1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <assert.h>
25#include <stdbool.h>
26
27#include "anv_private.h"
28#include "anv_measure.h"
29#include "vk_format.h"
30#include "vk_util.h"
31#include "util/fast_idiv_by_const.h"
32
33#include "common/intel_aux_map.h"
34#include "common/intel_l3_config.h"
35#include "genxml/gen_macros.h"
36#include "genxml/genX_pack.h"
37#include "genxml/gen_rt_pack.h"
38
39#include "nir/nir_xfb_info.h"
40
41/* We reserve :
42 *    - GPR 14 for secondary command buffer returns
43 *    - GPR 15 for conditional rendering
44 */
45#define MI_BUILDER_NUM_ALLOC_GPRS 14
46#define __gen_get_batch_dwords anv_batch_emit_dwords
47#define __gen_address_offset anv_address_add
48#define __gen_get_batch_address(b, a) anv_batch_address(b, a)
49#include "common/mi_builder.h"
50
51static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
52                                        uint32_t pipeline);
53
54static enum anv_pipe_bits
55convert_pc_to_bits(struct GENX(PIPE_CONTROL) *pc) {
56   enum anv_pipe_bits bits = 0;
57   bits |= (pc->DepthCacheFlushEnable) ?  ANV_PIPE_DEPTH_CACHE_FLUSH_BIT : 0;
58   bits |= (pc->DCFlushEnable) ?  ANV_PIPE_DATA_CACHE_FLUSH_BIT : 0;
59#if GFX_VER >= 12
60   bits |= (pc->TileCacheFlushEnable) ?  ANV_PIPE_TILE_CACHE_FLUSH_BIT : 0;
61   bits |= (pc->HDCPipelineFlushEnable) ?  ANV_PIPE_HDC_PIPELINE_FLUSH_BIT : 0;
62#endif
63   bits |= (pc->RenderTargetCacheFlushEnable) ?  ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT : 0;
64   bits |= (pc->StateCacheInvalidationEnable) ?  ANV_PIPE_STATE_CACHE_INVALIDATE_BIT : 0;
65   bits |= (pc->ConstantCacheInvalidationEnable) ?  ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT : 0;
66   bits |= (pc->TextureCacheInvalidationEnable) ?  ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT : 0;
67   bits |= (pc->InstructionCacheInvalidateEnable) ?  ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT : 0;
68   bits |= (pc->StallAtPixelScoreboard) ?  ANV_PIPE_STALL_AT_SCOREBOARD_BIT : 0;
69   bits |= (pc->DepthStallEnable) ?  ANV_PIPE_DEPTH_STALL_BIT : 0;
70   bits |= (pc->CommandStreamerStallEnable) ?  ANV_PIPE_CS_STALL_BIT : 0;
71   return bits;
72}
73
74#define anv_debug_dump_pc(pc) \
75   if (INTEL_DEBUG(DEBUG_PIPE_CONTROL)) { \
76      fputs("pc: emit PC=( ", stderr); \
77      anv_dump_pipe_bits(convert_pc_to_bits(&(pc))); \
78      fprintf(stderr, ") reason: %s\n", __FUNCTION__); \
79   }
80
81static bool
82is_render_queue_cmd_buffer(const struct anv_cmd_buffer *cmd_buffer)
83{
84   struct anv_queue_family *queue_family = cmd_buffer->pool->queue_family;
85   return (queue_family->queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0;
86}
87
88void
89genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
90{
91   struct anv_device *device = cmd_buffer->device;
92   UNUSED const struct intel_device_info *devinfo = &device->info;
93   uint32_t mocs = isl_mocs(&device->isl_dev, 0, false);
94
95   /* If we are emitting a new state base address we probably need to re-emit
96    * binding tables.
97    */
98   cmd_buffer->state.descriptors_dirty |= ~0;
99
100   /* Emit a render target cache flush.
101    *
102    * This isn't documented anywhere in the PRM.  However, it seems to be
103    * necessary prior to changing the surface state base adress.  Without
104    * this, we get GPU hangs when using multi-level command buffers which
105    * clear depth, reset state base address, and then go render stuff.
106    */
107   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
108#if GFX_VER >= 12
109      pc.HDCPipelineFlushEnable = true;
110#else
111      pc.DCFlushEnable = true;
112#endif
113      pc.RenderTargetCacheFlushEnable = true;
114      pc.CommandStreamerStallEnable = true;
115#if GFX_VER == 12
116      /* Wa_1606662791:
117       *
118       *   Software must program PIPE_CONTROL command with "HDC Pipeline
119       *   Flush" prior to programming of the below two non-pipeline state :
120       *      * STATE_BASE_ADDRESS
121       *      * 3DSTATE_BINDING_TABLE_POOL_ALLOC
122       */
123      if (devinfo->revision == 0 /* A0 */)
124         pc.HDCPipelineFlushEnable = true;
125#endif
126      anv_debug_dump_pc(pc);
127   }
128
129#if GFX_VER == 12
130   /* Wa_1607854226:
131    *
132    *  Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
133    *  mode by putting the pipeline temporarily in 3D mode.
134    */
135   uint32_t gfx12_wa_pipeline = cmd_buffer->state.current_pipeline;
136   genX(flush_pipeline_select_3d)(cmd_buffer);
137#endif
138
139   anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
140      sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
141      sba.GeneralStateMOCS = mocs;
142      sba.GeneralStateBaseAddressModifyEnable = true;
143
144      sba.StatelessDataPortAccessMOCS = mocs;
145
146      sba.SurfaceStateBaseAddress =
147         anv_cmd_buffer_surface_base_address(cmd_buffer);
148      sba.SurfaceStateMOCS = mocs;
149      sba.SurfaceStateBaseAddressModifyEnable = true;
150
151      sba.DynamicStateBaseAddress =
152         (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
153      sba.DynamicStateMOCS = mocs;
154      sba.DynamicStateBaseAddressModifyEnable = true;
155
156      sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
157      sba.IndirectObjectMOCS = mocs;
158      sba.IndirectObjectBaseAddressModifyEnable = true;
159
160      sba.InstructionBaseAddress =
161         (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
162      sba.InstructionMOCS = mocs;
163      sba.InstructionBaseAddressModifyEnable = true;
164
165#  if (GFX_VER >= 8)
166      /* Broadwell requires that we specify a buffer size for a bunch of
167       * these fields.  However, since we will be growing the BO's live, we
168       * just set them all to the maximum.
169       */
170      sba.GeneralStateBufferSize       = 0xfffff;
171      sba.IndirectObjectBufferSize     = 0xfffff;
172      if (anv_use_softpin(device->physical)) {
173         /* With softpin, we use fixed addresses so we actually know how big
174          * our base addresses are.
175          */
176         sba.DynamicStateBufferSize    = DYNAMIC_STATE_POOL_SIZE / 4096;
177         sba.InstructionBufferSize     = INSTRUCTION_STATE_POOL_SIZE / 4096;
178      } else {
179         sba.DynamicStateBufferSize    = 0xfffff;
180         sba.InstructionBufferSize     = 0xfffff;
181      }
182      sba.GeneralStateBufferSizeModifyEnable    = true;
183      sba.IndirectObjectBufferSizeModifyEnable  = true;
184      sba.DynamicStateBufferSizeModifyEnable    = true;
185      sba.InstructionBuffersizeModifyEnable     = true;
186#  else
187      /* On gfx7, we have upper bounds instead.  According to the docs,
188       * setting an upper bound of zero means that no bounds checking is
189       * performed so, in theory, we should be able to leave them zero.
190       * However, border color is broken and the GPU bounds-checks anyway.
191       * To avoid this and other potential problems, we may as well set it
192       * for everything.
193       */
194      sba.GeneralStateAccessUpperBound =
195         (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
196      sba.GeneralStateAccessUpperBoundModifyEnable = true;
197      sba.DynamicStateAccessUpperBound =
198         (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
199      sba.DynamicStateAccessUpperBoundModifyEnable = true;
200      sba.InstructionAccessUpperBound =
201         (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
202      sba.InstructionAccessUpperBoundModifyEnable = true;
203#  endif
204#  if (GFX_VER >= 9)
205      if (anv_use_softpin(device->physical)) {
206         sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
207            .bo = device->surface_state_pool.block_pool.bo,
208            .offset = 0,
209         };
210         sba.BindlessSurfaceStateSize = (1 << 20) - 1;
211      } else {
212         sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
213         sba.BindlessSurfaceStateSize = 0;
214      }
215      sba.BindlessSurfaceStateMOCS = mocs;
216      sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
217#  endif
218#  if (GFX_VER >= 10)
219      sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
220      sba.BindlessSamplerStateMOCS = mocs;
221      sba.BindlessSamplerStateBaseAddressModifyEnable = true;
222      sba.BindlessSamplerStateBufferSize = 0;
223#  endif
224   }
225
226#if GFX_VER == 12
227   /* Wa_1607854226:
228    *
229    *  Put the pipeline back into its current mode.
230    */
231   if (gfx12_wa_pipeline != UINT32_MAX)
232      genX(flush_pipeline_select)(cmd_buffer, gfx12_wa_pipeline);
233#endif
234
235   /* After re-setting the surface state base address, we have to do some
236    * cache flusing so that the sampler engine will pick up the new
237    * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
238    * Shared Function > 3D Sampler > State > State Caching (page 96):
239    *
240    *    Coherency with system memory in the state cache, like the texture
241    *    cache is handled partially by software. It is expected that the
242    *    command stream or shader will issue Cache Flush operation or
243    *    Cache_Flush sampler message to ensure that the L1 cache remains
244    *    coherent with system memory.
245    *
246    *    [...]
247    *
248    *    Whenever the value of the Dynamic_State_Base_Addr,
249    *    Surface_State_Base_Addr are altered, the L1 state cache must be
250    *    invalidated to ensure the new surface or sampler state is fetched
251    *    from system memory.
252    *
253    * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
254    * which, according the PIPE_CONTROL instruction documentation in the
255    * Broadwell PRM:
256    *
257    *    Setting this bit is independent of any other bit in this packet.
258    *    This bit controls the invalidation of the L1 and L2 state caches
259    *    at the top of the pipe i.e. at the parsing time.
260    *
261    * Unfortunately, experimentation seems to indicate that state cache
262    * invalidation through a PIPE_CONTROL does nothing whatsoever in
263    * regards to surface state and binding tables.  In stead, it seems that
264    * invalidating the texture cache is what is actually needed.
265    *
266    * XXX:  As far as we have been able to determine through
267    * experimentation, shows that flush the texture cache appears to be
268    * sufficient.  The theory here is that all of the sampling/rendering
269    * units cache the binding table in the texture cache.  However, we have
270    * yet to be able to actually confirm this.
271    */
272   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
273      pc.TextureCacheInvalidationEnable = true;
274      pc.ConstantCacheInvalidationEnable = true;
275      pc.StateCacheInvalidationEnable = true;
276      anv_debug_dump_pc(pc);
277   }
278}
279
280static void
281add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
282                  struct anv_state state, struct anv_address addr)
283{
284   VkResult result;
285
286   if (anv_use_softpin(cmd_buffer->device->physical)) {
287      result = anv_reloc_list_add_bo(&cmd_buffer->surface_relocs,
288                                     &cmd_buffer->pool->alloc,
289                                     addr.bo);
290   } else {
291      const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
292      result = anv_reloc_list_add(&cmd_buffer->surface_relocs,
293                                  &cmd_buffer->pool->alloc,
294                                  state.offset + isl_dev->ss.addr_offset,
295                                  addr.bo, addr.offset, NULL);
296   }
297
298   if (unlikely(result != VK_SUCCESS))
299      anv_batch_set_error(&cmd_buffer->batch, result);
300}
301
302static void
303add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
304                         struct anv_surface_state state)
305{
306   const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
307
308   assert(!anv_address_is_null(state.address));
309   add_surface_reloc(cmd_buffer, state.state, state.address);
310
311   if (!anv_address_is_null(state.aux_address)) {
312      VkResult result =
313         anv_reloc_list_add(&cmd_buffer->surface_relocs,
314                            &cmd_buffer->pool->alloc,
315                            state.state.offset + isl_dev->ss.aux_addr_offset,
316                            state.aux_address.bo,
317                            state.aux_address.offset,
318                            NULL);
319      if (result != VK_SUCCESS)
320         anv_batch_set_error(&cmd_buffer->batch, result);
321   }
322
323   if (!anv_address_is_null(state.clear_address)) {
324      VkResult result =
325         anv_reloc_list_add(&cmd_buffer->surface_relocs,
326                            &cmd_buffer->pool->alloc,
327                            state.state.offset +
328                            isl_dev->ss.clear_color_state_offset,
329                            state.clear_address.bo,
330                            state.clear_address.offset,
331                            NULL);
332      if (result != VK_SUCCESS)
333         anv_batch_set_error(&cmd_buffer->batch, result);
334   }
335}
336
337static bool
338isl_color_value_requires_conversion(union isl_color_value color,
339                                    const struct isl_surf *surf,
340                                    const struct isl_view *view)
341{
342   if (surf->format == view->format && isl_swizzle_is_identity(view->swizzle))
343      return false;
344
345   uint32_t surf_pack[4] = { 0, 0, 0, 0 };
346   isl_color_value_pack(&color, surf->format, surf_pack);
347
348   uint32_t view_pack[4] = { 0, 0, 0, 0 };
349   union isl_color_value swiz_color =
350      isl_color_value_swizzle_inv(color, view->swizzle);
351   isl_color_value_pack(&swiz_color, view->format, view_pack);
352
353   return memcmp(surf_pack, view_pack, sizeof(surf_pack)) != 0;
354}
355
356static bool
357anv_can_fast_clear_color_view(struct anv_device * device,
358                              struct anv_image_view *iview,
359                              VkImageLayout layout,
360                              union isl_color_value clear_color,
361                              uint32_t num_layers,
362                              VkRect2D render_area)
363{
364   if (iview->planes[0].isl.base_array_layer >=
365       anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
366                            iview->planes[0].isl.base_level))
367      return false;
368
369   /* Start by getting the fast clear type.  We use the first subpass
370    * layout here because we don't want to fast-clear if the first subpass
371    * to use the attachment can't handle fast-clears.
372    */
373   enum anv_fast_clear_type fast_clear_type =
374      anv_layout_to_fast_clear_type(&device->info, iview->image,
375                                    VK_IMAGE_ASPECT_COLOR_BIT,
376                                    layout);
377   switch (fast_clear_type) {
378   case ANV_FAST_CLEAR_NONE:
379      return false;
380   case ANV_FAST_CLEAR_DEFAULT_VALUE:
381      if (!isl_color_value_is_zero(clear_color, iview->planes[0].isl.format))
382         return false;
383      break;
384   case ANV_FAST_CLEAR_ANY:
385      break;
386   }
387
388   /* Potentially, we could do partial fast-clears but doing so has crazy
389    * alignment restrictions.  It's easier to just restrict to full size
390    * fast clears for now.
391    */
392   if (render_area.offset.x != 0 ||
393       render_area.offset.y != 0 ||
394       render_area.extent.width != iview->vk.extent.width ||
395       render_area.extent.height != iview->vk.extent.height)
396      return false;
397
398   /* On Broadwell and earlier, we can only handle 0/1 clear colors */
399   if (GFX_VER <= 8 &&
400       !isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format))
401      return false;
402
403   /* If the clear color is one that would require non-trivial format
404    * conversion on resolve, we don't bother with the fast clear.  This
405    * shouldn't be common as most clear colors are 0/1 and the most common
406    * format re-interpretation is for sRGB.
407    */
408   if (isl_color_value_requires_conversion(clear_color,
409                                           &iview->image->planes[0].primary_surface.isl,
410                                           &iview->planes[0].isl)) {
411      anv_perf_warn(VK_LOG_OBJS(&iview->vk.base),
412                    "Cannot fast-clear to colors which would require "
413                    "format conversion on resolve");
414      return false;
415   }
416
417   /* We only allow fast clears to the first slice of an image (level 0,
418    * layer 0) and only for the entire slice.  This guarantees us that, at
419    * any given time, there is only one clear color on any given image at
420    * any given time.  At the time of our testing (Jan 17, 2018), there
421    * were no known applications which would benefit from fast-clearing
422    * more than just the first slice.
423    */
424   if (iview->planes[0].isl.base_level > 0 ||
425       iview->planes[0].isl.base_array_layer > 0) {
426      anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
427                    "Rendering with multi-lod or multi-layer framebuffer "
428                    "with LOAD_OP_LOAD and baseMipLevel > 0 or "
429                    "baseArrayLayer > 0.  Not fast clearing.");
430      return false;
431   }
432
433   if (num_layers > 1) {
434      anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
435                    "Rendering to a multi-layer framebuffer with "
436                    "LOAD_OP_CLEAR.  Only fast-clearing the first slice");
437   }
438
439   return true;
440}
441
442static bool
443anv_can_hiz_clear_ds_view(struct anv_device *device,
444                          struct anv_image_view *iview,
445                          VkImageLayout layout,
446                          VkImageAspectFlags clear_aspects,
447                          float depth_clear_value,
448                          VkRect2D render_area)
449{
450   /* We don't do any HiZ or depth fast-clears on gfx7 yet */
451   if (GFX_VER == 7)
452      return false;
453
454   /* If we're just clearing stencil, we can always HiZ clear */
455   if (!(clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
456      return true;
457
458   /* We must have depth in order to have HiZ */
459   if (!(iview->image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
460      return false;
461
462   const enum isl_aux_usage clear_aux_usage =
463      anv_layout_to_aux_usage(&device->info, iview->image,
464                              VK_IMAGE_ASPECT_DEPTH_BIT,
465                              VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
466                              layout);
467   if (!blorp_can_hiz_clear_depth(&device->info,
468                                  &iview->image->planes[0].primary_surface.isl,
469                                  clear_aux_usage,
470                                  iview->planes[0].isl.base_level,
471                                  iview->planes[0].isl.base_array_layer,
472                                  render_area.offset.x,
473                                  render_area.offset.y,
474                                  render_area.offset.x +
475                                  render_area.extent.width,
476                                  render_area.offset.y +
477                                  render_area.extent.height))
478      return false;
479
480   if (depth_clear_value != ANV_HZ_FC_VAL)
481      return false;
482
483   /* Only gfx9+ supports returning ANV_HZ_FC_VAL when sampling a fast-cleared
484    * portion of a HiZ buffer. Testing has revealed that Gfx8 only supports
485    * returning 0.0f. Gens prior to gfx8 do not support this feature at all.
486    */
487   if (GFX_VER == 8 && anv_can_sample_with_hiz(&device->info, iview->image))
488      return false;
489
490   /* If we got here, then we can fast clear */
491   return true;
492}
493
494#define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
495
496#if GFX_VER == 12
497static void
498anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer,
499                      const struct anv_image *image,
500                      VkImageAspectFlagBits aspect,
501                      uint32_t base_level, uint32_t level_count,
502                      uint32_t base_layer, uint32_t layer_count)
503{
504   const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
505
506   const struct anv_surface *surface = &image->planes[plane].primary_surface;
507   uint64_t base_address =
508      anv_address_physical(anv_image_address(image, &surface->memory_range));
509
510   const struct isl_surf *isl_surf = &image->planes[plane].primary_surface.isl;
511   uint64_t format_bits = intel_aux_map_format_bits_for_isl_surf(isl_surf);
512
513   /* We're about to live-update the AUX-TT.  We really don't want anyone else
514    * trying to read it while we're doing this.  We could probably get away
515    * with not having this stall in some cases if we were really careful but
516    * it's better to play it safe.  Full stall the GPU.
517    */
518   anv_add_pending_pipe_bits(cmd_buffer,
519                             ANV_PIPE_END_OF_PIPE_SYNC_BIT,
520                             "before update AUX-TT");
521   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
522
523   struct mi_builder b;
524   mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
525
526   for (uint32_t a = 0; a < layer_count; a++) {
527      const uint32_t layer = base_layer + a;
528
529      uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0;
530      for (uint32_t l = 0; l < level_count; l++) {
531         const uint32_t level = base_level + l;
532
533         uint32_t logical_array_layer, logical_z_offset_px;
534         if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
535            logical_array_layer = 0;
536
537            /* If the given miplevel does not have this layer, then any higher
538             * miplevels won't either because miplevels only get smaller the
539             * higher the LOD.
540             */
541            assert(layer < image->vk.extent.depth);
542            if (layer >= anv_minify(image->vk.extent.depth, level))
543               break;
544            logical_z_offset_px = layer;
545         } else {
546            assert(layer < image->vk.array_layers);
547            logical_array_layer = layer;
548            logical_z_offset_px = 0;
549         }
550
551         uint64_t slice_start_offset_B, slice_end_offset_B;
552         isl_surf_get_image_range_B_tile(isl_surf, level,
553                                         logical_array_layer,
554                                         logical_z_offset_px,
555                                         &slice_start_offset_B,
556                                         &slice_end_offset_B);
557
558         start_offset_B = MIN2(start_offset_B, slice_start_offset_B);
559         end_offset_B = MAX2(end_offset_B, slice_end_offset_B);
560      }
561
562      /* Aux operates 64K at a time */
563      start_offset_B = align_down_u64(start_offset_B, 64 * 1024);
564      end_offset_B = align_u64(end_offset_B, 64 * 1024);
565
566      for (uint64_t offset = start_offset_B;
567           offset < end_offset_B; offset += 64 * 1024) {
568         uint64_t address = base_address + offset;
569
570         uint64_t aux_entry_addr64, *aux_entry_map;
571         aux_entry_map = intel_aux_map_get_entry(cmd_buffer->device->aux_map_ctx,
572                                                 address, &aux_entry_addr64);
573
574         assert(anv_use_softpin(cmd_buffer->device->physical));
575         struct anv_address aux_entry_address = {
576            .bo = NULL,
577            .offset = aux_entry_addr64,
578         };
579
580         const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map);
581         uint64_t new_aux_entry =
582            (old_aux_entry & INTEL_AUX_MAP_ADDRESS_MASK) | format_bits;
583
584         if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage))
585            new_aux_entry |= INTEL_AUX_MAP_ENTRY_VALID_BIT;
586
587         mi_store(&b, mi_mem64(aux_entry_address), mi_imm(new_aux_entry));
588      }
589   }
590
591   anv_add_pending_pipe_bits(cmd_buffer,
592                             ANV_PIPE_AUX_TABLE_INVALIDATE_BIT,
593                             "after update AUX-TT");
594}
595#endif /* GFX_VER == 12 */
596
597/* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
598 * the initial layout is undefined, the HiZ buffer and depth buffer will
599 * represent the same data at the end of this operation.
600 */
601static void
602transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
603                        const struct anv_image *image,
604                        uint32_t base_layer, uint32_t layer_count,
605                        VkImageLayout initial_layout,
606                        VkImageLayout final_layout,
607                        bool will_full_fast_clear)
608{
609   const uint32_t depth_plane =
610      anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_DEPTH_BIT);
611   if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
612      return;
613
614#if GFX_VER == 12
615   if ((initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
616        initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) &&
617       cmd_buffer->device->physical->has_implicit_ccs &&
618       cmd_buffer->device->info.has_aux_map) {
619      anv_image_init_aux_tt(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
620                            0, 1, base_layer, layer_count);
621   }
622#endif
623
624   /* If will_full_fast_clear is set, the caller promises to fast-clear the
625    * largest portion of the specified range as it can.  For depth images,
626    * that means the entire image because we don't support multi-LOD HiZ.
627    */
628   assert(image->planes[0].primary_surface.isl.levels == 1);
629   if (will_full_fast_clear)
630      return;
631
632   const enum isl_aux_state initial_state =
633      anv_layout_to_aux_state(&cmd_buffer->device->info, image,
634                              VK_IMAGE_ASPECT_DEPTH_BIT,
635                              initial_layout);
636   const enum isl_aux_state final_state =
637      anv_layout_to_aux_state(&cmd_buffer->device->info, image,
638                              VK_IMAGE_ASPECT_DEPTH_BIT,
639                              final_layout);
640
641   const bool initial_depth_valid =
642      isl_aux_state_has_valid_primary(initial_state);
643   const bool initial_hiz_valid =
644      isl_aux_state_has_valid_aux(initial_state);
645   const bool final_needs_depth =
646      isl_aux_state_has_valid_primary(final_state);
647   const bool final_needs_hiz =
648      isl_aux_state_has_valid_aux(final_state);
649
650   /* Getting into the pass-through state for Depth is tricky and involves
651    * both a resolve and an ambiguate.  We don't handle that state right now
652    * as anv_layout_to_aux_state never returns it.
653    */
654   assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
655
656   if (final_needs_depth && !initial_depth_valid) {
657      assert(initial_hiz_valid);
658      anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
659                       0, base_layer, layer_count, ISL_AUX_OP_FULL_RESOLVE);
660   } else if (final_needs_hiz && !initial_hiz_valid) {
661      assert(initial_depth_valid);
662      anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
663                       0, base_layer, layer_count, ISL_AUX_OP_AMBIGUATE);
664   }
665}
666
667static inline bool
668vk_image_layout_stencil_write_optimal(VkImageLayout layout)
669{
670   return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
671          layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
672          layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
673}
674
675/* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
676 * the initial layout is undefined, the HiZ buffer and depth buffer will
677 * represent the same data at the end of this operation.
678 */
679static void
680transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
681                          const struct anv_image *image,
682                          uint32_t base_level, uint32_t level_count,
683                          uint32_t base_layer, uint32_t layer_count,
684                          VkImageLayout initial_layout,
685                          VkImageLayout final_layout,
686                          bool will_full_fast_clear)
687{
688#if GFX_VER == 7
689   const uint32_t plane =
690      anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
691
692   /* On gfx7, we have to store a texturable version of the stencil buffer in
693    * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
694    * forth at strategic points. Stencil writes are only allowed in following
695    * layouts:
696    *
697    *  - VK_IMAGE_LAYOUT_GENERAL
698    *  - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
699    *  - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
700    *  - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
701    *  - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
702    *
703    * For general, we have no nice opportunity to transition so we do the copy
704    * to the shadow unconditionally at the end of the subpass. For transfer
705    * destinations, we can update it as part of the transfer op. For the other
706    * layouts, we delay the copy until a transition into some other layout.
707    */
708   if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
709       vk_image_layout_stencil_write_optimal(initial_layout) &&
710       !vk_image_layout_stencil_write_optimal(final_layout)) {
711      anv_image_copy_to_shadow(cmd_buffer, image,
712                               VK_IMAGE_ASPECT_STENCIL_BIT,
713                               base_level, level_count,
714                               base_layer, layer_count);
715   }
716#elif GFX_VER == 12
717   const uint32_t plane =
718      anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
719   if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
720      return;
721
722   if ((initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
723        initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) &&
724       cmd_buffer->device->physical->has_implicit_ccs &&
725       cmd_buffer->device->info.has_aux_map) {
726      anv_image_init_aux_tt(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT,
727                            base_level, level_count, base_layer, layer_count);
728
729      /* If will_full_fast_clear is set, the caller promises to fast-clear the
730       * largest portion of the specified range as it can.
731       */
732      if (will_full_fast_clear)
733         return;
734
735      for (uint32_t l = 0; l < level_count; l++) {
736         const uint32_t level = base_level + l;
737         const VkRect2D clear_rect = {
738            .offset.x = 0,
739            .offset.y = 0,
740            .extent.width = anv_minify(image->vk.extent.width, level),
741            .extent.height = anv_minify(image->vk.extent.height, level),
742         };
743
744         uint32_t aux_layers =
745            anv_image_aux_layers(image, VK_IMAGE_ASPECT_STENCIL_BIT, level);
746         uint32_t level_layer_count =
747            MIN2(layer_count, aux_layers - base_layer);
748
749         /* From Bspec's 3DSTATE_STENCIL_BUFFER_BODY > Stencil Compression
750          * Enable:
751          *
752          *    "When enabled, Stencil Buffer needs to be initialized via
753          *    stencil clear (HZ_OP) before any renderpass."
754          */
755         anv_image_hiz_clear(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT,
756                             level, base_layer, level_layer_count,
757                             clear_rect, 0 /* Stencil clear value */);
758      }
759   }
760#endif
761}
762
763#define MI_PREDICATE_SRC0    0x2400
764#define MI_PREDICATE_SRC1    0x2408
765#define MI_PREDICATE_RESULT  0x2418
766
767static void
768set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
769                         const struct anv_image *image,
770                         VkImageAspectFlagBits aspect,
771                         uint32_t level,
772                         uint32_t base_layer, uint32_t layer_count,
773                         bool compressed)
774{
775   const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
776
777   /* We only have compression tracking for CCS_E */
778   if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
779      return;
780
781   for (uint32_t a = 0; a < layer_count; a++) {
782      uint32_t layer = base_layer + a;
783      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
784         sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
785                                                            image, aspect,
786                                                            level, layer);
787         sdi.ImmediateData = compressed ? UINT32_MAX : 0;
788      }
789   }
790}
791
792static void
793set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
794                           const struct anv_image *image,
795                           VkImageAspectFlagBits aspect,
796                           enum anv_fast_clear_type fast_clear)
797{
798   anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
799      sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
800                                                       image, aspect);
801      sdi.ImmediateData = fast_clear;
802   }
803
804   /* Whenever we have fast-clear, we consider that slice to be compressed.
805    * This makes building predicates much easier.
806    */
807   if (fast_clear != ANV_FAST_CLEAR_NONE)
808      set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
809}
810
811/* This is only really practical on haswell and above because it requires
812 * MI math in order to get it correct.
813 */
814#if GFX_VERx10 >= 75
815static void
816anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
817                                  const struct anv_image *image,
818                                  VkImageAspectFlagBits aspect,
819                                  uint32_t level, uint32_t array_layer,
820                                  enum isl_aux_op resolve_op,
821                                  enum anv_fast_clear_type fast_clear_supported)
822{
823   struct mi_builder b;
824   mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
825
826   const struct mi_value fast_clear_type =
827      mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
828                                                  image, aspect));
829
830   if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
831      /* In this case, we're doing a full resolve which means we want the
832       * resolve to happen if any compression (including fast-clears) is
833       * present.
834       *
835       * In order to simplify the logic a bit, we make the assumption that,
836       * if the first slice has been fast-cleared, it is also marked as
837       * compressed.  See also set_image_fast_clear_state.
838       */
839      const struct mi_value compression_state =
840         mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
841                                                       image, aspect,
842                                                       level, array_layer));
843      mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), compression_state);
844      mi_store(&b, compression_state, mi_imm(0));
845
846      if (level == 0 && array_layer == 0) {
847         /* If the predicate is true, we want to write 0 to the fast clear type
848          * and, if it's false, leave it alone.  We can do this by writing
849          *
850          * clear_type = clear_type & ~predicate;
851          */
852         struct mi_value new_fast_clear_type =
853            mi_iand(&b, fast_clear_type,
854                        mi_inot(&b, mi_reg64(MI_PREDICATE_SRC0)));
855         mi_store(&b, fast_clear_type, new_fast_clear_type);
856      }
857   } else if (level == 0 && array_layer == 0) {
858      /* In this case, we are doing a partial resolve to get rid of fast-clear
859       * colors.  We don't care about the compression state but we do care
860       * about how much fast clear is allowed by the final layout.
861       */
862      assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
863      assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
864
865      /* We need to compute (fast_clear_supported < image->fast_clear) */
866      struct mi_value pred =
867         mi_ult(&b, mi_imm(fast_clear_supported), fast_clear_type);
868      mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), mi_value_ref(&b, pred));
869
870      /* If the predicate is true, we want to write 0 to the fast clear type
871       * and, if it's false, leave it alone.  We can do this by writing
872       *
873       * clear_type = clear_type & ~predicate;
874       */
875      struct mi_value new_fast_clear_type =
876         mi_iand(&b, fast_clear_type, mi_inot(&b, pred));
877      mi_store(&b, fast_clear_type, new_fast_clear_type);
878   } else {
879      /* In this case, we're trying to do a partial resolve on a slice that
880       * doesn't have clear color.  There's nothing to do.
