1/*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file brw_vec4_gs_visitor.cpp
26 *
27 * Geometry-shader-specific code derived from the vec4_visitor class.
28 */
29
30#include "brw_vec4_gs_visitor.h"
31#include "gfx6_gs_visitor.h"
32#include "brw_cfg.h"
33#include "brw_fs.h"
34#include "brw_nir.h"
35#include "dev/intel_debug.h"
36
37namespace brw {
38
39vec4_gs_visitor::vec4_gs_visitor(const struct brw_compiler *compiler,
40                                 void *log_data,
41                                 struct brw_gs_compile *c,
42                                 struct brw_gs_prog_data *prog_data,
43                                 const nir_shader *shader,
44                                 void *mem_ctx,
45                                 bool no_spills,
46                                 int shader_time_index,
47                                 bool debug_enabled)
48   : vec4_visitor(compiler, log_data, &c->key.base.tex,
49                  &prog_data->base, shader,  mem_ctx,
50                  no_spills, shader_time_index, debug_enabled),
51     c(c),
52     gs_prog_data(prog_data)
53{
54}
55
56
57static inline struct brw_reg
58attribute_to_hw_reg(int attr, brw_reg_type type, bool interleaved)
59{
60   struct brw_reg reg;
61
62   unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(type));
63   if (interleaved) {
64      reg = stride(brw_vecn_grf(width, attr / 2, (attr % 2) * 4), 0, width, 1);
65   } else {
66      reg = brw_vecn_grf(width, attr, 0);
67   }
68
69   reg.type = type;
70   return reg;
71}
72
73/**
74 * Replace each register of type ATTR in this->instructions with a reference
75 * to a fixed HW register.
76 *
77 * If interleaved is true, then each attribute takes up half a register, with
78 * register N containing attribute 2*N in its first half and attribute 2*N+1
79 * in its second half (this corresponds to the payload setup used by geometry
80 * shaders in "single" or "dual instanced" dispatch mode).  If interleaved is
81 * false, then each attribute takes up a whole register, with register N
82 * containing attribute N (this corresponds to the payload setup used by
83 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
84 */
85int
86vec4_gs_visitor::setup_varying_inputs(int payload_reg,
87                                      int attributes_per_reg)
88{
89   /* For geometry shaders there are N copies of the input attributes, where N
90    * is the number of input vertices.  attribute_map[BRW_VARYING_SLOT_COUNT *
91    * i + j] represents attribute j for vertex i.
92    *
93    * Note that GS inputs are read from the VUE 256 bits (2 vec4's) at a time,
94    * so the total number of input slots that will be delivered to the GS (and
95    * thus the stride of the input arrays) is urb_read_length * 2.
96    */
97   const unsigned num_input_vertices = nir->info.gs.vertices_in;
98   assert(num_input_vertices <= MAX_GS_INPUT_VERTICES);
99   unsigned input_array_stride = prog_data->urb_read_length * 2;
100
101   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
102      for (int i = 0; i < 3; i++) {
103         if (inst->src[i].file != ATTR)
104            continue;
105
106         assert(inst->src[i].offset % REG_SIZE == 0);
107         int grf = payload_reg * attributes_per_reg +
108                   inst->src[i].nr + inst->src[i].offset / REG_SIZE;
109
110         struct brw_reg reg =
111            attribute_to_hw_reg(grf, inst->src[i].type, attributes_per_reg > 1);
112         reg.swizzle = inst->src[i].swizzle;
113         if (inst->src[i].abs)
114            reg = brw_abs(reg);
115         if (inst->src[i].negate)
116            reg = negate(reg);
117
118         inst->src[i] = reg;
119      }
120   }
121
122   int regs_used = ALIGN(input_array_stride * num_input_vertices,
123                         attributes_per_reg) / attributes_per_reg;
124   return payload_reg + regs_used;
125}
126
127void
128vec4_gs_visitor::setup_payload()
129{
130   /* If we are in dual instanced or single mode, then attributes are going
131    * to be interleaved, so one register contains two attribute slots.
132    */
133   int attributes_per_reg =
134      prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT ? 1 : 2;
135
136   int reg = 0;
137
138   /* The payload always contains important data in r0, which contains
139    * the URB handles that are passed on to the URB write at the end
140    * of the thread.
141    */
142   reg++;
143
144   /* If the shader uses gl_PrimitiveIDIn, that goes in r1. */
145   if (gs_prog_data->include_primitive_id)
146      reg++;
147
148   reg = setup_uniforms(reg);
149
150   reg = setup_varying_inputs(reg, attributes_per_reg);
151
152   this->first_non_payload_grf = reg;
153}
154
155
156void
157vec4_gs_visitor::emit_prolog()
158{
159   /* In vertex shaders, r0.2 is guaranteed to be initialized to zero.  In
160    * geometry shaders, it isn't (it contains a bunch of information we don't
161    * need, like the input primitive type).  We need r0.2 to be zero in order
162    * to build scratch read/write messages correctly (otherwise this value
163    * will be interpreted as a global offset, causing us to do our scratch
164    * reads/writes to garbage memory).  So just set it to zero at the top of
165    * the shader.
