ver == 7 && inst->size_written > REG_SIZE) {
2235      /* Align16 8-wide double-precision SEL does not work well. Verified
2236       * empirically.
2237       */
2238      if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
2239         lowered_width = MIN2(lowered_width, 4);
2240
2241      /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
2242       * Register Addressing:
2243       *
2244       *    "When destination spans two registers, the source MUST span two
2245       *     registers."
2246       */
2247      for (unsigned i = 0; i < 3; i++) {
2248         if (inst->src[i].file == BAD_FILE)
2249            continue;
2250         if (inst->size_read(i) <= REG_SIZE)
2251            lowered_width = MIN2(lowered_width, 4);
2252
2253         /* Interleaved attribute setups use a vertical stride of 0, which
2254          * makes them hit the associated instruction decompression bug in gfx7.
2255          * Split them to prevent this.
2256          */
2257         if (inst->src[i].file == ATTR &&
2258             stage_uses_interleaved_attributes(stage, dispatch_mode))
2259            lowered_width = MIN2(lowered_width, 4);
2260      }
2261   }
2262
2263   /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since
2264    * it doesn't support compression in Align16 mode, no matter if it has
2265    * force_writemask_all enabled or disabled (the latter is affected by the
2266    * compressed instruction bug in gfx7, which is another reason to enforce
2267    * this limit).
2268    */
2269   if (devinfo->verx10 == 70 &&
2270       (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8))
2271      lowered_width = MIN2(lowered_width, 4);
2272
2273   return lowered_width;
2274}
2275
2276static bool
2277dst_src_regions_overlap(vec4_instruction *inst)
2278{
2279   if (inst->size_written == 0)
2280      return false;
2281
2282   unsigned dst_start = inst->dst.offset;
2283   unsigned dst_end = dst_start + inst->size_written - 1;
2284   for (int i = 0; i < 3; i++) {
2285      if (inst->src[i].file == BAD_FILE)
2286         continue;
2287
2288      if (inst->dst.file != inst->src[i].file ||
2289          inst->dst.nr != inst->src[i].nr)
2290         continue;
2291
2292      unsigned src_start = inst->src[i].offset;
2293      unsigned src_end = src_start + inst->size_read(i) - 1;
2294
2295      if ((dst_start >= src_start && dst_start <= src_end) ||
2296          (dst_end >= src_start && dst_end <= src_end) ||
2297          (dst_start <= src_start && dst_end >= src_end)) {
2298         return true;
2299      }
2300   }
2301
2302   return false;
2303}
2304
2305bool
2306vec4_visitor::lower_simd_width()
2307{
2308   bool progress = false;
2309
2310   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2311      const unsigned lowered_width =
2312         get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
2313      assert(lowered_width <= inst->exec_size);
2314      if (lowered_width == inst->exec_size)
2315         continue;
2316
2317      /* We need to deal with source / destination overlaps when splitting.
2318       * The hardware supports reading from and writing to the same register
2319       * in the same instruction, but we need to be careful that each split
2320       * instruction we produce does not corrupt the source of the next.
2321       *
2322       * The easiest way to handle this is to make the split instructions write
2323       * to temporaries if there is an src/dst overlap and then move from the
2324       * temporaries to the original destination. We also need to consider
2325       * instructions that do partial writes via align1 opcodes, in which case
2326       * we need to make sure that the we initialize the temporary with the
2327       * value of the instruction's dst.
2328       */
2329      bool needs_temp = dst_src_regions_overlap(inst);
2330      for (unsigned n = 0; n < inst->exec_size / lowered_width; n++)  {
2331         unsigned channel_offset = lowered_width * n;
2332
2333         unsigned size_written = lowered_width * type_sz(inst->dst.type);
2334
2335         /* Create the split instruction from the original so that we copy all
2336          * relevant instruction fields, then set the width and calculate the
2337          * new dst/src regions.
