1/* 2 * Copyright © 2019 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include <unistd.h> 25#include <poll.h> 26 27#include "common/intel_gem.h" 28 29#include "dev/intel_debug.h" 30#include "dev/intel_device_info.h" 31 32#include "perf/intel_perf.h" 33#include "perf/intel_perf_mdapi.h" 34#include "perf/intel_perf_private.h" 35#include "perf/intel_perf_query.h" 36#include "perf/intel_perf_regs.h" 37 38#include "drm-uapi/i915_drm.h" 39 40#include "util/compiler.h" 41#include "util/u_math.h" 42 43#define FILE_DEBUG_FLAG DEBUG_PERFMON 44 45#define MI_RPC_BO_SIZE (4096) 46#define MI_FREQ_OFFSET_BYTES (256) 47#define MI_PERF_COUNTERS_OFFSET_BYTES (260) 48 49#define ALIGN(x, y) (((x) + (y)-1) & ~((y)-1)) 50 51/* Align to 64bytes, requirement for OA report write address. */ 52#define TOTAL_QUERY_DATA_SIZE \ 53 ALIGN(256 /* OA report */ + \ 54 4 /* freq register */ + \ 55 8 + 8 /* perf counter 1 & 2 */, \ 56 64) 57 58 59static uint32_t field_offset(bool end, uint32_t offset) 60{ 61 return (end ? TOTAL_QUERY_DATA_SIZE : 0) + offset; 62} 63 64#define MAP_READ (1 << 0) 65#define MAP_WRITE (1 << 1) 66 67/** 68 * Periodic OA samples are read() into these buffer structures via the 69 * i915 perf kernel interface and appended to the 70 * perf_ctx->sample_buffers linked list. When we process the 71 * results of an OA metrics query we need to consider all the periodic 72 * samples between the Begin and End MI_REPORT_PERF_COUNT command 73 * markers. 74 * 75 * 'Periodic' is a simplification as there are other automatic reports 76 * written by the hardware also buffered here. 77 * 78 * Considering three queries, A, B and C: 79 * 80 * Time ----> 81 * ________________A_________________ 82 * | | 83 * | ________B_________ _____C___________ 84 * | | | | | | 85 * 86 * And an illustration of sample buffers read over this time frame: 87 * [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ] 88 * 89 * These nodes may hold samples for query A: 90 * [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ] 91 * 92 * These nodes may hold samples for query B: 93 * [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ] 94 * 95 * These nodes may hold samples for query C: 96 * [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ] 97 * 98 * The illustration assumes we have an even distribution of periodic 99 * samples so all nodes have the same size plotted against time: 100 * 101 * Note, to simplify code, the list is never empty. 102 * 103 * With overlapping queries we can see that periodic OA reports may 104 * relate to multiple queries and care needs to be take to keep 105 * track of sample buffers until there are no queries that might 106 * depend on their contents. 107 * 108 * We use a node ref counting system where a reference ensures that a 109 * node and all following nodes can't be freed/recycled until the 110 * reference drops to zero. 111 * 112 * E.g. with a ref of one here: 113 * [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ] 114 * 115 * These nodes could be freed or recycled ("reaped"): 116 * [ 0 ][ 0 ] 117 * 118 * These must be preserved until the leading ref drops to zero: 119 * [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ] 120 * 121 * When a query starts we take a reference on the current tail of 122 * the list, knowing that no already-buffered samples can possibly 123 * relate to the newly-started query. A pointer to this node is 124 * also saved in the query object's ->oa.samples_head. 125 * 126 * E.g. starting query A while there are two nodes in .sample_buffers: 127 * ________________A________ 128 * | 129 * 130 * [ 0 ][ 1 ] 131 * ^_______ Add a reference and store pointer to node in 132 * A->oa.samples_head 133 * 134 * Moving forward to when the B query starts with no new buffer nodes: 135 * (for reference, i915 perf reads() are only done when queries finish) 136 * ________________A_______ 137 * | ________B___ 138 * | | 139 * 140 * [ 0 ][ 2 ] 141 * ^_______ Add a reference and store pointer to 142 * node in B->oa.samples_head 143 * 144 * Once a query is finished, after an OA query has become 'Ready', 145 * once the End OA report has landed and after we we have processed 146 * all the intermediate periodic samples then we drop the 147 * ->oa.samples_head reference we took at the start. 148 * 149 * So when the B query has finished we have: 150 * ________________A________ 151 * | ______B___________ 152 * | | | 153 * [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ] 154 * ^_______ Drop B->oa.samples_head reference 155 * 156 * We still can't free these due to the A->oa.samples_head ref: 157 * [ 1 ][ 0 ][ 0 ][ 0 ] 158 * 159 * When the A query finishes: (note there's a new ref for C's samples_head) 160 * ________________A_________________ 161 * | | 162 * | _____C_________ 163 * | | | 164 * [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ] 165 * ^_______ Drop A->oa.samples_head reference 166 * 167 * And we can now reap these nodes up to the C->oa.samples_head: 168 * [ X ][ X ][ X ][ X ] 169 * keeping -> [ 1 ][ 0 ][ 0 ] 170 * 171 * We reap old sample buffers each time we finish processing an OA 172 * query by iterating the sample_buffers list from the head until we 173 * find a referenced node and stop. 174 * 175 * Reaped buffers move to a perfquery.free_sample_buffers list and 176 * when we come to read() we first look to recycle a buffer from the 177 * free_sample_buffers list before allocating a new buffer. 178 */ 179struct oa_sample_buf { 180 struct exec_node link; 181 int refcount; 182 int len; 183 uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10]; 184 uint32_t last_timestamp; 185}; 186 187/** 188 * gen representation of a performance query object. 189 * 190 * NB: We want to keep this structure relatively lean considering that 191 * applications may expect to allocate enough objects to be able to 192 * query around all draw calls in a frame. 193 */ 194struct intel_perf_query_object 195{ 196 const struct intel_perf_query_info *queryinfo; 197 198 /* See query->kind to know which state below is in use... */ 199 union { 200 struct { 201 202 /** 203 * BO containing OA counter snapshots at query Begin/End time. 204 */ 205 void *bo; 206 207 /** 208 * Address of mapped of @bo 209 */ 210 void *map; 211 212 /** 213 * The MI_REPORT_PERF_COUNT command lets us specify a unique 214 * ID that will be reflected in the resulting OA report 215 * that's written by the GPU. This is the ID we're expecting 216 * in the begin report and the the end report should be 217 * @begin_report_id + 1. 