166    */
167   this->current_annotation = "clear r0.2";
168   dst_reg r0(retype(brw_vec4_grf(0, 0), BRW_REGISTER_TYPE_UD));
169   vec4_instruction *inst = emit(GS_OPCODE_SET_DWORD_2, r0, brw_imm_ud(0u));
170   inst->force_writemask_all = true;
171
172   /* Create a virtual register to hold the vertex count */
173   this->vertex_count = src_reg(this, glsl_type::uint_type);
174
175   /* Initialize the vertex_count register to 0 */
176   this->current_annotation = "initialize vertex_count";
177   inst = emit(MOV(dst_reg(this->vertex_count), brw_imm_ud(0u)));
178   inst->force_writemask_all = true;
179
180   if (c->control_data_header_size_bits > 0) {
181      /* Create a virtual register to hold the current set of control data
182       * bits.
183       */
184      this->control_data_bits = src_reg(this, glsl_type::uint_type);
185
186      /* If we're outputting more than 32 control data bits, then EmitVertex()
187       * will set control_data_bits to 0 after emitting the first vertex.
188       * Otherwise, we need to initialize it to 0 here.
189       */
190      if (c->control_data_header_size_bits <= 32) {
191         this->current_annotation = "initialize control data bits";
192         inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
193         inst->force_writemask_all = true;
194      }
195   }
196
197   this->current_annotation = NULL;
198}
199
200void
201vec4_gs_visitor::emit_thread_end()
202{
203   if (c->control_data_header_size_bits > 0) {
204      /* During shader execution, we only ever call emit_control_data_bits()
205       * just prior to outputting a vertex.  Therefore, the control data bits
206       * corresponding to the most recently output vertex still need to be
207       * emitted.
208       */
209      current_annotation = "thread end: emit control data bits";
210      emit_control_data_bits();
211   }
212
213   /* MRF 0 is reserved for the debugger, so start with message header
214    * in MRF 1.
215    */
216   int base_mrf = 1;
217
218   current_annotation = "thread end";
219   dst_reg mrf_reg(MRF, base_mrf);
220   src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
221   vec4_instruction *inst = emit(MOV(mrf_reg, r0));
222   inst->force_writemask_all = true;
223   emit(GS_OPCODE_SET_VERTEX_COUNT, mrf_reg, this->vertex_count);
224   if (INTEL_DEBUG(DEBUG_SHADER_TIME))
225      emit_shader_time_end();
226   inst = emit(GS_OPCODE_THREAD_END);
227   inst->base_mrf = base_mrf;
228   inst->mlen = 1;
229}
230
231
232void
233vec4_gs_visitor::emit_urb_write_header(int mrf)
234{
235   /* The SEND instruction that writes the vertex data to the VUE will use
236    * per_slot_offset=true, which means that DWORDs 3 and 4 of the message
237    * header specify an offset (in multiples of 256 bits) into the URB entry
238    * at which the write should take place.
239    *
240    * So we have to prepare a message header with the appropriate offset
241    * values.
242    */
243   dst_reg mrf_reg(MRF, mrf);
244   src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
245   this->current_annotation = "URB write header";
246   vec4_instruction *inst = emit(MOV(mrf_reg, r0));
247   inst->force_writemask_all = true;
248   emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, this->vertex_count,
249        brw_imm_ud(gs_prog_data->output_vertex_size_hwords));
250}
251
252
253vec4_instruction *
254vec4_gs_visitor::emit_urb_write_opcode(bool complete)
255{
256   /* We don't care whether the vertex is complete, because in general
257    * geometry shaders output multiple vertices, and we don't terminate the
258    * thread until all vertices are complete.
259    */
260   (void) complete;
261
262   vec4_instruction *inst = emit(GS_OPCODE_URB_WRITE);
263   inst->offset = gs_prog_data->control_data_header_size_hwords;
264
265   inst->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
266   return inst;
267}
268
269
270/**
271 * Write out a batch of 32 control data bits from the control_data_bits
272 * register to the URB.
273 *
274 * The current value of the vertex_count register determines which DWORD in
275 * the URB receives the control data bits.  The control_data_bits register is
276 * assumed to contain the correct data for the vertex that was most recently
277 * output, and all previous vertices that share the same DWORD.
278 *
279 * This function takes care of ensuring that if no vertices have been output
280 * yet, no control bits are emitted.
