1/*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "util/register_allocate.h"
25#include "brw_vec4.h"
26#include "brw_cfg.h"
27
28using namespace brw;
29
30namespace brw {
31
32static void
33assign(unsigned int *reg_hw_locations, backend_reg *reg)
34{
35   if (reg->file == VGRF) {
36      reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
37      reg->offset %= REG_SIZE;
38   }
39}
40
41bool
42vec4_visitor::reg_allocate_trivial()
43{
44   unsigned int hw_reg_mapping[this->alloc.count];
45   bool virtual_grf_used[this->alloc.count];
46   int next;
47
48   /* Calculate which virtual GRFs are actually in use after whatever
49    * optimization passes have occurred.
50    */
51   for (unsigned i = 0; i < this->alloc.count; i++) {
52      virtual_grf_used[i] = false;
53   }
54
55   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
56      if (inst->dst.file == VGRF)
57         virtual_grf_used[inst->dst.nr] = true;
58
59      for (unsigned i = 0; i < 3; i++) {
60	 if (inst->src[i].file == VGRF)
61            virtual_grf_used[inst->src[i].nr] = true;
62      }
63   }
64
65   hw_reg_mapping[0] = this->first_non_payload_grf;
66   next = hw_reg_mapping[0] + this->alloc.sizes[0];
67   for (unsigned i = 1; i < this->alloc.count; i++) {
68      if (virtual_grf_used[i]) {
69	 hw_reg_mapping[i] = next;
70	 next += this->alloc.sizes[i];
71      }
72   }
73   prog_data->total_grf = next;
74
75   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
76      assign(hw_reg_mapping, &inst->dst);
77      assign(hw_reg_mapping, &inst->src[0]);
78      assign(hw_reg_mapping, &inst->src[1]);
79      assign(hw_reg_mapping, &inst->src[2]);
80   }
81
82   if (prog_data->total_grf > max_grf) {
83      fail("Ran out of regs on trivial allocator (%d/%d)\n",
84	   prog_data->total_grf, max_grf);
85      return false;
86   }
87
88   return true;
89}
90
91extern "C" void
92brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
93{
94   int base_reg_count =
95      compiler->devinfo->ver >= 7 ? GFX7_MRF_HACK_START : BRW_MAX_GRF;
96
97   /* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
98    * SEND-from-GRF sources cannot be split, so we also need classes for each
99    * potential message length.
100    */
101   const int class_count = MAX_VGRF_SIZE;
102   int class_sizes[MAX_VGRF_SIZE];
103
104   for (int i = 0; i < class_count; i++)
105      class_sizes[i] = i + 1;
106
107
108   ralloc_free(compiler->vec4_reg_set.regs);
109   compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, base_reg_count, false);
110   if (compiler->devinfo->ver >= 6)
111      ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
112   ralloc_free(compiler->vec4_reg_set.classes);
113   compiler->vec4_reg_set.classes = ralloc_array(compiler, struct ra_class *, class_count);
114
115   /* Now, add the registers to their classes, and add the conflicts
116    * between them and the base GRF registers (and also each other).
117    */
118   for (int i = 0; i < class_count; i++) {
119      int class_reg_count = base_reg_count - (class_sizes[i] - 1);
120      compiler->vec4_reg_set.classes[i] =
121         ra_alloc_contig_reg_class(compiler->vec4_reg_set.regs, class_sizes[i]);
122
123      for (int j = 0; j < class_reg_count; j++)
124         ra_class_add_reg(compiler->vec4_reg_set.classes[i], j);
125   }
126
127   ra_set_finalize(compiler->vec4_reg_set.regs, NULL);
128}
129
130void
131vec4_visitor::setup_payload_interference(struct ra_graph *g,
132                                         int first_payload_node,
133                                         int reg_node_count)
134{
135   int payload_node_count = this->first_non_payload_grf;
136
137   for (int i = 0; i < payload_node_count; i++) {
138      /* Mark each payload reg node as being allocated to its physical register.
139       *
140       * The alternative would be to have per-physical register classes, which
141       * would just be silly.
