1/* 2 * Copyright © 2013 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file brw_vec4_gs_visitor.cpp 26 * 27 * Geometry-shader-specific code derived from the vec4_visitor class. 28 */ 29 30#include "brw_vec4_gs_visitor.h" 31#include "gfx6_gs_visitor.h" 32#include "brw_cfg.h" 33#include "brw_fs.h" 34#include "brw_nir.h" 35#include "dev/intel_debug.h" 36 37namespace brw { 38 39vec4_gs_visitor::vec4_gs_visitor(const struct brw_compiler *compiler, 40 void *log_data, 41 struct brw_gs_compile *c, 42 struct brw_gs_prog_data *prog_data, 43 const nir_shader *shader, 44 void *mem_ctx, 45 bool no_spills, 46 int shader_time_index, 47 bool debug_enabled) 48 : vec4_visitor(compiler, log_data, &c->key.base.tex, 49 &prog_data->base, shader, mem_ctx, 50 no_spills, shader_time_index, debug_enabled), 51 c(c), 52 gs_prog_data(prog_data) 53{ 54} 55 56 57static inline struct brw_reg 58attribute_to_hw_reg(int attr, brw_reg_type type, bool interleaved) 59{ 60 struct brw_reg reg; 61 62 unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(type)); 63 if (interleaved) { 64 reg = stride(brw_vecn_grf(width, attr / 2, (attr % 2) * 4), 0, width, 1); 65 } else { 66 reg = brw_vecn_grf(width, attr, 0); 67 } 68 69 reg.type = type; 70 return reg; 71} 72 73/** 74 * Replace each register of type ATTR in this->instructions with a reference 75 * to a fixed HW register. 76 * 77 * If interleaved is true, then each attribute takes up half a register, with 78 * register N containing attribute 2*N in its first half and attribute 2*N+1 79 * in its second half (this corresponds to the payload setup used by geometry 80 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is 81 * false, then each attribute takes up a whole register, with register N 82 * containing attribute N (this corresponds to the payload setup used by 83 * vertex shaders, and by geometry shaders in "dual object" dispatch mode). 84 */ 85int 86vec4_gs_visitor::setup_varying_inputs(int payload_reg, 87 int attributes_per_reg) 88{ 89 /* For geometry shaders there are N copies of the input attributes, where N 90 * is the number of input vertices. attribute_map[BRW_VARYING_SLOT_COUNT * 91 * i + j] represents attribute j for vertex i. 92 * 93 * Note that GS inputs are read from the VUE 256 bits (2 vec4's) at a time, 94 * so the total number of input slots that will be delivered to the GS (and 95 * thus the stride of the input arrays) is urb_read_length * 2. 96 */ 97 const unsigned num_input_vertices = nir->info.gs.vertices_in; 98 assert(num_input_vertices <= MAX_GS_INPUT_VERTICES); 99 unsigned input_array_stride = prog_data->urb_read_length * 2; 100 101 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 102 for (int i = 0; i < 3; i++) { 103 if (inst->src[i].file != ATTR) 104 continue; 105 106 assert(inst->src[i].offset % REG_SIZE == 0); 107 int grf = payload_reg * attributes_per_reg + 108 inst->src[i].nr + inst->src[i].offset / REG_SIZE; 109 110 struct brw_reg reg = 111 attribute_to_hw_reg(grf, inst->src[i].type, attributes_per_reg > 1); 112 reg.swizzle = inst->src[i].swizzle; 113 if (inst->src[i].abs) 114 reg = brw_abs(reg); 115 if (inst->src[i].negate) 116 reg = negate(reg); 117 118 inst->src[i] = reg; 119 } 120 } 121 122 int regs_used = ALIGN(input_array_stride * num_input_vertices, 123 attributes_per_reg) / attributes_per_reg; 124 return payload_reg + regs_used; 125} 126 127void 128vec4_gs_visitor::setup_payload() 129{ 130 /* If we are in dual instanced or single mode, then attributes are going 131 * to be interleaved, so one register contains two attribute slots. 132 */ 133 int attributes_per_reg = 134 prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT ? 1 : 2; 135 136 int reg = 0; 137 138 /* The payload always contains important data in r0, which contains 139 * the URB handles that are passed on to the URB write at the end 140 * of the thread. 141 */ 142 reg++; 143 144 /* If the shader uses gl_PrimitiveIDIn, that goes in r1. */ 145 if (gs_prog_data->include_primitive_id) 146 reg++; 147 148 reg = setup_uniforms(reg); 149 150 reg = setup_varying_inputs(reg, attributes_per_reg); 151 152 this->first_non_payload_grf = reg; 153} 154 155 156void 157vec4_gs_visitor::emit_prolog() 158{ 159 /* In vertex shaders, r0.2 is guaranteed to be initialized to zero. In 160 * geometry shaders, it isn't (it contains a bunch of information we don't 161 * need, like the input primitive type). We need r0.2 to be zero in order 162 * to build scratch read/write messages correctly (otherwise this value 163 * will be interpreted as a global offset, causing us to do our scratch 164 * reads/writes to garbage memory). So just set it to zero at the top of 165 * the shader. 