ffvertex_prog.c revision 3464ebd5
1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36#include "main/glheader.h"
37#include "main/mtypes.h"
38#include "main/macros.h"
39#include "main/mfeatures.h"
40#include "main/enums.h"
41#include "main/ffvertex_prog.h"
42#include "program/program.h"
43#include "program/prog_cache.h"
44#include "program/prog_instruction.h"
45#include "program/prog_parameter.h"
46#include "program/prog_print.h"
47#include "program/prog_statevars.h"
48
49
50/** Max of number of lights and texture coord units */
51#define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
52
53struct state_key {
54   unsigned light_color_material_mask:12;
55   unsigned light_global_enabled:1;
56   unsigned light_local_viewer:1;
57   unsigned light_twoside:1;
58   unsigned material_shininess_is_zero:1;
59   unsigned need_eye_coords:1;
60   unsigned normalize:1;
61   unsigned rescale_normals:1;
62
63   unsigned fog_source_is_depth:1;
64   unsigned separate_specular:1;
65   unsigned point_attenuated:1;
66   unsigned point_array:1;
67   unsigned texture_enabled_global:1;
68   unsigned fragprog_inputs_read:12;
69
70   unsigned varying_vp_inputs;
71
72   struct {
73      unsigned light_enabled:1;
74      unsigned light_eyepos3_is_zero:1;
75      unsigned light_spotcutoff_is_180:1;
76      unsigned light_attenuated:1;
77      unsigned texunit_really_enabled:1;
78      unsigned texmat_enabled:1;
79      unsigned coord_replace:1;
80      unsigned texgen_enabled:4;
81      unsigned texgen_mode0:4;
82      unsigned texgen_mode1:4;
83      unsigned texgen_mode2:4;
84      unsigned texgen_mode3:4;
85   } unit[NUM_UNITS];
86};
87
88
89#define TXG_NONE           0
90#define TXG_OBJ_LINEAR     1
91#define TXG_EYE_LINEAR     2
92#define TXG_SPHERE_MAP     3
93#define TXG_REFLECTION_MAP 4
94#define TXG_NORMAL_MAP     5
95
96static GLuint translate_texgen( GLboolean enabled, GLenum mode )
97{
98   if (!enabled)
99      return TXG_NONE;
100
101   switch (mode) {
102   case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
103   case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
104   case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
105   case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
106   case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
107   default: return TXG_NONE;
108   }
109}
110
111
112
113static GLboolean check_active_shininess( struct gl_context *ctx,
114                                         const struct state_key *key,
115                                         GLuint side )
116{
117   GLuint bit = 1 << (MAT_ATTRIB_FRONT_SHININESS + side);
118
119   if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
120       (key->light_color_material_mask & bit))
121      return GL_TRUE;
122
123   if (key->varying_vp_inputs & (bit << 16))
124      return GL_TRUE;
125
126   if (ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS + side][0] != 0.0F)
127      return GL_TRUE;
128
129   return GL_FALSE;
130}
131
132
133static void make_state_key( struct gl_context *ctx, struct state_key *key )
134{
135   const struct gl_fragment_program *fp;
136   GLuint i;
137
138   memset(key, 0, sizeof(struct state_key));
139   fp = ctx->FragmentProgram._Current;
140
141   /* This now relies on texenvprogram.c being active:
142    */
143   assert(fp);
144
145   key->need_eye_coords = ctx->_NeedEyeCoords;
146
147   key->fragprog_inputs_read = fp->Base.InputsRead;
148   key->varying_vp_inputs = ctx->varying_vp_inputs;
149
150   if (ctx->RenderMode == GL_FEEDBACK) {
151      /* make sure the vertprog emits color and tex0 */
152      key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
153   }
154
155   key->separate_specular = (ctx->Light.Model.ColorControl ==
156			     GL_SEPARATE_SPECULAR_COLOR);
157
158   if (ctx->Light.Enabled) {
159      key->light_global_enabled = 1;
160
161      if (ctx->Light.Model.LocalViewer)
162	 key->light_local_viewer = 1;
163
164      if (ctx->Light.Model.TwoSide)
165	 key->light_twoside = 1;
166
167      if (ctx->Light.ColorMaterialEnabled) {
168	 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
169      }
170
171      for (i = 0; i < MAX_LIGHTS; i++) {
172	 struct gl_light *light = &ctx->Light.Light[i];
173
174	 if (light->Enabled) {
175	    key->unit[i].light_enabled = 1;
176
177	    if (light->EyePosition[3] == 0.0)
178	       key->unit[i].light_eyepos3_is_zero = 1;
179
180	    if (light->SpotCutoff == 180.0)
181	       key->unit[i].light_spotcutoff_is_180 = 1;
182
183	    if (light->ConstantAttenuation != 1.0 ||
184		light->LinearAttenuation != 0.0 ||
185		light->QuadraticAttenuation != 0.0)
186	       key->unit[i].light_attenuated = 1;
187	 }
188      }
189
190      if (check_active_shininess(ctx, key, 0)) {
191         key->material_shininess_is_zero = 0;
192      }
193      else if (key->light_twoside &&
194               check_active_shininess(ctx, key, 1)) {
195         key->material_shininess_is_zero = 0;
196      }
197      else {
198         key->material_shininess_is_zero = 1;
199      }
200   }
201
202   if (ctx->Transform.Normalize)
203      key->normalize = 1;
204
205   if (ctx->Transform.RescaleNormals)
206      key->rescale_normals = 1;
207
208   if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
209      key->fog_source_is_depth = 1;
210
211   if (ctx->Point._Attenuated)
212      key->point_attenuated = 1;
213
214#if FEATURE_point_size_array
215   if (ctx->Array.ArrayObj->PointSize.Enabled)
216      key->point_array = 1;
217#endif
218