142       */
143      ra_set_node_reg(g, first_payload_node + i, i);
144
145      /* For now, just mark each payload node as interfering with every other
146       * node to be allocated.
147       */
148      for (int j = 0; j < reg_node_count; j++) {
149         ra_add_node_interference(g, first_payload_node + i, j);
150      }
151   }
152}
153
154bool
155vec4_visitor::reg_allocate()
156{
157   unsigned int hw_reg_mapping[alloc.count];
158   int payload_reg_count = this->first_non_payload_grf;
159
160   /* Using the trivial allocator can be useful in debugging undefined
161    * register access as a result of broken optimization passes.
162    */
163   if (0)
164      return reg_allocate_trivial();
165
166   const vec4_live_variables &live = live_analysis.require();
167   int node_count = alloc.count;
168   int first_payload_node = node_count;
169   node_count += payload_reg_count;
170   struct ra_graph *g =
171      ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
172
173   for (unsigned i = 0; i < alloc.count; i++) {
174      int size = this->alloc.sizes[i];
175      assert(size >= 1 && size <= MAX_VGRF_SIZE);
176      ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
177
178      for (unsigned j = 0; j < i; j++) {
179	 if (live.vgrfs_interfere(i, j)) {
180	    ra_add_node_interference(g, i, j);
181	 }
182      }
183   }
184
185   /* Certain instructions can't safely use the same register for their
186    * sources and destination.  Add interference.
187    */
188   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
189      if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
190         for (unsigned i = 0; i < 3; i++) {
191            if (inst->src[i].file == VGRF) {
192               ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
193            }
194         }
195      }
196   }
197
198   setup_payload_interference(g, first_payload_node, node_count);
199
200   if (!ra_allocate(g)) {
201      /* Failed to allocate registers.  Spill a reg, and the caller will
202       * loop back into here to try again.
203       */
204      int reg = choose_spill_reg(g);
205      if (this->no_spills) {
206         fail("Failure to register allocate.  Reduce number of live "
207              "values to avoid this.");
208      } else if (reg == -1) {
209         fail("no register to spill\n");
210      } else {
211         spill_reg(reg);
212      }
213      ralloc_free(g);
214      return false;
215   }
216
217   /* Get the chosen virtual registers for each node, and map virtual
218    * regs in the register classes back down to real hardware reg
219    * numbers.
220    */
221   prog_data->total_grf = payload_reg_count;
222   for (unsigned i = 0; i < alloc.count; i++) {
223      hw_reg_mapping[i] = ra_get_node_reg(g, i);
224      prog_data->total_grf = MAX2(prog_data->total_grf,
225				  hw_reg_mapping[i] + alloc.sizes[i]);
226   }
227
228   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
229      assign(hw_reg_mapping, &inst->dst);
230      assign(hw_reg_mapping, &inst->src[0]);
231      assign(hw_reg_mapping, &inst->src[1]);
232      assign(hw_reg_mapping, &inst->src[2]);
233   }
234
235   ralloc_free(g);
236
237   return true;
238}
239
240/**
241 * When we decide to spill a register, instead of blindly spilling every use,
242 * save unspills when the spill register is used (read) in consecutive
243 * instructions. This can potentially save a bunch of unspills that would
244 * have very little impact in register allocation anyway.
245 *
246 * Notice that we need to account for this behavior when spilling a register
247 * and when evaluating spilling costs. This function is designed so it can
248 * be called from both places and avoid repeating the logic.
249 *
250 *  - When we call this function from spill_reg(), we pass in scratch_reg the
251 *    actual unspill/spill register that we want to reuse in the current
252 *    instruction.
253 *
254 *  - When we call this from evaluate_spill_costs(), we pass the register for
255 *    which we are evaluating spilling costs.
256 *
257 * In either case, we check if the previous instructions read scratch_reg until
258 * we find one that writes to it with a compatible mask or does not read/write
259 * scratch_reg at all.
