1/* 2 * Copyright © 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include "util/register_allocate.h" 25#include "brw_vec4.h" 26#include "brw_cfg.h" 27 28using namespace brw; 29 30namespace brw { 31 32static void 33assign(unsigned int *reg_hw_locations, backend_reg *reg) 34{ 35 if (reg->file == VGRF) { 36 reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE; 37 reg->offset %= REG_SIZE; 38 } 39} 40 41bool 42vec4_visitor::reg_allocate_trivial() 43{ 44 unsigned int hw_reg_mapping[this->alloc.count]; 45 bool virtual_grf_used[this->alloc.count]; 46 int next; 47 48 /* Calculate which virtual GRFs are actually in use after whatever 49 * optimization passes have occurred. 50 */ 51 for (unsigned i = 0; i < this->alloc.count; i++) { 52 virtual_grf_used[i] = false; 53 } 54 55 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 56 if (inst->dst.file == VGRF) 57 virtual_grf_used[inst->dst.nr] = true; 58 59 for (unsigned i = 0; i < 3; i++) { 60 if (inst->src[i].file == VGRF) 61 virtual_grf_used[inst->src[i].nr] = true; 62 } 63 } 64 65 hw_reg_mapping[0] = this->first_non_payload_grf; 66 next = hw_reg_mapping[0] + this->alloc.sizes[0]; 67 for (unsigned i = 1; i < this->alloc.count; i++) { 68 if (virtual_grf_used[i]) { 69 hw_reg_mapping[i] = next; 70 next += this->alloc.sizes[i]; 71 } 72 } 73 prog_data->total_grf = next; 74 75 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 76 assign(hw_reg_mapping, &inst->dst); 77 assign(hw_reg_mapping, &inst->src[0]); 78 assign(hw_reg_mapping, &inst->src[1]); 79 assign(hw_reg_mapping, &inst->src[2]); 80 } 81 82 if (prog_data->total_grf > max_grf) { 83 fail("Ran out of regs on trivial allocator (%d/%d)\n", 84 prog_data->total_grf, max_grf); 85 return false; 86 } 87 88 return true; 89} 90 91extern "C" void 92brw_vec4_alloc_reg_set(struct brw_compiler *compiler) 93{ 94 int base_reg_count = 95 compiler->devinfo->ver >= 7 ? GFX7_MRF_HACK_START : BRW_MAX_GRF; 96 97 /* After running split_virtual_grfs(), almost all VGRFs will be of size 1. 98 * SEND-from-GRF sources cannot be split, so we also need classes for each 99 * potential message length. 100 */ 101 const int class_count = MAX_VGRF_SIZE; 102 int class_sizes[MAX_VGRF_SIZE]; 103 104 for (int i = 0; i < class_count; i++) 105 class_sizes[i] = i + 1; 106 107 108 ralloc_free(compiler->vec4_reg_set.regs); 109 compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, base_reg_count, false); 110 if (compiler->devinfo->ver >= 6) 111 ra_set_allocate_round_robin(compiler->vec4_reg_set.regs); 112 ralloc_free(compiler->vec4_reg_set.classes); 113 compiler->vec4_reg_set.classes = ralloc_array(compiler, struct ra_class *, class_count); 114 115 /* Now, add the registers to their classes, and add the conflicts 116 * between them and the base GRF registers (and also each other). 117 */ 118 for (int i = 0; i < class_count; i++) { 119 int class_reg_count = base_reg_count - (class_sizes[i] - 1); 120 compiler->vec4_reg_set.classes[i] = 121 ra_alloc_contig_reg_class(compiler->vec4_reg_set.regs, class_sizes[i]); 122 123 for (int j = 0; j < class_reg_count; j++) 124 ra_class_add_reg(compiler->vec4_reg_set.classes[i], j); 125 } 126 127 ra_set_finalize(compiler->vec4_reg_set.regs, NULL); 128} 129 130void 131vec4_visitor::setup_payload_interference(struct ra_graph *g, 132 int first_payload_node, 133 int reg_node_count) 134{ 135 int payload_node_count = this->first_non_payload_grf; 136 137 for (int i = 0; i < payload_node_count; i++) { 138 /* Mark each payload reg node as being allocated to its physical register. 139 * 140 * The alternative would be to have per-physical register classes, which 141 * would just be silly. 142 */ 143 ra_set_node_reg(g, first_payload_node + i, i); 144 145 /* For now, just mark each payload node as interfering with every other 146 * node to be allocated. 