2338          */
2339         vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
2340         linst->exec_size = lowered_width;
2341         linst->group = channel_offset;
2342         linst->size_written = size_written;
2343
2344         /* Compute split dst region */
2345         dst_reg dst;
2346         if (needs_temp) {
2347            unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2348            dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2349                         inst->dst.type);
2350            if (inst->is_align1_partial_write()) {
2351               vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
2352               copy->exec_size = lowered_width;
2353               copy->group = channel_offset;
2354               copy->size_written = size_written;
2355               inst->insert_before(block, copy);
2356            }
2357         } else {
2358            dst = horiz_offset(inst->dst, channel_offset);
2359         }
2360         linst->dst = dst;
2361
2362         /* Compute split source regions */
2363         for (int i = 0; i < 3; i++) {
2364            if (linst->src[i].file == BAD_FILE)
2365               continue;
2366
2367            bool is_interleaved_attr =
2368               linst->src[i].file == ATTR &&
2369               stage_uses_interleaved_attributes(stage,
2370                                                 prog_data->dispatch_mode);
2371
2372            if (!is_uniform(linst->src[i]) && !is_interleaved_attr)
2373               linst->src[i] = horiz_offset(linst->src[i], channel_offset);
2374         }
2375
2376         inst->insert_before(block, linst);
2377
2378         /* If we used a temporary to store the result of the split
2379          * instruction, copy the result to the original destination
2380          */
2381         if (needs_temp) {
2382            vec4_instruction *mov =
2383               MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
2384            mov->exec_size = lowered_width;
2385            mov->group = channel_offset;
2386            mov->size_written = size_written;
2387            mov->predicate = inst->predicate;
2388            inst->insert_before(block, mov);
2389         }
2390      }
2391
2392      inst->remove(block);
2393      progress = true;
2394   }
2395
2396   if (progress)
2397      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
2398
2399   return progress;
2400}
2401
2402static brw_predicate
2403scalarize_predicate(brw_predicate predicate, unsigned writemask)
2404{
2405   if (predicate != BRW_PREDICATE_NORMAL)
2406      return predicate;
2407
2408   switch (writemask) {
2409   case WRITEMASK_X:
2410      return BRW_PREDICATE_ALIGN16_REPLICATE_X;
2411   case WRITEMASK_Y:
2412      return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
2413   case WRITEMASK_Z:
2414      return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
2415   case WRITEMASK_W:
2416      return BRW_PREDICATE_ALIGN16_REPLICATE_W;
2417   default:
2418      unreachable("invalid writemask");
2419   }
2420}
2421
2422/* Gfx7 has a hardware decompression bug that we can exploit to represent
2423 * handful of additional swizzles natively.
2424 */
2425static bool
2426is_gfx7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
2427{
2428   switch (inst->src[arg].swizzle) {
2429   case BRW_SWIZZLE_XXXX:
2430   case BRW_SWIZZLE_YYYY:
2431   case BRW_SWIZZLE_ZZZZ:
2432   case BRW_SWIZZLE_WWWW:
2433   case BRW_SWIZZLE_XYXY:
2434   case BRW_SWIZZLE_YXYX:
2435   case BRW_SWIZZLE_ZWZW:
2436   case BRW_SWIZZLE_WZWZ:
2437      return true;
2438   default:
2439      return false;
2440   }
2441}
2442
2443/* 64-bit sources use regions with a width of 2. These 2 elements in each row
2444 * can be addressed using 32-bit swizzles (which is what the hardware supports)
2445 * but it also means that the swizzle we apply on the first two components of a
2446 * dvec4 is coupled with the swizzle we use for the last 2. In other words,
2447 * only some specific swizzle combinations can be natively supported.
2448 *
2449 * FIXME: we can go an step further and implement even more swizzle
2450 *        variations using only partial scalarization.
2451 *
2452 * For more details see:
2453 * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
2454 */
2455bool
2456vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
2457{
2458   const src_reg &src = inst->src[arg];
2459   assert(type_sz(src.type) == 8);
2460
2461   /* Uniform regions have a vstride=0. Because we use 2-wide rows with
2462    * 64-bit regions it means that we cannot access components Z/W, so
2463    * return false for any such case. Interleaved attributes will also be
2464    * mapped to GRF registers with a vstride of 0, so apply the same
2465    * treatment.