281 */
282void
283vec4_gs_visitor::emit_control_data_bits()
284{
285   assert(c->control_data_bits_per_vertex != 0);
286
287   /* Since the URB_WRITE_OWORD message operates with 128-bit (vec4 sized)
288    * granularity, we need to use two tricks to ensure that the batch of 32
289    * control data bits is written to the appropriate DWORD in the URB.  To
290    * select which vec4 we are writing to, we use the "slot {0,1} offset"
291    * fields of the message header.  To select which DWORD in the vec4 we are
292    * writing to, we use the channel mask fields of the message header.  To
293    * avoid penalizing geometry shaders that emit a small number of vertices
294    * with extra bookkeeping, we only do each of these tricks when
295    * c->prog_data.control_data_header_size_bits is large enough to make it
296    * necessary.
297    *
298    * Note: this means that if we're outputting just a single DWORD of control
299    * data bits, we'll actually replicate it four times since we won't do any
300    * channel masking.  But that's not a problem since in this case the
301    * hardware only pays attention to the first DWORD.
302    */
303   enum brw_urb_write_flags urb_write_flags = BRW_URB_WRITE_OWORD;
304   if (c->control_data_header_size_bits > 32)
305      urb_write_flags = urb_write_flags | BRW_URB_WRITE_USE_CHANNEL_MASKS;
306   if (c->control_data_header_size_bits > 128)
307      urb_write_flags = urb_write_flags | BRW_URB_WRITE_PER_SLOT_OFFSET;
308
309   /* If we are using either channel masks or a per-slot offset, then we
310    * need to figure out which DWORD we are trying to write to, using the
311    * formula:
312    *
313    *     dword_index = (vertex_count - 1) * bits_per_vertex / 32
314    *
315    * Since bits_per_vertex is a power of two, and is known at compile
316    * time, this can be optimized to:
317    *
318    *     dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
319    */
320   src_reg dword_index(this, glsl_type::uint_type);
321   if (urb_write_flags) {
322      src_reg prev_count(this, glsl_type::uint_type);
323      emit(ADD(dst_reg(prev_count), this->vertex_count,
324               brw_imm_ud(0xffffffffu)));
325      unsigned log2_bits_per_vertex =
326         util_last_bit(c->control_data_bits_per_vertex);
327      emit(SHR(dst_reg(dword_index), prev_count,
328               brw_imm_ud(6 - log2_bits_per_vertex)));
329   }
330
331   /* Start building the URB write message.  The first MRF gets a copy of
332    * R0.
333    */
334   int base_mrf = 1;
335   dst_reg mrf_reg(MRF, base_mrf);
336   src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
337   vec4_instruction *inst = emit(MOV(mrf_reg, r0));
338   inst->force_writemask_all = true;
339
340   if (urb_write_flags & BRW_URB_WRITE_PER_SLOT_OFFSET) {
341      /* Set the per-slot offset to dword_index / 4, to that we'll write to
342       * the appropriate OWORD within the control data header.
343       */
344      src_reg per_slot_offset(this, glsl_type::uint_type);
345      emit(SHR(dst_reg(per_slot_offset), dword_index, brw_imm_ud(2u)));
346      emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, per_slot_offset,
347           brw_imm_ud(1u));
348   }
349
350   if (urb_write_flags & BRW_URB_WRITE_USE_CHANNEL_MASKS) {
351      /* Set the channel masks to 1 << (dword_index % 4), so that we'll
352       * write to the appropriate DWORD within the OWORD.  We need to do
353       * this computation with force_writemask_all, otherwise garbage data
354       * from invocation 0 might clobber the mask for invocation 1 when
355       * GS_OPCODE_PREPARE_CHANNEL_MASKS tries to OR the two masks
356       * together.
357       */
358      src_reg channel(this, glsl_type::uint_type);
359      inst = emit(AND(dst_reg(channel), dword_index, brw_imm_ud(3u)));
360      inst->force_writemask_all = true;
361      src_reg one(this, glsl_type::uint_type);
362      inst = emit(MOV(dst_reg(one), brw_imm_ud(1u)));
363      inst->force_writemask_all = true;
364      src_reg channel_mask(this, glsl_type::uint_type);
365      inst = emit(SHL(dst_reg(channel_mask), one, channel));
366      inst->force_writemask_all = true;
367      emit(GS_OPCODE_PREPARE_CHANNEL_MASKS, dst_reg(channel_mask),
368                                            channel_mask);
369      emit(GS_OPCODE_SET_CHANNEL_MASKS, mrf_reg, channel_mask);
370   }
371
372   /* Store the control data bits in the message payload and send it. */
373   dst_reg mrf_reg2(MRF, base_mrf + 1);
374   inst = emit(MOV(mrf_reg2, this->control_data_bits));
375   inst->force_writemask_all = true;
376   inst = emit(GS_OPCODE_URB_WRITE);
377   inst->urb_write_flags = urb_write_flags;
378   inst->base_mrf = base_mrf;
379   inst->mlen = 2;
380}
381
382void
383vec4_gs_visitor::set_stream_control_data_bits(unsigned stream_id)
384{
385   /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
386
387   /* Note: we are calling this *before* increasing vertex_count, so
388    * this->vertex_count == vertex_count - 1 in the formula above.