166 */ 167 this->current_annotation = "clear r0.2"; 168 dst_reg r0(retype(brw_vec4_grf(0, 0), BRW_REGISTER_TYPE_UD)); 169 vec4_instruction *inst = emit(GS_OPCODE_SET_DWORD_2, r0, brw_imm_ud(0u)); 170 inst->force_writemask_all = true; 171 172 /* Create a virtual register to hold the vertex count */ 173 this->vertex_count = src_reg(this, glsl_type::uint_type); 174 175 /* Initialize the vertex_count register to 0 */ 176 this->current_annotation = "initialize vertex_count"; 177 inst = emit(MOV(dst_reg(this->vertex_count), brw_imm_ud(0u))); 178 inst->force_writemask_all = true; 179 180 if (c->control_data_header_size_bits > 0) { 181 /* Create a virtual register to hold the current set of control data 182 * bits. 183 */ 184 this->control_data_bits = src_reg(this, glsl_type::uint_type); 185 186 /* If we're outputting more than 32 control data bits, then EmitVertex() 187 * will set control_data_bits to 0 after emitting the first vertex. 188 * Otherwise, we need to initialize it to 0 here. 189 */ 190 if (c->control_data_header_size_bits <= 32) { 191 this->current_annotation = "initialize control data bits"; 192 inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u))); 193 inst->force_writemask_all = true; 194 } 195 } 196 197 this->current_annotation = NULL; 198} 199 200void 201vec4_gs_visitor::emit_thread_end() 202{ 203 if (c->control_data_header_size_bits > 0) { 204 /* During shader execution, we only ever call emit_control_data_bits() 205 * just prior to outputting a vertex. Therefore, the control data bits 206 * corresponding to the most recently output vertex still need to be 207 * emitted. 208 */ 209 current_annotation = "thread end: emit control data bits"; 210 emit_control_data_bits(); 211 } 212 213 /* MRF 0 is reserved for the debugger, so start with message header 214 * in MRF 1. 215 */ 216 int base_mrf = 1; 217 218 current_annotation = "thread end"; 219 dst_reg mrf_reg(MRF, base_mrf); 220 src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); 221 vec4_instruction *inst = emit(MOV(mrf_reg, r0)); 222 inst->force_writemask_all = true; 223 emit(GS_OPCODE_SET_VERTEX_COUNT, mrf_reg, this->vertex_count); 224 if (INTEL_DEBUG(DEBUG_SHADER_TIME)) 225 emit_shader_time_end(); 226 inst = emit(GS_OPCODE_THREAD_END); 227 inst->base_mrf = base_mrf; 228 inst->mlen = 1; 229} 230 231 232void 233vec4_gs_visitor::emit_urb_write_header(int mrf) 234{ 235 /* The SEND instruction that writes the vertex data to the VUE will use 236 * per_slot_offset=true, which means that DWORDs 3 and 4 of the message 237 * header specify an offset (in multiples of 256 bits) into the URB entry 238 * at which the write should take place. 239 * 240 * So we have to prepare a message header with the appropriate offset 241 * values. 242 */ 243 dst_reg mrf_reg(MRF, mrf); 244 src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); 245 this->current_annotation = "URB write header"; 246 vec4_instruction *inst = emit(MOV(mrf_reg, r0)); 247 inst->force_writemask_all = true; 248 emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, this->vertex_count, 249 brw_imm_ud(gs_prog_data->output_vertex_size_hwords)); 250} 251 252 253vec4_instruction * 254vec4_gs_visitor::emit_urb_write_opcode(bool complete) 255{ 256 /* We don't care whether the vertex is complete, because in general 257 * geometry shaders output multiple vertices, and we don't terminate the 258 * thread until all vertices are complete. 259 */ 260 (void) complete; 261 262 vec4_instruction *inst = emit(GS_OPCODE_URB_WRITE); 263 inst->offset = gs_prog_data->control_data_header_size_hwords; 264 265 inst->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET; 266 return inst; 267} 268 269 270/** 271 * Write out a batch of 32 control data bits from the control_data_bits 272 * register to the URB. 273 * 274 * The current value of the vertex_count register determines which DWORD in 275 * the URB receives the control data bits. The control_data_bits register is 276 * assumed to contain the correct data for the vertex that was most recently 277 * output, and all previous vertices that share the same DWORD. 278 * 279 * This function takes care of ensuring that if no vertices have been output 280 * yet, no control bits are emitted. 