219   if (ctx->Texture._TexGenEnabled ||
220       ctx->Texture._TexMatEnabled ||
221       ctx->Texture._EnabledUnits)
222      key->texture_enabled_global = 1;
223
224   for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
225      struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
226
227      if (texUnit->_ReallyEnabled)
228	 key->unit[i].texunit_really_enabled = 1;
229
230      if (ctx->Point.PointSprite)
231	 if (ctx->Point.CoordReplace[i])
232	    key->unit[i].coord_replace = 1;
233
234      if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
235	 key->unit[i].texmat_enabled = 1;
236
237      if (texUnit->TexGenEnabled) {
238	 key->unit[i].texgen_enabled = 1;
239
240	 key->unit[i].texgen_mode0 =
241	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
242			      texUnit->GenS.Mode );
243	 key->unit[i].texgen_mode1 =
244	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
245			      texUnit->GenT.Mode );
246	 key->unit[i].texgen_mode2 =
247	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
248			      texUnit->GenR.Mode );
249	 key->unit[i].texgen_mode3 =
250	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
251			      texUnit->GenQ.Mode );
252      }
253   }
254}
255
256
257
258/* Very useful debugging tool - produces annotated listing of
259 * generated program with line/function references for each
260 * instruction back into this file:
261 */
262#define DISASSEM 0
263
264
265/* Use uregs to represent registers internally, translate to Mesa's
266 * expected formats on emit.
267 *
268 * NOTE: These are passed by value extensively in this file rather
269 * than as usual by pointer reference.  If this disturbs you, try
270 * remembering they are just 32bits in size.
271 *
272 * GCC is smart enough to deal with these dword-sized structures in
273 * much the same way as if I had defined them as dwords and was using
274 * macros to access and set the fields.  This is much nicer and easier
275 * to evolve.
276 */
277struct ureg {
278   GLuint file:4;
279   GLint idx:9;      /* relative addressing may be negative */
280                     /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
281   GLuint negate:1;
282   GLuint swz:12;
283   GLuint pad:6;
284};
285
286
287struct tnl_program {
288   const struct state_key *state;
289   struct gl_vertex_program *program;
290   GLint max_inst;  /** number of instructions allocated for program */
291   GLboolean mvp_with_dp4;
292
293   GLuint temp_in_use;
294   GLuint temp_reserved;
295
296   struct ureg eye_position;
297   struct ureg eye_position_z;
298   struct ureg eye_position_normalized;
299   struct ureg transformed_normal;
300   struct ureg identity;
301
302   GLuint materials;
303   GLuint color_materials;
304};
305
306
307static const struct ureg undef = {
308   PROGRAM_UNDEFINED,
309   0,
310   0,
311   0,
312   0
313};
314
315/* Local shorthand:
316 */
317#define X    SWIZZLE_X
318#define Y    SWIZZLE_Y
319#define Z    SWIZZLE_Z
320#define W    SWIZZLE_W
321
322
323/* Construct a ureg:
324 */
325static struct ureg make_ureg(GLuint file, GLint idx)
326{
327   struct ureg reg;
328   reg.file = file;
329   reg.idx = idx;
330   reg.negate = 0;
331   reg.swz = SWIZZLE_NOOP;
332   reg.pad = 0;
333   return reg;
334}
335
336
337
338static struct ureg negate( struct ureg reg )
339{
340   reg.negate ^= 1;
341   return reg;
342}
343
344
345static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
346{
347   reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
348			   GET_SWZ(reg.swz, y),
349			   GET_SWZ(reg.swz, z),
350			   GET_SWZ(reg.swz, w));
351   return reg;
352}
353
354
355static struct ureg swizzle1( struct ureg reg, int x )
356{
357   return swizzle(reg, x, x, x, x);
358}
359
360
361static struct ureg get_temp( struct tnl_program *p )
362{
363   int bit = _mesa_ffs( ~p->temp_in_use );
364   if (!bit) {
365      _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
366      exit(1);
367   }
368
369   if ((GLuint) bit > p->program->Base.NumTemporaries)
370      p->program->Base.NumTemporaries = bit;
371
372   p->temp_in_use |= 1<<(bit-1);
373   return make_ureg(PROGRAM_TEMPORARY, bit-1);
374}
375
376
377static struct ureg reserve_temp( struct tnl_program *p )
378{
379   struct ureg temp = get_temp( p );
380   p->temp_reserved |= 1<<temp.idx;
381   return temp;
382}
383
384
385static void release_temp( struct tnl_program *p, struct ureg reg )
386{
387   if (reg.file == PROGRAM_TEMPORARY) {
388      p->temp_in_use &= ~(1<<reg.idx);
389      p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
390   }
391}
392
393static void release_temps( struct tnl_program *p )
394{
395   p->temp_in_use = p->temp_reserved;
396}
397
398
399static struct ureg register_param5(struct tnl_program *p,
400				   GLint s0,
401				   GLint s1,
402				   GLint s2,
403				   GLint s3,
404                                   GLint s4)
405{
406   gl_state_index tokens[STATE_LENGTH];
407   GLint idx;
408   tokens[0] = s0;
409   tokens[1] = s1;
410   tokens[2] = s2;
411   tokens[3] = s3;
412   tokens[4] = s4;
413   idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
414   return make_ureg(PROGRAM_STATE_VAR, idx);
415}
416
417
418#define register_param1(p,s0)          register_param5(p,s0,0,0,0,0)
419#define register_param2(p,s0,s1)       register_param5(p,s0,s1,0,0,0)
420#define register_param3(p,s0,s1,s2)    register_param5(p,s0,s1,s2,0,0)
421#define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
422
423
424
425/**
426 * \param input  one of VERT_ATTRIB_x tokens.