2466    */
2467   if ((is_uniform(src) ||
2468        (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
2469         src.file == ATTR)) &&
2470       (brw_mask_for_swizzle(src.swizzle) & 12))
2471      return false;
2472
2473   switch (src.swizzle) {
2474   case BRW_SWIZZLE_XYZW:
2475   case BRW_SWIZZLE_XXZZ:
2476   case BRW_SWIZZLE_YYWW:
2477   case BRW_SWIZZLE_YXWZ:
2478      return true;
2479   default:
2480      return devinfo->ver == 7 && is_gfx7_supported_64bit_swizzle(inst, arg);
2481   }
2482}
2483
2484bool
2485vec4_visitor::scalarize_df()
2486{
2487   bool progress = false;
2488
2489   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2490      /* Skip DF instructions that operate in Align1 mode */
2491      if (is_align1_df(inst))
2492         continue;
2493
2494      /* Check if this is a double-precision instruction */
2495      bool is_double = type_sz(inst->dst.type) == 8;
2496      for (int arg = 0; !is_double && arg < 3; arg++) {
2497         is_double = inst->src[arg].file != BAD_FILE &&
2498                     type_sz(inst->src[arg].type) == 8;
2499      }
2500
2501      if (!is_double)
2502         continue;
2503
2504      /* Skip the lowering for specific regioning scenarios that we can
2505       * support natively.
2506       */
2507      bool skip_lowering = true;
2508
2509      /* XY and ZW writemasks operate in 32-bit, which means that they don't
2510       * have a native 64-bit representation and they should always be split.
2511       */
2512      if (inst->dst.writemask == WRITEMASK_XY ||
2513          inst->dst.writemask == WRITEMASK_ZW) {
2514         skip_lowering = false;
2515      } else {
2516         for (unsigned i = 0; i < 3; i++) {
2517            if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
2518               continue;
2519            skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
2520         }
2521      }
2522
2523      if (skip_lowering)
2524         continue;
2525
2526      /* Generate scalar instructions for each enabled channel */
2527      for (unsigned chan = 0; chan < 4; chan++) {
2528         unsigned chan_mask = 1 << chan;
2529         if (!(inst->dst.writemask & chan_mask))
2530            continue;
2531
2532         vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
2533
2534         for (unsigned i = 0; i < 3; i++) {
2535            unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
2536            scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
2537         }
2538
2539         scalar_inst->dst.writemask = chan_mask;
2540
2541         if (inst->predicate != BRW_PREDICATE_NONE) {
2542            scalar_inst->predicate =
2543               scalarize_predicate(inst->predicate, chan_mask);
2544         }
2545
2546         inst->insert_before(block, scalar_inst);
2547      }
2548
2549      inst->remove(block);
2550      progress = true;
2551   }
2552
2553   if (progress)
2554      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2555
2556   return progress;
2557}
2558
2559bool
2560vec4_visitor::lower_64bit_mad_to_mul_add()
2561{
2562   bool progress = false;
2563
2564   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2565      if (inst->opcode != BRW_OPCODE_MAD)
2566         continue;
2567
2568      if (type_sz(inst->dst.type) != 8)
2569         continue;
2570
2571      dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
2572
2573      /* Use the copy constructor so we copy all relevant instruction fields
2574       * from the original mad into the add and mul instructions
2575       */
2576      vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
2577      mul->opcode = BRW_OPCODE_MUL;
2578      mul->dst = mul_dst;
2579      mul->src[0] = inst->src[1];
2580      mul->src[1] = inst->src[2];
2581      mul->src[2].file = BAD_FILE;
2582
2583      vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
2584      add->opcode = BRW_OPCODE_ADD;
2585      add->src[0] = src_reg(mul_dst);
2586      add->src[1] = inst->src[0];
2587      add->src[2].file = BAD_FILE;
2588
2589      inst->insert_before(block, mul);
2590      inst->insert_before(block, add);
2591      inst->remove(block);
2592
2593      progress = true;
2594   }
2595
2596   if (progress)
2597      invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
2598
2599   return progress;
2600}
2601
2602/* The align16 hardware can only do 32-bit swizzle channels, so we need to
2603 * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
2604 * to 32-bit swizzle channels in hardware registers.
