1/* 2 * Copyright © 2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include "brw_nir.h" 25#include "brw_vec4.h" 26#include "brw_vec4_builder.h" 27#include "brw_vec4_surface_builder.h" 28#include "brw_eu.h" 29 30using namespace brw; 31using namespace brw::surface_access; 32 33namespace brw { 34 35void 36vec4_visitor::emit_nir_code() 37{ 38 if (nir->num_uniforms > 0) 39 nir_setup_uniforms(); 40 41 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir)); 42} 43 44void 45vec4_visitor::nir_setup_uniforms() 46{ 47 uniforms = nir->num_uniforms / 16; 48} 49 50void 51vec4_visitor::nir_emit_impl(nir_function_impl *impl) 52{ 53 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc); 54 for (unsigned i = 0; i < impl->reg_alloc; i++) { 55 nir_locals[i] = dst_reg(); 56 } 57 58 foreach_list_typed(nir_register, reg, node, &impl->registers) { 59 unsigned array_elems = 60 reg->num_array_elems == 0 ? 1 : reg->num_array_elems; 61 const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32); 62 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs)); 63 64 if (reg->bit_size == 64) 65 nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF; 66 } 67 68 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc); 69 70 nir_emit_cf_list(&impl->body); 71} 72 73void 74vec4_visitor::nir_emit_cf_list(exec_list *list) 75{ 76 exec_list_validate(list); 77 foreach_list_typed(nir_cf_node, node, node, list) { 78 switch (node->type) { 79 case nir_cf_node_if: 80 nir_emit_if(nir_cf_node_as_if(node)); 81 break; 82 83 case nir_cf_node_loop: 84 nir_emit_loop(nir_cf_node_as_loop(node)); 85 break; 86 87 case nir_cf_node_block: 88 nir_emit_block(nir_cf_node_as_block(node)); 89 break; 90 91 default: 92 unreachable("Invalid CFG node block"); 93 } 94 } 95} 96 97void 98vec4_visitor::nir_emit_if(nir_if *if_stmt) 99{ 100 /* First, put the condition in f0 */ 101 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1); 102 vec4_instruction *inst = emit(MOV(dst_null_d(), condition)); 103 inst->conditional_mod = BRW_CONDITIONAL_NZ; 104 105 /* We can just predicate based on the X channel, as the condition only 106 * goes on its own line */ 107 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X)); 108 109 nir_emit_cf_list(&if_stmt->then_list); 110 111 /* note: if the else is empty, dead CF elimination will remove it */ 112 emit(BRW_OPCODE_ELSE); 113 114 nir_emit_cf_list(&if_stmt->else_list); 115 116 emit(BRW_OPCODE_ENDIF); 117} 118 119void 120vec4_visitor::nir_emit_loop(nir_loop *loop) 121{ 122 emit(BRW_OPCODE_DO); 123 124 nir_emit_cf_list(&loop->body); 125 126 emit(BRW_OPCODE_WHILE); 127} 128 129void 130vec4_visitor::nir_emit_block(nir_block *block) 131{ 132 nir_foreach_instr(instr, block) { 133 nir_emit_instr(instr); 134 } 135} 136 137void 138vec4_visitor::nir_emit_instr(nir_instr *instr) 139{ 140 base_ir = instr; 141 142 switch (instr->type) { 143 case nir_instr_type_load_const: 144 nir_emit_load_const(nir_instr_as_load_const(instr)); 145 break; 146 147 case nir_instr_type_intrinsic: 148 nir_emit_intrinsic(nir_instr_as_intrinsic(instr)); 149 break; 150 151 case nir_instr_type_alu: 152 nir_emit_alu(nir_instr_as_alu(instr)); 153 break; 154 155 case nir_instr_type_jump: 156 nir_emit_jump(nir_instr_as_jump(instr)); 157 break; 158 159 case nir_instr_type_tex: 160 nir_emit_texture(nir_instr_as_tex(instr)); 161 break; 162 163 case nir_instr_type_ssa_undef: 164 nir_emit_undef(nir_instr_as_ssa_undef(instr)); 165 break; 166 167 default: 168 unreachable("VS instruction not yet implemented by NIR->vec4"); 169 } 170} 171 172static dst_reg 173dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg, 174 unsigned base_offset, nir_src *indirect) 175{ 176 dst_reg reg; 177 178 reg = v->nir_locals[nir_reg->index]; 179 if (nir_reg->bit_size == 64) 180 reg.type = BRW_REGISTER_TYPE_DF; 181 reg = offset(reg, 8, base_offset); 182 if (indirect) { 183 reg.reladdr = 184 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect, 185 BRW_REGISTER_TYPE_D, 186 1)); 187 } 188 return reg; 189} 190 191dst_reg 192vec4_visitor::get_nir_dest(const nir_dest &dest) 193{ 194 if (dest.is_ssa) { 195 dst_reg dst = 196 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32))); 197 if (dest.ssa.bit_size == 64) 198 dst.type = BRW_REGISTER_TYPE_DF; 199 nir_ssa_values[dest.ssa.index] = dst; 200 return dst; 201 } else { 202 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset, 203 dest.reg.indirect); 204 } 205} 206 207dst_reg 208vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type) 209{ 210 return retype(get_nir_dest(dest), type); 211} 212 213dst_reg 214vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type) 215{ 216 return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type)); 217} 218 219src_reg 220vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type, 221 unsigned num_components) 222{ 223 dst_reg reg; 224 225 if (src.is_ssa) { 226 assert(src.ssa != NULL); 227 reg = nir_ssa_values[src.ssa->index]; 228 } 229 else { 230 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset, 231 src.reg.indirect); 232 } 233 234 reg = retype(reg, type); 235 236 src_reg reg_as_src = src_reg(reg); 237 reg_as_src.swizzle = brw_swizzle_for_size(num_components); 238 return reg_as_src; 239} 240 241src_reg 242vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type, 243 unsigned num_components) 244{ 245 return get_nir_src(src, brw_type_for_nir_type(devinfo, type), 246 num_components); 247} 248 249src_reg 250vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components) 251{ 252 /* if type is not specified, default to signed int */ 253 return get_nir_src(src, nir_type_int32, num_components); 254} 255 256src_reg 257vec4_visitor::get_nir_src_imm(const nir_src &src) 258{ 259 assert(nir_src_num_components(src) == 1); 260 assert(nir_src_bit_size(src) == 32); 261 return nir_src_is_const(src) ? src_reg(brw_imm_d(nir_src_as_int(src))) : 262 get_nir_src(src, 1); 263} 264 265src_reg 266vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr) 267{ 268 nir_src *offset_src = nir_get_io_offset_src(instr); 269 270 if (nir_src_is_const(*offset_src)) { 271 /* The only constant offset we should find is 0. brw_nir.c's 272 * add_const_offset_to_base() will fold other constant offsets 273 * into instr->const_index[0]. 274 */ 275 assert(nir_src_as_uint(*offset_src) == 0); 276 return src_reg(); 277 } 278 279 return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1); 280} 281 282static src_reg 283setup_imm_df(const vec4_builder &bld, double v) 284{ 285 const intel_device_info *devinfo = bld.shader->devinfo; 286 assert(devinfo->ver == 7); 287 288 /* gfx7.5 does not support DF immediates straighforward but the DIM 289 * instruction allows to set the 64-bit immediate value. 290 */ 291 if (devinfo->is_haswell) { 292 const vec4_builder ubld = bld.exec_all(); 293 const dst_reg dst = bld.vgrf(BRW_REGISTER_TYPE_DF); 294 ubld.DIM(dst, brw_imm_df(v)); 295 return swizzle(src_reg(dst), BRW_SWIZZLE_XXXX); 296 } 297 298 /* gfx7 does not support DF immediates */ 299 union { 300 double d; 301 struct { 302 uint32_t i1; 303 uint32_t i2; 304 }; 305 } di; 306 307 di.d = v; 308 309 /* Write the low 32-bit of the constant to the X:UD channel and the 310 * high 32-bit to the Y:UD channel to build the constant in a VGRF. 311 * We have to do this twice (offset 0 and offset 1), since a DF VGRF takes 312 * two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle 313 * XXXX so any access to the VGRF only reads the constant data in these 314 * channels. 315 */ 316 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2); 317 for (unsigned n = 0; n < 2; n++) { 318 const vec4_builder ubld = bld.exec_all().group(4, n); 319 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1)); 320 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2)); 321 } 322 323 return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX); 324} 325 326void 327vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr) 328{ 329 dst_reg reg; 330 331 if (instr->def.bit_size == 64) { 332 reg = dst_reg(VGRF, alloc.allocate(2)); 333 reg.type = BRW_REGISTER_TYPE_DF; 334 } else { 335 reg = dst_reg(VGRF, alloc.allocate(1)); 336 reg.type = BRW_REGISTER_TYPE_D; 337 } 338 339 const vec4_builder ibld = vec4_builder(this).at_end(); 340 unsigned remaining = brw_writemask_for_size(instr->def.num_components); 341 342 /* @FIXME: consider emitting vector operations to save some MOVs in 343 * cases where the components are representable in 8 bits. 344 * For now, we emit a MOV for each distinct value. 