427 */
428static struct ureg register_input( struct tnl_program *p, GLuint input )
429{
430   assert(input < 32);
431
432   if (p->state->varying_vp_inputs & (1<<input)) {
433      p->program->Base.InputsRead |= (1<<input);
434      return make_ureg(PROGRAM_INPUT, input);
435   }
436   else {
437      return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
438   }
439}
440
441
442/**
443 * \param input  one of VERT_RESULT_x tokens.
444 */
445static struct ureg register_output( struct tnl_program *p, GLuint output )
446{
447   p->program->Base.OutputsWritten |= BITFIELD64_BIT(output);
448   return make_ureg(PROGRAM_OUTPUT, output);
449}
450
451
452static struct ureg register_const4f( struct tnl_program *p,
453			      GLfloat s0,
454			      GLfloat s1,
455			      GLfloat s2,
456			      GLfloat s3)
457{
458   GLfloat values[4];
459   GLint idx;
460   GLuint swizzle;
461   values[0] = s0;
462   values[1] = s1;
463   values[2] = s2;
464   values[3] = s3;
465   idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
466                                     &swizzle );
467   ASSERT(swizzle == SWIZZLE_NOOP);
468   return make_ureg(PROGRAM_CONSTANT, idx);
469}
470
471#define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
472#define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
473#define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
474#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
475
476static GLboolean is_undef( struct ureg reg )
477{
478   return reg.file == PROGRAM_UNDEFINED;
479}
480
481
482static struct ureg get_identity_param( struct tnl_program *p )
483{
484   if (is_undef(p->identity))
485      p->identity = register_const4f(p, 0,0,0,1);
486
487   return p->identity;
488}
489
490static void register_matrix_param5( struct tnl_program *p,
491				    GLint s0, /* modelview, projection, etc */
492				    GLint s1, /* texture matrix number */
493				    GLint s2, /* first row */
494				    GLint s3, /* last row */
495				    GLint s4, /* inverse, transpose, etc */
496				    struct ureg *matrix )
497{
498   GLint i;
499
500   /* This is a bit sad as the support is there to pull the whole
501    * matrix out in one go:
502    */
503   for (i = 0; i <= s3 - s2; i++)
504      matrix[i] = register_param5( p, s0, s1, i, i, s4 );
505}
506
507
508static void emit_arg( struct prog_src_register *src,
509		      struct ureg reg )
510{
511   src->File = reg.file;
512   src->Index = reg.idx;
513   src->Swizzle = reg.swz;
514   src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
515   src->Abs = 0;
516   src->RelAddr = 0;
517   /* Check that bitfield sizes aren't exceeded */
518   ASSERT(src->Index == reg.idx);
519}
520
521
522static void emit_dst( struct prog_dst_register *dst,
523		      struct ureg reg, GLuint mask )
524{
525   dst->File = reg.file;
526   dst->Index = reg.idx;
527   /* allow zero as a shorthand for xyzw */
528   dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
529   dst->CondMask = COND_TR;  /* always pass cond test */
530   dst->CondSwizzle = SWIZZLE_NOOP;
531   dst->CondSrc = 0;
532   /* Check that bitfield sizes aren't exceeded */
533   ASSERT(dst->Index == reg.idx);
534}
535
536
537static void debug_insn( struct prog_instruction *inst, const char *fn,
538			GLuint line )
539{
540   if (DISASSEM) {
541      static const char *last_fn;
542
543      if (fn != last_fn) {
544	 last_fn = fn;
545	 printf("%s:\n", fn);
546      }
547
548      printf("%d:\t", line);
549      _mesa_print_instruction(inst);
550   }
551}
552
553
554static void emit_op3fn(struct tnl_program *p,
555                       enum prog_opcode op,
556		       struct ureg dest,
557		       GLuint mask,
558		       struct ureg src0,
559		       struct ureg src1,
560		       struct ureg src2,
561		       const char *fn,
562		       GLuint line)
563{
564   GLuint nr;
565   struct prog_instruction *inst;
566
567   assert((GLint) p->program->Base.NumInstructions <= p->max_inst);
568
569   if (p->program->Base.NumInstructions == p->max_inst) {
570      /* need to extend the program's instruction array */
571      struct prog_instruction *newInst;
572
573      /* double the size */
574      p->max_inst *= 2;
575
576      newInst = _mesa_alloc_instructions(p->max_inst);
577      if (!newInst) {
578         _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
579         return;
580      }
581
582      _mesa_copy_instructions(newInst,
583                              p->program->Base.Instructions,
584                              p->program->Base.NumInstructions);
585
586      _mesa_free_instructions(p->program->Base.Instructions,
587                              p->program->Base.NumInstructions);
588
589      p->program->Base.Instructions = newInst;