281 */ 282void 283vec4_gs_visitor::emit_control_data_bits() 284{ 285 assert(c->control_data_bits_per_vertex != 0); 286 287 /* Since the URB_WRITE_OWORD message operates with 128-bit (vec4 sized) 288 * granularity, we need to use two tricks to ensure that the batch of 32 289 * control data bits is written to the appropriate DWORD in the URB. To 290 * select which vec4 we are writing to, we use the "slot {0,1} offset" 291 * fields of the message header. To select which DWORD in the vec4 we are 292 * writing to, we use the channel mask fields of the message header. To 293 * avoid penalizing geometry shaders that emit a small number of vertices 294 * with extra bookkeeping, we only do each of these tricks when 295 * c->prog_data.control_data_header_size_bits is large enough to make it 296 * necessary. 297 * 298 * Note: this means that if we're outputting just a single DWORD of control 299 * data bits, we'll actually replicate it four times since we won't do any 300 * channel masking. But that's not a problem since in this case the 301 * hardware only pays attention to the first DWORD. 302 */ 303 enum brw_urb_write_flags urb_write_flags = BRW_URB_WRITE_OWORD; 304 if (c->control_data_header_size_bits > 32) 305 urb_write_flags = urb_write_flags | BRW_URB_WRITE_USE_CHANNEL_MASKS; 306 if (c->control_data_header_size_bits > 128) 307 urb_write_flags = urb_write_flags | BRW_URB_WRITE_PER_SLOT_OFFSET; 308 309 /* If we are using either channel masks or a per-slot offset, then we 310 * need to figure out which DWORD we are trying to write to, using the 311 * formula: 312 * 313 * dword_index = (vertex_count - 1) * bits_per_vertex / 32 314 * 315 * Since bits_per_vertex is a power of two, and is known at compile 316 * time, this can be optimized to: 317 * 318 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex)) 319 */ 320 src_reg dword_index(this, glsl_type::uint_type); 321 if (urb_write_flags) { 322 src_reg prev_count(this, glsl_type::uint_type); 323 emit(ADD(dst_reg(prev_count), this->vertex_count, 324 brw_imm_ud(0xffffffffu))); 325 unsigned log2_bits_per_vertex = 326 util_last_bit(c->control_data_bits_per_vertex); 327 emit(SHR(dst_reg(dword_index), prev_count, 328 brw_imm_ud(6 - log2_bits_per_vertex))); 329 } 330 331 /* Start building the URB write message. The first MRF gets a copy of 332 * R0. 333 */ 334 int base_mrf = 1; 335 dst_reg mrf_reg(MRF, base_mrf); 336 src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); 337 vec4_instruction *inst = emit(MOV(mrf_reg, r0)); 338 inst->force_writemask_all = true; 339 340 if (urb_write_flags & BRW_URB_WRITE_PER_SLOT_OFFSET) { 341 /* Set the per-slot offset to dword_index / 4, to that we'll write to 342 * the appropriate OWORD within the control data header. 343 */ 344 src_reg per_slot_offset(this, glsl_type::uint_type); 345 emit(SHR(dst_reg(per_slot_offset), dword_index, brw_imm_ud(2u))); 346 emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, per_slot_offset, 347 brw_imm_ud(1u)); 348 } 349 350 if (urb_write_flags & BRW_URB_WRITE_USE_CHANNEL_MASKS) { 351 /* Set the channel masks to 1 << (dword_index % 4), so that we'll 352 * write to the appropriate DWORD within the OWORD. We need to do 353 * this computation with force_writemask_all, otherwise garbage data 354 * from invocation 0 might clobber the mask for invocation 1 when 355 * GS_OPCODE_PREPARE_CHANNEL_MASKS tries to OR the two masks 356 * together. 357 */ 358 src_reg channel(this, glsl_type::uint_type); 359 inst = emit(AND(dst_reg(channel), dword_index, brw_imm_ud(3u))); 360 inst->force_writemask_all = true; 361 src_reg one(this, glsl_type::uint_type); 362 inst = emit(MOV(dst_reg(one), brw_imm_ud(1u))); 363 inst->force_writemask_all = true; 364 src_reg channel_mask(this, glsl_type::uint_type); 365 inst = emit(SHL(dst_reg(channel_mask), one, channel)); 366 inst->force_writemask_all = true; 367 emit(GS_OPCODE_PREPARE_CHANNEL_MASKS, dst_reg(channel_mask), 368 channel_mask); 369 emit(GS_OPCODE_SET_CHANNEL_MASKS, mrf_reg, channel_mask); 370 } 371 372 /* Store the control data bits in the message payload and send it. */ 373 dst_reg mrf_reg2(MRF, base_mrf + 1); 374 inst = emit(MOV(mrf_reg2, this->control_data_bits)); 375 inst->force_writemask_all = true; 376 inst = emit(GS_OPCODE_URB_WRITE); 377 inst->urb_write_flags = urb_write_flags; 378 inst->base_mrf = base_mrf; 379 inst->mlen = 2; 380} 381 382void 383vec4_gs_visitor::set_stream_control_data_bits(unsigned stream_id) 384{ 385 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */ 386 387 /* Note: we are calling this *before* increasing vertex_count, so 388 * this->vertex_count == vertex_count - 1 in the formula above. 