389    */
390
391   /* Stream mode uses 2 bits per vertex */
392   assert(c->control_data_bits_per_vertex == 2);
393
394   /* Must be a valid stream */
395   assert(stream_id < MAX_VERTEX_STREAMS);
396
397   /* Control data bits are initialized to 0 so we don't have to set any
398    * bits when sending vertices to stream 0.
399    */
400   if (stream_id == 0)
401      return;
402
403   /* reg::sid = stream_id */
404   src_reg sid(this, glsl_type::uint_type);
405   emit(MOV(dst_reg(sid), brw_imm_ud(stream_id)));
406
407   /* reg:shift_count = 2 * (vertex_count - 1) */
408   src_reg shift_count(this, glsl_type::uint_type);
409   emit(SHL(dst_reg(shift_count), this->vertex_count, brw_imm_ud(1u)));
410
411   /* Note: we're relying on the fact that the GEN SHL instruction only pays
412    * attention to the lower 5 bits of its second source argument, so on this
413    * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
414    * stream_id << ((2 * (vertex_count - 1)) % 32).
415    */
416   src_reg mask(this, glsl_type::uint_type);
417   emit(SHL(dst_reg(mask), sid, shift_count));
418   emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
419}
420
421void
422vec4_gs_visitor::gs_emit_vertex(int stream_id)
423{
424   this->current_annotation = "emit vertex: safety check";
425
426   /* Haswell and later hardware ignores the "Render Stream Select" bits
427    * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
428    * and instead sends all primitives down the pipeline for rasterization.
429    * If the SOL stage is enabled, "Render Stream Select" is honored and
430    * primitives bound to non-zero streams are discarded after stream output.
431    *
432    * Since the only purpose of primives sent to non-zero streams is to
433    * be recorded by transform feedback, we can simply discard all geometry
434    * bound to these streams when transform feedback is disabled.
435    */
436   if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
437      return;
438
439   /* If we're outputting 32 control data bits or less, then we can wait
440    * until the shader is over to output them all.  Otherwise we need to
441    * output them as we go.  Now is the time to do it, since we're about to
442    * output the vertex_count'th vertex, so it's guaranteed that the
443    * control data bits associated with the (vertex_count - 1)th vertex are
444    * correct.
445    */
446   if (c->control_data_header_size_bits > 32) {
447      this->current_annotation = "emit vertex: emit control data bits";
448      /* Only emit control data bits if we've finished accumulating a batch
449       * of 32 bits.  This is the case when:
450       *
451       *     (vertex_count * bits_per_vertex) % 32 == 0
452       *
453       * (in other words, when the last 5 bits of vertex_count *
454       * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
455       * integer n (which is always the case, since bits_per_vertex is
456       * always 1 or 2), this is equivalent to requiring that the last 5-n
457       * bits of vertex_count are 0:
458       *
459       *     vertex_count & (2^(5-n) - 1) == 0
460       *
461       * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
462       * equivalent to:
463       *
464       *     vertex_count & (32 / bits_per_vertex - 1) == 0
465       */
466      vec4_instruction *inst =
467         emit(AND(dst_null_ud(), this->vertex_count,
468                  brw_imm_ud(32 / c->control_data_bits_per_vertex - 1)));
469      inst->conditional_mod = BRW_CONDITIONAL_Z;
470
471      emit(IF(BRW_PREDICATE_NORMAL));
472      {
473         /* If vertex_count is 0, then no control data bits have been
474          * accumulated yet, so we skip emitting them.
475          */
476         emit(CMP(dst_null_ud(), this->vertex_count, brw_imm_ud(0u),
477                  BRW_CONDITIONAL_NEQ));
478         emit(IF(BRW_PREDICATE_NORMAL));
479         emit_control_data_bits();
480         emit(BRW_OPCODE_ENDIF);
481
482         /* Reset control_data_bits to 0 so we can start accumulating a new
483          * batch.
484          *
485          * Note: in the case where vertex_count == 0, this neutralizes the
486          * effect of any call to EndPrimitive() that the shader may have
487          * made before outputting its first vertex.