2605 *
2606 * @inst and @arg identify the original vec4 IR source operand we need to
2607 * translate the swizzle for and @hw_reg is the hardware register where we
2608 * will write the hardware swizzle to use.
2609 *
2610 * This pass assumes that Align16/DF instructions have been fully scalarized
2611 * previously so there is just one 64-bit swizzle channel to deal with for any
2612 * given Vec4 IR source.
2613 */
2614void
2615vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
2616                                    vec4_instruction *inst, int arg)
2617{
2618   src_reg reg = inst->src[arg];
2619
2620   if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
2621      return;
2622
2623   /* If this is not a 64-bit operand or this is a scalar instruction we don't
2624    * need to do anything about the swizzles.
2625    */
2626   if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
2627      hw_reg->swizzle = reg.swizzle;
2628      return;
2629   }
2630
2631   /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
2632   assert(brw_is_single_value_swizzle(reg.swizzle) ||
2633          is_supported_64bit_region(inst, arg));
2634
2635   /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16
2636    * HW can only do 32-bit swizzle channels.
2637    */
2638   hw_reg->width = BRW_WIDTH_2;
2639
2640   if (is_supported_64bit_region(inst, arg) &&
2641       !is_gfx7_supported_64bit_swizzle(inst, arg)) {
2642      /* Supported 64-bit swizzles are those such that their first two
2643       * components, when expanded to 32-bit swizzles, match the semantics
2644       * of the original 64-bit swizzle with 2-wide row regioning.
2645       */
2646      unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2647      unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2648      hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2649                                     swizzle1 * 2, swizzle1 * 2 + 1);
2650   } else {
2651      /* If we got here then we have one of the following:
2652       *
2653       * 1. An unsupported swizzle, which should be single-value thanks to the
2654       *    scalarization pass.
2655       *
2656       * 2. A gfx7 supported swizzle. These can be single-value or double-value
2657       *    swizzles. If the latter, they are never cross-dvec2 channels. For
2658       *    these we always need to activate the gfx7 vstride=0 exploit.
2659       */
2660      unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2661      unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2662      assert((swizzle0 < 2) == (swizzle1 < 2));
2663
2664      /* To gain access to Z/W components we need to select the second half
2665       * of the register and then use a X/Y swizzle to select Z/W respectively.
2666       */
2667      if (swizzle0 >= 2) {
2668         *hw_reg = suboffset(*hw_reg, 2);
2669         swizzle0 -= 2;
2670         swizzle1 -= 2;
2671      }
2672
2673      /* All gfx7-specific supported swizzles require the vstride=0 exploit */
2674      if (devinfo->ver == 7 && is_gfx7_supported_64bit_swizzle(inst, arg))
2675         hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2676
2677      /* Any 64-bit source with an offset at 16B is intended to address the
2678       * second half of a register and needs a vertical stride of 0 so we:
2679       *
2680       * 1. Don't violate register region restrictions.