345 */ 346 for (unsigned i = 0; i < instr->def.num_components; i++) { 347 unsigned writemask = 1 << i; 348 349 if ((remaining & writemask) == 0) 350 continue; 351 352 for (unsigned j = i; j < instr->def.num_components; j++) { 353 if ((instr->def.bit_size == 32 && 354 instr->value[i].u32 == instr->value[j].u32) || 355 (instr->def.bit_size == 64 && 356 instr->value[i].f64 == instr->value[j].f64)) { 357 writemask |= 1 << j; 358 } 359 } 360 361 reg.writemask = writemask; 362 if (instr->def.bit_size == 64) { 363 emit(MOV(reg, setup_imm_df(ibld, instr->value[i].f64))); 364 } else { 365 emit(MOV(reg, brw_imm_d(instr->value[i].i32))); 366 } 367 368 remaining &= ~writemask; 369 } 370 371 /* Set final writemask */ 372 reg.writemask = brw_writemask_for_size(instr->def.num_components); 373 374 nir_ssa_values[instr->def.index] = reg; 375} 376 377src_reg 378vec4_visitor::get_nir_ssbo_intrinsic_index(nir_intrinsic_instr *instr) 379{ 380 /* SSBO stores are weird in that their index is in src[1] */ 381 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0; 382 383 src_reg surf_index; 384 if (nir_src_is_const(instr->src[src])) { 385 unsigned index = prog_data->base.binding_table.ssbo_start + 386 nir_src_as_uint(instr->src[src]); 387 surf_index = brw_imm_ud(index); 388 } else { 389 surf_index = src_reg(this, glsl_type::uint_type); 390 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[src], 1), 391 brw_imm_ud(prog_data->base.binding_table.ssbo_start))); 392 surf_index = emit_uniformize(surf_index); 393 } 394 395 return surf_index; 396} 397 398void 399vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr) 400{ 401 dst_reg dest; 402 src_reg src; 403 404 switch (instr->intrinsic) { 405 406 case nir_intrinsic_load_input: { 407 assert(nir_dest_bit_size(instr->dest) == 32); 408 /* We set EmitNoIndirectInput for VS */ 409 unsigned load_offset = nir_src_as_uint(instr->src[0]); 410 411 dest = get_nir_dest(instr->dest); 412 dest.writemask = brw_writemask_for_size(instr->num_components); 413 414 src = src_reg(ATTR, instr->const_index[0] + load_offset, 415 glsl_type::uvec4_type); 416 src = retype(src, dest.type); 417 418 /* Swizzle source based on component layout qualifier */ 419 src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr)); 420 emit(MOV(dest, src)); 421 break; 422 } 423 424 case nir_intrinsic_store_output: { 425 assert(nir_src_bit_size(instr->src[0]) == 32); 426 unsigned store_offset = nir_src_as_uint(instr->src[1]); 427 int varying = instr->const_index[0] + store_offset; 428 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 429 instr->num_components); 430 431 unsigned c = nir_intrinsic_component(instr); 432 output_reg[varying][c] = dst_reg(src); 433 output_num_components[varying][c] = instr->num_components; 434 break; 435 } 436 437 case nir_intrinsic_get_ssbo_size: { 438 assert(nir_src_num_components(instr->src[0]) == 1); 439 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ? 440 nir_src_as_uint(instr->src[0]) : 0; 441 442 const unsigned index = 443 prog_data->base.binding_table.ssbo_start + ssbo_index; 444 dst_reg result_dst = get_nir_dest(instr->dest); 445 vec4_instruction *inst = new(mem_ctx) 446 vec4_instruction(SHADER_OPCODE_GET_BUFFER_SIZE, result_dst); 447 448 inst->base_mrf = 2; 449 inst->mlen = 1; /* always at least one */ 450 inst->src[1] = brw_imm_ud(index); 451 452 /* MRF for the first parameter */ 453 src_reg lod = brw_imm_d(0); 454 int param_base = inst->base_mrf; 455 int writemask = WRITEMASK_X; 456 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod)); 457 458 emit(inst); 459 break; 460 } 461 462 case nir_intrinsic_store_ssbo: { 463 assert(devinfo->ver == 7); 464 465 /* brw_nir_lower_mem_access_bit_sizes takes care of this */ 466 assert(nir_src_bit_size(instr->src[0]) == 32); 467 assert(nir_intrinsic_write_mask(instr) == 468 (1u << instr->num_components) - 1); 469 470 src_reg surf_index = get_nir_ssbo_intrinsic_index(instr); 471 src_reg offset_reg = retype(get_nir_src_imm(instr->src[2]), 472 BRW_REGISTER_TYPE_UD); 473 474 /* Value */ 475 src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4); 476 477 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped 478 * writes will use SIMD8 mode. In order to hide this and keep symmetry across 479 * typed and untyped messages and across hardware platforms, the 480 * current implementation of the untyped messages will transparently convert 481 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it 482 * and enabling only channel X on the SEND instruction. 483 * 484 * The above, works well for full vector writes, but not for partial writes 485 * where we want to write some channels and not others, like when we have 486 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are 487 * quite restrictive with regards to the channel enables we can configure in 488 * the message descriptor (not all combinations are allowed) we cannot simply 489 * implement these scenarios with a single message while keeping the 490 * aforementioned symmetry in the implementation. For now we de decided that 491 * it is better to keep the symmetry to reduce complexity, so in situations 492 * such as the one described we end up emitting two untyped write messages 493 * (one for xy and another for w). 494 * 495 * The code below packs consecutive channels into a single write message, 496 * detects gaps in the vector write and if needed, sends a second message 497 * with the remaining channels. If in the future we decide that we want to 498 * emit a single message at the expense of losing the symmetry in the 499 * implementation we can: 500 * 501 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8 502 * message payload. In this mode we can write up to 8 offsets and dwords 503 * to the red channel only (for the two vec4s in the SIMD4x2 execution) 504 * and select which of the 8 channels carry data to write by setting the 505 * appropriate writemask in the dst register of the SEND instruction. 506 * It would require to write a new generator opcode specifically for 507 * IvyBridge since we would need to prepare a SIMD8 payload that could 508 * use any channel, not just X. 509 * 510 * 2) For Haswell+: Simply send a single write message but set the writemask 511 * on the dst of the SEND instruction to select the channels we want to 512 * write. It would require to modify the current messages to receive 513 * and honor the writemask provided. 514 */ 515 const vec4_builder bld = vec4_builder(this).at_end() 516 .annotate(current_annotation, base_ir); 517 518 emit_untyped_write(bld, surf_index, offset_reg, val_reg, 519 1 /* dims */, instr->num_components /* size */, 520 BRW_PREDICATE_NONE); 521 break; 522 } 523 524 case nir_intrinsic_load_ssbo: { 525 assert(devinfo->ver == 7); 526 527 /* brw_nir_lower_mem_access_bit_sizes takes care of this */ 528 assert(nir_dest_bit_size(instr->dest) == 32); 529 530 src_reg surf_index = get_nir_ssbo_intrinsic_index(instr); 531 src_reg offset_reg = retype(get_nir_src_imm(instr->src[1]), 532 BRW_REGISTER_TYPE_UD); 533 534 /* Read the vector */ 535 const vec4_builder bld = vec4_builder(this).at_end() 536 .annotate(current_annotation, base_ir); 537 538 src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg, 539 1 /* dims */, 4 /* size*/, 540 BRW_PREDICATE_NONE); 541 dst_reg dest = get_nir_dest(instr->dest); 542 read_result.type = dest.type; 543 read_result.swizzle = brw_swizzle_for_size(instr->num_components); 544 emit(MOV(dest, read_result)); 545 break; 546 } 547 548 case nir_intrinsic_ssbo_atomic_add: 549 case nir_intrinsic_ssbo_atomic_imin: 550 case nir_intrinsic_ssbo_atomic_umin: 551 case nir_intrinsic_ssbo_atomic_imax: 552 case nir_intrinsic_ssbo_atomic_umax: 553 case nir_intrinsic_ssbo_atomic_and: 554 case nir_intrinsic_ssbo_atomic_or: 555 case nir_intrinsic_ssbo_atomic_xor: 556 case nir_intrinsic_ssbo_atomic_exchange: 557 case nir_intrinsic_ssbo_atomic_comp_swap: 558 nir_emit_ssbo_atomic(brw_aop_for_nir_intrinsic(instr), instr); 559 break; 560 561 case nir_intrinsic_load_vertex_id: 562 unreachable("should be lowered by lower_vertex_id()"); 563 564 case nir_intrinsic_load_vertex_id_zero_base: 565 case nir_intrinsic_load_base_vertex: 566 case nir_intrinsic_load_instance_id: 567 case nir_intrinsic_load_base_instance: 568 case nir_intrinsic_load_draw_id: 569 case nir_intrinsic_load_invocation_id: 570 unreachable("should be lowered by brw_nir_lower_vs_inputs()"); 571 572 case nir_intrinsic_load_uniform: { 573 /* Offsets are in bytes but they should always be multiples of 4 */ 574 assert(nir_intrinsic_base(instr) % 4 == 0); 575 576 dest = get_nir_dest(instr->dest); 577 578 src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16)); 579 src.type = dest.type; 580 581 /* Uniforms don't actually have to be vec4 aligned. In the case that 582 * it isn't, we have to use a swizzle to shift things around. They 583 * do still have the std140 alignment requirement that vec2's have to 584 * be vec2-aligned and vec3's and vec4's have to be vec4-aligned. 