590   }
591
592   nr = p->program->Base.NumInstructions++;
593
594   inst = &p->program->Base.Instructions[nr];
595   inst->Opcode = (enum prog_opcode) op;
596   inst->Data = 0;
597
598   emit_arg( &inst->SrcReg[0], src0 );
599   emit_arg( &inst->SrcReg[1], src1 );
600   emit_arg( &inst->SrcReg[2], src2 );
601
602   emit_dst( &inst->DstReg, dest, mask );
603
604   debug_insn(inst, fn, line);
605}
606
607
608#define emit_op3(p, op, dst, mask, src0, src1, src2) \
609   emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
610
611#define emit_op2(p, op, dst, mask, src0, src1) \
612    emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
613
614#define emit_op1(p, op, dst, mask, src0) \
615    emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
616
617
618static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
619{
620   if (reg.file == PROGRAM_TEMPORARY &&
621       !(p->temp_reserved & (1<<reg.idx)))
622      return reg;
623   else {
624      struct ureg temp = get_temp(p);
625      emit_op1(p, OPCODE_MOV, temp, 0, reg);
626      return temp;
627   }
628}
629
630
631/* Currently no tracking performed of input/output/register size or
632 * active elements.  Could be used to reduce these operations, as
633 * could the matrix type.
634 */
635static void emit_matrix_transform_vec4( struct tnl_program *p,
636					struct ureg dest,
637					const struct ureg *mat,
638					struct ureg src)
639{
640   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
641   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
642   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
643   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
644}
645
646
647/* This version is much easier to implement if writemasks are not
648 * supported natively on the target or (like SSE), the target doesn't
649 * have a clean/obvious dotproduct implementation.
650 */
651static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
652						  struct ureg dest,
653						  const struct ureg *mat,
654						  struct ureg src)
655{
656   struct ureg tmp;
657
658   if (dest.file != PROGRAM_TEMPORARY)
659      tmp = get_temp(p);
660   else
661      tmp = dest;
662
663   emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
664   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
665   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
666   emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
667
668   if (dest.file != PROGRAM_TEMPORARY)
669      release_temp(p, tmp);
670}
671
672
673static void emit_matrix_transform_vec3( struct tnl_program *p,
674					struct ureg dest,
675					const struct ureg *mat,
676					struct ureg src)
677{
678   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
679   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
680   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
681}
682
683
684static void emit_normalize_vec3( struct tnl_program *p,
685				 struct ureg dest,
686				 struct ureg src )
687{
688#if 0
689   /* XXX use this when drivers are ready for NRM3 */
690   emit_op1(p, OPCODE_NRM3, dest, WRITEMASK_XYZ, src);
691#else
692   struct ureg tmp = get_temp(p);
693   emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
694   emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
695   emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
696   release_temp(p, tmp);
697#endif
698}
699
700
701static void emit_passthrough( struct tnl_program *p,
702			      GLuint input,
703			      GLuint output )
704{
705   struct ureg out = register_output(p, output);
706   emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
707}
708
709
710static struct ureg get_eye_position( struct tnl_program *p )
711{
712   if (is_undef(p->eye_position)) {
713      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
714      struct ureg modelview[4];
715
716      p->eye_position = reserve_temp(p);
717
718      if (p->mvp_with_dp4) {
719	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
720                                 0, modelview );
721
722	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
723      }
724      else {
725	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
726				 STATE_MATRIX_TRANSPOSE, modelview );
727
728	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
729      }
730   }
731
732   return p->eye_position;
733}
734
735
736static struct ureg get_eye_position_z( struct tnl_program *p )
737{
738   if (!is_undef(p->eye_position))
739      return swizzle1(p->eye_position, Z);
740
741   if (is_undef(p->eye_position_z)) {
742      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
743      struct ureg modelview[4];
744
745      p->eye_position_z = reserve_temp(p);
746