881       */
882      assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
883      return;
884   }
885
886   /* Set src1 to 0 and use a != condition */
887   mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
888
889   anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
890      mip.LoadOperation    = LOAD_LOADINV;
891      mip.CombineOperation = COMBINE_SET;
892      mip.CompareOperation = COMPARE_SRCS_EQUAL;
893   }
894}
895#endif /* GFX_VERx10 >= 75 */
896
897#if GFX_VER <= 8
898static void
899anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
900                                 const struct anv_image *image,
901                                 VkImageAspectFlagBits aspect,
902                                 uint32_t level, uint32_t array_layer,
903                                 enum isl_aux_op resolve_op,
904                                 enum anv_fast_clear_type fast_clear_supported)
905{
906   struct mi_builder b;
907   mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
908
909   struct mi_value fast_clear_type_mem =
910      mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
911                                                      image, aspect));
912
913   /* This only works for partial resolves and only when the clear color is
914    * all or nothing.  On the upside, this emits less command streamer code
915    * and works on Ivybridge and Bay Trail.
916    */
917   assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
918   assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
919
920   /* We don't support fast clears on anything other than the first slice. */
921   if (level > 0 || array_layer > 0)
922      return;
923
924   /* On gfx8, we don't have a concept of default clear colors because we
925    * can't sample from CCS surfaces.  It's enough to just load the fast clear
926    * state into the predicate register.
927    */
928   mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
929   mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
930   mi_store(&b, fast_clear_type_mem, mi_imm(0));
931
932   anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
933      mip.LoadOperation    = LOAD_LOADINV;
934      mip.CombineOperation = COMBINE_SET;
935      mip.CompareOperation = COMPARE_SRCS_EQUAL;
936   }
937}
938#endif /* GFX_VER <= 8 */
939
940static void
941anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
942                               const struct anv_image *image,
943                               enum isl_format format,
944                               struct isl_swizzle swizzle,
945                               VkImageAspectFlagBits aspect,
946                               uint32_t level, uint32_t array_layer,
947                               enum isl_aux_op resolve_op,
948                               enum anv_fast_clear_type fast_clear_supported)
949{
950   const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
951
952#if GFX_VER >= 9
953   anv_cmd_compute_resolve_predicate(cmd_buffer, image,
954                                     aspect, level, array_layer,
955                                     resolve_op, fast_clear_supported);
956#else /* GFX_VER <= 8 */
957   anv_cmd_simple_resolve_predicate(cmd_buffer, image,
958                                    aspect, level, array_layer,
959                                    resolve_op, fast_clear_supported);
960#endif
961
962   /* CCS_D only supports full resolves and BLORP will assert on us if we try
963    * to do a partial resolve on a CCS_D surface.
964    */
965   if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
966       image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
967      resolve_op = ISL_AUX_OP_FULL_RESOLVE;
968
969   anv_image_ccs_op(cmd_buffer, image, format, swizzle, aspect,
970                    level, array_layer, 1, resolve_op, NULL, true);
971}
972
973static void
974anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
975                               const struct anv_image *image,
976                               enum isl_format format,
977                               struct isl_swizzle swizzle,
978                               VkImageAspectFlagBits aspect,
979                               uint32_t array_layer,
980                               enum isl_aux_op resolve_op,
981                               enum anv_fast_clear_type fast_clear_supported)
982{
983   assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
984   assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
985
986#if GFX_VERx10 >= 75
987   anv_cmd_compute_resolve_predicate(cmd_buffer, image,
988                                     aspect, 0, array_layer,
989                                     resolve_op, fast_clear_supported);
990
991   anv_image_mcs_op(cmd_buffer, image, format, swizzle, aspect,
992                    array_layer, 1, resolve_op, NULL, true);
993#else
994   unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
995#endif
996}
997
998void
999genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
1000                                    const struct anv_image *image,
1001                                    VkImageAspectFlagBits aspect,
1002                                    enum isl_aux_usage aux_usage,
1003                                    uint32_t level,
1004                                    uint32_t base_layer,
1005                                    uint32_t layer_count)
1006{
1007   /* The aspect must be exactly one of the image aspects. */
1008   assert(util_bitcount(aspect) == 1 && (aspect & image->vk.aspects));
1009
1010   /* The only compression types with more than just fast-clears are MCS,
1011    * CCS_E, and HiZ.  With HiZ we just trust the layout and don't actually
1012    * track the current fast-clear and compression state.  This leaves us
1013    * with just MCS and CCS_E.
1014    */
1015   if (aux_usage != ISL_AUX_USAGE_CCS_E &&
1016       aux_usage != ISL_AUX_USAGE_MCS)
1017      return;
1018
1019   set_image_compressed_bit(cmd_buffer, image, aspect,
1020                            level, base_layer, layer_count, true);
1021}
1022
1023static void
1024init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
1025                      const struct anv_image *image,
1026                      VkImageAspectFlagBits aspect)
1027{
1028   assert(cmd_buffer && image);
1029   assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1030
1031   set_image_fast_clear_state(cmd_buffer, image, aspect,
1032                              ANV_FAST_CLEAR_NONE);
1033
1034   /* Initialize the struct fields that are accessed for fast-clears so that
1035    * the HW restrictions on the field values are satisfied.
1036    */
1037   struct anv_address addr =
1038      anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
1039
1040   if (GFX_VER >= 9) {
1041      const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1042      const unsigned num_dwords = GFX_VER >= 10 ?
1043                                  isl_dev->ss.clear_color_state_size / 4 :
1044                                  isl_dev->ss.clear_value_size / 4;
1045      for (unsigned i = 0; i < num_dwords; i++) {
1046         anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
1047            sdi.Address = addr;
1048            sdi.Address.offset += i * 4;
1049            sdi.ImmediateData = 0;
1050         }
1051      }
1052   } else {
1053      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
1054         sdi.Address = addr;
1055         if (GFX_VERx10 >= 75) {
1056            /* Pre-SKL, the dword containing the clear values also contains
1057             * other fields, so we need to initialize those fields to match the
1058             * values that would be in a color attachment.
1059             */
1060            sdi.ImmediateData = ISL_CHANNEL_SELECT_RED   << 25 |
1061                                ISL_CHANNEL_SELECT_GREEN << 22 |
1062                                ISL_CHANNEL_SELECT_BLUE  << 19 |
1063                                ISL_CHANNEL_SELECT_ALPHA << 16;
1064         } else if (GFX_VER == 7) {
1065            /* On IVB, the dword containing the clear values also contains
1066             * other fields that must be zero or can be zero.
1067             */
1068            sdi.ImmediateData = 0;
1069         }
1070      }
1071   }
1072}
1073
1074/* Copy the fast-clear value dword(s) between a surface state object and an
1075 * image's fast clear state buffer.
1076 */
1077static void
1078genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
1079                             struct anv_state surface_state,
1080                             const struct anv_image *image,
1081                             VkImageAspectFlagBits aspect,
1082                             bool copy_from_surface_state)
1083{
1084   assert(cmd_buffer && image);
1085   assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1086
1087   struct anv_address ss_clear_addr = {
1088      .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
1089      .offset = surface_state.offset +
1090                cmd_buffer->device->isl_dev.ss.clear_value_offset,
1091   };
1092   const struct anv_address entry_addr =
1093      anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
1094   unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
1095
1096#if GFX_VER == 7
1097   /* On gfx7, the combination of commands used here(MI_LOAD_REGISTER_MEM
1098    * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
1099    * in-flight when they are issued even if the memory touched is not
1100    * currently active for rendering.  The weird bit is that it is not the
1101    * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
1102    * rendering hangs such that the next stalling command after the
1103    * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
1104    *
1105    * It is unclear exactly why this hang occurs.  Both MI commands come with
1106    * warnings about the 3D pipeline but that doesn't seem to fully explain
1107    * it.  My (Jason's) best theory is that it has something to do with the
1108    * fact that we're using a GPU state register as our temporary and that
1109    * something with reading/writing it is causing problems.
1110    *
1111    * In order to work around this issue, we emit a PIPE_CONTROL with the
1112    * command streamer stall bit set.
1113    */
1114   anv_add_pending_pipe_bits(cmd_buffer,
1115                             ANV_PIPE_CS_STALL_BIT,
1116                             "after copy_fast_clear_dwords. Avoid potential hang");
1117   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1118#endif
1119
1120   struct mi_builder b;
1121   mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
1122
1123   if (copy_from_surface_state) {
1124      mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
1125   } else {
1126      mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
1127
1128      /* Updating a surface state object may require that the state cache be
1129       * invalidated. From the SKL PRM, Shared Functions -> State -> State
1130       * Caching:
1131       *
1132       *    Whenever the RENDER_SURFACE_STATE object in memory pointed to by
1133       *    the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
1134       *    modified [...], the L1 state cache must be invalidated to ensure
1135       *    the new surface or sampler state is fetched from system memory.
1136       *
1137       * In testing, SKL doesn't actually seem to need this, but HSW does.
1138       */
1139      anv_add_pending_pipe_bits(cmd_buffer,
1140                                ANV_PIPE_STATE_CACHE_INVALIDATE_BIT,
1141                                "after copy_fast_clear_dwords surface state update");
1142   }
1143}
1144
1145/**
1146 * @brief Transitions a color buffer from one layout to another.
1147 *
1148 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
1149 * more information.
1150 *
1151 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
1152 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
1153 *                    this represents the maximum layers to transition at each
1154 *                    specified miplevel.
1155 */
1156static void
1157transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
1158                        const struct anv_image *image,
1159                        VkImageAspectFlagBits aspect,
1160                        const uint32_t base_level, uint32_t level_count,
1161                        uint32_t base_layer, uint32_t layer_count,
1162                        VkImageLayout initial_layout,
1163                        VkImageLayout final_layout,
1164                        uint64_t src_queue_family,
1165                        uint64_t dst_queue_family,
1166                        bool will_full_fast_clear)
1167{
1168   struct anv_device *device = cmd_buffer->device;
1169   const struct intel_device_info *devinfo = &device->info;
1170   /* Validate the inputs. */
1171   assert(cmd_buffer);
1172   assert(image && image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1173   /* These values aren't supported for simplicity's sake. */
1174   assert(level_count != VK_REMAINING_MIP_LEVELS &&
1175          layer_count != VK_REMAINING_ARRAY_LAYERS);
1176   /* Ensure the subresource range is valid. */
1177   UNUSED uint64_t last_level_num = base_level + level_count;
1178   const uint32_t max_depth = anv_minify(image->vk.extent.depth, base_level);
1179   UNUSED const uint32_t image_layers = MAX2(image->vk.array_layers, max_depth);
1180   assert((uint64_t)base_layer + layer_count  <= image_layers);
1181   assert(last_level_num <= image->vk.mip_levels);
1182   /* If there is a layout transfer, the final layout cannot be undefined or
1183    * preinitialized (VUID-VkImageMemoryBarrier-newLayout-01198).
1184    */
1185   assert(initial_layout == final_layout ||
1186          (final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
1187           final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED));
1188   const struct isl_drm_modifier_info *isl_mod_info =
1189      image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT
1190      ? isl_drm_modifier_get_info(image->vk.drm_format_mod)
1191      : NULL;
1192
1193   const bool src_queue_external =
1194      src_queue_family == VK_QUEUE_FAMILY_FOREIGN_EXT ||
1195      src_queue_family == VK_QUEUE_FAMILY_EXTERNAL;
1196
1197   const bool dst_queue_external =
1198      dst_queue_family == VK_QUEUE_FAMILY_FOREIGN_EXT ||
1199      dst_queue_family == VK_QUEUE_FAMILY_EXTERNAL;
1200
1201   /* Simultaneous acquire and release on external queues is illegal. */
1202   assert(!src_queue_external || !dst_queue_external);
1203
1204   /* Ownership transition on an external queue requires special action if the
1205    * image has a DRM format modifier because we store image data in
1206    * a driver-private bo which is inaccessible to the external queue.
1207    */
1208   const bool mod_acquire =
1209      src_queue_external &&
1210      image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT;
1211
1212   const bool mod_release =
1213      dst_queue_external &&
1214      image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT;
1215
1216   if (initial_layout == final_layout &&
1217       !mod_acquire && !mod_release) {
1218      /* No work is needed. */
1219       return;
1220   }
1221
1222   const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
1223
1224   if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
1225       final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
1226      /* This surface is a linear compressed image with a tiled shadow surface
1227       * for texturing.  The client is about to use it in READ_ONLY_OPTIMAL so
1228       * we need to ensure the shadow copy is up-to-date.
1229       */
1230      assert(image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT);
1231      assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1232      assert(image->planes[plane].primary_surface.isl.tiling == ISL_TILING_LINEAR);
1233      assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1234      assert(isl_format_is_compressed(image->planes[plane].primary_surface.isl.format));
1235      assert(plane == 0);
1236      anv_image_copy_to_shadow(cmd_buffer, image,
1237                               VK_IMAGE_ASPECT_COLOR_BIT,
1238                               base_level, level_count,
1239                               base_layer, layer_count);
1240   }
1241
1242   if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
1243      return;
1244
1245   assert(image->planes[plane].primary_surface.isl.tiling != ISL_TILING_LINEAR);
1246
1247   /* The following layouts are equivalent for non-linear images. */
1248   const bool initial_layout_undefined =
1249      initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1250      initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
1251
1252   bool must_init_fast_clear_state = false;
1253   bool must_init_aux_surface = false;
1254
1255   if (initial_layout_undefined) {
1256      /* The subresource may have been aliased and populated with arbitrary
1257       * data.
1258       */
1259      must_init_fast_clear_state = true;
1260      must_init_aux_surface = true;
1261   } else if (mod_acquire) {
1262      /* The fast clear state lives in a driver-private bo, and therefore the
1263       * external/foreign queue is unaware of it.
1264       *
1265       * If this is the first time we are accessing the image, then the fast
1266       * clear state is uninitialized.
1267       *
1268       * If this is NOT the first time we are accessing the image, then the fast
1269       * clear state may still be valid and correct due to the resolve during
1270       * our most recent ownership release.  However, we do not track the aux
1271       * state with MI stores, and therefore must assume the worst-case: that
1272       * this is the first time we are accessing the image.
1273       */
1274      assert(image->planes[plane].fast_clear_memory_range.binding ==
1275              ANV_IMAGE_MEMORY_BINDING_PRIVATE);
1276      must_init_fast_clear_state = true;
1277
1278      if (image->planes[plane].aux_surface.memory_range.binding ==
1279          ANV_IMAGE_MEMORY_BINDING_PRIVATE) {
1280         assert(isl_mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1281
1282         /* The aux surface, like the fast clear state, lives in
1283          * a driver-private bo.  We must initialize the aux surface for the
1284          * same reasons we must initialize the fast clear state.
1285          */
1286         must_init_aux_surface = true;
1287      } else {
1288         assert(isl_mod_info->aux_usage != ISL_AUX_USAGE_NONE);
1289
1290         /* The aux surface, unlike the fast clear state, lives in
1291          * application-visible VkDeviceMemory and is shared with the
1292          * external/foreign queue. Therefore, when we acquire ownership of the
1293          * image with a defined VkImageLayout, the aux surface is valid and has
1294          * the aux state required by the modifier.
1295          */
1296         must_init_aux_surface = false;
1297      }
1298   }
1299
1300#if GFX_VER == 12
1301   /* We do not yet support modifiers with aux on gen12. */
1302   assert(image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT);
1303
1304   if (initial_layout_undefined) {
1305      if (device->physical->has_implicit_ccs && devinfo->has_aux_map) {
1306         anv_image_init_aux_tt(cmd_buffer, image, aspect,
1307                               base_level, level_count,
1308                               base_layer, layer_count);
1309      }
1310   }
1311#else
1312   assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map));
1313#endif
1314
1315   if (must_init_fast_clear_state) {
1316      if (base_level == 0 && base_layer == 0)
1317         init_fast_clear_color(cmd_buffer, image, aspect);
1318   }
1319
1320   if (must_init_aux_surface) {
1321      assert(must_init_fast_clear_state);
1322
1323      /* Initialize the aux buffers to enable correct rendering.  In order to
1324       * ensure that things such as storage images work correctly, aux buffers
1325       * need to be initialized to valid data.
1326       *
1327       * Having an aux buffer with invalid data is a problem for two reasons:
1328       *
1329       *  1) Having an invalid value in the buffer can confuse the hardware.
1330       *     For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1331       *     invalid and leads to the hardware doing strange things.  It
1332       *     doesn't hang as far as we can tell but rendering corruption can
1333       *     occur.
1334       *
1335       *  2) If this transition is into the GENERAL layout and we then use the
1336       *     image as a storage image, then we must have the aux buffer in the
1337       *     pass-through state so that, if we then go to texture from the
1338       *     image, we get the results of our storage image writes and not the
1339       *     fast clear color or other random data.
1340       *
1341       * For CCS both of the problems above are real demonstrable issues.  In
1342       * that case, the only thing we can do is to perform an ambiguate to
1343       * transition the aux surface into the pass-through state.
1344       *
1345       * For MCS, (2) is never an issue because we don't support multisampled
1346       * storage images.  In theory, issue (1) is a problem with MCS but we've
1347       * never seen it in the wild.  For 4x and 16x, all bit patters could, in
1348       * theory, be interpreted as something but we don't know that all bit
1349       * patterns are actually valid.  For 2x and 8x, you could easily end up
1350       * with the MCS referring to an invalid plane because not all bits of
1351       * the MCS value are actually used.  Even though we've never seen issues
1352       * in the wild, it's best to play it safe and initialize the MCS.  We
1353       * can use a fast-clear for MCS because we only ever touch from render
1354       * and texture (no image load store).
1355       */
1356      if (image->vk.samples == 1) {
1357         for (uint32_t l = 0; l < level_count; l++) {
1358            const uint32_t level = base_level + l;
1359
1360            uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1361            if (base_layer >= aux_layers)
1362               break; /* We will only get fewer layers as level increases */
1363            uint32_t level_layer_count =
1364               MIN2(layer_count, aux_layers - base_layer);
1365
1366            /* If will_full_fast_clear is set, the caller promises to
1367             * fast-clear the largest portion of the specified range as it can.
1368             * For color images, that means only the first LOD and array slice.
1369             */
1370            if (level == 0 && base_layer == 0 && will_full_fast_clear) {
1371               base_layer++;
1372               level_layer_count--;
1373               if (level_layer_count == 0)
1374                  continue;
1375            }
1376
1377            anv_image_ccs_op(cmd_buffer, image,
1378                             image->planes[plane].primary_surface.isl.format,
1379                             ISL_SWIZZLE_IDENTITY,
1380                             aspect, level, base_layer, level_layer_count,
1381                             ISL_AUX_OP_AMBIGUATE, NULL, false);
1382
1383            if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1384               set_image_compressed_bit(cmd_buffer, image, aspect,
1385                                        level, base_layer, level_layer_count,
1386                                        false);
1387            }
1388         }
1389      } else {
1390         if (image->vk.samples == 4 || image->vk.samples == 16) {
1391            anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
1392                          "Doing a potentially unnecessary fast-clear to "
1393                          "define an MCS buffer.");
1394         }
1395
1396         /* If will_full_fast_clear is set, the caller promises to fast-clear
1397          * the largest portion of the specified range as it can.
1398          */
1399         if (will_full_fast_clear)
1400            return;
1401
1402         assert(base_level == 0 && level_count == 1);
1403         anv_image_mcs_op(cmd_buffer, image,
1404                          image->planes[plane].primary_surface.isl.format,
1405                          ISL_SWIZZLE_IDENTITY,
1406                          aspect, base_layer, layer_count,
1407                          ISL_AUX_OP_FAST_CLEAR, NULL, false);
1408      }
1409      return;
1410   }
1411
1412   enum isl_aux_usage initial_aux_usage =
1413      anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
1414   enum isl_aux_usage final_aux_usage =
1415      anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
1416
1417   /* We must override the anv_layout_to_* functions because they are unaware of
1418    * acquire/release direction.
1419    */
1420   if (mod_acquire) {
1421      initial_aux_usage = isl_mod_info->aux_usage;
1422   } else if (mod_release) {
1423      final_aux_usage = isl_mod_info->aux_usage;
1424   }
1425
1426   /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1427    * We can handle transitions between CCS_D/E to and from NONE.  What we
1428    * don't yet handle is switching between CCS_E and CCS_D within a given
1429    * image.  Doing so in a performant way requires more detailed aux state
1430    * tracking such as what is done in i965.  For now, just assume that we
1431    * only have one type of compression.
1432    */
1433   assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1434          final_aux_usage == ISL_AUX_USAGE_NONE ||
1435          initial_aux_usage == final_aux_usage);
1436
1437   /* If initial aux usage is NONE, there is nothing to resolve */
1438   if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1439      return;
1440
1441   enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1442
1443   /* If the initial layout supports more fast clear than the final layout
1444    * then we need at least a partial resolve.
1445    */
1446   const enum anv_fast_clear_type initial_fast_clear =
1447      anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1448   const enum anv_fast_clear_type final_fast_clear =
1449      anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1450   if (final_fast_clear < initial_fast_clear)
1451      resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1452
1453   if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1454       final_aux_usage != ISL_AUX_USAGE_CCS_E)
1455      resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1456
1457   if (resolve_op == ISL_AUX_OP_NONE)
1458      return;
1459
1460   /* Perform a resolve to synchronize data between the main and aux buffer.
1461    * Before we begin, we must satisfy the cache flushing requirement specified
1462    * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1463    *
1464    *    Any transition from any value in {Clear, Render, Resolve} to a
1465    *    different value in {Clear, Render, Resolve} requires end of pipe
1466    *    synchronization.
1467    *
1468    * We perform a flush of the write cache before and after the clear and
1469    * resolve operations to meet this requirement.
1470    *
1471    * Unlike other drawing, fast clear operations are not properly
1472    * synchronized. The first PIPE_CONTROL here likely ensures that the
1473    * contents of the previous render or clear hit the render target before we
1474    * resolve and the second likely ensures that the resolve is complete before
1475    * we do any more rendering or clearing.
1476    */
1477   anv_add_pending_pipe_bits(cmd_buffer,
1478                             ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
1479                             ANV_PIPE_END_OF_PIPE_SYNC_BIT,
1480                             "after transition RT");
1481
1482   for (uint32_t l = 0; l < level_count; l++) {
1483      uint32_t level = base_level + l;
1484
1485      uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1486      if (base_layer >= aux_layers)
1487         break; /* We will only get fewer layers as level increases */
1488      uint32_t level_layer_count =
1489         MIN2(layer_count, aux_layers - base_layer);
1490
1491      for (uint32_t a = 0; a < level_layer_count; a++) {
1492         uint32_t array_layer = base_layer + a;
1493
1494         /* If will_full_fast_clear is set, the caller promises to fast-clear
1495          * the largest portion of the specified range as it can.  For color
1496          * images, that means only the first LOD and array slice.
1497          */
1498         if (level == 0 && array_layer == 0 && will_full_fast_clear)
1499            continue;
1500
1501         if (image->vk.samples == 1) {
1502            anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1503                                           image->planes[plane].primary_surface.isl.format,
1504                                           ISL_SWIZZLE_IDENTITY,
1505                                           aspect, level, array_layer, resolve_op,
1506                                           final_fast_clear);
1507         } else {
1508            /* We only support fast-clear on the first layer so partial
1509             * resolves should not be used on other layers as they will use
1510             * the clear color stored in memory that is only valid for layer0.
1511             */
1512            if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1513                array_layer != 0)
1514               continue;
1515
1516            anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1517                                           image->planes[plane].primary_surface.isl.format,
1518                                           ISL_SWIZZLE_IDENTITY,
1519                                           aspect, array_layer, resolve_op,
1520                                           final_fast_clear);
1521         }
1522      }
1523   }
1524
1525   anv_add_pending_pipe_bits(cmd_buffer,
1526                             ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
1527                             ANV_PIPE_END_OF_PIPE_SYNC_BIT,
1528                             "after transition RT");
1529}
1530
1531static VkResult
1532genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1533                                   const struct anv_render_pass *pass,
1534                                   const struct anv_framebuffer *framebuffer,
1535                                   const VkRenderPassBeginInfo *begin)
1536{
1537   struct anv_cmd_state *state = &cmd_buffer->state;
1538
1539   vk_free(&cmd_buffer->pool->alloc, state->attachments);
1540
1541   if (pass->attachment_count > 0) {
1542      state->attachments = vk_zalloc(&cmd_buffer->pool->alloc,
1543                                     pass->attachment_count *
1544                                          sizeof(state->attachments[0]),
1545                                     8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1546      if (state->attachments == NULL) {
1547         /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1548         return anv_batch_set_error(&cmd_buffer->batch,
1549                                    VK_ERROR_OUT_OF_HOST_MEMORY);
1550      }
1551   } else {
1552      state->attachments = NULL;
1553   }
1554
1555   const VkRenderPassAttachmentBeginInfoKHR *attach_begin =
1556      vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1557   if (begin && !attach_begin)
1558      assert(pass->attachment_count == framebuffer->attachment_count);
1559
1560   for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1561      if (attach_begin && attach_begin->attachmentCount != 0) {
1562         assert(attach_begin->attachmentCount == pass->attachment_count);
1563         ANV_FROM_HANDLE(anv_image_view, iview, attach_begin->pAttachments[i]);
1564         state->attachments[i].image_view = iview;
1565      } else if (framebuffer && i < framebuffer->attachment_count) {
1566         state->attachments[i].image_view = framebuffer->attachments[i];
1567      } else {
1568         state->attachments[i].image_view = NULL;
1569      }
1570   }
1571
1572   if (begin) {
1573      for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1574         const struct anv_render_pass_attachment *pass_att = &pass->attachments[i];
1575         struct anv_attachment_state *att_state = &state->attachments[i];
1576         VkImageAspectFlags att_aspects = vk_format_aspects(pass_att->format);
1577         VkImageAspectFlags clear_aspects = 0;
1578         VkImageAspectFlags load_aspects = 0;
1579
1580         if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1581            /* color attachment */
1582            if (pass_att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1583               clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1584            } else if (pass_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1585               load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1586            }
1587         } else {
1588            /* depthstencil attachment */
1589            if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1590               if (pass_att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1591                  clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1592               } else if (pass_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1593                  load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1594               }
1595            }
1596            if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1597               if (pass_att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1598                  clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1599               } else if (pass_att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1600                  load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1601               }
1602            }
1603         }
1604
1605         att_state->current_layout = pass_att->initial_layout;
1606         att_state->current_stencil_layout = pass_att->stencil_initial_layout;
1607         att_state->pending_clear_aspects = clear_aspects;
1608         att_state->pending_load_aspects = load_aspects;
1609         if (clear_aspects)
1610            att_state->clear_value = begin->pClearValues[i];
1611
1612         struct anv_image_view *iview = state->attachments[i].image_view;
1613
1614         const uint32_t num_layers = iview->planes[0].isl.array_len;
1615         att_state->pending_clear_views = (1 << num_layers) - 1;
1616
1617         /* This will be initialized after the first subpass transition. */
1618         att_state->aux_usage = ISL_AUX_USAGE_NONE;
1619
1620         att_state->fast_clear = false;
1621         if (clear_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1622            assert(clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1623            att_state->fast_clear =
1624               anv_can_fast_clear_color_view(cmd_buffer->device, iview,
1625                                             pass_att->first_subpass_layout,
1626                                             vk_to_isl_color(att_state->clear_value.color),
1627                                             framebuffer->layers,
1628                                             begin->renderArea);
1629         } else if (clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
1630                                     VK_IMAGE_ASPECT_STENCIL_BIT)) {
1631            att_state->fast_clear =
1632               anv_can_hiz_clear_ds_view(cmd_buffer->device, iview,
1633                                         pass_att->first_subpass_layout,
1634                                         clear_aspects,
1635                                         att_state->clear_value.depthStencil.depth,
1636                                         begin->renderArea);
1637         }
1638      }
1639   }
1640
1641   return VK_SUCCESS;
1642}
1643
1644/**
1645 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1646 */
1647static VkResult
1648genX(cmd_buffer_alloc_att_surf_states)(struct anv_cmd_buffer *cmd_buffer,
1649                                       const struct anv_render_pass *pass,
1650                                       const struct anv_subpass *subpass)
1651{
1652   const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1653   struct anv_cmd_state *state = &cmd_buffer->state;
1654
1655   /* Reserve one for the NULL state. */
1656   unsigned num_states = 1;
1657   for (uint32_t i = 0; i < subpass->attachment_count; i++) {
1658      uint32_t att = subpass->attachments[i].attachment;
1659      if (att == VK_ATTACHMENT_UNUSED)
1660         continue;
1661
1662      assert(att < pass->attachment_count);
1663      if (!vk_format_is_color(pass->attachments[att].format))
1664         continue;
1665
1666      const VkImageUsageFlagBits att_usage = subpass->attachments[i].usage;
1667      assert(util_bitcount(att_usage) == 1);
1668
1669      if (att_usage == VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT ||
1670          att_usage == VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
1671         num_states++;
1672   }
1673
1674   const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1675   state->attachment_states =
1676      anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1677                             num_states * ss_stride, isl_dev->ss.align);
1678   if (state->attachment_states.map == NULL) {
1679      return anv_batch_set_error(&cmd_buffer->batch,
1680                                 VK_ERROR_OUT_OF_DEVICE_MEMORY);
1681   }
1682
1683   struct anv_state next_state = state->attachment_states;
1684   next_state.alloc_size = isl_dev->ss.size;
1685
1686   state->null_surface_state = next_state;
1687   next_state.offset += ss_stride;
1688   next_state.map += ss_stride;
1689
1690   for (uint32_t i = 0; i < subpass->attachment_count; i++) {
1691      uint32_t att = subpass->attachments[i].attachment;
1692      if (att == VK_ATTACHMENT_UNUSED)
1693         continue;
1694
1695      assert(att < pass->attachment_count);
1696      if (!vk_format_is_color(pass->attachments[att].format))
1697         continue;
1698
1699      const VkImageUsageFlagBits att_usage = subpass->attachments[i].usage;
1700      assert(util_bitcount(att_usage) == 1);
1701
1702      if (att_usage == VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
1703         state->attachments[att].color.state = next_state;
1704      else if (att_usage == VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
1705         state->attachments[att].input.state = next_state;
1706      else
1707         continue;
1708
1709      next_state.offset += ss_stride;
1710      next_state.map += ss_stride;
1711   }
1712
1713   assert(next_state.offset == state->attachment_states.offset +
1714                               state->attachment_states.alloc_size);
1715
1716   return VK_SUCCESS;
1717}
1718
1719VkResult
1720genX(BeginCommandBuffer)(
1721    VkCommandBuffer                             commandBuffer,
1722    const VkCommandBufferBeginInfo*             pBeginInfo)
1723{
1724   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1725
1726   /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1727    * command buffer's state. Otherwise, we must *reset* its state. In both
1728    * cases we reset it.
1729    *
1730    * From the Vulkan 1.0 spec:
1731    *
1732    *    If a command buffer is in the executable state and the command buffer
1733    *    was allocated from a command pool with the
1734    *    VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1735    *    vkBeginCommandBuffer implicitly resets the command buffer, behaving
1736    *    as if vkResetCommandBuffer had been called with
1737    *    VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1738    *    the command buffer in the recording state.
1739    */
1740   anv_cmd_buffer_reset(cmd_buffer);
1741
1742   cmd_buffer->usage_flags = pBeginInfo->flags;
1743
1744   /* VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT must be ignored for
1745    * primary level command buffers.
1746    *
1747    * From the Vulkan 1.0 spec:
1748    *
1749    *    VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a
1750    *    secondary command buffer is considered to be entirely inside a render
1751    *    pass. If this is a primary command buffer, then this bit is ignored.
1752    */
1753   if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1754      cmd_buffer->usage_flags &= ~VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
1755
1756   genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1757
1758   /* We sometimes store vertex data in the dynamic state buffer for blorp
1759    * operations and our dynamic state stream may re-use data from previous
1760    * command buffers.  In order to prevent stale cache data, we flush the VF
1761    * cache.  We could do this on every blorp call but that's not really
1762    * needed as all of the data will get written by the CPU prior to the GPU
1763    * executing anything.  The chances are fairly high that they will use
1764    * blorp at least once per primary command buffer so it shouldn't be
1765    * wasted.
1766    *
1767    * There is also a workaround on gfx8 which requires us to invalidate the
1768    * VF cache occasionally.  It's easier if we can assume we start with a
1769    * fresh cache (See also genX(cmd_buffer_set_binding_for_gfx8_vb_flush).)
1770    */
1771   anv_add_pending_pipe_bits(cmd_buffer,
1772                             ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
1773                             "new cmd buffer");
1774
1775   /* Re-emit the aux table register in every command buffer.  This way we're
1776    * ensured that we have the table even if this command buffer doesn't
1777    * initialize any images.