2681       * 2. Activate the gfx7 instruction decompresion bug exploit when
2682       *    execsize > 4
2683       */
2684      if (hw_reg->subnr % REG_SIZE == 16) {
2685         assert(devinfo->ver == 7);
2686         hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2687      }
2688
2689      hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2690                                     swizzle1 * 2, swizzle1 * 2 + 1);
2691   }
2692}
2693
2694void
2695vec4_visitor::invalidate_analysis(brw::analysis_dependency_class c)
2696{
2697   backend_shader::invalidate_analysis(c);
2698   live_analysis.invalidate(c);
2699}
2700
2701bool
2702vec4_visitor::run()
2703{
2704   if (shader_time_index >= 0)
2705      emit_shader_time_begin();
2706
2707   setup_push_ranges();
2708
2709   if (prog_data->base.zero_push_reg) {
2710      /* push_reg_mask_param is in uint32 params and UNIFORM is in vec4s */
2711      const unsigned mask_param = stage_prog_data->push_reg_mask_param;
2712      src_reg mask = src_reg(dst_reg(UNIFORM, mask_param / 4));
2713      assert(mask_param % 2 == 0); /* Should be 64-bit-aligned */
2714      mask.swizzle = BRW_SWIZZLE4((mask_param + 0) % 4,
2715                                  (mask_param + 1) % 4,
2716                                  (mask_param + 0) % 4,
2717                                  (mask_param + 1) % 4);
2718
2719      emit(VEC4_OPCODE_ZERO_OOB_PUSH_REGS,
2720           dst_reg(VGRF, alloc.allocate(3)), mask);
2721   }
2722
2723   emit_prolog();
2724
2725   emit_nir_code();
2726   if (failed)
2727      return false;
2728   base_ir = NULL;
2729
2730   emit_thread_end();
2731
2732   calculate_cfg();
2733
2734   /* Before any optimization, push array accesses out to scratch
2735    * space where we need them to be.  This pass may allocate new
2736    * virtual GRFs, so we want to do it early.  It also makes sure
2737    * that we have reladdr computations available for CSE, since we'll
2738    * often do repeated subexpressions for those.
2739    */
2740   move_grf_array_access_to_scratch();
2741   move_uniform_array_access_to_pull_constants();
2742
2743   pack_uniform_registers();
2744   move_push_constants_to_pull_constants();
2745   split_virtual_grfs();
2746
2747#define OPT(pass, args...) ({                                          \
2748      pass_num++;                                                      \
2749      bool this_progress = pass(args);                                 \
2750                                                                       \
2751      if (INTEL_DEBUG(DEBUG_OPTIMIZER) && this_progress) {             \
2752         char filename[64];                                            \
2753         snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass,              \
2754                  stage_abbrev, nir->info.name, iteration, pass_num); \
2755                                                                       \
2756         backend_shader::dump_instructions(filename);                  \
2757      }                                                                \
2758                                                                       \
2759      progress = progress || this_progress;                            \
2760      this_progress;                                                   \
2761   })
2762
2763
2764   if (INTEL_DEBUG(DEBUG_OPTIMIZER)) {
2765      char filename[64];
2766      snprintf(filename, 64, "%s-%s-00-00-start",
2767               stage_abbrev, nir->info.name);
2768
2769      backend_shader::dump_instructions(filename);
2770   }
2771
2772   bool progress;
2773   int iteration = 0;
2774   int pass_num = 0;
2775   do {
2776      progress = false;
2777      pass_num = 0;
2778      iteration++;
2779
2780      OPT(opt_predicated_break, this);
2781      OPT(opt_reduce_swizzle);
2782      OPT(dead_code_eliminate);
2783      OPT(dead_control_flow_eliminate, this);
2784      OPT(opt_copy_propagation);
2785      OPT(opt_cmod_propagation);
2786      OPT(opt_cse);
2787      OPT(opt_algebraic);
2788      OPT(opt_register_coalesce);
2789      OPT(eliminate_find_live_channel);
2790   } while (progress);
2791
2792   pass_num = 0;
2793
2794   if (OPT(opt_vector_float)) {
2795      OPT(opt_cse);
2796      OPT(opt_copy_propagation, false);
2797      OPT(opt_copy_propagation, true);
2798      OPT(dead_code_eliminate);
2799   }
2800
2801   if (devinfo->ver <= 5 && OPT(lower_minmax)) {
2802      OPT(opt_cmod_propagation);
2803      OPT(opt_cse);
2804      OPT(opt_copy_propagation);
2805      OPT(dead_code_eliminate);
2806   }
2807
2808   if (OPT(lower_simd_width)) {
2809      OPT(opt_copy_propagation);
2810      OPT(dead_code_eliminate);
2811   }
2812
2813   if (failed)
2814      return false;
2815
2816   OPT(lower_64bit_mad_to_mul_add);
2817
2818   /* Run this before payload setup because tesselation shaders
2819    * rely on it to prevent cross dvec2 regioning on DF attributes
2820    * that are setup so that XY are on the second half of register and
2821    * ZW are in the first half of the next.