747      register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
748                              0, modelview );
749
750      emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
751   }
752
753   return p->eye_position_z;
754}
755
756
757static struct ureg get_eye_position_normalized( struct tnl_program *p )
758{
759   if (is_undef(p->eye_position_normalized)) {
760      struct ureg eye = get_eye_position(p);
761      p->eye_position_normalized = reserve_temp(p);
762      emit_normalize_vec3(p, p->eye_position_normalized, eye);
763   }
764
765   return p->eye_position_normalized;
766}
767
768
769static struct ureg get_transformed_normal( struct tnl_program *p )
770{
771   if (is_undef(p->transformed_normal) &&
772       !p->state->need_eye_coords &&
773       !p->state->normalize &&
774       !(p->state->need_eye_coords == p->state->rescale_normals))
775   {
776      p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
777   }
778   else if (is_undef(p->transformed_normal))
779   {
780      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
781      struct ureg mvinv[3];
782      struct ureg transformed_normal = reserve_temp(p);
783
784      if (p->state->need_eye_coords) {
785         register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
786                                 STATE_MATRIX_INVTRANS, mvinv );
787
788         /* Transform to eye space:
789          */
790         emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
791         normal = transformed_normal;
792      }
793
794      /* Normalize/Rescale:
795       */
796      if (p->state->normalize) {
797	 emit_normalize_vec3( p, transformed_normal, normal );
798         normal = transformed_normal;
799      }
800      else if (p->state->need_eye_coords == p->state->rescale_normals) {
801         /* This is already adjusted for eye/non-eye rendering:
802          */
803	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
804                                               STATE_NORMAL_SCALE);
805
806	 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
807         normal = transformed_normal;
808      }
809
810      assert(normal.file == PROGRAM_TEMPORARY);
811      p->transformed_normal = normal;
812   }
813
814   return p->transformed_normal;
815}
816
817
818static void build_hpos( struct tnl_program *p )
819{
820   struct ureg pos = register_input( p, VERT_ATTRIB_POS );
821   struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
822   struct ureg mvp[4];
823
824   if (p->mvp_with_dp4) {
825      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
826			      0, mvp );
827      emit_matrix_transform_vec4( p, hpos, mvp, pos );
828   }
829   else {
830      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
831			      STATE_MATRIX_TRANSPOSE, mvp );
832      emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
833   }
834}
835
836
837static GLuint material_attrib( GLuint side, GLuint property )
838{
839   return (property - STATE_AMBIENT) * 2 + side;
840}
841
842
843/**
844 * Get a bitmask of which material values vary on a per-vertex basis.
845 */
846static void set_material_flags( struct tnl_program *p )
847{
848   p->color_materials = 0;
849   p->materials = 0;
850
851   if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
852      p->materials =
853	 p->color_materials = p->state->light_color_material_mask;
854   }
855
856   p->materials |= (p->state->varying_vp_inputs >> 16);
857}
858
859
860static struct ureg get_material( struct tnl_program *p, GLuint side,
861				 GLuint property )
862{
863   GLuint attrib = material_attrib(side, property);
864
865   if (p->color_materials & (1<<attrib))
866      return register_input(p, VERT_ATTRIB_COLOR0);
867   else if (p->materials & (1<<attrib)) {
868      /* Put material values in the GENERIC slots -- they are not used
869       * for anything in fixed function mode.
870       */
871      return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
872   }
873   else
874      return register_param3( p, STATE_MATERIAL, side, property );
875}
876
877#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
878				   MAT_BIT_FRONT_AMBIENT | \
879				   MAT_BIT_FRONT_DIFFUSE) << (side))
880
881
882/**
883 * Either return a precalculated constant value or emit code to
884 * calculate these values dynamically in the case where material calls
885 * are present between begin/end pairs.
886 *
887 * Probably want to shift this to the program compilation phase - if
888 * we always emitted the calculation here, a smart compiler could
889 * detect that it was constant (given a certain set of inputs), and
890 * lift it out of the main loop.  That way the programs created here
891 * would be independent of the vertex_buffer details.