389 */ 390 391 /* Stream mode uses 2 bits per vertex */ 392 assert(c->control_data_bits_per_vertex == 2); 393 394 /* Must be a valid stream */ 395 assert(stream_id < MAX_VERTEX_STREAMS); 396 397 /* Control data bits are initialized to 0 so we don't have to set any 398 * bits when sending vertices to stream 0. 399 */ 400 if (stream_id == 0) 401 return; 402 403 /* reg::sid = stream_id */ 404 src_reg sid(this, glsl_type::uint_type); 405 emit(MOV(dst_reg(sid), brw_imm_ud(stream_id))); 406 407 /* reg:shift_count = 2 * (vertex_count - 1) */ 408 src_reg shift_count(this, glsl_type::uint_type); 409 emit(SHL(dst_reg(shift_count), this->vertex_count, brw_imm_ud(1u))); 410 411 /* Note: we're relying on the fact that the GEN SHL instruction only pays 412 * attention to the lower 5 bits of its second source argument, so on this 413 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to 414 * stream_id << ((2 * (vertex_count - 1)) % 32). 415 */ 416 src_reg mask(this, glsl_type::uint_type); 417 emit(SHL(dst_reg(mask), sid, shift_count)); 418 emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask)); 419} 420 421void 422vec4_gs_visitor::gs_emit_vertex(int stream_id) 423{ 424 this->current_annotation = "emit vertex: safety check"; 425 426 /* Haswell and later hardware ignores the "Render Stream Select" bits 427 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled, 428 * and instead sends all primitives down the pipeline for rasterization. 429 * If the SOL stage is enabled, "Render Stream Select" is honored and 430 * primitives bound to non-zero streams are discarded after stream output. 431 * 432 * Since the only purpose of primives sent to non-zero streams is to 433 * be recorded by transform feedback, we can simply discard all geometry 434 * bound to these streams when transform feedback is disabled. 435 */ 436 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings) 437 return; 438 439 /* If we're outputting 32 control data bits or less, then we can wait 440 * until the shader is over to output them all. Otherwise we need to 441 * output them as we go. Now is the time to do it, since we're about to 442 * output the vertex_count'th vertex, so it's guaranteed that the 443 * control data bits associated with the (vertex_count - 1)th vertex are 444 * correct. 445 */ 446 if (c->control_data_header_size_bits > 32) { 447 this->current_annotation = "emit vertex: emit control data bits"; 448 /* Only emit control data bits if we've finished accumulating a batch 449 * of 32 bits. This is the case when: 450 * 451 * (vertex_count * bits_per_vertex) % 32 == 0 452 * 453 * (in other words, when the last 5 bits of vertex_count * 454 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some 455 * integer n (which is always the case, since bits_per_vertex is 456 * always 1 or 2), this is equivalent to requiring that the last 5-n 457 * bits of vertex_count are 0: 458 * 459 * vertex_count & (2^(5-n) - 1) == 0 460 * 461 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is 462 * equivalent to: 463 * 464 * vertex_count & (32 / bits_per_vertex - 1) == 0 465 */ 466 vec4_instruction *inst = 467 emit(AND(dst_null_ud(), this->vertex_count, 468 brw_imm_ud(32 / c->control_data_bits_per_vertex - 1))); 469 inst->conditional_mod = BRW_CONDITIONAL_Z; 470 471 emit(IF(BRW_PREDICATE_NORMAL)); 472 { 473 /* If vertex_count is 0, then no control data bits have been 474 * accumulated yet, so we skip emitting them. 475 */ 476 emit(CMP(dst_null_ud(), this->vertex_count, brw_imm_ud(0u), 477 BRW_CONDITIONAL_NEQ)); 478 emit(IF(BRW_PREDICATE_NORMAL)); 479 emit_control_data_bits(); 480 emit(BRW_OPCODE_ENDIF); 481 482 /* Reset control_data_bits to 0 so we can start accumulating a new 483 * batch. 484 * 485 * Note: in the case where vertex_count == 0, this neutralizes the 486 * effect of any call to EndPrimitive() that the shader may have 487 * made before outputting its first vertex. 488 */ 489 inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u))); 490 inst->force_writemask_all = true; 491 } 492 emit(BRW_OPCODE_ENDIF); 493 } 494 495 this->current_annotation = "emit vertex: vertex data"; 496 emit_vertex(); 497 498 /* In stream mode we have to set control data bits for all vertices 499 * unless we have disabled control data bits completely (which we do 500 * do for GL_POINTS outputs that don't use streams). 