218 */ 219 int begin_report_id; 220 221 /** 222 * Reference the head of the brw->perfquery.sample_buffers 223 * list at the time that the query started (so we only need 224 * to look at nodes after this point when looking for samples 225 * related to this query) 226 * 227 * (See struct brw_oa_sample_buf description for more details) 228 */ 229 struct exec_node *samples_head; 230 231 /** 232 * false while in the unaccumulated_elements list, and set to 233 * true when the final, end MI_RPC snapshot has been 234 * accumulated. 235 */ 236 bool results_accumulated; 237 238 /** 239 * Accumulated OA results between begin and end of the query. 240 */ 241 struct intel_perf_query_result result; 242 } oa; 243 244 struct { 245 /** 246 * BO containing starting and ending snapshots for the 247 * statistics counters. 248 */ 249 void *bo; 250 } pipeline_stats; 251 }; 252}; 253 254struct intel_perf_context { 255 struct intel_perf_config *perf; 256 257 void * mem_ctx; /* ralloc context */ 258 void * ctx; /* driver context (eg, brw_context) */ 259 void * bufmgr; 260 const struct intel_device_info *devinfo; 261 262 uint32_t hw_ctx; 263 int drm_fd; 264 265 /* The i915 perf stream we open to setup + enable the OA counters */ 266 int oa_stream_fd; 267 268 /* An i915 perf stream fd gives exclusive access to the OA unit that will 269 * report counter snapshots for a specific counter set/profile in a 270 * specific layout/format so we can only start OA queries that are 271 * compatible with the currently open fd... 272 */ 273 int current_oa_metrics_set_id; 274 int current_oa_format; 275 276 /* List of buffers containing OA reports */ 277 struct exec_list sample_buffers; 278 279 /* Cached list of empty sample buffers */ 280 struct exec_list free_sample_buffers; 281 282 int n_active_oa_queries; 283 int n_active_pipeline_stats_queries; 284 285 /* The number of queries depending on running OA counters which 286 * extends beyond brw_end_perf_query() since we need to wait until 287 * the last MI_RPC command has parsed by the GPU. 288 * 289 * Accurate accounting is important here as emitting an 290 * MI_REPORT_PERF_COUNT command while the OA unit is disabled will 291 * effectively hang the gpu. 292 */ 293 int n_oa_users; 294 295 /* To help catch an spurious problem with the hardware or perf 296 * forwarding samples, we emit each MI_REPORT_PERF_COUNT command 297 * with a unique ID that we can explicitly check for... 298 */ 299 int next_query_start_report_id; 300 301 /** 302 * An array of queries whose results haven't yet been assembled 303 * based on the data in buffer objects. 304 * 305 * These may be active, or have already ended. However, the 306 * results have not been requested. 307 */ 308 struct intel_perf_query_object **unaccumulated; 309 int unaccumulated_elements; 310 int unaccumulated_array_size; 311 312 /* The total number of query objects so we can relinquish 313 * our exclusive access to perf if the application deletes 314 * all of its objects. (NB: We only disable perf while 315 * there are no active queries) 316 */ 317 int n_query_instances; 318 319 int period_exponent; 320}; 321 322static bool 323inc_n_users(struct intel_perf_context *perf_ctx) 324{ 325 if (perf_ctx->n_oa_users == 0 && 326 intel_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0) 327 { 328 return false; 329 } 330 ++perf_ctx->n_oa_users; 331 332 return true; 333} 334 335static void 336dec_n_users(struct intel_perf_context *perf_ctx) 337{ 338 /* Disabling the i915 perf stream will effectively disable the OA 339 * counters. Note it's important to be sure there are no outstanding 340 * MI_RPC commands at this point since they could stall the CS 341 * indefinitely once OACONTROL is disabled. 342 */ 343 --perf_ctx->n_oa_users; 344 if (perf_ctx->n_oa_users == 0 && 345 intel_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0) 346 { 347 DBG("WARNING: Error disabling gen perf stream: %m\n"); 348 } 349} 350 351void 352intel_perf_close(struct intel_perf_context *perfquery, 353 const struct intel_perf_query_info *query) 354{ 355 if (perfquery->oa_stream_fd != -1) { 356 close(perfquery->oa_stream_fd); 357 perfquery->oa_stream_fd = -1; 358 } 359 if (query && query->kind == INTEL_PERF_QUERY_TYPE_RAW) { 360 struct intel_perf_query_info *raw_query = 361 (struct intel_perf_query_info *) query; 362 raw_query->oa_metrics_set_id = 0; 363 } 364} 365 366bool 367intel_perf_open(struct intel_perf_context *perf_ctx, 368 int metrics_set_id, 369 int report_format, 370 int period_exponent, 371 int drm_fd, 372 uint32_t ctx_id, 373 bool enable) 374{ 375 uint64_t properties[DRM_I915_PERF_PROP_MAX * 2]; 376 uint32_t p = 0; 377 378 /* Single context sampling if valid context id. */ 379 if (ctx_id != INTEL_PERF_INVALID_CTX_ID) { 380 properties[p++] = DRM_I915_PERF_PROP_CTX_HANDLE; 381 properties[p++] = ctx_id; 382 } 383 384 /* Include OA reports in samples */ 385 properties[p++] = DRM_I915_PERF_PROP_SAMPLE_OA; 386 properties[p++] = true; 387 388 /* OA unit configuration */ 389 properties[p++] = DRM_I915_PERF_PROP_OA_METRICS_SET; 390 properties[p++] = metrics_set_id; 391 392 properties[p++] = DRM_I915_PERF_PROP_OA_FORMAT; 393 properties[p++] = report_format; 394 395 properties[p++] = DRM_I915_PERF_PROP_OA_EXPONENT; 396 properties[p++] = period_exponent; 397 398 /* SSEU configuration */ 399 if (intel_perf_has_global_sseu(perf_ctx->perf)) { 400 properties[p++] = DRM_I915_PERF_PROP_GLOBAL_SSEU; 401 properties[p++] = to_user_pointer(&perf_ctx->perf->sseu); 402 } 403 404 assert(p <= ARRAY_SIZE(properties)); 405 406 struct drm_i915_perf_open_param param = { 407 .flags = I915_PERF_FLAG_FD_CLOEXEC | 408 I915_PERF_FLAG_FD_NONBLOCK | 409 (enable ? 0 : I915_PERF_FLAG_DISABLED), 410 .num_properties = p / 2, 411 .properties_ptr = (uintptr_t) properties, 412 }; 413 int fd = intel_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, ¶m); 414 if (fd == -1) { 415 DBG("Error opening gen perf OA stream: %m\n"); 416 return false; 417 } 418 419 perf_ctx->oa_stream_fd = fd; 420 421 perf_ctx->current_oa_metrics_set_id = metrics_set_id; 422 perf_ctx->current_oa_format = report_format; 423 424 if (enable) 425 ++perf_ctx->n_oa_users; 426 427 return true; 428} 429 430static uint64_t 431get_metric_id(struct intel_perf_config *perf, 432 const struct intel_perf_query_info *query) 433{ 434 /* These queries are know not to ever change, their config ID has been 435 * loaded upon the first query creation. No need to look them up again. 