585 * 586 * The swizzle also works in the indirect case as the generator adds 587 * the swizzle to the offset for us. 588 */ 589 const int type_size = type_sz(src.type); 590 unsigned shift = (nir_intrinsic_base(instr) % 16) / type_size; 591 assert(shift + instr->num_components <= 4); 592 593 if (nir_src_is_const(instr->src[0])) { 594 const unsigned load_offset = nir_src_as_uint(instr->src[0]); 595 /* Offsets are in bytes but they should always be multiples of 4 */ 596 assert(load_offset % 4 == 0); 597 598 src.swizzle = brw_swizzle_for_size(instr->num_components); 599 dest.writemask = brw_writemask_for_size(instr->num_components); 600 unsigned offset = load_offset + shift * type_size; 601 src.offset = ROUND_DOWN_TO(offset, 16); 602 shift = (offset % 16) / type_size; 603 assert(shift + instr->num_components <= 4); 604 src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift); 605 606 emit(MOV(dest, src)); 607 } else { 608 /* Uniform arrays are vec4 aligned, because of std140 alignment 609 * rules. 610 */ 611 assert(shift == 0); 612 613 src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1); 614 615 /* MOV_INDIRECT is going to stomp the whole thing anyway */ 616 dest.writemask = WRITEMASK_XYZW; 617 618 emit(SHADER_OPCODE_MOV_INDIRECT, dest, src, 619 indirect, brw_imm_ud(instr->const_index[1])); 620 } 621 break; 622 } 623 624 case nir_intrinsic_load_ubo: { 625 src_reg surf_index; 626 627 dest = get_nir_dest(instr->dest); 628 629 if (nir_src_is_const(instr->src[0])) { 630 /* The block index is a constant, so just emit the binding table entry 631 * as an immediate. 632 */ 633 const unsigned index = prog_data->base.binding_table.ubo_start + 634 nir_src_as_uint(instr->src[0]); 635 surf_index = brw_imm_ud(index); 636 } else { 637 /* The block index is not a constant. Evaluate the index expression 638 * per-channel and add the base UBO index; we have to select a value 639 * from any live channel. 640 */ 641 surf_index = src_reg(this, glsl_type::uint_type); 642 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32, 643 instr->num_components), 644 brw_imm_ud(prog_data->base.binding_table.ubo_start))); 645 surf_index = emit_uniformize(surf_index); 646 } 647 648 src_reg push_reg; 649 src_reg offset_reg; 650 if (nir_src_is_const(instr->src[1])) { 651 unsigned load_offset = nir_src_as_uint(instr->src[1]); 652 unsigned aligned_offset = load_offset & ~15; 653 offset_reg = brw_imm_ud(aligned_offset); 654 655 /* See if we've selected this as a push constant candidate */ 656 if (nir_src_is_const(instr->src[0])) { 657 const unsigned ubo_block = nir_src_as_uint(instr->src[0]); 658 const unsigned offset_256b = aligned_offset / 32; 659 660 for (int i = 0; i < 4; i++) { 661 const struct brw_ubo_range *range = &prog_data->base.ubo_ranges[i]; 662 if (range->block == ubo_block && 663 offset_256b >= range->start && 664 offset_256b < range->start + range->length) { 665 666 push_reg = src_reg(dst_reg(UNIFORM, UBO_START + i)); 667 push_reg.type = dest.type; 668 push_reg.offset = aligned_offset - 32 * range->start; 669 break; 670 } 671 } 672 } 673 } else { 674 offset_reg = src_reg(this, glsl_type::uint_type); 675 emit(MOV(dst_reg(offset_reg), 676 get_nir_src(instr->src[1], nir_type_uint32, 1))); 677 } 678 679 src_reg packed_consts; 680 if (push_reg.file != BAD_FILE) { 681 packed_consts = push_reg; 682 } else if (nir_dest_bit_size(instr->dest) == 32) { 683 packed_consts = src_reg(this, glsl_type::vec4_type); 684 emit_pull_constant_load_reg(dst_reg(packed_consts), 685 surf_index, 686 offset_reg, 687 NULL, NULL /* before_block/inst */); 688 prog_data->base.has_ubo_pull = true; 689 } else { 690 src_reg temp = src_reg(this, glsl_type::dvec4_type); 691 src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F); 692 693 emit_pull_constant_load_reg(dst_reg(temp_float), 694 surf_index, offset_reg, NULL, NULL); 695 if (offset_reg.file == IMM) 696 offset_reg.ud += 16; 697 else 698 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u))); 699 emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)), 700 surf_index, offset_reg, NULL, NULL); 701 prog_data->base.has_ubo_pull = true; 702 703 packed_consts = src_reg(this, glsl_type::dvec4_type); 704 shuffle_64bit_data(dst_reg(packed_consts), temp, false); 705 } 706 707 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components); 708 if (nir_src_is_const(instr->src[1])) { 709 unsigned load_offset = nir_src_as_uint(instr->src[1]); 710 unsigned type_size = type_sz(dest.type); 711 packed_consts.swizzle += 712 BRW_SWIZZLE4(load_offset % 16 / type_size, 713 load_offset % 16 / type_size, 714 load_offset % 16 / type_size, 715 load_offset % 16 / type_size); 716 } 717 718 emit(MOV(dest, retype(packed_consts, dest.type))); 719 720 break; 721 } 722 723 case nir_intrinsic_scoped_barrier: 724 assert(nir_intrinsic_execution_scope(instr) == NIR_SCOPE_NONE); 725 FALLTHROUGH; 726 case nir_intrinsic_memory_barrier: { 727 const vec4_builder bld = 728 vec4_builder(this).at_end().annotate(current_annotation, base_ir); 729 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD); 730 vec4_instruction *fence = 731 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp, brw_vec8_grf(0, 0)); 732 fence->sfid = GFX7_SFID_DATAPORT_DATA_CACHE; 733 break; 734 } 735 736 case nir_intrinsic_shader_clock: { 737 /* We cannot do anything if there is an event, so ignore it for now */ 738 const src_reg shader_clock = get_timestamp(); 739 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type); 740 741 dest = get_nir_dest(instr->dest, type); 742 emit(MOV(dest, shader_clock)); 743 break; 744 } 745 746 default: 747 unreachable("Unknown intrinsic"); 748 } 749} 750 751void 752vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr) 753{ 754 dst_reg dest; 755 if (nir_intrinsic_infos[instr->intrinsic].has_dest) 756 dest = get_nir_dest(instr->dest); 757 758 src_reg surface = get_nir_ssbo_intrinsic_index(instr); 759 src_reg offset = get_nir_src(instr->src[1], 1); 760 src_reg data1; 761 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC) 762 data1 = get_nir_src(instr->src[2], 1); 763 src_reg data2; 764 if (op == BRW_AOP_CMPWR) 765 data2 = get_nir_src(instr->src[3], 1); 766 767 /* Emit the actual atomic operation operation */ 768 const vec4_builder bld = 769 vec4_builder(this).at_end().annotate(current_annotation, base_ir); 770 771 src_reg atomic_result = emit_untyped_atomic(bld, surface, offset, 772 data1, data2, 773 1 /* dims */, 1 /* rsize */, 774 op, 775 BRW_PREDICATE_NONE); 776 dest.type = atomic_result.type; 777 bld.MOV(dest, atomic_result); 778} 779 780static unsigned 781brw_swizzle_for_nir_swizzle(uint8_t swizzle[4]) 782{ 783 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); 784} 785 786bool 787vec4_visitor::optimize_predicate(nir_alu_instr *instr, 788 enum brw_predicate *predicate) 789{ 790 if (!instr->src[0].src.is_ssa || 791 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu) 792 return false; 793 794 nir_alu_instr *cmp_instr = 795 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr); 796 797 switch (cmp_instr->op) { 798 case nir_op_b32any_fnequal2: 799 case nir_op_b32any_inequal2: 800 case nir_op_b32any_fnequal3: 801 case nir_op_b32any_inequal3: 802 case nir_op_b32any_fnequal4: 803 case nir_op_b32any_inequal4: 804 *predicate = BRW_PREDICATE_ALIGN16_ANY4H; 805 break; 806 case nir_op_b32all_fequal2: 807 case nir_op_b32all_iequal2: 808 case nir_op_b32all_fequal3: 809 case nir_op_b32all_iequal3: 810 case nir_op_b32all_fequal4: 811 case nir_op_b32all_iequal4: 812 *predicate = BRW_PREDICATE_ALIGN16_ALL4H; 813 break; 814 default: 815 return false; 816 } 817 818 unsigned size_swizzle = 819 brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]); 820 821 src_reg op[2]; 822 assert(nir_op_infos[cmp_instr->op].num_inputs == 2); 823 for (unsigned i = 0; i < 2; i++) { 824 nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i]; 825 unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src); 826 type = (nir_alu_type) (((unsigned) type) | bit_size); 827 op[i] = get_nir_src(cmp_instr->src[i].src, type, 4); 828 unsigned base_swizzle = 829 brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle); 830 op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle); 831 } 832 833 emit(CMP(dst_null_d(), op[0], op[1], 834 brw_cmod_for_nir_comparison(cmp_instr->op))); 835 836 return true; 837} 838 839static void 840emit_find_msb_using_lzd(const vec4_builder &bld, 841 const dst_reg &dst, 842 const src_reg &src, 843 bool is_signed) 844{ 845 vec4_instruction *inst; 846 src_reg temp = src; 847 848 if (is_signed) { 849 /* LZD of an absolute value source almost always does the right 850 * thing. There are two problem values: 851 * 852 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns 853 * 0. However, findMSB(int(0x80000000)) == 30. 