genX_cmd_buffer.c revision 01e04c3f
1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <assert.h>
25#include <stdbool.h>
26
27#include "anv_private.h"
28#include "vk_format_info.h"
29#include "vk_util.h"
30
31#include "common/gen_l3_config.h"
32#include "genxml/gen_macros.h"
33#include "genxml/genX_pack.h"
34
35static void
36emit_lrm(struct anv_batch *batch, uint32_t reg, struct anv_address addr)
37{
38   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
39      lrm.RegisterAddress  = reg;
40      lrm.MemoryAddress    = addr;
41   }
42}
43
44static void
45emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
46{
47   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
48      lri.RegisterOffset   = reg;
49      lri.DataDWord        = imm;
50   }
51}
52
53#if GEN_IS_HASWELL || GEN_GEN >= 8
54static void
55emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
56{
57   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
58      lrr.SourceRegisterAddress        = src;
59      lrr.DestinationRegisterAddress   = dst;
60   }
61}
62#endif
63
64void
65genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
66{
67   struct anv_device *device = cmd_buffer->device;
68
69   /* If we are emitting a new state base address we probably need to re-emit
70    * binding tables.
71    */
72   cmd_buffer->state.descriptors_dirty |= ~0;
73
74   /* Emit a render target cache flush.
75    *
76    * This isn't documented anywhere in the PRM.  However, it seems to be
77    * necessary prior to changing the surface state base adress.  Without
78    * this, we get GPU hangs when using multi-level command buffers which
79    * clear depth, reset state base address, and then go render stuff.
80    */
81   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
82      pc.DCFlushEnable = true;
83      pc.RenderTargetCacheFlushEnable = true;
84      pc.CommandStreamerStallEnable = true;
85   }
86
87   anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
88      sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
89      sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
90      sba.GeneralStateBaseAddressModifyEnable = true;
91
92      sba.SurfaceStateBaseAddress =
93         anv_cmd_buffer_surface_base_address(cmd_buffer);
94      sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
95      sba.SurfaceStateBaseAddressModifyEnable = true;
96
97      sba.DynamicStateBaseAddress =
98         (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
99      sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
100      sba.DynamicStateBaseAddressModifyEnable = true;
101
102      sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
103      sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
104      sba.IndirectObjectBaseAddressModifyEnable = true;
105
106      sba.InstructionBaseAddress =
107         (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
108      sba.InstructionMemoryObjectControlState = GENX(MOCS);
109      sba.InstructionBaseAddressModifyEnable = true;
110
111#  if (GEN_GEN >= 8)
112      /* Broadwell requires that we specify a buffer size for a bunch of
113       * these fields.  However, since we will be growing the BO's live, we
114       * just set them all to the maximum.
115       */
116      sba.GeneralStateBufferSize                = 0xfffff;
117      sba.GeneralStateBufferSizeModifyEnable    = true;
118      sba.DynamicStateBufferSize                = 0xfffff;
119      sba.DynamicStateBufferSizeModifyEnable    = true;
120      sba.IndirectObjectBufferSize              = 0xfffff;
121      sba.IndirectObjectBufferSizeModifyEnable  = true;
122      sba.InstructionBufferSize                 = 0xfffff;
123      sba.InstructionBuffersizeModifyEnable     = true;
124#  endif
125#  if (GEN_GEN >= 9)
126      sba.BindlessSurfaceStateBaseAddress = (struct anv_address) { NULL, 0 };
127      sba.BindlessSurfaceStateMemoryObjectControlState = GENX(MOCS);
128      sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
129      sba.BindlessSurfaceStateSize = 0;
130#  endif
131#  if (GEN_GEN >= 10)
132      sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
133      sba.BindlessSamplerStateMemoryObjectControlState = GENX(MOCS);
134      sba.BindlessSamplerStateBaseAddressModifyEnable = true;
135      sba.BindlessSamplerStateBufferSize = 0;
136#  endif
137   }
138
139   /* After re-setting the surface state base address, we have to do some
140    * cache flusing so that the sampler engine will pick up the new
141    * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
142    * Shared Function > 3D Sampler > State > State Caching (page 96):
143    *
144    *    Coherency with system memory in the state cache, like the texture
145    *    cache is handled partially by software. It is expected that the
146    *    command stream or shader will issue Cache Flush operation or
147    *    Cache_Flush sampler message to ensure that the L1 cache remains
148    *    coherent with system memory.
149    *
150    *    [...]
151    *
152    *    Whenever the value of the Dynamic_State_Base_Addr,
153    *    Surface_State_Base_Addr are altered, the L1 state cache must be
154    *    invalidated to ensure the new surface or sampler state is fetched
155    *    from system memory.
156    *
157    * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
158    * which, according the PIPE_CONTROL instruction documentation in the
159    * Broadwell PRM:
160    *
161    *    Setting this bit is independent of any other bit in this packet.
162    *    This bit controls the invalidation of the L1 and L2 state caches
163    *    at the top of the pipe i.e. at the parsing time.
164    *
165    * Unfortunately, experimentation seems to indicate that state cache
166    * invalidation through a PIPE_CONTROL does nothing whatsoever in
167    * regards to surface state and binding tables.  In stead, it seems that
168    * invalidating the texture cache is what is actually needed.
169    *
170    * XXX:  As far as we have been able to determine through
171    * experimentation, shows that flush the texture cache appears to be
172    * sufficient.  The theory here is that all of the sampling/rendering
173    * units cache the binding table in the texture cache.  However, we have
174    * yet to be able to actually confirm this.
175    */
176   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
177      pc.TextureCacheInvalidationEnable = true;
178      pc.ConstantCacheInvalidationEnable = true;
179      pc.StateCacheInvalidationEnable = true;
180   }
181}
182
183static void
184add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
185                  struct anv_state state, struct anv_address addr)
186{
187   const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188
189   VkResult result =
190      anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
191                         state.offset + isl_dev->ss.addr_offset,
192                         addr.bo, addr.offset);
193   if (result != VK_SUCCESS)
194      anv_batch_set_error(&cmd_buffer->batch, result);
195}
196
197static void
198add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
199                         struct anv_surface_state state)
200{
201   const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
202
203   assert(!anv_address_is_null(state.address));
204   add_surface_reloc(cmd_buffer, state.state, state.address);
205
206   if (!anv_address_is_null(state.aux_address)) {
207      VkResult result =
208         anv_reloc_list_add(&cmd_buffer->surface_relocs,
209                            &cmd_buffer->pool->alloc,
210                            state.state.offset + isl_dev->ss.aux_addr_offset,
211                            state.aux_address.bo, state.aux_address.offset);
212      if (result != VK_SUCCESS)
213         anv_batch_set_error(&cmd_buffer->batch, result);
214   }
215
216   if (!anv_address_is_null(state.clear_address)) {
217      VkResult result =
218         anv_reloc_list_add(&cmd_buffer->surface_relocs,
219                            &cmd_buffer->pool->alloc,
220                            state.state.offset +
221                            isl_dev->ss.clear_color_state_offset,
222                            state.clear_address.bo, state.clear_address.offset);
223      if (result != VK_SUCCESS)
224         anv_batch_set_error(&cmd_buffer->batch, result);
225   }
226}
227
228static void
229color_attachment_compute_aux_usage(struct anv_device * device,
230                                   struct anv_cmd_state * cmd_state,
231                                   uint32_t att, VkRect2D render_area,
232                                   union isl_color_value *fast_clear_color)
233{
234   struct anv_attachment_state *att_state = &cmd_state->attachments[att];
235   struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
236
237   assert(iview->n_planes == 1);
238
239   if (iview->planes[0].isl.base_array_layer >=
240       anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
241                            iview->planes[0].isl.base_level)) {
242      /* There is no aux buffer which corresponds to the level and layer(s)
243       * being accessed.
244       */
245      att_state->aux_usage = ISL_AUX_USAGE_NONE;
246      att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
247      att_state->fast_clear = false;
248      return;
249   }
250
251   att_state->aux_usage =
252      anv_layout_to_aux_usage(&device->info, iview->image,
253                              VK_IMAGE_ASPECT_COLOR_BIT,
254                              VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
255
256   /* If we don't have aux, then we should have returned early in the layer
257    * check above.  If we got here, we must have something.
258    */
259   assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
260
261   if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
262       att_state->aux_usage == ISL_AUX_USAGE_MCS) {
263      att_state->input_aux_usage = att_state->aux_usage;
264   } else {
265      /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
266       *
267       *    "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
268       *    setting is only allowed if Surface Format supported for Fast
269       *    Clear. In addition, if the surface is bound to the sampling
270       *    engine, Surface Format must be supported for Render Target
271       *    Compression for surfaces bound to the sampling engine."
272       *
273       * In other words, we can only sample from a fast-cleared image if it
274       * also supports color compression.
275       */
276      if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
277         att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
278
279         /* While fast-clear resolves and partial resolves are fairly cheap in the
280          * case where you render to most of the pixels, full resolves are not
281          * because they potentially involve reading and writing the entire
282          * framebuffer.  If we can't texture with CCS_E, we should leave it off and
283          * limit ourselves to fast clears.
284          */
285         if (cmd_state->pass->attachments[att].first_subpass_layout ==
286             VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
287            anv_perf_warn(device->instance, iview->image,
288                          "Not temporarily enabling CCS_E.");
289         }
290      } else {
291         att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
292      }
293   }
294
295   assert(iview->image->planes[0].aux_surface.isl.usage &
296          (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
297
298   union isl_color_value clear_color = {};
299   anv_clear_color_from_att_state(&clear_color, att_state, iview);
300
301   att_state->clear_color_is_zero_one =
302      isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
303   att_state->clear_color_is_zero =
304      isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
305
306   if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
307      /* Start by getting the fast clear type.  We use the first subpass
308       * layout here because we don't want to fast-clear if the first subpass
309       * to use the attachment can't handle fast-clears.
310       */
311      enum anv_fast_clear_type fast_clear_type =
312         anv_layout_to_fast_clear_type(&device->info, iview->image,
313                                       VK_IMAGE_ASPECT_COLOR_BIT,
314                                       cmd_state->pass->attachments[att].first_subpass_layout);
315      switch (fast_clear_type) {
316      case ANV_FAST_CLEAR_NONE:
317         att_state->fast_clear = false;
318         break;
319      case ANV_FAST_CLEAR_DEFAULT_VALUE:
320         att_state->fast_clear = att_state->clear_color_is_zero;
321         break;
322      case ANV_FAST_CLEAR_ANY:
323         att_state->fast_clear = true;
324         break;
325      }
326
327      /* Potentially, we could do partial fast-clears but doing so has crazy
328       * alignment restrictions.  It's easier to just restrict to full size
329       * fast clears for now.
330       */
331      if (render_area.offset.x != 0 ||
332          render_area.offset.y != 0 ||
333          render_area.extent.width != iview->extent.width ||
334          render_area.extent.height != iview->extent.height)
335         att_state->fast_clear = false;
336
337      /* On Broadwell and earlier, we can only handle 0/1 clear colors */
338      if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
339         att_state->fast_clear = false;
340
341      /* We only allow fast clears to the first slice of an image (level 0,
342       * layer 0) and only for the entire slice.  This guarantees us that, at
343       * any given time, there is only one clear color on any given image at
344       * any given time.  At the time of our testing (Jan 17, 2018), there
345       * were no known applications which would benefit from fast-clearing
346       * more than just the first slice.
347       */
348      if (att_state->fast_clear &&
349          (iview->planes[0].isl.base_level > 0 ||
350           iview->planes[0].isl.base_array_layer > 0)) {
351         anv_perf_warn(device->instance, iview->image,
352                       "Rendering with multi-lod or multi-layer framebuffer "
353                       "with LOAD_OP_LOAD and baseMipLevel > 0 or "
354                       "baseArrayLayer > 0.  Not fast clearing.");
355         att_state->fast_clear = false;
356      } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
357         anv_perf_warn(device->instance, iview->image,
358                       "Rendering to a multi-layer framebuffer with "
359                       "LOAD_OP_CLEAR.  Only fast-clearing the first slice");
360      }
361
362      if (att_state->fast_clear)
363         *fast_clear_color = clear_color;
364   } else {
365      att_state->fast_clear = false;
366   }
367}
368
369static void
370depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
371                                           struct anv_cmd_state *cmd_state,
372                                           uint32_t att, VkRect2D render_area)
373{
374   struct anv_render_pass_attachment *pass_att =
375      &cmd_state->pass->attachments[att];
376   struct anv_attachment_state *att_state = &cmd_state->attachments[att];
377   struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
378
379   /* These will be initialized after the first subpass transition. */
380   att_state->aux_usage = ISL_AUX_USAGE_NONE;
381   att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
382
383   if (GEN_GEN == 7) {
384      /* We don't do any HiZ or depth fast-clears on gen7 yet */
385      att_state->fast_clear = false;
386      return;
387   }
388
389   if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
390      /* If we're just clearing stencil, we can always HiZ clear */
391      att_state->fast_clear = true;
392      return;
393   }
394
395   /* Default to false for now */
396   att_state->fast_clear = false;
397
398   /* We must have depth in order to have HiZ */
399   if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
400      return;
401
402   const enum isl_aux_usage first_subpass_aux_usage =
403      anv_layout_to_aux_usage(&device->info, iview->image,
404                              VK_IMAGE_ASPECT_DEPTH_BIT,
405                              pass_att->first_subpass_layout);
406   if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ)
407      return;
408
409   if (!blorp_can_hiz_clear_depth(GEN_GEN,
410                                  iview->planes[0].isl.format,
411                                  iview->image->samples,
412                                  render_area.offset.x,
413                                  render_area.offset.y,
414                                  render_area.offset.x +
415                                  render_area.extent.width,
416                                  render_area.offset.y +
417                                  render_area.extent.height))
418      return;
419
420   if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
421      return;
422
423   if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
424      /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
425       * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
426       * only supports returning 0.0f. Gens prior to gen8 do not support this
427       * feature at all.
428       */
429      return;
430   }
431
432   /* If we got here, then we can fast clear */
433   att_state->fast_clear = true;
434}
435
436static bool
437need_input_attachment_state(const struct anv_render_pass_attachment *att)
438{
439   if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
440      return false;
441
442   /* We only allocate input attachment states for color surfaces. Compression
443    * is not yet enabled for depth textures and stencil doesn't allow
444    * compression so we can just use the texture surface state from the view.
445    */
446   return vk_format_is_color(att->format);
447}
448
449/* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
450 * the initial layout is undefined, the HiZ buffer and depth buffer will
451 * represent the same data at the end of this operation.
452 */
453static void
454transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
455                        const struct anv_image *image,
456                        VkImageLayout initial_layout,
457                        VkImageLayout final_layout)
458{
459   const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
460      anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
461                              VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
462   const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
463      anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
464                              VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
465
466   enum isl_aux_op hiz_op;
467   if (hiz_enabled && !enable_hiz) {
468      hiz_op = ISL_AUX_OP_FULL_RESOLVE;
469   } else if (!hiz_enabled && enable_hiz) {
470      hiz_op = ISL_AUX_OP_AMBIGUATE;
471   } else {
472      assert(hiz_enabled == enable_hiz);
473      /* If the same buffer will be used, no resolves are necessary. */
474      hiz_op = ISL_AUX_OP_NONE;
475   }
476
477   if (hiz_op != ISL_AUX_OP_NONE)
478      anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
479                       0, 0, 1, hiz_op);
480}
481
482#define MI_PREDICATE_SRC0  0x2400
483#define MI_PREDICATE_SRC1  0x2408
484
485static void
486set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
487                         const struct anv_image *image,
488                         VkImageAspectFlagBits aspect,
489                         uint32_t level,
490                         uint32_t base_layer, uint32_t layer_count,
491                         bool compressed)
492{
493   uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
494
495   /* We only have compression tracking for CCS_E */
496   if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
497      return;
498
499   for (uint32_t a = 0; a < layer_count; a++) {
500      uint32_t layer = base_layer + a;
501      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
502         sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
503                                                            image, aspect,
504                                                            level, layer);
505         sdi.ImmediateData = compressed ? UINT32_MAX : 0;
506      }
507   }
508}
509
510static void
511set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
512                           const struct anv_image *image,
513                           VkImageAspectFlagBits aspect,
514                           enum anv_fast_clear_type fast_clear)
515{
516   anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
517      sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
518                                                       image, aspect);
519      sdi.ImmediateData = fast_clear;
520   }
521
522   /* Whenever we have fast-clear, we consider that slice to be compressed.
523    * This makes building predicates much easier.