501 */ 502 if (c->control_data_header_size_bits > 0 && 503 gs_prog_data->control_data_format == 504 GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) { 505 this->current_annotation = "emit vertex: Stream control data bits"; 506 set_stream_control_data_bits(stream_id); 507 } 508 509 this->current_annotation = NULL; 510} 511 512void 513vec4_gs_visitor::gs_end_primitive() 514{ 515 /* We can only do EndPrimitive() functionality when the control data 516 * consists of cut bits. Fortunately, the only time it isn't is when the 517 * output type is points, in which case EndPrimitive() is a no-op. 518 */ 519 if (gs_prog_data->control_data_format != 520 GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) { 521 return; 522 } 523 524 if (c->control_data_header_size_bits == 0) 525 return; 526 527 /* Cut bits use one bit per vertex. */ 528 assert(c->control_data_bits_per_vertex == 1); 529 530 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting 531 * vertex n, 0 otherwise. So all we need to do here is mark bit 532 * (vertex_count - 1) % 32 in the cut_bits register to indicate that 533 * EndPrimitive() was called after emitting vertex (vertex_count - 1); 534 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest. 535 * 536 * Note that if EndPrimitve() is called before emitting any vertices, this 537 * will cause us to set bit 31 of the control_data_bits register to 1. 538 * That's fine because: 539 * 540 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be 541 * output, so the hardware will ignore cut bit 31. 542 * 543 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the 544 * last vertex, so setting cut bit 31 has no effect (since the primitive 545 * is automatically ended when the GS terminates). 546 * 547 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the 548 * control_data_bits register to 0 when the first vertex is emitted. 549 */ 550 551 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */ 552 src_reg one(this, glsl_type::uint_type); 553 emit(MOV(dst_reg(one), brw_imm_ud(1u))); 554 src_reg prev_count(this, glsl_type::uint_type); 555 emit(ADD(dst_reg(prev_count), this->vertex_count, brw_imm_ud(0xffffffffu))); 556 src_reg mask(this, glsl_type::uint_type); 557 /* Note: we're relying on the fact that the GEN SHL instruction only pays 558 * attention to the lower 5 bits of its second source argument, so on this 559 * architecture, 1 << (vertex_count - 1) is equivalent to 1 << 560 * ((vertex_count - 1) % 32). 561 */ 562 emit(SHL(dst_reg(mask), one, prev_count)); 563 emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask)); 564} 565 566static const GLuint gl_prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1] = { 567 [GL_POINTS] =_3DPRIM_POINTLIST, 568 [GL_LINES] = _3DPRIM_LINELIST, 569 [GL_LINE_LOOP] = _3DPRIM_LINELOOP, 570 [GL_LINE_STRIP] = _3DPRIM_LINESTRIP, 571 [GL_TRIANGLES] = _3DPRIM_TRILIST, 572 [GL_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP, 573 [GL_TRIANGLE_FAN] = _3DPRIM_TRIFAN, 574 [GL_QUADS] = _3DPRIM_QUADLIST, 575 [GL_QUAD_STRIP] = _3DPRIM_QUADSTRIP, 576 [GL_POLYGON] = _3DPRIM_POLYGON, 577 [GL_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ, 578 [GL_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ, 579 [GL_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ, 580 [GL_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ, 581}; 582 583} /* namespace brw */ 584 585extern "C" const unsigned * 586brw_compile_gs(const struct brw_compiler *compiler, void *log_data, 587 void *mem_ctx, 588 const struct brw_gs_prog_key *key, 589 struct brw_gs_prog_data *prog_data, 590 nir_shader *nir, 591 int shader_time_index, 592 struct brw_compile_stats *stats, 593 char **error_str) 594{ 595 struct brw_gs_compile c; 596 memset(&c, 0, sizeof(c)); 597 c.key = *key; 598 599 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_GEOMETRY]; 600 const bool debug_enabled = INTEL_DEBUG(DEBUG_GS); 601 602 prog_data->base.base.stage = MESA_SHADER_GEOMETRY; 603 604 /* The GLSL linker will have already matched up GS inputs and the outputs 605 * of prior stages. The driver does extend VS outputs in some cases, but 606 * only for legacy OpenGL or Gfx4-5 hardware, neither of which offer 607 * geometry shader support. So we can safely ignore that. 608 * 609 * For SSO pipelines, we use a fixed VUE map layout based on variable 610 * locations, so we can rely on rendezvous-by-location making this work. 611 */ 612 GLbitfield64 inputs_read = nir->info.inputs_read; 613 brw_compute_vue_map(compiler->devinfo, 614 &c.input_vue_map, inputs_read, 615 nir->info.separate_shader, 1); 616 617 brw_nir_apply_key(nir, compiler, &key->base, 8, is_scalar); 618 brw_nir_lower_vue_inputs(nir, &c.input_vue_map); 619 