436 */ 437 if (query->kind == INTEL_PERF_QUERY_TYPE_OA) 438 return query->oa_metrics_set_id; 439 440 assert(query->kind == INTEL_PERF_QUERY_TYPE_RAW); 441 442 /* Raw queries can be reprogrammed up by an external application/library. 443 * When a raw query is used for the first time it's id is set to a value != 444 * 0. When it stops being used the id returns to 0. No need to reload the 445 * ID when it's already loaded. 446 */ 447 if (query->oa_metrics_set_id != 0) { 448 DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n", 449 query->name, query->guid, query->oa_metrics_set_id); 450 return query->oa_metrics_set_id; 451 } 452 453 struct intel_perf_query_info *raw_query = (struct intel_perf_query_info *)query; 454 if (!intel_perf_load_metric_id(perf, query->guid, 455 &raw_query->oa_metrics_set_id)) { 456 DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid); 457 raw_query->oa_metrics_set_id = perf->fallback_raw_oa_metric; 458 } else { 459 DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n", 460 query->name, query->guid, query->oa_metrics_set_id); 461 } 462 return query->oa_metrics_set_id; 463} 464 465static struct oa_sample_buf * 466get_free_sample_buf(struct intel_perf_context *perf_ctx) 467{ 468 struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers); 469 struct oa_sample_buf *buf; 470 471 if (node) 472 buf = exec_node_data(struct oa_sample_buf, node, link); 473 else { 474 buf = ralloc_size(perf_ctx->perf, sizeof(*buf)); 475 476 exec_node_init(&buf->link); 477 buf->refcount = 0; 478 } 479 buf->len = 0; 480 481 return buf; 482} 483 484static void 485reap_old_sample_buffers(struct intel_perf_context *perf_ctx) 486{ 487 struct exec_node *tail_node = 488 exec_list_get_tail(&perf_ctx->sample_buffers); 489 struct oa_sample_buf *tail_buf = 490 exec_node_data(struct oa_sample_buf, tail_node, link); 491 492 /* Remove all old, unreferenced sample buffers walking forward from 493 * the head of the list, except always leave at least one node in 494 * the list so we always have a node to reference when we Begin 495 * a new query. 496 */ 497 foreach_list_typed_safe(struct oa_sample_buf, buf, link, 498 &perf_ctx->sample_buffers) 499 { 500 if (buf->refcount == 0 && buf != tail_buf) { 501 exec_node_remove(&buf->link); 502 exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link); 503 } else 504 return; 505 } 506} 507 508static void 509free_sample_bufs(struct intel_perf_context *perf_ctx) 510{ 511 foreach_list_typed_safe(struct oa_sample_buf, buf, link, 512 &perf_ctx->free_sample_buffers) 513 ralloc_free(buf); 514 515 exec_list_make_empty(&perf_ctx->free_sample_buffers); 516} 517 518 519struct intel_perf_query_object * 520intel_perf_new_query(struct intel_perf_context *perf_ctx, unsigned query_index) 521{ 522 const struct intel_perf_query_info *query = 523 &perf_ctx->perf->queries[query_index]; 524 525 switch (query->kind) { 526 case INTEL_PERF_QUERY_TYPE_OA: 527 case INTEL_PERF_QUERY_TYPE_RAW: 528 if (perf_ctx->period_exponent == 0) 529 return NULL; 530 break; 531 case INTEL_PERF_QUERY_TYPE_PIPELINE: 532 break; 533 } 534 535 struct intel_perf_query_object *obj = 536 calloc(1, sizeof(struct intel_perf_query_object)); 537 538 if (!obj) 539 return NULL; 540 541 obj->queryinfo = query; 542 543 perf_ctx->n_query_instances++; 544 return obj; 545} 546 547int 548intel_perf_active_queries(struct intel_perf_context *perf_ctx, 549 const struct intel_perf_query_info *query) 550{ 551 assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0); 552 553 switch (query->kind) { 554 case INTEL_PERF_QUERY_TYPE_OA: 555 case INTEL_PERF_QUERY_TYPE_RAW: 556 return perf_ctx->n_active_oa_queries; 557 break; 558 559 case INTEL_PERF_QUERY_TYPE_PIPELINE: 560 return perf_ctx->n_active_pipeline_stats_queries; 561 break; 562 563 default: 564 unreachable("Unknown query type"); 565 break; 566 } 567} 568 569const struct intel_perf_query_info* 570intel_perf_query_info(const struct intel_perf_query_object *query) 571{ 572 return query->queryinfo; 573} 574 575struct intel_perf_context * 576intel_perf_new_context(void *parent) 577{ 578 struct intel_perf_context *ctx = rzalloc(parent, struct intel_perf_context); 579 if (! ctx) 580 fprintf(stderr, "%s: failed to alloc context\n", __func__); 581 return ctx; 582} 583 584struct intel_perf_config * 585intel_perf_config(struct intel_perf_context *ctx) 586{ 587 return ctx->perf; 588} 589 590void 591intel_perf_init_context(struct intel_perf_context *perf_ctx, 592 struct intel_perf_config *perf_cfg, 593 void * mem_ctx, /* ralloc context */ 594 void * ctx, /* driver context (eg, brw_context) */ 595 void * bufmgr, /* eg brw_bufmgr */ 596 const struct intel_device_info *devinfo, 597 uint32_t hw_ctx, 598 int drm_fd) 599{ 600 perf_ctx->perf = perf_cfg; 601 perf_ctx->mem_ctx = mem_ctx; 602 perf_ctx->ctx = ctx; 603 perf_ctx->bufmgr = bufmgr; 604 perf_ctx->drm_fd = drm_fd; 605 perf_ctx->hw_ctx = hw_ctx; 606 perf_ctx->devinfo = devinfo; 607 608 perf_ctx->unaccumulated = 609 ralloc_array(mem_ctx, struct intel_perf_query_object *, 2); 610 perf_ctx->unaccumulated_elements = 0; 611 perf_ctx->unaccumulated_array_size = 2; 612 613 exec_list_make_empty(&perf_ctx->sample_buffers); 614 exec_list_make_empty(&perf_ctx->free_sample_buffers); 615 616 /* It's convenient to guarantee that this linked list of sample 617 * buffers is never empty so we add an empty head so when we 618 * Begin an OA query we can always take a reference on a buffer 619 * in this list. 620 */ 621 struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx); 622 exec_list_push_head(&perf_ctx->sample_buffers, &buf->link); 623 624 perf_ctx->oa_stream_fd = -1; 625 perf_ctx->next_query_start_report_id = 1000; 626 627 /* The period_exponent gives a sampling period as follows: 628 * sample_period = timestamp_period * 2^(period_exponent + 1) 629 * 630 * The timestamps increments every 80ns (HSW), ~52ns (GFX9LP) or 631 * ~83ns (GFX8/9). 632 * 633 * The counter overflow period is derived from the EuActive counter 634 * which reads a counter that increments by the number of clock 635 * cycles multiplied by the number of EUs. It can be calculated as: 636 * 637 * 2^(number of bits in A counter) / (n_eus * max_intel_freq * 2) 638 * 639 * (E.g. 40 EUs @ 1GHz = ~53ms) 640 * 641 * We select a sampling period inferior to that overflow period to 642 * ensure we cannot see more than 1 counter overflow, otherwise we 643 * could loose information. 