524    */
525   if (fast_clear != ANV_FAST_CLEAR_NONE)
526      set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
527}
528
529#if GEN_IS_HASWELL || GEN_GEN >= 8
530static inline uint32_t
531mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
532{
533   struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
534      .ALUOpcode = opcode,
535      .Operand1 = operand1,
536      .Operand2 = operand2,
537   };
538
539   uint32_t dw;
540   GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
541
542   return dw;
543}
544#endif
545
546#define CS_GPR(n) (0x2600 + (n) * 8)
547
548/* This is only really practical on haswell and above because it requires
549 * MI math in order to get it correct.
550 */
551#if GEN_GEN >= 8 || GEN_IS_HASWELL
552static void
553anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
554                                  const struct anv_image *image,
555                                  VkImageAspectFlagBits aspect,
556                                  uint32_t level, uint32_t array_layer,
557                                  enum isl_aux_op resolve_op,
558                                  enum anv_fast_clear_type fast_clear_supported)
559{
560   struct anv_address fast_clear_type_addr =
561      anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
562
563   /* Name some registers */
564   const int image_fc_reg = MI_ALU_REG0;
565   const int fc_imm_reg = MI_ALU_REG1;
566   const int pred_reg = MI_ALU_REG2;
567
568   uint32_t *dw;
569
570   if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
571      /* In this case, we're doing a full resolve which means we want the
572       * resolve to happen if any compression (including fast-clears) is
573       * present.
574       *
575       * In order to simplify the logic a bit, we make the assumption that,
576       * if the first slice has been fast-cleared, it is also marked as
577       * compressed.  See also set_image_fast_clear_state.
578       */
579      struct anv_address compression_state_addr =
580         anv_image_get_compression_state_addr(cmd_buffer->device, image,
581                                              aspect, level, array_layer);
582      anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
583         lrm.RegisterAddress  = MI_PREDICATE_SRC0;
584         lrm.MemoryAddress    = compression_state_addr;
585      }
586      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
587         sdi.Address       = compression_state_addr;
588         sdi.ImmediateData = 0;
589      }
590
591      if (level == 0 && array_layer == 0) {
592         /* If the predicate is true, we want to write 0 to the fast clear type
593          * and, if it's false, leave it alone.  We can do this by writing
594          *
595          * clear_type = clear_type & ~predicate;
596          */
597         anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
598            lrm.RegisterAddress  = CS_GPR(image_fc_reg);
599            lrm.MemoryAddress    = fast_clear_type_addr;
600         }
601         anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
602            lrr.DestinationRegisterAddress   = CS_GPR(pred_reg);
603            lrr.SourceRegisterAddress        = MI_PREDICATE_SRC0;
604         }
605
606         dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
607         dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
608         dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
609         dw[3] = mi_alu(MI_ALU_AND, 0, 0);
610         dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
611
612         anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
613            srm.MemoryAddress    = fast_clear_type_addr;
614            srm.RegisterAddress  = CS_GPR(image_fc_reg);
615         }
616      }
617   } else if (level == 0 && array_layer == 0) {
618      /* In this case, we are doing a partial resolve to get rid of fast-clear
619       * colors.  We don't care about the compression state but we do care
620       * about how much fast clear is allowed by the final layout.
621       */
622      assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
623      assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
624
625      anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
626         lrm.RegisterAddress  = CS_GPR(image_fc_reg);
627         lrm.MemoryAddress    = fast_clear_type_addr;
628      }
629      emit_lri(&cmd_buffer->batch, CS_GPR(image_fc_reg) + 4, 0);
630
631      emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg), fast_clear_supported);
632      emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg) + 4, 0);
633
634      /* We need to compute (fast_clear_supported < image->fast_clear).
635       * We do this by subtracting and storing the carry bit.
636       */
637      dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
638      dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm_reg);
639      dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc_reg);
640      dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
641      dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF);
642
643      /* Store the predicate */
644      emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(pred_reg));
645
646      /* If the predicate is true, we want to write 0 to the fast clear type
647       * and, if it's false, leave it alone.  We can do this by writing
648       *
649       * clear_type = clear_type & ~predicate;
650       */
651      dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
652      dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
653      dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
654      dw[3] = mi_alu(MI_ALU_AND, 0, 0);
655      dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
656
657      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
658         srm.RegisterAddress  = CS_GPR(image_fc_reg);
659         srm.MemoryAddress    = fast_clear_type_addr;
660      }
661   } else {
662      /* In this case, we're trying to do a partial resolve on a slice that
663       * doesn't have clear color.  There's nothing to do.
664       */
665      assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
666      return;
667   }
668
669   /* We use the first half of src0 for the actual predicate.  Set the second
670    * half of src0 and all of src1 to 0 as the predicate operation will be
671    * doing an implicit src0 != src1.
672    */
673   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
674   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1    , 0);
675   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
676
677   anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
678      mip.LoadOperation    = LOAD_LOADINV;
679      mip.CombineOperation = COMBINE_SET;
680      mip.CompareOperation = COMPARE_SRCS_EQUAL;
681   }
682}
683#endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
684
685#if GEN_GEN <= 8
686static void
687anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
688                                 const struct anv_image *image,
689                                 VkImageAspectFlagBits aspect,
690                                 uint32_t level, uint32_t array_layer,
691                                 enum isl_aux_op resolve_op,
692                                 enum anv_fast_clear_type fast_clear_supported)
693{
694   struct anv_address fast_clear_type_addr =
695      anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
696
697   /* This only works for partial resolves and only when the clear color is
698    * all or nothing.  On the upside, this emits less command streamer code
699    * and works on Ivybridge and Bay Trail.
700    */
701   assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
702   assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
703
704   /* We don't support fast clears on anything other than the first slice. */
705   if (level > 0 || array_layer > 0)
706      return;
707
708   /* On gen8, we don't have a concept of default clear colors because we
709    * can't sample from CCS surfaces.  It's enough to just load the fast clear
710    * state into the predicate register.
711    */
712   anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
713      lrm.RegisterAddress  = MI_PREDICATE_SRC0;
714      lrm.MemoryAddress    = fast_clear_type_addr;
715   }
716   anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
717      sdi.Address          = fast_clear_type_addr;
718      sdi.ImmediateData    = 0;
719   }
720
721   /* We use the first half of src0 for the actual predicate.  Set the second
722    * half of src0 and all of src1 to 0 as the predicate operation will be
723    * doing an implicit src0 != src1.
724    */
725   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
726   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1    , 0);
727   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
728
729   anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
730      mip.LoadOperation    = LOAD_LOADINV;
731      mip.CombineOperation = COMBINE_SET;
732      mip.CompareOperation = COMPARE_SRCS_EQUAL;
733   }
734}
735#endif /* GEN_GEN <= 8 */
736
737static void
738anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
739                               const struct anv_image *image,
740                               enum isl_format format,
741                               VkImageAspectFlagBits aspect,
742                               uint32_t level, uint32_t array_layer,
743                               enum isl_aux_op resolve_op,
744                               enum anv_fast_clear_type fast_clear_supported)
745{
746   const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
747
748#if GEN_GEN >= 9
749   anv_cmd_compute_resolve_predicate(cmd_buffer, image,
750                                     aspect, level, array_layer,
751                                     resolve_op, fast_clear_supported);
752#else /* GEN_GEN <= 8 */
753   anv_cmd_simple_resolve_predicate(cmd_buffer, image,
754                                    aspect, level, array_layer,
755                                    resolve_op, fast_clear_supported);
756#endif
757
758   /* CCS_D only supports full resolves and BLORP will assert on us if we try
759    * to do a partial resolve on a CCS_D surface.
760    */
761   if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
762       image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
763      resolve_op = ISL_AUX_OP_FULL_RESOLVE;
764
765   anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
766                    array_layer, 1, resolve_op, NULL, true);
767}
768
769static void
770anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
771                               const struct anv_image *image,
772                               enum isl_format format,
773                               VkImageAspectFlagBits aspect,
774                               uint32_t array_layer,
775                               enum isl_aux_op resolve_op,
776                               enum anv_fast_clear_type fast_clear_supported)
777{
778   assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
779   assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
780
781#if GEN_GEN >= 8 || GEN_IS_HASWELL
782   anv_cmd_compute_resolve_predicate(cmd_buffer, image,
783                                     aspect, 0, array_layer,
784                                     resolve_op, fast_clear_supported);
785
786   anv_image_mcs_op(cmd_buffer, image, format, aspect,
787                    array_layer, 1, resolve_op, NULL, true);
788#else
789   unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
790#endif
791}
792
793void
794genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
795                                    const struct anv_image *image,
796                                    VkImageAspectFlagBits aspect,
797                                    enum isl_aux_usage aux_usage,
798                                    uint32_t level,
799                                    uint32_t base_layer,
800                                    uint32_t layer_count)
801{
802   /* The aspect must be exactly one of the image aspects. */
803   assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
804
805   /* The only compression types with more than just fast-clears are MCS,
806    * CCS_E, and HiZ.  With HiZ we just trust the layout and don't actually
807    * track the current fast-clear and compression state.  This leaves us
808    * with just MCS and CCS_E.
809    */
810   if (aux_usage != ISL_AUX_USAGE_CCS_E &&
811       aux_usage != ISL_AUX_USAGE_MCS)
812      return;
813
814   set_image_compressed_bit(cmd_buffer, image, aspect,
815                            level, base_layer, layer_count, true);
816}
817
818static void
819init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
820                      const struct anv_image *image,
821                      VkImageAspectFlagBits aspect)
822{
823   assert(cmd_buffer && image);
824   assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
825
826   set_image_fast_clear_state(cmd_buffer, image, aspect,
827                              ANV_FAST_CLEAR_NONE);
828
829   /* The fast clear value dword(s) will be copied into a surface state object.
830    * Ensure that the restrictions of the fields in the dword(s) are followed.
831    *
832    * CCS buffers on SKL+ can have any value set for the clear colors.
833    */
834   if (image->samples == 1 && GEN_GEN >= 9)
835      return;
836
837   /* Other combinations of auxiliary buffers and platforms require specific
838    * values in the clear value dword(s).
839    */
840   struct anv_address addr =
841      anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
842
843   if (GEN_GEN >= 9) {
844      for (unsigned i = 0; i < 4; i++) {
845         anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
846            sdi.Address = addr;
847            sdi.Address.offset += i * 4;
848            /* MCS buffers on SKL+ can only have 1/0 clear colors. */
849            assert(image->samples > 1);
850            sdi.ImmediateData = 0;
851         }
852      }
853   } else {
854      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
855         sdi.Address = addr;
856         if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
857            /* Pre-SKL, the dword containing the clear values also contains
858             * other fields, so we need to initialize those fields to match the
859             * values that would be in a color attachment.
860             */
861            sdi.ImmediateData = ISL_CHANNEL_SELECT_RED   << 25 |
862                                ISL_CHANNEL_SELECT_GREEN << 22 |
863                                ISL_CHANNEL_SELECT_BLUE  << 19 |
864                                ISL_CHANNEL_SELECT_ALPHA << 16;
865         } else if (GEN_GEN == 7) {
866            /* On IVB, the dword containing the clear values also contains
867             * other fields that must be zero or can be zero.
868             */
869            sdi.ImmediateData = 0;
870         }
871      }
872   }
873}
874
875/* Copy the fast-clear value dword(s) between a surface state object and an
876 * image's fast clear state buffer.
877 */
878static void
879genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
880                             struct anv_state surface_state,
881                             const struct anv_image *image,
882                             VkImageAspectFlagBits aspect,
883                             bool copy_from_surface_state)
884{
885   assert(cmd_buffer && image);
886   assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
887
888   struct anv_address ss_clear_addr = {
889      .bo = &cmd_buffer->device->surface_state_pool.block_pool.bo,
890      .offset = surface_state.offset +
891                cmd_buffer->device->isl_dev.ss.clear_value_offset,
892   };
893   const struct anv_address entry_addr =
894      anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
895   unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
896
897   if (copy_from_surface_state) {
898      genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr,
899                                 ss_clear_addr, copy_size);
900   } else {
901      genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_clear_addr,
902                                 entry_addr, copy_size);
903
904      /* Updating a surface state object may require that the state cache be
905       * invalidated. From the SKL PRM, Shared Functions -> State -> State
906       * Caching:
907       *
908       *    Whenever the RENDER_SURFACE_STATE object in memory pointed to by
909       *    the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
910       *    modified [...], the L1 state cache must be invalidated to ensure
911       *    the new surface or sampler state is fetched from system memory.
912       *
913       * In testing, SKL doesn't actually seem to need this, but HSW does.
914       */
915      cmd_buffer->state.pending_pipe_bits |=
916         ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
917   }
918}
919
920/**
921 * @brief Transitions a color buffer from one layout to another.
922 *
923 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
924 * more information.
925 *
926 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
927 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
928 *                    this represents the maximum layers to transition at each
929 *                    specified miplevel.
930 */
931static void
932transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
933                        const struct anv_image *image,
934                        VkImageAspectFlagBits aspect,
935                        const uint32_t base_level, uint32_t level_count,
936                        uint32_t base_layer, uint32_t layer_count,
937                        VkImageLayout initial_layout,
938                        VkImageLayout final_layout)
939{
940   const struct gen_device_info *devinfo = &cmd_buffer->device->info;
941   /* Validate the inputs. */
942   assert(cmd_buffer);
943   assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
944   /* These values aren't supported for simplicity's sake. */
945   assert(level_count != VK_REMAINING_MIP_LEVELS &&
946          layer_count != VK_REMAINING_ARRAY_LAYERS);
947   /* Ensure the subresource range is valid. */
948   uint64_t last_level_num = base_level + level_count;
949   const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
950   UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
951   assert((uint64_t)base_layer + layer_count  <= image_layers);
952   assert(last_level_num <= image->levels);
953   /* The spec disallows these final layouts. */
954   assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
955          final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
956
957   /* No work is necessary if the layout stays the same or if this subresource
958    * range lacks auxiliary data.
959    */
960   if (initial_layout == final_layout)
961      return;
962
963   uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
964
965   if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
966       final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
967      /* This surface is a linear compressed image with a tiled shadow surface
968       * for texturing.  The client is about to use it in READ_ONLY_OPTIMAL so
969       * we need to ensure the shadow copy is up-to-date.
970       */
971      assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
972      assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
973      assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
974      assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
975      assert(plane == 0);
976      anv_image_copy_to_shadow(cmd_buffer, image,
977                               base_level, level_count,
978                               base_layer, layer_count);
979   }
980
981   if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
982      return;
983
984   assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
985
986   if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
987       initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
988      /* A subresource in the undefined layout may have been aliased and
989       * populated with any arrangement of bits. Therefore, we must initialize
990       * the related aux buffer and clear buffer entry with desirable values.
991       * An initial layout of PREINITIALIZED is the same as UNDEFINED for
992       * images with VK_IMAGE_TILING_OPTIMAL.
993       *
994       * Initialize the relevant clear buffer entries.
995       */
996      if (base_level == 0 && base_layer == 0)
997         init_fast_clear_color(cmd_buffer, image, aspect);
998
999      /* Initialize the aux buffers to enable correct rendering.  In order to
1000       * ensure that things such as storage images work correctly, aux buffers
1001       * need to be initialized to valid data.
1002       *
1003       * Having an aux buffer with invalid data is a problem for two reasons:
1004       *
1005       *  1) Having an invalid value in the buffer can confuse the hardware.
1006       *     For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1007       *     invalid and leads to the hardware doing strange things.  It
1008       *     doesn't hang as far as we can tell but rendering corruption can
1009       *     occur.
1010       *
1011       *  2) If this transition is into the GENERAL layout and we then use the
1012       *     image as a storage image, then we must have the aux buffer in the
1013       *     pass-through state so that, if we then go to texture from the
1014       *     image, we get the results of our storage image writes and not the
1015       *     fast clear color or other random data.
1016       *
1017       * For CCS both of the problems above are real demonstrable issues.  In
1018       * that case, the only thing we can do is to perform an ambiguate to
1019       * transition the aux surface into the pass-through state.
1020       *
1021       * For MCS, (2) is never an issue because we don't support multisampled
1022       * storage images.  In theory, issue (1) is a problem with MCS but we've
1023       * never seen it in the wild.  For 4x and 16x, all bit patters could, in
1024       * theory, be interpreted as something but we don't know that all bit
1025       * patterns are actually valid.  For 2x and 8x, you could easily end up
1026       * with the MCS referring to an invalid plane because not all bits of
1027       * the MCS value are actually used.  Even though we've never seen issues
1028       * in the wild, it's best to play it safe and initialize the MCS.  We
1029       * can use a fast-clear for MCS because we only ever touch from render
1030       * and texture (no image load store).