brw_nir_lower_vue_outputs(nir); 620 brw_postprocess_nir(nir, compiler, is_scalar, debug_enabled, 621 key->base.robust_buffer_access); 622 623 prog_data->base.clip_distance_mask = 624 ((1 << nir->info.clip_distance_array_size) - 1); 625 prog_data->base.cull_distance_mask = 626 ((1 << nir->info.cull_distance_array_size) - 1) << 627 nir->info.clip_distance_array_size; 628 629 prog_data->include_primitive_id = 630 BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID); 631 632 prog_data->invocations = nir->info.gs.invocations; 633 634 if (compiler->devinfo->ver >= 8) 635 nir_gs_count_vertices_and_primitives( 636 nir, &prog_data->static_vertex_count, nullptr, 1u); 637 638 if (compiler->devinfo->ver >= 7) { 639 if (nir->info.gs.output_primitive == GL_POINTS) { 640 /* When the output type is points, the geometry shader may output data 641 * to multiple streams, and EndPrimitive() has no effect. So we 642 * configure the hardware to interpret the control data as stream ID. 643 */ 644 prog_data->control_data_format = GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID; 645 646 /* We only have to emit control bits if we are using non-zero streams */ 647 if (nir->info.gs.active_stream_mask != (1 << 0)) 648 c.control_data_bits_per_vertex = 2; 649 else 650 c.control_data_bits_per_vertex = 0; 651 } else { 652 /* When the output type is triangle_strip or line_strip, EndPrimitive() 653 * may be used to terminate the current strip and start a new one 654 * (similar to primitive restart), and outputting data to multiple 655 * streams is not supported. So we configure the hardware to interpret 656 * the control data as EndPrimitive information (a.k.a. "cut bits"). 657 */ 658 prog_data->control_data_format = GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT; 659 660 /* We only need to output control data if the shader actually calls 661 * EndPrimitive(). 662 */ 663 c.control_data_bits_per_vertex = 664 nir->info.gs.uses_end_primitive ? 1 : 0; 665 } 666 } else { 667 /* There are no control data bits in gfx6. */ 668 c.control_data_bits_per_vertex = 0; 669 } 670 c.control_data_header_size_bits = 671 nir->info.gs.vertices_out * c.control_data_bits_per_vertex; 672 673 /* 1 HWORD = 32 bytes = 256 bits */ 674 prog_data->control_data_header_size_hwords = 675 ALIGN(c.control_data_header_size_bits, 256) / 256; 676 677 /* Compute the output vertex size. 678 * 679 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex 680 * Size (p168): 681 * 682 * [0,62] indicating [1,63] 16B units 683 * 684 * Specifies the size of each vertex stored in the GS output entry 685 * (following any Control Header data) as a number of 128-bit units 686 * (minus one). 687 * 688 * Programming Restrictions: The vertex size must be programmed as a 689 * multiple of 32B units with the following exception: Rendering is 690 * disabled (as per SOL stage state) and the vertex size output by the 691 * GS thread is 16B. 692 * 693 * If rendering is enabled (as per SOL state) the vertex size must be 694 * programmed as a multiple of 32B units. In other words, the only time 695 * software can program a vertex size with an odd number of 16B units 696 * is when rendering is disabled. 697 * 698 * Note: B=bytes in the above text. 699 * 700 * It doesn't seem worth the extra trouble to optimize the case where the 701 * vertex size is 16B (especially since this would require special-casing 702 * the GEN assembly that writes to the URB). So we just set the vertex 703 * size to a multiple of 32B (2 vec4's) in all cases. 704 * 705 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We 706 * budget that as follows: 707 * 708 * 512 bytes for varyings (a varying component is 4 bytes and 709 * gl_MaxGeometryOutputComponents = 128) 710 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16 711 * bytes) 712 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE 713 * even if it's not used) 714 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots 715 * whenever clip planes are enabled, even if the shader doesn't 716 * write to gl_ClipDistance) 717 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes 718 * (see below)--this causes up to 1 VUE slot to be wasted 719 * 400 bytes available for varying packing overhead 720 * 721 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes) 722 * per interpolation type, so this is plenty. 