644 */ 645 646 int a_counter_in_bits = 32; 647 if (devinfo->ver >= 8) 648 a_counter_in_bits = 40; 649 650 uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus * 651 /* drop 1GHz freq to have units in nanoseconds */ 652 2); 653 654 DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n", 655 overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus); 656 657 int period_exponent = 0; 658 uint64_t prev_sample_period, next_sample_period; 659 for (int e = 0; e < 30; e++) { 660 prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency; 661 next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency; 662 663 /* Take the previous sampling period, lower than the overflow 664 * period. 665 */ 666 if (prev_sample_period < overflow_period && 667 next_sample_period > overflow_period) 668 period_exponent = e + 1; 669 } 670 671 perf_ctx->period_exponent = period_exponent; 672 673 if (period_exponent == 0) { 674 DBG("WARNING: enable to find a sampling exponent\n"); 675 } else { 676 DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent, 677 prev_sample_period / 1000000ul); 678 } 679} 680 681/** 682 * Add a query to the global list of "unaccumulated queries." 683 * 684 * Queries are tracked here until all the associated OA reports have 685 * been accumulated via accumulate_oa_reports() after the end 686 * MI_REPORT_PERF_COUNT has landed in query->oa.bo. 687 */ 688static void 689add_to_unaccumulated_query_list(struct intel_perf_context *perf_ctx, 690 struct intel_perf_query_object *obj) 691{ 692 if (perf_ctx->unaccumulated_elements >= 693 perf_ctx->unaccumulated_array_size) 694 { 695 perf_ctx->unaccumulated_array_size *= 1.5; 696 perf_ctx->unaccumulated = 697 reralloc(perf_ctx->mem_ctx, perf_ctx->unaccumulated, 698 struct intel_perf_query_object *, 699 perf_ctx->unaccumulated_array_size); 700 } 701 702 perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj; 703} 704 705/** 706 * Emit MI_STORE_REGISTER_MEM commands to capture all of the 707 * pipeline statistics for the performance query object. 708 */ 709static void 710snapshot_statistics_registers(struct intel_perf_context *ctx, 711 struct intel_perf_query_object *obj, 712 uint32_t offset_in_bytes) 713{ 714 struct intel_perf_config *perf = ctx->perf; 715 const struct intel_perf_query_info *query = obj->queryinfo; 716 const int n_counters = query->n_counters; 717 718 for (int i = 0; i < n_counters; i++) { 719 const struct intel_perf_query_counter *counter = &query->counters[i]; 720 721 assert(counter->data_type == INTEL_PERF_COUNTER_DATA_TYPE_UINT64); 722 723 perf->vtbl.store_register_mem(ctx->ctx, obj->pipeline_stats.bo, 724 counter->pipeline_stat.reg, 8, 725 offset_in_bytes + counter->offset); 726 } 727} 728 729static void 730snapshot_query_layout(struct intel_perf_context *perf_ctx, 731 struct intel_perf_query_object *query, 732 bool end_snapshot) 733{ 734 struct intel_perf_config *perf_cfg = perf_ctx->perf; 735 const struct intel_perf_query_field_layout *layout = &perf_cfg->query_layout; 736 uint32_t offset = end_snapshot ? align(layout->size, layout->alignment) : 0; 737 738 for (uint32_t f = 0; f < layout->n_fields; f++) { 739 const struct intel_perf_query_field *field = 740 &layout->fields[end_snapshot ? f : (layout->n_fields - 1 - f)]; 741 742 switch (field->type) { 743 case INTEL_PERF_QUERY_FIELD_TYPE_MI_RPC: 744 perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, 745 offset + field->location, 746 query->oa.begin_report_id + 747 (end_snapshot ? 1 : 0)); 748 break; 749 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_PERFCNT: 750 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_RPSTAT: 751 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_B: 752 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_C: 753 perf_cfg->vtbl.store_register_mem(perf_ctx->ctx, query->oa.bo, 754 field->mmio_offset, field->size, 755 offset + field->location); 756 break; 757 default: 758 unreachable("Invalid field type"); 759 } 760 } 761} 762 763bool 764intel_perf_begin_query(struct intel_perf_context *perf_ctx, 765 struct intel_perf_query_object *query) 766{ 767 struct intel_perf_config *perf_cfg = perf_ctx->perf; 768 const struct intel_perf_query_info *queryinfo = query->queryinfo; 769 770 /* XXX: We have to consider that the command parser unit that parses batch 771 * buffer commands and is used to capture begin/end counter snapshots isn't 772 * implicitly synchronized with what's currently running across other GPU 773 * units (such as the EUs running shaders) that the performance counters are 774 * associated with. 775 * 776 * The intention of performance queries is to measure the work associated 777 * with commands between the begin/end delimiters and so for that to be the 778 * case we need to explicitly synchronize the parsing of commands to capture 779 * Begin/End counter snapshots with what's running across other parts of the 780 * GPU. 781 * 782 * When the command parser reaches a Begin marker it effectively needs to 783 * drain everything currently running on the GPU until the hardware is idle 784 * before capturing the first snapshot of counters - otherwise the results 785 * would also be measuring the effects of earlier commands. 786 * 787 * When the command parser reaches an End marker it needs to stall until 788 * everything currently running on the GPU has finished before capturing the 789 * end snapshot - otherwise the results won't be a complete representation 790 * of the work. 791 * 792 * To achieve this, we stall the pipeline at pixel scoreboard (prevent any 793 * additional work to be processed by the pipeline until all pixels of the 794 * previous draw has be completed). 795 * 796 * N.B. The final results are based on deltas of counters between (inside) 797 * Begin/End markers so even though the total wall clock time of the 798 * workload is stretched by larger pipeline bubbles the bubbles themselves 799 * are generally invisible to the query results. Whether that's a good or a 800 * bad thing depends on the use case. For a lower real-time impact while 801 * capturing metrics then periodic sampling may be a better choice than 802 * INTEL_performance_query. 803 * 804 * 805 * This is our Begin synchronization point to drain current work on the 806 * GPU before we capture our first counter snapshot... 