1031       */
1032      if (image->samples == 1) {
1033         for (uint32_t l = 0; l < level_count; l++) {
1034            const uint32_t level = base_level + l;
1035
1036            uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1037            if (base_layer >= aux_layers)
1038               break; /* We will only get fewer layers as level increases */
1039            uint32_t level_layer_count =
1040               MIN2(layer_count, aux_layers - base_layer);
1041
1042            anv_image_ccs_op(cmd_buffer, image,
1043                             image->planes[plane].surface.isl.format,
1044                             aspect, level, base_layer, level_layer_count,
1045                             ISL_AUX_OP_AMBIGUATE, NULL, false);
1046
1047            if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1048               set_image_compressed_bit(cmd_buffer, image, aspect,
1049                                        level, base_layer, level_layer_count,
1050                                        false);
1051            }
1052         }
1053      } else {
1054         if (image->samples == 4 || image->samples == 16) {
1055            anv_perf_warn(cmd_buffer->device->instance, image,
1056                          "Doing a potentially unnecessary fast-clear to "
1057                          "define an MCS buffer.");
1058         }
1059
1060         assert(base_level == 0 && level_count == 1);
1061         anv_image_mcs_op(cmd_buffer, image,
1062                          image->planes[plane].surface.isl.format,
1063                          aspect, base_layer, layer_count,
1064                          ISL_AUX_OP_FAST_CLEAR, NULL, false);
1065      }
1066      return;
1067   }
1068
1069   const enum isl_aux_usage initial_aux_usage =
1070      anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
1071   const enum isl_aux_usage final_aux_usage =
1072      anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
1073
1074   /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1075    * We can handle transitions between CCS_D/E to and from NONE.  What we
1076    * don't yet handle is switching between CCS_E and CCS_D within a given
1077    * image.  Doing so in a performant way requires more detailed aux state
1078    * tracking such as what is done in i965.  For now, just assume that we
1079    * only have one type of compression.
1080    */
1081   assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1082          final_aux_usage == ISL_AUX_USAGE_NONE ||
1083          initial_aux_usage == final_aux_usage);
1084
1085   /* If initial aux usage is NONE, there is nothing to resolve */
1086   if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1087      return;
1088
1089   enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1090
1091   /* If the initial layout supports more fast clear than the final layout
1092    * then we need at least a partial resolve.
1093    */
1094   const enum anv_fast_clear_type initial_fast_clear =
1095      anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1096   const enum anv_fast_clear_type final_fast_clear =
1097      anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1098   if (final_fast_clear < initial_fast_clear)
1099      resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1100
1101   if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1102       final_aux_usage != ISL_AUX_USAGE_CCS_E)
1103      resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1104
1105   if (resolve_op == ISL_AUX_OP_NONE)
1106      return;
1107
1108   /* Perform a resolve to synchronize data between the main and aux buffer.
1109    * Before we begin, we must satisfy the cache flushing requirement specified
1110    * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1111    *
1112    *    Any transition from any value in {Clear, Render, Resolve} to a
1113    *    different value in {Clear, Render, Resolve} requires end of pipe
1114    *    synchronization.
1115    *
1116    * We perform a flush of the write cache before and after the clear and
1117    * resolve operations to meet this requirement.
1118    *
1119    * Unlike other drawing, fast clear operations are not properly
1120    * synchronized. The first PIPE_CONTROL here likely ensures that the
1121    * contents of the previous render or clear hit the render target before we
1122    * resolve and the second likely ensures that the resolve is complete before
1123    * we do any more rendering or clearing.
1124    */
1125   cmd_buffer->state.pending_pipe_bits |=
1126      ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1127
1128   for (uint32_t l = 0; l < level_count; l++) {
1129      uint32_t level = base_level + l;
1130
1131      uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1132      if (base_layer >= aux_layers)
1133         break; /* We will only get fewer layers as level increases */
1134      uint32_t level_layer_count =
1135         MIN2(layer_count, aux_layers - base_layer);
1136
1137      for (uint32_t a = 0; a < level_layer_count; a++) {
1138         uint32_t array_layer = base_layer + a;
1139         if (image->samples == 1) {
1140            anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1141                                           image->planes[plane].surface.isl.format,
1142                                           aspect, level, array_layer, resolve_op,
1143                                           final_fast_clear);
1144         } else {
1145            /* We only support fast-clear on the first layer so partial
1146             * resolves should not be used on other layers as they will use
1147             * the clear color stored in memory that is only valid for layer0.
1148             */
1149            if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1150                array_layer != 0)
1151               continue;
1152
1153            anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1154                                           image->planes[plane].surface.isl.format,
1155                                           aspect, array_layer, resolve_op,
1156                                           final_fast_clear);
1157         }
1158      }
1159   }
1160
1161   cmd_buffer->state.pending_pipe_bits |=
1162      ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1163}
1164
1165/**
1166 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1167 */
1168static VkResult
1169genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1170                                   struct anv_render_pass *pass,
1171                                   const VkRenderPassBeginInfo *begin)
1172{
1173   const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1174   struct anv_cmd_state *state = &cmd_buffer->state;
1175
1176   vk_free(&cmd_buffer->pool->alloc, state->attachments);
1177
1178   if (pass->attachment_count > 0) {
1179      state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1180                                    pass->attachment_count *
1181                                         sizeof(state->attachments[0]),
1182                                    8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1183      if (state->attachments == NULL) {
1184         /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1185         return anv_batch_set_error(&cmd_buffer->batch,
1186                                    VK_ERROR_OUT_OF_HOST_MEMORY);
1187      }
1188   } else {
1189      state->attachments = NULL;
1190   }
1191
1192   /* Reserve one for the NULL state. */
1193   unsigned num_states = 1;
1194   for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1195      if (vk_format_is_color(pass->attachments[i].format))
1196         num_states++;
1197
1198      if (need_input_attachment_state(&pass->attachments[i]))
1199         num_states++;
1200   }
1201
1202   const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1203   state->render_pass_states =
1204      anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1205                             num_states * ss_stride, isl_dev->ss.align);
1206
1207   struct anv_state next_state = state->render_pass_states;
1208   next_state.alloc_size = isl_dev->ss.size;
1209
1210   state->null_surface_state = next_state;
1211   next_state.offset += ss_stride;
1212   next_state.map += ss_stride;
1213
1214   for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1215      if (vk_format_is_color(pass->attachments[i].format)) {
1216         state->attachments[i].color.state = next_state;
1217         next_state.offset += ss_stride;
1218         next_state.map += ss_stride;
1219      }
1220
1221      if (need_input_attachment_state(&pass->attachments[i])) {
1222         state->attachments[i].input.state = next_state;
1223         next_state.offset += ss_stride;
1224         next_state.map += ss_stride;
1225      }
1226   }
1227   assert(next_state.offset == state->render_pass_states.offset +
1228                               state->render_pass_states.alloc_size);
1229
1230   if (begin) {
1231      ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
1232      assert(pass->attachment_count == framebuffer->attachment_count);
1233
1234      isl_null_fill_state(isl_dev, state->null_surface_state.map,
1235                          isl_extent3d(framebuffer->width,
1236                                       framebuffer->height,
1237                                       framebuffer->layers));
1238
1239      for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1240         struct anv_render_pass_attachment *att = &pass->attachments[i];
1241         VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1242         VkImageAspectFlags clear_aspects = 0;
1243         VkImageAspectFlags load_aspects = 0;
1244
1245         if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1246            /* color attachment */
1247            if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1248               clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1249            } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1250               load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1251            }
1252         } else {
1253            /* depthstencil attachment */
1254            if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1255               if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1256                  clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1257               } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1258                  load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1259               }
1260            }
1261            if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1262               if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1263                  clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1264               } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1265                  load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1266               }
1267            }
1268         }
1269
1270         state->attachments[i].current_layout = att->initial_layout;
1271         state->attachments[i].pending_clear_aspects = clear_aspects;
1272         state->attachments[i].pending_load_aspects = load_aspects;
1273         if (clear_aspects)
1274            state->attachments[i].clear_value = begin->pClearValues[i];
1275
1276         struct anv_image_view *iview = framebuffer->attachments[i];
1277         anv_assert(iview->vk_format == att->format);
1278
1279         const uint32_t num_layers = iview->planes[0].isl.array_len;
1280         state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1281
1282         union isl_color_value clear_color = { .u32 = { 0, } };
1283         if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1284            anv_assert(iview->n_planes == 1);
1285            assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1286            color_attachment_compute_aux_usage(cmd_buffer->device,
1287                                               state, i, begin->renderArea,
1288                                               &clear_color);
1289
1290            anv_image_fill_surface_state(cmd_buffer->device,
1291                                         iview->image,
1292                                         VK_IMAGE_ASPECT_COLOR_BIT,
1293                                         &iview->planes[0].isl,
1294                                         ISL_SURF_USAGE_RENDER_TARGET_BIT,
1295                                         state->attachments[i].aux_usage,
1296                                         &clear_color,
1297                                         0,
1298                                         &state->attachments[i].color,
1299                                         NULL);
1300
1301            add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1302         } else {
1303            depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1304                                                       state, i,
1305                                                       begin->renderArea);
1306         }
1307
1308         if (need_input_attachment_state(&pass->attachments[i])) {
1309            anv_image_fill_surface_state(cmd_buffer->device,
1310                                         iview->image,
1311                                         VK_IMAGE_ASPECT_COLOR_BIT,
1312                                         &iview->planes[0].isl,
1313                                         ISL_SURF_USAGE_TEXTURE_BIT,
1314                                         state->attachments[i].input_aux_usage,
1315                                         &clear_color,
1316                                         0,
1317                                         &state->attachments[i].input,
1318                                         NULL);
1319
1320            add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1321         }
1322      }
1323   }
1324
1325   return VK_SUCCESS;
1326}
1327
1328VkResult
1329genX(BeginCommandBuffer)(
1330    VkCommandBuffer                             commandBuffer,
1331    const VkCommandBufferBeginInfo*             pBeginInfo)
1332{
1333   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1334
1335   /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1336    * command buffer's state. Otherwise, we must *reset* its state. In both
1337    * cases we reset it.
1338    *
1339    * From the Vulkan 1.0 spec:
1340    *
1341    *    If a command buffer is in the executable state and the command buffer
1342    *    was allocated from a command pool with the
1343    *    VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1344    *    vkBeginCommandBuffer implicitly resets the command buffer, behaving
1345    *    as if vkResetCommandBuffer had been called with
1346    *    VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1347    *    the command buffer in the recording state.
1348    */
1349   anv_cmd_buffer_reset(cmd_buffer);
1350
1351   cmd_buffer->usage_flags = pBeginInfo->flags;
1352
1353   assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1354          !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1355
1356   genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1357
1358   /* We sometimes store vertex data in the dynamic state buffer for blorp
1359    * operations and our dynamic state stream may re-use data from previous
1360    * command buffers.  In order to prevent stale cache data, we flush the VF
1361    * cache.  We could do this on every blorp call but that's not really
1362    * needed as all of the data will get written by the CPU prior to the GPU
1363    * executing anything.  The chances are fairly high that they will use
1364    * blorp at least once per primary command buffer so it shouldn't be
1365    * wasted.
1366    */
1367   if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1368      cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1369
1370   /* We send an "Indirect State Pointers Disable" packet at
1371    * EndCommandBuffer, so all push contant packets are ignored during a
1372    * context restore. Documentation says after that command, we need to
1373    * emit push constants again before any rendering operation. So we
1374    * flag them dirty here to make sure they get emitted.
1375    */
1376   cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1377
1378   VkResult result = VK_SUCCESS;
1379   if (cmd_buffer->usage_flags &
1380       VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1381      assert(pBeginInfo->pInheritanceInfo);
1382      cmd_buffer->state.pass =
1383         anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1384      cmd_buffer->state.subpass =
1385         &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1386
1387      /* This is optional in the inheritance info. */
1388      cmd_buffer->state.framebuffer =
1389         anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1390
1391      result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1392                                                  cmd_buffer->state.pass, NULL);
1393
1394      /* Record that HiZ is enabled if we can. */
1395      if (cmd_buffer->state.framebuffer) {
1396         const struct anv_image_view * const iview =
1397            anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1398
1399         if (iview) {
1400            VkImageLayout layout =
1401                cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1402
1403            enum isl_aux_usage aux_usage =
1404               anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1405                                       VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1406
1407            cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1408         }
1409      }
1410
1411      cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1412   }
1413
1414   return result;
1415}
1416
1417/* From the PRM, Volume 2a:
1418 *
1419 *    "Indirect State Pointers Disable
1420 *
1421 *    At the completion of the post-sync operation associated with this pipe
1422 *    control packet, the indirect state pointers in the hardware are
1423 *    considered invalid; the indirect pointers are not saved in the context.
1424 *    If any new indirect state commands are executed in the command stream
1425 *    while the pipe control is pending, the new indirect state commands are
1426 *    preserved.
1427 *
1428 *    [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1429 *    restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1430 *    commands are only considered as Indirect State Pointers. Once ISP is
1431 *    issued in a context, SW must initialize by programming push constant
1432 *    commands for all the shaders (at least to zero length) before attempting
1433 *    any rendering operation for the same context."
1434 *
1435 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1436 * even though they point to a BO that has been already unreferenced at
1437 * the end of the previous batch buffer. This has been fine so far since
1438 * we are protected by these scratch page (every address not covered by
1439 * a BO should be pointing to the scratch page). But on CNL, it is
1440 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1441 * instruction.
1442 *
1443 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1444 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1445 * context restore, so the mentioned hang doesn't happen. However,
1446 * software must program push constant commands for all stages prior to
1447 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1448 *
1449 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1450 * constants have been loaded into the EUs prior to disable the push constants
1451 * so that it doesn't hang a previous 3DPRIMITIVE.
1452 */
1453static void
1454emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1455{
1456   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1457         pc.StallAtPixelScoreboard = true;
1458         pc.CommandStreamerStallEnable = true;
1459   }
1460   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1461         pc.IndirectStatePointersDisable = true;
1462         pc.CommandStreamerStallEnable = true;
1463   }
1464}
1465
1466VkResult
1467genX(EndCommandBuffer)(
1468    VkCommandBuffer                             commandBuffer)
1469{
1470   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1471
1472   if (anv_batch_has_error(&cmd_buffer->batch))
1473      return cmd_buffer->batch.status;
1474
1475   /* We want every command buffer to start with the PMA fix in a known state,
1476    * so we disable it at the end of the command buffer.
1477    */
1478   genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1479
1480   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1481
1482   emit_isp_disable(cmd_buffer);
1483
1484   anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1485
1486   return VK_SUCCESS;
1487}
1488
1489void
1490genX(CmdExecuteCommands)(
1491    VkCommandBuffer                             commandBuffer,
1492    uint32_t                                    commandBufferCount,
1493    const VkCommandBuffer*                      pCmdBuffers)
1494{
1495   ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1496
1497   assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1498
1499   if (anv_batch_has_error(&primary->batch))
1500      return;
1501
1502   /* The secondary command buffers will assume that the PMA fix is disabled
1503    * when they begin executing.  Make sure this is true.
1504    */
1505   genX(cmd_buffer_enable_pma_fix)(primary, false);
1506
1507   /* The secondary command buffer doesn't know which textures etc. have been
1508    * flushed prior to their execution.  Apply those flushes now.
1509    */
1510   genX(cmd_buffer_apply_pipe_flushes)(primary);
1511
1512   for (uint32_t i = 0; i < commandBufferCount; i++) {
1513      ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1514
1515      assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1516      assert(!anv_batch_has_error(&secondary->batch));
1517
1518      if (secondary->usage_flags &
1519          VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1520         /* If we're continuing a render pass from the primary, we need to
1521          * copy the surface states for the current subpass into the storage
1522          * we allocated for them in BeginCommandBuffer.
1523          */
1524         struct anv_bo *ss_bo =
1525            &primary->device->surface_state_pool.block_pool.bo;
1526         struct anv_state src_state = primary->state.render_pass_states;
1527         struct anv_state dst_state = secondary->state.render_pass_states;
1528         assert(src_state.alloc_size == dst_state.alloc_size);
1529
1530         genX(cmd_buffer_so_memcpy)(primary,
1531                                    (struct anv_address) {
1532                                       .bo = ss_bo,
1533                                       .offset = dst_state.offset,
1534                                    },
1535                                    (struct anv_address) {
1536                                       .bo = ss_bo,
1537                                       .offset = src_state.offset,
1538                                    },
1539                                    src_state.alloc_size);
1540      }
1541
1542      anv_cmd_buffer_add_secondary(primary, secondary);
1543   }
1544
1545   /* The secondary may have selected a different pipeline (3D or compute) and
1546    * may have changed the current L3$ configuration.  Reset our tracking
1547    * variables to invalid values to ensure that we re-emit these in the case
1548    * where we do any draws or compute dispatches from the primary after the
1549    * secondary has returned.