147 */ 148 for (int j = 0; j < reg_node_count; j++) { 149 ra_add_node_interference(g, first_payload_node + i, j); 150 } 151 } 152} 153 154bool 155vec4_visitor::reg_allocate() 156{ 157 unsigned int hw_reg_mapping[alloc.count]; 158 int payload_reg_count = this->first_non_payload_grf; 159 160 /* Using the trivial allocator can be useful in debugging undefined 161 * register access as a result of broken optimization passes. 162 */ 163 if (0) 164 return reg_allocate_trivial(); 165 166 const vec4_live_variables &live = live_analysis.require(); 167 int node_count = alloc.count; 168 int first_payload_node = node_count; 169 node_count += payload_reg_count; 170 struct ra_graph *g = 171 ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count); 172 173 for (unsigned i = 0; i < alloc.count; i++) { 174 int size = this->alloc.sizes[i]; 175 assert(size >= 1 && size <= MAX_VGRF_SIZE); 176 ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]); 177 178 for (unsigned j = 0; j < i; j++) { 179 if (live.vgrfs_interfere(i, j)) { 180 ra_add_node_interference(g, i, j); 181 } 182 } 183 } 184 185 /* Certain instructions can't safely use the same register for their 186 * sources and destination. Add interference. 187 */ 188 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 189 if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) { 190 for (unsigned i = 0; i < 3; i++) { 191 if (inst->src[i].file == VGRF) { 192 ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr); 193 } 194 } 195 } 196 } 197 198 setup_payload_interference(g, first_payload_node, node_count); 199 200 if (!ra_allocate(g)) { 201 /* Failed to allocate registers. Spill a reg, and the caller will 202 * loop back into here to try again. 203 */ 204 int reg = choose_spill_reg(g); 205 if (this->no_spills) { 206 fail("Failure to register allocate. Reduce number of live " 207 "values to avoid this."); 208 } else if (reg == -1) { 209 fail("no register to spill\n"); 210 } else { 211 spill_reg(reg); 212 } 213 ralloc_free(g); 214 return false; 215 } 216 217 /* Get the chosen virtual registers for each node, and map virtual 218 * regs in the register classes back down to real hardware reg 219 * numbers. 220 */ 221 prog_data->total_grf = payload_reg_count; 222 for (unsigned i = 0; i < alloc.count; i++) { 223 hw_reg_mapping[i] = ra_get_node_reg(g, i); 224 prog_data->total_grf = MAX2(prog_data->total_grf, 225 hw_reg_mapping[i] + alloc.sizes[i]); 226 } 227 228 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 229 assign(hw_reg_mapping, &inst->dst); 230 assign(hw_reg_mapping, &inst->src[0]); 231 assign(hw_reg_mapping, &inst->src[1]); 232 assign(hw_reg_mapping, &inst->src[2]); 233 } 234 235 ralloc_free(g); 236 237 return true; 238} 239 240/** 241 * When we decide to spill a register, instead of blindly spilling every use, 242 * save unspills when the spill register is used (read) in consecutive 243 * instructions. This can potentially save a bunch of unspills that would 244 * have very little impact in register allocation anyway. 245 * 246 * Notice that we need to account for this behavior when spilling a register 247 * and when evaluating spilling costs. This function is designed so it can 248 * be called from both places and avoid repeating the logic. 249 * 250 * - When we call this function from spill_reg(), we pass in scratch_reg the 251 * actual unspill/spill register that we want to reuse in the current 252 * instruction. 253 * 254 * - When we call this from evaluate_spill_costs(), we pass the register for 255 * which we are evaluating spilling costs. 256 * 257 * In either case, we check if the previous instructions read scratch_reg until 258 * we find one that writes to it with a compatible mask or does not read/write 259 * scratch_reg at all. 260 */ 261static bool 262can_use_scratch_for_source(const vec4_instruction *inst, unsigned i, 263 unsigned scratch_reg) 264{ 265 assert(inst->src[i].file == VGRF); 266 bool prev_inst_read_scratch_reg = false; 267 268 /* See if any previous source in the same instructions reads scratch_reg */ 269 for (unsigned n = 0; n < i; n++) { 270 if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg) 271 prev_inst_read_scratch_reg = true; 272 } 273 274 /* Now check if previous instructions read/write scratch_reg */ 275 for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev; 276 !prev_inst->is_head_sentinel(); 277 prev_inst = (vec4_instruction *) prev_inst->prev) { 278 279 /* If the previous instruction writes to scratch_reg then we can reuse 280 * it if the write is not conditional and the channels we write are 281 * compatible with our read mask 282 */ 283 if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) { 284 return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) && 285 (brw_mask_for_swizzle(inst->src[i].swizzle) & 286 ~prev_inst->dst.writemask) == 0; 287 } 288 289 /* Skip scratch read/writes so that instructions generated by spilling 290 * other registers (that won't read/write scratch_reg) do not stop us from 291 * reusing scratch_reg for this instruction. 292 */ 293 if (prev_inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_WRITE || 294 prev_inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_READ) 295 continue; 296 297 /* If the previous instruction does not write to scratch_reg, then check 298 * if it reads it 299 */ 300 int n; 301 for (n = 0; n < 3; n++) { 302 if (prev_inst->src[n].file == VGRF && 303 prev_inst->src[n].nr == scratch_reg) { 304 prev_inst_read_scratch_reg = true; 305 break; 306 } 307 } 308 if (n == 3) { 309 /* The previous instruction does not read scratch_reg. At this point, 310 * if no previous instruction has read scratch_reg it means that we 311 * will need to unspill it here and we can't reuse it (so we return 312 * false). Otherwise, if we found at least one consecutive instruction 313 * that read scratch_reg, then we know that we got here from 314 * evaluate_spill_costs (since for the spill_reg path any block of 315 * consecutive instructions using scratch_reg must start with a write 316 * to that register, so we would've exited the loop in the check for 317 * the write that we have at the start of this loop), and in that case 318 * it means that we found the point at which the scratch_reg would be 319 * unspilled. Since we always unspill a full vec4, it means that we 320 * have all the channels available and we can just return true to 321 * signal that we can reuse the register in the current instruction 322 * too. 323 */ 324 return prev_inst_read_scratch_reg; 325 } 326 } 327 328 return prev_inst_read_scratch_reg; 329} 330 331static inline float 332spill_cost_for_type(enum brw_reg_type type) 333{ 334 /* Spilling of a 64-bit register involves emitting 2 32-bit scratch 335 * messages plus the 64b/32b shuffling code. 336 */ 337 return type_sz(type) == 8 ? 2.25f : 1.0f; 338} 339 340void 341vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill) 342{ 343 float loop_scale = 1.0; 344 345 unsigned *reg_type_size = (unsigned *) 346 ralloc_size(NULL, this->alloc.count * sizeof(unsigned)); 347 348 for (unsigned i = 0; i < this->alloc.count; i++) { 349 spill_costs[i] = 0.0; 350 no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2; 351 reg_type_size[i] = 0; 352 } 353 354 /* Calculate costs for spilling nodes. Call it a cost of 1 per 355 * spill/unspill we'll have to do, and guess that the insides of 356 * loops run 10 times. 357 */ 358 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 359 for (unsigned int i = 0; i < 3; i++) { 360 if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) { 361 /* We will only unspill src[i] it it wasn't unspilled for the 362 * previous instruction, in which case we'll just reuse the scratch 363 * reg for this instruction. 364 */ 365 if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) { 366 spill_costs[inst->src[i].nr] += 367 loop_scale * spill_cost_for_type(inst->src[i].type); 368 if (inst->src[i].reladdr || 369 inst->src[i].offset >= REG_SIZE) 370 no_spill[inst->src[i].nr] = true; 371 372 /* We don't support unspills of partial DF reads. 373 * 374 * Our 64-bit unspills are implemented with two 32-bit scratch 375 * messages, each one reading that for both SIMD4x2 threads that 376 * we need to shuffle into correct 64-bit data. Ensure that we 377 * are reading data for both threads. 