807 */ 808 perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx); 809 810 switch (queryinfo->kind) { 811 case INTEL_PERF_QUERY_TYPE_OA: 812 case INTEL_PERF_QUERY_TYPE_RAW: { 813 814 /* Opening an i915 perf stream implies exclusive access to the OA unit 815 * which will generate counter reports for a specific counter set with a 816 * specific layout/format so we can't begin any OA based queries that 817 * require a different counter set or format unless we get an opportunity 818 * to close the stream and open a new one... 819 */ 820 uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo); 821 822 if (perf_ctx->oa_stream_fd != -1 && 823 perf_ctx->current_oa_metrics_set_id != metric_id) { 824 825 if (perf_ctx->n_oa_users != 0) { 826 DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n", 827 perf_ctx->current_oa_metrics_set_id, metric_id); 828 return false; 829 } else 830 intel_perf_close(perf_ctx, queryinfo); 831 } 832 833 /* If the OA counters aren't already on, enable them. */ 834 if (perf_ctx->oa_stream_fd == -1) { 835 assert(perf_ctx->period_exponent != 0); 836 837 if (!intel_perf_open(perf_ctx, metric_id, queryinfo->oa_format, 838 perf_ctx->period_exponent, perf_ctx->drm_fd, 839 perf_ctx->hw_ctx, false)) 840 return false; 841 } else { 842 assert(perf_ctx->current_oa_metrics_set_id == metric_id && 843 perf_ctx->current_oa_format == queryinfo->oa_format); 844 } 845 846 if (!inc_n_users(perf_ctx)) { 847 DBG("WARNING: Error enabling i915 perf stream: %m\n"); 848 return false; 849 } 850 851 if (query->oa.bo) { 852 perf_cfg->vtbl.bo_unreference(query->oa.bo); 853 query->oa.bo = NULL; 854 } 855 856 query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr, 857 "perf. query OA MI_RPC bo", 858 MI_RPC_BO_SIZE); 859#ifdef DEBUG 860 /* Pre-filling the BO helps debug whether writes landed. */ 861 void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE); 862 memset(map, 0x80, MI_RPC_BO_SIZE); 863 perf_cfg->vtbl.bo_unmap(query->oa.bo); 864#endif 865 866 query->oa.begin_report_id = perf_ctx->next_query_start_report_id; 867 perf_ctx->next_query_start_report_id += 2; 868 869 snapshot_query_layout(perf_ctx, query, false /* end_snapshot */); 870 871 ++perf_ctx->n_active_oa_queries; 872 873 /* No already-buffered samples can possibly be associated with this query 874 * so create a marker within the list of sample buffers enabling us to 875 * easily ignore earlier samples when processing this query after 876 * completion. 877 */ 878 assert(!exec_list_is_empty(&perf_ctx->sample_buffers)); 879 query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers); 880 881 struct oa_sample_buf *buf = 882 exec_node_data(struct oa_sample_buf, query->oa.samples_head, link); 883 884 /* This reference will ensure that future/following sample 885 * buffers (that may relate to this query) can't be freed until 886 * this drops to zero. 887 */ 888 buf->refcount++; 889 890 intel_perf_query_result_clear(&query->oa.result); 891 query->oa.results_accumulated = false; 892 893 add_to_unaccumulated_query_list(perf_ctx, query); 894 break; 895 } 896 897 case INTEL_PERF_QUERY_TYPE_PIPELINE: 898 if (query->pipeline_stats.bo) { 899 perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo); 900 query->pipeline_stats.bo = NULL; 901 } 902 903 query->pipeline_stats.bo = 904 perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr, 905 "perf. query pipeline stats bo", 906 STATS_BO_SIZE); 907 908 /* Take starting snapshots. */ 909 snapshot_statistics_registers(perf_ctx, query, 0); 910 911 ++perf_ctx->n_active_pipeline_stats_queries; 912 break; 913 914 default: 915 unreachable("Unknown query type"); 916 break; 917 } 918 919 return true; 920} 921 922void 923intel_perf_end_query(struct intel_perf_context *perf_ctx, 924 struct intel_perf_query_object *query) 925{ 926 struct intel_perf_config *perf_cfg = perf_ctx->perf; 927 928 /* Ensure that the work associated with the queried commands will have 929 * finished before taking our query end counter readings. 930 * 931 * For more details see comment in brw_begin_perf_query for 932 * corresponding flush. 933 */ 934 perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx); 935 936 switch (query->queryinfo->kind) { 937 case INTEL_PERF_QUERY_TYPE_OA: 938 case INTEL_PERF_QUERY_TYPE_RAW: 939 940 /* NB: It's possible that the query will have already been marked 941 * as 'accumulated' if an error was seen while reading samples 942 * from perf. In this case we mustn't try and emit a closing 943 * MI_RPC command in case the OA unit has already been disabled 944 */ 945 if (!query->oa.results_accumulated) 946 snapshot_query_layout(perf_ctx, query, true /* end_snapshot */); 947 948 --perf_ctx->n_active_oa_queries; 949 950 /* NB: even though the query has now ended, it can't be accumulated 951 * until the end MI_REPORT_PERF_COUNT snapshot has been written 952 * to query->oa.bo 953 */ 954 break; 955 956 case INTEL_PERF_QUERY_TYPE_PIPELINE: 957 snapshot_statistics_registers(perf_ctx, query, 958 STATS_BO_END_OFFSET_BYTES); 959 --perf_ctx->n_active_pipeline_stats_queries; 960 break; 961 962 default: 963 unreachable("Unknown query type"); 964 break; 965 } 966} 967 968bool intel_perf_oa_stream_ready(struct intel_perf_context *perf_ctx) 969{ 970 struct pollfd pfd; 971 972 pfd.fd = perf_ctx->oa_stream_fd; 973 pfd.events = POLLIN; 974 pfd.revents = 0; 975 976 if (poll(&pfd, 1, 0) < 0) { 977 DBG("Error polling OA stream\n"); 978 return false; 979 } 980 981 if (!(pfd.revents & POLLIN)) 982 return false; 983 984 return true; 985} 986 987ssize_t 988intel_perf_read_oa_stream(struct intel_perf_context *perf_ctx, 989 void* buf, 990 size_t nbytes) 991{ 992 return read(perf_ctx->oa_stream_fd, buf, nbytes); 993} 994 995enum OaReadStatus { 996 OA_READ_STATUS_ERROR, 997 OA_READ_STATUS_UNFINISHED, 998 OA_READ_STATUS_FINISHED, 999}; 1000 1001static enum OaReadStatus 1002read_oa_samples_until(struct intel_perf_context *perf_ctx, 1003 uint32_t start_timestamp, 1004 uint32_t end_timestamp) 1005{ 1006 struct exec_node *tail_node = 1007 exec_list_get_tail(&perf_ctx->sample_buffers); 1008 struct oa_sample_buf *tail_buf = 1009 exec_node_data(struct oa_sample_buf, tail_node, link); 1010 uint32_t last_timestamp = 1011 tail_buf->len == 0 ? start_timestamp : tail_buf->last_timestamp; 1012 1013 while (1) { 1014 struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx); 1015 uint32_t offset; 1016 int len; 1017 1018 while ((len = read(perf_ctx->oa_stream_fd, buf->buf, 1019 sizeof(buf->buf))) < 0 && errno == EINTR) 1020 ; 1021 1022 if (len <= 0) { 1023 exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link); 1024 1025 if (len == 0) { 1026 DBG("Spurious EOF reading i915 perf samples\n"); 1027 return OA_READ_STATUS_ERROR; 1028 } 1029 1030 if (errno != EAGAIN) { 1031 DBG("Error reading i915 perf samples: %m\n"); 1032 return OA_READ_STATUS_ERROR; 1033 } 1034 1035 