1778    */
1779   if (cmd_buffer->device->info.has_aux_map) {
1780      anv_add_pending_pipe_bits(cmd_buffer,
1781                                ANV_PIPE_AUX_TABLE_INVALIDATE_BIT,
1782                                "new cmd buffer with aux-tt");
1783   }
1784
1785   /* We send an "Indirect State Pointers Disable" packet at
1786    * EndCommandBuffer, so all push contant packets are ignored during a
1787    * context restore. Documentation says after that command, we need to
1788    * emit push constants again before any rendering operation. So we
1789    * flag them dirty here to make sure they get emitted.
1790    */
1791   cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1792
1793   VkResult result = VK_SUCCESS;
1794   if (cmd_buffer->usage_flags &
1795       VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1796      assert(pBeginInfo->pInheritanceInfo);
1797      ANV_FROM_HANDLE(anv_render_pass, pass,
1798                      pBeginInfo->pInheritanceInfo->renderPass);
1799      struct anv_subpass *subpass =
1800         &pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1801      ANV_FROM_HANDLE(anv_framebuffer, framebuffer,
1802                      pBeginInfo->pInheritanceInfo->framebuffer);
1803
1804      cmd_buffer->state.pass = pass;
1805      cmd_buffer->state.subpass = subpass;
1806
1807      /* This is optional in the inheritance info. */
1808      cmd_buffer->state.framebuffer = framebuffer;
1809
1810      result = genX(cmd_buffer_setup_attachments)(cmd_buffer, pass,
1811                                                  framebuffer, NULL);
1812      if (result != VK_SUCCESS)
1813         return result;
1814
1815      result = genX(cmd_buffer_alloc_att_surf_states)(cmd_buffer, pass,
1816                                                      subpass);
1817      if (result != VK_SUCCESS)
1818         return result;
1819
1820      /* Record that HiZ is enabled if we can. */
1821      if (cmd_buffer->state.framebuffer) {
1822         const struct anv_image_view * const iview =
1823            anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1824
1825         if (iview) {
1826            VkImageLayout layout =
1827                cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1828
1829            enum isl_aux_usage aux_usage =
1830               anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1831                                       VK_IMAGE_ASPECT_DEPTH_BIT,
1832                                       VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
1833                                       layout);
1834
1835            cmd_buffer->state.hiz_enabled = isl_aux_usage_has_hiz(aux_usage);
1836         }
1837      }
1838
1839      cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1840   }
1841
1842#if GFX_VERx10 >= 75
1843   if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1844      const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1845         vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1846
1847      /* If secondary buffer supports conditional rendering
1848       * we should emit commands as if conditional rendering is enabled.
1849       */
1850      cmd_buffer->state.conditional_render_enabled =
1851         conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1852   }
1853#endif
1854
1855   return result;
1856}
1857
1858/* From the PRM, Volume 2a:
1859 *
1860 *    "Indirect State Pointers Disable
1861 *
1862 *    At the completion of the post-sync operation associated with this pipe
1863 *    control packet, the indirect state pointers in the hardware are
1864 *    considered invalid; the indirect pointers are not saved in the context.
1865 *    If any new indirect state commands are executed in the command stream
1866 *    while the pipe control is pending, the new indirect state commands are
1867 *    preserved.
1868 *
1869 *    [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1870 *    restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1871 *    commands are only considered as Indirect State Pointers. Once ISP is
1872 *    issued in a context, SW must initialize by programming push constant
1873 *    commands for all the shaders (at least to zero length) before attempting
1874 *    any rendering operation for the same context."
1875 *
1876 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1877 * even though they point to a BO that has been already unreferenced at
1878 * the end of the previous batch buffer. This has been fine so far since
1879 * we are protected by these scratch page (every address not covered by
1880 * a BO should be pointing to the scratch page). But on CNL, it is
1881 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1882 * instruction.
1883 *
1884 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1885 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1886 * context restore, so the mentioned hang doesn't happen. However,
1887 * software must program push constant commands for all stages prior to
1888 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1889 *
1890 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1891 * constants have been loaded into the EUs prior to disable the push constants
1892 * so that it doesn't hang a previous 3DPRIMITIVE.
1893 */
1894static void
1895emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1896{
1897   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1898         pc.StallAtPixelScoreboard = true;
1899         pc.CommandStreamerStallEnable = true;
1900         anv_debug_dump_pc(pc);
1901   }
1902   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1903         pc.IndirectStatePointersDisable = true;
1904         pc.CommandStreamerStallEnable = true;
1905         anv_debug_dump_pc(pc);
1906   }
1907}
1908
1909VkResult
1910genX(EndCommandBuffer)(
1911    VkCommandBuffer                             commandBuffer)
1912{
1913   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1914
1915   if (anv_batch_has_error(&cmd_buffer->batch))
1916      return cmd_buffer->batch.status;
1917
1918   anv_measure_endcommandbuffer(cmd_buffer);
1919
1920   /* We want every command buffer to start with the PMA fix in a known state,
1921    * so we disable it at the end of the command buffer.
1922    */
1923   genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1924
1925   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1926
1927   emit_isp_disable(cmd_buffer);
1928
1929   anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1930
1931   return VK_SUCCESS;
1932}
1933
1934void
1935genX(CmdExecuteCommands)(
1936    VkCommandBuffer                             commandBuffer,
1937    uint32_t                                    commandBufferCount,
1938    const VkCommandBuffer*                      pCmdBuffers)
1939{
1940   ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1941
1942   assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1943
1944   if (anv_batch_has_error(&primary->batch))
1945      return;
1946
1947   /* The secondary command buffers will assume that the PMA fix is disabled
1948    * when they begin executing.  Make sure this is true.
1949    */
1950   genX(cmd_buffer_enable_pma_fix)(primary, false);
1951
1952   /* The secondary command buffer doesn't know which textures etc. have been
1953    * flushed prior to their execution.  Apply those flushes now.
1954    */
1955   genX(cmd_buffer_apply_pipe_flushes)(primary);
1956
1957   for (uint32_t i = 0; i < commandBufferCount; i++) {
1958      ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1959
1960      assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1961      assert(!anv_batch_has_error(&secondary->batch));
1962
1963#if GFX_VERx10 >= 75
1964      if (secondary->state.conditional_render_enabled) {
1965         if (!primary->state.conditional_render_enabled) {
1966            /* Secondary buffer is constructed as if it will be executed
1967             * with conditional rendering, we should satisfy this dependency
1968             * regardless of conditional rendering being enabled in primary.
1969             */
1970            struct mi_builder b;
1971            mi_builder_init(&b, &primary->device->info, &primary->batch);
1972            mi_store(&b, mi_reg64(ANV_PREDICATE_RESULT_REG),
1973                         mi_imm(UINT64_MAX));
1974         }
1975      }
1976#endif
1977
1978      if (secondary->usage_flags &
1979          VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1980         /* If we're continuing a render pass from the primary, we need to
1981          * copy the surface states for the current subpass into the storage
1982          * we allocated for them in BeginCommandBuffer.
1983          */
1984         struct anv_bo *ss_bo =
1985            primary->device->surface_state_pool.block_pool.bo;
1986         struct anv_state src_state = primary->state.attachment_states;
1987         struct anv_state dst_state = secondary->state.attachment_states;
1988         assert(src_state.alloc_size == dst_state.alloc_size);
1989
1990         genX(cmd_buffer_so_memcpy)(primary,
1991                                    (struct anv_address) {
1992                                       .bo = ss_bo,
1993                                       .offset = dst_state.offset,
1994                                    },
1995                                    (struct anv_address) {
1996                                       .bo = ss_bo,
1997                                       .offset = src_state.offset,
1998                                    },
1999                                    src_state.alloc_size);
2000      }
2001
2002      anv_cmd_buffer_add_secondary(primary, secondary);
2003
2004      assert(secondary->perf_query_pool == NULL || primary->perf_query_pool == NULL ||
2005             secondary->perf_query_pool == primary->perf_query_pool);
2006      if (secondary->perf_query_pool)
2007         primary->perf_query_pool = secondary->perf_query_pool;
2008
2009#if GFX_VERx10 == 120
2010      if (secondary->state.depth_reg_mode != ANV_DEPTH_REG_MODE_UNKNOWN)
2011         primary->state.depth_reg_mode = secondary->state.depth_reg_mode;
2012#endif
2013   }
2014
2015   /* The secondary isn't counted in our VF cache tracking so we need to
2016    * invalidate the whole thing.
2017    */
2018   if (GFX_VER >= 8 && GFX_VER <= 9) {
2019      anv_add_pending_pipe_bits(primary,
2020                                ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
2021                                "Secondary cmd buffer not tracked in VF cache");
2022   }
2023
2024   /* The secondary may have selected a different pipeline (3D or compute) and
2025    * may have changed the current L3$ configuration.  Reset our tracking
2026    * variables to invalid values to ensure that we re-emit these in the case
2027    * where we do any draws or compute dispatches from the primary after the
2028    * secondary has returned.
2029    */
2030   primary->state.current_pipeline = UINT32_MAX;
2031   primary->state.current_l3_config = NULL;
2032   primary->state.current_hash_scale = 0;
2033
2034   /* Each of the secondary command buffers will use its own state base
2035    * address.  We need to re-emit state base address for the primary after
2036    * all of the secondaries are done.
2037    *
2038    * TODO: Maybe we want to make this a dirty bit to avoid extra state base
2039    * address calls?
2040    */
2041   genX(cmd_buffer_emit_state_base_address)(primary);
2042}
2043
2044/**
2045 * Program the hardware to use the specified L3 configuration.
2046 */
2047void
2048genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
2049                           const struct intel_l3_config *cfg)
2050{
2051   assert(cfg || GFX_VER >= 12);
2052   if (cfg == cmd_buffer->state.current_l3_config)
2053      return;
2054
2055#if GFX_VER >= 11
2056   /* On Gfx11+ we use only one config, so verify it remains the same and skip
2057    * the stalling programming entirely.
2058    */
2059   assert(cfg == cmd_buffer->device->l3_config);
2060#else
2061   if (INTEL_DEBUG(DEBUG_L3)) {
2062      mesa_logd("L3 config transition: ");
2063      intel_dump_l3_config(cfg, stderr);
2064   }
2065
2066   /* According to the hardware docs, the L3 partitioning can only be changed
2067    * while the pipeline is completely drained and the caches are flushed,
2068    * which involves a first PIPE_CONTROL flush which stalls the pipeline...
2069    */
2070   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2071      pc.DCFlushEnable = true;
2072      pc.PostSyncOperation = NoWrite;
2073      pc.CommandStreamerStallEnable = true;
2074      anv_debug_dump_pc(pc);
2075   }
2076
2077   /* ...followed by a second pipelined PIPE_CONTROL that initiates
2078    * invalidation of the relevant caches.  Note that because RO invalidation
2079    * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
2080    * command is processed by the CS) we cannot combine it with the previous
2081    * stalling flush as the hardware documentation suggests, because that
2082    * would cause the CS to stall on previous rendering *after* RO
2083    * invalidation and wouldn't prevent the RO caches from being polluted by
2084    * concurrent rendering before the stall completes.  This intentionally
2085    * doesn't implement the SKL+ hardware workaround suggesting to enable CS
2086    * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
2087    * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
2088    * already guarantee that there is no concurrent GPGPU kernel execution
2089    * (see SKL HSD 2132585).
2090    */
2091   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2092      pc.TextureCacheInvalidationEnable = true;
2093      pc.ConstantCacheInvalidationEnable = true;
2094      pc.InstructionCacheInvalidateEnable = true;
2095      pc.StateCacheInvalidationEnable = true;
2096      pc.PostSyncOperation = NoWrite;
2097      anv_debug_dump_pc(pc);
2098   }
2099
2100   /* Now send a third stalling flush to make sure that invalidation is
2101    * complete when the L3 configuration registers are modified.
2102    */
2103   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2104      pc.DCFlushEnable = true;
2105      pc.PostSyncOperation = NoWrite;
2106      pc.CommandStreamerStallEnable = true;
2107      anv_debug_dump_pc(pc);
2108   }
2109
2110   genX(emit_l3_config)(&cmd_buffer->batch, cmd_buffer->device, cfg);
2111#endif /* GFX_VER >= 11 */
2112   cmd_buffer->state.current_l3_config = cfg;
2113}
2114
2115void
2116genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
2117{
2118   UNUSED const struct intel_device_info *devinfo = &cmd_buffer->device->info;
2119   enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
2120
2121   if (unlikely(cmd_buffer->device->physical->always_flush_cache))
2122      bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
2123   else if (bits == 0)
2124      return;
2125
2126   /*
2127    * From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization":
2128    *
2129    *    Write synchronization is a special case of end-of-pipe
2130    *    synchronization that requires that the render cache and/or depth
2131    *    related caches are flushed to memory, where the data will become
2132    *    globally visible. This type of synchronization is required prior to
2133    *    SW (CPU) actually reading the result data from memory, or initiating
2134    *    an operation that will use as a read surface (such as a texture
2135    *    surface) a previous render target and/or depth/stencil buffer
2136    *
2137    *
2138    * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2139    *
2140    *    Exercising the write cache flush bits (Render Target Cache Flush
2141    *    Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only
2142    *    ensures the write caches are flushed and doesn't guarantee the data
2143    *    is globally visible.
2144    *
2145    *    SW can track the completion of the end-of-pipe-synchronization by
2146    *    using "Notify Enable" and "PostSync Operation - Write Immediate
2147    *    Data" in the PIPE_CONTROL command.
2148    *
2149    * In other words, flushes are pipelined while invalidations are handled
2150    * immediately.  Therefore, if we're flushing anything then we need to
2151    * schedule an end-of-pipe sync before any invalidations can happen.
2152    */
2153   if (bits & ANV_PIPE_FLUSH_BITS)
2154      bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2155
2156
2157   /* HSD 1209978178: docs say that before programming the aux table:
2158    *
2159    *    "Driver must ensure that the engine is IDLE but ensure it doesn't
2160    *    add extra flushes in the case it knows that the engine is already
2161    *    IDLE."
2162    */
2163   if (GFX_VER == 12 && (bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT))
2164      bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2165
2166   /* If we're going to do an invalidate and we have a pending end-of-pipe
2167    * sync that has yet to be resolved, we do the end-of-pipe sync now.
2168    */
2169   if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
2170       (bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) {
2171      bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT;
2172      bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
2173   }
2174
2175   /* Wa_1409226450, Wait for EU to be idle before pipe control which
2176    * invalidates the instruction cache
2177    */
2178   if (GFX_VER == 12 && (bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT))
2179      bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2180
2181   if ((GFX_VER >= 8 && GFX_VER <= 9) &&
2182       (bits & ANV_PIPE_CS_STALL_BIT) &&
2183       (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
2184      /* If we are doing a VF cache invalidate AND a CS stall (it must be
2185       * both) then we can reset our vertex cache tracking.
2186       */
2187      memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
2188             sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
2189      memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
2190             sizeof(cmd_buffer->state.gfx.ib_dirty_range));
2191   }
2192
2193   /* Project: SKL / Argument: LRI Post Sync Operation [23]
2194    *
2195    * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2196    *  programmed prior to programming a PIPECONTROL command with "LRI
2197    *  Post Sync Operation" in GPGPU mode of operation (i.e when
2198    *  PIPELINE_SELECT command is set to GPGPU mode of operation)."
2199    *
2200    * The same text exists a few rows below for Post Sync Op.
2201    *
2202    * On Gfx12 this is Wa_1607156449.
2203    */
2204   if (bits & ANV_PIPE_POST_SYNC_BIT) {
2205      if ((GFX_VER == 9 || (GFX_VER == 12 && devinfo->revision == 0 /* A0 */)) &&
2206          cmd_buffer->state.current_pipeline == GPGPU)
2207         bits |= ANV_PIPE_CS_STALL_BIT;
2208      bits &= ~ANV_PIPE_POST_SYNC_BIT;
2209   }
2210
2211   if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS |
2212               ANV_PIPE_END_OF_PIPE_SYNC_BIT)) {
2213      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2214#if GFX_VER >= 12
2215         pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2216         pipe.HDCPipelineFlushEnable |= bits & ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
2217#else
2218         /* Flushing HDC pipeline requires DC Flush on earlier HW. */
2219         pipe.DCFlushEnable |= bits & ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
2220#endif
2221         pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2222         pipe.DCFlushEnable |= bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2223         pipe.RenderTargetCacheFlushEnable =
2224            bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2225
2226         /* Wa_1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
2227          * be set with any PIPE_CONTROL with Depth Flush Enable bit set.
2228          */
2229#if GFX_VER >= 12
2230         pipe.DepthStallEnable =
2231            pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
2232#else
2233         pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
2234#endif
2235
2236         pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
2237         pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2238
2239         /* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory":
2240          *
2241          *    "The most common action to perform upon reaching a
2242          *    synchronization point is to write a value out to memory. An
2243          *    immediate value (included with the synchronization command) may
2244          *    be written."
2245          *
2246          *
2247          * From Broadwell PRM, volume 7, "End-of-Pipe Synchronization":
2248          *
2249          *    "In case the data flushed out by the render engine is to be
2250          *    read back in to the render engine in coherent manner, then the
2251          *    render engine has to wait for the fence completion before
2252          *    accessing the flushed data. This can be achieved by following
2253          *    means on various products: PIPE_CONTROL command with CS Stall
2254          *    and the required write caches flushed with Post-Sync-Operation
2255          *    as Write Immediate Data.
2256          *
2257          *    Example:
2258          *       - Workload-1 (3D/GPGPU/MEDIA)
2259          *       - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2260          *         Immediate Data, Required Write Cache Flush bits set)
2261          *       - Workload-2 (Can use the data produce or output by
2262          *         Workload-1)
2263          */
2264         if (bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) {
2265            pipe.CommandStreamerStallEnable = true;
2266            pipe.PostSyncOperation = WriteImmediateData;
2267            pipe.Address = cmd_buffer->device->workaround_address;
2268         }
2269
2270         /*
2271          * According to the Broadwell documentation, any PIPE_CONTROL with the
2272          * "Command Streamer Stall" bit set must also have another bit set,
2273          * with five different options:
2274          *
2275          *  - Render Target Cache Flush
2276          *  - Depth Cache Flush
2277          *  - Stall at Pixel Scoreboard
2278          *  - Post-Sync Operation
2279          *  - Depth Stall
2280          *  - DC Flush Enable
2281          *
2282          * I chose "Stall at Pixel Scoreboard" since that's what we use in
2283          * mesa and it seems to work fine. The choice is fairly arbitrary.
2284          */
2285         if (pipe.CommandStreamerStallEnable &&
2286             !pipe.RenderTargetCacheFlushEnable &&
2287             !pipe.DepthCacheFlushEnable &&
2288             !pipe.StallAtPixelScoreboard &&
2289             !pipe.PostSyncOperation &&
2290             !pipe.DepthStallEnable &&
2291             !pipe.DCFlushEnable)
2292            pipe.StallAtPixelScoreboard = true;
2293         anv_debug_dump_pc(pipe);
2294      }
2295
2296      /* If a render target flush was emitted, then we can toggle off the bit
2297       * saying that render target writes are ongoing.
2298       */
2299      if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2300         bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
2301
2302      if (GFX_VERx10 == 75) {
2303         /* Haswell needs addition work-arounds:
2304          *
2305          * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
2306          *
2307          *    Option 1:
2308          *    PIPE_CONTROL command with the CS Stall and the required write
2309          *    caches flushed with Post-SyncOperation as Write Immediate Data
2310          *    followed by eight dummy MI_STORE_DATA_IMM (write to scratch
2311          *    spce) commands.
2312          *
2313          *    Example:
2314          *       - Workload-1
2315          *       - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
2316          *         Immediate Data, Required Write Cache Flush bits set)
2317          *       - MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address)
2318          *       - Workload-2 (Can use the data produce or output by
2319          *         Workload-1)
2320          *
2321          * Unfortunately, both the PRMs and the internal docs are a bit
2322          * out-of-date in this regard.  What the windows driver does (and
2323          * this appears to actually work) is to emit a register read from the
2324          * memory address written by the pipe control above.
2325          *
2326          * What register we load into doesn't matter.  We choose an indirect
2327          * rendering register because we know it always exists and it's one
2328          * of the first registers the command parser allows us to write.  If
2329          * you don't have command parser support in your kernel (pre-4.2),
2330          * this will get turned into MI_NOOP and you won't get the
2331          * workaround.  Unfortunately, there's just not much we can do in
2332          * that case.  This register is perfectly safe to write since we
2333          * always re-load all of the indirect draw registers right before
2334          * 3DPRIMITIVE when needed anyway.
2335          */
2336         anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
2337            lrm.RegisterAddress  = 0x243C; /* GFX7_3DPRIM_START_INSTANCE */
2338            lrm.MemoryAddress = cmd_buffer->device->workaround_address;
2339         }
2340      }
2341
2342      bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS |
2343                ANV_PIPE_END_OF_PIPE_SYNC_BIT);
2344   }
2345
2346   if (bits & ANV_PIPE_INVALIDATE_BITS) {
2347      /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2348       *
2349       *    "If the VF Cache Invalidation Enable is set to a 1 in a
2350       *    PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
2351       *    0, with the VF Cache Invalidation Enable set to 0 needs to be sent
2352       *    prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
2353       *    a 1."
2354       *
2355       * This appears to hang Broadwell, so we restrict it to just gfx9.
2356       */
2357      if (GFX_VER == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
2358         anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
2359
2360      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2361         pipe.StateCacheInvalidationEnable =
2362            bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
2363         pipe.ConstantCacheInvalidationEnable =
2364            bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2365#if GFX_VER >= 12
2366         /* Invalidates the L3 cache part in which index & vertex data is loaded
2367          * when VERTEX_BUFFER_STATE::L3BypassDisable is set.
2368          */
2369         pipe.L3ReadOnlyCacheInvalidationEnable =
2370            bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2371#endif
2372         pipe.VFCacheInvalidationEnable =
2373            bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2374         pipe.TextureCacheInvalidationEnable =
2375            bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2376         pipe.InstructionCacheInvalidateEnable =
2377            bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
2378
2379         /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2380          *
2381          *    "When VF Cache Invalidate is set “Post Sync Operation” must be
2382          *    enabled to “Write Immediate Data” or “Write PS Depth Count” or
2383          *    “Write Timestamp”.
2384          */
2385         if (GFX_VER == 9 && pipe.VFCacheInvalidationEnable) {
2386            pipe.PostSyncOperation = WriteImmediateData;
2387            pipe.Address = cmd_buffer->device->workaround_address;
2388         }
2389         anv_debug_dump_pc(pipe);
2390      }
2391
2392#if GFX_VER == 12
2393      if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) &&
2394          cmd_buffer->device->info.has_aux_map) {
2395         anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2396            lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num);
2397            lri.DataDWord = 1;
2398         }
2399      }
2400#endif
2401
2402      bits &= ~ANV_PIPE_INVALIDATE_BITS;
2403   }
2404
2405   cmd_buffer->state.pending_pipe_bits = bits;
2406}
2407
2408static void
2409cmd_buffer_barrier(struct anv_cmd_buffer *cmd_buffer,
2410                   const VkDependencyInfoKHR *dep_info,
2411                   const char *reason)
2412{
2413   /* XXX: Right now, we're really dumb and just flush whatever categories
2414    * the app asks for.  One of these days we may make this a bit better
2415    * but right now that's all the hardware allows for in most areas.
2416    */
2417   VkAccessFlags2KHR src_flags = 0;
2418   VkAccessFlags2KHR dst_flags = 0;
2419
2420   for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
2421      src_flags |= dep_info->pMemoryBarriers[i].srcAccessMask;
2422      dst_flags |= dep_info->pMemoryBarriers[i].dstAccessMask;
2423   }
2424
2425   for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
2426      src_flags |= dep_info->pBufferMemoryBarriers[i].srcAccessMask;
2427      dst_flags |= dep_info->pBufferMemoryBarriers[i].dstAccessMask;
2428   }
2429
2430   for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
2431      const VkImageMemoryBarrier2KHR *img_barrier =
2432         &dep_info->pImageMemoryBarriers[i];
2433
2434      src_flags |= img_barrier->srcAccessMask;
2435      dst_flags |= img_barrier->dstAccessMask;
2436
2437      ANV_FROM_HANDLE(anv_image, image, img_barrier->image);
2438      const VkImageSubresourceRange *range = &img_barrier->subresourceRange;
2439
2440      uint32_t base_layer, layer_count;
2441      if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
2442         base_layer = 0;
2443         layer_count = anv_minify(image->vk.extent.depth, range->baseMipLevel);
2444      } else {
2445         base_layer = range->baseArrayLayer;
2446         layer_count = vk_image_subresource_layer_count(&image->vk, range);
2447      }
2448      const uint32_t level_count =
2449         vk_image_subresource_level_count(&image->vk, range);
2450
2451      if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2452         transition_depth_buffer(cmd_buffer, image,
2453                                 base_layer, layer_count,
2454                                 img_barrier->oldLayout,
2455                                 img_barrier->newLayout,
2456                                 false /* will_full_fast_clear */);
2457      }
2458
2459      if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2460         transition_stencil_buffer(cmd_buffer, image,
2461                                   range->baseMipLevel, level_count,
2462                                   base_layer, layer_count,
2463                                   img_barrier->oldLayout,
2464                                   img_barrier->newLayout,
2465                                   false /* will_full_fast_clear */);
2466      }
2467
2468      if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2469         VkImageAspectFlags color_aspects =
2470            vk_image_expand_aspect_mask(&image->vk, range->aspectMask);
2471         anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2472            transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2473                                    range->baseMipLevel, level_count,
2474                                    base_layer, layer_count,
2475                                    img_barrier->oldLayout,
2476                                    img_barrier->newLayout,
2477                                    img_barrier->srcQueueFamilyIndex,
2478                                    img_barrier->dstQueueFamilyIndex,
2479                                    false /* will_full_fast_clear */);
2480         }
2481      }
2482   }
2483
2484   enum anv_pipe_bits bits =
2485      anv_pipe_flush_bits_for_access_flags(cmd_buffer->device, src_flags) |
2486      anv_pipe_invalidate_bits_for_access_flags(cmd_buffer->device, dst_flags);
2487
2488   anv_add_pending_pipe_bits(cmd_buffer, bits, reason);
2489}
2490
2491void genX(CmdPipelineBarrier2KHR)(
2492    VkCommandBuffer                             commandBuffer,
2493    const VkDependencyInfoKHR*                  pDependencyInfo)
2494{
2495   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2496
2497   cmd_buffer_barrier(cmd_buffer, pDependencyInfo, "pipe barrier");
2498}
2499
2500static void
2501cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2502{
2503   assert(anv_pipeline_is_primitive(cmd_buffer->state.gfx.pipeline));
2504
2505   VkShaderStageFlags stages =
2506      cmd_buffer->state.gfx.pipeline->active_stages;
2507
2508   /* In order to avoid thrash, we assume that vertex and fragment stages
2509    * always exist.  In the rare case where one is missing *and* the other
2510    * uses push concstants, this may be suboptimal.  However, avoiding stalls
2511    * seems more important.
2512    */
2513   stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2514
2515   if (stages == cmd_buffer->state.gfx.push_constant_stages)
2516      return;
2517
2518   const unsigned push_constant_kb =
2519      cmd_buffer->device->info.max_constant_urb_size_kb;
2520
2521   const unsigned num_stages =
2522      util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2523   unsigned size_per_stage = push_constant_kb / num_stages;
2524
2525   /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2526    * units of 2KB.  Incidentally, these are the same platforms that have
2527    * 32KB worth of push constant space.
2528    */
2529   if (push_constant_kb == 32)
2530      size_per_stage &= ~1u;
2531
2532   uint32_t kb_used = 0;
2533   for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2534      unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2535      anv_batch_emit(&cmd_buffer->batch,
2536                     GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2537         alloc._3DCommandSubOpcode  = 18 + i;
2538         alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2539         alloc.ConstantBufferSize   = push_size;
2540      }
2541      kb_used += push_size;
2542   }
2543
2544   anv_batch_emit(&cmd_buffer->batch,
2545                  GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2546      alloc.ConstantBufferOffset = kb_used;
2547      alloc.ConstantBufferSize = push_constant_kb - kb_used;
2548   }
2549
2550   cmd_buffer->state.gfx.push_constant_stages = stages;
2551
2552   /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2553    *
2554    *    "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2555    *    the next 3DPRIMITIVE command after programming the
2556    *    3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2557    *
2558    * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2559    * pipeline setup, we need to dirty push constants.
2560    */
2561   cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2562}
2563
2564static VkResult
2565emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2566                   struct anv_cmd_pipeline_state *pipe_state,
2567                   struct anv_shader_bin *shader,
2568                   struct anv_state *bt_state)
2569{
2570   struct anv_subpass *subpass = cmd_buffer->state.subpass;
2571   uint32_t state_offset;
2572
2573   struct anv_pipeline_bind_map *map = &shader->bind_map;
2574   if (map->surface_count == 0) {
2575      *bt_state = (struct anv_state) { 0, };
2576      return VK_SUCCESS;
2577   }
2578
2579   *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2580                                                  map->surface_count,
2581                                                  &state_offset);
2582   uint32_t *bt_map = bt_state->map;
2583
2584   if (bt_state->map == NULL)
2585      return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2586
2587   /* We only need to emit relocs if we're not using softpin.  If we are using
2588    * softpin then we always keep all user-allocated memory objects resident.
2589    */
2590   const bool need_client_mem_relocs =
2591      !anv_use_softpin(cmd_buffer->device->physical);
2592   struct anv_push_constants *push = &pipe_state->push_constants;
2593
2594   for (uint32_t s = 0; s < map->surface_count; s++) {
2595      struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2596
2597      struct anv_state surface_state;
2598
2599      switch (binding->set) {
2600      case ANV_DESCRIPTOR_SET_NULL:
2601         bt_map[s] = 0;
2602         break;
2603
2604      case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2605         /* Color attachment binding */
2606         assert(shader->stage == MESA_SHADER_FRAGMENT);
2607         if (binding->index < subpass->color_count) {
2608            const unsigned att =
2609               subpass->color_attachments[binding->index].attachment;
2610
2611            /* From the Vulkan 1.0.46 spec:
2612             *
2613             *    "If any color or depth/stencil attachments are
2614             *    VK_ATTACHMENT_UNUSED, then no writes occur for those
2615             *    attachments."
2616             */
2617            if (att == VK_ATTACHMENT_UNUSED) {
2618               surface_state = cmd_buffer->state.null_surface_state;
2619            } else {
2620               surface_state = cmd_buffer->state.attachments[att].color.state;
2621            }
2622         } else {
2623            surface_state = cmd_buffer->state.null_surface_state;
2624         }
2625
2626         assert(surface_state.map);
2627         bt_map[s] = surface_state.offset + state_offset;
2628         break;
2629
2630      case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2631         struct anv_state surface_state =
2632            anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2633
2634         struct anv_address constant_data = {
2635            .bo = cmd_buffer->device->instruction_state_pool.block_pool.bo,
2636            .offset = shader->kernel.offset +
2637                      shader->prog_data->const_data_offset,
2638         };
2639         unsigned constant_data_size = shader->prog_data->const_data_size;
2640
2641         const enum isl_format format =
2642            anv_isl_format_for_descriptor_type(cmd_buffer->device,
2643                                               VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2644         anv_fill_buffer_surface_state(cmd_buffer->device,
2645                                       surface_state, format,
2646                                       ISL_SURF_USAGE_CONSTANT_BUFFER_BIT,
2647                                       constant_data, constant_data_size, 1);
2648
2649         assert(surface_state.map);
2650         bt_map[s] = surface_state.offset + state_offset;
2651         add_surface_reloc(cmd_buffer, surface_state, constant_data);
2652         break;
2653      }
2654
2655      case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2656         /* This is always the first binding for compute shaders */
2657         assert(shader->stage == MESA_SHADER_COMPUTE && s == 0);
2658
2659         struct anv_state surface_state =
2660            anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2661
2662         const enum isl_format format =
2663            anv_isl_format_for_descriptor_type(cmd_buffer->device,
2664                                               VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2665         anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2666                                       format,
2667                                       ISL_SURF_USAGE_CONSTANT_BUFFER_BIT,
2668                                       cmd_buffer->state.compute.num_workgroups,
2669                                       12, 1);
2670
2671         assert(surface_state.map);
2672         bt_map[s] = surface_state.offset + state_offset;
2673         if (need_client_mem_relocs) {
2674            add_surface_reloc(cmd_buffer, surface_state,
2675                              cmd_buffer->state.compute.num_workgroups);
2676         }
2677         break;
2678      }
2679
2680      case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2681         /* This is a descriptor set buffer so the set index is actually
2682          * given by binding->binding.  (Yes, that's confusing.)