892 */
893static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
894{
895   if (p->materials & SCENE_COLOR_BITS(side)) {
896      struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
897      struct ureg material_emission = get_material(p, side, STATE_EMISSION);
898      struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
899      struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
900      struct ureg tmp = make_temp(p, material_diffuse);
901      emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
902	       material_ambient, material_emission);
903      return tmp;
904   }
905   else
906      return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
907}
908
909
910static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
911				  GLuint side, GLuint property )
912{
913   GLuint attrib = material_attrib(side, property);
914   if (p->materials & (1<<attrib)) {
915      struct ureg light_value =
916	 register_param3(p, STATE_LIGHT, light, property);
917      struct ureg material_value = get_material(p, side, property);
918      struct ureg tmp = get_temp(p);
919      emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
920      return tmp;
921   }
922   else
923      return register_param4(p, STATE_LIGHTPROD, light, side, property);
924}
925
926
927static struct ureg calculate_light_attenuation( struct tnl_program *p,
928						GLuint i,
929						struct ureg VPpli,
930						struct ureg dist )
931{
932   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
933					     STATE_ATTENUATION);
934   struct ureg att = get_temp(p);
935
936   /* Calculate spot attenuation:
937    */
938   if (!p->state->unit[i].light_spotcutoff_is_180) {
939      struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
940						  STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
941      struct ureg spot = get_temp(p);
942      struct ureg slt = get_temp(p);
943
944      emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
945      emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
946      emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
947      emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
948
949      release_temp(p, spot);
950      release_temp(p, slt);
951   }
952
953   /* Calculate distance attenuation:
954    */
955   if (p->state->unit[i].light_attenuated) {
956      /* 1/d,d,d,1/d */
957      emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
958      /* 1,d,d*d,1/d */
959      emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
960      /* 1/dist-atten */
961      emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
962
963      if (!p->state->unit[i].light_spotcutoff_is_180) {
964	 /* dist-atten */
965	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
966	 /* spot-atten * dist-atten */
967	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
968      }
969      else {
970	 /* dist-atten */
971	 emit_op1(p, OPCODE_RCP, att, 0, dist);
972      }
973   }
974
975   return att;
976}
977
978
979/**
980 * Compute:
981 *   lit.y = MAX(0, dots.x)
982 *   lit.z = SLT(0, dots.x)
983 */
984static void emit_degenerate_lit( struct tnl_program *p,
985                                 struct ureg lit,
986                                 struct ureg dots )
987{
988   struct ureg id = get_identity_param(p);  /* id = {0,0,0,1} */
989
990   /* Note that lit.x & lit.w will not be examined.  Note also that
991    * dots.xyzw == dots.xxxx.
992    */
993
994   /* MAX lit, id, dots;
995    */
996   emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
997
998   /* result[2] = (in > 0 ? 1 : 0)
999    * SLT lit.z, id.z, dots;   # lit.z = (0 < dots.z) ? 1 : 0
1000    */
1001   emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1002}
1003
1004
1005/* Need to add some addtional parameters to allow lighting in object
1006 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1007 * space lighting.
1008 */
1009static void build_lighting( struct tnl_program *p )
1010{
1011   const GLboolean twoside = p->state->light_twoside;
1012   const GLboolean separate = p->state->separate_specular;
1013   GLuint nr_lights = 0, count = 0;
1014   struct ureg normal = get_transformed_normal(p);
1015   struct ureg lit = get_temp(p);
1016   struct ureg dots = get_temp(p);
1017   struct ureg _col0 = undef, _col1 = undef;
1018   struct ureg _bfc0 = undef, _bfc1 = undef;
1019   GLuint i;
1020
1021   /*
1022    * NOTE:
1023    * dots.x = dot(normal, VPpli)
1024    * dots.y = dot(normal, halfAngle)
1025    * dots.z = back.shininess
1026    * dots.w = front.shininess
1027    */
1028
1029   for (i = 0; i < MAX_LIGHTS; i++)
1030      if (p->state->unit[i].light_enabled)
1031	 nr_lights++;
1032
1033   set_material_flags(p);
1034
1035   {
1036      if (!p->state->material_shininess_is_zero) {
1037         struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1038         emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1039         release_temp(p, shininess);
1040      }
1041
1042      _col0 = make_temp(p, get_scenecolor(p, 0));
1043      if (separate)
1044	 _col1 = make_temp(p, get_identity_param(p));
1045      else
1046	 _col1 = _col0;
1047   }
1048
1049   if (twoside) {
1050      if (!p->state->material_shininess_is_zero) {
1051         /* Note that we negate the back-face specular exponent here.
1052          * The negation will be un-done later in the back-face code below.
1053          */
1054         struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1055         emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1056                  negate(swizzle1(shininess,X)));
1057         release_temp(p, shininess);
1058      }
1059
1060      _bfc0 = make_temp(p, get_scenecolor(p, 1));
1061      if (separate)
1062	 _bfc1 = make_temp(p, get_identity_param(p));
1063      else
1064	 _bfc1 = _bfc0;
1065   }
1066
1067   /* If no lights, still need to emit the scenecolor.
1068    */
1069   {
1070      struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1071      emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1072   }
1073
1074   if (separate) {
1075      struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1076      emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1077   }
1078
1079   if (twoside) {
1080      struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1081      emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1082   }
1083
1084   if (twoside && separate) {
1085      struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1086      emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1087   }
1088
1089   if (nr_lights == 0) {
1090      release_temps(p);
1091      return;
1092   }
1093
1094   for (i = 0; i < MAX_LIGHTS; i++) {
1095      if (p->state->unit[i].light_enabled) {
1096	 struct ureg half = undef;
1097	 struct ureg att = undef, VPpli = undef;
1098
1099	 count++;
1100
1101	 if (p->state->unit[i].light_eyepos3_is_zero) {
1102	    /* Can used precomputed constants in this case.
1103	     * Attenuation never applies to infinite lights.