if ((last_timestamp - start_timestamp) >= INT32_MAX) 1036 return OA_READ_STATUS_UNFINISHED; 1037 1038 if ((last_timestamp - start_timestamp) < 1039 (end_timestamp - start_timestamp)) 1040 return OA_READ_STATUS_UNFINISHED; 1041 1042 return OA_READ_STATUS_FINISHED; 1043 } 1044 1045 buf->len = len; 1046 exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link); 1047 1048 /* Go through the reports and update the last timestamp. */ 1049 offset = 0; 1050 while (offset < buf->len) { 1051 const struct drm_i915_perf_record_header *header = 1052 (const struct drm_i915_perf_record_header *) &buf->buf[offset]; 1053 uint32_t *report = (uint32_t *) (header + 1); 1054 1055 if (header->type == DRM_I915_PERF_RECORD_SAMPLE) 1056 last_timestamp = report[1]; 1057 1058 offset += header->size; 1059 } 1060 1061 buf->last_timestamp = last_timestamp; 1062 } 1063 1064 unreachable("not reached"); 1065 return OA_READ_STATUS_ERROR; 1066} 1067 1068/** 1069 * Try to read all the reports until either the delimiting timestamp 1070 * or an error arises. 1071 */ 1072static bool 1073read_oa_samples_for_query(struct intel_perf_context *perf_ctx, 1074 struct intel_perf_query_object *query, 1075 void *current_batch) 1076{ 1077 uint32_t *start; 1078 uint32_t *last; 1079 uint32_t *end; 1080 struct intel_perf_config *perf_cfg = perf_ctx->perf; 1081 1082 /* We need the MI_REPORT_PERF_COUNT to land before we can start 1083 * accumulate. */ 1084 assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) && 1085 !perf_cfg->vtbl.bo_busy(query->oa.bo)); 1086 1087 /* Map the BO once here and let accumulate_oa_reports() unmap 1088 * it. */ 1089 if (query->oa.map == NULL) 1090 query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ); 1091 1092 start = last = query->oa.map + field_offset(false, 0); 1093 end = query->oa.map + field_offset(true, 0); 1094 1095 if (start[0] != query->oa.begin_report_id) { 1096 DBG("Spurious start report id=%"PRIu32"\n", start[0]); 1097 return true; 1098 } 1099 if (end[0] != (query->oa.begin_report_id + 1)) { 1100 DBG("Spurious end report id=%"PRIu32"\n", end[0]); 1101 return true; 1102 } 1103 1104 /* Read the reports until the end timestamp. */ 1105 switch (read_oa_samples_until(perf_ctx, start[1], end[1])) { 1106 case OA_READ_STATUS_ERROR: 1107 FALLTHROUGH; /* Let accumulate_oa_reports() deal with the error. */ 1108 case OA_READ_STATUS_FINISHED: 1109 return true; 1110 case OA_READ_STATUS_UNFINISHED: 1111 return false; 1112 } 1113 1114 unreachable("invalid read status"); 1115 return false; 1116} 1117 1118void 1119intel_perf_wait_query(struct intel_perf_context *perf_ctx, 1120 struct intel_perf_query_object *query, 1121 void *current_batch) 1122{ 1123 struct intel_perf_config *perf_cfg = perf_ctx->perf; 1124 struct brw_bo *bo = NULL; 1125 1126 switch (query->queryinfo->kind) { 1127 case INTEL_PERF_QUERY_TYPE_OA: 1128 case INTEL_PERF_QUERY_TYPE_RAW: 1129 bo = query->oa.bo; 1130 break; 1131 1132 case INTEL_PERF_QUERY_TYPE_PIPELINE: 1133 bo = query->pipeline_stats.bo; 1134 break; 1135 1136 default: 1137 unreachable("Unknown query type"); 1138 break; 1139 } 1140 1141 if (bo == NULL) 1142 return; 1143 1144 /* If the current batch references our results bo then we need to 1145 * flush first... 1146 */ 1147 if (perf_cfg->vtbl.batch_references(current_batch, bo)) 1148 perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__); 1149 1150 perf_cfg->vtbl.bo_wait_rendering(bo); 1151} 1152 1153bool 1154intel_perf_is_query_ready(struct intel_perf_context *perf_ctx, 1155 struct intel_perf_query_object *query, 1156 void *current_batch) 1157{ 1158 struct intel_perf_config *perf_cfg = perf_ctx->perf; 1159 1160 switch (query->queryinfo->kind) { 1161 case INTEL_PERF_QUERY_TYPE_OA: 1162 case INTEL_PERF_QUERY_TYPE_RAW: 1163 return (query->oa.results_accumulated || 1164 (query->oa.bo && 1165 !perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) && 1166 !perf_cfg->vtbl.bo_busy(query->oa.bo))); 1167 1168 case INTEL_PERF_QUERY_TYPE_PIPELINE: 1169 return (query->pipeline_stats.bo && 1170 !perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) && 1171 !perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo)); 1172 1173 default: 1174 unreachable("Unknown query type"); 1175 break; 1176 } 1177 1178 return false; 1179} 1180 1181/** 1182 * Remove a query from the global list of unaccumulated queries once 1183 * after successfully accumulating the OA reports associated with the 1184 * query in accumulate_oa_reports() or when discarding unwanted query 1185 * results. 1186 */ 1187static void 1188drop_from_unaccumulated_query_list(struct intel_perf_context *perf_ctx, 1189 struct intel_perf_query_object *query) 1190{ 1191 for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) { 1192 if (perf_ctx->unaccumulated[i] == query) { 1193 int last_elt = --perf_ctx->unaccumulated_elements; 1194 1195 if (i == last_elt) 1196 perf_ctx->unaccumulated[i] = NULL; 1197 else { 1198 perf_ctx->unaccumulated[i] = 1199 perf_ctx->unaccumulated[last_elt]; 1200 } 1201 1202 break; 1203 } 1204 } 1205 1206 /* Drop our samples_head reference so that associated periodic 1207 * sample data buffers can potentially be reaped if they aren't 1208 * referenced by any other queries... 1209 */ 1210 1211 struct oa_sample_buf *buf = 1212 exec_node_data(struct oa_sample_buf, query->oa.samples_head, link); 1213 1214 assert(buf->refcount > 0); 1215 buf->refcount--; 1216 1217 query->oa.samples_head = NULL; 1218 1219 reap_old_sample_buffers(perf_ctx); 1220} 1221 1222/* In general if we see anything spurious while accumulating results, 1223 * we don't try and continue accumulating the current query, hoping 1224 * for the best, we scrap anything outstanding, and then hope for the 1225 * best with new queries. 1226 */ 1227static void 1228discard_all_queries(struct intel_perf_context *perf_ctx) 1229{ 1230 while (perf_ctx->unaccumulated_elements) { 1231 struct intel_perf_query_object *query = perf_ctx->unaccumulated[0]; 1232 1233 query->oa.results_accumulated = true; 1234 drop_from_unaccumulated_query_list(perf_ctx, query); 1235 1236 dec_n_users(perf_ctx); 1237 } 1238} 1239 1240/* Looks for the validity bit of context ID (dword 2) of an OA report. */ 1241static bool 1242oa_report_ctx_id_valid(const struct intel_device_info *devinfo, 1243 const uint32_t *report) 1244{ 1245 assert(devinfo->ver >= 8); 1246 if (devinfo->ver == 8) 1247 return (report[0] & (1 << 25)) != 0; 1248 return (report[0] & (1 << 16)) != 0; 1249} 1250 1251/** 1252 * Accumulate raw OA counter values based on deltas between pairs of 1253 * OA reports. 