488          */
489         inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
490         inst->force_writemask_all = true;
491      }
492      emit(BRW_OPCODE_ENDIF);
493   }
494
495   this->current_annotation = "emit vertex: vertex data";
496   emit_vertex();
497
498   /* In stream mode we have to set control data bits for all vertices
499    * unless we have disabled control data bits completely (which we do
500    * do for GL_POINTS outputs that don't use streams).
501    */
502   if (c->control_data_header_size_bits > 0 &&
503       gs_prog_data->control_data_format ==
504          GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
505       this->current_annotation = "emit vertex: Stream control data bits";
506       set_stream_control_data_bits(stream_id);
507   }
508
509   this->current_annotation = NULL;
510}
511
512void
513vec4_gs_visitor::gs_end_primitive()
514{
515   /* We can only do EndPrimitive() functionality when the control data
516    * consists of cut bits.  Fortunately, the only time it isn't is when the
517    * output type is points, in which case EndPrimitive() is a no-op.
518    */
519   if (gs_prog_data->control_data_format !=
520       GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
521      return;
522   }
523
524   if (c->control_data_header_size_bits == 0)
525      return;
526
527   /* Cut bits use one bit per vertex. */
528   assert(c->control_data_bits_per_vertex == 1);
529
530   /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
531    * vertex n, 0 otherwise.  So all we need to do here is mark bit
532    * (vertex_count - 1) % 32 in the cut_bits register to indicate that
533    * EndPrimitive() was called after emitting vertex (vertex_count - 1);
534    * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
535    *
536    * Note that if EndPrimitve() is called before emitting any vertices, this
537    * will cause us to set bit 31 of the control_data_bits register to 1.
538    * That's fine because:
539    *
540    * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
541    *   output, so the hardware will ignore cut bit 31.
542    *
543    * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
544    *   last vertex, so setting cut bit 31 has no effect (since the primitive
545    *   is automatically ended when the GS terminates).
546    *
547    * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
548    *   control_data_bits register to 0 when the first vertex is emitted.
549    */
550
551   /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
552   src_reg one(this, glsl_type::uint_type);
553   emit(MOV(dst_reg(one), brw_imm_ud(1u)));
554   src_reg prev_count(this, glsl_type::uint_type);
555   emit(ADD(dst_reg(prev_count), this->vertex_count, brw_imm_ud(0xffffffffu)));
556   src_reg mask(this, glsl_type::uint_type);
557   /* Note: we're relying on the fact that the GEN SHL instruction only pays
558    * attention to the lower 5 bits of its second source argument, so on this
559    * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
560    * ((vertex_count - 1) % 32).
561    */
562   emit(SHL(dst_reg(mask), one, prev_count));
563   emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
564}
565
566static const GLuint gl_prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1] = {
567   [GL_POINTS] =_3DPRIM_POINTLIST,
568   [GL_LINES] = _3DPRIM_LINELIST,
569   [GL_LINE_LOOP] = _3DPRIM_LINELOOP,
570   [GL_LINE_STRIP] = _3DPRIM_LINESTRIP,
571   [GL_TRIANGLES] = _3DPRIM_TRILIST,
572   [GL_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
573   [GL_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
574   [GL_QUADS] = _3DPRIM_QUADLIST,
575   [GL_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
576   [GL_POLYGON] = _3DPRIM_POLYGON,
577   [GL_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
578   [GL_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
579   [GL_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
580   [GL_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
581};
582
583} /* namespace brw */
584
585extern "C" const unsigned *
586brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
587               void *mem_ctx,
588               const struct brw_gs_prog_key *key,
589               struct brw_gs_prog_data *prog_data,
590               nir_shader *nir,
591               int shader_time_index,
592               struct brw_compile_stats *stats,
593               char **error_str)
594{
595   struct brw_gs_compile c;
596   memset(&c, 0, sizeof(c));
597   c.key = *key;
598
599   const bool is_scalar = compiler->scalar_stage[MESA_SHADER_GEOMETRY];
600   const bool debug_enabled = INTEL_DEBUG(DEBUG_GS);
601
602   prog_data->base.base.stage = MESA_SHADER_GEOMETRY;
603
604   /* The GLSL linker will have already matched up GS inputs and the outputs
605    * of prior stages.  The driver does extend VS outputs in some cases, but
606    * only for legacy OpenGL or Gfx4-5 hardware, neither of which offer
607    * geometry shader support.  So we can safely ignore that.
608    *
609    * For SSO pipelines, we use a fixed VUE map layout based on variable
610    * locations, so we can rely on rendezvous-by-location making this work.