2683          */
2684         struct anv_descriptor_set *set =
2685            pipe_state->descriptors[binding->index];
2686         assert(set->desc_mem.alloc_size);
2687         assert(set->desc_surface_state.alloc_size);
2688         bt_map[s] = set->desc_surface_state.offset + state_offset;
2689         add_surface_reloc(cmd_buffer, set->desc_surface_state,
2690                           anv_descriptor_set_address(set));
2691         break;
2692      }
2693
2694      default: {
2695         assert(binding->set < MAX_SETS);
2696         const struct anv_descriptor_set *set =
2697            pipe_state->descriptors[binding->set];
2698         if (binding->index >= set->descriptor_count) {
2699            /* From the Vulkan spec section entitled "DescriptorSet and
2700             * Binding Assignment":
2701             *
2702             *    "If the array is runtime-sized, then array elements greater
2703             *    than or equal to the size of that binding in the bound
2704             *    descriptor set must not be used."
2705             *
2706             * Unfortunately, the compiler isn't smart enough to figure out
2707             * when a dynamic binding isn't used so it may grab the whole
2708             * array and stick it in the binding table.  In this case, it's
2709             * safe to just skip those bindings that are OOB.
2710             */
2711            assert(binding->index < set->layout->descriptor_count);
2712            continue;
2713         }
2714         const struct anv_descriptor *desc = &set->descriptors[binding->index];
2715
2716         switch (desc->type) {
2717         case VK_DESCRIPTOR_TYPE_SAMPLER:
2718            /* Nothing for us to do here */
2719            continue;
2720
2721         case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2722         case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2723            if (desc->image_view) {
2724               struct anv_surface_state sstate =
2725                  (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2726                  desc->image_view->planes[binding->plane].general_sampler_surface_state :
2727                  desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2728               surface_state = sstate.state;
2729               assert(surface_state.alloc_size);
2730               if (need_client_mem_relocs)
2731                  add_surface_state_relocs(cmd_buffer, sstate);
2732            } else {
2733               surface_state = cmd_buffer->device->null_surface_state;
2734            }
2735            break;
2736         }
2737         case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2738            assert(shader->stage == MESA_SHADER_FRAGMENT);
2739            assert(desc->image_view != NULL);
2740            if ((desc->image_view->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2741               /* For depth and stencil input attachments, we treat it like any
2742                * old texture that a user may have bound.
2743                */
2744               assert(desc->image_view->n_planes == 1);
2745               struct anv_surface_state sstate =
2746                  (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2747                  desc->image_view->planes[0].general_sampler_surface_state :
2748                  desc->image_view->planes[0].optimal_sampler_surface_state;
2749               surface_state = sstate.state;
2750               assert(surface_state.alloc_size);
2751               if (need_client_mem_relocs)
2752                  add_surface_state_relocs(cmd_buffer, sstate);
2753            } else {
2754               /* For color input attachments, we create the surface state at
2755                * vkBeginRenderPass time so that we can include aux and clear
2756                * color information.
2757                */
2758               assert(binding->input_attachment_index < subpass->input_count);
2759               const unsigned subpass_att = binding->input_attachment_index;
2760               const unsigned att = subpass->input_attachments[subpass_att].attachment;
2761               surface_state = cmd_buffer->state.attachments[att].input.state;
2762            }
2763            break;
2764
2765         case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2766            if (desc->image_view) {
2767               struct anv_surface_state sstate =
2768                  binding->lowered_storage_surface
2769                  ? desc->image_view->planes[binding->plane].lowered_storage_surface_state
2770                  : desc->image_view->planes[binding->plane].storage_surface_state;
2771               surface_state = sstate.state;
2772               assert(surface_state.alloc_size);
2773               if (surface_state.offset == 0) {
2774                  mesa_loge("Bound a image to a descriptor where the "
2775                            "descriptor does not have NonReadable "
2776                            "set and the image does not have a "
2777                            "corresponding SPIR-V format enum.");
2778                  vk_debug_report(&cmd_buffer->device->physical->instance->vk,
2779                                  VK_DEBUG_REPORT_ERROR_BIT_EXT,
2780                                  &desc->image_view->vk.base,
2781                                  __LINE__, 0, "anv",
2782                                  "Bound a image to a descriptor where the "
2783                                  "descriptor does not have NonReadable "
2784                                  "set and the image does not have a "
2785                                  "corresponding SPIR-V format enum.");
2786               }
2787               if (surface_state.offset && need_client_mem_relocs)
2788                  add_surface_state_relocs(cmd_buffer, sstate);
2789            } else {
2790               surface_state = cmd_buffer->device->null_surface_state;
2791            }
2792            break;
2793         }
2794
2795         case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2796         case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2797         case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2798            if (desc->buffer_view) {
2799               surface_state = desc->buffer_view->surface_state;
2800               assert(surface_state.alloc_size);
2801               if (need_client_mem_relocs) {
2802                  add_surface_reloc(cmd_buffer, surface_state,
2803                                    desc->buffer_view->address);
2804               }
2805            } else {
2806               surface_state = cmd_buffer->device->null_surface_state;
2807            }
2808            break;
2809
2810         case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2811         case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2812            if (desc->buffer) {
2813               /* Compute the offset within the buffer */
2814               uint32_t dynamic_offset =
2815                  push->dynamic_offsets[binding->dynamic_offset_index];
2816               uint64_t offset = desc->offset + dynamic_offset;
2817               /* Clamp to the buffer size */
2818               offset = MIN2(offset, desc->buffer->size);
2819               /* Clamp the range to the buffer size */
2820               uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2821
2822               /* Align the range for consistency */
2823               if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC)
2824                  range = align_u32(range, ANV_UBO_ALIGNMENT);
2825
2826               struct anv_address address =
2827                  anv_address_add(desc->buffer->address, offset);
2828
2829               surface_state =
2830                  anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2831               enum isl_format format =
2832                  anv_isl_format_for_descriptor_type(cmd_buffer->device,
2833                                                     desc->type);
2834
2835               isl_surf_usage_flags_t usage =
2836                  desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ?
2837                  ISL_SURF_USAGE_CONSTANT_BUFFER_BIT :
2838                  ISL_SURF_USAGE_STORAGE_BIT;
2839
2840               anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2841                                             format, usage, address, range, 1);
2842               if (need_client_mem_relocs)
2843                  add_surface_reloc(cmd_buffer, surface_state, address);
2844            } else {
2845               surface_state = cmd_buffer->device->null_surface_state;
2846            }
2847            break;
2848         }
2849
2850         case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2851            if (desc->buffer_view) {
2852               surface_state = binding->lowered_storage_surface
2853                  ? desc->buffer_view->lowered_storage_surface_state
2854                  : desc->buffer_view->storage_surface_state;
2855               assert(surface_state.alloc_size);
2856               if (need_client_mem_relocs) {
2857                  add_surface_reloc(cmd_buffer, surface_state,
2858                                    desc->buffer_view->address);
2859               }
2860            } else {
2861               surface_state = cmd_buffer->device->null_surface_state;
2862            }
2863            break;
2864
2865         default:
2866            assert(!"Invalid descriptor type");
2867            continue;
2868         }
2869         assert(surface_state.map);
2870         bt_map[s] = surface_state.offset + state_offset;
2871         break;
2872      }
2873      }
2874   }
2875
2876   return VK_SUCCESS;
2877}
2878
2879static VkResult
2880emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2881              struct anv_cmd_pipeline_state *pipe_state,
2882              struct anv_shader_bin *shader,
2883              struct anv_state *state)
2884{
2885   struct anv_pipeline_bind_map *map = &shader->bind_map;
2886   if (map->sampler_count == 0) {
2887      *state = (struct anv_state) { 0, };
2888      return VK_SUCCESS;
2889   }
2890
2891   uint32_t size = map->sampler_count * 16;
2892   *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2893
2894   if (state->map == NULL)
2895      return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2896
2897   for (uint32_t s = 0; s < map->sampler_count; s++) {
2898      struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2899      const struct anv_descriptor *desc =
2900         &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2901
2902      if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2903          desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2904         continue;
2905
2906      struct anv_sampler *sampler = desc->sampler;
2907
2908      /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2909       * happens to be zero.
2910       */
2911      if (sampler == NULL)
2912         continue;
2913
2914      memcpy(state->map + (s * 16),
2915             sampler->state[binding->plane], sizeof(sampler->state[0]));
2916   }
2917
2918   return VK_SUCCESS;
2919}
2920
2921static uint32_t
2922flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2923                      struct anv_cmd_pipeline_state *pipe_state,
2924                      const VkShaderStageFlags dirty,
2925                      struct anv_shader_bin **shaders,
2926                      uint32_t num_shaders)
2927{
2928   VkShaderStageFlags flushed = 0;
2929
2930   VkResult result = VK_SUCCESS;
2931   for (uint32_t i = 0; i < num_shaders; i++) {
2932      if (!shaders[i])
2933         continue;
2934
2935      gl_shader_stage stage = shaders[i]->stage;
2936      VkShaderStageFlags vk_stage = mesa_to_vk_shader_stage(stage);
2937      if ((vk_stage & dirty) == 0)
2938         continue;
2939
2940      assert(stage < ARRAY_SIZE(cmd_buffer->state.samplers));
2941      result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
2942                             &cmd_buffer->state.samplers[stage]);
2943      if (result != VK_SUCCESS)
2944         break;
2945
2946      assert(stage < ARRAY_SIZE(cmd_buffer->state.binding_tables));
2947      result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
2948                                  &cmd_buffer->state.binding_tables[stage]);
2949      if (result != VK_SUCCESS)
2950         break;
2951
2952      flushed |= vk_stage;
2953   }
2954
2955   if (result != VK_SUCCESS) {
2956      assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2957
2958      result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2959      if (result != VK_SUCCESS)
2960         return 0;
2961
2962      /* Re-emit state base addresses so we get the new surface state base
2963       * address before we start emitting binding tables etc.
2964       */
2965      genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2966
2967      /* Re-emit all active binding tables */
2968      flushed = 0;
2969
2970      for (uint32_t i = 0; i < num_shaders; i++) {
2971         if (!shaders[i])
2972            continue;
2973
2974         gl_shader_stage stage = shaders[i]->stage;
2975
2976         result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
2977                                &cmd_buffer->state.samplers[stage]);
2978         if (result != VK_SUCCESS) {
2979            anv_batch_set_error(&cmd_buffer->batch, result);
2980            return 0;
2981         }
2982         result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
2983                                     &cmd_buffer->state.binding_tables[stage]);
2984         if (result != VK_SUCCESS) {
2985            anv_batch_set_error(&cmd_buffer->batch, result);
2986            return 0;
2987         }
2988
2989         flushed |= mesa_to_vk_shader_stage(stage);
2990      }
2991   }
2992
2993   return flushed;
2994}
2995
2996static void
2997cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2998                                    uint32_t stages)
2999{
3000   static const uint32_t sampler_state_opcodes[] = {
3001      [MESA_SHADER_VERTEX]                      = 43,
3002      [MESA_SHADER_TESS_CTRL]                   = 44, /* HS */
3003      [MESA_SHADER_TESS_EVAL]                   = 45, /* DS */
3004      [MESA_SHADER_GEOMETRY]                    = 46,
3005      [MESA_SHADER_FRAGMENT]                    = 47,
3006      [MESA_SHADER_COMPUTE]                     = 0,
3007   };
3008
3009   static const uint32_t binding_table_opcodes[] = {
3010      [MESA_SHADER_VERTEX]                      = 38,
3011      [MESA_SHADER_TESS_CTRL]                   = 39,
3012      [MESA_SHADER_TESS_EVAL]                   = 40,
3013      [MESA_SHADER_GEOMETRY]                    = 41,
3014      [MESA_SHADER_FRAGMENT]                    = 42,
3015      [MESA_SHADER_COMPUTE]                     = 0,
3016   };
3017
3018   anv_foreach_stage(s, stages) {
3019      assert(s < ARRAY_SIZE(binding_table_opcodes));
3020      assert(binding_table_opcodes[s] > 0);
3021
3022      if (cmd_buffer->state.samplers[s].alloc_size > 0) {
3023         anv_batch_emit(&cmd_buffer->batch,
3024                        GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
3025            ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
3026            ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
3027         }
3028      }
3029
3030      /* Always emit binding table pointers if we're asked to, since on SKL
3031       * this is what flushes push constants. */
3032      anv_batch_emit(&cmd_buffer->batch,
3033                     GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
3034         btp._3DCommandSubOpcode = binding_table_opcodes[s];
3035         btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
3036      }
3037   }
3038}
3039
3040static struct anv_address
3041get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
3042                       const struct anv_shader_bin *shader,
3043                       const struct anv_push_range *range)
3044{
3045   struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3046   switch (range->set) {
3047   case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
3048      /* This is a descriptor set buffer so the set index is
3049       * actually given by binding->binding.  (Yes, that's
3050       * confusing.)
3051       */
3052      struct anv_descriptor_set *set =
3053         gfx_state->base.descriptors[range->index];
3054      return anv_descriptor_set_address(set);
3055   }
3056
3057   case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
3058      if (gfx_state->base.push_constants_state.alloc_size == 0) {
3059         gfx_state->base.push_constants_state =
3060            anv_cmd_buffer_gfx_push_constants(cmd_buffer);
3061      }
3062      return (struct anv_address) {
3063         .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3064         .offset = gfx_state->base.push_constants_state.offset,
3065      };
3066   }
3067
3068   case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS:
3069      return (struct anv_address) {
3070         .bo = cmd_buffer->device->instruction_state_pool.block_pool.bo,
3071         .offset = shader->kernel.offset +
3072                   shader->prog_data->const_data_offset,
3073      };
3074
3075   default: {
3076      assert(range->set < MAX_SETS);
3077      struct anv_descriptor_set *set =
3078         gfx_state->base.descriptors[range->set];
3079      const struct anv_descriptor *desc =
3080         &set->descriptors[range->index];
3081
3082      if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
3083         if (desc->buffer_view)
3084            return desc->buffer_view->address;
3085      } else {
3086         assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
3087         if (desc->buffer) {
3088            const struct anv_push_constants *push =
3089               &gfx_state->base.push_constants;
3090            uint32_t dynamic_offset =
3091               push->dynamic_offsets[range->dynamic_offset_index];
3092            return anv_address_add(desc->buffer->address,
3093                                   desc->offset + dynamic_offset);
3094         }
3095      }
3096
3097      /* For NULL UBOs, we just return an address in the workaround BO.  We do
3098       * writes to it for workarounds but always at the bottom.  The higher
3099       * bytes should be all zeros.
3100       */
3101      assert(range->length * 32 <= 2048);
3102      return (struct anv_address) {
3103         .bo = cmd_buffer->device->workaround_bo,
3104         .offset = 1024,
3105      };
3106   }
3107   }
3108}
3109
3110
3111/** Returns the size in bytes of the bound buffer
3112 *
3113 * The range is relative to the start of the buffer, not the start of the
3114 * range.  The returned range may be smaller than
3115 *
3116 *    (range->start + range->length) * 32;
3117 */
3118static uint32_t
3119get_push_range_bound_size(struct anv_cmd_buffer *cmd_buffer,
3120                          const struct anv_shader_bin *shader,
3121                          const struct anv_push_range *range)
3122{
3123   assert(shader->stage != MESA_SHADER_COMPUTE);
3124   const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3125   switch (range->set) {
3126   case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
3127      struct anv_descriptor_set *set =
3128         gfx_state->base.descriptors[range->index];
3129      assert(range->start * 32 < set->desc_mem.alloc_size);
3130      assert((range->start + range->length) * 32 <= set->desc_mem.alloc_size);
3131      return set->desc_mem.alloc_size;
3132   }
3133
3134   case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
3135      return (range->start + range->length) * 32;
3136
3137   case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS:
3138      return ALIGN(shader->prog_data->const_data_size, ANV_UBO_ALIGNMENT);
3139
3140   default: {
3141      assert(range->set < MAX_SETS);
3142      struct anv_descriptor_set *set =
3143         gfx_state->base.descriptors[range->set];
3144      const struct anv_descriptor *desc =
3145         &set->descriptors[range->index];
3146
3147      if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
3148         if (!desc->buffer_view)
3149            return 0;
3150
3151         if (range->start * 32 > desc->buffer_view->range)
3152            return 0;
3153
3154         return desc->buffer_view->range;
3155      } else {
3156         if (!desc->buffer)
3157            return 0;
3158
3159         assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
3160         /* Compute the offset within the buffer */
3161         const struct anv_push_constants *push =
3162            &gfx_state->base.push_constants;
3163         uint32_t dynamic_offset =
3164            push->dynamic_offsets[range->dynamic_offset_index];
3165         uint64_t offset = desc->offset + dynamic_offset;
3166         /* Clamp to the buffer size */
3167         offset = MIN2(offset, desc->buffer->size);
3168         /* Clamp the range to the buffer size */
3169         uint32_t bound_range = MIN2(desc->range, desc->buffer->size - offset);
3170
3171         /* Align the range for consistency */
3172         bound_range = align_u32(bound_range, ANV_UBO_ALIGNMENT);
3173
3174         return bound_range;
3175      }
3176   }
3177   }
3178}
3179
3180static void
3181cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
3182                              gl_shader_stage stage,
3183                              struct anv_address *buffers,
3184                              unsigned buffer_count)
3185{
3186   const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3187   const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
3188
3189   static const uint32_t push_constant_opcodes[] = {
3190      [MESA_SHADER_VERTEX]                      = 21,
3191      [MESA_SHADER_TESS_CTRL]                   = 25, /* HS */
3192      [MESA_SHADER_TESS_EVAL]                   = 26, /* DS */
3193      [MESA_SHADER_GEOMETRY]                    = 22,
3194      [MESA_SHADER_FRAGMENT]                    = 23,
3195      [MESA_SHADER_COMPUTE]                     = 0,
3196   };
3197
3198   assert(stage < ARRAY_SIZE(push_constant_opcodes));
3199   assert(push_constant_opcodes[stage] > 0);
3200
3201   anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
3202      c._3DCommandSubOpcode = push_constant_opcodes[stage];
3203
3204      if (anv_pipeline_has_stage(pipeline, stage)) {
3205         const struct anv_pipeline_bind_map *bind_map =
3206            &pipeline->shaders[stage]->bind_map;
3207
3208#if GFX_VER >= 9
3209         /* This field exists since Gfx8.  However, the Broadwell PRM says:
3210          *
3211          *    "Constant Buffer Object Control State must be always programmed
3212          *    to zero."
3213          *
3214          * This restriction does not exist on any newer platforms.
3215          *
3216          * We only have one MOCS field for the whole packet, not one per
3217          * buffer.  We could go out of our way here to walk over all of the
3218          * buffers and see if any of them are used externally and use the
3219          * external MOCS.  However, the notion that someone would use the
3220          * same bit of memory for both scanout and a UBO is nuts.  Let's not
3221          * bother and assume it's all internal.
3222          */
3223         c.MOCS = isl_mocs(&cmd_buffer->device->isl_dev, 0, false);
3224#endif
3225
3226#if GFX_VERx10 >= 75
3227         /* The Skylake PRM contains the following restriction:
3228          *
3229          *    "The driver must ensure The following case does not occur
3230          *     without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3231          *     buffer 3 read length equal to zero committed followed by a
3232          *     3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3233          *     zero committed."
3234          *
3235          * To avoid this, we program the buffers in the highest slots.
3236          * This way, slot 0 is only used if slot 3 is also used.
3237          */
3238         assert(buffer_count <= 4);
3239         const unsigned shift = 4 - buffer_count;
3240         for (unsigned i = 0; i < buffer_count; i++) {
3241            const struct anv_push_range *range = &bind_map->push_ranges[i];
3242
3243            /* At this point we only have non-empty ranges */
3244            assert(range->length > 0);
3245
3246            /* For Ivy Bridge, make sure we only set the first range (actual
3247             * push constants)
3248             */
3249            assert((GFX_VERx10 >= 75) || i == 0);
3250
3251            c.ConstantBody.ReadLength[i + shift] = range->length;
3252            c.ConstantBody.Buffer[i + shift] =
3253               anv_address_add(buffers[i], range->start * 32);
3254         }
3255#else
3256         /* For Ivy Bridge, push constants are relative to dynamic state
3257          * base address and we only ever push actual push constants.
3258          */
3259         if (bind_map->push_ranges[0].length > 0) {
3260            assert(buffer_count == 1);
3261            assert(bind_map->push_ranges[0].set ==
3262                   ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
3263            assert(buffers[0].bo ==
3264                   cmd_buffer->device->dynamic_state_pool.block_pool.bo);
3265            c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
3266            c.ConstantBody.Buffer[0].bo = NULL;
3267            c.ConstantBody.Buffer[0].offset = buffers[0].offset;
3268         }
3269         assert(bind_map->push_ranges[1].length == 0);
3270         assert(bind_map->push_ranges[2].length == 0);
3271         assert(bind_map->push_ranges[3].length == 0);
3272#endif
3273      }
3274   }
3275}
3276
3277#if GFX_VER >= 12
3278static void
3279cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
3280                                  uint32_t shader_mask,
3281                                  struct anv_address *buffers,
3282                                  uint32_t buffer_count)
3283{
3284   if (buffer_count == 0) {
3285      anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
3286         c.ShaderUpdateEnable = shader_mask;
3287         c.MOCS = isl_mocs(&cmd_buffer->device->isl_dev, 0, false);
3288      }
3289      return;
3290   }
3291
3292   const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3293   const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
3294
3295   static const UNUSED uint32_t push_constant_opcodes[] = {
3296      [MESA_SHADER_VERTEX]                      = 21,
3297      [MESA_SHADER_TESS_CTRL]                   = 25, /* HS */
3298      [MESA_SHADER_TESS_EVAL]                   = 26, /* DS */
3299      [MESA_SHADER_GEOMETRY]                    = 22,
3300      [MESA_SHADER_FRAGMENT]                    = 23,
3301      [MESA_SHADER_COMPUTE]                     = 0,
3302   };
3303
3304   gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
3305   assert(stage < ARRAY_SIZE(push_constant_opcodes));
3306   assert(push_constant_opcodes[stage] > 0);
3307
3308   const struct anv_pipeline_bind_map *bind_map =
3309      &pipeline->shaders[stage]->bind_map;
3310
3311   uint32_t *dw;
3312   const uint32_t buffer_mask = (1 << buffer_count) - 1;
3313   const uint32_t num_dwords = 2 + 2 * buffer_count;
3314
3315   dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3316                        GENX(3DSTATE_CONSTANT_ALL),
3317                        .ShaderUpdateEnable = shader_mask,
3318                        .PointerBufferMask = buffer_mask,
3319                        .MOCS = isl_mocs(&cmd_buffer->device->isl_dev, 0, false));
3320
3321   for (int i = 0; i < buffer_count; i++) {
3322      const struct anv_push_range *range = &bind_map->push_ranges[i];
3323      GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
3324         &cmd_buffer->batch, dw + 2 + i * 2,
3325         &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
3326            .PointerToConstantBuffer =
3327               anv_address_add(buffers[i], range->start * 32),
3328            .ConstantBufferReadLength = range->length,
3329         });
3330   }
3331}
3332#endif
3333
3334static void
3335cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
3336                                VkShaderStageFlags dirty_stages)
3337{
3338   VkShaderStageFlags flushed = 0;
3339   struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
3340   const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
3341
3342#if GFX_VER >= 12
3343   uint32_t nobuffer_stages = 0;
3344#endif
3345
3346   /* Compute robust pushed register access mask for each stage. */
3347   if (cmd_buffer->device->robust_buffer_access) {
3348      anv_foreach_stage(stage, dirty_stages) {
3349         if (!anv_pipeline_has_stage(pipeline, stage))
3350            continue;
3351
3352         const struct anv_shader_bin *shader = pipeline->shaders[stage];
3353         const struct anv_pipeline_bind_map *bind_map = &shader->bind_map;
3354         struct anv_push_constants *push = &gfx_state->base.push_constants;
3355
3356         push->push_reg_mask[stage] = 0;
3357         /* Start of the current range in the shader, relative to the start of
3358          * push constants in the shader.
3359          */
3360         unsigned range_start_reg = 0;
3361         for (unsigned i = 0; i < 4; i++) {
3362            const struct anv_push_range *range = &bind_map->push_ranges[i];
3363            if (range->length == 0)
3364               continue;
3365
3366            unsigned bound_size =
3367               get_push_range_bound_size(cmd_buffer, shader, range);
3368            if (bound_size >= range->start * 32) {
3369               unsigned bound_regs =
3370                  MIN2(DIV_ROUND_UP(bound_size, 32) - range->start,
3371                       range->length);
3372               assert(range_start_reg + bound_regs <= 64);
3373               push->push_reg_mask[stage] |= BITFIELD64_RANGE(range_start_reg,
3374                                                              bound_regs);
3375            }
3376
3377            cmd_buffer->state.push_constants_dirty |=
3378               mesa_to_vk_shader_stage(stage);
3379
3380            range_start_reg += range->length;
3381         }
3382      }
3383   }
3384
3385   /* Resets the push constant state so that we allocate a new one if
3386    * needed.
3387    */
3388   gfx_state->base.push_constants_state = ANV_STATE_NULL;
3389
3390   anv_foreach_stage(stage, dirty_stages) {
3391      unsigned buffer_count = 0;
3392      flushed |= mesa_to_vk_shader_stage(stage);
3393      UNUSED uint32_t max_push_range = 0;
3394
3395      struct anv_address buffers[4] = {};
3396      if (anv_pipeline_has_stage(pipeline, stage)) {
3397         const struct anv_shader_bin *shader = pipeline->shaders[stage];
3398         const struct anv_pipeline_bind_map *bind_map = &shader->bind_map;
3399
3400         /* We have to gather buffer addresses as a second step because the
3401          * loop above puts data into the push constant area and the call to
3402          * get_push_range_address is what locks our push constants and copies
3403          * them into the actual GPU buffer.  If we did the two loops at the
3404          * same time, we'd risk only having some of the sizes in the push
3405          * constant buffer when we did the copy.
3406          */
3407         for (unsigned i = 0; i < 4; i++) {
3408            const struct anv_push_range *range = &bind_map->push_ranges[i];
3409            if (range->length == 0)
3410               break;
3411
3412            buffers[i] = get_push_range_address(cmd_buffer, shader, range);
3413            max_push_range = MAX2(max_push_range, range->length);
3414            buffer_count++;
3415         }
3416
3417         /* We have at most 4 buffers but they should be tightly packed */
3418         for (unsigned i = buffer_count; i < 4; i++)
3419            assert(bind_map->push_ranges[i].length == 0);
3420      }
3421
3422#if GFX_VER >= 12
3423      /* If this stage doesn't have any push constants, emit it later in a
3424       * single CONSTANT_ALL packet.
3425       */
3426      if (buffer_count == 0) {
3427         nobuffer_stages |= 1 << stage;
3428         continue;
3429      }
3430
3431      /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
3432       * contains only 5 bits, so we can only use it for buffers smaller than
3433       * 32.
3434       */
3435      if (max_push_range < 32) {
3436         cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
3437                                           buffers, buffer_count);
3438         continue;
3439      }
3440#endif
3441
3442      cmd_buffer_emit_push_constant(cmd_buffer, stage, buffers, buffer_count);
3443   }
3444
3445#if GFX_VER >= 12
3446   if (nobuffer_stages)
3447      cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, NULL, 0);
3448#endif
3449
3450   cmd_buffer->state.push_constants_dirty &= ~flushed;
3451}
3452
3453static void
3454cmd_buffer_emit_clip(struct anv_cmd_buffer *cmd_buffer)
3455{
3456   const uint32_t clip_states =
3457#if GFX_VER <= 7
3458      ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE |
3459      ANV_CMD_DIRTY_DYNAMIC_CULL_MODE |
3460#endif
3461      ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY |
3462      ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3463      ANV_CMD_DIRTY_PIPELINE;
3464
3465   if ((cmd_buffer->state.gfx.dirty & clip_states) == 0)
3466      return;
3467
3468   /* Take dynamic primitive topology in to account with
3469    *    3DSTATE_CLIP::ViewportXYClipTestEnable
3470    */
3471   bool xy_clip_test_enable = 0;
3472
3473   if (cmd_buffer->state.gfx.pipeline->dynamic_states &
3474       ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY) {
3475      VkPrimitiveTopology primitive_topology =
3476         cmd_buffer->state.gfx.dynamic.primitive_topology;
3477
3478      VkPolygonMode dynamic_raster_mode =
3479         genX(raster_polygon_mode)(cmd_buffer->state.gfx.pipeline,
3480                                   primitive_topology);
3481
3482      xy_clip_test_enable = (dynamic_raster_mode == VK_POLYGON_MODE_FILL);
3483   }
3484
3485#if GFX_VER <= 7
3486   const struct anv_dynamic_state *d = &cmd_buffer->state.gfx.dynamic;
3487#endif
3488   struct GENX(3DSTATE_CLIP) clip = {
3489      GENX(3DSTATE_CLIP_header),
3490#if GFX_VER <= 7
3491      .FrontWinding = genX(vk_to_intel_front_face)[d->front_face],
3492      .CullMode     = genX(vk_to_intel_cullmode)[d->cull_mode],
3493#endif
3494      .ViewportXYClipTestEnable = xy_clip_test_enable,
3495   };
3496   uint32_t dwords[GENX(3DSTATE_CLIP_length)];
3497
3498   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3499   if (anv_pipeline_is_primitive(pipeline)) {
3500      const struct brw_vue_prog_data *last =
3501         anv_pipeline_get_last_vue_prog_data(pipeline);
3502      if (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT) {
3503         clip.MaximumVPIndex =
3504            cmd_buffer->state.gfx.dynamic.viewport.count > 0 ?
3505            cmd_buffer->state.gfx.dynamic.viewport.count - 1 : 0;
3506      }
3507   }
3508
3509   GENX(3DSTATE_CLIP_pack)(NULL, dwords, &clip);
3510   anv_batch_emit_merge(&cmd_buffer->batch, dwords,
3511                        pipeline->gfx7.clip);
3512}
3513
3514static void
3515cmd_buffer_emit_streamout(struct anv_cmd_buffer *cmd_buffer)
3516{
3517   const struct anv_dynamic_state *d = &cmd_buffer->state.gfx.dynamic;
3518   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3519
3520#if GFX_VER == 7
3521#  define streamout_state_dw pipeline->gfx7.streamout_state
3522#else
3523#  define streamout_state_dw pipeline->gfx8.streamout_state
3524#endif
3525
3526   uint32_t dwords[GENX(3DSTATE_STREAMOUT_length)];
3527
3528   struct GENX(3DSTATE_STREAMOUT) so = {
3529      GENX(3DSTATE_STREAMOUT_header),
3530      .RenderingDisable = d->raster_discard,
3531   };
3532   GENX(3DSTATE_STREAMOUT_pack)(NULL, dwords, &so);
3533   anv_batch_emit_merge(&cmd_buffer->batch, dwords, streamout_state_dw);
3534}
3535
3536void
3537genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
3538{
3539   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3540   uint32_t *p;
3541
3542   assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
3543
3544   genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
3545
3546   genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
3547
3548   genX(flush_pipeline_select_3d)(cmd_buffer);
3549
3550   /* Apply any pending pipeline flushes we may have.  We want to apply them
3551    * now because, if any of those flushes are for things like push constants,
3552    * the GPU will read the state at weird times.
3553    */
3554   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3555
3556   uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
3557   if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
3558      vb_emit |= pipeline->vb_used;
3559
3560   if (vb_emit) {
3561      const uint32_t num_buffers = __builtin_popcount(vb_emit);
3562      const uint32_t num_dwords = 1 + num_buffers * 4;
3563
3564      p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3565                          GENX(3DSTATE_VERTEX_BUFFERS));
3566      uint32_t i = 0;
3567      u_foreach_bit(vb, vb_emit) {
3568         struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
3569         uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
3570
3571         /* If dynamic, use stride/size from vertex binding, otherwise use
3572          * stride/size that was setup in the pipeline object.