1104	     */
1105	    VPpli = register_param3(p, STATE_INTERNAL,
1106				    STATE_LIGHT_POSITION_NORMALIZED, i);
1107
1108            if (!p->state->material_shininess_is_zero) {
1109               if (p->state->light_local_viewer) {
1110                  struct ureg eye_hat = get_eye_position_normalized(p);
1111                  half = get_temp(p);
1112                  emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1113                  emit_normalize_vec3(p, half, half);
1114               }
1115               else {
1116                  half = register_param3(p, STATE_INTERNAL,
1117                                         STATE_LIGHT_HALF_VECTOR, i);
1118               }
1119            }
1120	 }
1121	 else {
1122	    struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1123					       STATE_LIGHT_POSITION, i);
1124	    struct ureg V = get_eye_position(p);
1125	    struct ureg dist = get_temp(p);
1126
1127	    VPpli = get_temp(p);
1128
1129	    /* Calculate VPpli vector
1130	     */
1131	    emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1132
1133	    /* Normalize VPpli.  The dist value also used in
1134	     * attenuation below.
1135	     */
1136	    emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1137	    emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1138	    emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1139
1140	    /* Calculate attenuation:
1141	     */
1142	    if (!p->state->unit[i].light_spotcutoff_is_180 ||
1143		p->state->unit[i].light_attenuated) {
1144	       att = calculate_light_attenuation(p, i, VPpli, dist);
1145	    }
1146
1147	    /* Calculate viewer direction, or use infinite viewer:
1148	     */
1149            if (!p->state->material_shininess_is_zero) {
1150               half = get_temp(p);
1151
1152               if (p->state->light_local_viewer) {
1153                  struct ureg eye_hat = get_eye_position_normalized(p);
1154                  emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1155               }
1156               else {
1157                  struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1158                  emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1159               }
1160
1161               emit_normalize_vec3(p, half, half);
1162            }
1163
1164	    release_temp(p, dist);
1165	 }
1166
1167	 /* Calculate dot products:
1168	  */
1169         if (p->state->material_shininess_is_zero) {
1170            emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1171         }
1172         else {
1173            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1174            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1175         }
1176
1177	 /* Front face lighting:
1178	  */
1179	 {
1180	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1181	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1182	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1183	    struct ureg res0, res1;
1184	    GLuint mask0, mask1;
1185
1186	    if (count == nr_lights) {
1187	       if (separate) {
1188		  mask0 = WRITEMASK_XYZ;
1189		  mask1 = WRITEMASK_XYZ;
1190		  res0 = register_output( p, VERT_RESULT_COL0 );
1191		  res1 = register_output( p, VERT_RESULT_COL1 );
1192	       }
1193	       else {
1194		  mask0 = 0;
1195		  mask1 = WRITEMASK_XYZ;
1196		  res0 = _col0;
1197		  res1 = register_output( p, VERT_RESULT_COL0 );
1198	       }
1199	    }
1200            else {
1201	       mask0 = 0;
1202	       mask1 = 0;
1203	       res0 = _col0;
1204	       res1 = _col1;
1205	    }
1206
1207	    if (!is_undef(att)) {
1208               /* light is attenuated by distance */
1209               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1210               emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1211               emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1212            }
1213            else if (!p->state->material_shininess_is_zero) {
1214               /* there's a non-zero specular term */
1215               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1216               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1217            }
1218            else {
1219               /* no attenutation, no specular */
1220               emit_degenerate_lit(p, lit, dots);
1221               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1222            }
1223
1224	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1225	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1226
1227	    release_temp(p, ambient);
1228	    release_temp(p, diffuse);
1229	    release_temp(p, specular);
1230	 }
1231
1232	 /* Back face lighting:
1233	  */
1234	 if (twoside) {
1235	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1236	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1237	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1238	    struct ureg res0, res1;
1239	    GLuint mask0, mask1;
1240
1241	    if (count == nr_lights) {
1242	       if (separate) {
1243		  mask0 = WRITEMASK_XYZ;
1244		  mask1 = WRITEMASK_XYZ;
1245		  res0 = register_output( p, VERT_RESULT_BFC0 );
1246		  res1 = register_output( p, VERT_RESULT_BFC1 );
1247	       }
1248	       else {
1249		  mask0 = 0;
1250		  mask1 = WRITEMASK_XYZ;
1251		  res0 = _bfc0;
1252		  res1 = register_output( p, VERT_RESULT_BFC0 );
1253	       }
1254	    }
1255            else {
1256	       res0 = _bfc0;
1257	       res1 = _bfc1;
1258	       mask0 = 0;
1259	       mask1 = 0;
1260	    }
1261
1262            /* For the back face we need to negate the X and Y component
1263             * dot products.  dots.Z has the negated back-face specular
1264             * exponent.  We swizzle that into the W position.  This
1265             * negation makes the back-face specular term positive again.