1550    */
1551   primary->state.current_pipeline = UINT32_MAX;
1552   primary->state.current_l3_config = NULL;
1553
1554   /* Each of the secondary command buffers will use its own state base
1555    * address.  We need to re-emit state base address for the primary after
1556    * all of the secondaries are done.
1557    *
1558    * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1559    * address calls?
1560    */
1561   genX(cmd_buffer_emit_state_base_address)(primary);
1562}
1563
1564#define IVB_L3SQCREG1_SQGHPCI_DEFAULT     0x00730000
1565#define VLV_L3SQCREG1_SQGHPCI_DEFAULT     0x00d30000
1566#define HSW_L3SQCREG1_SQGHPCI_DEFAULT     0x00610000
1567
1568/**
1569 * Program the hardware to use the specified L3 configuration.
1570 */
1571void
1572genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1573                           const struct gen_l3_config *cfg)
1574{
1575   assert(cfg);
1576   if (cfg == cmd_buffer->state.current_l3_config)
1577      return;
1578
1579   if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1580      intel_logd("L3 config transition: ");
1581      gen_dump_l3_config(cfg, stderr);
1582   }
1583
1584   const bool has_slm = cfg->n[GEN_L3P_SLM];
1585
1586   /* According to the hardware docs, the L3 partitioning can only be changed
1587    * while the pipeline is completely drained and the caches are flushed,
1588    * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1589    */
1590   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1591      pc.DCFlushEnable = true;
1592      pc.PostSyncOperation = NoWrite;
1593      pc.CommandStreamerStallEnable = true;
1594   }
1595
1596   /* ...followed by a second pipelined PIPE_CONTROL that initiates
1597    * invalidation of the relevant caches.  Note that because RO invalidation
1598    * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1599    * command is processed by the CS) we cannot combine it with the previous
1600    * stalling flush as the hardware documentation suggests, because that
1601    * would cause the CS to stall on previous rendering *after* RO
1602    * invalidation and wouldn't prevent the RO caches from being polluted by
1603    * concurrent rendering before the stall completes.  This intentionally
1604    * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1605    * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1606    * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1607    * already guarantee that there is no concurrent GPGPU kernel execution
1608    * (see SKL HSD 2132585).
1609    */
1610   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1611      pc.TextureCacheInvalidationEnable = true;
1612      pc.ConstantCacheInvalidationEnable = true;
1613      pc.InstructionCacheInvalidateEnable = true;
1614      pc.StateCacheInvalidationEnable = true;
1615      pc.PostSyncOperation = NoWrite;
1616   }
1617
1618   /* Now send a third stalling flush to make sure that invalidation is
1619    * complete when the L3 configuration registers are modified.
1620    */
1621   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1622      pc.DCFlushEnable = true;
1623      pc.PostSyncOperation = NoWrite;
1624      pc.CommandStreamerStallEnable = true;
1625   }
1626
1627#if GEN_GEN >= 8
1628
1629   assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1630
1631   uint32_t l3cr;
1632   anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1633                   .SLMEnable = has_slm,
1634                   .URBAllocation = cfg->n[GEN_L3P_URB],
1635                   .ROAllocation = cfg->n[GEN_L3P_RO],
1636                   .DCAllocation = cfg->n[GEN_L3P_DC],
1637                   .AllAllocation = cfg->n[GEN_L3P_ALL]);
1638
1639   /* Set up the L3 partitioning. */
1640   emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1641
1642#else
1643
1644   const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1645   const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1646                       cfg->n[GEN_L3P_ALL];
1647   const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1648                      cfg->n[GEN_L3P_ALL];
1649   const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1650                      cfg->n[GEN_L3P_ALL];
1651
1652   assert(!cfg->n[GEN_L3P_ALL]);
1653
1654   /* When enabled SLM only uses a portion of the L3 on half of the banks,
1655    * the matching space on the remaining banks has to be allocated to a
1656    * client (URB for all validated configurations) set to the
1657    * lower-bandwidth 2-bank address hashing mode.
1658    */
1659   const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1660   const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1661   assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1662
1663   /* Minimum number of ways that can be allocated to the URB. */
1664   MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1665   assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1666
1667   uint32_t l3sqcr1, l3cr2, l3cr3;
1668   anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1669                   .ConvertDC_UC = !has_dc,
1670                   .ConvertIS_UC = !has_is,
1671                   .ConvertC_UC = !has_c,
1672                   .ConvertT_UC = !has_t);
1673   l3sqcr1 |=
1674      GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1675      devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1676      IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1677
1678   anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1679                   .SLMEnable = has_slm,
1680                   .URBLowBandwidth = urb_low_bw,
1681                   .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1682#if !GEN_IS_HASWELL
1683                   .ALLAllocation = cfg->n[GEN_L3P_ALL],
1684#endif
1685                   .ROAllocation = cfg->n[GEN_L3P_RO],
1686                   .DCAllocation = cfg->n[GEN_L3P_DC]);
1687
1688   anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1689                   .ISAllocation = cfg->n[GEN_L3P_IS],
1690                   .ISLowBandwidth = 0,
1691                   .CAllocation = cfg->n[GEN_L3P_C],
1692                   .CLowBandwidth = 0,
1693                   .TAllocation = cfg->n[GEN_L3P_T],
1694                   .TLowBandwidth = 0);
1695
1696   /* Set up the L3 partitioning. */
1697   emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1698   emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1699   emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1700
1701#if GEN_IS_HASWELL
1702   if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1703      /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1704       * them disabled to avoid crashing the system hard.
1705       */
1706      uint32_t scratch1, chicken3;
1707      anv_pack_struct(&scratch1, GENX(SCRATCH1),
1708                      .L3AtomicDisable = !has_dc);
1709      anv_pack_struct(&chicken3, GENX(CHICKEN3),
1710                      .L3AtomicDisableMask = true,
1711                      .L3AtomicDisable = !has_dc);
1712      emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1713      emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1714   }
1715#endif
1716
1717#endif
1718
1719   cmd_buffer->state.current_l3_config = cfg;
1720}
1721
1722void
1723genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1724{
1725   enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1726
1727   /* Flushes are pipelined while invalidations are handled immediately.
1728    * Therefore, if we're flushing anything then we need to schedule a stall
1729    * before any invalidations can happen.
1730    */
1731   if (bits & ANV_PIPE_FLUSH_BITS)
1732      bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1733
1734   /* If we're going to do an invalidate and we have a pending CS stall that
1735    * has yet to be resolved, we do the CS stall now.
1736    */
1737   if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1738       (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1739      bits |= ANV_PIPE_CS_STALL_BIT;
1740      bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1741   }
1742
1743   if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1744      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1745         pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1746         pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1747         pipe.RenderTargetCacheFlushEnable =
1748            bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1749
1750         pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1751         pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1752         pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1753
1754         /*
1755          * According to the Broadwell documentation, any PIPE_CONTROL with the
1756          * "Command Streamer Stall" bit set must also have another bit set,
1757          * with five different options:
1758          *
1759          *  - Render Target Cache Flush
1760          *  - Depth Cache Flush
1761          *  - Stall at Pixel Scoreboard
1762          *  - Post-Sync Operation
1763          *  - Depth Stall
1764          *  - DC Flush Enable
1765          *
1766          * I chose "Stall at Pixel Scoreboard" since that's what we use in
1767          * mesa and it seems to work fine. The choice is fairly arbitrary.
1768          */
1769         if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1770             !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1771                       ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1772            pipe.StallAtPixelScoreboard = true;
1773      }
1774
1775      /* If a render target flush was emitted, then we can toggle off the bit
1776       * saying that render target writes are ongoing.
1777       */
1778      if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1779         bits &= ~(ANV_PIPE_RENDER_TARGET_WRITES);
1780
1781      bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1782   }
1783
1784   if (bits & ANV_PIPE_INVALIDATE_BITS) {
1785      /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1786       *
1787       *    "If the VF Cache Invalidation Enable is set to a 1 in a
1788       *    PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
1789       *    0, with the VF Cache Invalidation Enable set to 0 needs to be sent
1790       *    prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
1791       *    a 1."
1792       *
1793       * This appears to hang Broadwell, so we restrict it to just gen9.
1794       */
1795      if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
1796         anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
1797
1798      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1799         pipe.StateCacheInvalidationEnable =
1800            bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1801         pipe.ConstantCacheInvalidationEnable =
1802            bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1803         pipe.VFCacheInvalidationEnable =
1804            bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1805         pipe.TextureCacheInvalidationEnable =
1806            bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1807         pipe.InstructionCacheInvalidateEnable =
1808            bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1809
1810         /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1811          *
1812          *    "When VF Cache Invalidate is set “Post Sync Operation” must be
1813          *    enabled to “Write Immediate Data” or “Write PS Depth Count” or
1814          *    “Write Timestamp”.
1815          */
1816         if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
1817            pipe.PostSyncOperation = WriteImmediateData;
1818            pipe.Address =
1819               (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1820         }
1821      }
1822
1823      bits &= ~ANV_PIPE_INVALIDATE_BITS;
1824   }
1825
1826   cmd_buffer->state.pending_pipe_bits = bits;
1827}
1828
1829void genX(CmdPipelineBarrier)(
1830    VkCommandBuffer                             commandBuffer,
1831    VkPipelineStageFlags                        srcStageMask,
1832    VkPipelineStageFlags                        destStageMask,
1833    VkBool32                                    byRegion,
1834    uint32_t                                    memoryBarrierCount,
1835    const VkMemoryBarrier*                      pMemoryBarriers,
1836    uint32_t                                    bufferMemoryBarrierCount,
1837    const VkBufferMemoryBarrier*                pBufferMemoryBarriers,
1838    uint32_t                                    imageMemoryBarrierCount,
1839    const VkImageMemoryBarrier*                 pImageMemoryBarriers)
1840{
1841   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1842
1843   /* XXX: Right now, we're really dumb and just flush whatever categories
1844    * the app asks for.  One of these days we may make this a bit better
1845    * but right now that's all the hardware allows for in most areas.
1846    */
1847   VkAccessFlags src_flags = 0;
1848   VkAccessFlags dst_flags = 0;
1849
1850   for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1851      src_flags |= pMemoryBarriers[i].srcAccessMask;
1852      dst_flags |= pMemoryBarriers[i].dstAccessMask;
1853   }
1854
1855   for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1856      src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1857      dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1858   }
1859
1860   for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1861      src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1862      dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1863      ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1864      const VkImageSubresourceRange *range =
1865         &pImageMemoryBarriers[i].subresourceRange;
1866
1867      if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1868         transition_depth_buffer(cmd_buffer, image,
1869                                 pImageMemoryBarriers[i].oldLayout,
1870                                 pImageMemoryBarriers[i].newLayout);
1871      } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1872         VkImageAspectFlags color_aspects =
1873            anv_image_expand_aspects(image, range->aspectMask);
1874         uint32_t aspect_bit;
1875
1876         uint32_t base_layer, layer_count;
1877         if (image->type == VK_IMAGE_TYPE_3D) {
1878            base_layer = 0;
1879            layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1880         } else {
1881            base_layer = range->baseArrayLayer;
1882            layer_count = anv_get_layerCount(image, range);
1883         }
1884
1885         anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1886            transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1887                                    range->baseMipLevel,
1888                                    anv_get_levelCount(image, range),
1889                                    base_layer, layer_count,
1890                                    pImageMemoryBarriers[i].oldLayout,
1891                                    pImageMemoryBarriers[i].newLayout);
1892         }
1893      }
1894   }
1895
1896   cmd_buffer->state.pending_pipe_bits |=
1897      anv_pipe_flush_bits_for_access_flags(src_flags) |
1898      anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1899}
1900
1901static void
1902cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1903{
1904   VkShaderStageFlags stages =
1905      cmd_buffer->state.gfx.base.pipeline->active_stages;
1906
1907   /* In order to avoid thrash, we assume that vertex and fragment stages
1908    * always exist.  In the rare case where one is missing *and* the other
1909    * uses push concstants, this may be suboptimal.  However, avoiding stalls
1910    * seems more important.
1911    */
1912   stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1913
1914   if (stages == cmd_buffer->state.push_constant_stages)
1915      return;
1916
1917#if GEN_GEN >= 8
1918   const unsigned push_constant_kb = 32;
1919#elif GEN_IS_HASWELL
1920   const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1921#else
1922   const unsigned push_constant_kb = 16;
1923#endif
1924
1925   const unsigned num_stages =
1926      util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1927   unsigned size_per_stage = push_constant_kb / num_stages;
1928
1929   /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1930    * units of 2KB.  Incidentally, these are the same platforms that have
1931    * 32KB worth of push constant space.
1932    */
1933   if (push_constant_kb == 32)
1934      size_per_stage &= ~1u;
1935
1936   uint32_t kb_used = 0;
1937   for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1938      unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1939      anv_batch_emit(&cmd_buffer->batch,
1940                     GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1941         alloc._3DCommandSubOpcode  = 18 + i;
1942         alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1943         alloc.ConstantBufferSize   = push_size;
1944      }
1945      kb_used += push_size;
1946   }
1947
1948   anv_batch_emit(&cmd_buffer->batch,
1949                  GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1950      alloc.ConstantBufferOffset = kb_used;
1951      alloc.ConstantBufferSize = push_constant_kb - kb_used;
1952   }
1953
1954   cmd_buffer->state.push_constant_stages = stages;
1955
1956   /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1957    *
1958    *    "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1959    *    the next 3DPRIMITIVE command after programming the
1960    *    3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1961    *
1962    * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1963    * pipeline setup, we need to dirty push constants.
1964    */
1965   cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1966}
1967
1968static const struct anv_descriptor *
1969anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1970                           const struct anv_pipeline_binding *binding)
1971{
1972   assert(binding->set < MAX_SETS);
1973   const struct anv_descriptor_set *set =
1974      pipe_state->descriptors[binding->set];
1975   const uint32_t offset =
1976      set->layout->binding[binding->binding].descriptor_index;
1977   return &set->descriptors[offset + binding->index];
1978}
1979
1980static uint32_t
1981dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1982                           const struct anv_pipeline_binding *binding)
1983{
1984   assert(binding->set < MAX_SETS);
1985   const struct anv_descriptor_set *set =
1986      pipe_state->descriptors[binding->set];
1987
1988   uint32_t dynamic_offset_idx =
1989      pipe_state->layout->set[binding->set].dynamic_offset_start +
1990      set->layout->binding[binding->binding].dynamic_offset_index +
1991      binding->index;
1992
1993   return pipe_state->dynamic_offsets[dynamic_offset_idx];
1994}
1995
1996static VkResult
1997emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1998                   gl_shader_stage stage,
1999                   struct anv_state *bt_state)
2000{
2001   const struct gen_device_info *devinfo = &cmd_buffer->device->info;
2002   struct anv_subpass *subpass = cmd_buffer->state.subpass;
2003   struct anv_cmd_pipeline_state *pipe_state;
2004   struct anv_pipeline *pipeline;
2005   uint32_t bias, state_offset;
2006
2007   switch (stage) {
2008   case  MESA_SHADER_COMPUTE:
2009      pipe_state = &cmd_buffer->state.compute.base;
2010      bias = 1;
2011      break;
2012   default:
2013      pipe_state = &cmd_buffer->state.gfx.base;
2014      bias = 0;
2015      break;
2016   }
2017   pipeline = pipe_state->pipeline;
2018
2019   if (!anv_pipeline_has_stage(pipeline, stage)) {
2020      *bt_state = (struct anv_state) { 0, };
2021      return VK_SUCCESS;
2022   }
2023
2024   struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2025   if (bias + map->surface_count == 0) {
2026      *bt_state = (struct anv_state) { 0, };
2027      return VK_SUCCESS;
2028   }
2029
2030   *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2031                                                  bias + map->surface_count,
2032                                                  &state_offset);
2033   uint32_t *bt_map = bt_state->map;
2034
2035   if (bt_state->map == NULL)
2036      return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2037
2038   if (stage == MESA_SHADER_COMPUTE &&
2039       get_cs_prog_data(pipeline)->uses_num_work_groups) {
2040      struct anv_state surface_state;
2041      surface_state =
2042         anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2043
2044      const enum isl_format format =
2045         anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2046      anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2047                                    format,
2048                                    cmd_buffer->state.compute.num_workgroups,
2049                                    12, 1);
2050
2051      bt_map[0] = surface_state.offset + state_offset;
2052      add_surface_reloc(cmd_buffer, surface_state,
2053                        cmd_buffer->state.compute.num_workgroups);
2054   }
2055
2056   if (map->surface_count == 0)
2057      goto out;
2058
2059   /* We only use push constant space for images before gen9 */
2060   if (map->image_count > 0 && devinfo->gen < 9) {
2061      VkResult result =
2062         anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
2063      if (result != VK_SUCCESS)
2064         return result;
2065
2066      cmd_buffer->state.push_constants_dirty |= 1 << stage;
2067   }
2068
2069   uint32_t image = 0;
2070   for (uint32_t s = 0; s < map->surface_count; s++) {
2071      struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2072
2073      struct anv_state surface_state;
2074
2075      if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
2076         /* Color attachment binding */
2077         assert(stage == MESA_SHADER_FRAGMENT);
2078         assert(binding->binding == 0);
2079         if (binding->index < subpass->color_count) {
2080            const unsigned att =
2081               subpass->color_attachments[binding->index].attachment;
2082
2083            /* From the Vulkan 1.0.46 spec:
2084             *
2085             *    "If any color or depth/stencil attachments are
2086             *    VK_ATTACHMENT_UNUSED, then no writes occur for those
2087             *    attachments."