3573          */
3574         bool dynamic_stride = cmd_buffer->state.gfx.dynamic.dyn_vbo_stride;
3575         bool dynamic_size = cmd_buffer->state.gfx.dynamic.dyn_vbo_size;
3576
3577         struct GENX(VERTEX_BUFFER_STATE) state;
3578         if (buffer) {
3579            uint32_t stride = dynamic_stride ?
3580               cmd_buffer->state.vertex_bindings[vb].stride : pipeline->vb[vb].stride;
3581            /* From the Vulkan spec (vkCmdBindVertexBuffers2EXT):
3582             *
3583             * "If pname:pSizes is not NULL then pname:pSizes[i] specifies
3584             * the bound size of the vertex buffer starting from the corresponding
3585             * elements of pname:pBuffers[i] plus pname:pOffsets[i]."
3586             */
3587            UNUSED uint32_t size = dynamic_size ?
3588               cmd_buffer->state.vertex_bindings[vb].size : buffer->size - offset;
3589
3590            state = (struct GENX(VERTEX_BUFFER_STATE)) {
3591               .VertexBufferIndex = vb,
3592
3593               .MOCS = anv_mocs(cmd_buffer->device, buffer->address.bo,
3594                                ISL_SURF_USAGE_VERTEX_BUFFER_BIT),
3595#if GFX_VER <= 7
3596               .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
3597               .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
3598#endif
3599               .AddressModifyEnable = true,
3600               .BufferPitch = stride,
3601               .BufferStartingAddress = anv_address_add(buffer->address, offset),
3602               .NullVertexBuffer = offset >= buffer->size,
3603#if GFX_VER >= 12
3604               .L3BypassDisable = true,
3605#endif
3606
3607#if GFX_VER >= 8
3608               .BufferSize = size,
3609#else
3610               /* XXX: to handle dynamic offset for older gens we might want
3611                * to modify Endaddress, but there are issues when doing so:
3612                *
3613                * https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/7439
3614                */
3615               .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
3616#endif
3617            };
3618         } else {
3619            state = (struct GENX(VERTEX_BUFFER_STATE)) {
3620               .VertexBufferIndex = vb,
3621               .NullVertexBuffer = true,
3622            };
3623         }
3624
3625#if GFX_VER >= 8 && GFX_VER <= 9
3626         genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer, vb,
3627                                                        state.BufferStartingAddress,
3628                                                        state.BufferSize);
3629#endif
3630
3631         GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
3632         i++;
3633      }
3634   }
3635
3636   cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
3637
3638   uint32_t descriptors_dirty = cmd_buffer->state.descriptors_dirty &
3639                                pipeline->active_stages;
3640   if (!cmd_buffer->state.gfx.dirty && !descriptors_dirty &&
3641       !cmd_buffer->state.push_constants_dirty)
3642      return;
3643
3644   if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) ||
3645       (GFX_VER == 7 && (cmd_buffer->state.gfx.dirty &
3646                         ANV_CMD_DIRTY_PIPELINE))) {
3647      /* We don't need any per-buffer dirty tracking because you're not
3648       * allowed to bind different XFB buffers while XFB is enabled.
3649       */
3650      for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3651         struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
3652         anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
3653#if GFX_VER < 12
3654            sob.SOBufferIndex = idx;
3655#else
3656            sob._3DCommandOpcode = 0;
3657            sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
3658#endif
3659
3660            if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
3661               sob.MOCS = anv_mocs(cmd_buffer->device, xfb->buffer->address.bo, 0);
3662               sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
3663                                                        xfb->offset);
3664#if GFX_VER >= 8
3665               sob.SOBufferEnable = true;
3666               sob.StreamOffsetWriteEnable = false;
3667               /* Size is in DWords - 1 */
3668               sob.SurfaceSize = DIV_ROUND_UP(xfb->size, 4) - 1;
3669#else
3670               /* We don't have SOBufferEnable in 3DSTATE_SO_BUFFER on Gfx7 so
3671                * we trust in SurfaceEndAddress = SurfaceBaseAddress = 0 (the
3672                * default for an empty SO_BUFFER packet) to disable them.
3673                */
3674               sob.SurfacePitch = pipeline->gfx7.xfb_bo_pitch[idx];
3675               sob.SurfaceEndAddress = anv_address_add(xfb->buffer->address,
3676                                                       xfb->offset + xfb->size);
3677#endif
3678            }
3679         }
3680      }
3681
3682      /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
3683      if (GFX_VER >= 10) {
3684         anv_add_pending_pipe_bits(cmd_buffer,
3685                                   ANV_PIPE_CS_STALL_BIT,
3686                                   "after 3DSTATE_SO_BUFFER call");
3687      }
3688   }
3689
3690   if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
3691      anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch);
3692
3693      /* Remove from dynamic state emission all of stuff that is baked into
3694       * the pipeline.
3695       */
3696      cmd_buffer->state.gfx.dirty &= ~pipeline->static_state_mask;
3697
3698      /* If the pipeline changed, we may need to re-allocate push constant
3699       * space in the URB.
3700       */
3701      cmd_buffer_alloc_push_constants(cmd_buffer);
3702   }
3703
3704   if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
3705      cmd_buffer->state.gfx.primitive_topology = pipeline->topology;
3706
3707#if GFX_VER <= 7
3708   if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
3709       cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
3710      /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
3711       *
3712       *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
3713       *    stall needs to be sent just prior to any 3DSTATE_VS,
3714       *    3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
3715       *    3DSTATE_BINDING_TABLE_POINTER_VS,
3716       *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one
3717       *    PIPE_CONTROL needs to be sent before any combination of VS
3718       *    associated 3DSTATE."
3719       */
3720      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3721         pc.DepthStallEnable  = true;
3722         pc.PostSyncOperation = WriteImmediateData;
3723         pc.Address           = cmd_buffer->device->workaround_address;
3724         anv_debug_dump_pc(pc);
3725      }
3726   }
3727#endif
3728
3729   /* Render targets live in the same binding table as fragment descriptors */
3730   if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
3731      descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
3732
3733   /* We emit the binding tables and sampler tables first, then emit push
3734    * constants and then finally emit binding table and sampler table
3735    * pointers.  It has to happen in this order, since emitting the binding
3736    * tables may change the push constants (in case of storage images). After
3737    * emitting push constants, on SKL+ we have to emit the corresponding
3738    * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
3739    */
3740   uint32_t dirty = 0;
3741   if (descriptors_dirty) {
3742      dirty = flush_descriptor_sets(cmd_buffer,
3743                                    &cmd_buffer->state.gfx.base,
3744                                    descriptors_dirty,
3745                                    pipeline->shaders,
3746                                    ARRAY_SIZE(pipeline->shaders));
3747      cmd_buffer->state.descriptors_dirty &= ~dirty;
3748   }
3749
3750   if (dirty || cmd_buffer->state.push_constants_dirty) {
3751      /* Because we're pushing UBOs, we have to push whenever either
3752       * descriptors or push constants is dirty.
3753       */
3754      dirty |= cmd_buffer->state.push_constants_dirty;
3755      dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
3756      cmd_buffer_flush_push_constants(cmd_buffer, dirty);
3757   }
3758
3759   if (dirty)
3760      cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
3761
3762   cmd_buffer_emit_clip(cmd_buffer);
3763
3764   if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_RASTERIZER_DISCARD_ENABLE)
3765      cmd_buffer_emit_streamout(cmd_buffer);
3766
3767   if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
3768      gfx8_cmd_buffer_emit_viewport(cmd_buffer);
3769
3770   if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3771                                  ANV_CMD_DIRTY_PIPELINE)) {
3772      gfx8_cmd_buffer_emit_depth_viewport(cmd_buffer,
3773                                          pipeline->depth_clamp_enable);
3774   }
3775
3776   if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
3777                                      ANV_CMD_DIRTY_RENDER_TARGETS))
3778      gfx7_cmd_buffer_emit_scissor(cmd_buffer);
3779
3780   genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3781}
3782
3783static void
3784emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3785               struct anv_address addr,
3786               uint32_t size, uint32_t index)
3787{
3788   uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3789                                 GENX(3DSTATE_VERTEX_BUFFERS));
3790
3791   GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3792      &(struct GENX(VERTEX_BUFFER_STATE)) {
3793         .VertexBufferIndex = index,
3794         .AddressModifyEnable = true,
3795         .BufferPitch = 0,
3796         .MOCS = addr.bo ? anv_mocs(cmd_buffer->device, addr.bo,
3797                                    ISL_SURF_USAGE_VERTEX_BUFFER_BIT) : 0,
3798         .NullVertexBuffer = size == 0,
3799#if GFX_VER >= 12
3800         .L3BypassDisable = true,
3801#endif
3802#if (GFX_VER >= 8)
3803         .BufferStartingAddress = addr,
3804         .BufferSize = size
3805#else
3806         .BufferStartingAddress = addr,
3807         .EndAddress = anv_address_add(addr, size),
3808#endif
3809      });
3810
3811   genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer,
3812                                                  index, addr, size);
3813}
3814
3815static void
3816emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3817                             struct anv_address addr)
3818{
3819   emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3820}
3821
3822static void
3823emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3824                          uint32_t base_vertex, uint32_t base_instance)
3825{
3826   if (base_vertex == 0 && base_instance == 0) {
3827      emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3828   } else {
3829      struct anv_state id_state =
3830         anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3831
3832      ((uint32_t *)id_state.map)[0] = base_vertex;
3833      ((uint32_t *)id_state.map)[1] = base_instance;
3834
3835      struct anv_address addr = {
3836         .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3837         .offset = id_state.offset,
3838      };
3839
3840      emit_base_vertex_instance_bo(cmd_buffer, addr);
3841   }
3842}
3843
3844static void
3845emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3846{
3847   struct anv_state state =
3848      anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3849
3850   ((uint32_t *)state.map)[0] = draw_index;
3851
3852   struct anv_address addr = {
3853      .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3854      .offset = state.offset,
3855   };
3856
3857   emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3858}
3859
3860static void
3861update_dirty_vbs_for_gfx8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3862                                   uint32_t access_type)
3863{
3864   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3865   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3866
3867   uint64_t vb_used = pipeline->vb_used;
3868   if (vs_prog_data->uses_firstvertex ||
3869       vs_prog_data->uses_baseinstance)
3870      vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3871   if (vs_prog_data->uses_drawid)
3872      vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3873
3874   genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)(cmd_buffer,
3875                                                       access_type == RANDOM,
3876                                                       vb_used);
3877}
3878
3879ALWAYS_INLINE static void
3880cmd_buffer_emit_vertex_constants_and_flush(struct anv_cmd_buffer *cmd_buffer,
3881                                           const struct brw_vs_prog_data *vs_prog_data,
3882                                           uint32_t base_vertex,
3883                                           uint32_t base_instance,
3884                                           uint32_t draw_id,
3885                                           bool force_flush)
3886{
3887   bool emitted = false;
3888   if (vs_prog_data->uses_firstvertex ||
3889       vs_prog_data->uses_baseinstance) {
3890      emit_base_vertex_instance(cmd_buffer, base_vertex, base_instance);
3891      emitted = true;
3892   }
3893   if (vs_prog_data->uses_drawid) {
3894      emit_draw_index(cmd_buffer, draw_id);
3895      emitted = true;
3896   }
3897   /* Emitting draw index or vertex index BOs may result in needing
3898    * additional VF cache flushes.
3899    */
3900   if (emitted || force_flush)
3901      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3902}
3903
3904void genX(CmdDraw)(
3905    VkCommandBuffer                             commandBuffer,
3906    uint32_t                                    vertexCount,
3907    uint32_t                                    instanceCount,
3908    uint32_t                                    firstVertex,
3909    uint32_t                                    firstInstance)
3910{
3911   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3912   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3913   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3914
3915   if (anv_batch_has_error(&cmd_buffer->batch))
3916      return;
3917
3918   const uint32_t count = (vertexCount *
3919                           instanceCount *
3920                           (pipeline->use_primitive_replication ?
3921                            1 : anv_subpass_view_count(cmd_buffer->state.subpass)));
3922   anv_measure_snapshot(cmd_buffer,
3923                        INTEL_SNAPSHOT_DRAW,
3924                        "draw", count);
3925
3926   genX(cmd_buffer_flush_state)(cmd_buffer);
3927
3928   if (cmd_buffer->state.conditional_render_enabled)
3929      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3930
3931   cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data,
3932                                              firstVertex, firstInstance, 0,
3933                                              true);
3934
3935   /* Our implementation of VK_KHR_multiview uses instancing to draw the
3936    * different views.  We need to multiply instanceCount by the view count.
3937    */
3938   if (!pipeline->use_primitive_replication)
3939      instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3940
3941   anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3942      prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
3943      prim.VertexAccessType         = SEQUENTIAL;
3944      prim.PrimitiveTopologyType    = cmd_buffer->state.gfx.primitive_topology;
3945      prim.VertexCountPerInstance   = vertexCount;
3946      prim.StartVertexLocation      = firstVertex;
3947      prim.InstanceCount            = instanceCount;
3948      prim.StartInstanceLocation    = firstInstance;
3949      prim.BaseVertexLocation       = 0;
3950   }
3951
3952   update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
3953}
3954
3955void genX(CmdDrawMultiEXT)(
3956    VkCommandBuffer                             commandBuffer,
3957    uint32_t                                    drawCount,
3958    const VkMultiDrawInfoEXT                   *pVertexInfo,
3959    uint32_t                                    instanceCount,
3960    uint32_t                                    firstInstance,
3961    uint32_t                                    stride)
3962{
3963   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3964   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3965   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3966
3967   if (anv_batch_has_error(&cmd_buffer->batch))
3968      return;
3969
3970   const uint32_t count = (drawCount *
3971                           instanceCount *
3972                           (pipeline->use_primitive_replication ?
3973                            1 : anv_subpass_view_count(cmd_buffer->state.subpass)));
3974   anv_measure_snapshot(cmd_buffer,
3975                        INTEL_SNAPSHOT_DRAW,
3976                        "draw_multi", count);
3977
3978   genX(cmd_buffer_flush_state)(cmd_buffer);
3979
3980   if (cmd_buffer->state.conditional_render_enabled)
3981      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3982
3983   /* Our implementation of VK_KHR_multiview uses instancing to draw the
3984    * different views.  We need to multiply instanceCount by the view count.
3985    */
3986   if (!pipeline->use_primitive_replication)
3987      instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3988
3989   uint32_t i = 0;
3990   vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
3991      cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data,
3992                                                 draw->firstVertex,
3993                                                 firstInstance, i, !i);
3994
3995      anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3996         prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
3997         prim.VertexAccessType         = SEQUENTIAL;
3998         prim.PrimitiveTopologyType    = cmd_buffer->state.gfx.primitive_topology;
3999         prim.VertexCountPerInstance   = draw->vertexCount;
4000         prim.StartVertexLocation      = draw->firstVertex;
4001         prim.InstanceCount            = instanceCount;
4002         prim.StartInstanceLocation    = firstInstance;
4003         prim.BaseVertexLocation       = 0;
4004      }
4005   }
4006
4007   update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
4008}
4009
4010void genX(CmdDrawIndexed)(
4011    VkCommandBuffer                             commandBuffer,
4012    uint32_t                                    indexCount,
4013    uint32_t                                    instanceCount,
4014    uint32_t                                    firstIndex,
4015    int32_t                                     vertexOffset,
4016    uint32_t                                    firstInstance)
4017{
4018   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4019   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
4020   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
4021
4022   if (anv_batch_has_error(&cmd_buffer->batch))
4023      return;
4024
4025   const uint32_t count = (indexCount *
4026                           instanceCount *
4027                           (pipeline->use_primitive_replication ?
4028                            1 : anv_subpass_view_count(cmd_buffer->state.subpass)));
4029   anv_measure_snapshot(cmd_buffer,
4030                        INTEL_SNAPSHOT_DRAW,
4031                        "draw indexed",
4032                        count);
4033
4034   genX(cmd_buffer_flush_state)(cmd_buffer);
4035
4036   if (cmd_buffer->state.conditional_render_enabled)
4037      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4038
4039   cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data, vertexOffset, firstInstance, 0, true);
4040
4041   /* Our implementation of VK_KHR_multiview uses instancing to draw the
4042    * different views.  We need to multiply instanceCount by the view count.
4043    */
4044   if (!pipeline->use_primitive_replication)
4045      instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
4046
4047   anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4048      prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
4049      prim.VertexAccessType         = RANDOM;
4050      prim.PrimitiveTopologyType    = cmd_buffer->state.gfx.primitive_topology;
4051      prim.VertexCountPerInstance   = indexCount;
4052      prim.StartVertexLocation      = firstIndex;
4053      prim.InstanceCount            = instanceCount;
4054      prim.StartInstanceLocation    = firstInstance;
4055      prim.BaseVertexLocation       = vertexOffset;
4056   }
4057
4058   update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
4059}
4060
4061void genX(CmdDrawMultiIndexedEXT)(
4062    VkCommandBuffer                             commandBuffer,
4063    uint32_t                                    drawCount,
4064    const VkMultiDrawIndexedInfoEXT            *pIndexInfo,
4065    uint32_t                                    instanceCount,
4066    uint32_t                                    firstInstance,
4067    uint32_t                                    stride,
4068    const int32_t                              *pVertexOffset)
4069{
4070   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4071   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
4072   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
4073
4074   if (anv_batch_has_error(&cmd_buffer->batch))
4075      return;
4076
4077   const uint32_t count = (drawCount *
4078                           instanceCount *
4079                           (pipeline->use_primitive_replication ?
4080                            1 : anv_subpass_view_count(cmd_buffer->state.subpass)));
4081   anv_measure_snapshot(cmd_buffer,
4082                        INTEL_SNAPSHOT_DRAW,
4083                        "draw indexed_multi",
4084                        count);
4085
4086   genX(cmd_buffer_flush_state)(cmd_buffer);
4087
4088   if (cmd_buffer->state.conditional_render_enabled)
4089      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4090
4091   /* Our implementation of VK_KHR_multiview uses instancing to draw the
4092    * different views.  We need to multiply instanceCount by the view count.
4093    */
4094   if (!pipeline->use_primitive_replication)
4095      instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
4096
4097   uint32_t i = 0;
4098   if (pVertexOffset) {
4099      if (vs_prog_data->uses_drawid) {
4100         bool emitted = true;
4101         if (vs_prog_data->uses_firstvertex ||
4102             vs_prog_data->uses_baseinstance) {
4103            emit_base_vertex_instance(cmd_buffer, *pVertexOffset, firstInstance);
4104            emitted = true;
4105         }
4106         vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
4107            if (vs_prog_data->uses_drawid) {
4108               emit_draw_index(cmd_buffer, i);
4109               emitted = true;
4110            }
4111            /* Emitting draw index or vertex index BOs may result in needing
4112             * additional VF cache flushes.
4113             */
4114            if (emitted)
4115               genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4116
4117            anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4118               prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
4119               prim.VertexAccessType         = RANDOM;
4120               prim.PrimitiveTopologyType    = cmd_buffer->state.gfx.primitive_topology;
4121               prim.VertexCountPerInstance   = draw->indexCount;
4122               prim.StartVertexLocation      = draw->firstIndex;
4123               prim.InstanceCount            = instanceCount;
4124               prim.StartInstanceLocation    = firstInstance;
4125               prim.BaseVertexLocation       = *pVertexOffset;
4126            }
4127            emitted = false;
4128         }
4129      } else {
4130         if (vs_prog_data->uses_firstvertex ||
4131             vs_prog_data->uses_baseinstance) {
4132            emit_base_vertex_instance(cmd_buffer, *pVertexOffset, firstInstance);
4133            /* Emitting draw index or vertex index BOs may result in needing
4134             * additional VF cache flushes.
4135             */
4136            genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4137         }
4138         vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
4139            anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4140               prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
4141               prim.VertexAccessType         = RANDOM;
4142               prim.PrimitiveTopologyType    = cmd_buffer->state.gfx.primitive_topology;
4143               prim.VertexCountPerInstance   = draw->indexCount;
4144               prim.StartVertexLocation      = draw->firstIndex;
4145               prim.InstanceCount            = instanceCount;
4146               prim.StartInstanceLocation    = firstInstance;
4147               prim.BaseVertexLocation       = *pVertexOffset;
4148            }
4149         }
4150      }
4151   } else {
4152      vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
4153         cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data,
4154                                                    draw->vertexOffset,
4155                                                    firstInstance, i, i != 0);
4156
4157         anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4158            prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
4159            prim.VertexAccessType         = RANDOM;
4160            prim.PrimitiveTopologyType    = cmd_buffer->state.gfx.primitive_topology;
4161            prim.VertexCountPerInstance   = draw->indexCount;
4162            prim.StartVertexLocation      = draw->firstIndex;
4163            prim.InstanceCount            = instanceCount;
4164            prim.StartInstanceLocation    = firstInstance;
4165            prim.BaseVertexLocation       = draw->vertexOffset;
4166         }
4167      }
4168   }
4169
4170   update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
4171}
4172
4173/* Auto-Draw / Indirect Registers */
4174#define GFX7_3DPRIM_END_OFFSET          0x2420
4175#define GFX7_3DPRIM_START_VERTEX        0x2430
4176#define GFX7_3DPRIM_VERTEX_COUNT        0x2434
4177#define GFX7_3DPRIM_INSTANCE_COUNT      0x2438
4178#define GFX7_3DPRIM_START_INSTANCE      0x243C
4179#define GFX7_3DPRIM_BASE_VERTEX         0x2440
4180
4181void genX(CmdDrawIndirectByteCountEXT)(
4182    VkCommandBuffer                             commandBuffer,
4183    uint32_t                                    instanceCount,
4184    uint32_t                                    firstInstance,
4185    VkBuffer                                    counterBuffer,
4186    VkDeviceSize                                counterBufferOffset,
4187    uint32_t                                    counterOffset,
4188    uint32_t                                    vertexStride)
4189{
4190#if GFX_VERx10 >= 75
4191   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4192   ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
4193   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
4194   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
4195
4196   /* firstVertex is always zero for this draw function */
4197   const uint32_t firstVertex = 0;
4198
4199   if (anv_batch_has_error(&cmd_buffer->batch))
4200      return;
4201
4202   anv_measure_snapshot(cmd_buffer,
4203                        INTEL_SNAPSHOT_DRAW,
4204                        "draw indirect byte count",
4205                        instanceCount);
4206
4207   genX(cmd_buffer_flush_state)(cmd_buffer);
4208
4209   if (vs_prog_data->uses_firstvertex ||
4210       vs_prog_data->uses_baseinstance)
4211      emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
4212   if (vs_prog_data->uses_drawid)
4213      emit_draw_index(cmd_buffer, 0);
4214
4215   /* Emitting draw index or vertex index BOs may result in needing
4216    * additional VF cache flushes.
4217    */
4218   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4219
4220   /* Our implementation of VK_KHR_multiview uses instancing to draw the
4221    * different views.  We need to multiply instanceCount by the view count.
4222    */
4223   if (!pipeline->use_primitive_replication)
4224      instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
4225
4226   struct mi_builder b;
4227   mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
4228   struct mi_value count =
4229      mi_mem32(anv_address_add(counter_buffer->address,
4230                                   counterBufferOffset));
4231   if (counterOffset)
4232      count = mi_isub(&b, count, mi_imm(counterOffset));
4233   count = mi_udiv32_imm(&b, count, vertexStride);
4234   mi_store(&b, mi_reg32(GFX7_3DPRIM_VERTEX_COUNT), count);
4235
4236   mi_store(&b, mi_reg32(GFX7_3DPRIM_START_VERTEX), mi_imm(firstVertex));
4237   mi_store(&b, mi_reg32(GFX7_3DPRIM_INSTANCE_COUNT), mi_imm(instanceCount));
4238   mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE), mi_imm(firstInstance));
4239   mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX), mi_imm(0));
4240
4241   anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4242      prim.IndirectParameterEnable  = true;
4243      prim.VertexAccessType         = SEQUENTIAL;
4244      prim.PrimitiveTopologyType    = cmd_buffer->state.gfx.primitive_topology;
4245   }
4246
4247   update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
4248#endif /* GFX_VERx10 >= 75 */
4249}
4250
4251static void
4252load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
4253                         struct anv_address addr,
4254                         bool indexed)
4255{
4256   struct mi_builder b;
4257   mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
4258
4259   mi_store(&b, mi_reg32(GFX7_3DPRIM_VERTEX_COUNT),
4260                mi_mem32(anv_address_add(addr, 0)));
4261
4262   struct mi_value instance_count = mi_mem32(anv_address_add(addr, 4));
4263   unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
4264   if (view_count > 1) {
4265#if GFX_VERx10 >= 75
4266      instance_count = mi_imul_imm(&b, instance_count, view_count);
4267#else
4268      anv_finishme("Multiview + indirect draw requires MI_MATH; "
4269                   "MI_MATH is not supported on Ivy Bridge");
4270#endif
4271   }
4272   mi_store(&b, mi_reg32(GFX7_3DPRIM_INSTANCE_COUNT), instance_count);
4273
4274   mi_store(&b, mi_reg32(GFX7_3DPRIM_START_VERTEX),
4275                mi_mem32(anv_address_add(addr, 8)));
4276
4277   if (indexed) {
4278      mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX),
4279                   mi_mem32(anv_address_add(addr, 12)));
4280      mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE),
4281                   mi_mem32(anv_address_add(addr, 16)));
4282   } else {
4283      mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE),
4284                   mi_mem32(anv_address_add(addr, 12)));
4285      mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX), mi_imm(0));
4286   }
4287}
4288
4289void genX(CmdDrawIndirect)(
4290    VkCommandBuffer                             commandBuffer,
4291    VkBuffer                                    _buffer,
4292    VkDeviceSize                                offset,
4293    uint32_t                                    drawCount,
4294    uint32_t                                    stride)
4295{
4296   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4297   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4298   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
4299   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
4300
4301   if (anv_batch_has_error(&cmd_buffer->batch))
4302      return;
4303
4304   genX(cmd_buffer_flush_state)(cmd_buffer);
4305
4306   if (cmd_buffer->state.conditional_render_enabled)
4307      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4308
4309   for (uint32_t i = 0; i < drawCount; i++) {
4310      struct anv_address draw = anv_address_add(buffer->address, offset);
4311
4312      if (vs_prog_data->uses_firstvertex ||
4313          vs_prog_data->uses_baseinstance)
4314         emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
4315      if (vs_prog_data->uses_drawid)
4316         emit_draw_index(cmd_buffer, i);
4317
4318      /* Emitting draw index or vertex index BOs may result in needing
4319       * additional VF cache flushes.
4320       */
4321      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4322
4323      load_indirect_parameters(cmd_buffer, draw, false);
4324
4325      anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4326         prim.IndirectParameterEnable  = true;
4327         prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
4328         prim.VertexAccessType         = SEQUENTIAL;
4329         prim.PrimitiveTopologyType    = cmd_buffer->state.gfx.primitive_topology;
4330      }
4331
4332      update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
4333
4334      offset += stride;
4335   }
4336}
4337
4338void genX(CmdDrawIndexedIndirect)(
4339    VkCommandBuffer                             commandBuffer,
4340    VkBuffer                                    _buffer,
4341    VkDeviceSize                                offset,
4342    uint32_t                                    drawCount,
4343    uint32_t                                    stride)
4344{
4345   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4346   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4347   struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
4348   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
4349
4350   if (anv_batch_has_error(&cmd_buffer->batch))
4351      return;
4352
4353   genX(cmd_buffer_flush_state)(cmd_buffer);
4354
4355   if (cmd_buffer->state.conditional_render_enabled)
4356      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4357
4358   for (uint32_t i = 0; i < drawCount; i++) {
4359      struct anv_address draw = anv_address_add(buffer->address, offset);
4360
4361      /* TODO: We need to stomp base vertex to 0 somehow */
4362      if (vs_prog_data->uses_firstvertex ||
4363          vs_prog_data->uses_baseinstance)
4364         emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
4365      if (vs_prog_data->uses_drawid)
4366         emit_draw_index(cmd_buffer, i);
4367
4368      /* Emitting draw index or vertex index BOs may result in needing
4369       * additional VF cache flushes.
4370       */
4371      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4372
4373      load_indirect_parameters(cmd_buffer, draw, true);
4374
4375      anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4376         prim.IndirectParameterEnable  = true;
4377         prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
4378         prim.VertexAccessType         = RANDOM;
4379         prim.PrimitiveTopologyType    = cmd_buffer->state.gfx.primitive_topology;
4380      }
4381
4382      update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
4383
4384      offset += stride;
4385   }
4386}
4387
4388static struct mi_value
4389prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
4390                                 struct mi_builder *b,
4391                                 struct anv_buffer *count_buffer,
4392                                 uint64_t countBufferOffset)
4393{
4394   struct anv_address count_address =
4395         anv_address_add(count_buffer->address, countBufferOffset);
4396
4397   struct mi_value ret = mi_imm(0);
4398
4399   if (cmd_buffer->state.conditional_render_enabled) {
4400#if GFX_VERx10 >= 75
4401      ret = mi_new_gpr(b);
4402      mi_store(b, mi_value_ref(b, ret), mi_mem32(count_address));
4403#endif
4404   } else {
4405      /* Upload the current draw count from the draw parameters buffer to
4406       * MI_PREDICATE_SRC0.
4407       */
4408      mi_store(b, mi_reg64(MI_PREDICATE_SRC0), mi_mem32(count_address));
4409      mi_store(b, mi_reg32(MI_PREDICATE_SRC1 + 4), mi_imm(0));
4410   }
4411
4412   return ret;
4413}
4414
4415static void
4416emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
4417                          struct mi_builder *b,
4418                          uint32_t draw_index)
4419{
4420   /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
4421   mi_store(b, mi_reg32(MI_PREDICATE_SRC1), mi_imm(draw_index));
4422
4423   if (draw_index == 0) {
4424      anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
4425         mip.LoadOperation    = LOAD_LOADINV;
4426         mip.CombineOperation = COMBINE_SET;
4427         mip.CompareOperation = COMPARE_SRCS_EQUAL;
4428      }
4429   } else {
4430      /* While draw_index < draw_count the predicate's result will be
4431       *  (draw_index == draw_count) ^ TRUE = TRUE
4432       * When draw_index == draw_count the result is
4433       *  (TRUE) ^ TRUE = FALSE
4434       * After this all results will be:
4435       *  (FALSE) ^ FALSE = FALSE
4436       */
4437      anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
4438         mip.LoadOperation    = LOAD_LOAD;
4439         mip.CombineOperation = COMBINE_XOR;
4440         mip.CompareOperation = COMPARE_SRCS_EQUAL;
4441      }
4442   }
4443}
4444
4445#if GFX_VERx10 >= 75
4446static void
4447emit_draw_count_predicate_with_conditional_render(
4448                          struct anv_cmd_buffer *cmd_buffer,
4449                          struct mi_builder *b,
4450                          uint32_t draw_index,
4451                          struct mi_value max)
4452{
4453   struct mi_value pred = mi_ult(b, mi_imm(draw_index), max);
4454   pred = mi_iand(b, pred, mi_reg64(ANV_PREDICATE_RESULT_REG));
4455
4456#if GFX_VER >= 8
4457   mi_store(b, mi_reg32(MI_PREDICATE_RESULT), pred);
4458#else
4459   /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
4460    * so we emit MI_PREDICATE to set it.