854 * 855 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns 856 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says: 857 * 858 * For a value of zero or negative one, -1 will be returned. 859 * 860 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but 861 * findMSB(-(1<<x)) should return x-1. 862 * 863 * For all negative number cases, including 0x80000000 and 864 * 0xffffffff, the correct value is obtained from LZD if instead of 865 * negating the (already negative) value the logical-not is used. A 866 * conditonal logical-not can be achieved in two instructions. 867 */ 868 temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D)); 869 870 bld.ASR(dst_reg(temp), src, brw_imm_d(31)); 871 bld.XOR(dst_reg(temp), temp, src); 872 } 873 874 bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD), 875 retype(temp, BRW_REGISTER_TYPE_UD)); 876 877 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count 878 * from the LSB side. Subtract the result from 31 to convert the MSB count 879 * into an LSB count. If no bits are set, LZD will return 32. 31-32 = -1, 880 * which is exactly what findMSB() is supposed to return. 881 */ 882 inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D), 883 brw_imm_d(31)); 884 inst->src[0].negate = true; 885} 886 887void 888vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src) 889{ 890 enum opcode op; 891 switch (dst.type) { 892 case BRW_REGISTER_TYPE_D: 893 op = VEC4_OPCODE_DOUBLE_TO_D32; 894 break; 895 case BRW_REGISTER_TYPE_UD: 896 op = VEC4_OPCODE_DOUBLE_TO_U32; 897 break; 898 case BRW_REGISTER_TYPE_F: 899 op = VEC4_OPCODE_DOUBLE_TO_F32; 900 break; 901 default: 902 unreachable("Unknown conversion"); 903 } 904 905 dst_reg temp = dst_reg(this, glsl_type::dvec4_type); 906 emit(MOV(temp, src)); 907 dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type); 908 emit(op, temp2, src_reg(temp)); 909 910 emit(VEC4_OPCODE_PICK_LOW_32BIT, retype(temp2, dst.type), src_reg(temp2)); 911 emit(MOV(dst, src_reg(retype(temp2, dst.type)))); 912} 913 914void 915vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src) 916{ 917 dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type)); 918 src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), src.type); 919 emit(MOV(dst_reg(tmp_src), src)); 920 emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src); 921 emit(MOV(dst, src_reg(tmp_dst))); 922} 923 924/** 925 * Try to use an immediate value for a source 926 * 927 * In cases of flow control, constant propagation is sometimes unable to 928 * determine that a register contains a constant value. To work around this, 929 * try to emit a literal as one of the sources. If \c try_src0_also is set, 930 * \c op[0] will also be tried for an immediate value. 931 * 932 * If \c op[0] is modified, the operands will be exchanged so that \c op[1] 933 * will always be the immediate value. 934 * 935 * \return The index of the source that was modified, 0 or 1, if successful. 936 * Otherwise, -1. 937 * 938 * \param op - Operands to the instruction 939 * \param try_src0_also - True if \c op[0] should also be a candidate for 940 * getting an immediate value. This should only be set 941 * for commutative operations. 942 */ 943static int 944try_immediate_source(const nir_alu_instr *instr, src_reg *op, 945 bool try_src0_also) 946{ 947 unsigned idx; 948 949 /* MOV should be the only single-source instruction passed to this 950 * function. Any other unary instruction with a constant source should 951 * have been constant-folded away! 952 */ 953 assert(nir_op_infos[instr->op].num_inputs > 1 || 954 instr->op == nir_op_mov); 955 956 if (instr->op != nir_op_mov && 957 nir_src_bit_size(instr->src[1].src) == 32 && 958 nir_src_is_const(instr->src[1].src)) { 959 idx = 1; 960 } else if (try_src0_also && 961 nir_src_bit_size(instr->src[0].src) == 32 && 962 nir_src_is_const(instr->src[0].src)) { 963 idx = 0; 964 } else { 965 return -1; 966 } 967 968 const enum brw_reg_type old_type = op[idx].type; 969 970 switch (old_type) { 971 case BRW_REGISTER_TYPE_D: 972 case BRW_REGISTER_TYPE_UD: { 973 int first_comp = -1; 974 int d = 0; 975 976 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) { 977 if (nir_alu_instr_channel_used(instr, idx, i)) { 978 if (first_comp < 0) { 979 first_comp = i; 980 d = nir_src_comp_as_int(instr->src[idx].src, 981 instr->src[idx].swizzle[i]); 982 } else if (d != nir_src_comp_as_int(instr->src[idx].src, 983 instr->src[idx].swizzle[i])) { 984 return -1; 985 } 986 } 987 } 988 989 assert(first_comp >= 0); 990 991 if (op[idx].abs) 992 d = MAX2(-d, d); 993 994 if (op[idx].negate) 995 d = -d; 996 997 op[idx] = retype(src_reg(brw_imm_d(d)), old_type); 998 break; 999 } 1000 1001 case BRW_REGISTER_TYPE_F: { 1002 int first_comp = -1; 1003 float f[NIR_MAX_VEC_COMPONENTS] = { 0.0f }; 1004 bool is_scalar = true; 1005 1006 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) { 1007 if (nir_alu_instr_channel_used(instr, idx, i)) { 1008 f[i] = nir_src_comp_as_float(instr->src[idx].src, 1009 instr->src[idx].swizzle[i]); 1010 if (first_comp < 0) { 1011 first_comp = i; 1012 } else if (f[first_comp] != f[i]) { 1013 is_scalar = false; 1014 } 1015 } 1016 } 1017 1018 if (is_scalar) { 1019 if (op[idx].abs) 1020 f[first_comp] = fabs(f[first_comp]); 1021 1022 if (op[idx].negate) 1023 f[first_comp] = -f[first_comp]; 1024 1025 op[idx] = src_reg(brw_imm_f(f[first_comp])); 1026 assert(op[idx].type == old_type); 1027 } else { 1028 uint8_t vf_values[4] = { 0, 0, 0, 0 }; 1029 1030 for (unsigned i = 0; i < ARRAY_SIZE(vf_values); i++) { 1031 1032 if (op[idx].abs) 1033 f[i] = fabs(f[i]); 1034 1035 if (op[idx].negate) 1036 f[i] = -f[i]; 1037 1038 const int vf = brw_float_to_vf(f[i]); 1039 if (vf == -1) 1040 return -1; 1041 1042 vf_values[i] = vf; 1043 } 1044 1045 op[idx] = src_reg(brw_imm_vf4(vf_values[0], vf_values[1], 1046 vf_values[2], vf_values[3])); 1047 } 1048 break; 1049 } 1050 1051 default: 1052 unreachable("Non-32bit type."); 1053 } 1054 1055 /* If the instruction has more than one source, the instruction format only 1056 * allows source 1 to be an immediate value. If the immediate value was 1057 * source 0, then the sources must be exchanged. 1058 */ 1059 if (idx == 0 && instr->op != nir_op_mov) { 1060 src_reg tmp = op[0]; 1061 op[0] = op[1]; 1062 op[1] = tmp; 1063 } 1064 1065 return idx; 1066} 1067 1068void 1069vec4_visitor::fix_float_operands(src_reg op[3], nir_alu_instr *instr) 1070{ 1071 bool fixed[3] = { false, false, false }; 1072 1073 for (unsigned i = 0; i < 2; i++) { 1074 if (!nir_src_is_const(instr->src[i].src)) 1075 continue; 1076 1077 for (unsigned j = i + 1; j < 3; j++) { 1078 if (fixed[j]) 1079 continue; 1080 1081 if (!nir_src_is_const(instr->src[j].src)) 1082 continue; 1083 1084 if (nir_alu_srcs_equal(instr, instr, i, j)) { 1085 if (!fixed[i]) 1086 op[i] = fix_3src_operand(op[i]); 1087 1088 op[j] = op[i]; 1089 1090 fixed[i] = true; 1091 fixed[j] = true; 1092 } else if (nir_alu_srcs_negative_equal(instr, instr, i, j)) { 1093 if (!fixed[i]) 1094 op[i] = fix_3src_operand(op[i]); 1095 1096 op[j] = op[i]; 1097 op[j].negate = !op[j].negate; 1098 1099 fixed[i] = true; 1100 fixed[j] = true; 1101 } 1102 } 1103 } 1104 1105 for (unsigned i = 0; i < 3; i++) { 1106 if (!fixed[i]) 1107 op[i] = fix_3src_operand(op[i]); 1108 } 1109} 1110 1111static bool 1112const_src_fits_in_16_bits(const nir_src &src, brw_reg_type type) 1113{ 1114 assert(nir_src_is_const(src)); 1115 if (brw_reg_type_is_unsigned_integer(type)) { 1116 return nir_src_comp_as_uint(src, 0) <= UINT16_MAX; 1117 } else { 1118 const int64_t c = nir_src_comp_as_int(src, 0); 1119 return c <= INT16_MAX && c >= INT16_MIN; 1120 } 1121} 1122 1123void 1124vec4_visitor::nir_emit_alu(nir_alu_instr *instr) 1125{ 1126 vec4_instruction *inst; 1127 1128 nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type | 1129 nir_dest_bit_size(instr->dest.dest)); 1130 dst_reg dst = get_nir_dest(instr->dest.dest, dst_type); 1131 dst.writemask = instr->dest.write_mask; 1132 1133 assert(!instr->dest.saturate); 1134 1135 src_reg op[4]; 1136 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { 1137 /* We don't lower to source modifiers, so they shouldn't exist. */ 1138 assert(!instr->src[i].abs); 1139 assert(!instr->src[i].negate); 1140 1141 nir_alu_type src_type = (nir_alu_type) 1142 (nir_op_infos[instr->op].input_types[i] | 1143 nir_src_bit_size(instr->src[i].src)); 1144 op[i] = get_nir_src(instr->src[i].src, src_type, 4); 1145 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle); 1146 } 1147 1148#ifndef NDEBUG 1149 /* On Gen7 and earlier, no functionality is exposed that should allow 8-bit 1150 * integer types to ever exist. 