2088             */
2089            if (att == VK_ATTACHMENT_UNUSED) {
2090               surface_state = cmd_buffer->state.null_surface_state;
2091            } else {
2092               surface_state = cmd_buffer->state.attachments[att].color.state;
2093            }
2094         } else {
2095            surface_state = cmd_buffer->state.null_surface_state;
2096         }
2097
2098         bt_map[bias + s] = surface_state.offset + state_offset;
2099         continue;
2100      } else if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2101         struct anv_state surface_state =
2102            anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2103
2104         struct anv_address constant_data = {
2105            .bo = &pipeline->device->dynamic_state_pool.block_pool.bo,
2106            .offset = pipeline->shaders[stage]->constant_data.offset,
2107         };
2108         unsigned constant_data_size =
2109            pipeline->shaders[stage]->constant_data_size;
2110
2111         const enum isl_format format =
2112            anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2113         anv_fill_buffer_surface_state(cmd_buffer->device,
2114                                       surface_state, format,
2115                                       constant_data, constant_data_size, 1);
2116
2117         bt_map[bias + s] = surface_state.offset + state_offset;
2118         add_surface_reloc(cmd_buffer, surface_state, constant_data);
2119         continue;
2120      }
2121
2122      const struct anv_descriptor *desc =
2123         anv_descriptor_for_binding(pipe_state, binding);
2124
2125      switch (desc->type) {
2126      case VK_DESCRIPTOR_TYPE_SAMPLER:
2127         /* Nothing for us to do here */
2128         continue;
2129
2130      case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2131      case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2132         struct anv_surface_state sstate =
2133            (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2134            desc->image_view->planes[binding->plane].general_sampler_surface_state :
2135            desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2136         surface_state = sstate.state;
2137         assert(surface_state.alloc_size);
2138         add_surface_state_relocs(cmd_buffer, sstate);
2139         break;
2140      }
2141      case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2142         assert(stage == MESA_SHADER_FRAGMENT);
2143         if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2144            /* For depth and stencil input attachments, we treat it like any
2145             * old texture that a user may have bound.
2146             */
2147            struct anv_surface_state sstate =
2148               (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2149               desc->image_view->planes[binding->plane].general_sampler_surface_state :
2150               desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2151            surface_state = sstate.state;
2152            assert(surface_state.alloc_size);
2153            add_surface_state_relocs(cmd_buffer, sstate);
2154         } else {
2155            /* For color input attachments, we create the surface state at
2156             * vkBeginRenderPass time so that we can include aux and clear
2157             * color information.
2158             */
2159            assert(binding->input_attachment_index < subpass->input_count);
2160            const unsigned subpass_att = binding->input_attachment_index;
2161            const unsigned att = subpass->input_attachments[subpass_att].attachment;
2162            surface_state = cmd_buffer->state.attachments[att].input.state;
2163         }
2164         break;
2165
2166      case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2167         struct anv_surface_state sstate = (binding->write_only)
2168            ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2169            : desc->image_view->planes[binding->plane].storage_surface_state;
2170         surface_state = sstate.state;
2171         assert(surface_state.alloc_size);
2172         add_surface_state_relocs(cmd_buffer, sstate);
2173         if (devinfo->gen < 9) {
2174            assert(image < MAX_GEN8_IMAGES);
2175            struct brw_image_param *image_param =
2176               &cmd_buffer->state.push_constants[stage]->images[image];
2177
2178            *image_param =
2179               desc->image_view->planes[binding->plane].storage_image_param;
2180         }
2181         image++;
2182         break;
2183      }
2184
2185      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2186      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2187      case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2188         surface_state = desc->buffer_view->surface_state;
2189         assert(surface_state.alloc_size);
2190         add_surface_reloc(cmd_buffer, surface_state,
2191                           desc->buffer_view->address);
2192         break;
2193
2194      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2195      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2196         /* Compute the offset within the buffer */
2197         uint32_t dynamic_offset =
2198            dynamic_offset_for_binding(pipe_state, binding);
2199         uint64_t offset = desc->offset + dynamic_offset;
2200         /* Clamp to the buffer size */
2201         offset = MIN2(offset, desc->buffer->size);
2202         /* Clamp the range to the buffer size */
2203         uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2204
2205         struct anv_address address =
2206            anv_address_add(desc->buffer->address, offset);
2207
2208         surface_state =
2209            anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2210         enum isl_format format =
2211            anv_isl_format_for_descriptor_type(desc->type);
2212
2213         anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2214                                       format, address, range, 1);
2215         add_surface_reloc(cmd_buffer, surface_state, address);
2216         break;
2217      }
2218
2219      case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2220         surface_state = (binding->write_only)
2221            ? desc->buffer_view->writeonly_storage_surface_state
2222            : desc->buffer_view->storage_surface_state;
2223         assert(surface_state.alloc_size);
2224         add_surface_reloc(cmd_buffer, surface_state,
2225                           desc->buffer_view->address);
2226         if (devinfo->gen < 9) {
2227            assert(image < MAX_GEN8_IMAGES);
2228            struct brw_image_param *image_param =
2229               &cmd_buffer->state.push_constants[stage]->images[image];
2230
2231            *image_param = desc->buffer_view->storage_image_param;
2232         }
2233         image++;
2234         break;
2235
2236      default:
2237         assert(!"Invalid descriptor type");
2238         continue;
2239      }
2240
2241      bt_map[bias + s] = surface_state.offset + state_offset;
2242   }
2243   assert(image == map->image_count);
2244
2245 out:
2246   anv_state_flush(cmd_buffer->device, *bt_state);
2247
2248#if GEN_GEN >= 11
2249   /* The PIPE_CONTROL command description says:
2250    *
2251    *    "Whenever a Binding Table Index (BTI) used by a Render Taget Message
2252    *     points to a different RENDER_SURFACE_STATE, SW must issue a Render
2253    *     Target Cache Flush by enabling this bit. When render target flush
2254    *     is set due to new association of BTI, PS Scoreboard Stall bit must
2255    *     be set in this packet."
2256    *
2257    * FINISHME: Currently we shuffle around the surface states in the binding
2258    * table based on if they are getting used or not. So, we've to do below
2259    * pipe control flush for every binding table upload. Make changes so
2260    * that we do it only when we modify render target surface states.
2261    */
2262   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2263      pc.RenderTargetCacheFlushEnable  = true;
2264      pc.StallAtPixelScoreboard        = true;
2265   }
2266#endif
2267
2268   return VK_SUCCESS;
2269}
2270
2271static VkResult
2272emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2273              gl_shader_stage stage,
2274              struct anv_state *state)
2275{
2276   struct anv_cmd_pipeline_state *pipe_state =
2277      stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2278                                     &cmd_buffer->state.gfx.base;
2279   struct anv_pipeline *pipeline = pipe_state->pipeline;
2280
2281   if (!anv_pipeline_has_stage(pipeline, stage)) {
2282      *state = (struct anv_state) { 0, };
2283      return VK_SUCCESS;
2284   }
2285
2286   struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2287   if (map->sampler_count == 0) {
2288      *state = (struct anv_state) { 0, };
2289      return VK_SUCCESS;
2290   }
2291
2292   uint32_t size = map->sampler_count * 16;
2293   *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2294
2295   if (state->map == NULL)
2296      return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2297
2298   for (uint32_t s = 0; s < map->sampler_count; s++) {
2299      struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2300      const struct anv_descriptor *desc =
2301         anv_descriptor_for_binding(pipe_state, binding);
2302
2303      if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2304          desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2305         continue;
2306
2307      struct anv_sampler *sampler = desc->sampler;
2308
2309      /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2310       * happens to be zero.
2311       */
2312      if (sampler == NULL)
2313         continue;
2314
2315      memcpy(state->map + (s * 16),
2316             sampler->state[binding->plane], sizeof(sampler->state[0]));
2317   }
2318
2319   anv_state_flush(cmd_buffer->device, *state);
2320
2321   return VK_SUCCESS;
2322}
2323
2324static uint32_t
2325flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2326{
2327   struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2328
2329   VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2330                              pipeline->active_stages;
2331
2332   VkResult result = VK_SUCCESS;
2333   anv_foreach_stage(s, dirty) {
2334      result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2335      if (result != VK_SUCCESS)
2336         break;
2337      result = emit_binding_table(cmd_buffer, s,
2338                                  &cmd_buffer->state.binding_tables[s]);
2339      if (result != VK_SUCCESS)
2340         break;
2341   }
2342
2343   if (result != VK_SUCCESS) {
2344      assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2345
2346      result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2347      if (result != VK_SUCCESS)
2348         return 0;
2349
2350      /* Re-emit state base addresses so we get the new surface state base
2351       * address before we start emitting binding tables etc.
2352       */
2353      genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2354
2355      /* Re-emit all active binding tables */
2356      dirty |= pipeline->active_stages;
2357      anv_foreach_stage(s, dirty) {
2358         result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2359         if (result != VK_SUCCESS) {
2360            anv_batch_set_error(&cmd_buffer->batch, result);
2361            return 0;
2362         }
2363         result = emit_binding_table(cmd_buffer, s,
2364                                     &cmd_buffer->state.binding_tables[s]);
2365         if (result != VK_SUCCESS) {
2366            anv_batch_set_error(&cmd_buffer->batch, result);
2367            return 0;
2368         }
2369      }
2370   }
2371
2372   cmd_buffer->state.descriptors_dirty &= ~dirty;
2373
2374   return dirty;
2375}
2376
2377static void
2378cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2379                                    uint32_t stages)
2380{
2381   static const uint32_t sampler_state_opcodes[] = {
2382      [MESA_SHADER_VERTEX]                      = 43,
2383      [MESA_SHADER_TESS_CTRL]                   = 44, /* HS */
2384      [MESA_SHADER_TESS_EVAL]                   = 45, /* DS */
2385      [MESA_SHADER_GEOMETRY]                    = 46,
2386      [MESA_SHADER_FRAGMENT]                    = 47,
2387      [MESA_SHADER_COMPUTE]                     = 0,
2388   };
2389
2390   static const uint32_t binding_table_opcodes[] = {
2391      [MESA_SHADER_VERTEX]                      = 38,
2392      [MESA_SHADER_TESS_CTRL]                   = 39,
2393      [MESA_SHADER_TESS_EVAL]                   = 40,
2394      [MESA_SHADER_GEOMETRY]                    = 41,
2395      [MESA_SHADER_FRAGMENT]                    = 42,
2396      [MESA_SHADER_COMPUTE]                     = 0,
2397   };
2398
2399   anv_foreach_stage(s, stages) {
2400      assert(s < ARRAY_SIZE(binding_table_opcodes));
2401      assert(binding_table_opcodes[s] > 0);
2402
2403      if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2404         anv_batch_emit(&cmd_buffer->batch,
2405                        GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2406            ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2407            ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2408         }
2409      }
2410
2411      /* Always emit binding table pointers if we're asked to, since on SKL
2412       * this is what flushes push constants. */
2413      anv_batch_emit(&cmd_buffer->batch,
2414                     GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2415         btp._3DCommandSubOpcode = binding_table_opcodes[s];
2416         btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2417      }
2418   }
2419}
2420
2421static void
2422cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2423                                VkShaderStageFlags dirty_stages)
2424{
2425   const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2426   const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2427
2428   static const uint32_t push_constant_opcodes[] = {
2429      [MESA_SHADER_VERTEX]                      = 21,
2430      [MESA_SHADER_TESS_CTRL]                   = 25, /* HS */
2431      [MESA_SHADER_TESS_EVAL]                   = 26, /* DS */
2432      [MESA_SHADER_GEOMETRY]                    = 22,
2433      [MESA_SHADER_FRAGMENT]                    = 23,
2434      [MESA_SHADER_COMPUTE]                     = 0,
2435   };
2436
2437   VkShaderStageFlags flushed = 0;
2438
2439   anv_foreach_stage(stage, dirty_stages) {
2440      assert(stage < ARRAY_SIZE(push_constant_opcodes));
2441      assert(push_constant_opcodes[stage] > 0);
2442
2443      anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2444         c._3DCommandSubOpcode = push_constant_opcodes[stage];
2445
2446         if (anv_pipeline_has_stage(pipeline, stage)) {
2447#if GEN_GEN >= 8 || GEN_IS_HASWELL
2448            const struct brw_stage_prog_data *prog_data =
2449               pipeline->shaders[stage]->prog_data;
2450            const struct anv_pipeline_bind_map *bind_map =
2451               &pipeline->shaders[stage]->bind_map;
2452
2453            /* The Skylake PRM contains the following restriction:
2454             *
2455             *    "The driver must ensure The following case does not occur
2456             *     without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2457             *     buffer 3 read length equal to zero committed followed by a
2458             *     3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2459             *     zero committed."
2460             *
2461             * To avoid this, we program the buffers in the highest slots.
2462             * This way, slot 0 is only used if slot 3 is also used.
2463             */
2464            int n = 3;
2465
2466            for (int i = 3; i >= 0; i--) {
2467               const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2468               if (range->length == 0)
2469                  continue;
2470
2471               const unsigned surface =
2472                  prog_data->binding_table.ubo_start + range->block;
2473
2474               assert(surface <= bind_map->surface_count);
2475               const struct anv_pipeline_binding *binding =
2476                  &bind_map->surface_to_descriptor[surface];
2477
2478               struct anv_address read_addr;
2479               uint32_t read_len;
2480               if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2481                  struct anv_address constant_data = {
2482                     .bo = &pipeline->device->dynamic_state_pool.block_pool.bo,
2483                     .offset = pipeline->shaders[stage]->constant_data.offset,
2484                  };
2485                  unsigned constant_data_size =
2486                     pipeline->shaders[stage]->constant_data_size;
2487
2488                  read_len = MIN2(range->length,
2489                     DIV_ROUND_UP(constant_data_size, 32) - range->start);
2490                  read_addr = anv_address_add(constant_data,
2491                                              range->start * 32);
2492               } else {
2493                  const struct anv_descriptor *desc =
2494                     anv_descriptor_for_binding(&gfx_state->base, binding);
2495
2496                  if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2497                     read_len = MIN2(range->length,
2498                        DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
2499                     read_addr = anv_address_add(desc->buffer_view->address,
2500                                                 range->start * 32);
2501                  } else {
2502                     assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2503
2504                     uint32_t dynamic_offset =
2505                        dynamic_offset_for_binding(&gfx_state->base, binding);
2506                     uint32_t buf_offset =
2507                        MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2508                     uint32_t buf_range =
2509                        MIN2(desc->range, desc->buffer->size - buf_offset);
2510
2511                     read_len = MIN2(range->length,
2512                        DIV_ROUND_UP(buf_range, 32) - range->start);
2513                     read_addr = anv_address_add(desc->buffer->address,
2514                                                 buf_offset + range->start * 32);
2515                  }
2516               }
2517
2518               if (read_len > 0) {
2519                  c.ConstantBody.Buffer[n] = read_addr;
2520                  c.ConstantBody.ReadLength[n] = read_len;
2521                  n--;
2522               }
2523            }
2524
2525            struct anv_state state =
2526               anv_cmd_buffer_push_constants(cmd_buffer, stage);
2527
2528            if (state.alloc_size > 0) {
2529               c.ConstantBody.Buffer[n] = (struct anv_address) {
2530                  .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2531                  .offset = state.offset,
2532               };
2533               c.ConstantBody.ReadLength[n] =
2534                  DIV_ROUND_UP(state.alloc_size, 32);
2535            }
2536#else
2537            /* For Ivy Bridge, the push constants packets have a different
2538             * rule that would require us to iterate in the other direction
2539             * and possibly mess around with dynamic state base address.
2540             * Don't bother; just emit regular push constants at n = 0.