1254 * 1255 * Accumulation starts from the first report captured via 1256 * MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the 1257 * last MI_RPC report requested by brw_end_perf_query(). Between these 1258 * two reports there may also some number of periodically sampled OA 1259 * reports collected via the i915 perf interface - depending on the 1260 * duration of the query. 1261 * 1262 * These periodic snapshots help to ensure we handle counter overflow 1263 * correctly by being frequent enough to ensure we don't miss multiple 1264 * overflows of a counter between snapshots. For Gfx8+ the i915 perf 1265 * snapshots provide the extra context-switch reports that let us 1266 * subtract out the progress of counters associated with other 1267 * contexts running on the system. 1268 */ 1269static void 1270accumulate_oa_reports(struct intel_perf_context *perf_ctx, 1271 struct intel_perf_query_object *query) 1272{ 1273 const struct intel_device_info *devinfo = perf_ctx->devinfo; 1274 uint32_t *start; 1275 uint32_t *last; 1276 uint32_t *end; 1277 struct exec_node *first_samples_node; 1278 bool last_report_ctx_match = true; 1279 int out_duration = 0; 1280 1281 assert(query->oa.map != NULL); 1282 1283 start = last = query->oa.map + field_offset(false, 0); 1284 end = query->oa.map + field_offset(true, 0); 1285 1286 if (start[0] != query->oa.begin_report_id) { 1287 DBG("Spurious start report id=%"PRIu32"\n", start[0]); 1288 goto error; 1289 } 1290 if (end[0] != (query->oa.begin_report_id + 1)) { 1291 DBG("Spurious end report id=%"PRIu32"\n", end[0]); 1292 goto error; 1293 } 1294 1295 /* On Gfx12+ OA reports are sourced from per context counters, so we don't 1296 * ever have to look at the global OA buffer. Yey \o/ 1297 */ 1298 if (perf_ctx->devinfo->ver >= 12) { 1299 last = start; 1300 goto end; 1301 } 1302 1303 /* See if we have any periodic reports to accumulate too... */ 1304 1305 /* N.B. The oa.samples_head was set when the query began and 1306 * pointed to the tail of the perf_ctx->sample_buffers list at 1307 * the time the query started. Since the buffer existed before the 1308 * first MI_REPORT_PERF_COUNT command was emitted we therefore know 1309 * that no data in this particular node's buffer can possibly be 1310 * associated with the query - so skip ahead one... 1311 */ 1312 first_samples_node = query->oa.samples_head->next; 1313 1314 foreach_list_typed_from(struct oa_sample_buf, buf, link, 1315 &perf_ctx->sample_buffers, 1316 first_samples_node) 1317 { 1318 int offset = 0; 1319 1320 while (offset < buf->len) { 1321 const struct drm_i915_perf_record_header *header = 1322 (const struct drm_i915_perf_record_header *)(buf->buf + offset); 1323 1324 assert(header->size != 0); 1325 assert(header->size <= buf->len); 1326 1327 offset += header->size; 1328 1329 switch (header->type) { 1330 case DRM_I915_PERF_RECORD_SAMPLE: { 1331 uint32_t *report = (uint32_t *)(header + 1); 1332 bool report_ctx_match = true; 1333 bool add = true; 1334 1335 /* Ignore reports that come before the start marker. 1336 * (Note: takes care to allow overflow of 32bit timestamps) 1337 */ 1338 if (intel_device_info_timebase_scale(devinfo, 1339 report[1] - start[1]) > 5000000000) { 1340 continue; 1341 } 1342 1343 /* Ignore reports that come after the end marker. 1344 * (Note: takes care to allow overflow of 32bit timestamps) 1345 */ 1346 if (intel_device_info_timebase_scale(devinfo, 1347 report[1] - end[1]) <= 5000000000) { 1348 goto end; 1349 } 1350 1351 /* For Gfx8+ since the counters continue while other 1352 * contexts are running we need to discount any unrelated 1353 * deltas. The hardware automatically generates a report 1354 * on context switch which gives us a new reference point 1355 * to continuing adding deltas from. 1356 * 1357 * For Haswell we can rely on the HW to stop the progress 1358 * of OA counters while any other context is acctive. 1359 */ 1360 if (devinfo->ver >= 8) { 1361 /* Consider that the current report matches our context only if 1362 * the report says the report ID is valid. 1363 */ 1364 report_ctx_match = oa_report_ctx_id_valid(devinfo, report) && 1365 report[2] == start[2]; 1366 if (report_ctx_match) 1367 out_duration = 0; 1368 else 1369 out_duration++; 1370 1371 /* Only add the delta between <last, report> if the last report 1372 * was clearly identified as our context, or if we have at most 1373 * 1 report without a matching ID. 1374 * 1375 * The OA unit will sometimes label reports with an invalid 1376 * context ID when i915 rewrites the execlist submit register 1377 * with the same context as the one currently running. This 1378 * happens when i915 wants to notify the HW of ringbuffer tail 1379 * register update. We have to consider this report as part of 1380 * our context as the 3d pipeline behind the OACS unit is still 1381 * processing the operations started at the previous execlist 1382 * submission. 1383 */ 1384 add = last_report_ctx_match && out_duration < 2; 1385 } 1386 1387 if (add) { 1388 intel_perf_query_result_accumulate(&query->oa.result, 1389 query->queryinfo, 1390 devinfo, 1391 last, report); 1392 } else { 1393 /* We're not adding the delta because we've identified it's not 1394 * for the context we filter for. We can consider that the 1395 * query was split. 1396 */ 1397 query->oa.result.query_disjoint = true; 1398 } 1399 1400 last = report; 1401 last_report_ctx_match = report_ctx_match; 1402 1403 break; 1404 } 1405 1406 case DRM_I915_PERF_RECORD_OA_BUFFER_LOST: 1407 DBG("i915 perf: OA error: all reports lost\n"); 1408 goto error; 1409 case DRM_I915_PERF_RECORD_OA_REPORT_LOST: 1410 DBG("i915 perf: OA report lost\n"); 1411 break; 1412 } 1413 } 1414 } 1415 1416end: 1417 1418 intel_perf_query_result_accumulate(&query->oa.result, query->queryinfo, 1419 devinfo, last, end); 1420 1421 query->oa.results_accumulated = true; 1422 drop_from_unaccumulated_query_list(perf_ctx, query); 1423 dec_n_users(perf_ctx); 1424 1425 return; 1426 1427error: 1428 1429 discard_all_queries(perf_ctx); 1430} 1431 1432void 1433intel_perf_delete_query(struct intel_perf_context *perf_ctx, 1434 struct intel_perf_query_object *query) 1435{ 1436 struct intel_perf_config *perf_cfg = perf_ctx->perf; 1437 1438 /* We can assume that the frontend waits for a query to complete 1439 * before ever calling into here, so we don't have to worry about 1440 * deleting an in-flight query object. 