1151 */ 1152 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) 1153 assert(type_sz(op[i].type) > 1); 1154#endif 1155 1156 switch (instr->op) { 1157 case nir_op_mov: 1158 try_immediate_source(instr, &op[0], true); 1159 inst = emit(MOV(dst, op[0])); 1160 break; 1161 1162 case nir_op_vec2: 1163 case nir_op_vec3: 1164 case nir_op_vec4: 1165 unreachable("not reached: should be handled by lower_vec_to_movs()"); 1166 1167 case nir_op_i2f32: 1168 case nir_op_u2f32: 1169 inst = emit(MOV(dst, op[0])); 1170 break; 1171 1172 case nir_op_f2f32: 1173 case nir_op_f2i32: 1174 case nir_op_f2u32: 1175 if (nir_src_bit_size(instr->src[0].src) == 64) 1176 emit_conversion_from_double(dst, op[0]); 1177 else 1178 inst = emit(MOV(dst, op[0])); 1179 break; 1180 1181 case nir_op_f2f64: 1182 case nir_op_i2f64: 1183 case nir_op_u2f64: 1184 emit_conversion_to_double(dst, op[0]); 1185 break; 1186 1187 case nir_op_fsat: 1188 inst = emit(MOV(dst, op[0])); 1189 inst->saturate = true; 1190 break; 1191 1192 case nir_op_fneg: 1193 case nir_op_ineg: 1194 op[0].negate = true; 1195 inst = emit(MOV(dst, op[0])); 1196 break; 1197 1198 case nir_op_fabs: 1199 case nir_op_iabs: 1200 op[0].negate = false; 1201 op[0].abs = true; 1202 inst = emit(MOV(dst, op[0])); 1203 break; 1204 1205 case nir_op_iadd: 1206 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1207 FALLTHROUGH; 1208 case nir_op_fadd: 1209 try_immediate_source(instr, op, true); 1210 inst = emit(ADD(dst, op[0], op[1])); 1211 break; 1212 1213 case nir_op_uadd_sat: 1214 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1215 inst = emit(ADD(dst, op[0], op[1])); 1216 inst->saturate = true; 1217 break; 1218 1219 case nir_op_fmul: 1220 try_immediate_source(instr, op, true); 1221 inst = emit(MUL(dst, op[0], op[1])); 1222 break; 1223 1224 case nir_op_imul: { 1225 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1226 1227 /* For integer multiplication, the MUL uses the low 16 bits of one of 1228 * the operands (src0 through SNB, src1 on IVB and later). The MACH 1229 * accumulates in the contribution of the upper 16 bits of that 1230 * operand. If we can determine that one of the args is in the low 1231 * 16 bits, though, we can just emit a single MUL. 1232 */ 1233 if (nir_src_is_const(instr->src[0].src) && 1234 nir_alu_instr_src_read_mask(instr, 0) == 1 && 1235 const_src_fits_in_16_bits(instr->src[0].src, op[0].type)) { 1236 if (devinfo->ver < 7) 1237 emit(MUL(dst, op[0], op[1])); 1238 else 1239 emit(MUL(dst, op[1], op[0])); 1240 } else if (nir_src_is_const(instr->src[1].src) && 1241 nir_alu_instr_src_read_mask(instr, 1) == 1 && 1242 const_src_fits_in_16_bits(instr->src[1].src, op[1].type)) { 1243 if (devinfo->ver < 7) 1244 emit(MUL(dst, op[1], op[0])); 1245 else 1246 emit(MUL(dst, op[0], op[1])); 1247 } else { 1248 struct brw_reg acc = retype(brw_acc_reg(8), dst.type); 1249 1250 emit(MUL(acc, op[0], op[1])); 1251 emit(MACH(dst_null_d(), op[0], op[1])); 1252 emit(MOV(dst, src_reg(acc))); 1253 } 1254 break; 1255 } 1256 1257 case nir_op_imul_high: 1258 case nir_op_umul_high: { 1259 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1260 struct brw_reg acc = retype(brw_acc_reg(8), dst.type); 1261 1262 emit(MUL(acc, op[0], op[1])); 1263 emit(MACH(dst, op[0], op[1])); 1264 break; 1265 } 1266 1267 case nir_op_frcp: 1268 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]); 1269 break; 1270 1271 case nir_op_fexp2: 1272 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]); 1273 break; 1274 1275 case nir_op_flog2: 1276 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]); 1277 break; 1278 1279 case nir_op_fsin: 1280 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]); 1281 break; 1282 1283 case nir_op_fcos: 1284 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]); 1285 break; 1286 1287 case nir_op_idiv: 1288 case nir_op_udiv: 1289 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1290 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]); 1291 break; 1292 1293 case nir_op_umod: 1294 case nir_op_irem: 1295 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it 1296 * appears that our hardware just does the right thing for signed 1297 * remainder. 1298 */ 1299 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1300 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]); 1301 break; 1302 1303 case nir_op_imod: { 1304 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */ 1305 inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]); 1306 1307 /* Math instructions don't support conditional mod */ 1308 inst = emit(MOV(dst_null_d(), src_reg(dst))); 1309 inst->conditional_mod = BRW_CONDITIONAL_NZ; 1310 1311 /* Now, we need to determine if signs of the sources are different. 1312 * When we XOR the sources, the top bit is 0 if they are the same and 1 1313 * if they are different. We can then use a conditional modifier to 1314 * turn that into a predicate. This leads us to an XOR.l instruction. 1315 * 1316 * Technically, according to the PRM, you're not allowed to use .l on a 1317 * XOR instruction. However, emperical experiments and Curro's reading 1318 * of the simulator source both indicate that it's safe. 1319 */ 1320 src_reg tmp = src_reg(this, glsl_type::ivec4_type); 1321 inst = emit(XOR(dst_reg(tmp), op[0], op[1])); 1322 inst->predicate = BRW_PREDICATE_NORMAL; 1323 inst->conditional_mod = BRW_CONDITIONAL_L; 1324 1325 /* If the result of the initial remainder operation is non-zero and the 1326 * two sources have different signs, add in a copy of op[1] to get the 1327 * final integer modulus value. 1328 */ 1329 inst = emit(ADD(dst, src_reg(dst), op[1])); 1330 inst->predicate = BRW_PREDICATE_NORMAL; 1331 break; 1332 } 1333 1334 case nir_op_ldexp: 1335 unreachable("not reached: should be handled by ldexp_to_arith()"); 1336 1337 case nir_op_fsqrt: 1338 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]); 1339 break; 1340 1341 case nir_op_frsq: 1342 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]); 1343 break; 1344 1345 case nir_op_fpow: 1346 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]); 1347 break; 1348 1349 case nir_op_uadd_carry: { 1350 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1351 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD); 1352 1353 emit(ADDC(dst_null_ud(), op[0], op[1])); 1354 emit(MOV(dst, src_reg(acc))); 1355 break; 1356 } 1357 1358 case nir_op_usub_borrow: { 1359 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1360 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD); 1361 1362 emit(SUBB(dst_null_ud(), op[0], op[1])); 1363 emit(MOV(dst, src_reg(acc))); 1364 break; 1365 } 1366 1367 case nir_op_ftrunc: 1368 inst = emit(RNDZ(dst, op[0])); 1369 if (devinfo->ver < 6) { 1370 inst->conditional_mod = BRW_CONDITIONAL_R; 1371 inst = emit(ADD(dst, src_reg(dst), brw_imm_f(1.0f))); 1372 inst->predicate = BRW_PREDICATE_NORMAL; 1373 inst = emit(MOV(dst, src_reg(dst))); /* for potential saturation */ 1374 } 1375 break; 1376 1377 case nir_op_fceil: { 1378 src_reg tmp = src_reg(this, glsl_type::float_type); 1379 tmp.swizzle = 1380 brw_swizzle_for_size(instr->src[0].src.is_ssa ? 1381 instr->src[0].src.ssa->num_components : 1382 instr->src[0].src.reg.reg->num_components); 1383 1384 op[0].negate = !op[0].negate; 1385 emit(RNDD(dst_reg(tmp), op[0])); 1386 tmp.negate = true; 1387 inst = emit(MOV(dst, tmp)); 1388 break; 1389 } 1390 1391 case nir_op_ffloor: 1392 inst = emit(RNDD(dst, op[0])); 1393 break; 1394 1395 case nir_op_ffract: 1396 inst = emit(FRC(dst, op[0])); 1397 break; 1398 1399 case nir_op_fround_even: 1400 inst = emit(RNDE(dst, op[0])); 1401 if (devinfo->ver < 6) { 1402 inst->conditional_mod = BRW_CONDITIONAL_R; 1403 inst = emit(ADD(dst, src_reg(dst), brw_imm_f(1.0f))); 1404 inst->predicate = BRW_PREDICATE_NORMAL; 1405 inst = emit(MOV(dst, src_reg(dst))); /* for potential saturation */ 1406 } 1407 break; 1408 1409 case nir_op_fquantize2f16: { 1410 /* See also vec4_visitor::emit_pack_half_2x16() */ 1411 src_reg tmp16 = src_reg(this, glsl_type::uvec4_type); 1412 src_reg tmp32 = src_reg(this, glsl_type::vec4_type); 1413 src_reg zero = src_reg(this, glsl_type::vec4_type); 1414 1415 /* Check for denormal */ 1416 src_reg abs_src0 = op[0]; 1417 abs_src0.abs = true; 1418 emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)), 1419 BRW_CONDITIONAL_L)); 1420 /* Get the appropriately signed zero */ 1421 emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD), 1422 retype(op[0], BRW_REGISTER_TYPE_UD), 