2541             */
2542            struct anv_state state =
2543               anv_cmd_buffer_push_constants(cmd_buffer, stage);
2544
2545            if (state.alloc_size > 0) {
2546               c.ConstantBody.Buffer[0].offset = state.offset,
2547               c.ConstantBody.ReadLength[0] =
2548                  DIV_ROUND_UP(state.alloc_size, 32);
2549            }
2550#endif
2551         }
2552      }
2553
2554      flushed |= mesa_to_vk_shader_stage(stage);
2555   }
2556
2557   cmd_buffer->state.push_constants_dirty &= ~flushed;
2558}
2559
2560void
2561genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2562{
2563   struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2564   uint32_t *p;
2565
2566   uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2567   if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
2568      vb_emit |= pipeline->vb_used;
2569
2570   assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2571
2572   genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2573
2574   genX(flush_pipeline_select_3d)(cmd_buffer);
2575
2576   if (vb_emit) {
2577      const uint32_t num_buffers = __builtin_popcount(vb_emit);
2578      const uint32_t num_dwords = 1 + num_buffers * 4;
2579
2580      p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2581                          GENX(3DSTATE_VERTEX_BUFFERS));
2582      uint32_t vb, i = 0;
2583      for_each_bit(vb, vb_emit) {
2584         struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2585         uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2586
2587         struct GENX(VERTEX_BUFFER_STATE) state = {
2588            .VertexBufferIndex = vb,
2589
2590            .VertexBufferMOCS = anv_mocs_for_bo(cmd_buffer->device,
2591                                                buffer->address.bo),
2592#if GEN_GEN <= 7
2593            .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
2594            .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
2595#endif
2596
2597            .AddressModifyEnable = true,
2598            .BufferPitch = pipeline->vb[vb].stride,
2599            .BufferStartingAddress = anv_address_add(buffer->address, offset),
2600
2601#if GEN_GEN >= 8
2602            .BufferSize = buffer->size - offset
2603#else
2604            .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
2605#endif
2606         };
2607
2608         GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2609         i++;
2610      }
2611   }
2612
2613   cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2614
2615   if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2616      anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2617
2618      /* The exact descriptor layout is pulled from the pipeline, so we need
2619       * to re-emit binding tables on every pipeline change.
2620       */
2621      cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2622
2623      /* If the pipeline changed, we may need to re-allocate push constant
2624       * space in the URB.
2625       */
2626      cmd_buffer_alloc_push_constants(cmd_buffer);
2627   }
2628
2629#if GEN_GEN <= 7
2630   if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2631       cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2632      /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2633       *
2634       *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2635       *    stall needs to be sent just prior to any 3DSTATE_VS,
2636       *    3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2637       *    3DSTATE_BINDING_TABLE_POINTER_VS,
2638       *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one
2639       *    PIPE_CONTROL needs to be sent before any combination of VS
2640       *    associated 3DSTATE."
2641       */
2642      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2643         pc.DepthStallEnable  = true;
2644         pc.PostSyncOperation = WriteImmediateData;
2645         pc.Address           =
2646            (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2647      }
2648   }
2649#endif
2650
2651   /* Render targets live in the same binding table as fragment descriptors */
2652   if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2653      cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2654
2655   /* We emit the binding tables and sampler tables first, then emit push
2656    * constants and then finally emit binding table and sampler table
2657    * pointers.  It has to happen in this order, since emitting the binding
2658    * tables may change the push constants (in case of storage images). After
2659    * emitting push constants, on SKL+ we have to emit the corresponding
2660    * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2661    */
2662   uint32_t dirty = 0;
2663   if (cmd_buffer->state.descriptors_dirty)
2664      dirty = flush_descriptor_sets(cmd_buffer);
2665
2666   if (dirty || cmd_buffer->state.push_constants_dirty) {
2667      /* Because we're pushing UBOs, we have to push whenever either
2668       * descriptors or push constants is dirty.
2669       */
2670      dirty |= cmd_buffer->state.push_constants_dirty;
2671      dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2672      cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2673   }
2674
2675   if (dirty)
2676      cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2677
2678   if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2679      gen8_cmd_buffer_emit_viewport(cmd_buffer);
2680
2681   if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2682                                  ANV_CMD_DIRTY_PIPELINE)) {
2683      gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2684                                          pipeline->depth_clamp_enable);
2685   }
2686
2687   if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
2688                                      ANV_CMD_DIRTY_RENDER_TARGETS))
2689      gen7_cmd_buffer_emit_scissor(cmd_buffer);
2690
2691   genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2692
2693   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2694}
2695
2696static void
2697emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2698               struct anv_address addr,
2699               uint32_t size, uint32_t index)
2700{
2701   uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2702                                 GENX(3DSTATE_VERTEX_BUFFERS));
2703
2704   GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2705      &(struct GENX(VERTEX_BUFFER_STATE)) {
2706         .VertexBufferIndex = index,
2707         .AddressModifyEnable = true,
2708         .BufferPitch = 0,
2709         .VertexBufferMOCS = anv_mocs_for_bo(cmd_buffer->device, addr.bo),
2710#if (GEN_GEN >= 8)
2711         .BufferStartingAddress = addr,
2712         .BufferSize = size
2713#else
2714         .BufferStartingAddress = addr,
2715         .EndAddress = anv_address_add(addr, size),
2716#endif
2717      });
2718}
2719
2720static void
2721emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2722                             struct anv_address addr)
2723{
2724   emit_vertex_bo(cmd_buffer, addr, 8, ANV_SVGS_VB_INDEX);
2725}
2726
2727static void
2728emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2729                          uint32_t base_vertex, uint32_t base_instance)
2730{
2731   struct anv_state id_state =
2732      anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2733
2734   ((uint32_t *)id_state.map)[0] = base_vertex;
2735   ((uint32_t *)id_state.map)[1] = base_instance;
2736
2737   anv_state_flush(cmd_buffer->device, id_state);
2738
2739   struct anv_address addr = {
2740      .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2741      .offset = id_state.offset,
2742   };
2743
2744   emit_base_vertex_instance_bo(cmd_buffer, addr);
2745}
2746
2747static void
2748emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2749{
2750   struct anv_state state =
2751      anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2752
2753   ((uint32_t *)state.map)[0] = draw_index;
2754
2755   anv_state_flush(cmd_buffer->device, state);
2756
2757   struct anv_address addr = {
2758      .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2759      .offset = state.offset,
2760   };
2761
2762   emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
2763}
2764
2765void genX(CmdDraw)(
2766    VkCommandBuffer                             commandBuffer,
2767    uint32_t                                    vertexCount,
2768    uint32_t                                    instanceCount,
2769    uint32_t                                    firstVertex,
2770    uint32_t                                    firstInstance)
2771{
2772   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2773   struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2774   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2775
2776   if (anv_batch_has_error(&cmd_buffer->batch))
2777      return;
2778
2779   genX(cmd_buffer_flush_state)(cmd_buffer);
2780
2781   if (vs_prog_data->uses_firstvertex ||
2782       vs_prog_data->uses_baseinstance)
2783      emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2784   if (vs_prog_data->uses_drawid)
2785      emit_draw_index(cmd_buffer, 0);
2786
2787   /* Our implementation of VK_KHR_multiview uses instancing to draw the
2788    * different views.  We need to multiply instanceCount by the view count.
2789    */
2790   instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2791
2792   anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2793      prim.VertexAccessType         = SEQUENTIAL;
2794      prim.PrimitiveTopologyType    = pipeline->topology;
2795      prim.VertexCountPerInstance   = vertexCount;
2796      prim.StartVertexLocation      = firstVertex;
2797      prim.InstanceCount            = instanceCount;
2798      prim.StartInstanceLocation    = firstInstance;
2799      prim.BaseVertexLocation       = 0;
2800   }
2801
2802   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
2803}
2804
2805void genX(CmdDrawIndexed)(
2806    VkCommandBuffer                             commandBuffer,
2807    uint32_t                                    indexCount,
2808    uint32_t                                    instanceCount,
2809    uint32_t                                    firstIndex,
2810    int32_t                                     vertexOffset,
2811    uint32_t                                    firstInstance)
2812{
2813   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2814   struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2815   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2816
2817   if (anv_batch_has_error(&cmd_buffer->batch))
2818      return;
2819
2820   genX(cmd_buffer_flush_state)(cmd_buffer);
2821
2822   if (vs_prog_data->uses_firstvertex ||
2823       vs_prog_data->uses_baseinstance)
2824      emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2825   if (vs_prog_data->uses_drawid)
2826      emit_draw_index(cmd_buffer, 0);
2827
2828   /* Our implementation of VK_KHR_multiview uses instancing to draw the
2829    * different views.  We need to multiply instanceCount by the view count.
2830    */
2831   instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2832
2833   anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2834      prim.VertexAccessType         = RANDOM;
2835      prim.PrimitiveTopologyType    = pipeline->topology;
2836      prim.VertexCountPerInstance   = indexCount;
2837      prim.StartVertexLocation      = firstIndex;
2838      prim.InstanceCount            = instanceCount;
2839      prim.StartInstanceLocation    = firstInstance;
2840      prim.BaseVertexLocation       = vertexOffset;
2841   }
2842
2843   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
2844}
2845
2846/* Auto-Draw / Indirect Registers */
2847#define GEN7_3DPRIM_END_OFFSET          0x2420
2848#define GEN7_3DPRIM_START_VERTEX        0x2430
2849#define GEN7_3DPRIM_VERTEX_COUNT        0x2434
2850#define GEN7_3DPRIM_INSTANCE_COUNT      0x2438
2851#define GEN7_3DPRIM_START_INSTANCE      0x243C
2852#define GEN7_3DPRIM_BASE_VERTEX         0x2440
2853
2854/* MI_MATH only exists on Haswell+ */
2855#if GEN_IS_HASWELL || GEN_GEN >= 8
2856
2857/* Emit dwords to multiply GPR0 by N */
2858static void
2859build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2860{
2861   VK_OUTARRAY_MAKE(out, dw, dw_count);
2862
2863#define append_alu(opcode, operand1, operand2) \
2864   vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2865
2866   assert(N > 0);
2867   unsigned top_bit = 31 - __builtin_clz(N);
2868   for (int i = top_bit - 1; i >= 0; i--) {
2869      /* We get our initial data in GPR0 and we write the final data out to
2870       * GPR0 but we use GPR1 as our scratch register.
2871       */
2872      unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2873      unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2874
2875      /* Shift the current value left by 1 */
2876      append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2877      append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2878      append_alu(MI_ALU_ADD, 0, 0);
2879
2880      if (N & (1 << i)) {
2881         /* Store ACCU to R1 and add R0 to R1 */
2882         append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2883         append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2884         append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2885         append_alu(MI_ALU_ADD, 0, 0);
2886      }
2887
2888      append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2889   }
2890
2891#undef append_alu
2892}
2893
2894static void
2895emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2896{
2897   uint32_t num_dwords;
2898   build_alu_multiply_gpr0(NULL, &num_dwords, N);
2899
2900   uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2901   build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2902}
2903
2904#endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2905
2906static void
2907load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2908                         struct anv_address addr,
2909                         bool indexed)
2910{
2911   struct anv_batch *batch = &cmd_buffer->batch;
2912
2913   emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, anv_address_add(addr, 0));
2914
2915   unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2916   if (view_count > 1) {
2917#if GEN_IS_HASWELL || GEN_GEN >= 8
2918      emit_lrm(batch, CS_GPR(0), anv_address_add(addr, 4));
2919      emit_mul_gpr0(batch, view_count);
2920      emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2921#else
2922      anv_finishme("Multiview + indirect draw requires MI_MATH; "
2923                   "MI_MATH is not supported on Ivy Bridge");
2924      emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4));
2925#endif
2926   } else {
2927      emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4));
2928   }
2929
2930   emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, anv_address_add(addr, 8));
2931
2932   if (indexed) {
2933      emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, anv_address_add(addr, 12));
2934      emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 16));
2935   } else {
2936      emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 12));
2937      emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2938   }
2939}
2940
2941void genX(CmdDrawIndirect)(
2942    VkCommandBuffer                             commandBuffer,
2943    VkBuffer                                    _buffer,
2944    VkDeviceSize                                offset,
2945    uint32_t                                    drawCount,
2946    uint32_t                                    stride)
2947{
2948   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2949   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2950   struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2951   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2952
2953   if (anv_batch_has_error(&cmd_buffer->batch))
2954      return;
2955
2956   genX(cmd_buffer_flush_state)(cmd_buffer);
2957
2958   for (uint32_t i = 0; i < drawCount; i++) {
2959      struct anv_address draw = anv_address_add(buffer->address, offset);
2960
2961      if (vs_prog_data->uses_firstvertex ||
2962          vs_prog_data->uses_baseinstance)
2963         emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
2964      if (vs_prog_data->uses_drawid)
2965         emit_draw_index(cmd_buffer, i);
2966
2967      load_indirect_parameters(cmd_buffer, draw, false);
2968
2969      anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2970         prim.IndirectParameterEnable  = true;
2971         prim.VertexAccessType         = SEQUENTIAL;
2972         prim.PrimitiveTopologyType    = pipeline->topology;
2973      }
2974
2975      offset += stride;
2976   }
2977
2978   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
2979}
2980
2981void genX(CmdDrawIndexedIndirect)(
2982    VkCommandBuffer                             commandBuffer,
2983    VkBuffer                                    _buffer,
2984    VkDeviceSize                                offset,
2985    uint32_t                                    drawCount,
2986    uint32_t                                    stride)
2987{
2988   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2989   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2990   struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2991   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2992
2993   if (anv_batch_has_error(&cmd_buffer->batch))
2994      return;
2995
2996   genX(cmd_buffer_flush_state)(cmd_buffer);
2997
2998   for (uint32_t i = 0; i < drawCount; i++) {
2999      struct anv_address draw = anv_address_add(buffer->address, offset);
3000
3001      /* TODO: We need to stomp base vertex to 0 somehow */
3002      if (vs_prog_data->uses_firstvertex ||
3003          vs_prog_data->uses_baseinstance)
3004         emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3005      if (vs_prog_data->uses_drawid)
3006         emit_draw_index(cmd_buffer, i);
3007
3008      load_indirect_parameters(cmd_buffer, draw, true);
3009
3010      anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3011         prim.IndirectParameterEnable  = true;
3012         prim.VertexAccessType         = RANDOM;
3013         prim.PrimitiveTopologyType    = pipeline->topology;
3014      }
3015
3016      offset += stride;
3017   }
3018
3019   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
3020}
3021
3022static VkResult
3023flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
3024{
3025   struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3026   struct anv_state surfaces = { 0, }, samplers = { 0, };
3027   VkResult result;
3028
3029   result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3030   if (result != VK_SUCCESS) {
3031      assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
3032
3033      result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
3034      if (result != VK_SUCCESS)
3035         return result;
3036
3037      /* Re-emit state base addresses so we get the new surface state base
3038       * address before we start emitting binding tables etc.
3039       */
3040      genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
3041
3042      result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3043      if (result != VK_SUCCESS) {
3044         anv_batch_set_error(&cmd_buffer->batch, result);
3045         return result;
3046      }
3047   }
3048
3049   result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
3050   if (result != VK_SUCCESS) {
3051      anv_batch_set_error(&cmd_buffer->batch, result);
3052      return result;
3053   }
3054
3055   uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3056   struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3057      .BindingTablePointer = surfaces.offset,
3058      .SamplerStatePointer = samplers.offset,
3059   };
3060   GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3061
3062   struct anv_state state =
3063      anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3064                                   pipeline->interface_descriptor_data,
3065                                   GENX(INTERFACE_DESCRIPTOR_DATA_length),
3066                                   64);
3067
3068   uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3069   anv_batch_emit(&cmd_buffer->batch,
3070                  GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3071      mid.InterfaceDescriptorTotalLength        = size;
3072      mid.InterfaceDescriptorDataStartAddress   = state.offset;
3073   }
3074
3075   return VK_SUCCESS;
3076}
3077
3078void
3079genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3080{
3081   struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3082   MAYBE_UNUSED VkResult result;
3083
3084   assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3085
3086   genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3087
3088   genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3089
3090   if (cmd_buffer->state.compute.pipeline_dirty) {
3091      /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3092       *
3093       *    "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3094       *    the only bits that are changed are scoreboard related: Scoreboard
3095       *    Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3096       *    these scoreboard related states, a MEDIA_STATE_FLUSH is
3097       *    sufficient."