611    */
612   GLbitfield64 inputs_read = nir->info.inputs_read;
613   brw_compute_vue_map(compiler->devinfo,
614                       &c.input_vue_map, inputs_read,
615                       nir->info.separate_shader, 1);
616
617   brw_nir_apply_key(nir, compiler, &key->base, 8, is_scalar);
618   brw_nir_lower_vue_inputs(nir, &c.input_vue_map);
619   brw_nir_lower_vue_outputs(nir);
620   brw_postprocess_nir(nir, compiler, is_scalar, debug_enabled,
621                       key->base.robust_buffer_access);
622
623   prog_data->base.clip_distance_mask =
624      ((1 << nir->info.clip_distance_array_size) - 1);
625   prog_data->base.cull_distance_mask =
626      ((1 << nir->info.cull_distance_array_size) - 1) <<
627      nir->info.clip_distance_array_size;
628
629   prog_data->include_primitive_id =
630      BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
631
632   prog_data->invocations = nir->info.gs.invocations;
633
634   if (compiler->devinfo->ver >= 8)
635      nir_gs_count_vertices_and_primitives(
636         nir, &prog_data->static_vertex_count, nullptr, 1u);
637
638   if (compiler->devinfo->ver >= 7) {
639      if (nir->info.gs.output_primitive == GL_POINTS) {
640         /* When the output type is points, the geometry shader may output data
641          * to multiple streams, and EndPrimitive() has no effect.  So we
642          * configure the hardware to interpret the control data as stream ID.
643          */
644         prog_data->control_data_format = GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
645
646         /* We only have to emit control bits if we are using non-zero streams */
647         if (nir->info.gs.active_stream_mask != (1 << 0))
648            c.control_data_bits_per_vertex = 2;
649         else
650            c.control_data_bits_per_vertex = 0;
651      } else {
652         /* When the output type is triangle_strip or line_strip, EndPrimitive()
653          * may be used to terminate the current strip and start a new one
654          * (similar to primitive restart), and outputting data to multiple
655          * streams is not supported.  So we configure the hardware to interpret
656          * the control data as EndPrimitive information (a.k.a. "cut bits").
657          */
658         prog_data->control_data_format = GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
659
660         /* We only need to output control data if the shader actually calls
661          * EndPrimitive().
662          */
663         c.control_data_bits_per_vertex =
664            nir->info.gs.uses_end_primitive ? 1 : 0;
665      }
666   } else {
667      /* There are no control data bits in gfx6. */
668      c.control_data_bits_per_vertex = 0;
669   }
670   c.control_data_header_size_bits =
671      nir->info.gs.vertices_out * c.control_data_bits_per_vertex;
672
673   /* 1 HWORD = 32 bytes = 256 bits */
674   prog_data->control_data_header_size_hwords =
675      ALIGN(c.control_data_header_size_bits, 256) / 256;
676
677   /* Compute the output vertex size.
678    *
679    * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
680    * Size (p168):
681    *
682    *     [0,62] indicating [1,63] 16B units
683    *
684    *     Specifies the size of each vertex stored in the GS output entry
685    *     (following any Control Header data) as a number of 128-bit units
686    *     (minus one).
687    *
688    *     Programming Restrictions: The vertex size must be programmed as a
689    *     multiple of 32B units with the following exception: Rendering is
690    *     disabled (as per SOL stage state) and the vertex size output by the
691    *     GS thread is 16B.
692    *
693    *     If rendering is enabled (as per SOL state) the vertex size must be
694    *     programmed as a multiple of 32B units. In other words, the only time
695    *     software can program a vertex size with an odd number of 16B units
696    *     is when rendering is disabled.
697    *
698    * Note: B=bytes in the above text.
699    *
700    * It doesn't seem worth the extra trouble to optimize the case where the
701    * vertex size is 16B (especially since this would require special-casing
702    * the GEN assembly that writes to the URB).  So we just set the vertex
703    * size to a multiple of 32B (2 vec4's) in all cases.
704    *
705    * The maximum output vertex size is 62*16 = 992 bytes (31 hwords).  We
706    * budget that as follows:
707    *
708    *   512 bytes for varyings (a varying component is 4 bytes and
709    *             gl_MaxGeometryOutputComponents = 128)
710    *    16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
711    *             bytes)
712    *    16 bytes overhead for gl_Position (we allocate it a slot in the VUE
713    *             even if it's not used)
714    *    32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
715    *             whenever clip planes are enabled, even if the shader doesn't
716    *             write to gl_ClipDistance)
717    *    16 bytes overhead since the VUE size must be a multiple of 32 bytes
718    *             (see below)--this causes up to 1 VUE slot to be wasted
719    *   400 bytes available for varying packing overhead
720    *
721    * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
722    * per interpolation type, so this is plenty.
723    *
724    */
725   unsigned output_vertex_size_bytes = prog_data->base.vue_map.num_slots * 16;
726   assert(compiler->devinfo->ver == 6 ||
727          output_vertex_size_bytes <= GFX7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
728   prog_data->output_vertex_size_hwords =
729      ALIGN(output_vertex_size_bytes, 32) / 32;
730
731   /* Compute URB entry size.  The maximum allowed URB entry size is 32k.