1423 brw_imm_ud(0x80000000))); 1424 /* Do the actual F32 -> F16 -> F32 conversion */ 1425 emit(F32TO16(dst_reg(tmp16), op[0])); 1426 emit(F16TO32(dst_reg(tmp32), tmp16)); 1427 /* Select that or zero based on normal status */ 1428 inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32); 1429 inst->predicate = BRW_PREDICATE_NORMAL; 1430 break; 1431 } 1432 1433 case nir_op_imin: 1434 case nir_op_umin: 1435 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1436 FALLTHROUGH; 1437 case nir_op_fmin: 1438 try_immediate_source(instr, op, true); 1439 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]); 1440 break; 1441 1442 case nir_op_imax: 1443 case nir_op_umax: 1444 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1445 FALLTHROUGH; 1446 case nir_op_fmax: 1447 try_immediate_source(instr, op, true); 1448 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]); 1449 break; 1450 1451 case nir_op_fddx: 1452 case nir_op_fddx_coarse: 1453 case nir_op_fddx_fine: 1454 case nir_op_fddy: 1455 case nir_op_fddy_coarse: 1456 case nir_op_fddy_fine: 1457 unreachable("derivatives are not valid in vertex shaders"); 1458 1459 case nir_op_ilt32: 1460 case nir_op_ult32: 1461 case nir_op_ige32: 1462 case nir_op_uge32: 1463 case nir_op_ieq32: 1464 case nir_op_ine32: 1465 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1466 FALLTHROUGH; 1467 case nir_op_flt32: 1468 case nir_op_fge32: 1469 case nir_op_feq32: 1470 case nir_op_fneu32: { 1471 enum brw_conditional_mod conditional_mod = 1472 brw_cmod_for_nir_comparison(instr->op); 1473 1474 if (nir_src_bit_size(instr->src[0].src) < 64) { 1475 /* If the order of the sources is changed due to an immediate value, 1476 * then the condition must also be changed. 1477 */ 1478 if (try_immediate_source(instr, op, true) == 0) 1479 conditional_mod = brw_swap_cmod(conditional_mod); 1480 1481 emit(CMP(dst, op[0], op[1], conditional_mod)); 1482 } else { 1483 /* Produce a 32-bit boolean result from the DF comparison by selecting 1484 * only the low 32-bit in each DF produced. Do this in a temporary 1485 * so we can then move from there to the result using align16 again 1486 * to honor the original writemask. 1487 */ 1488 dst_reg temp = dst_reg(this, glsl_type::dvec4_type); 1489 emit(CMP(temp, op[0], op[1], conditional_mod)); 1490 dst_reg result = dst_reg(this, glsl_type::bvec4_type); 1491 emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp)); 1492 emit(MOV(dst, src_reg(result))); 1493 } 1494 break; 1495 } 1496 1497 case nir_op_b32all_iequal2: 1498 case nir_op_b32all_iequal3: 1499 case nir_op_b32all_iequal4: 1500 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1501 FALLTHROUGH; 1502 case nir_op_b32all_fequal2: 1503 case nir_op_b32all_fequal3: 1504 case nir_op_b32all_fequal4: { 1505 unsigned swiz = 1506 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]); 1507 1508 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz), 1509 brw_cmod_for_nir_comparison(instr->op))); 1510 emit(MOV(dst, brw_imm_d(0))); 1511 inst = emit(MOV(dst, brw_imm_d(~0))); 1512 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H; 1513 break; 1514 } 1515 1516 case nir_op_b32any_inequal2: 1517 case nir_op_b32any_inequal3: 1518 case nir_op_b32any_inequal4: 1519 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1520 FALLTHROUGH; 1521 case nir_op_b32any_fnequal2: 1522 case nir_op_b32any_fnequal3: 1523 case nir_op_b32any_fnequal4: { 1524 unsigned swiz = 1525 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]); 1526 1527 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz), 1528 brw_cmod_for_nir_comparison(instr->op))); 1529 1530 emit(MOV(dst, brw_imm_d(0))); 1531 inst = emit(MOV(dst, brw_imm_d(~0))); 1532 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H; 1533 break; 1534 } 1535 1536 case nir_op_inot: 1537 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1538 emit(NOT(dst, op[0])); 1539 break; 1540 1541 case nir_op_ixor: 1542 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1543 try_immediate_source(instr, op, true); 1544 emit(XOR(dst, op[0], op[1])); 1545 break; 1546 1547 case nir_op_ior: 1548 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1549 try_immediate_source(instr, op, true); 1550 emit(OR(dst, op[0], op[1])); 1551 break; 1552 1553 case nir_op_iand: 1554 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1555 try_immediate_source(instr, op, true); 1556 emit(AND(dst, op[0], op[1])); 1557 break; 1558 1559 case nir_op_b2i32: 1560 case nir_op_b2f32: 1561 case nir_op_b2f64: 1562 if (nir_dest_bit_size(instr->dest.dest) > 32) { 1563 assert(dst.type == BRW_REGISTER_TYPE_DF); 1564 emit_conversion_to_double(dst, negate(op[0])); 1565 } else { 1566 emit(MOV(dst, negate(op[0]))); 1567 } 1568 break; 1569 1570 case nir_op_f2b32: 1571 if (nir_src_bit_size(instr->src[0].src) == 64) { 1572 /* We use a MOV with conditional_mod to check if the provided value is 1573 * 0.0. We want this to flush denormalized numbers to zero, so we set a 1574 * source modifier on the source operand to trigger this, as source 1575 * modifiers don't affect the result of the testing against 0.0. 1576 */ 1577 src_reg value = op[0]; 1578 value.abs = true; 1579 vec4_instruction *inst = emit(MOV(dst_null_df(), value)); 1580 inst->conditional_mod = BRW_CONDITIONAL_NZ; 1581 1582 src_reg one = src_reg(this, glsl_type::ivec4_type); 1583 emit(MOV(dst_reg(one), brw_imm_d(~0))); 1584 inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0)); 1585 inst->predicate = BRW_PREDICATE_NORMAL; 1586 } else { 1587 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ)); 1588 } 1589 break; 1590 1591 case nir_op_i2b32: 1592 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ)); 1593 break; 1594 1595 case nir_op_unpack_half_2x16_split_x: 1596 case nir_op_unpack_half_2x16_split_y: 1597 case nir_op_pack_half_2x16_split: 1598 unreachable("not reached: should not occur in vertex shader"); 1599 1600 case nir_op_unpack_snorm_2x16: 1601 case nir_op_unpack_unorm_2x16: 1602 case nir_op_pack_snorm_2x16: 1603 case nir_op_pack_unorm_2x16: 1604 unreachable("not reached: should be handled by lower_packing_builtins"); 1605 1606 case nir_op_pack_uvec4_to_uint: 1607 unreachable("not reached"); 1608 1609 case nir_op_pack_uvec2_to_uint: { 1610 dst_reg tmp1 = dst_reg(this, glsl_type::uint_type); 1611 tmp1.writemask = WRITEMASK_X; 1612 op[0].swizzle = BRW_SWIZZLE_YYYY; 1613 emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u)))); 1614 1615 dst_reg tmp2 = dst_reg(this, glsl_type::uint_type); 1616 tmp2.writemask = WRITEMASK_X; 1617 op[0].swizzle = BRW_SWIZZLE_XXXX; 1618 emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu)))); 1619 1620 emit(OR(dst, src_reg(tmp1), src_reg(tmp2))); 1621 break; 1622 } 1623 1624 case nir_op_pack_64_2x32_split: { 1625 dst_reg result = dst_reg(this, glsl_type::dvec4_type); 1626 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type); 1627 emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD))); 1628 emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp)); 1629 emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD))); 1630 emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp)); 1631 emit(MOV(dst, src_reg(result))); 1632 break; 1633 } 1634 1635 case nir_op_unpack_64_2x32_split_x: 1636 case nir_op_unpack_64_2x32_split_y: { 1637 enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ? 1638 VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT; 1639 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type); 1640 emit(MOV(tmp, op[0])); 1641 dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type); 1642 emit(oper, tmp2, src_reg(tmp)); 1643 emit(MOV(dst, src_reg(tmp2))); 1644 break; 1645 } 1646 1647 case nir_op_unpack_half_2x16: 1648 /* As NIR does not guarantee that we have a correct swizzle outside the 1649 * boundaries of a vector, and the implementation of emit_unpack_half_2x16 1650 * uses the source operand in an operation with WRITEMASK_Y while our 1651 * source operand has only size 1, it accessed incorrect data producing 1652 * regressions in Piglit. We repeat the swizzle of the first component on the 1653 * rest of components to avoid regressions. In the vec4_visitor IR code path 1654 * this is not needed because the operand has already the correct swizzle. 