723 * 724 */ 725 unsigned output_vertex_size_bytes = prog_data->base.vue_map.num_slots * 16; 726 assert(compiler->devinfo->ver == 6 || 727 output_vertex_size_bytes <= GFX7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES); 728 prog_data->output_vertex_size_hwords = 729 ALIGN(output_vertex_size_bytes, 32) / 32; 730 731 /* Compute URB entry size. The maximum allowed URB entry size is 32k. 732 * That divides up as follows: 733 * 734 * 64 bytes for the control data header (cut indices or StreamID bits) 735 * 4096 bytes for varyings (a varying component is 4 bytes and 736 * gl_MaxGeometryTotalOutputComponents = 1024) 737 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16 738 * bytes/vertex and gl_MaxGeometryOutputVertices is 256) 739 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE 740 * even if it's not used) 741 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots 742 * whenever clip planes are enabled, even if the shader doesn't 743 * write to gl_ClipDistance) 744 * 4096 bytes overhead since the VUE size must be a multiple of 32 745 * bytes (see above)--this causes up to 1 VUE slot to be wasted 746 * 8128 bytes available for varying packing overhead 747 * 748 * Worst-case varying packing overhead is 3/4 of a varying slot per 749 * interpolation type, which works out to 3072 bytes, so this would allow 750 * us to accommodate 2 interpolation types without any danger of running 751 * out of URB space. 752 * 753 * In practice, the risk of running out of URB space is very small, since 754 * the above figures are all worst-case, and most of them scale with the 755 * number of output vertices. So we'll just calculate the amount of space 756 * we need, and if it's too large, fail to compile. 757 * 758 * The above is for gfx7+ where we have a single URB entry that will hold 759 * all the output. In gfx6, we will have to allocate URB entries for every 760 * vertex we emit, so our URB entries only need to be large enough to hold 761 * a single vertex. Also, gfx6 does not have a control data header. 762 */ 763 unsigned output_size_bytes; 764 if (compiler->devinfo->ver >= 7) { 765 output_size_bytes = 766 prog_data->output_vertex_size_hwords * 32 * nir->info.gs.vertices_out; 767 output_size_bytes += 32 * prog_data->control_data_header_size_hwords; 768 } else { 769 output_size_bytes = prog_data->output_vertex_size_hwords * 32; 770 } 771 772 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output, 773 * which comes before the control header. 774 */ 775 if (compiler->devinfo->ver >= 8) 776 output_size_bytes += 32; 777 778 /* Shaders can technically set max_vertices = 0, at which point we 779 * may have a URB size of 0 bytes. Nothing good can come from that, 780 * so enforce a minimum size. 781 */ 782 if (output_size_bytes == 0) 783 output_size_bytes = 1; 784 785 unsigned max_output_size_bytes = GFX7_MAX_GS_URB_ENTRY_SIZE_BYTES; 786 if (compiler->devinfo->ver == 6) 787 max_output_size_bytes = GFX6_MAX_GS_URB_ENTRY_SIZE_BYTES; 788 if (output_size_bytes > max_output_size_bytes) 789 return NULL; 790 791 792 /* URB entry sizes are stored as a multiple of 64 bytes in gfx7+ and 793 * a multiple of 128 bytes in gfx6. 794 */ 795 if (compiler->devinfo->ver >= 7) { 796 prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64; 797 } else { 798 prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128; 799 } 800 801 assert(nir->info.gs.output_primitive < ARRAY_SIZE(brw::gl_prim_to_hw_prim)); 802 prog_data->output_topology = 803 brw::gl_prim_to_hw_prim[nir->info.gs.output_primitive]; 804 805 prog_data->vertices_in = nir->info.gs.vertices_in; 806 807 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we 808 * need to program a URB read length of ceiling(num_slots / 2). 809 */ 810 prog_data->base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2; 811 812 /* Now that prog_data setup is done, we are ready to actually compile the 813 * program. 814 */ 815 if (unlikely(debug_enabled)) { 816 fprintf(stderr, "GS Input "); 817 brw_print_vue_map(stderr, &c.input_vue_map, MESA_SHADER_GEOMETRY); 818 fprintf(stderr, "GS Output "); 819 brw_print_vue_map(stderr, &prog_data->base.vue_map, MESA_SHADER_GEOMETRY); 820 } 821 822 if (is_scalar) { 823 fs_visitor v(compiler, log_data, mem_ctx, &c, prog_data, nir, 824 shader_time_index, debug_enabled); 825 if (v.run_gs()) { 826 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8; 827 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs; 828 829 fs_generator g(compiler, log_data, mem_ctx, 830 &prog_data->base.base, false, MESA_SHADER_GEOMETRY); 831 if (unlikely(debug_enabled)) { 832 const char *label = 833 nir->info.label ? nir->info.label : "unnamed"; 834 char *name = ralloc_asprintf(mem_ctx, "%s geometry shader %s", 835 label, nir->info.name); 836 g.enable_debug(name); 837 } 838 g.generate_code(v.cfg, 8, v.shader_stats, 839 v.performance_analysis.require(), stats); 840 g.add_const_data(nir->constant_data, nir->constant_data_size); 841 return g.get_assembly(); 842 } 843 844 if (error_str) 845 *error_str = ralloc_strdup(mem_ctx, v.fail_msg); 846 847 return NULL; 848 } 849 850 if (compiler->devinfo->ver >= 7) { 851 /* Compile the geometry shader in DUAL_OBJECT dispatch mode, if we can do 852 * so without spilling. If the GS invocations count > 1, then we can't use 853 * dual object mode. 854 */ 855 if (prog_data->invocations <= 1 && 856 !INTEL_DEBUG(DEBUG_NO_DUAL_OBJECT_GS)) { 857 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT; 858 859 brw::vec4_gs_visitor v(compiler, log_data, &c, prog_data, nir, 860 mem_ctx, true /* no_spills */, 861 shader_time_index, debug_enabled); 862 863 /* Backup 'nr_params' and 'param' as they can be modified by the 864 * the DUAL_OBJECT visitor. If it fails, we will run the fallback 865 * (DUAL_INSTANCED or SINGLE mode) and we need to restore original 866 * values. 867 */ 868 const unsigned param_count = prog_data->base.base.nr_params; 869 uint32_t *param = ralloc_array(NULL, uint32_t, param_count); 870 memcpy(param, prog_data->base.base.param, 871 sizeof(uint32_t) * param_count); 872 873 if (v.run()) { 874 /* Success! Backup is not needed */ 875 ralloc_free(param); 876 return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, 877 nir, &prog_data->base, 878 v.cfg, 879 v.performance_analysis.require(), 880 stats, debug_enabled); 881 } else { 882 /* These variables could be modified by the execution of the GS 883 * visitor if it packed the uniforms in the push constant buffer. 884 * As it failed, we need restore them so we can start again with 885 * DUAL_INSTANCED or SINGLE mode. 886 * 887 * FIXME: Could more variables be modified by this execution? 888 */ 889 memcpy(prog_data->base.base.param, param, 890 sizeof(uint32_t) * param_count); 891 prog_data->base.base.nr_params = param_count; 892 prog_data->base.base.nr_pull_params = 0; 893 ralloc_free(param); 894 } 895 } 896 } 897 898 /* Either we failed to compile in DUAL_OBJECT mode (probably because it 899 * would have required spilling) or DUAL_OBJECT mode is disabled. So fall 900 * back to DUAL_INSTANCED or SINGLE mode, which consumes fewer registers. 901 * 902 * FIXME: Single dispatch mode requires that the driver can handle 903 * interleaving of input registers, but this is already supported (dual 904 * instance mode has the same requirement). However, to take full advantage 905 * of single dispatch mode to reduce register pressure we would also need to 906 * do interleaved outputs, but currently, the vec4 visitor and generator 907 * classes do not support this, so at the moment register pressure in 908 * single and dual instance modes is the same. 909 * 910 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 "3DSTATE_GS" 911 * "If InstanceCount>1, DUAL_OBJECT mode is invalid. Software will likely 912 * want to use DUAL_INSTANCE mode for higher performance, but SINGLE mode 913 * is also supported. When InstanceCount=1 (one instance per object) software 914 * can decide which dispatch mode to use. DUAL_OBJECT mode would likely be 915 * the best choice for performance, followed by SINGLE mode." 916 * 917 * So SINGLE mode is more performant when invocations == 1 and DUAL_INSTANCE 918 * mode is more performant when invocations > 1. Gfx6 only supports 919 * SINGLE mode. 920 */ 921 if (prog_data->invocations <= 1 || compiler->devinfo->ver < 7) 922 prog_data->base.dispatch_mode = DISPATCH_MODE_4X1_SINGLE; 923 else 924 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_INSTANCE; 925 926 brw::vec4_gs_visitor *gs = NULL; 927 const unsigned *ret = NULL; 928 929 if (compiler->devinfo->ver >= 7) 930 gs = new brw::vec4_gs_visitor(compiler, log_data, &c, prog_data, 931 nir, mem_ctx, false /* no_spills */, 932 shader_time_index, debug_enabled); 933 else 934 gs = new brw::gfx6_gs_visitor(compiler, log_data, &c, prog_data, 935 nir, mem_ctx, false /* no_spills */, 936 shader_time_index, debug_enabled); 937 938 if (!gs->run()) { 939 if (error_str) 940 *error_str = ralloc_strdup(mem_ctx, gs->fail_msg); 941 } else { 942 ret = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir, 943 &prog_data->base, gs->cfg, 944 gs->performance_analysis.require(), 945 stats, debug_enabled); 946 } 947 948 delete gs; 949 return ret; 950} 951