1441 */ 1442 switch (query->queryinfo->kind) { 1443 case INTEL_PERF_QUERY_TYPE_OA: 1444 case INTEL_PERF_QUERY_TYPE_RAW: 1445 if (query->oa.bo) { 1446 if (!query->oa.results_accumulated) { 1447 drop_from_unaccumulated_query_list(perf_ctx, query); 1448 dec_n_users(perf_ctx); 1449 } 1450 1451 perf_cfg->vtbl.bo_unreference(query->oa.bo); 1452 query->oa.bo = NULL; 1453 } 1454 1455 query->oa.results_accumulated = false; 1456 break; 1457 1458 case INTEL_PERF_QUERY_TYPE_PIPELINE: 1459 if (query->pipeline_stats.bo) { 1460 perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo); 1461 query->pipeline_stats.bo = NULL; 1462 } 1463 break; 1464 1465 default: 1466 unreachable("Unknown query type"); 1467 break; 1468 } 1469 1470 /* As an indication that the INTEL_performance_query extension is no 1471 * longer in use, it's a good time to free our cache of sample 1472 * buffers and close any current i915-perf stream. 1473 */ 1474 if (--perf_ctx->n_query_instances == 0) { 1475 free_sample_bufs(perf_ctx); 1476 intel_perf_close(perf_ctx, query->queryinfo); 1477 } 1478 1479 free(query); 1480} 1481 1482static int 1483get_oa_counter_data(struct intel_perf_context *perf_ctx, 1484 struct intel_perf_query_object *query, 1485 size_t data_size, 1486 uint8_t *data) 1487{ 1488 struct intel_perf_config *perf_cfg = perf_ctx->perf; 1489 const struct intel_perf_query_info *queryinfo = query->queryinfo; 1490 int n_counters = queryinfo->n_counters; 1491 int written = 0; 1492 1493 for (int i = 0; i < n_counters; i++) { 1494 const struct intel_perf_query_counter *counter = &queryinfo->counters[i]; 1495 uint64_t *out_uint64; 1496 float *out_float; 1497 size_t counter_size = intel_perf_query_counter_get_size(counter); 1498 1499 if (counter_size) { 1500 switch (counter->data_type) { 1501 case INTEL_PERF_COUNTER_DATA_TYPE_UINT64: 1502 out_uint64 = (uint64_t *)(data + counter->offset); 1503 *out_uint64 = 1504 counter->oa_counter_read_uint64(perf_cfg, queryinfo, 1505 &query->oa.result); 1506 break; 1507 case INTEL_PERF_COUNTER_DATA_TYPE_FLOAT: 1508 out_float = (float *)(data + counter->offset); 1509 *out_float = 1510 counter->oa_counter_read_float(perf_cfg, queryinfo, 1511 &query->oa.result); 1512 break; 1513 default: 1514 /* So far we aren't using uint32, double or bool32... */ 1515 unreachable("unexpected counter data type"); 1516 } 1517 1518 if (counter->offset + counter_size > written) 1519 written = counter->offset + counter_size; 1520 } 1521 } 1522 1523 return written; 1524} 1525 1526static int 1527get_pipeline_stats_data(struct intel_perf_context *perf_ctx, 1528 struct intel_perf_query_object *query, 1529 size_t data_size, 1530 uint8_t *data) 1531 1532{ 1533 struct intel_perf_config *perf_cfg = perf_ctx->perf; 1534 const struct intel_perf_query_info *queryinfo = query->queryinfo; 1535 int n_counters = queryinfo->n_counters; 1536 uint8_t *p = data; 1537 1538 uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ); 1539 uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t)); 1540 1541 for (int i = 0; i < n_counters; i++) { 1542 const struct intel_perf_query_counter *counter = &queryinfo->counters[i]; 1543 uint64_t value = end[i] - start[i]; 1544 1545 if (counter->pipeline_stat.numerator != 1546 counter->pipeline_stat.denominator) { 1547 value *= counter->pipeline_stat.numerator; 1548 value /= counter->pipeline_stat.denominator; 1549 } 1550 1551 *((uint64_t *)p) = value; 1552 p += 8; 1553 } 1554 1555 perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo); 1556 1557 return p - data; 1558} 1559 1560void 1561intel_perf_get_query_data(struct intel_perf_context *perf_ctx, 1562 struct intel_perf_query_object *query, 1563 void *current_batch, 1564 int data_size, 1565 unsigned *data, 1566 unsigned *bytes_written) 1567{ 1568 struct intel_perf_config *perf_cfg = perf_ctx->perf; 1569 int written = 0; 1570 1571 switch (query->queryinfo->kind) { 1572 case INTEL_PERF_QUERY_TYPE_OA: 1573 case INTEL_PERF_QUERY_TYPE_RAW: 1574 if (!query->oa.results_accumulated) { 1575 /* Due to the sampling frequency of the OA buffer by the i915-perf 1576 * driver, there can be a 5ms delay between the Mesa seeing the query 1577 * complete and i915 making all the OA buffer reports available to us. 1578 * We need to wait for all the reports to come in before we can do 1579 * the post processing removing unrelated deltas. 1580 * There is a i915-perf series to address this issue, but it's 1581 * not been merged upstream yet. 1582 */ 1583 while (!read_oa_samples_for_query(perf_ctx, query, current_batch)) 1584 ; 1585 1586 uint32_t *begin_report = query->oa.map; 1587 uint32_t *end_report = query->oa.map + perf_cfg->query_layout.size; 1588 intel_perf_query_result_accumulate_fields(&query->oa.result, 1589 query->queryinfo, 1590 perf_ctx->devinfo, 1591 begin_report, 1592 end_report, 1593 true /* no_oa_accumulate */); 1594 accumulate_oa_reports(perf_ctx, query); 1595 assert(query->oa.results_accumulated); 1596 1597 perf_cfg->vtbl.bo_unmap(query->oa.bo); 1598 query->oa.map = NULL; 1599 } 1600 if (query->queryinfo->kind == INTEL_PERF_QUERY_TYPE_OA) { 1601 written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data); 1602 } else { 1603 const struct intel_device_info *devinfo = perf_ctx->devinfo; 1604 1605 written = intel_perf_query_result_write_mdapi((uint8_t *)data, data_size, 1606 devinfo, query->queryinfo, 1607 &query->oa.result); 1608 } 1609 break; 1610 1611 case INTEL_PERF_QUERY_TYPE_PIPELINE: 1612 written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data); 1613 break; 1614 1615 default: 1616 unreachable("Unknown query type"); 1617 break; 1618 } 1619 1620 if (bytes_written) 1621 *bytes_written = written; 1622} 1623 1624void 1625intel_perf_dump_query_count(struct intel_perf_context *perf_ctx) 1626{ 1627 DBG("Queries: (Open queries = %d, OA users = %d)\n", 1628 perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users); 1629} 1630 1631void 1632intel_perf_dump_query(struct intel_perf_context *ctx, 1633 struct intel_perf_query_object *obj, 1634 void *current_batch) 1635{ 1636 switch (obj->queryinfo->kind) { 1637 case INTEL_PERF_QUERY_TYPE_OA: 1638 case INTEL_PERF_QUERY_TYPE_RAW: 1639 DBG("BO: %-4s OA data: %-10s %-15s\n", 1640 obj->oa.bo ? "yes," : "no,", 1641 intel_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,", 1642 obj->oa.results_accumulated ? "accumulated" : "not accumulated"); 1643 break; 1644 case INTEL_PERF_QUERY_TYPE_PIPELINE: 1645 DBG("BO: %-4s\n", 1646 obj->pipeline_stats.bo ? "yes" : "no"); 1647 break; 1648 default: 1649 unreachable("Unknown query type"); 1650 break; 1651 } 1652} 1653