4461    */
4462
4463   mi_store(b, mi_reg64(MI_PREDICATE_SRC0), pred);
4464   mi_store(b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
4465
4466   anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
4467      mip.LoadOperation    = LOAD_LOADINV;
4468      mip.CombineOperation = COMBINE_SET;
4469      mip.CompareOperation = COMPARE_SRCS_EQUAL;
4470   }
4471#endif
4472}
4473#endif
4474
4475static void
4476emit_draw_count_predicate_cond(struct anv_cmd_buffer *cmd_buffer,
4477                               struct mi_builder *b,
4478                               uint32_t draw_index,
4479                               struct mi_value max)
4480{
4481#if GFX_VERx10 >= 75
4482   if (cmd_buffer->state.conditional_render_enabled) {
4483      emit_draw_count_predicate_with_conditional_render(
4484            cmd_buffer, b, draw_index, mi_value_ref(b, max));
4485   } else {
4486      emit_draw_count_predicate(cmd_buffer, b, draw_index);
4487   }
4488#else
4489   emit_draw_count_predicate(cmd_buffer, b, draw_index);
4490#endif
4491}
4492
4493void genX(CmdDrawIndirectCount)(
4494    VkCommandBuffer                             commandBuffer,
4495    VkBuffer                                    _buffer,
4496    VkDeviceSize                                offset,
4497    VkBuffer                                    _countBuffer,
4498    VkDeviceSize                                countBufferOffset,
4499    uint32_t                                    maxDrawCount,
4500    uint32_t                                    stride)
4501{
4502   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4503   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4504   ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
4505   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4506   struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline;
4507   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
4508
4509   if (anv_batch_has_error(&cmd_buffer->batch))
4510      return;
4511
4512   genX(cmd_buffer_flush_state)(cmd_buffer);
4513
4514   struct mi_builder b;
4515   mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
4516   struct mi_value max =
4517      prepare_for_draw_count_predicate(cmd_buffer, &b,
4518                                       count_buffer, countBufferOffset);
4519
4520   for (uint32_t i = 0; i < maxDrawCount; i++) {
4521      struct anv_address draw = anv_address_add(buffer->address, offset);
4522
4523      emit_draw_count_predicate_cond(cmd_buffer, &b, i, max);
4524
4525      if (vs_prog_data->uses_firstvertex ||
4526          vs_prog_data->uses_baseinstance)
4527         emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
4528      if (vs_prog_data->uses_drawid)
4529         emit_draw_index(cmd_buffer, i);
4530
4531      /* Emitting draw index or vertex index BOs may result in needing
4532       * additional VF cache flushes.
4533       */
4534      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4535
4536      load_indirect_parameters(cmd_buffer, draw, false);
4537
4538      anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4539         prim.IndirectParameterEnable  = true;
4540         prim.PredicateEnable          = true;
4541         prim.VertexAccessType         = SEQUENTIAL;
4542         prim.PrimitiveTopologyType    = cmd_buffer->state.gfx.primitive_topology;
4543      }
4544
4545      update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
4546
4547      offset += stride;
4548   }
4549
4550   mi_value_unref(&b, max);
4551}
4552
4553void genX(CmdDrawIndexedIndirectCount)(
4554    VkCommandBuffer                             commandBuffer,
4555    VkBuffer                                    _buffer,
4556    VkDeviceSize                                offset,
4557    VkBuffer                                    _countBuffer,
4558    VkDeviceSize                                countBufferOffset,
4559    uint32_t                                    maxDrawCount,
4560    uint32_t                                    stride)
4561{
4562   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4563   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4564   ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
4565   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4566   struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline;
4567   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
4568
4569   if (anv_batch_has_error(&cmd_buffer->batch))
4570      return;
4571
4572   genX(cmd_buffer_flush_state)(cmd_buffer);
4573
4574   struct mi_builder b;
4575   mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
4576   struct mi_value max =
4577      prepare_for_draw_count_predicate(cmd_buffer, &b,
4578                                       count_buffer, countBufferOffset);
4579
4580   for (uint32_t i = 0; i < maxDrawCount; i++) {
4581      struct anv_address draw = anv_address_add(buffer->address, offset);
4582
4583      emit_draw_count_predicate_cond(cmd_buffer, &b, i, max);
4584
4585      /* TODO: We need to stomp base vertex to 0 somehow */
4586      if (vs_prog_data->uses_firstvertex ||
4587          vs_prog_data->uses_baseinstance)
4588         emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
4589      if (vs_prog_data->uses_drawid)
4590         emit_draw_index(cmd_buffer, i);
4591
4592      /* Emitting draw index or vertex index BOs may result in needing
4593       * additional VF cache flushes.
4594       */
4595      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4596
4597      load_indirect_parameters(cmd_buffer, draw, true);
4598
4599      anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4600         prim.IndirectParameterEnable  = true;
4601         prim.PredicateEnable          = true;
4602         prim.VertexAccessType         = RANDOM;
4603         prim.PrimitiveTopologyType    = cmd_buffer->state.gfx.primitive_topology;
4604      }
4605
4606      update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
4607
4608      offset += stride;
4609   }
4610
4611   mi_value_unref(&b, max);
4612}
4613
4614void genX(CmdBeginTransformFeedbackEXT)(
4615    VkCommandBuffer                             commandBuffer,
4616    uint32_t                                    firstCounterBuffer,
4617    uint32_t                                    counterBufferCount,
4618    const VkBuffer*                             pCounterBuffers,
4619    const VkDeviceSize*                         pCounterBufferOffsets)
4620{
4621   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4622
4623   assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4624   assert(counterBufferCount <= MAX_XFB_BUFFERS);
4625   assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4626
4627   /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4628    *
4629    *    "Ssoftware must ensure that no HW stream output operations can be in
4630    *    process or otherwise pending at the point that the MI_LOAD/STORE
4631    *    commands are processed. This will likely require a pipeline flush."
4632    */
4633   anv_add_pending_pipe_bits(cmd_buffer,
4634                             ANV_PIPE_CS_STALL_BIT,
4635                             "begin transform feedback");
4636   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4637
4638   for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
4639      /* If we have a counter buffer, this is a resume so we need to load the
4640       * value into the streamout offset register.  Otherwise, this is a begin
4641       * and we need to reset it to zero.
4642       */
4643      if (pCounterBuffers &&
4644          idx >= firstCounterBuffer &&
4645          idx - firstCounterBuffer < counterBufferCount &&
4646          pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
4647         uint32_t cb_idx = idx - firstCounterBuffer;
4648         ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4649         uint64_t offset = pCounterBufferOffsets ?
4650                           pCounterBufferOffsets[cb_idx] : 0;
4651
4652         anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4653            lrm.RegisterAddress  = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4654            lrm.MemoryAddress    = anv_address_add(counter_buffer->address,
4655                                                   offset);
4656         }
4657      } else {
4658         anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4659            lri.RegisterOffset   = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4660            lri.DataDWord        = 0;
4661         }
4662      }
4663   }
4664
4665   cmd_buffer->state.xfb_enabled = true;
4666   cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4667}
4668
4669void genX(CmdEndTransformFeedbackEXT)(
4670    VkCommandBuffer                             commandBuffer,
4671    uint32_t                                    firstCounterBuffer,
4672    uint32_t                                    counterBufferCount,
4673    const VkBuffer*                             pCounterBuffers,
4674    const VkDeviceSize*                         pCounterBufferOffsets)
4675{
4676   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4677
4678   assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4679   assert(counterBufferCount <= MAX_XFB_BUFFERS);
4680   assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4681
4682   /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4683    *
4684    *    "Ssoftware must ensure that no HW stream output operations can be in
4685    *    process or otherwise pending at the point that the MI_LOAD/STORE
4686    *    commands are processed. This will likely require a pipeline flush."
4687    */
4688   anv_add_pending_pipe_bits(cmd_buffer,
4689                             ANV_PIPE_CS_STALL_BIT,
4690                             "end transform feedback");
4691   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4692
4693   for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
4694      unsigned idx = firstCounterBuffer + cb_idx;
4695
4696      /* If we have a counter buffer, this is a resume so we need to load the
4697       * value into the streamout offset register.  Otherwise, this is a begin
4698       * and we need to reset it to zero.
4699       */
4700      if (pCounterBuffers &&
4701          cb_idx < counterBufferCount &&
4702          pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
4703         ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4704         uint64_t offset = pCounterBufferOffsets ?
4705                           pCounterBufferOffsets[cb_idx] : 0;
4706
4707         anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4708            srm.MemoryAddress    = anv_address_add(counter_buffer->address,
4709                                                   offset);
4710            srm.RegisterAddress  = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4711         }
4712      }
4713   }
4714
4715   cmd_buffer->state.xfb_enabled = false;
4716   cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4717}
4718
4719void
4720genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
4721{
4722   struct anv_cmd_compute_state *comp_state = &cmd_buffer->state.compute;
4723   struct anv_compute_pipeline *pipeline = comp_state->pipeline;
4724
4725   assert(pipeline->cs);
4726
4727   genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
4728
4729   genX(flush_pipeline_select_gpgpu)(cmd_buffer);
4730
4731   /* Apply any pending pipeline flushes we may have.  We want to apply them
4732    * now because, if any of those flushes are for things like push constants,
4733    * the GPU will read the state at weird times.
4734    */
4735   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4736
4737   if (cmd_buffer->state.compute.pipeline_dirty) {
4738      /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
4739       *
4740       *    "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4741       *    the only bits that are changed are scoreboard related: Scoreboard
4742       *    Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4743       *    these scoreboard related states, a MEDIA_STATE_FLUSH is
4744       *    sufficient."
4745       */
4746      anv_add_pending_pipe_bits(cmd_buffer,
4747                              ANV_PIPE_CS_STALL_BIT,
4748                              "flush compute state");
4749      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4750
4751      anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch);
4752
4753      /* The workgroup size of the pipeline affects our push constant layout
4754       * so flag push constants as dirty if we change the pipeline.
4755       */
4756      cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4757   }
4758
4759   if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
4760       cmd_buffer->state.compute.pipeline_dirty) {
4761      flush_descriptor_sets(cmd_buffer,
4762                            &cmd_buffer->state.compute.base,
4763                            VK_SHADER_STAGE_COMPUTE_BIT,
4764                            &pipeline->cs, 1);
4765      cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
4766
4767#if GFX_VERx10 < 125
4768      uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4769      struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
4770         .BindingTablePointer =
4771            cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
4772         .SamplerStatePointer =
4773            cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
4774      };
4775      GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
4776
4777      struct anv_state state =
4778         anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
4779                                      pipeline->interface_descriptor_data,
4780                                      GENX(INTERFACE_DESCRIPTOR_DATA_length),
4781                                      64);
4782
4783      uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4784      anv_batch_emit(&cmd_buffer->batch,
4785                     GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
4786         mid.InterfaceDescriptorTotalLength        = size;
4787         mid.InterfaceDescriptorDataStartAddress   = state.offset;
4788      }
4789#endif
4790   }
4791
4792   if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
4793      comp_state->push_data =
4794         anv_cmd_buffer_cs_push_constants(cmd_buffer);
4795
4796#if GFX_VERx10 < 125
4797      if (comp_state->push_data.alloc_size) {
4798         anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4799            curbe.CURBETotalDataLength    = comp_state->push_data.alloc_size;
4800            curbe.CURBEDataStartAddress   = comp_state->push_data.offset;
4801         }
4802      }
4803#endif
4804
4805      cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
4806   }
4807
4808   cmd_buffer->state.compute.pipeline_dirty = false;
4809
4810   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4811}
4812
4813#if GFX_VER == 7
4814
4815static VkResult
4816verify_cmd_parser(const struct anv_device *device,
4817                  int required_version,
4818                  const char *function)
4819{
4820   if (device->physical->cmd_parser_version < required_version) {
4821      return vk_errorf(device->physical, VK_ERROR_FEATURE_NOT_PRESENT,
4822                       "cmd parser version %d is required for %s",
4823                       required_version, function);
4824   } else {
4825      return VK_SUCCESS;
4826   }
4827}
4828
4829#endif
4830
4831static void
4832anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
4833                                  uint32_t baseGroupX,
4834                                  uint32_t baseGroupY,
4835                                  uint32_t baseGroupZ)
4836{
4837   if (anv_batch_has_error(&cmd_buffer->batch))
4838      return;
4839
4840   struct anv_push_constants *push =
4841      &cmd_buffer->state.compute.base.push_constants;
4842   if (push->cs.base_work_group_id[0] != baseGroupX ||
4843       push->cs.base_work_group_id[1] != baseGroupY ||
4844       push->cs.base_work_group_id[2] != baseGroupZ) {
4845      push->cs.base_work_group_id[0] = baseGroupX;
4846      push->cs.base_work_group_id[1] = baseGroupY;
4847      push->cs.base_work_group_id[2] = baseGroupZ;
4848
4849      cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4850   }
4851}
4852
4853void genX(CmdDispatch)(
4854    VkCommandBuffer                             commandBuffer,
4855    uint32_t                                    x,
4856    uint32_t                                    y,
4857    uint32_t                                    z)
4858{
4859   genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
4860}
4861
4862#if GFX_VERx10 >= 125
4863
4864static inline void
4865emit_compute_walker(struct anv_cmd_buffer *cmd_buffer,
4866                    const struct anv_compute_pipeline *pipeline, bool indirect,
4867                    const struct brw_cs_prog_data *prog_data,
4868                    uint32_t groupCountX, uint32_t groupCountY,
4869                    uint32_t groupCountZ)
4870{
4871   struct anv_cmd_compute_state *comp_state = &cmd_buffer->state.compute;
4872   const struct anv_shader_bin *cs_bin = pipeline->cs;
4873   bool predicate = cmd_buffer->state.conditional_render_enabled;
4874
4875   const struct intel_device_info *devinfo = &pipeline->base.device->info;
4876   const struct brw_cs_dispatch_info dispatch =
4877      brw_cs_get_dispatch_info(devinfo, prog_data, NULL);
4878
4879   anv_batch_emit(&cmd_buffer->batch, GENX(COMPUTE_WALKER), cw) {
4880      cw.IndirectParameterEnable        = indirect;
4881      cw.PredicateEnable                = predicate;
4882      cw.SIMDSize                       = dispatch.simd_size / 16;
4883      cw.IndirectDataStartAddress       = comp_state->push_data.offset;
4884      cw.IndirectDataLength             = comp_state->push_data.alloc_size;
4885      cw.LocalXMaximum                  = prog_data->local_size[0] - 1;
4886      cw.LocalYMaximum                  = prog_data->local_size[1] - 1;
4887      cw.LocalZMaximum                  = prog_data->local_size[2] - 1;
4888      cw.ThreadGroupIDXDimension        = groupCountX;
4889      cw.ThreadGroupIDYDimension        = groupCountY;
4890      cw.ThreadGroupIDZDimension        = groupCountZ;
4891      cw.ExecutionMask                  = dispatch.right_mask;
4892
4893      cw.InterfaceDescriptor = (struct GENX(INTERFACE_DESCRIPTOR_DATA)) {
4894         .KernelStartPointer = cs_bin->kernel.offset,
4895         .SamplerStatePointer =
4896            cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
4897         .BindingTablePointer =
4898            cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
4899         .BindingTableEntryCount =
4900            1 + MIN2(pipeline->cs->bind_map.surface_count, 30),
4901         .NumberofThreadsinGPGPUThreadGroup = dispatch.threads,
4902         .SharedLocalMemorySize = encode_slm_size(GFX_VER,
4903                                                  prog_data->base.total_shared),
4904         .NumberOfBarriers = prog_data->uses_barrier,
4905      };
4906   }
4907}
4908
4909#else /* #if GFX_VERx10 >= 125 */
4910
4911static inline void
4912emit_gpgpu_walker(struct anv_cmd_buffer *cmd_buffer,
4913                  const struct anv_compute_pipeline *pipeline, bool indirect,
4914                  const struct brw_cs_prog_data *prog_data,
4915                  uint32_t groupCountX, uint32_t groupCountY,
4916                  uint32_t groupCountZ)
4917{
4918   bool predicate = (GFX_VER <= 7 && indirect) ||
4919      cmd_buffer->state.conditional_render_enabled;
4920
4921   const struct intel_device_info *devinfo = &pipeline->base.device->info;
4922   const struct brw_cs_dispatch_info dispatch =
4923      brw_cs_get_dispatch_info(devinfo, prog_data, NULL);
4924
4925   anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
4926      ggw.IndirectParameterEnable      = indirect;
4927      ggw.PredicateEnable              = predicate;
4928      ggw.SIMDSize                     = dispatch.simd_size / 16;
4929      ggw.ThreadDepthCounterMaximum    = 0;
4930      ggw.ThreadHeightCounterMaximum   = 0;
4931      ggw.ThreadWidthCounterMaximum    = dispatch.threads - 1;
4932      ggw.ThreadGroupIDXDimension      = groupCountX;
4933      ggw.ThreadGroupIDYDimension      = groupCountY;
4934      ggw.ThreadGroupIDZDimension      = groupCountZ;
4935      ggw.RightExecutionMask           = dispatch.right_mask;
4936      ggw.BottomExecutionMask          = 0xffffffff;
4937   }
4938
4939   anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
4940}
4941
4942#endif /* #if GFX_VERx10 >= 125 */
4943
4944static inline void
4945emit_cs_walker(struct anv_cmd_buffer *cmd_buffer,
4946               const struct anv_compute_pipeline *pipeline, bool indirect,
4947               const struct brw_cs_prog_data *prog_data,
4948               uint32_t groupCountX, uint32_t groupCountY,
4949               uint32_t groupCountZ)
4950{
4951#if GFX_VERx10 >= 125
4952   emit_compute_walker(cmd_buffer, pipeline, indirect, prog_data, groupCountX,
4953                       groupCountY, groupCountZ);
4954#else
4955   emit_gpgpu_walker(cmd_buffer, pipeline, indirect, prog_data, groupCountX,
4956                     groupCountY, groupCountZ);
4957#endif
4958}
4959
4960void genX(CmdDispatchBase)(
4961    VkCommandBuffer                             commandBuffer,
4962    uint32_t                                    baseGroupX,
4963    uint32_t                                    baseGroupY,
4964    uint32_t                                    baseGroupZ,
4965    uint32_t                                    groupCountX,
4966    uint32_t                                    groupCountY,
4967    uint32_t                                    groupCountZ)
4968{
4969   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4970   struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
4971   const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4972
4973   anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
4974                                     baseGroupY, baseGroupZ);
4975
4976   if (anv_batch_has_error(&cmd_buffer->batch))
4977      return;
4978
4979   anv_measure_snapshot(cmd_buffer,
4980                        INTEL_SNAPSHOT_COMPUTE,
4981                        "compute",
4982                        groupCountX * groupCountY * groupCountZ *
4983                        prog_data->local_size[0] * prog_data->local_size[1] *
4984                        prog_data->local_size[2]);
4985
4986   if (prog_data->uses_num_work_groups) {
4987      struct anv_state state =
4988         anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
4989      uint32_t *sizes = state.map;
4990      sizes[0] = groupCountX;
4991      sizes[1] = groupCountY;
4992      sizes[2] = groupCountZ;
4993      cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
4994         .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
4995         .offset = state.offset,
4996      };
4997
4998      /* The num_workgroups buffer goes in the binding table */
4999      cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
5000   }
5001
5002   genX(cmd_buffer_flush_compute_state)(cmd_buffer);
5003
5004   if (cmd_buffer->state.conditional_render_enabled)
5005      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
5006
5007   emit_cs_walker(cmd_buffer, pipeline, false, prog_data, groupCountX,
5008                  groupCountY, groupCountZ);
5009}
5010
5011#define GPGPU_DISPATCHDIMX 0x2500
5012#define GPGPU_DISPATCHDIMY 0x2504
5013#define GPGPU_DISPATCHDIMZ 0x2508
5014
5015void genX(CmdDispatchIndirect)(
5016    VkCommandBuffer                             commandBuffer,
5017    VkBuffer                                    _buffer,
5018    VkDeviceSize                                offset)
5019{
5020   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5021   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
5022   struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
5023   const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
5024   struct anv_address addr = anv_address_add(buffer->address, offset);
5025   UNUSED struct anv_batch *batch = &cmd_buffer->batch;
5026
5027   anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
5028
5029#if GFX_VER == 7
5030   /* Linux 4.4 added command parser version 5 which allows the GPGPU
5031    * indirect dispatch registers to be written.
5032    */
5033   if (verify_cmd_parser(cmd_buffer->device, 5,
5034                         "vkCmdDispatchIndirect") != VK_SUCCESS)
5035      return;
5036#endif
5037
5038   anv_measure_snapshot(cmd_buffer,
5039                        INTEL_SNAPSHOT_COMPUTE,
5040                        "compute indirect",
5041                        0);
5042
5043   if (prog_data->uses_num_work_groups) {
5044      cmd_buffer->state.compute.num_workgroups = addr;
5045
5046      /* The num_workgroups buffer goes in the binding table */
5047      cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
5048   }
5049
5050   genX(cmd_buffer_flush_compute_state)(cmd_buffer);
5051
5052   struct mi_builder b;
5053   mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
5054
5055   struct mi_value size_x = mi_mem32(anv_address_add(addr, 0));
5056   struct mi_value size_y = mi_mem32(anv_address_add(addr, 4));
5057   struct mi_value size_z = mi_mem32(anv_address_add(addr, 8));
5058
5059   mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), size_x);
5060   mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), size_y);
5061   mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
5062
5063#if GFX_VER <= 7
5064   /* predicate = (compute_dispatch_indirect_x_size == 0); */
5065   mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), size_x);
5066   mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
5067   anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
5068      mip.LoadOperation    = LOAD_LOAD;
5069      mip.CombineOperation = COMBINE_SET;
5070      mip.CompareOperation = COMPARE_SRCS_EQUAL;
5071   }
5072
5073   /* predicate |= (compute_dispatch_indirect_y_size == 0); */
5074   mi_store(&b, mi_reg32(MI_PREDICATE_SRC0), size_y);
5075   anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
5076      mip.LoadOperation    = LOAD_LOAD;
5077      mip.CombineOperation = COMBINE_OR;
5078      mip.CompareOperation = COMPARE_SRCS_EQUAL;
5079   }
5080
5081   /* predicate |= (compute_dispatch_indirect_z_size == 0); */
5082   mi_store(&b, mi_reg32(MI_PREDICATE_SRC0), size_z);
5083   anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
5084      mip.LoadOperation    = LOAD_LOAD;
5085      mip.CombineOperation = COMBINE_OR;
5086      mip.CompareOperation = COMPARE_SRCS_EQUAL;
5087   }
5088
5089   /* predicate = !predicate; */
5090   anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
5091      mip.LoadOperation    = LOAD_LOADINV;
5092      mip.CombineOperation = COMBINE_OR;
5093      mip.CompareOperation = COMPARE_FALSE;
5094   }
5095
5096#if GFX_VERx10 == 75
5097   if (cmd_buffer->state.conditional_render_enabled) {
5098      /* predicate &= !(conditional_rendering_predicate == 0); */
5099      mi_store(&b, mi_reg32(MI_PREDICATE_SRC0),
5100                   mi_reg32(ANV_PREDICATE_RESULT_REG));
5101      anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
5102         mip.LoadOperation    = LOAD_LOADINV;
5103         mip.CombineOperation = COMBINE_AND;
5104         mip.CompareOperation = COMPARE_SRCS_EQUAL;
5105      }
5106   }
5107#endif
5108
5109#else /* GFX_VER > 7 */
5110   if (cmd_buffer->state.conditional_render_enabled)
5111      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
5112#endif
5113
5114   emit_cs_walker(cmd_buffer, pipeline, true, prog_data, 0, 0, 0);
5115}
5116
5117#if GFX_VERx10 >= 125
5118static void
5119calc_local_trace_size(uint8_t local_shift[3], const uint32_t global[3])
5120{
5121   unsigned total_shift = 0;
5122   memset(local_shift, 0, 3);
5123
5124   bool progress;
5125   do {
5126      progress = false;
5127      for (unsigned i = 0; i < 3; i++) {
5128         assert(global[i] > 0);
5129         if ((1 << local_shift[i]) < global[i]) {
5130            progress = true;
5131            local_shift[i]++;
5132            total_shift++;
5133         }
5134
5135         if (total_shift == 3)
5136            return;
5137      }
5138   } while(progress);
5139
5140   /* Assign whatever's left to x */
5141   local_shift[0] += 3 - total_shift;
5142}
5143
5144static struct GFX_RT_SHADER_TABLE
5145vk_sdar_to_shader_table(const VkStridedDeviceAddressRegionKHR *region)
5146{
5147   return (struct GFX_RT_SHADER_TABLE) {
5148      .BaseAddress = anv_address_from_u64(region->deviceAddress),
5149      .Stride = region->stride,
5150   };
5151}
5152
5153static void
5154cmd_buffer_trace_rays(struct anv_cmd_buffer *cmd_buffer,
5155                      const VkStridedDeviceAddressRegionKHR *raygen_sbt,
5156                      const VkStridedDeviceAddressRegionKHR *miss_sbt,
5157                      const VkStridedDeviceAddressRegionKHR *hit_sbt,
5158                      const VkStridedDeviceAddressRegionKHR *callable_sbt,
5159                      bool is_indirect,
5160                      uint32_t launch_width,
5161                      uint32_t launch_height,
5162                      uint32_t launch_depth,
5163                      uint64_t launch_size_addr)
5164{
5165   struct anv_cmd_ray_tracing_state *rt = &cmd_buffer->state.rt;
5166   struct anv_ray_tracing_pipeline *pipeline = rt->pipeline;
5167
5168   if (anv_batch_has_error(&cmd_buffer->batch))
5169      return;
5170
5171   /* If we have a known degenerate launch size, just bail */
5172   if (!is_indirect &&
5173       (launch_width == 0 || launch_height == 0 || launch_depth == 0))
5174      return;
5175
5176   genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
5177   genX(flush_pipeline_select_gpgpu)(cmd_buffer);
5178
5179   cmd_buffer->state.rt.pipeline_dirty = false;
5180
5181   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5182
5183   /* Add these to the reloc list as they're internal buffers that don't
5184    * actually have relocs to pick them up manually.
5185    *
5186    * TODO(RT): This is a bit of a hack
5187    */
5188   anv_reloc_list_add_bo(cmd_buffer->batch.relocs,
5189                         cmd_buffer->batch.alloc,
5190                         rt->scratch.bo);
5191
5192   /* Allocate and set up our RT_DISPATCH_GLOBALS */
5193   struct anv_state rtdg_state =
5194      anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
5195                                         BRW_RT_PUSH_CONST_OFFSET +
5196                                         sizeof(struct anv_push_constants),
5197                                         64);
5198
5199   struct GFX_RT_DISPATCH_GLOBALS rtdg = {
5200      .MemBaseAddress = (struct anv_address) {
5201         .bo = rt->scratch.bo,
5202         .offset = rt->scratch.layout.ray_stack_start,
5203      },
5204      .CallStackHandler =
5205         anv_shader_bin_get_bsr(cmd_buffer->device->rt_trivial_return, 0),
5206      .AsyncRTStackSize = rt->scratch.layout.ray_stack_stride / 64,
5207      .NumDSSRTStacks = rt->scratch.layout.stack_ids_per_dss,
5208      .MaxBVHLevels = BRW_RT_MAX_BVH_LEVELS,
5209      .Flags = RT_DEPTH_TEST_LESS_EQUAL,
5210      .HitGroupTable = vk_sdar_to_shader_table(hit_sbt),
5211      .MissGroupTable = vk_sdar_to_shader_table(miss_sbt),
5212      .SWStackSize = rt->scratch.layout.sw_stack_size / 64,
5213      .LaunchWidth = launch_width,
5214      .LaunchHeight = launch_height,
5215      .LaunchDepth = launch_depth,
5216      .CallableGroupTable = vk_sdar_to_shader_table(callable_sbt),
5217   };
5218   GFX_RT_DISPATCH_GLOBALS_pack(NULL, rtdg_state.map, &rtdg);
5219
5220   /* Push constants go after the RT_DISPATCH_GLOBALS */
5221   assert(GFX_RT_DISPATCH_GLOBALS_length * 4 <= BRW_RT_PUSH_CONST_OFFSET);
5222   memcpy(rtdg_state.map + BRW_RT_PUSH_CONST_OFFSET,
5223          &cmd_buffer->state.rt.base.push_constants,
5224          sizeof(struct anv_push_constants));
5225
5226   struct anv_address rtdg_addr = {
5227      .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5228      .offset = rtdg_state.offset,
5229   };
5230
5231   uint8_t local_size_log2[3];
5232   uint32_t global_size[3] = {};
5233   if (is_indirect) {
5234      /* Pick a local size that's probably ok.  We assume most TraceRays calls
5235       * will use a two-dimensional dispatch size.  Worst case, our initial
5236       * dispatch will be a little slower than it has to be.
5237       */
5238      local_size_log2[0] = 2;
5239      local_size_log2[1] = 1;
5240      local_size_log2[2] = 0;
5241
5242      struct mi_builder b;
5243      mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
5244
5245      struct mi_value launch_size[3] = {
5246         mi_mem32(anv_address_from_u64(launch_size_addr + 0)),
5247         mi_mem32(anv_address_from_u64(launch_size_addr + 4)),
5248         mi_mem32(anv_address_from_u64(launch_size_addr + 8)),
5249      };
5250
5251      /* Store the original launch size into RT_DISPATCH_GLOBALS
5252       *
5253       * TODO: Pull values from genX_bits.h once RT_DISPATCH_GLOBALS gets
5254       * moved into a genX version.
5255       */
5256      mi_store(&b, mi_mem32(anv_address_add(rtdg_addr, 52)),
5257               mi_value_ref(&b, launch_size[0]));
5258      mi_store(&b, mi_mem32(anv_address_add(rtdg_addr, 56)),
5259               mi_value_ref(&b, launch_size[1]));
5260      mi_store(&b, mi_mem32(anv_address_add(rtdg_addr, 60)),
5261               mi_value_ref(&b, launch_size[2]));
5262
5263      /* Compute the global dispatch size */
5264      for (unsigned i = 0; i < 3; i++) {
5265         if (local_size_log2[i] == 0)
5266            continue;
5267
5268         /* global_size = DIV_ROUND_UP(launch_size, local_size)
5269          *
5270          * Fortunately for us MI_ALU math is 64-bit and , mi_ushr32_imm
5271          * has the semantics of shifting the enture 64-bit value and taking
5272          * the bottom 32 so we don't have to worry about roll-over.
5273          */
5274         uint32_t local_size = 1 << local_size_log2[i];
5275         launch_size[i] = mi_iadd(&b, launch_size[i],
5276                                      mi_imm(local_size - 1));
5277         launch_size[i] = mi_ushr32_imm(&b, launch_size[i],
5278                                            local_size_log2[i]);
5279      }
5280
5281      mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), launch_size[0]);
5282      mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), launch_size[1]);
5283      mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), launch_size[2]);
5284   } else {
5285      uint32_t launch_size[3] = { launch_width, launch_height, launch_depth };
5286      calc_local_trace_size(local_size_log2, launch_size);
5287
5288      for (unsigned i = 0; i < 3; i++) {
5289         /* We have to be a bit careful here because DIV_ROUND_UP adds to the
5290          * numerator value may overflow.  Cast to uint64_t to avoid this.