732    * That divides up as follows:
733    *
734    *     64 bytes for the control data header (cut indices or StreamID bits)
735    *   4096 bytes for varyings (a varying component is 4 bytes and
736    *              gl_MaxGeometryTotalOutputComponents = 1024)
737    *   4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
738    *              bytes/vertex and gl_MaxGeometryOutputVertices is 256)
739    *   4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
740    *              even if it's not used)
741    *   8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
742    *              whenever clip planes are enabled, even if the shader doesn't
743    *              write to gl_ClipDistance)
744    *   4096 bytes overhead since the VUE size must be a multiple of 32
745    *              bytes (see above)--this causes up to 1 VUE slot to be wasted
746    *   8128 bytes available for varying packing overhead
747    *
748    * Worst-case varying packing overhead is 3/4 of a varying slot per
749    * interpolation type, which works out to 3072 bytes, so this would allow
750    * us to accommodate 2 interpolation types without any danger of running
751    * out of URB space.
752    *
753    * In practice, the risk of running out of URB space is very small, since
754    * the above figures are all worst-case, and most of them scale with the
755    * number of output vertices.  So we'll just calculate the amount of space
756    * we need, and if it's too large, fail to compile.
757    *
758    * The above is for gfx7+ where we have a single URB entry that will hold
759    * all the output. In gfx6, we will have to allocate URB entries for every
760    * vertex we emit, so our URB entries only need to be large enough to hold
761    * a single vertex. Also, gfx6 does not have a control data header.
762    */
763   unsigned output_size_bytes;
764   if (compiler->devinfo->ver >= 7) {
765      output_size_bytes =
766         prog_data->output_vertex_size_hwords * 32 * nir->info.gs.vertices_out;
767      output_size_bytes += 32 * prog_data->control_data_header_size_hwords;
768   } else {
769      output_size_bytes = prog_data->output_vertex_size_hwords * 32;
770   }
771
772   /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
773    * which comes before the control header.
774    */
775   if (compiler->devinfo->ver >= 8)
776      output_size_bytes += 32;
777
778   /* Shaders can technically set max_vertices = 0, at which point we
779    * may have a URB size of 0 bytes.  Nothing good can come from that,
780    * so enforce a minimum size.
781    */
782   if (output_size_bytes == 0)
783      output_size_bytes = 1;
784
785   unsigned max_output_size_bytes = GFX7_MAX_GS_URB_ENTRY_SIZE_BYTES;
786   if (compiler->devinfo->ver == 6)
787      max_output_size_bytes = GFX6_MAX_GS_URB_ENTRY_SIZE_BYTES;
788   if (output_size_bytes > max_output_size_bytes)
789      return NULL;
790
791
792   /* URB entry sizes are stored as a multiple of 64 bytes in gfx7+ and
793    * a multiple of 128 bytes in gfx6.
794    */
795   if (compiler->devinfo->ver >= 7) {
796      prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
797   } else {
798      prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
799   }
800
801   assert(nir->info.gs.output_primitive < ARRAY_SIZE(brw::gl_prim_to_hw_prim));
802   prog_data->output_topology =
803      brw::gl_prim_to_hw_prim[nir->info.gs.output_primitive];
804
805   prog_data->vertices_in = nir->info.gs.vertices_in;
806
807   /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
808    * need to program a URB read length of ceiling(num_slots / 2).
809    */
810   prog_data->base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
811
812   /* Now that prog_data setup is done, we are ready to actually compile the
813    * program.
814    */
815   if (unlikely(debug_enabled)) {
816      fprintf(stderr, "GS Input ");
817      brw_print_vue_map(stderr, &c.input_vue_map, MESA_SHADER_GEOMETRY);
818      fprintf(stderr, "GS Output ");
819      brw_print_vue_map(stderr, &prog_data->base.vue_map, MESA_SHADER_GEOMETRY);
820   }
821
822   if (is_scalar) {
823      fs_visitor v(compiler, log_data, mem_ctx, &c, prog_data, nir,
824                   shader_time_index, debug_enabled);
825      if (v.run_gs()) {
826         prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
827         prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
828
829         fs_generator g(compiler, log_data, mem_ctx,
830                        &prog_data->base.base, false, MESA_SHADER_GEOMETRY);
831         if (unlikely(debug_enabled)) {
832            const char *label =
833               nir->info.label ? nir->info.label : "unnamed";
834            char *name = ralloc_asprintf(mem_ctx, "%s geometry shader %s",
835                                         label, nir->info.name);
836            g.enable_debug(name);
837         }
838         g.generate_code(v.cfg, 8, v.shader_stats,
839                         v.performance_analysis.require(), stats);
840         g.add_const_data(nir->constant_data, nir->constant_data_size);
841         return g.get_assembly();
842      }
843
844      if (error_str)
845         *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
846
847      return NULL;
848   }
849
850   if (compiler->devinfo->ver >= 7) {
851      /* Compile the geometry shader in DUAL_OBJECT dispatch mode, if we can do
852       * so without spilling. If the GS invocations count > 1, then we can't use
853       * dual object mode.