378 */ 379 if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8) 380 no_spill[inst->src[i].nr] = true; 381 } 382 383 /* We can't spill registers that mix 32-bit and 64-bit access (that 384 * contain 64-bit data that is operated on via 32-bit instructions) 385 */ 386 unsigned type_size = type_sz(inst->src[i].type); 387 if (reg_type_size[inst->src[i].nr] == 0) 388 reg_type_size[inst->src[i].nr] = type_size; 389 else if (reg_type_size[inst->src[i].nr] != type_size) 390 no_spill[inst->src[i].nr] = true; 391 } 392 } 393 394 if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) { 395 spill_costs[inst->dst.nr] += 396 loop_scale * spill_cost_for_type(inst->dst.type); 397 if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE) 398 no_spill[inst->dst.nr] = true; 399 400 /* We don't support spills of partial DF writes. 401 * 402 * Our 64-bit spills are implemented with two 32-bit scratch messages, 403 * each one writing that for both SIMD4x2 threads. Ensure that we 404 * are writing data for both threads. 405 */ 406 if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8) 407 no_spill[inst->dst.nr] = true; 408 409 /* We can't spill registers that mix 32-bit and 64-bit access (that 410 * contain 64-bit data that is operated on via 32-bit instructions) 411 */ 412 unsigned type_size = type_sz(inst->dst.type); 413 if (reg_type_size[inst->dst.nr] == 0) 414 reg_type_size[inst->dst.nr] = type_size; 415 else if (reg_type_size[inst->dst.nr] != type_size) 416 no_spill[inst->dst.nr] = true; 417 } 418 419 switch (inst->opcode) { 420 421 case BRW_OPCODE_DO: 422 loop_scale *= 10; 423 break; 424 425 case BRW_OPCODE_WHILE: 426 loop_scale /= 10; 427 break; 428 429 case SHADER_OPCODE_GFX4_SCRATCH_READ: 430 case SHADER_OPCODE_GFX4_SCRATCH_WRITE: 431 case VEC4_OPCODE_MOV_FOR_SCRATCH: 432 for (int i = 0; i < 3; i++) { 433 if (inst->src[i].file == VGRF) 434 no_spill[inst->src[i].nr] = true; 435 } 436 if (inst->dst.file == VGRF) 437 no_spill[inst->dst.nr] = true; 438 break; 439 440 default: 441 break; 442 } 443 } 444 445 ralloc_free(reg_type_size); 446} 447 448int 449vec4_visitor::choose_spill_reg(struct ra_graph *g) 450{ 451 float spill_costs[this->alloc.count]; 452 bool no_spill[this->alloc.count]; 453 454 evaluate_spill_costs(spill_costs, no_spill); 455 456 for (unsigned i = 0; i < this->alloc.count; i++) { 457 if (!no_spill[i]) 458 ra_set_node_spill_cost(g, i, spill_costs[i]); 459 } 460 461 return ra_get_best_spill_node(g); 462} 463 464void 465vec4_visitor::spill_reg(unsigned spill_reg_nr) 466{ 467 assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2); 468 unsigned spill_offset = last_scratch; 469 last_scratch += alloc.sizes[spill_reg_nr]; 470 471 /* Generate spill/unspill instructions for the objects being spilled. */ 472 unsigned scratch_reg = ~0u; 473 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 474 for (unsigned i = 0; i < 3; i++) { 475 if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) { 476 if (scratch_reg == ~0u || 477 !can_use_scratch_for_source(inst, i, scratch_reg)) { 478 /* We need to unspill anyway so make sure we read the full vec4 479 * in any case. This way, the cached register can be reused 480 * for consecutive instructions that read different channels of 481 * the same vec4. 482 */ 483 scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]); 484 src_reg temp = inst->src[i]; 485 temp.nr = scratch_reg; 486 temp.offset = 0; 487 temp.swizzle = BRW_SWIZZLE_XYZW; 488 emit_scratch_read(block, inst, 489 dst_reg(temp), inst->src[i], spill_offset); 490 temp.offset = inst->src[i].offset; 491 } 492 assert(scratch_reg != ~0u); 493 inst->src[i].nr = scratch_reg; 494 } 495 } 496 497 if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) { 498 emit_scratch_write(block, inst, spill_offset); 499 scratch_reg = inst->dst.nr; 500 } 501 } 502 503 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); 504} 505 506} /* namespace brw */ 507