5291          */
5292         uint32_t local_size = 1 << local_size_log2[i];
5293         global_size[i] = DIV_ROUND_UP((uint64_t)launch_size[i], local_size);
5294      }
5295   }
5296
5297   anv_batch_emit(&cmd_buffer->batch, GENX(COMPUTE_WALKER), cw) {
5298      cw.IndirectParameterEnable        = is_indirect;
5299      cw.PredicateEnable                = false;
5300      cw.SIMDSize                       = SIMD8;
5301      cw.LocalXMaximum                  = (1 << local_size_log2[0]) - 1;
5302      cw.LocalYMaximum                  = (1 << local_size_log2[1]) - 1;
5303      cw.LocalZMaximum                  = (1 << local_size_log2[2]) - 1;
5304      cw.ThreadGroupIDXDimension        = global_size[0];
5305      cw.ThreadGroupIDYDimension        = global_size[1];
5306      cw.ThreadGroupIDZDimension        = global_size[2];
5307      cw.ExecutionMask                  = 0xff;
5308      cw.EmitInlineParameter            = true;
5309
5310      const gl_shader_stage s = MESA_SHADER_RAYGEN;
5311      struct anv_device *device = cmd_buffer->device;
5312      struct anv_state *surfaces = &cmd_buffer->state.binding_tables[s];
5313      struct anv_state *samplers = &cmd_buffer->state.samplers[s];
5314      cw.InterfaceDescriptor = (struct GENX(INTERFACE_DESCRIPTOR_DATA)) {
5315         .KernelStartPointer = device->rt_trampoline->kernel.offset,
5316         .SamplerStatePointer = samplers->offset,
5317         /* i965: DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4), */
5318         .SamplerCount = 0,
5319         .BindingTablePointer = surfaces->offset,
5320         .NumberofThreadsinGPGPUThreadGroup = 1,
5321         .BTDMode = true,
5322      };
5323
5324      struct brw_rt_raygen_trampoline_params trampoline_params = {
5325         .rt_disp_globals_addr = anv_address_physical(rtdg_addr),
5326         .raygen_bsr_addr = raygen_sbt->deviceAddress,
5327         .is_indirect = is_indirect,
5328         .local_group_size_log2 = {
5329            local_size_log2[0],
5330            local_size_log2[1],
5331            local_size_log2[2],
5332         },
5333      };
5334      STATIC_ASSERT(sizeof(trampoline_params) == 32);
5335      memcpy(cw.InlineData, &trampoline_params, sizeof(trampoline_params));
5336   }
5337}
5338
5339void
5340genX(CmdTraceRaysKHR)(
5341    VkCommandBuffer                             commandBuffer,
5342    const VkStridedDeviceAddressRegionKHR*      pRaygenShaderBindingTable,
5343    const VkStridedDeviceAddressRegionKHR*      pMissShaderBindingTable,
5344    const VkStridedDeviceAddressRegionKHR*      pHitShaderBindingTable,
5345    const VkStridedDeviceAddressRegionKHR*      pCallableShaderBindingTable,
5346    uint32_t                                    width,
5347    uint32_t                                    height,
5348    uint32_t                                    depth)
5349{
5350   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5351
5352   cmd_buffer_trace_rays(cmd_buffer,
5353                         pRaygenShaderBindingTable,
5354                         pMissShaderBindingTable,
5355                         pHitShaderBindingTable,
5356                         pCallableShaderBindingTable,
5357                         false /* is_indirect */,
5358                         width, height, depth,
5359                         0 /* launch_size_addr */);
5360}
5361
5362void
5363genX(CmdTraceRaysIndirectKHR)(
5364    VkCommandBuffer                             commandBuffer,
5365    const VkStridedDeviceAddressRegionKHR*      pRaygenShaderBindingTable,
5366    const VkStridedDeviceAddressRegionKHR*      pMissShaderBindingTable,
5367    const VkStridedDeviceAddressRegionKHR*      pHitShaderBindingTable,
5368    const VkStridedDeviceAddressRegionKHR*      pCallableShaderBindingTable,
5369    VkDeviceAddress                             indirectDeviceAddress)
5370{
5371   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5372
5373   cmd_buffer_trace_rays(cmd_buffer,
5374                         pRaygenShaderBindingTable,
5375                         pMissShaderBindingTable,
5376                         pHitShaderBindingTable,
5377                         pCallableShaderBindingTable,
5378                         true /* is_indirect */,
5379                         0, 0, 0, /* width, height, depth, */
5380                         indirectDeviceAddress);
5381}
5382#endif /* GFX_VERx10 >= 125 */
5383
5384static void
5385genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
5386                            uint32_t pipeline)
5387{
5388   UNUSED const struct intel_device_info *devinfo = &cmd_buffer->device->info;
5389
5390   if (cmd_buffer->state.current_pipeline == pipeline)
5391      return;
5392
5393#if GFX_VER >= 8 && GFX_VER < 10
5394   /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
5395    *
5396    *   Software must clear the COLOR_CALC_STATE Valid field in
5397    *   3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
5398    *   with Pipeline Select set to GPGPU.
5399    *
5400    * The internal hardware docs recommend the same workaround for Gfx9
5401    * hardware too.
5402    */
5403   if (pipeline == GPGPU)
5404      anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
5405#endif
5406
5407#if GFX_VER == 9
5408   if (pipeline == _3D) {
5409      /* There is a mid-object preemption workaround which requires you to
5410       * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D.  However,
5411       * even without preemption, we have issues with geometry flickering when
5412       * GPGPU and 3D are back-to-back and this seems to fix it.  We don't
5413       * really know why.
5414       */
5415      anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
5416         vfe.MaximumNumberofThreads =
5417            devinfo->max_cs_threads * devinfo->subslice_total - 1;
5418         vfe.NumberofURBEntries     = 2;
5419         vfe.URBEntryAllocationSize = 2;
5420      }
5421
5422      /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
5423       * invalid. Set the compute pipeline to dirty to force a re-emit of the
5424       * pipeline in case we get back-to-back dispatch calls with the same
5425       * pipeline and a PIPELINE_SELECT in between.
5426       */
5427      cmd_buffer->state.compute.pipeline_dirty = true;
5428   }
5429#endif
5430
5431   /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
5432    * PIPELINE_SELECT [DevBWR+]":
5433    *
5434    *   Project: DEVSNB+
5435    *
5436    *   Software must ensure all the write caches are flushed through a
5437    *   stalling PIPE_CONTROL command followed by another PIPE_CONTROL
5438    *   command to invalidate read only caches prior to programming
5439    *   MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
5440    */
5441   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5442      pc.RenderTargetCacheFlushEnable  = true;
5443      pc.DepthCacheFlushEnable         = true;
5444#if GFX_VER >= 12
5445      pc.HDCPipelineFlushEnable        = true;
5446#else
5447      pc.DCFlushEnable                 = true;
5448#endif
5449      pc.PostSyncOperation             = NoWrite;
5450      pc.CommandStreamerStallEnable    = true;
5451#if GFX_VER >= 12
5452      /* Wa_1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be
5453       * set with any PIPE_CONTROL with Depth Flush Enable bit set.
5454       */
5455      pc.DepthStallEnable = true;
5456#endif
5457      anv_debug_dump_pc(pc);
5458   }
5459
5460   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5461      pc.TextureCacheInvalidationEnable   = true;
5462      pc.ConstantCacheInvalidationEnable  = true;
5463      pc.StateCacheInvalidationEnable     = true;
5464      pc.InstructionCacheInvalidateEnable = true;
5465      pc.PostSyncOperation                = NoWrite;
5466      anv_debug_dump_pc(pc);
5467   }
5468
5469   anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
5470#if GFX_VER >= 9
5471      ps.MaskBits = GFX_VER >= 12 ? 0x13 : 3;
5472      ps.MediaSamplerDOPClockGateEnable = GFX_VER >= 12;
5473#endif
5474      ps.PipelineSelection = pipeline;
5475   }
5476
5477#if GFX_VER == 9
5478   if (devinfo->is_geminilake) {
5479      /* Project: DevGLK
5480       *
5481       * "This chicken bit works around a hardware issue with barrier logic
5482       *  encountered when switching between GPGPU and 3D pipelines.  To
5483       *  workaround the issue, this mode bit should be set after a pipeline
5484       *  is selected."
5485       */
5486      anv_batch_write_reg(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1), scec1) {
5487         scec1.GLKBarrierMode = pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
5488                                                  : GLK_BARRIER_MODE_3D_HULL;
5489         scec1.GLKBarrierModeMask = 1;
5490      }
5491   }
5492#endif
5493
5494   cmd_buffer->state.current_pipeline = pipeline;
5495}
5496
5497void
5498genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
5499{
5500   genX(flush_pipeline_select)(cmd_buffer, _3D);
5501}
5502
5503void
5504genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
5505{
5506   genX(flush_pipeline_select)(cmd_buffer, GPGPU);
5507}
5508
5509void
5510genX(cmd_buffer_emit_gfx7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
5511{
5512   if (GFX_VER >= 8)
5513      return;
5514
5515   /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
5516    *
5517    *    "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
5518    *    combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
5519    *    3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
5520    *    issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
5521    *    set), followed by a pipelined depth cache flush (PIPE_CONTROL with
5522    *    Depth Flush Bit set, followed by another pipelined depth stall
5523    *    (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
5524    *    guarantee that the pipeline from WM onwards is already flushed (e.g.,
5525    *    via a preceding MI_FLUSH)."
5526    */
5527   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
5528      pipe.DepthStallEnable = true;
5529      anv_debug_dump_pc(pipe);
5530   }
5531   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
5532      pipe.DepthCacheFlushEnable = true;
5533#if GFX_VER >= 12
5534      pipe.TileCacheFlushEnable = true;
5535#endif
5536      anv_debug_dump_pc(pipe);
5537   }
5538   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
5539      pipe.DepthStallEnable = true;
5540      anv_debug_dump_pc(pipe);
5541   }
5542}
5543
5544void
5545genX(cmd_buffer_emit_gfx12_depth_wa)(struct anv_cmd_buffer *cmd_buffer,
5546                                     const struct isl_surf *surf)
5547{
5548#if GFX_VERx10 == 120
5549   const bool fmt_is_d16 = surf->format == ISL_FORMAT_R16_UNORM;
5550
5551   switch (cmd_buffer->state.depth_reg_mode) {
5552   case ANV_DEPTH_REG_MODE_HW_DEFAULT:
5553      if (!fmt_is_d16)
5554         return;
5555      break;
5556   case ANV_DEPTH_REG_MODE_D16:
5557      if (fmt_is_d16)
5558         return;
5559      break;
5560   case ANV_DEPTH_REG_MODE_UNKNOWN:
5561      break;
5562   }
5563
5564   /* We'll change some CHICKEN registers depending on the depth surface
5565    * format. Do a depth flush and stall so the pipeline is not using these
5566    * settings while we change the registers.
5567    */
5568   anv_add_pending_pipe_bits(cmd_buffer,
5569                             ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
5570                             ANV_PIPE_DEPTH_STALL_BIT |
5571                             ANV_PIPE_END_OF_PIPE_SYNC_BIT,
5572                             "Workaround: Stop pipeline for 14010455700");
5573   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5574
5575   /* Wa_14010455700
5576    *
5577    * To avoid sporadic corruptions “Set 0x7010[9] when Depth Buffer
5578    * Surface Format is D16_UNORM , surface type is not NULL & 1X_MSAA”.
5579    */
5580   anv_batch_write_reg(&cmd_buffer->batch, GENX(COMMON_SLICE_CHICKEN1), reg) {
5581      reg.HIZPlaneOptimizationdisablebit = fmt_is_d16 && surf->samples == 1;
5582      reg.HIZPlaneOptimizationdisablebitMask = true;
5583   }
5584
5585   /* Wa_1806527549
5586    *
5587    * Set HIZ_CHICKEN (7018h) bit 13 = 1 when depth buffer is D16_UNORM.
5588    */
5589   anv_batch_write_reg(&cmd_buffer->batch, GENX(HIZ_CHICKEN), reg) {
5590      reg.HZDepthTestLEGEOptimizationDisable = fmt_is_d16;
5591      reg.HZDepthTestLEGEOptimizationDisableMask = true;
5592   }
5593
5594   cmd_buffer->state.depth_reg_mode =
5595      fmt_is_d16 ? ANV_DEPTH_REG_MODE_D16 : ANV_DEPTH_REG_MODE_HW_DEFAULT;
5596#endif
5597}
5598
5599/* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
5600 *
5601 *    "The VF cache needs to be invalidated before binding and then using
5602 *    Vertex Buffers that overlap with any previously bound Vertex Buffer
5603 *    (at a 64B granularity) since the last invalidation.  A VF cache
5604 *    invalidate is performed by setting the "VF Cache Invalidation Enable"
5605 *    bit in PIPE_CONTROL."
5606 *
5607 * This is implemented by carefully tracking all vertex and index buffer
5608 * bindings and flushing if the cache ever ends up with a range in the cache
5609 * that would exceed 4 GiB.  This is implemented in three parts:
5610 *
5611 *    1. genX(cmd_buffer_set_binding_for_gfx8_vb_flush)() which must be called
5612 *       every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
5613 *       tracking code of the new binding.  If this new binding would cause
5614 *       the cache to have a too-large range on the next draw call, a pipeline
5615 *       stall and VF cache invalidate are added to pending_pipeline_bits.
5616 *
5617 *    2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
5618 *       empty whenever we emit a VF invalidate.
5619 *
5620 *    3. genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)() must be called
5621 *       after every 3DPRIMITIVE and copies the bound range into the dirty
5622 *       range for each used buffer.  This has to be a separate step because
5623 *       we don't always re-bind all buffers and so 1. can't know which
5624 *       buffers are actually bound.
5625 */
5626void
5627genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
5628                                               int vb_index,
5629                                               struct anv_address vb_address,
5630                                               uint32_t vb_size)
5631{
5632   if (GFX_VER < 8 || GFX_VER > 9 ||
5633       !anv_use_softpin(cmd_buffer->device->physical))
5634      return;
5635
5636   struct anv_vb_cache_range *bound, *dirty;
5637   if (vb_index == -1) {
5638      bound = &cmd_buffer->state.gfx.ib_bound_range;
5639      dirty = &cmd_buffer->state.gfx.ib_dirty_range;
5640   } else {
5641      assert(vb_index >= 0);
5642      assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
5643      assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
5644      bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
5645      dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
5646   }
5647
5648   if (vb_size == 0) {
5649      bound->start = 0;
5650      bound->end = 0;
5651      return;
5652   }
5653
5654   assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
5655   bound->start = intel_48b_address(anv_address_physical(vb_address));
5656   bound->end = bound->start + vb_size;
5657   assert(bound->end > bound->start); /* No overflow */
5658
5659   /* Align everything to a cache line */
5660   bound->start &= ~(64ull - 1ull);
5661   bound->end = align_u64(bound->end, 64);
5662
5663   /* Compute the dirty range */
5664   dirty->start = MIN2(dirty->start, bound->start);
5665   dirty->end = MAX2(dirty->end, bound->end);
5666
5667   /* If our range is larger than 32 bits, we have to flush */
5668   assert(bound->end - bound->start <= (1ull << 32));
5669   if (dirty->end - dirty->start > (1ull << 32)) {
5670      anv_add_pending_pipe_bits(cmd_buffer,
5671                                ANV_PIPE_CS_STALL_BIT |
5672                                ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
5673                                "vb > 32b range");
5674   }
5675}
5676
5677void
5678genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
5679                                                    uint32_t access_type,
5680                                                    uint64_t vb_used)
5681{
5682   if (GFX_VER < 8 || GFX_VER > 9 ||
5683       !anv_use_softpin(cmd_buffer->device->physical))
5684      return;
5685
5686   if (access_type == RANDOM) {
5687      /* We have an index buffer */
5688      struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
5689      struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
5690
5691      if (bound->end > bound->start) {
5692         dirty->start = MIN2(dirty->start, bound->start);
5693         dirty->end = MAX2(dirty->end, bound->end);
5694      }
5695   }
5696
5697   uint64_t mask = vb_used;
5698   while (mask) {
5699      int i = u_bit_scan64(&mask);
5700      assert(i >= 0);
5701      assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
5702      assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
5703
5704      struct anv_vb_cache_range *bound, *dirty;
5705      bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
5706      dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
5707
5708      if (bound->end > bound->start) {
5709         dirty->start = MIN2(dirty->start, bound->start);
5710         dirty->end = MAX2(dirty->end, bound->end);
5711      }
5712   }
5713}
5714
5715/**
5716 * Update the pixel hashing modes that determine the balancing of PS threads
5717 * across subslices and slices.
5718 *
5719 * \param width Width bound of the rendering area (already scaled down if \p
5720 *              scale is greater than 1).
5721 * \param height Height bound of the rendering area (already scaled down if \p
5722 *               scale is greater than 1).
5723 * \param scale The number of framebuffer samples that could potentially be
5724 *              affected by an individual channel of the PS thread.  This is
5725 *              typically one for single-sampled rendering, but for operations
5726 *              like CCS resolves and fast clears a single PS invocation may
5727 *              update a huge number of pixels, in which case a finer
5728 *              balancing is desirable in order to maximally utilize the
5729 *              bandwidth available.  UINT_MAX can be used as shorthand for
5730 *              "finest hashing mode available".
5731 */
5732void
5733genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
5734                                   unsigned width, unsigned height,
5735                                   unsigned scale)
5736{
5737#if GFX_VER == 9
5738   const struct intel_device_info *devinfo = &cmd_buffer->device->info;
5739   const unsigned slice_hashing[] = {
5740      /* Because all Gfx9 platforms with more than one slice require
5741       * three-way subslice hashing, a single "normal" 16x16 slice hashing
5742       * block is guaranteed to suffer from substantial imbalance, with one
5743       * subslice receiving twice as much work as the other two in the
5744       * slice.
5745       *
5746       * The performance impact of that would be particularly severe when
5747       * three-way hashing is also in use for slice balancing (which is the
5748       * case for all Gfx9 GT4 platforms), because one of the slices
5749       * receives one every three 16x16 blocks in either direction, which
5750       * is roughly the periodicity of the underlying subslice imbalance
5751       * pattern ("roughly" because in reality the hardware's
5752       * implementation of three-way hashing doesn't do exact modulo 3
5753       * arithmetic, which somewhat decreases the magnitude of this effect
5754       * in practice).  This leads to a systematic subslice imbalance
5755       * within that slice regardless of the size of the primitive.  The
5756       * 32x32 hashing mode guarantees that the subslice imbalance within a
5757       * single slice hashing block is minimal, largely eliminating this
5758       * effect.
5759       */
5760      _32x32,
5761      /* Finest slice hashing mode available. */
5762      NORMAL
5763   };
5764   const unsigned subslice_hashing[] = {
5765      /* 16x16 would provide a slight cache locality benefit especially
5766       * visible in the sampler L1 cache efficiency of low-bandwidth
5767       * non-LLC platforms, but it comes at the cost of greater subslice
5768       * imbalance for primitives of dimensions approximately intermediate
5769       * between 16x4 and 16x16.
5770       */
5771      _16x4,
5772      /* Finest subslice hashing mode available. */
5773      _8x4
5774   };
5775   /* Dimensions of the smallest hashing block of a given hashing mode.  If
5776    * the rendering area is smaller than this there can't possibly be any
5777    * benefit from switching to this mode, so we optimize out the
5778    * transition.
5779    */
5780   const unsigned min_size[][2] = {
5781         { 16, 4 },
5782         { 8, 4 }
5783   };
5784   const unsigned idx = scale > 1;
5785
5786   if (cmd_buffer->state.current_hash_scale != scale &&
5787       (width > min_size[idx][0] || height > min_size[idx][1])) {
5788      anv_add_pending_pipe_bits(cmd_buffer,
5789                                ANV_PIPE_CS_STALL_BIT |
5790                                ANV_PIPE_STALL_AT_SCOREBOARD_BIT,
5791                                "change pixel hash mode");
5792      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5793
5794      anv_batch_write_reg(&cmd_buffer->batch, GENX(GT_MODE), gt) {
5795         gt.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
5796         gt.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
5797         gt.SubsliceHashing = subslice_hashing[idx];
5798         gt.SubsliceHashingMask = -1;
5799      }
5800
5801      cmd_buffer->state.current_hash_scale = scale;
5802   }
5803#endif
5804}
5805
5806static void
5807cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
5808{
5809   struct anv_device *device = cmd_buffer->device;
5810   const struct anv_image_view *iview =
5811      anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
5812   const struct anv_image *image = iview ? iview->image : NULL;
5813
5814   /* FIXME: Width and Height are wrong */
5815
5816   genX(cmd_buffer_emit_gfx7_depth_flush)(cmd_buffer);
5817
5818   uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
5819                                        device->isl_dev.ds.size / 4);
5820   if (dw == NULL)
5821      return;
5822
5823   struct isl_depth_stencil_hiz_emit_info info = { };
5824
5825   if (iview)
5826      info.view = &iview->planes[0].isl;
5827
5828   if (image && (image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
5829      const uint32_t depth_plane =
5830         anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_DEPTH_BIT);
5831      const struct anv_surface *depth_surface =
5832         &image->planes[depth_plane].primary_surface;
5833      const struct anv_address depth_address =
5834         anv_image_address(image, &depth_surface->memory_range);
5835
5836      info.depth_surf = &depth_surface->isl;
5837
5838      info.depth_address =
5839         anv_batch_emit_reloc(&cmd_buffer->batch,
5840                              dw + device->isl_dev.ds.depth_offset / 4,
5841                              depth_address.bo, depth_address.offset);
5842      info.mocs =
5843         anv_mocs(device, depth_address.bo, ISL_SURF_USAGE_DEPTH_BIT);
5844
5845      const uint32_t ds =
5846         cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
5847      info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
5848      if (info.hiz_usage != ISL_AUX_USAGE_NONE) {
5849         assert(isl_aux_usage_has_hiz(info.hiz_usage));
5850
5851         const struct anv_surface *hiz_surface =
5852            &image->planes[depth_plane].aux_surface;
5853         const struct anv_address hiz_address =
5854            anv_image_address(image, &hiz_surface->memory_range);
5855
5856         info.hiz_surf = &hiz_surface->isl;
5857
5858         info.hiz_address =
5859            anv_batch_emit_reloc(&cmd_buffer->batch,
5860                                 dw + device->isl_dev.ds.hiz_offset / 4,
5861                                 hiz_address.bo, hiz_address.offset);
5862
5863         info.depth_clear_value = ANV_HZ_FC_VAL;
5864      }
5865   }
5866
5867   if (image && (image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
5868      const uint32_t stencil_plane =
5869         anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
5870      const struct anv_surface *stencil_surface =
5871         &image->planes[stencil_plane].primary_surface;
5872      const struct anv_address stencil_address =
5873         anv_image_address(image, &stencil_surface->memory_range);
5874
5875      info.stencil_surf = &stencil_surface->isl;
5876
5877      info.stencil_aux_usage = image->planes[stencil_plane].aux_usage;
5878      info.stencil_address =
5879         anv_batch_emit_reloc(&cmd_buffer->batch,
5880                              dw + device->isl_dev.ds.stencil_offset / 4,
5881                              stencil_address.bo, stencil_address.offset);
5882      info.mocs =
5883         anv_mocs(device, stencil_address.bo, ISL_SURF_USAGE_STENCIL_BIT);
5884   }
5885
5886   isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
5887
5888   if (info.depth_surf)
5889      genX(cmd_buffer_emit_gfx12_depth_wa)(cmd_buffer, info.depth_surf);
5890
5891   if (GFX_VER >= 12) {
5892      cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5893      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5894
5895      /* Wa_1408224581
5896       *
5897       * Workaround: Gfx12LP Astep only An additional pipe control with
5898       * post-sync = store dword operation would be required.( w/a is to
5899       * have an additional pipe control after the stencil state whenever
5900       * the surface state bits of this state is changing).
5901       */
5902      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5903         pc.PostSyncOperation = WriteImmediateData;
5904         pc.Address = cmd_buffer->device->workaround_address;
5905      }
5906   }
5907   cmd_buffer->state.hiz_enabled = isl_aux_usage_has_hiz(info.hiz_usage);
5908}
5909
5910/**
5911 * This ANDs the view mask of the current subpass with the pending clear
5912 * views in the attachment to get the mask of views active in the subpass
5913 * that still need to be cleared.
5914 */
5915static inline uint32_t
5916get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
5917                                 const struct anv_attachment_state *att_state)
5918{
5919   return cmd_state->subpass->view_mask & att_state->pending_clear_views;
5920}
5921
5922static inline bool
5923do_first_layer_clear(const struct anv_cmd_state *cmd_state,
5924                     const struct anv_attachment_state *att_state)
5925{
5926   if (!cmd_state->subpass->view_mask)
5927      return true;
5928
5929   uint32_t pending_clear_mask =
5930      get_multiview_subpass_clear_mask(cmd_state, att_state);
5931
5932   return pending_clear_mask & 1;
5933}
5934
5935static inline bool
5936current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
5937                                       uint32_t att_idx)
5938{
5939   const uint32_t last_subpass_idx =
5940      cmd_state->pass->attachments[att_idx].last_subpass_idx;
5941   const struct anv_subpass *last_subpass =
5942      &cmd_state->pass->subpasses[last_subpass_idx];
5943   return last_subpass == cmd_state->subpass;
5944}
5945
5946static void
5947cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
5948                         uint32_t subpass_id)
5949{
5950   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5951   struct anv_render_pass *pass = cmd_state->pass;
5952   struct anv_subpass *subpass = &pass->subpasses[subpass_id];
5953   cmd_state->subpass = subpass;
5954
5955   cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
5956
5957   /* Our implementation of VK_KHR_multiview uses instancing to draw the
5958    * different views.  If the client asks for instancing, we need to use the
5959    * Instance Data Step Rate to ensure that we repeat the client's
5960    * per-instance data once for each view.  Since this bit is in
5961    * VERTEX_BUFFER_STATE on gfx7, we need to dirty vertex buffers at the top
5962    * of each subpass.
5963    */
5964   if (GFX_VER == 7)
5965      cmd_buffer->state.gfx.vb_dirty |= ~0;
5966
5967   /* It is possible to start a render pass with an old pipeline.  Because the
5968    * render pass and subpass index are both baked into the pipeline, this is
5969    * highly unlikely.  In order to do so, it requires that you have a render
5970    * pass with a single subpass and that you use that render pass twice
5971    * back-to-back and use the same pipeline at the start of the second render
5972    * pass as at the end of the first.  In order to avoid unpredictable issues
5973    * with this edge case, we just dirty the pipeline at the start of every
5974    * subpass.
5975    */
5976   cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
5977
5978   /* Accumulate any subpass flushes that need to happen before the subpass */
5979   anv_add_pending_pipe_bits(cmd_buffer,
5980                             cmd_buffer->state.pass->subpass_flushes[subpass_id],
5981                             "begin subpass deps/attachments");
5982
5983   VkRect2D render_area = cmd_buffer->state.render_area;
5984   struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
5985
5986   bool is_multiview = subpass->view_mask != 0;
5987
5988   for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5989      const uint32_t a = subpass->attachments[i].attachment;
5990      if (a == VK_ATTACHMENT_UNUSED)
5991         continue;
5992
5993      assert(a < cmd_state->pass->attachment_count);
5994      struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5995
5996      struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5997      const struct anv_image *image = iview->image;
5998
5999      VkImageLayout target_layout = subpass->attachments[i].layout;
6000      VkImageLayout target_stencil_layout =
6001         subpass->attachments[i].stencil_layout;
6002
6003      uint32_t level = iview->planes[0].isl.base_level;
6004      uint32_t width = anv_minify(iview->image->vk.extent.width, level);
6005      uint32_t height = anv_minify(iview->image->vk.extent.height, level);
6006      bool full_surface_draw =
6007         render_area.offset.x == 0 && render_area.offset.y == 0 &&
6008         render_area.extent.width == width &&
6009         render_area.extent.height == height;
6010
6011      uint32_t base_layer, layer_count;
6012      if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
6013         base_layer = 0;
6014         layer_count = anv_minify(iview->image->vk.extent.depth, level);
6015      } else {
6016         base_layer = iview->planes[0].isl.base_array_layer;
6017         layer_count = fb->layers;
6018      }
6019
6020      if (image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
6021         bool will_full_fast_clear =
6022            (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) &&
6023            att_state->fast_clear && full_surface_draw;
6024
6025         assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
6026         transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
6027                                 level, 1, base_layer, layer_count,
6028                                 att_state->current_layout, target_layout,
6029                                 VK_QUEUE_FAMILY_IGNORED,
6030                                 VK_QUEUE_FAMILY_IGNORED,
6031                                 will_full_fast_clear);
6032         att_state->aux_usage =
6033            anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
6034                                    VK_IMAGE_ASPECT_COLOR_BIT,
6035                                    VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
6036                                    target_layout);
6037      }
6038
6039      if (image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
6040         bool will_full_fast_clear =
6041            (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
6042            att_state->fast_clear && full_surface_draw;
6043
6044         transition_depth_buffer(cmd_buffer, image,
6045                                 base_layer, layer_count,
6046                                 att_state->current_layout, target_layout,
6047                                 will_full_fast_clear);
6048         att_state->aux_usage =
6049            anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
6050                                    VK_IMAGE_ASPECT_DEPTH_BIT,
6051                                    VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
6052                                    target_layout);
6053      }
6054
6055      if (image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
6056         bool will_full_fast_clear =
6057            (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
6058            att_state->fast_clear && full_surface_draw;
6059
6060         transition_stencil_buffer(cmd_buffer, image,
6061                                   level, 1, base_layer, layer_count,
6062                                   att_state->current_stencil_layout,
6063                                   target_stencil_layout,
6064                                   will_full_fast_clear);
6065      }
6066      att_state->current_layout = target_layout;
6067      att_state->current_stencil_layout = target_stencil_layout;
6068
6069      if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
6070         assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
6071
6072         /* Multi-planar images are not supported as attachments */
6073         assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
6074         assert(image->n_planes == 1);
6075
6076         uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
6077         uint32_t clear_layer_count = fb->layers;
6078
6079         if (att_state->fast_clear &&
6080             do_first_layer_clear(cmd_state, att_state)) {
6081            /* We only support fast-clears on the first layer */
6082            assert(level == 0 && base_layer == 0);
6083
6084            union isl_color_value clear_color = {};
6085            anv_clear_color_from_att_state(&clear_color, att_state, iview);
6086            if (iview->image->vk.samples == 1) {
6087               anv_image_ccs_op(cmd_buffer, image,
6088                                iview->planes[0].isl.format,
6089                                iview->planes[0].isl.swizzle,
6090                                VK_IMAGE_ASPECT_COLOR_BIT,
6091                                0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
6092                                &clear_color,
6093                                false);
6094            } else {
6095               anv_image_mcs_op(cmd_buffer, image,
6096                                iview->planes[0].isl.format,
6097                                iview->planes[0].isl.swizzle,
6098                                VK_IMAGE_ASPECT_COLOR_BIT,
6099                                0, 1, ISL_AUX_OP_FAST_CLEAR,
6100                                &clear_color,
6101                                false);
6102            }
6103            base_clear_layer++;
6104            clear_layer_count--;
6105            if (is_multiview)
6106               att_state->pending_clear_views &= ~1;
6107
6108            if (isl_color_value_is_zero(clear_color,
6109                                        iview->planes[0].isl.format)) {
6110               /* This image has the auxiliary buffer enabled. We can mark the
6111                * subresource as not needing a resolve because the clear color
6112                * will match what's in every RENDER_SURFACE_STATE object when
6113                * it's being used for sampling.
6114                */
6115               set_image_fast_clear_state(cmd_buffer, iview->image,
6116                                          VK_IMAGE_ASPECT_COLOR_BIT,
6117                                          ANV_FAST_CLEAR_DEFAULT_VALUE);
6118            } else {
6119               set_image_fast_clear_state(cmd_buffer, iview->image,
6120                                          VK_IMAGE_ASPECT_COLOR_BIT,
6121                                          ANV_FAST_CLEAR_ANY);
6122            }
6123         }
6124
6125         /* From the VkFramebufferCreateInfo spec:
6126          *
6127          * "If the render pass uses multiview, then layers must be one and each
6128          *  attachment requires a number of layers that is greater than the
6129          *  maximum bit index set in the view mask in the subpasses in which it
6130          *  is used."
6131          *
6132          * So if multiview is active we ignore the number of layers in the
6133          * framebuffer and instead we honor the view mask from the subpass.