854       */
855      if (prog_data->invocations <= 1 &&
856          !INTEL_DEBUG(DEBUG_NO_DUAL_OBJECT_GS)) {
857         prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
858
859         brw::vec4_gs_visitor v(compiler, log_data, &c, prog_data, nir,
860                                mem_ctx, true /* no_spills */,
861                                shader_time_index, debug_enabled);
862
863         /* Backup 'nr_params' and 'param' as they can be modified by the
864          * the DUAL_OBJECT visitor. If it fails, we will run the fallback
865          * (DUAL_INSTANCED or SINGLE mode) and we need to restore original
866          * values.
867          */
868         const unsigned param_count = prog_data->base.base.nr_params;
869         uint32_t *param = ralloc_array(NULL, uint32_t, param_count);
870         memcpy(param, prog_data->base.base.param,
871                sizeof(uint32_t) * param_count);
872
873         if (v.run()) {
874            /* Success! Backup is not needed */
875            ralloc_free(param);
876            return brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
877                                              nir, &prog_data->base,
878                                              v.cfg,
879                                              v.performance_analysis.require(),
880                                              stats, debug_enabled);
881         } else {
882            /* These variables could be modified by the execution of the GS
883             * visitor if it packed the uniforms in the push constant buffer.
884             * As it failed, we need restore them so we can start again with
885             * DUAL_INSTANCED or SINGLE mode.
886             *
887             * FIXME: Could more variables be modified by this execution?
888             */
889            memcpy(prog_data->base.base.param, param,
890                   sizeof(uint32_t) * param_count);
891            prog_data->base.base.nr_params = param_count;
892            prog_data->base.base.nr_pull_params = 0;
893            ralloc_free(param);
894         }
895      }
896   }
897
898   /* Either we failed to compile in DUAL_OBJECT mode (probably because it
899    * would have required spilling) or DUAL_OBJECT mode is disabled.  So fall
900    * back to DUAL_INSTANCED or SINGLE mode, which consumes fewer registers.
901    *
902    * FIXME: Single dispatch mode requires that the driver can handle
903    * interleaving of input registers, but this is already supported (dual
904    * instance mode has the same requirement). However, to take full advantage
905    * of single dispatch mode to reduce register pressure we would also need to
906    * do interleaved outputs, but currently, the vec4 visitor and generator
907    * classes do not support this, so at the moment register pressure in
908    * single and dual instance modes is the same.
909    *
910    * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 "3DSTATE_GS"
911    * "If InstanceCount>1, DUAL_OBJECT mode is invalid. Software will likely
912    * want to use DUAL_INSTANCE mode for higher performance, but SINGLE mode
913    * is also supported. When InstanceCount=1 (one instance per object) software
914    * can decide which dispatch mode to use. DUAL_OBJECT mode would likely be
915    * the best choice for performance, followed by SINGLE mode."
916    *
917    * So SINGLE mode is more performant when invocations == 1 and DUAL_INSTANCE
918    * mode is more performant when invocations > 1. Gfx6 only supports
919    * SINGLE mode.
920    */
921   if (prog_data->invocations <= 1 || compiler->devinfo->ver < 7)
922      prog_data->base.dispatch_mode = DISPATCH_MODE_4X1_SINGLE;
923   else
924      prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_INSTANCE;
925
926   brw::vec4_gs_visitor *gs = NULL;
927   const unsigned *ret = NULL;
928
929   if (compiler->devinfo->ver >= 7)
930      gs = new brw::vec4_gs_visitor(compiler, log_data, &c, prog_data,
931                                    nir, mem_ctx, false /* no_spills */,
932                                    shader_time_index, debug_enabled);
933   else
934      gs = new brw::gfx6_gs_visitor(compiler, log_data, &c, prog_data,
935                                    nir, mem_ctx, false /* no_spills */,
936                                    shader_time_index, debug_enabled);
937
938   if (!gs->run()) {
939      if (error_str)
940         *error_str = ralloc_strdup(mem_ctx, gs->fail_msg);
941   } else {
942      ret = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
943                                       &prog_data->base, gs->cfg,
944                                       gs->performance_analysis.require(),
945                                       stats, debug_enabled);
946   }
947
948   delete gs;
949   return ret;
950}
951