3098       */
3099      cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3100      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3101
3102      anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3103   }
3104
3105   if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3106       cmd_buffer->state.compute.pipeline_dirty) {
3107      /* FIXME: figure out descriptors for gen7 */
3108      result = flush_compute_descriptor_set(cmd_buffer);
3109      if (result != VK_SUCCESS)
3110         return;
3111
3112      cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3113   }
3114
3115   if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3116      struct anv_state push_state =
3117         anv_cmd_buffer_cs_push_constants(cmd_buffer);
3118
3119      if (push_state.alloc_size) {
3120         anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3121            curbe.CURBETotalDataLength    = push_state.alloc_size;
3122            curbe.CURBEDataStartAddress   = push_state.offset;
3123         }
3124      }
3125
3126      cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3127   }
3128
3129   cmd_buffer->state.compute.pipeline_dirty = false;
3130
3131   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3132}
3133
3134#if GEN_GEN == 7
3135
3136static VkResult
3137verify_cmd_parser(const struct anv_device *device,
3138                  int required_version,
3139                  const char *function)
3140{
3141   if (device->instance->physicalDevice.cmd_parser_version < required_version) {
3142      return vk_errorf(device->instance, device->instance,
3143                       VK_ERROR_FEATURE_NOT_PRESENT,
3144                       "cmd parser version %d is required for %s",
3145                       required_version, function);
3146   } else {
3147      return VK_SUCCESS;
3148   }
3149}
3150
3151#endif
3152
3153static void
3154anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3155                                  uint32_t baseGroupX,
3156                                  uint32_t baseGroupY,
3157                                  uint32_t baseGroupZ)
3158{
3159   if (anv_batch_has_error(&cmd_buffer->batch))
3160      return;
3161
3162   VkResult result =
3163      anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, MESA_SHADER_COMPUTE,
3164                                                base_work_group_id);
3165   if (result != VK_SUCCESS) {
3166      cmd_buffer->batch.status = result;
3167      return;
3168   }
3169
3170   struct anv_push_constants *push =
3171      cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3172   if (push->base_work_group_id[0] != baseGroupX ||
3173       push->base_work_group_id[1] != baseGroupY ||
3174       push->base_work_group_id[2] != baseGroupZ) {
3175      push->base_work_group_id[0] = baseGroupX;
3176      push->base_work_group_id[1] = baseGroupY;
3177      push->base_work_group_id[2] = baseGroupZ;
3178
3179      cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3180   }
3181}
3182
3183void genX(CmdDispatch)(
3184    VkCommandBuffer                             commandBuffer,
3185    uint32_t                                    x,
3186    uint32_t                                    y,
3187    uint32_t                                    z)
3188{
3189   genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
3190}
3191
3192void genX(CmdDispatchBase)(
3193    VkCommandBuffer                             commandBuffer,
3194    uint32_t                                    baseGroupX,
3195    uint32_t                                    baseGroupY,
3196    uint32_t                                    baseGroupZ,
3197    uint32_t                                    groupCountX,
3198    uint32_t                                    groupCountY,
3199    uint32_t                                    groupCountZ)
3200{
3201   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3202   struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3203   const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3204
3205   anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
3206                                     baseGroupY, baseGroupZ);
3207
3208   if (anv_batch_has_error(&cmd_buffer->batch))
3209      return;
3210
3211   if (prog_data->uses_num_work_groups) {
3212      struct anv_state state =
3213         anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
3214      uint32_t *sizes = state.map;
3215      sizes[0] = groupCountX;
3216      sizes[1] = groupCountY;
3217      sizes[2] = groupCountZ;
3218      anv_state_flush(cmd_buffer->device, state);
3219      cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3220         .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3221         .offset = state.offset,
3222      };
3223   }
3224
3225   genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3226
3227   anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
3228      ggw.SIMDSize                     = prog_data->simd_size / 16;
3229      ggw.ThreadDepthCounterMaximum    = 0;
3230      ggw.ThreadHeightCounterMaximum   = 0;
3231      ggw.ThreadWidthCounterMaximum    = prog_data->threads - 1;
3232      ggw.ThreadGroupIDXDimension      = groupCountX;
3233      ggw.ThreadGroupIDYDimension      = groupCountY;
3234      ggw.ThreadGroupIDZDimension      = groupCountZ;
3235      ggw.RightExecutionMask           = pipeline->cs_right_mask;
3236      ggw.BottomExecutionMask          = 0xffffffff;
3237   }
3238
3239   anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
3240}
3241
3242#define GPGPU_DISPATCHDIMX 0x2500
3243#define GPGPU_DISPATCHDIMY 0x2504
3244#define GPGPU_DISPATCHDIMZ 0x2508
3245
3246void genX(CmdDispatchIndirect)(
3247    VkCommandBuffer                             commandBuffer,
3248    VkBuffer                                    _buffer,
3249    VkDeviceSize                                offset)
3250{
3251   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3252   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3253   struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3254   const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3255   struct anv_address addr = anv_address_add(buffer->address, offset);
3256   struct anv_batch *batch = &cmd_buffer->batch;
3257
3258   anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
3259
3260#if GEN_GEN == 7
3261   /* Linux 4.4 added command parser version 5 which allows the GPGPU
3262    * indirect dispatch registers to be written.
3263    */
3264   if (verify_cmd_parser(cmd_buffer->device, 5,
3265                         "vkCmdDispatchIndirect") != VK_SUCCESS)
3266      return;
3267#endif
3268
3269   if (prog_data->uses_num_work_groups)
3270      cmd_buffer->state.compute.num_workgroups = addr;
3271
3272   genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3273
3274   emit_lrm(batch, GPGPU_DISPATCHDIMX, anv_address_add(addr, 0));
3275   emit_lrm(batch, GPGPU_DISPATCHDIMY, anv_address_add(addr, 4));
3276   emit_lrm(batch, GPGPU_DISPATCHDIMZ, anv_address_add(addr, 8));
3277
3278#if GEN_GEN <= 7
3279   /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
3280   emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
3281   emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
3282   emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
3283
3284   /* Load compute_dispatch_indirect_x_size into SRC0 */
3285   emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 0));
3286
3287   /* predicate = (compute_dispatch_indirect_x_size == 0); */
3288   anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3289      mip.LoadOperation    = LOAD_LOAD;
3290      mip.CombineOperation = COMBINE_SET;
3291      mip.CompareOperation = COMPARE_SRCS_EQUAL;
3292   }
3293
3294   /* Load compute_dispatch_indirect_y_size into SRC0 */
3295   emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 4));
3296
3297   /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3298   anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3299      mip.LoadOperation    = LOAD_LOAD;
3300      mip.CombineOperation = COMBINE_OR;
3301      mip.CompareOperation = COMPARE_SRCS_EQUAL;
3302   }
3303
3304   /* Load compute_dispatch_indirect_z_size into SRC0 */
3305   emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 8));
3306
3307   /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3308   anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3309      mip.LoadOperation    = LOAD_LOAD;
3310      mip.CombineOperation = COMBINE_OR;
3311      mip.CompareOperation = COMPARE_SRCS_EQUAL;
3312   }
3313
3314   /* predicate = !predicate; */
3315#define COMPARE_FALSE                           1
3316   anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3317      mip.LoadOperation    = LOAD_LOADINV;
3318      mip.CombineOperation = COMBINE_OR;
3319      mip.CompareOperation = COMPARE_FALSE;
3320   }
3321#endif
3322
3323   anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
3324      ggw.IndirectParameterEnable      = true;
3325      ggw.PredicateEnable              = GEN_GEN <= 7;
3326      ggw.SIMDSize                     = prog_data->simd_size / 16;
3327      ggw.ThreadDepthCounterMaximum    = 0;
3328      ggw.ThreadHeightCounterMaximum   = 0;
3329      ggw.ThreadWidthCounterMaximum    = prog_data->threads - 1;
3330      ggw.RightExecutionMask           = pipeline->cs_right_mask;
3331      ggw.BottomExecutionMask          = 0xffffffff;
3332   }
3333
3334   anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
3335}
3336
3337static void
3338genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
3339                            uint32_t pipeline)
3340{
3341   UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
3342
3343   if (cmd_buffer->state.current_pipeline == pipeline)
3344      return;
3345
3346#if GEN_GEN >= 8 && GEN_GEN < 10
3347   /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
3348    *
3349    *   Software must clear the COLOR_CALC_STATE Valid field in
3350    *   3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
3351    *   with Pipeline Select set to GPGPU.
3352    *
3353    * The internal hardware docs recommend the same workaround for Gen9
3354    * hardware too.
3355    */
3356   if (pipeline == GPGPU)
3357      anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
3358#endif
3359
3360   /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
3361    * PIPELINE_SELECT [DevBWR+]":
3362    *
3363    *   Project: DEVSNB+
3364    *
3365    *   Software must ensure all the write caches are flushed through a
3366    *   stalling PIPE_CONTROL command followed by another PIPE_CONTROL
3367    *   command to invalidate read only caches prior to programming
3368    *   MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
3369    */
3370   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3371      pc.RenderTargetCacheFlushEnable  = true;
3372      pc.DepthCacheFlushEnable         = true;
3373      pc.DCFlushEnable                 = true;
3374      pc.PostSyncOperation             = NoWrite;
3375      pc.CommandStreamerStallEnable    = true;
3376   }
3377
3378   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3379      pc.TextureCacheInvalidationEnable   = true;
3380      pc.ConstantCacheInvalidationEnable  = true;
3381      pc.StateCacheInvalidationEnable     = true;
3382      pc.InstructionCacheInvalidateEnable = true;
3383      pc.PostSyncOperation                = NoWrite;
3384   }
3385
3386   anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
3387#if GEN_GEN >= 9
3388      ps.MaskBits = 3;
3389#endif
3390      ps.PipelineSelection = pipeline;
3391   }
3392
3393#if GEN_GEN == 9
3394   if (devinfo->is_geminilake) {
3395      /* Project: DevGLK
3396       *
3397       * "This chicken bit works around a hardware issue with barrier logic
3398       *  encountered when switching between GPGPU and 3D pipelines.  To
3399       *  workaround the issue, this mode bit should be set after a pipeline
3400       *  is selected."
3401       */
3402      uint32_t scec;
3403      anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
3404                      .GLKBarrierMode =
3405                          pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
3406                                            : GLK_BARRIER_MODE_3D_HULL,
3407                      .GLKBarrierModeMask = 1);
3408      emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
3409   }
3410#endif
3411
3412   cmd_buffer->state.current_pipeline = pipeline;
3413}
3414
3415void
3416genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
3417{
3418   genX(flush_pipeline_select)(cmd_buffer, _3D);
3419}
3420
3421void
3422genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
3423{
3424   genX(flush_pipeline_select)(cmd_buffer, GPGPU);
3425}
3426
3427void
3428genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
3429{
3430   if (GEN_GEN >= 8)
3431      return;
3432
3433   /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
3434    *
3435    *    "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
3436    *    combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
3437    *    3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
3438    *    issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
3439    *    set), followed by a pipelined depth cache flush (PIPE_CONTROL with
3440    *    Depth Flush Bit set, followed by another pipelined depth stall
3441    *    (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
3442    *    guarantee that the pipeline from WM onwards is already flushed (e.g.,
3443    *    via a preceding MI_FLUSH)."
3444    */
3445   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3446      pipe.DepthStallEnable = true;
3447   }
3448   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3449      pipe.DepthCacheFlushEnable = true;
3450   }
3451   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3452      pipe.DepthStallEnable = true;
3453   }
3454}
3455
3456static void
3457cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
3458{
3459   struct anv_device *device = cmd_buffer->device;
3460   const struct anv_image_view *iview =
3461      anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
3462   const struct anv_image *image = iview ? iview->image : NULL;
3463
3464   /* FIXME: Width and Height are wrong */
3465
3466   genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
3467
3468   uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
3469                                        device->isl_dev.ds.size / 4);
3470   if (dw == NULL)
3471      return;
3472
3473   struct isl_depth_stencil_hiz_emit_info info = { };
3474
3475   if (iview)
3476      info.view = &iview->planes[0].isl;
3477
3478   if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
3479      uint32_t depth_plane =
3480         anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
3481      const struct anv_surface *surface = &image->planes[depth_plane].surface;
3482
3483      info.depth_surf = &surface->isl;
3484
3485      info.depth_address =
3486         anv_batch_emit_reloc(&cmd_buffer->batch,
3487                              dw + device->isl_dev.ds.depth_offset / 4,
3488                              image->planes[depth_plane].address.bo,
3489                              image->planes[depth_plane].address.offset +
3490                              surface->offset);
3491      info.mocs =
3492         anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
3493
3494      const uint32_t ds =
3495         cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
3496      info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
3497      if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
3498         info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
3499
3500         info.hiz_address =
3501            anv_batch_emit_reloc(&cmd_buffer->batch,
3502                                 dw + device->isl_dev.ds.hiz_offset / 4,
3503                                 image->planes[depth_plane].address.bo,
3504                                 image->planes[depth_plane].address.offset +
3505                                 image->planes[depth_plane].aux_surface.offset);
3506
3507         info.depth_clear_value = ANV_HZ_FC_VAL;
3508      }
3509   }
3510
3511   if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
3512      uint32_t stencil_plane =
3513         anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
3514      const struct anv_surface *surface = &image->planes[stencil_plane].surface;
3515
3516      info.stencil_surf = &surface->isl;
3517
3518      info.stencil_address =
3519         anv_batch_emit_reloc(&cmd_buffer->batch,
3520                              dw + device->isl_dev.ds.stencil_offset / 4,
3521                              image->planes[stencil_plane].address.bo,
3522                              image->planes[stencil_plane].address.offset +
3523                              surface->offset);
3524      info.mocs =
3525         anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
3526   }
3527
3528   isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
3529
3530   cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
3531}
3532
3533/**
3534 * This ANDs the view mask of the current subpass with the pending clear
3535 * views in the attachment to get the mask of views active in the subpass
3536 * that still need to be cleared.
3537 */
3538static inline uint32_t
3539get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
3540                                 const struct anv_attachment_state *att_state)
3541{
3542   return cmd_state->subpass->view_mask & att_state->pending_clear_views;
3543}
3544
3545static inline bool
3546do_first_layer_clear(const struct anv_cmd_state *cmd_state,
3547                     const struct anv_attachment_state *att_state)
3548{
3549   if (!cmd_state->subpass->view_mask)
3550      return true;
3551
3552   uint32_t pending_clear_mask =
3553      get_multiview_subpass_clear_mask(cmd_state, att_state);
3554
3555   return pending_clear_mask & 1;
3556}
3557
3558static inline bool
3559current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
3560                                       uint32_t att_idx)
3561{
3562   const uint32_t last_subpass_idx =
3563      cmd_state->pass->attachments[att_idx].last_subpass_idx;
3564   const struct anv_subpass *last_subpass =
3565      &cmd_state->pass->subpasses[last_subpass_idx];
3566   return last_subpass == cmd_state->subpass;
3567}
3568
3569static void
3570cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
3571                         uint32_t subpass_id)
3572{
3573   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3574   struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
3575   cmd_state->subpass = subpass;
3576
3577   cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3578
3579   /* Our implementation of VK_KHR_multiview uses instancing to draw the
3580    * different views.  If the client asks for instancing, we need to use the
3581    * Instance Data Step Rate to ensure that we repeat the client's
3582    * per-instance data once for each view.  Since this bit is in
3583    * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3584    * of each subpass.
3585    */
3586   if (GEN_GEN == 7)
3587      cmd_buffer->state.gfx.vb_dirty |= ~0;
3588
3589   /* It is possible to start a render pass with an old pipeline.  Because the
3590    * render pass and subpass index are both baked into the pipeline, this is
3591    * highly unlikely.  In order to do so, it requires that you have a render
3592    * pass with a single subpass and that you use that render pass twice
3593    * back-to-back and use the same pipeline at the start of the second render
3594    * pass as at the end of the first.  In order to avoid unpredictable issues
3595    * with this edge case, we just dirty the pipeline at the start of every
3596    * subpass.
3597    */
3598   cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3599
3600   /* Accumulate any subpass flushes that need to happen before the subpass */
3601   cmd_buffer->state.pending_pipe_bits |=
3602      cmd_buffer->state.pass->subpass_flushes[subpass_id];
3603
3604   VkRect2D render_area = cmd_buffer->state.render_area;
3605   struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3606
3607   bool is_multiview = subpass->view_mask != 0;
3608
3609   for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3610      const uint32_t a = subpass->attachments[i].attachment;
3611      if (a == VK_ATTACHMENT_UNUSED)
3612         continue;
3613
3614      assert(a < cmd_state->pass->attachment_count);
3615      struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3616
3617      struct anv_image_view *iview = fb->attachments[a];
3618      const struct anv_image *image = iview->image;
3619
3620      /* A resolve is necessary before use as an input attachment if the clear
3621       * color or auxiliary buffer usage isn't supported by the sampler.
3622       */
3623      const bool input_needs_resolve =
3624            (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3625            att_state->input_aux_usage != att_state->aux_usage;
3626
3627      VkImageLayout target_layout;
3628      if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3629          !input_needs_resolve) {
3630         /* Layout transitions before the final only help to enable sampling
3631          * as an input attachment. If the input attachment supports sampling
3632          * using the auxiliary surface, we can skip such transitions by
3633          * making the target layout one that is CCS-aware.