6134          */
6135         if (is_multiview) {
6136            assert(image->n_planes == 1);
6137            uint32_t pending_clear_mask =
6138               get_multiview_subpass_clear_mask(cmd_state, att_state);
6139
6140            u_foreach_bit(layer_idx, pending_clear_mask) {
6141               uint32_t layer =
6142                  iview->planes[0].isl.base_array_layer + layer_idx;
6143
6144               anv_image_clear_color(cmd_buffer, image,
6145                                     VK_IMAGE_ASPECT_COLOR_BIT,
6146                                     att_state->aux_usage,
6147                                     iview->planes[0].isl.format,
6148                                     iview->planes[0].isl.swizzle,
6149                                     level, layer, 1,
6150                                     render_area,
6151                                     vk_to_isl_color(att_state->clear_value.color));
6152            }
6153
6154            att_state->pending_clear_views &= ~pending_clear_mask;
6155         } else if (clear_layer_count > 0) {
6156            assert(image->n_planes == 1);
6157            anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
6158                                  att_state->aux_usage,
6159                                  iview->planes[0].isl.format,
6160                                  iview->planes[0].isl.swizzle,
6161                                  level, base_clear_layer, clear_layer_count,
6162                                  render_area,
6163                                  vk_to_isl_color(att_state->clear_value.color));
6164         }
6165      } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
6166                                                     VK_IMAGE_ASPECT_STENCIL_BIT)) {
6167         if (att_state->fast_clear &&
6168             (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
6169            /* We currently only support HiZ for single-LOD images */
6170            assert(isl_aux_usage_has_hiz(iview->image->planes[0].aux_usage));
6171            assert(iview->planes[0].isl.base_level == 0);
6172            assert(iview->planes[0].isl.levels == 1);
6173         }
6174
6175         if (is_multiview) {
6176            uint32_t pending_clear_mask =
6177              get_multiview_subpass_clear_mask(cmd_state, att_state);
6178
6179            u_foreach_bit(layer_idx, pending_clear_mask) {
6180               uint32_t layer =
6181                  iview->planes[0].isl.base_array_layer + layer_idx;
6182
6183               if (att_state->fast_clear) {
6184                  anv_image_hiz_clear(cmd_buffer, image,
6185                                      att_state->pending_clear_aspects,
6186                                      level, layer, 1, render_area,
6187                                      att_state->clear_value.depthStencil.stencil);
6188               } else {
6189                  anv_image_clear_depth_stencil(cmd_buffer, image,
6190                                                att_state->pending_clear_aspects,
6191                                                att_state->aux_usage,
6192                                                level, layer, 1, render_area,
6193                                                att_state->clear_value.depthStencil.depth,
6194                                                att_state->clear_value.depthStencil.stencil);
6195               }
6196            }
6197
6198            att_state->pending_clear_views &= ~pending_clear_mask;
6199         } else {
6200            if (att_state->fast_clear) {
6201               anv_image_hiz_clear(cmd_buffer, image,
6202                                   att_state->pending_clear_aspects,
6203                                   level, base_layer, layer_count,
6204                                   render_area,
6205                                   att_state->clear_value.depthStencil.stencil);
6206            } else {
6207               anv_image_clear_depth_stencil(cmd_buffer, image,
6208                                             att_state->pending_clear_aspects,
6209                                             att_state->aux_usage,
6210                                             level, base_layer, layer_count,
6211                                             render_area,
6212                                             att_state->clear_value.depthStencil.depth,
6213                                             att_state->clear_value.depthStencil.stencil);
6214            }
6215         }
6216      } else  {
6217         assert(att_state->pending_clear_aspects == 0);
6218      }
6219
6220      /* If multiview is enabled, then we are only done clearing when we no
6221       * longer have pending layers to clear, or when we have processed the
6222       * last subpass that uses this attachment.
6223       */
6224      if (!is_multiview ||
6225          att_state->pending_clear_views == 0 ||
6226          current_subpass_is_last_for_attachment(cmd_state, a)) {
6227         att_state->pending_clear_aspects = 0;
6228      }
6229
6230      att_state->pending_load_aspects = 0;
6231   }
6232
6233   /* We've transitioned all our images possibly fast clearing them.  Now we
6234    * can fill out the surface states that we will use as render targets
6235    * during actual subpass rendering.
6236    */
6237   VkResult result = genX(cmd_buffer_alloc_att_surf_states)(cmd_buffer,
6238                                                            pass, subpass);
6239   if (result != VK_SUCCESS)
6240      return;
6241
6242   isl_null_fill_state(&cmd_buffer->device->isl_dev,
6243                       cmd_state->null_surface_state.map,
6244                       .size = isl_extent3d(fb->width, fb->height, fb->layers));
6245
6246   for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
6247      const uint32_t att = subpass->attachments[i].attachment;
6248      if (att == VK_ATTACHMENT_UNUSED)
6249         continue;
6250
6251      assert(att < cmd_state->pass->attachment_count);
6252      struct anv_render_pass_attachment *pass_att = &pass->attachments[att];
6253      struct anv_attachment_state *att_state = &cmd_state->attachments[att];
6254      struct anv_image_view *iview = att_state->image_view;
6255
6256      if (!vk_format_is_color(pass_att->format))
6257         continue;
6258
6259      const VkImageUsageFlagBits att_usage = subpass->attachments[i].usage;
6260      assert(util_bitcount(att_usage) == 1);
6261
6262      struct anv_surface_state *surface_state;
6263      isl_surf_usage_flags_t isl_surf_usage;
6264      enum isl_aux_usage isl_aux_usage;
6265      if (att_usage == VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
6266         surface_state = &att_state->color;
6267         isl_surf_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
6268         isl_aux_usage = att_state->aux_usage;
6269      } else if (att_usage == VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) {
6270         surface_state = &att_state->input;
6271         isl_surf_usage = ISL_SURF_USAGE_TEXTURE_BIT;
6272         isl_aux_usage =
6273            anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
6274                                    VK_IMAGE_ASPECT_COLOR_BIT,
6275                                    VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT,
6276                                    att_state->current_layout);
6277      } else {
6278         continue;
6279      }
6280
6281      /* We had better have a surface state when we get here */
6282      assert(surface_state->state.map);
6283
6284      union isl_color_value clear_color = { .u32 = { 0, } };
6285      if (pass_att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR &&
6286          att_state->fast_clear)
6287         anv_clear_color_from_att_state(&clear_color, att_state, iview);
6288
6289      anv_image_fill_surface_state(cmd_buffer->device,
6290                                   iview->image,
6291                                   VK_IMAGE_ASPECT_COLOR_BIT,
6292                                   &iview->planes[0].isl,
6293                                   isl_surf_usage,
6294                                   isl_aux_usage,
6295                                   &clear_color,
6296                                   0,
6297                                   surface_state,
6298                                   NULL);
6299
6300      add_surface_state_relocs(cmd_buffer, *surface_state);
6301
6302      if (GFX_VER < 10 &&
6303          pass_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD &&
6304          iview->image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
6305          iview->planes[0].isl.base_level == 0 &&
6306          iview->planes[0].isl.base_array_layer == 0) {
6307         genX(copy_fast_clear_dwords)(cmd_buffer, surface_state->state,
6308                                      iview->image,
6309                                      VK_IMAGE_ASPECT_COLOR_BIT,
6310                                      false /* copy to ss */);
6311      }
6312   }
6313
6314#if GFX_VER >= 11
6315   /* The PIPE_CONTROL command description says:
6316    *
6317    *    "Whenever a Binding Table Index (BTI) used by a Render Taget Message
6318    *     points to a different RENDER_SURFACE_STATE, SW must issue a Render
6319    *     Target Cache Flush by enabling this bit. When render target flush
6320    *     is set due to new association of BTI, PS Scoreboard Stall bit must
6321    *     be set in this packet."
6322    */
6323   anv_add_pending_pipe_bits(cmd_buffer,
6324                             ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
6325                             ANV_PIPE_STALL_AT_SCOREBOARD_BIT,
6326                             "change RT");
6327#endif
6328
6329   cmd_buffer_emit_depth_stencil(cmd_buffer);
6330}
6331
6332static enum blorp_filter
6333vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
6334{
6335   switch (vk_mode) {
6336   case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
6337      return BLORP_FILTER_SAMPLE_0;
6338   case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
6339      return BLORP_FILTER_AVERAGE;
6340   case VK_RESOLVE_MODE_MIN_BIT_KHR:
6341      return BLORP_FILTER_MIN_SAMPLE;
6342   case VK_RESOLVE_MODE_MAX_BIT_KHR:
6343      return BLORP_FILTER_MAX_SAMPLE;
6344   default:
6345      return BLORP_FILTER_NONE;
6346   }
6347}
6348
6349static void
6350cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
6351{
6352   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
6353   struct anv_subpass *subpass = cmd_state->subpass;
6354   uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
6355   struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
6356
6357   /* We are done with the previous subpass and all rendering directly to that
6358    * subpass is now complete.  Zero out all the surface states so we don't
6359    * accidentally use them between now and the next subpass.
6360    */
6361   for (uint32_t i = 0; i < cmd_state->pass->attachment_count; ++i) {
6362      memset(&cmd_state->attachments[i].color, 0,
6363             sizeof(cmd_state->attachments[i].color));
6364      memset(&cmd_state->attachments[i].input, 0,
6365             sizeof(cmd_state->attachments[i].input));
6366   }
6367   cmd_state->null_surface_state = ANV_STATE_NULL;
6368   cmd_state->attachment_states = ANV_STATE_NULL;
6369
6370   for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
6371      const uint32_t a = subpass->attachments[i].attachment;
6372      if (a == VK_ATTACHMENT_UNUSED)
6373         continue;
6374
6375      assert(a < cmd_state->pass->attachment_count);
6376      struct anv_attachment_state *att_state = &cmd_state->attachments[a];
6377      struct anv_image_view *iview = att_state->image_view;
6378
6379      assert(util_bitcount(subpass->attachments[i].usage) == 1);
6380      if (subpass->attachments[i].usage ==
6381          VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
6382         /* We assume that if we're ending a subpass, we did do some rendering
6383          * so we may end up with compressed data.
6384          */
6385         genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
6386                                             VK_IMAGE_ASPECT_COLOR_BIT,
6387                                             att_state->aux_usage,
6388                                             iview->planes[0].isl.base_level,
6389                                             iview->planes[0].isl.base_array_layer,
6390                                             fb->layers);
6391      } else if (subpass->attachments[i].usage ==
6392                 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
6393         /* We may be writing depth or stencil so we need to mark the surface.
6394          * Unfortunately, there's no way to know at this point whether the
6395          * depth or stencil tests used will actually write to the surface.
6396          *
6397          * Even though stencil may be plane 1, it always shares a base_level
6398          * with depth.
6399          */
6400         const struct isl_view *ds_view = &iview->planes[0].isl;
6401         if (iview->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
6402            genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
6403                                                VK_IMAGE_ASPECT_DEPTH_BIT,
6404                                                att_state->aux_usage,
6405                                                ds_view->base_level,
6406                                                ds_view->base_array_layer,
6407                                                fb->layers);
6408         }
6409         if (iview->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
6410            /* Even though stencil may be plane 1, it always shares a
6411             * base_level with depth.
6412             */
6413            genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
6414                                                VK_IMAGE_ASPECT_STENCIL_BIT,
6415                                                ISL_AUX_USAGE_NONE,
6416                                                ds_view->base_level,
6417                                                ds_view->base_array_layer,
6418                                                fb->layers);
6419         }
6420      }
6421   }
6422
6423   if (subpass->has_color_resolve) {
6424      /* We are about to do some MSAA resolves.  We need to flush so that the
6425       * result of writes to the MSAA color attachments show up in the sampler
6426       * when we blit to the single-sampled resolve target.
6427       */
6428      anv_add_pending_pipe_bits(cmd_buffer,
6429                                ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
6430                                ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT,
6431                                "MSAA resolve");
6432
6433      for (uint32_t i = 0; i < subpass->color_count; ++i) {
6434         uint32_t src_att = subpass->color_attachments[i].attachment;
6435         uint32_t dst_att = subpass->resolve_attachments[i].attachment;
6436
6437         if (dst_att == VK_ATTACHMENT_UNUSED)
6438            continue;
6439
6440         assert(src_att < cmd_buffer->state.pass->attachment_count);
6441         assert(dst_att < cmd_buffer->state.pass->attachment_count);
6442
6443         if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
6444            /* From the Vulkan 1.0 spec:
6445             *
6446             *    If the first use of an attachment in a render pass is as a
6447             *    resolve attachment, then the loadOp is effectively ignored
6448             *    as the resolve is guaranteed to overwrite all pixels in the
6449             *    render area.
6450             */
6451            cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
6452         }
6453
6454         struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
6455         struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
6456
6457         const VkRect2D render_area = cmd_buffer->state.render_area;
6458
6459         enum isl_aux_usage src_aux_usage =
6460            cmd_buffer->state.attachments[src_att].aux_usage;
6461         enum isl_aux_usage dst_aux_usage =
6462            cmd_buffer->state.attachments[dst_att].aux_usage;
6463
6464         assert(src_iview->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT &&
6465                dst_iview->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
6466
6467         anv_image_msaa_resolve(cmd_buffer,
6468                                src_iview->image, src_aux_usage,
6469                                src_iview->planes[0].isl.base_level,
6470                                src_iview->planes[0].isl.base_array_layer,
6471                                dst_iview->image, dst_aux_usage,
6472                                dst_iview->planes[0].isl.base_level,
6473                                dst_iview->planes[0].isl.base_array_layer,
6474                                VK_IMAGE_ASPECT_COLOR_BIT,
6475                                render_area.offset.x, render_area.offset.y,
6476                                render_area.offset.x, render_area.offset.y,
6477                                render_area.extent.width,
6478                                render_area.extent.height,
6479                                fb->layers, BLORP_FILTER_NONE);
6480      }
6481   }
6482
6483   if (subpass->ds_resolve_attachment) {
6484      /* We are about to do some MSAA resolves.  We need to flush so that the
6485       * result of writes to the MSAA depth attachments show up in the sampler
6486       * when we blit to the single-sampled resolve target.
6487       */
6488      anv_add_pending_pipe_bits(cmd_buffer,
6489                              ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
6490                              ANV_PIPE_DEPTH_CACHE_FLUSH_BIT,
6491                              "MSAA resolve");
6492
6493      uint32_t src_att = subpass->depth_stencil_attachment->attachment;
6494      uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
6495
6496      assert(src_att < cmd_buffer->state.pass->attachment_count);
6497      assert(dst_att < cmd_buffer->state.pass->attachment_count);
6498
6499      if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
6500         /* From the Vulkan 1.0 spec:
6501          *
6502          *    If the first use of an attachment in a render pass is as a
6503          *    resolve attachment, then the loadOp is effectively ignored
6504          *    as the resolve is guaranteed to overwrite all pixels in the
6505          *    render area.
6506          */
6507         cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
6508      }
6509
6510      struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
6511      struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
6512
6513      const VkRect2D render_area = cmd_buffer->state.render_area;
6514
6515      struct anv_attachment_state *src_state =
6516         &cmd_state->attachments[src_att];
6517      struct anv_attachment_state *dst_state =
6518         &cmd_state->attachments[dst_att];
6519
6520      if ((src_iview->image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
6521          subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
6522
6523         /* MSAA resolves sample from the source attachment.  Transition the
6524          * depth attachment first to get rid of any HiZ that we may not be
6525          * able to handle.
6526          */
6527         transition_depth_buffer(cmd_buffer, src_iview->image,
6528                                 src_iview->planes[0].isl.base_array_layer,
6529                                 fb->layers,
6530                                 src_state->current_layout,
6531                                 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
6532                                 false /* will_full_fast_clear */);
6533         src_state->aux_usage =
6534            anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
6535                                    VK_IMAGE_ASPECT_DEPTH_BIT,
6536                                    VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
6537                                    VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
6538         src_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
6539
6540         /* MSAA resolves write to the resolve attachment as if it were any
6541          * other transfer op.  Transition the resolve attachment accordingly.
6542          */
6543         VkImageLayout dst_initial_layout = dst_state->current_layout;
6544
6545         /* If our render area is the entire size of the image, we're going to
6546          * blow it all away so we can claim the initial layout is UNDEFINED
6547          * and we'll get a HiZ ambiguate instead of a resolve.
6548          */
6549         if (dst_iview->image->vk.image_type != VK_IMAGE_TYPE_3D &&
6550             render_area.offset.x == 0 && render_area.offset.y == 0 &&
6551             render_area.extent.width == dst_iview->vk.extent.width &&
6552             render_area.extent.height == dst_iview->vk.extent.height)
6553            dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
6554
6555         transition_depth_buffer(cmd_buffer, dst_iview->image,
6556                                 dst_iview->planes[0].isl.base_array_layer,
6557                                 fb->layers,
6558                                 dst_initial_layout,
6559                                 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
6560                                 false /* will_full_fast_clear */);
6561         dst_state->aux_usage =
6562            anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
6563                                    VK_IMAGE_ASPECT_DEPTH_BIT,
6564                                    VK_IMAGE_USAGE_TRANSFER_DST_BIT,
6565                                    VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
6566         dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
6567
6568         enum blorp_filter filter =
6569            vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
6570
6571         anv_image_msaa_resolve(cmd_buffer,
6572                                src_iview->image, src_state->aux_usage,
6573                                src_iview->planes[0].isl.base_level,
6574                                src_iview->planes[0].isl.base_array_layer,
6575                                dst_iview->image, dst_state->aux_usage,
6576                                dst_iview->planes[0].isl.base_level,
6577                                dst_iview->planes[0].isl.base_array_layer,
6578                                VK_IMAGE_ASPECT_DEPTH_BIT,
6579                                render_area.offset.x, render_area.offset.y,
6580                                render_area.offset.x, render_area.offset.y,
6581                                render_area.extent.width,
6582                                render_area.extent.height,
6583                                fb->layers, filter);
6584      }
6585
6586      if ((src_iview->image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
6587          subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
6588
6589         src_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
6590         dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
6591
6592         enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
6593         const uint32_t plane =
6594            anv_image_aspect_to_plane(dst_iview->image, VK_IMAGE_ASPECT_STENCIL_BIT);
6595         enum isl_aux_usage dst_aux_usage =
6596            dst_iview->image->planes[plane].aux_usage;
6597
6598         enum blorp_filter filter =
6599            vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
6600
6601         anv_image_msaa_resolve(cmd_buffer,
6602                                src_iview->image, src_aux_usage,
6603                                src_iview->planes[0].isl.base_level,
6604                                src_iview->planes[0].isl.base_array_layer,
6605                                dst_iview->image, dst_aux_usage,
6606                                dst_iview->planes[0].isl.base_level,
6607                                dst_iview->planes[0].isl.base_array_layer,
6608                                VK_IMAGE_ASPECT_STENCIL_BIT,
6609                                render_area.offset.x, render_area.offset.y,
6610                                render_area.offset.x, render_area.offset.y,
6611                                render_area.extent.width,
6612                                render_area.extent.height,
6613                                fb->layers, filter);
6614      }
6615   }
6616
6617#if GFX_VER == 7
6618   /* On gfx7, we have to store a texturable version of the stencil buffer in
6619    * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
6620    * forth at strategic points. Stencil writes are only allowed in following
6621    * layouts:
6622    *
6623    *  - VK_IMAGE_LAYOUT_GENERAL
6624    *  - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
6625    *  - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
6626    *  - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
6627    *  - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
6628    *
6629    * For general, we have no nice opportunity to transition so we do the copy
6630    * to the shadow unconditionally at the end of the subpass. For transfer
6631    * destinations, we can update it as part of the transfer op. For the other
6632    * layouts, we delay the copy until a transition into some other layout.
6633    */
6634   if (subpass->depth_stencil_attachment) {
6635      uint32_t a = subpass->depth_stencil_attachment->attachment;
6636      assert(a != VK_ATTACHMENT_UNUSED);
6637
6638      struct anv_attachment_state *att_state = &cmd_state->attachments[a];
6639      struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
6640      const struct anv_image *image = iview->image;
6641
6642      if (image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
6643         const uint32_t plane =
6644            anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
6645
6646         if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
6647             att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
6648            assert(image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
6649            anv_image_copy_to_shadow(cmd_buffer, image,
6650                                     VK_IMAGE_ASPECT_STENCIL_BIT,
6651                                     iview->planes[plane].isl.base_level, 1,
6652                                     iview->planes[plane].isl.base_array_layer,
6653                                     fb->layers);
6654         }
6655      }
6656   }
6657#endif /* GFX_VER == 7 */
6658
6659   for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
6660      const uint32_t a = subpass->attachments[i].attachment;
6661      if (a == VK_ATTACHMENT_UNUSED)
6662         continue;
6663
6664      if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
6665         continue;
6666
6667      assert(a < cmd_state->pass->attachment_count);
6668      struct anv_attachment_state *att_state = &cmd_state->attachments[a];
6669      struct anv_image_view *iview = cmd_state->attachments[a].image_view;
6670      const struct anv_image *image = iview->image;
6671
6672      /* Transition the image into the final layout for this render pass */
6673      VkImageLayout target_layout =
6674         cmd_state->pass->attachments[a].final_layout;
6675      VkImageLayout target_stencil_layout =
6676         cmd_state->pass->attachments[a].stencil_final_layout;
6677
6678      uint32_t base_layer, layer_count;
6679      if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
6680         base_layer = 0;
6681         layer_count = anv_minify(iview->image->vk.extent.depth,
6682                                  iview->planes[0].isl.base_level);
6683      } else {
6684         base_layer = iview->planes[0].isl.base_array_layer;
6685         layer_count = fb->layers;
6686      }
6687
6688      if (image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
6689         assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
6690         transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
6691                                 iview->planes[0].isl.base_level, 1,
6692                                 base_layer, layer_count,
6693                                 att_state->current_layout, target_layout,
6694                                 VK_QUEUE_FAMILY_IGNORED,
6695                                 VK_QUEUE_FAMILY_IGNORED,
6696                                 false /* will_full_fast_clear */);
6697      }
6698
6699      if (image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
6700         transition_depth_buffer(cmd_buffer, image,
6701                                 base_layer, layer_count,
6702                                 att_state->current_layout, target_layout,
6703                                 false /* will_full_fast_clear */);
6704      }
6705
6706      if (image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
6707         transition_stencil_buffer(cmd_buffer, image,
6708                                   iview->planes[0].isl.base_level, 1,
6709                                   base_layer, layer_count,
6710                                   att_state->current_stencil_layout,
6711                                   target_stencil_layout,
6712                                   false /* will_full_fast_clear */);
6713      }
6714   }
6715
6716   /* Accumulate any subpass flushes that need to happen after the subpass.
6717    * Yes, they do get accumulated twice in the NextSubpass case but since
6718    * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
6719    * ORing the bits in twice so it's harmless.
6720    */
6721   anv_add_pending_pipe_bits(cmd_buffer,
6722                             cmd_buffer->state.pass->subpass_flushes[subpass_id + 1],
6723                             "end subpass deps/attachments");
6724}
6725
6726void genX(CmdBeginRenderPass2)(
6727    VkCommandBuffer                             commandBuffer,
6728    const VkRenderPassBeginInfo*                pRenderPassBeginInfo,
6729    const VkSubpassBeginInfoKHR*                pSubpassBeginInfo)
6730{
6731   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
6732   ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBeginInfo->renderPass);
6733   ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBeginInfo->framebuffer);
6734   VkResult result;
6735
6736   if (!is_render_queue_cmd_buffer(cmd_buffer)) {
6737      assert(!"Trying to start a render pass on non-render queue!");
6738      anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_UNKNOWN);
6739      return;
6740   }
6741
6742   cmd_buffer->state.framebuffer = framebuffer;
6743   cmd_buffer->state.pass = pass;
6744   cmd_buffer->state.render_area = pRenderPassBeginInfo->renderArea;
6745
6746   anv_measure_beginrenderpass(cmd_buffer);
6747
6748   result = genX(cmd_buffer_setup_attachments)(cmd_buffer, pass,
6749                                               framebuffer,
6750                                               pRenderPassBeginInfo);
6751   if (result != VK_SUCCESS) {
6752      assert(anv_batch_has_error(&cmd_buffer->batch));
6753      return;
6754   }
6755
6756   genX(flush_pipeline_select_3d)(cmd_buffer);
6757
6758   cmd_buffer_begin_subpass(cmd_buffer, 0);
6759}
6760
6761void genX(CmdNextSubpass2)(
6762    VkCommandBuffer                             commandBuffer,
6763    const VkSubpassBeginInfoKHR*                pSubpassBeginInfo,
6764    const VkSubpassEndInfoKHR*                  pSubpassEndInfo)
6765{
6766   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
6767
6768   if (anv_batch_has_error(&cmd_buffer->batch))
6769      return;
6770
6771   assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
6772
6773   uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
6774   cmd_buffer_end_subpass(cmd_buffer);
6775   cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
6776}
6777
6778void genX(CmdEndRenderPass2)(
6779    VkCommandBuffer                             commandBuffer,
6780    const VkSubpassEndInfoKHR*                  pSubpassEndInfo)
6781{
6782   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
6783
6784   if (anv_batch_has_error(&cmd_buffer->batch))
6785      return;
6786
6787   cmd_buffer_end_subpass(cmd_buffer);
6788
6789   cmd_buffer->state.hiz_enabled = false;
6790
6791   /* Remove references to render pass specific state. This enables us to
6792    * detect whether or not we're in a renderpass.
6793    */
6794   cmd_buffer->state.framebuffer = NULL;
6795   cmd_buffer->state.pass = NULL;
6796   cmd_buffer->state.subpass = NULL;
6797}
6798
6799void
6800genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
6801{
6802#if GFX_VERx10 >= 75
6803   struct mi_builder b;
6804   mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
6805
6806   mi_store(&b, mi_reg64(MI_PREDICATE_SRC0),
6807                mi_reg32(ANV_PREDICATE_RESULT_REG));
6808   mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
6809
6810   anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
6811      mip.LoadOperation    = LOAD_LOADINV;
6812      mip.CombineOperation = COMBINE_SET;
6813      mip.CompareOperation = COMPARE_SRCS_EQUAL;
6814   }
6815#endif
6816}
6817
6818#if GFX_VERx10 >= 75
6819void genX(CmdBeginConditionalRenderingEXT)(
6820   VkCommandBuffer                             commandBuffer,
6821   const VkConditionalRenderingBeginInfoEXT*   pConditionalRenderingBegin)
6822{
6823   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
6824   ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
6825   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
6826   struct anv_address value_address =
6827      anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
6828
6829   const bool isInverted = pConditionalRenderingBegin->flags &
6830                           VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
6831
6832   cmd_state->conditional_render_enabled = true;
6833
6834   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
6835
6836   struct mi_builder b;
6837   mi_builder_init(&b, &cmd_buffer->device->info, &cmd_buffer->batch);
6838
6839   /* Section 19.4 of the Vulkan 1.1.85 spec says:
6840    *
6841    *    If the value of the predicate in buffer memory changes
6842    *    while conditional rendering is active, the rendering commands
6843    *    may be discarded in an implementation-dependent way.
6844    *    Some implementations may latch the value of the predicate
6845    *    upon beginning conditional rendering while others
6846    *    may read it before every rendering command.
6847    *
6848    * So it's perfectly fine to read a value from the buffer once.
6849    */
6850   struct mi_value value =  mi_mem32(value_address);
6851
6852   /* Precompute predicate result, it is necessary to support secondary
6853    * command buffers since it is unknown if conditional rendering is
6854    * inverted when populating them.
6855    */
6856   mi_store(&b, mi_reg64(ANV_PREDICATE_RESULT_REG),
6857                isInverted ? mi_uge(&b, mi_imm(0), value) :
6858                             mi_ult(&b, mi_imm(0), value));
6859}
6860
6861void genX(CmdEndConditionalRenderingEXT)(
6862	VkCommandBuffer                             commandBuffer)
6863{
6864   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
6865   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
6866
6867   cmd_state->conditional_render_enabled = false;
6868}
6869#endif
6870
6871/* Set of stage bits for which are pipelined, i.e. they get queued
6872 * by the command streamer for later execution.
6873 */
6874#define ANV_PIPELINE_STAGE_PIPELINED_BITS \
6875   ~(VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT_KHR | \
6876     VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT_KHR | \
6877     VK_PIPELINE_STAGE_2_HOST_BIT_KHR | \
6878     VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT)
6879
6880void genX(CmdSetEvent2KHR)(
6881    VkCommandBuffer                             commandBuffer,
6882    VkEvent                                     _event,
6883    const VkDependencyInfoKHR*                  pDependencyInfo)
6884{
6885   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
6886   ANV_FROM_HANDLE(anv_event, event, _event);
6887
6888   VkPipelineStageFlags2KHR src_stages = 0;
6889
6890   for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
6891      src_stages |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
6892   for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
6893      src_stages |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
6894   for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
6895      src_stages |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
6896
6897   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
6898   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
6899
6900   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
6901      if (src_stages & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
6902         pc.StallAtPixelScoreboard = true;
6903         pc.CommandStreamerStallEnable = true;
6904      }
6905
6906      pc.DestinationAddressType  = DAT_PPGTT,
6907      pc.PostSyncOperation       = WriteImmediateData,
6908      pc.Address = (struct anv_address) {
6909         cmd_buffer->device->dynamic_state_pool.block_pool.bo,
6910         event->state.offset
6911      };
6912      pc.ImmediateData           = VK_EVENT_SET;
6913      anv_debug_dump_pc(pc);
6914   }
6915}
6916
6917void genX(CmdResetEvent2KHR)(
6918    VkCommandBuffer                             commandBuffer,
6919    VkEvent                                     _event,
6920    VkPipelineStageFlags2KHR                    stageMask)
6921{
6922   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
6923   ANV_FROM_HANDLE(anv_event, event, _event);
6924
6925   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
6926   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
6927
6928   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
6929      if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
6930         pc.StallAtPixelScoreboard = true;
6931         pc.CommandStreamerStallEnable = true;
6932      }
6933
6934      pc.DestinationAddressType  = DAT_PPGTT;
6935      pc.PostSyncOperation       = WriteImmediateData;
6936      pc.Address = (struct anv_address) {
6937         cmd_buffer->device->dynamic_state_pool.block_pool.bo,
6938         event->state.offset
6939      };
6940      pc.ImmediateData           = VK_EVENT_RESET;
6941      anv_debug_dump_pc(pc);
6942   }
6943}
6944
6945void genX(CmdWaitEvents2KHR)(
6946    VkCommandBuffer                             commandBuffer,
6947    uint32_t                                    eventCount,
6948    const VkEvent*                              pEvents,
6949    const VkDependencyInfoKHR*                  pDependencyInfos)
6950{
6951   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
6952
6953#if GFX_VER >= 8
6954   for (uint32_t i = 0; i < eventCount; i++) {
6955      ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
6956
6957      anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
6958         sem.WaitMode            = PollingMode,
6959         sem.CompareOperation    = COMPARE_SAD_EQUAL_SDD,
6960         sem.SemaphoreDataDword  = VK_EVENT_SET,
6961         sem.SemaphoreAddress = (struct anv_address) {
6962            cmd_buffer->device->dynamic_state_pool.block_pool.bo,
6963            event->state.offset
6964         };
6965      }
6966   }
6967#else
6968   anv_finishme("Implement events on gfx7");
6969#endif
6970
6971   cmd_buffer_barrier(cmd_buffer, pDependencyInfos, "wait event");
6972}
6973
6974VkResult genX(CmdSetPerformanceOverrideINTEL)(
6975    VkCommandBuffer                             commandBuffer,
6976    const VkPerformanceOverrideInfoINTEL*       pOverrideInfo)
6977{
6978   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
6979
6980   switch (pOverrideInfo->type) {
6981   case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
6982#if GFX_VER >= 9
6983      anv_batch_write_reg(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2), csdm2) {
6984         csdm2._3DRenderingInstructionDisable = pOverrideInfo->enable;
6985         csdm2.MediaInstructionDisable = pOverrideInfo->enable;
6986         csdm2._3DRenderingInstructionDisableMask = true;
6987         csdm2.MediaInstructionDisableMask = true;
6988      }
6989#else
6990      anv_batch_write_reg(&cmd_buffer->batch, GENX(INSTPM), instpm) {
6991         instpm._3DRenderingInstructionDisable = pOverrideInfo->enable;
6992         instpm.MediaInstructionDisable = pOverrideInfo->enable;
6993         instpm._3DRenderingInstructionDisableMask = true;
6994         instpm.MediaInstructionDisableMask = true;
6995      }
6996#endif
6997      break;
6998   }
6999
7000   case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
7001      if (pOverrideInfo->enable) {
7002         /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
7003         anv_add_pending_pipe_bits(cmd_buffer,
7004                                   ANV_PIPE_FLUSH_BITS |
7005                                   ANV_PIPE_INVALIDATE_BITS,
7006                                   "perf counter isolation");
7007         genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
7008      }
7009      break;
7010
7011   default:
7012      unreachable("Invalid override");
7013   }
7014
7015   return VK_SUCCESS;
7016}
7017
7018VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
7019    VkCommandBuffer                             commandBuffer,
7020    const VkPerformanceStreamMarkerInfoINTEL*   pMarkerInfo)
7021{
7022   /* TODO: Waiting on the register to write, might depend on generation. */
7023
7024   return VK_SUCCESS;
7025}
7026
7027void genX(cmd_emit_timestamp)(struct anv_batch *batch,
7028                              struct anv_bo *bo,
7029                              uint32_t offset) {
7030   anv_batch_emit(batch, GENX(PIPE_CONTROL), pc) {
7031      pc.CommandStreamerStallEnable = true;
7032      pc.PostSyncOperation       = WriteTimestamp;
7033      pc.Address = (struct anv_address) {bo, offset};
7034      anv_debug_dump_pc(pc);
7035   }
7036}
7037