260 */
261static bool
262can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
263                           unsigned scratch_reg)
264{
265   assert(inst->src[i].file == VGRF);
266   bool prev_inst_read_scratch_reg = false;
267
268   /* See if any previous source in the same instructions reads scratch_reg */
269   for (unsigned n = 0; n < i; n++) {
270      if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
271         prev_inst_read_scratch_reg = true;
272   }
273
274   /* Now check if previous instructions read/write scratch_reg */
275   for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
276        !prev_inst->is_head_sentinel();
277        prev_inst = (vec4_instruction *) prev_inst->prev) {
278
279      /* If the previous instruction writes to scratch_reg then we can reuse
280       * it if the write is not conditional and the channels we write are
281       * compatible with our read mask
282       */
283      if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
284         return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
285                (brw_mask_for_swizzle(inst->src[i].swizzle) &
286                 ~prev_inst->dst.writemask) == 0;
287      }
288
289      /* Skip scratch read/writes so that instructions generated by spilling
290       * other registers (that won't read/write scratch_reg) do not stop us from
291       * reusing scratch_reg for this instruction.
292       */
293      if (prev_inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_WRITE ||
294          prev_inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_READ)
295         continue;
296
297      /* If the previous instruction does not write to scratch_reg, then check
298       * if it reads it
299       */
300      int n;
301      for (n = 0; n < 3; n++) {
302         if (prev_inst->src[n].file == VGRF &&
303             prev_inst->src[n].nr == scratch_reg) {
304            prev_inst_read_scratch_reg = true;
305            break;
306         }
307      }
308      if (n == 3) {
309         /* The previous instruction does not read scratch_reg. At this point,
310          * if no previous instruction has read scratch_reg it means that we
311          * will need to unspill it here and we can't reuse it (so we return
312          * false). Otherwise, if we found at least one consecutive instruction
313          * that read scratch_reg, then we know that we got here from
314          * evaluate_spill_costs (since for the spill_reg path any block of
315          * consecutive instructions using scratch_reg must start with a write
316          * to that register, so we would've exited the loop in the check for
317          * the write that we have at the start of this loop), and in that case
318          * it means that we found the point at which the scratch_reg would be
319          * unspilled. Since we always unspill a full vec4, it means that we
320          * have all the channels available and we can just return true to
321          * signal that we can reuse the register in the current instruction
322          * too.
323          */
324         return prev_inst_read_scratch_reg;
325      }
326   }
327
328   return prev_inst_read_scratch_reg;
329}
330
331static inline float
332spill_cost_for_type(enum brw_reg_type type)
333{
334   /* Spilling of a 64-bit register involves emitting 2 32-bit scratch
335    * messages plus the 64b/32b shuffling code.
336    */
337   return type_sz(type) == 8 ? 2.25f : 1.0f;
338}
339
340void
341vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
342{
343   float loop_scale = 1.0;
344
345   unsigned *reg_type_size = (unsigned *)
346      ralloc_size(NULL, this->alloc.count * sizeof(unsigned));
347
348   for (unsigned i = 0; i < this->alloc.count; i++) {
349      spill_costs[i] = 0.0;
350      no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2;
351      reg_type_size[i] = 0;
352   }
353
354   /* Calculate costs for spilling nodes.  Call it a cost of 1 per
355    * spill/unspill we'll have to do, and guess that the insides of
356    * loops run 10 times.
357    */
358   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
359      for (unsigned int i = 0; i < 3; i++) {
360         if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) {
361            /* We will only unspill src[i] it it wasn't unspilled for the
362             * previous instruction, in which case we'll just reuse the scratch
363             * reg for this instruction.
364             */
365            if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
366               spill_costs[inst->src[i].nr] +=
367                  loop_scale * spill_cost_for_type(inst->src[i].type);
368               if (inst->src[i].reladdr ||
369                   inst->src[i].offset >= REG_SIZE)
370                  no_spill[inst->src[i].nr] = true;
371
372               /* We don't support unspills of partial DF reads.
373                *
374                * Our 64-bit unspills are implemented with two 32-bit scratch
375                * messages, each one reading that for both SIMD4x2 threads that
376                * we need to shuffle into correct 64-bit data. Ensure that we
377                * are reading data for both threads.