3634          */
3635         target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3636      } else {
3637         target_layout = subpass->attachments[i].layout;
3638      }
3639
3640      if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3641         assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3642
3643         uint32_t base_layer, layer_count;
3644         if (image->type == VK_IMAGE_TYPE_3D) {
3645            base_layer = 0;
3646            layer_count = anv_minify(iview->image->extent.depth,
3647                                     iview->planes[0].isl.base_level);
3648         } else {
3649            base_layer = iview->planes[0].isl.base_array_layer;
3650            layer_count = fb->layers;
3651         }
3652
3653         transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3654                                 iview->planes[0].isl.base_level, 1,
3655                                 base_layer, layer_count,
3656                                 att_state->current_layout, target_layout);
3657      } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3658         transition_depth_buffer(cmd_buffer, image,
3659                                 att_state->current_layout, target_layout);
3660         att_state->aux_usage =
3661            anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3662                                    VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3663      }
3664      att_state->current_layout = target_layout;
3665
3666      if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
3667         assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3668
3669         /* Multi-planar images are not supported as attachments */
3670         assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3671         assert(image->n_planes == 1);
3672
3673         uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
3674         uint32_t clear_layer_count = fb->layers;
3675
3676         if (att_state->fast_clear &&
3677             do_first_layer_clear(cmd_state, att_state)) {
3678            /* We only support fast-clears on the first layer */
3679            assert(iview->planes[0].isl.base_level == 0);
3680            assert(iview->planes[0].isl.base_array_layer == 0);
3681
3682            union isl_color_value clear_color = {};
3683            anv_clear_color_from_att_state(&clear_color, att_state, iview);
3684            if (iview->image->samples == 1) {
3685               anv_image_ccs_op(cmd_buffer, image,
3686                                iview->planes[0].isl.format,
3687                                VK_IMAGE_ASPECT_COLOR_BIT,
3688                                0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
3689                                &clear_color,
3690                                false);
3691            } else {
3692               anv_image_mcs_op(cmd_buffer, image,
3693                                iview->planes[0].isl.format,
3694                                VK_IMAGE_ASPECT_COLOR_BIT,
3695                                0, 1, ISL_AUX_OP_FAST_CLEAR,
3696                                &clear_color,
3697                                false);
3698            }
3699            base_clear_layer++;
3700            clear_layer_count--;
3701            if (is_multiview)
3702               att_state->pending_clear_views &= ~1;
3703
3704            if (att_state->clear_color_is_zero) {
3705               /* This image has the auxiliary buffer enabled. We can mark the
3706                * subresource as not needing a resolve because the clear color
3707                * will match what's in every RENDER_SURFACE_STATE object when
3708                * it's being used for sampling.
3709                */
3710               set_image_fast_clear_state(cmd_buffer, iview->image,
3711                                          VK_IMAGE_ASPECT_COLOR_BIT,
3712                                          ANV_FAST_CLEAR_DEFAULT_VALUE);
3713            } else {
3714               set_image_fast_clear_state(cmd_buffer, iview->image,
3715                                          VK_IMAGE_ASPECT_COLOR_BIT,
3716                                          ANV_FAST_CLEAR_ANY);
3717            }
3718         }
3719
3720         /* From the VkFramebufferCreateInfo spec:
3721          *
3722          * "If the render pass uses multiview, then layers must be one and each
3723          *  attachment requires a number of layers that is greater than the
3724          *  maximum bit index set in the view mask in the subpasses in which it
3725          *  is used."
3726          *
3727          * So if multiview is active we ignore the number of layers in the
3728          * framebuffer and instead we honor the view mask from the subpass.
3729          */
3730         if (is_multiview) {
3731            assert(image->n_planes == 1);
3732            uint32_t pending_clear_mask =
3733               get_multiview_subpass_clear_mask(cmd_state, att_state);
3734
3735            uint32_t layer_idx;
3736            for_each_bit(layer_idx, pending_clear_mask) {
3737               uint32_t layer =
3738                  iview->planes[0].isl.base_array_layer + layer_idx;
3739
3740               anv_image_clear_color(cmd_buffer, image,
3741                                     VK_IMAGE_ASPECT_COLOR_BIT,
3742                                     att_state->aux_usage,
3743                                     iview->planes[0].isl.format,
3744                                     iview->planes[0].isl.swizzle,
3745                                     iview->planes[0].isl.base_level,
3746                                     layer, 1,
3747                                     render_area,
3748                                     vk_to_isl_color(att_state->clear_value.color));
3749            }
3750
3751            att_state->pending_clear_views &= ~pending_clear_mask;
3752         } else if (clear_layer_count > 0) {
3753            assert(image->n_planes == 1);
3754            anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3755                                  att_state->aux_usage,
3756                                  iview->planes[0].isl.format,
3757                                  iview->planes[0].isl.swizzle,
3758                                  iview->planes[0].isl.base_level,
3759                                  base_clear_layer, clear_layer_count,
3760                                  render_area,
3761                                  vk_to_isl_color(att_state->clear_value.color));
3762         }
3763      } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
3764                                                     VK_IMAGE_ASPECT_STENCIL_BIT)) {
3765         if (att_state->fast_clear && !is_multiview) {
3766            /* We currently only support HiZ for single-layer images */
3767            if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3768               assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
3769               assert(iview->planes[0].isl.base_level == 0);
3770               assert(iview->planes[0].isl.base_array_layer == 0);
3771               assert(fb->layers == 1);
3772            }
3773
3774            anv_image_hiz_clear(cmd_buffer, image,
3775                                att_state->pending_clear_aspects,
3776                                iview->planes[0].isl.base_level,
3777                                iview->planes[0].isl.base_array_layer,
3778                                fb->layers, render_area,
3779                                att_state->clear_value.depthStencil.stencil);
3780         } else if (is_multiview) {
3781            uint32_t pending_clear_mask =
3782              get_multiview_subpass_clear_mask(cmd_state, att_state);
3783
3784            uint32_t layer_idx;
3785            for_each_bit(layer_idx, pending_clear_mask) {
3786               uint32_t layer =
3787                  iview->planes[0].isl.base_array_layer + layer_idx;
3788
3789               anv_image_clear_depth_stencil(cmd_buffer, image,
3790                                             att_state->pending_clear_aspects,
3791                                             att_state->aux_usage,
3792                                             iview->planes[0].isl.base_level,
3793                                             layer, 1,
3794                                             render_area,
3795                                             att_state->clear_value.depthStencil.depth,
3796                                             att_state->clear_value.depthStencil.stencil);
3797            }
3798
3799            att_state->pending_clear_views &= ~pending_clear_mask;
3800         } else {
3801            anv_image_clear_depth_stencil(cmd_buffer, image,
3802                                          att_state->pending_clear_aspects,
3803                                          att_state->aux_usage,
3804                                          iview->planes[0].isl.base_level,
3805                                          iview->planes[0].isl.base_array_layer,
3806                                          fb->layers, render_area,
3807                                          att_state->clear_value.depthStencil.depth,
3808                                          att_state->clear_value.depthStencil.stencil);
3809         }
3810      } else  {
3811         assert(att_state->pending_clear_aspects == 0);
3812      }
3813
3814      if (GEN_GEN < 10 &&
3815          (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
3816          image->planes[0].aux_surface.isl.size_B > 0 &&
3817          iview->planes[0].isl.base_level == 0 &&
3818          iview->planes[0].isl.base_array_layer == 0) {
3819         if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
3820            genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3821                                         image, VK_IMAGE_ASPECT_COLOR_BIT,
3822                                         false /* copy to ss */);
3823         }
3824
3825         if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
3826             att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3827            genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3828                                         image, VK_IMAGE_ASPECT_COLOR_BIT,
3829                                         false /* copy to ss */);
3830         }
3831      }
3832
3833      if (subpass->attachments[i].usage ==
3834          VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
3835         /* We assume that if we're starting a subpass, we're going to do some
3836          * rendering so we may end up with compressed data.
3837          */
3838         genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
3839                                             VK_IMAGE_ASPECT_COLOR_BIT,
3840                                             att_state->aux_usage,
3841                                             iview->planes[0].isl.base_level,
3842                                             iview->planes[0].isl.base_array_layer,
3843                                             fb->layers);
3844      } else if (subpass->attachments[i].usage ==
3845                 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
3846         /* We may be writing depth or stencil so we need to mark the surface.
3847          * Unfortunately, there's no way to know at this point whether the
3848          * depth or stencil tests used will actually write to the surface.
3849          *
3850          * Even though stencil may be plane 1, it always shares a base_level
3851          * with depth.
3852          */
3853         const struct isl_view *ds_view = &iview->planes[0].isl;
3854         if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
3855            genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3856                                                VK_IMAGE_ASPECT_DEPTH_BIT,
3857                                                att_state->aux_usage,
3858                                                ds_view->base_level,
3859                                                ds_view->base_array_layer,
3860                                                fb->layers);
3861         }
3862         if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
3863            /* Even though stencil may be plane 1, it always shares a
3864             * base_level with depth.
3865             */
3866            genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3867                                                VK_IMAGE_ASPECT_STENCIL_BIT,
3868                                                ISL_AUX_USAGE_NONE,
3869                                                ds_view->base_level,
3870                                                ds_view->base_array_layer,
3871                                                fb->layers);
3872         }
3873      }
3874
3875      /* If multiview is enabled, then we are only done clearing when we no
3876       * longer have pending layers to clear, or when we have processed the
3877       * last subpass that uses this attachment.
3878       */
3879      if (!is_multiview ||
3880          att_state->pending_clear_views == 0 ||
3881          current_subpass_is_last_for_attachment(cmd_state, a)) {
3882         att_state->pending_clear_aspects = 0;
3883      }
3884
3885      att_state->pending_load_aspects = 0;
3886   }
3887
3888   cmd_buffer_emit_depth_stencil(cmd_buffer);
3889}
3890
3891static void
3892cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
3893{
3894   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3895   struct anv_subpass *subpass = cmd_state->subpass;
3896   uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3897
3898   anv_cmd_buffer_resolve_subpass(cmd_buffer);
3899
3900   struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3901   for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3902      const uint32_t a = subpass->attachments[i].attachment;
3903      if (a == VK_ATTACHMENT_UNUSED)
3904         continue;
3905
3906      if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
3907         continue;
3908
3909      assert(a < cmd_state->pass->attachment_count);
3910      struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3911      struct anv_image_view *iview = fb->attachments[a];
3912      const struct anv_image *image = iview->image;
3913
3914      if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
3915          image->vk_format != iview->vk_format) {
3916         enum anv_fast_clear_type fast_clear_type =
3917            anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
3918                                          image, VK_IMAGE_ASPECT_COLOR_BIT,
3919                                          att_state->current_layout);
3920
3921         /* If any clear color was used, flush it down the aux surfaces. If we
3922          * don't do it now using the view's format we might use the clear
3923          * color incorrectly in the following resolves (for example with an
3924          * SRGB view & a UNORM image).
3925          */
3926         if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
3927            anv_perf_warn(cmd_buffer->device->instance, fb,
3928                          "Doing a partial resolve to get rid of clear color at the "
3929                          "end of a renderpass due to an image/view format mismatch");
3930
3931            uint32_t base_layer, layer_count;
3932            if (image->type == VK_IMAGE_TYPE_3D) {
3933               base_layer = 0;
3934               layer_count = anv_minify(iview->image->extent.depth,
3935                                        iview->planes[0].isl.base_level);
3936            } else {
3937               base_layer = iview->planes[0].isl.base_array_layer;
3938               layer_count = fb->layers;
3939            }
3940
3941            for (uint32_t a = 0; a < layer_count; a++) {
3942               uint32_t array_layer = base_layer + a;
3943               if (image->samples == 1) {
3944                  anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
3945                                                 iview->planes[0].isl.format,
3946                                                 VK_IMAGE_ASPECT_COLOR_BIT,
3947                                                 iview->planes[0].isl.base_level,
3948                                                 array_layer,
3949                                                 ISL_AUX_OP_PARTIAL_RESOLVE,
3950                                                 ANV_FAST_CLEAR_NONE);
3951               } else {
3952                  anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
3953                                                 iview->planes[0].isl.format,
3954                                                 VK_IMAGE_ASPECT_COLOR_BIT,
3955                                                 base_layer,
3956                                                 ISL_AUX_OP_PARTIAL_RESOLVE,
3957                                                 ANV_FAST_CLEAR_NONE);
3958               }
3959            }
3960         }
3961      }
3962
3963      /* Transition the image into the final layout for this render pass */
3964      VkImageLayout target_layout =
3965         cmd_state->pass->attachments[a].final_layout;
3966
3967      if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3968         assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3969
3970         uint32_t base_layer, layer_count;
3971         if (image->type == VK_IMAGE_TYPE_3D) {
3972            base_layer = 0;
3973            layer_count = anv_minify(iview->image->extent.depth,
3974                                     iview->planes[0].isl.base_level);
3975         } else {
3976            base_layer = iview->planes[0].isl.base_array_layer;
3977            layer_count = fb->layers;
3978         }
3979
3980         transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3981                                 iview->planes[0].isl.base_level, 1,
3982                                 base_layer, layer_count,
3983                                 att_state->current_layout, target_layout);
3984      } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3985         transition_depth_buffer(cmd_buffer, image,
3986                                 att_state->current_layout, target_layout);
3987      }
3988   }
3989
3990   /* Accumulate any subpass flushes that need to happen after the subpass.
3991    * Yes, they do get accumulated twice in the NextSubpass case but since
3992    * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
3993    * ORing the bits in twice so it's harmless.
3994    */
3995   cmd_buffer->state.pending_pipe_bits |=
3996      cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
3997}
3998
3999void genX(CmdBeginRenderPass)(
4000    VkCommandBuffer                             commandBuffer,
4001    const VkRenderPassBeginInfo*                pRenderPassBegin,
4002    VkSubpassContents                           contents)
4003{
4004   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4005   ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
4006   ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
4007
4008   cmd_buffer->state.framebuffer = framebuffer;
4009   cmd_buffer->state.pass = pass;
4010   cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
4011   VkResult result =
4012      genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
4013
4014   /* If we failed to setup the attachments we should not try to go further */
4015   if (result != VK_SUCCESS) {
4016      assert(anv_batch_has_error(&cmd_buffer->batch));
4017      return;
4018   }
4019
4020   genX(flush_pipeline_select_3d)(cmd_buffer);
4021
4022   cmd_buffer_begin_subpass(cmd_buffer, 0);
4023}
4024
4025void genX(CmdBeginRenderPass2KHR)(
4026    VkCommandBuffer                             commandBuffer,
4027    const VkRenderPassBeginInfo*                pRenderPassBeginInfo,
4028    const VkSubpassBeginInfoKHR*                pSubpassBeginInfo)
4029{
4030   genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
4031                            pSubpassBeginInfo->contents);
4032}
4033
4034void genX(CmdNextSubpass)(
4035    VkCommandBuffer                             commandBuffer,
4036    VkSubpassContents                           contents)
4037{
4038   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4039
4040   if (anv_batch_has_error(&cmd_buffer->batch))
4041      return;
4042
4043   assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
4044
4045   uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
4046   cmd_buffer_end_subpass(cmd_buffer);
4047   cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
4048}
4049
4050void genX(CmdNextSubpass2KHR)(
4051    VkCommandBuffer                             commandBuffer,
4052    const VkSubpassBeginInfoKHR*                pSubpassBeginInfo,
4053    const VkSubpassEndInfoKHR*                  pSubpassEndInfo)
4054{
4055   genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
4056}
4057
4058void genX(CmdEndRenderPass)(
4059    VkCommandBuffer                             commandBuffer)
4060{
4061   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4062
4063   if (anv_batch_has_error(&cmd_buffer->batch))
4064      return;
4065
4066   cmd_buffer_end_subpass(cmd_buffer);
4067
4068   cmd_buffer->state.hiz_enabled = false;
4069
4070#ifndef NDEBUG
4071   anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
4072#endif
4073
4074   /* Remove references to render pass specific state. This enables us to
4075    * detect whether or not we're in a renderpass.
4076    */
4077   cmd_buffer->state.framebuffer = NULL;
4078   cmd_buffer->state.pass = NULL;
4079   cmd_buffer->state.subpass = NULL;
4080}
4081
4082void genX(CmdEndRenderPass2KHR)(
4083    VkCommandBuffer                             commandBuffer,
4084    const VkSubpassEndInfoKHR*                  pSubpassEndInfo)
4085{
4086   genX(CmdEndRenderPass)(commandBuffer);
4087}
4088