2822    */
2823   OPT(scalarize_df);
2824
2825   setup_payload();
2826
2827   if (INTEL_DEBUG(DEBUG_SPILL_VEC4)) {
2828      /* Debug of register spilling: Go spill everything. */
2829      const int grf_count = alloc.count;
2830      float spill_costs[alloc.count];
2831      bool no_spill[alloc.count];
2832      evaluate_spill_costs(spill_costs, no_spill);
2833      for (int i = 0; i < grf_count; i++) {
2834         if (no_spill[i])
2835            continue;
2836         spill_reg(i);
2837      }
2838
2839      /* We want to run this after spilling because 64-bit (un)spills need to
2840       * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2841       * messages that can produce unsupported 64-bit swizzle regions.
2842       */
2843      OPT(scalarize_df);
2844   }
2845
2846   fixup_3src_null_dest();
2847
2848   bool allocated_without_spills = reg_allocate();
2849
2850   if (!allocated_without_spills) {
2851      brw_shader_perf_log(compiler, log_data,
2852                          "%s shader triggered register spilling.  "
2853                          "Try reducing the number of live vec4 values "
2854                          "to improve performance.\n",
2855                          stage_name);
2856
2857      while (!reg_allocate()) {
2858         if (failed)
2859            return false;
2860      }
2861
2862      /* We want to run this after spilling because 64-bit (un)spills need to
2863       * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2864       * messages that can produce unsupported 64-bit swizzle regions.
2865       */
2866      OPT(scalarize_df);
2867   }
2868
2869   opt_schedule_instructions();
2870
2871   opt_set_dependency_control();
2872
2873   convert_to_hw_regs();
2874
2875   if (last_scratch > 0) {
2876      prog_data->base.total_scratch =
2877         brw_get_scratch_size(last_scratch * REG_SIZE);
2878   }
2879
2880   return !failed;
2881}
2882
2883} /* namespace brw */
2884
2885extern "C" {
2886
2887const unsigned *
2888brw_compile_vs(const struct brw_compiler *compiler,
2889               void *mem_ctx,
2890               struct brw_compile_vs_params *params)
2891{
2892   struct nir_shader *nir = params->nir;
2893   const struct brw_vs_prog_key *key = params->key;
2894   struct brw_vs_prog_data *prog_data = params->prog_data;
2895   const bool debug_enabled =
2896      INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_VS);
2897
2898   prog_data->base.base.stage = MESA_SHADER_VERTEX;
2899
2900   const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
2901   brw_nir_apply_key(nir, compiler, &key->base, 8, is_scalar);
2902
2903   const unsigned *assembly = NULL;
2904
2905   prog_data->inputs_read = nir->info.inputs_read;
2906   prog_data->double_inputs_read = nir->info.vs.double_inputs;
2907
2908   brw_nir_lower_vs_inputs(nir, params->edgeflag_is_last, key->gl_attrib_wa_flags);
2909   brw_nir_lower_vue_outputs(nir);
2910   brw_postprocess_nir(nir, compiler, is_scalar, debug_enabled,
2911                       key->base.robust_buffer_access);
2912
2913   prog_data->base.clip_distance_mask =
2914      ((1 << nir->info.clip_distance_array_size) - 1);
2915   prog_data->base.cull_distance_mask =
2916      ((1 << nir->info.cull_distance_array_size) - 1) <<
2917      nir->info.clip_distance_array_size;
2918
2919   unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read);
2920
2921   /* gl_VertexID and gl_InstanceID are system values, but arrive via an
2922    * incoming vertex attribute.  So, add an extra slot.