1655 */ 1656 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle); 1657 emit_unpack_half_2x16(dst, op[0]); 1658 break; 1659 1660 case nir_op_pack_half_2x16: 1661 emit_pack_half_2x16(dst, op[0]); 1662 break; 1663 1664 case nir_op_unpack_unorm_4x8: 1665 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1666 emit_unpack_unorm_4x8(dst, op[0]); 1667 break; 1668 1669 case nir_op_pack_unorm_4x8: 1670 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1671 emit_pack_unorm_4x8(dst, op[0]); 1672 break; 1673 1674 case nir_op_unpack_snorm_4x8: 1675 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1676 emit_unpack_snorm_4x8(dst, op[0]); 1677 break; 1678 1679 case nir_op_pack_snorm_4x8: 1680 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1681 emit_pack_snorm_4x8(dst, op[0]); 1682 break; 1683 1684 case nir_op_bitfield_reverse: 1685 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1686 emit(BFREV(dst, op[0])); 1687 break; 1688 1689 case nir_op_bit_count: 1690 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1691 emit(CBIT(dst, op[0])); 1692 break; 1693 1694 case nir_op_ufind_msb: 1695 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1696 emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false); 1697 break; 1698 1699 case nir_op_ifind_msb: { 1700 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1701 vec4_builder bld = vec4_builder(this).at_end(); 1702 src_reg src(dst); 1703 1704 if (devinfo->ver < 7) { 1705 emit_find_msb_using_lzd(bld, dst, op[0], true); 1706 } else { 1707 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0])); 1708 1709 /* FBH counts from the MSB side, while GLSL's findMSB() wants the 1710 * count from the LSB side. If FBH didn't return an error 1711 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB 1712 * count into an LSB count. 1713 */ 1714 bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ); 1715 1716 inst = bld.ADD(dst, src, brw_imm_d(31)); 1717 inst->predicate = BRW_PREDICATE_NORMAL; 1718 inst->src[0].negate = true; 1719 } 1720 break; 1721 } 1722 1723 case nir_op_find_lsb: { 1724 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1725 vec4_builder bld = vec4_builder(this).at_end(); 1726 1727 if (devinfo->ver < 7) { 1728 dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D); 1729 1730 /* (x & -x) generates a value that consists of only the LSB of x. 1731 * For all powers of 2, findMSB(y) == findLSB(y). 1732 */ 1733 src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D)); 1734 src_reg negated_src = src; 1735 1736 /* One must be negated, and the other must be non-negated. It 1737 * doesn't matter which is which. 1738 */ 1739 negated_src.negate = true; 1740 src.negate = false; 1741 1742 bld.AND(temp, src, negated_src); 1743 emit_find_msb_using_lzd(bld, dst, src_reg(temp), false); 1744 } else { 1745 bld.FBL(dst, op[0]); 1746 } 1747 break; 1748 } 1749 1750 case nir_op_ubitfield_extract: 1751 case nir_op_ibitfield_extract: 1752 unreachable("should have been lowered"); 1753 case nir_op_ubfe: 1754 case nir_op_ibfe: 1755 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1756 op[0] = fix_3src_operand(op[0]); 1757 op[1] = fix_3src_operand(op[1]); 1758 op[2] = fix_3src_operand(op[2]); 1759 1760 emit(BFE(dst, op[2], op[1], op[0])); 1761 break; 1762 1763 case nir_op_bfm: 1764 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1765 emit(BFI1(dst, op[0], op[1])); 1766 break; 1767 1768 case nir_op_bfi: 1769 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1770 op[0] = fix_3src_operand(op[0]); 1771 op[1] = fix_3src_operand(op[1]); 1772 op[2] = fix_3src_operand(op[2]); 1773 1774 emit(BFI2(dst, op[0], op[1], op[2])); 1775 break; 1776 1777 case nir_op_bitfield_insert: 1778 unreachable("not reached: should have been lowered"); 1779 1780 case nir_op_fsign: 1781 if (type_sz(op[0].type) < 8) { 1782 /* AND(val, 0x80000000) gives the sign bit. 1783 * 1784 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not 1785 * zero. 1786 */ 1787 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ)); 1788 1789 op[0].type = BRW_REGISTER_TYPE_UD; 1790 dst.type = BRW_REGISTER_TYPE_UD; 1791 emit(AND(dst, op[0], brw_imm_ud(0x80000000u))); 1792 1793 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u))); 1794 inst->predicate = BRW_PREDICATE_NORMAL; 1795 dst.type = BRW_REGISTER_TYPE_F; 1796 } else { 1797 /* For doubles we do the same but we need to consider: 1798 * 1799 * - We use a MOV with conditional_mod instead of a CMP so that we can 1800 * skip loading a 0.0 immediate. We use a source modifier on the 1801 * source of the MOV so that we flush denormalized values to 0. 1802 * Since we want to compare against 0, this won't alter the result. 1803 * - We need to extract the high 32-bit of each DF where the sign 1804 * is stored. 1805 * - We need to produce a DF result. 1806 */ 1807 1808 /* Check for zero */ 1809 src_reg value = op[0]; 1810 value.abs = true; 1811 inst = emit(MOV(dst_null_df(), value)); 1812 inst->conditional_mod = BRW_CONDITIONAL_NZ; 1813 1814 /* AND each high 32-bit channel with 0x80000000u */ 1815 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type); 1816 emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]); 1817 emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u))); 1818 1819 /* Add 1.0 to each channel, predicated to skip the cases where the 1820 * channel's value was 0 1821 */ 1822 inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u))); 1823 inst->predicate = BRW_PREDICATE_NORMAL; 1824 1825 /* Now convert the result from float to double */ 1826 emit_conversion_to_double(dst, retype(src_reg(tmp), 1827 BRW_REGISTER_TYPE_F)); 1828 } 1829 break; 1830 1831 case nir_op_ishl: 1832 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1833 try_immediate_source(instr, op, false); 1834 emit(SHL(dst, op[0], op[1])); 1835 break; 1836 1837 case nir_op_ishr: 1838 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1839 try_immediate_source(instr, op, false); 1840 emit(ASR(dst, op[0], op[1])); 1841 break; 1842 1843 case nir_op_ushr: 1844 assert(nir_dest_bit_size(instr->dest.dest) < 64); 1845 try_immediate_source(instr, op, false); 1846 emit(SHR(dst, op[0], op[1])); 1847 break; 1848 1849 case nir_op_ffma: 1850 if (type_sz(dst.type) == 8) { 1851 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type); 1852 emit(MUL(mul_dst, op[1], op[0])); 1853 inst = emit(ADD(dst, src_reg(mul_dst), op[2])); 1854 } else { 1855 fix_float_operands(op, instr); 1856 inst = emit(MAD(dst, op[2], op[1], op[0])); 1857 } 1858 break; 1859 1860 case nir_op_flrp: 1861 fix_float_operands(op, instr); 1862 inst = emit(LRP(dst, op[2], op[1], op[0])); 1863 break; 1864 1865 case nir_op_b32csel: 1866 enum brw_predicate predicate; 1867 if (!optimize_predicate(instr, &predicate)) { 1868 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ)); 1869 switch (dst.writemask) { 1870 case WRITEMASK_X: 1871 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X; 1872 break; 1873 case WRITEMASK_Y: 1874 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y; 1875 break; 1876 case WRITEMASK_Z: 1877 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z; 1878 break; 1879 case WRITEMASK_W: 1880 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W; 1881 break; 1882 default: 1883 predicate = BRW_PREDICATE_NORMAL; 1884 break; 1885 } 1886 } 1887 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]); 1888 inst->predicate = predicate; 1889 break; 1890 1891 case nir_op_fdot2_replicated: 1892 try_immediate_source(instr, op, true); 1893 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]); 1894 break; 1895 1896 case nir_op_fdot3_replicated: 1897 try_immediate_source(instr, op, true); 1898 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]); 1899 break; 1900 1901 case nir_op_fdot4_replicated: 1902 try_immediate_source(instr, op, true); 1903 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]); 1904 break; 1905 1906 case nir_op_fdph_replicated: 1907 try_immediate_source(instr, op, false); 1908 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]); 1909 break; 1910 1911 case nir_op_fdiv: 1912 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler"); 1913 1914 case nir_op_fmod: 1915 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler"); 1916 1917 case nir_op_fsub: 1918 case nir_op_isub: 1919 unreachable("not reached: should be handled by ir_sub_to_add_neg"); 1920 1921 default: 1922 unreachable("Unimplemented ALU operation"); 1923 } 1924 1925 /* If we need to do a boolean resolve, replace the result with -(x & 1) 1926 * to sign extend the low bit to 0/~0 1927 */ 1928 if (devinfo->ver <= 5 && 1929 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == 1930 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) { 1931 dst_reg masked = dst_reg(this, glsl_type::int_type); 1932 masked.writemask = dst.writemask; 1933 emit(AND(masked, src_reg(dst), brw_imm_d(1))); 1934 src_reg masked_neg = src_reg(masked); 1935 masked_neg.negate = true; 1936 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg)); 1937 } 1938} 1939 1940void 1941vec4_visitor::nir_emit_jump(nir_jump_instr *instr) 1942{ 1943 switch (instr->type) { 1944 case nir_jump_break: 1945 emit(BRW_OPCODE_BREAK); 1946 break; 1947 1948 case nir_jump_continue: 1949 emit(BRW_OPCODE_CONTINUE); 1950 break; 1951 1952 case nir_jump_return: 1953 FALLTHROUGH; 1954 default: 1955 unreachable("unknown jump"); 1956 } 1957} 1958 1959static enum ir_texture_opcode 1960ir_texture_opcode_for_nir_texop(nir_texop texop) 1961{ 1962 enum ir_texture_opcode op; 1963 1964 switch (texop) { 1965 case nir_texop_lod: op = ir_lod; break; 1966 case nir_texop_query_levels: op = ir_query_levels; break; 1967 case nir_texop_texture_samples: op = ir_texture_samples; break; 1968 case nir_texop_tex: op = ir_tex; break; 1969 case nir_texop_tg4: op = ir_tg4; break; 1970 case nir_texop_txb: op = ir_txb; break; 1971 case nir_texop_txd: op = ir_txd; break; 1972 case nir_texop_txf: op = ir_txf; break; 1973 case nir_texop_txf_ms: op = ir_txf_ms; break; 1974 case nir_texop_txl: op = ir_txl; break; 1975 case nir_texop_txs: op = ir_txs; break; 1976 case nir_texop_samples_identical: op = ir_samples_identical; break; 1977 default: 1978 unreachable("unknown texture opcode"); 1979 } 1980 1981 return op; 1982} 1983 1984void 1985vec4_visitor::nir_emit_texture(nir_tex_instr *instr) 1986{ 1987 unsigned texture = instr->texture_index; 1988 unsigned sampler = instr->sampler_index; 1989 src_reg texture_reg = brw_imm_ud(texture); 1990 src_reg sampler_reg = brw_imm_ud(sampler); 1991 src_reg coordinate; 1992 const glsl_type *coord_type = NULL; 1993 src_reg shadow_comparator; 1994 src_reg offset_value; 1995 src_reg lod, lod2; 1996 src_reg sample_index; 1997 src_reg mcs; 1998 1999 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type); 2000 2001 /* The hardware requires a LOD for buffer textures */ 2002 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) 2003 lod = brw_imm_d(0); 2004 2005 /* Load the texture operation sources */ 2006 uint32_t constant_offset = 0; 2007 for (unsigned i = 0; i < instr->num_srcs; i++) { 2008 switch (instr->src[i].src_type) { 2009 case nir_tex_src_comparator: 2010 shadow_comparator = get_nir_src(instr->src[i].src, 2011 BRW_REGISTER_TYPE_F, 1); 2012 break; 2013 2014 case nir_tex_src_coord: { 2015 unsigned src_size = nir_tex_instr_src_size(instr, i); 2016 2017 switch (instr->op) { 2018 case nir_texop_txf: 2019 case nir_texop_txf_ms: 2020 case nir_texop_samples_identical: 2021 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2022 src_size); 2023 coord_type = glsl_type::ivec(src_size); 2024 break; 2025 2026 default: 2027 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 2028 src_size); 2029 coord_type = glsl_type::vec(src_size); 2030 break; 2031 } 2032 break; 2033 } 2034 2035 case nir_tex_src_ddx: 2036 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 2037 nir_tex_instr_src_size(instr, i)); 2038 break; 2039 2040 case nir_tex_src_ddy: 2041 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 2042 nir_tex_instr_src_size(instr, i)); 2043 break; 2044 2045 case nir_tex_src_lod: 2046 switch (instr->op) { 2047 case nir_texop_txs: 2048 case nir_texop_txf: 2049 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1); 2050 break; 2051 2052 default: 2053 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1); 2054 break; 2055 } 2056 break; 2057 2058 case nir_tex_src_ms_index: { 2059 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1); 2060 break; 2061 } 2062 2063 case nir_tex_src_offset: 2064 if (!brw_texture_offset(instr, i, &constant_offset)) { 2065 offset_value = 2066 get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2); 2067 } 2068 break; 2069 2070 case nir_tex_src_texture_offset: { 2071 /* Emit code to evaluate the actual indexing expression */ 2072 src_reg src = get_nir_src(instr->src[i].src, 1); 2073 src_reg temp(this, glsl_type::uint_type); 2074 emit(ADD(dst_reg(temp), src, brw_imm_ud(texture))); 2075 texture_reg = emit_uniformize(temp); 2076 break; 2077 } 2078 2079 case nir_tex_src_sampler_offset: { 2080 /* Emit code to evaluate the actual indexing expression */ 2081 src_reg src = get_nir_src(instr->src[i].src, 1); 2082 src_reg temp(this, glsl_type::uint_type); 2083 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler))); 2084 sampler_reg = emit_uniformize(temp); 2085 break; 2086 } 2087 2088 case nir_tex_src_projector: 2089 unreachable("Should be lowered by nir_lower_tex"); 2090 2091 case nir_tex_src_bias: 2092 unreachable("LOD bias is not valid for vertex shaders.\n"); 2093 2094 default: 2095 unreachable("unknown texture source"); 2096 } 2097 } 2098 2099 if (instr->op == nir_texop_txf_ms || 2100 instr->op == nir_texop_samples_identical) { 2101 assert(coord_type != NULL); 2102 if (devinfo->ver >= 7 && 2103 key_tex->compressed_multisample_layout_mask & (1 << texture)) { 2104 mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg); 2105 } else { 2106 mcs = brw_imm_ud(0u); 2107 } 2108 } 2109 2110 /* Stuff the channel select bits in the top of the texture offset */ 2111 if (instr->op == nir_texop_tg4) { 2112 if (instr->component == 1 && 2113 (key_tex->gather_channel_quirk_mask & (1 << texture))) { 2114 /* gather4 sampler is broken for green channel on RG32F -- 2115 * we must ask for blue instead. 2116 */ 2117 constant_offset |= 2 << 16; 2118 } else { 2119 constant_offset |= instr->component << 16; 2120 } 2121 } 2122 2123 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op); 2124 2125 emit_texture(op, dest, nir_tex_instr_dest_size(instr), 2126 coordinate, instr->coord_components, 2127 shadow_comparator, 2128 lod, lod2, sample_index, 2129 constant_offset, offset_value, mcs, 2130 texture, texture_reg, sampler_reg); 2131} 2132 2133void 2134vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr) 2135{ 2136 nir_ssa_values[instr->def.index] = 2137 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32))); 2138} 2139 2140/* SIMD4x2 64bit data is stored in register space like this: 2141 * 2142 * r0.0:DF x0 y0 z0 w0 2143 * r1.0:DF x1 y1 z1 w1 2144 * 2145 * When we need to write data such as this to memory using 32-bit write 2146 * messages we need to shuffle it in this fashion: 2147 * 2148 * r0.0:DF x0 y0 x1 y1 (to be written at base offset) 2149 * r0.0:DF z0 w0 z1 w1 (to be written at base offset + 16) 2150 * 2151 * We need to do the inverse operation when we read using 32-bit messages, 2152 * which we can do by applying the same exact shuffling on the 64-bit data 2153 * read, only that because the data for each vertex is positioned differently 2154 * we need to apply different channel enables. 2155 * 2156 * This function takes 64bit data and shuffles it as explained above. 2157 * 2158 * The @for_write parameter is used to specify if the shuffling is being done 2159 * for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit 2160 * write message (for_write = true), or instead we are doing the inverse 2161 * operation and we have just read 64-bit data using a 32-bit messages that we 2162 * need to shuffle to create valid SIMD4x2 64-bit data (for_write = false). 2163 * 2164 * If @block and @ref are non-NULL, then the shuffling is done after @ref, 2165 * otherwise the instructions are emitted normally at the end. The function 2166 * returns the last instruction inserted. 2167 * 2168 * Notice that @src and @dst cannot be the same register. 2169 */ 2170vec4_instruction * 2171vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write, 2172 bool for_scratch, 2173 bblock_t *block, vec4_instruction *ref) 2174{ 2175 assert(type_sz(src.type) == 8); 2176 assert(type_sz(dst.type) == 8); 2177 assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE)); 2178 assert(!ref == !block); 2179 2180 opcode mov_op = for_scratch ? VEC4_OPCODE_MOV_FOR_SCRATCH : BRW_OPCODE_MOV; 2181 2182 const vec4_builder bld = !ref ? vec4_builder(this).at_end() : 2183 vec4_builder(this).at(block, ref->next); 2184 2185 /* Resolve swizzle in src */ 2186 if (src.swizzle != BRW_SWIZZLE_XYZW) { 2187 dst_reg data = dst_reg(this, glsl_type::dvec4_type); 2188 bld.emit(mov_op, data, src); 2189 src = src_reg(data); 2190 } 2191 2192 /* dst+0.XY = src+0.XY */ 2193 bld.group(4, 0).emit(mov_op, writemask(dst, WRITEMASK_XY), src); 2194 2195 /* dst+0.ZW = src+1.XY */ 2196 bld.group(4, for_write ? 1 : 0) 2197 .emit(mov_op, writemask(dst, WRITEMASK_ZW), 2198 swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY)); 2199 2200 /* dst+1.XY = src+0.ZW */ 2201 bld.group(4, for_write ? 0 : 1) 2202 .emit(mov_op, writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY), 2203 swizzle(src, BRW_SWIZZLE_ZWZW)); 2204 2205 /* dst+1.ZW = src+1.ZW */ 2206 return bld.group(4, 1) 2207 .emit(mov_op, writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW), 2208 byte_offset(src, REG_SIZE)); 2209} 2210 2211} 2212