378                */
379               if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8)
380                  no_spill[inst->src[i].nr] = true;
381            }
382
383            /* We can't spill registers that mix 32-bit and 64-bit access (that
384             * contain 64-bit data that is operated on via 32-bit instructions)
385             */
386            unsigned type_size = type_sz(inst->src[i].type);
387            if (reg_type_size[inst->src[i].nr] == 0)
388               reg_type_size[inst->src[i].nr] = type_size;
389            else if (reg_type_size[inst->src[i].nr] != type_size)
390               no_spill[inst->src[i].nr] = true;
391         }
392      }
393
394      if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) {
395         spill_costs[inst->dst.nr] +=
396            loop_scale * spill_cost_for_type(inst->dst.type);
397         if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE)
398            no_spill[inst->dst.nr] = true;
399
400         /* We don't support spills of partial DF writes.
401          *
402          * Our 64-bit spills are implemented with two 32-bit scratch messages,
403          * each one writing that for both SIMD4x2 threads. Ensure that we
404          * are writing data for both threads.
405          */
406         if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8)
407            no_spill[inst->dst.nr] = true;
408
409         /* We can't spill registers that mix 32-bit and 64-bit access (that
410          * contain 64-bit data that is operated on via 32-bit instructions)
411          */
412         unsigned type_size = type_sz(inst->dst.type);
413         if (reg_type_size[inst->dst.nr] == 0)
414            reg_type_size[inst->dst.nr] = type_size;
415         else if (reg_type_size[inst->dst.nr] != type_size)
416            no_spill[inst->dst.nr] = true;
417      }
418
419      switch (inst->opcode) {
420
421      case BRW_OPCODE_DO:
422         loop_scale *= 10;
423         break;
424
425      case BRW_OPCODE_WHILE:
426         loop_scale /= 10;
427         break;
428
429      case SHADER_OPCODE_GFX4_SCRATCH_READ:
430      case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
431      case VEC4_OPCODE_MOV_FOR_SCRATCH:
432         for (int i = 0; i < 3; i++) {
433            if (inst->src[i].file == VGRF)
434               no_spill[inst->src[i].nr] = true;
435         }
436         if (inst->dst.file == VGRF)
437            no_spill[inst->dst.nr] = true;
438         break;
439
440      default:
441         break;
442      }
443   }
444
445   ralloc_free(reg_type_size);
446}
447
448int
449vec4_visitor::choose_spill_reg(struct ra_graph *g)
450{
451   float spill_costs[this->alloc.count];
452   bool no_spill[this->alloc.count];
453
454   evaluate_spill_costs(spill_costs, no_spill);
455
456   for (unsigned i = 0; i < this->alloc.count; i++) {
457      if (!no_spill[i])
458         ra_set_node_spill_cost(g, i, spill_costs[i]);
459   }
460
461   return ra_get_best_spill_node(g);
462}
463
464void
465vec4_visitor::spill_reg(unsigned spill_reg_nr)
466{
467   assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2);
468   unsigned spill_offset = last_scratch;
469   last_scratch += alloc.sizes[spill_reg_nr];
470
471   /* Generate spill/unspill instructions for the objects being spilled. */
472   unsigned scratch_reg = ~0u;
473   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
474      for (unsigned i = 0; i < 3; i++) {
475         if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
476            if (scratch_reg == ~0u ||
477                !can_use_scratch_for_source(inst, i, scratch_reg)) {
478               /* We need to unspill anyway so make sure we read the full vec4
479                * in any case. This way, the cached register can be reused
480                * for consecutive instructions that read different channels of
481                * the same vec4.
482                */
483               scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]);
484               src_reg temp = inst->src[i];
485               temp.nr = scratch_reg;
486               temp.offset = 0;
487               temp.swizzle = BRW_SWIZZLE_XYZW;
488               emit_scratch_read(block, inst,
489                                 dst_reg(temp), inst->src[i], spill_offset);
490               temp.offset = inst->src[i].offset;
491            }
492            assert(scratch_reg != ~0u);
493            inst->src[i].nr = scratch_reg;
494         }
495      }
496
497      if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
498         emit_scratch_write(block, inst, spill_offset);
499         scratch_reg = inst->dst.nr;
500      }
501   }
502
503   invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
504}
505
506} /* namespace brw */
507