2923    */
2924   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) ||
2925       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
2926       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) ||
2927       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID)) {
2928      nr_attribute_slots++;
2929   }
2930
2931   /* gl_DrawID and IsIndexedDraw share its very own vec4 */
2932   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID) ||
2933       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_IS_INDEXED_DRAW)) {
2934      nr_attribute_slots++;
2935   }
2936
2937   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_IS_INDEXED_DRAW))
2938      prog_data->uses_is_indexed_draw = true;
2939
2940   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX))
2941      prog_data->uses_firstvertex = true;
2942
2943   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE))
2944      prog_data->uses_baseinstance = true;
2945
2946   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE))
2947      prog_data->uses_vertexid = true;
2948
2949   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID))
2950      prog_data->uses_instanceid = true;
2951
2952   if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID))
2953          prog_data->uses_drawid = true;
2954
2955   /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
2956    * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode.  Empirically, in
2957    * vec4 mode, the hardware appears to wedge unless we read something.
2958    */
2959   if (is_scalar)
2960      prog_data->base.urb_read_length =
2961         DIV_ROUND_UP(nr_attribute_slots, 2);
2962   else
2963      prog_data->base.urb_read_length =
2964         DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
2965
2966   prog_data->nr_attribute_slots = nr_attribute_slots;
2967
2968   /* Since vertex shaders reuse the same VUE entry for inputs and outputs
2969    * (overwriting the original contents), we need to make sure the size is
2970    * the larger of the two.
2971    */
2972   const unsigned vue_entries =
2973      MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
2974
2975   if (compiler->devinfo->ver == 6) {
2976      prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
2977   } else {
2978      prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
2979   }
2980
2981   if (unlikely(debug_enabled)) {
2982      fprintf(stderr, "VS Output ");
2983      brw_print_vue_map(stderr, &prog_data->base.vue_map, MESA_SHADER_VERTEX);
2984   }
2985
2986   if (is_scalar) {
2987      prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
2988
2989      fs_visitor v(compiler, params->log_data, mem_ctx, &key->base,
2990                   &prog_data->base.base, nir, 8,
2991                   params->shader_time ? params->shader_time_index : -1,
2992                   debug_enabled);
2993      if (!v.run_vs()) {
2994         params->error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2995         return NULL;
2996      }
2997
2998      prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
2999
3000      fs_generator g(compiler, params->log_data, mem_ctx,
3001                     &prog_data->base.base, v.runtime_check_aads_emit,
3002                     MESA_SHADER_VERTEX);
3003      if (unlikely(debug_enabled)) {
3004         const char *debug_name =
3005            ralloc_asprintf(mem_ctx, "%s vertex shader %s",
3006                            nir->info.label ? nir->info.label :
3007                               "unnamed",
3008                            nir->info.name);
3009
3010         g.enable_debug(debug_name);
3011      }
3012      g.generate_code(v.cfg, 8, v.shader_stats,
3013                      v.performance_analysis.require(), params->stats);
3014      g.add_const_data(nir->constant_data, nir->constant_data_size);
3015      assembly = g.get_assembly();
3016   }
3017
3018   if (!assembly) {
3019      prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
3020
3021      vec4_vs_visitor v(compiler, params->log_data, key, prog_data,
3022                        nir, mem_ctx,
3023                        params->shader_time ? params->shader_time_index : -1,
3024                        debug_enabled);
3025      if (!v.run()) {
3026         params->error_str = ralloc_strdup(mem_ctx, v.fail_msg);
3027         return NULL;
3028      }
3029
3030      assembly = brw_vec4_generate_assembly(compiler, params->log_data, mem_ctx,
3031                                            nir, &prog_data->base,
3032                                            v.cfg,
3033                                            v.performance_analysis.require(),
3034                                            params->stats, debug_enabled);
3035   }
3036
3037   return assembly;
3038}
3039
3040} /* extern "C" */
3041