1266             */
1267            dots = negate(swizzle(dots,X,Y,W,Z));
1268
1269	    if (!is_undef(att)) {
1270               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1271	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1272               emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1273            }
1274            else if (!p->state->material_shininess_is_zero) {
1275               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1276               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1277            }
1278            else {
1279               emit_degenerate_lit(p, lit, dots);
1280               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1281            }
1282
1283	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1284	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1285            /* restore dots to its original state for subsequent lights
1286             * by negating and swizzling again.
1287             */
1288            dots = negate(swizzle(dots,X,Y,W,Z));
1289
1290	    release_temp(p, ambient);
1291	    release_temp(p, diffuse);
1292	    release_temp(p, specular);
1293	 }
1294
1295	 release_temp(p, half);
1296	 release_temp(p, VPpli);
1297	 release_temp(p, att);
1298      }
1299   }
1300
1301   release_temps( p );
1302}
1303
1304
1305static void build_fog( struct tnl_program *p )
1306{
1307   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1308   struct ureg input;
1309
1310   if (p->state->fog_source_is_depth) {
1311      input = get_eye_position_z(p);
1312   }
1313   else {
1314      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1315   }
1316
1317   /* result.fog = {abs(f),0,0,1}; */
1318   emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1319   emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1320}
1321
1322
1323static void build_reflect_texgen( struct tnl_program *p,
1324				  struct ureg dest,
1325				  GLuint writemask )
1326{
1327   struct ureg normal = get_transformed_normal(p);
1328   struct ureg eye_hat = get_eye_position_normalized(p);
1329   struct ureg tmp = get_temp(p);
1330
1331   /* n.u */
1332   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1333   /* 2n.u */
1334   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1335   /* (-2n.u)n + u */
1336   emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1337
1338   release_temp(p, tmp);
1339}
1340
1341
1342static void build_sphere_texgen( struct tnl_program *p,
1343				 struct ureg dest,
1344				 GLuint writemask )
1345{
1346   struct ureg normal = get_transformed_normal(p);
1347   struct ureg eye_hat = get_eye_position_normalized(p);
1348   struct ureg tmp = get_temp(p);
1349   struct ureg half = register_scalar_const(p, .5);
1350   struct ureg r = get_temp(p);
1351   struct ureg inv_m = get_temp(p);
1352   struct ureg id = get_identity_param(p);
1353
1354   /* Could share the above calculations, but it would be
1355    * a fairly odd state for someone to set (both sphere and
1356    * reflection active for different texture coordinate
1357    * components.  Of course - if two texture units enable
1358    * reflect and/or sphere, things start to tilt in favour
1359    * of seperating this out:
1360    */
1361
1362   /* n.u */
1363   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1364   /* 2n.u */
1365   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1366   /* (-2n.u)n + u */
1367   emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1368   /* r + 0,0,1 */
1369   emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1370   /* rx^2 + ry^2 + (rz+1)^2 */
1371   emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1372   /* 2/m */
1373   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1374   /* 1/m */
1375   emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1376   /* r/m + 1/2 */
1377   emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1378
1379   release_temp(p, tmp);
1380   release_temp(p, r);
1381   release_temp(p, inv_m);
1382}
1383
1384
1385static void build_texture_transform( struct tnl_program *p )
1386{
1387   GLuint i, j;
1388
1389   for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1390
1391      if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1392	 continue;
1393
1394      if (p->state->unit[i].coord_replace)
1395  	 continue;
1396
1397      if (p->state->unit[i].texgen_enabled ||
1398	  p->state->unit[i].texmat_enabled) {
1399
1400	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1401	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1402	 struct ureg out_texgen = undef;
1403
1404	 if (p->state->unit[i].texgen_enabled) {
1405	    GLuint copy_mask = 0;
1406	    GLuint sphere_mask = 0;
1407	    GLuint reflect_mask = 0;
1408	    GLuint normal_mask = 0;
1409	    GLuint modes[4];
1410
1411	    if (texmat_enabled)
1412	       out_texgen = get_temp(p);
1413	    else
1414	       out_texgen = out;
1415
1416	    modes[0] = p->state->unit[i].texgen_mode0;
1417	    modes[1] = p->state->unit[i].texgen_mode1;
1418	    modes[2] = p->state->unit[i].texgen_mode2;
1419	    modes[3] = p->state->unit[i].texgen_mode3;
1420
1421	    for (j = 0; j < 4; j++) {
1422	       switch (modes[j]) {
1423	       case TXG_OBJ_LINEAR: {
1424		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1425		  struct ureg plane =
1426		     register_param3(p, STATE_TEXGEN, i,
1427				     STATE_TEXGEN_OBJECT_S + j);
1428
1429		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1430			   obj, plane );
1431		  break;
1432	       }
1433	       case TXG_EYE_LINEAR: {
1434		  struct ureg eye = get_eye_position(p);
1435		  struct ureg plane =
1436		     register_param3(p, STATE_TEXGEN, i,
1437				     STATE_TEXGEN_EYE_S + j);
1438
1439		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1440			   eye, plane );
1441		  break;
1442	       }
1443	       case TXG_SPHERE_MAP:
1444		  sphere_mask |= WRITEMASK_X << j;
1445		  break;
1446	       case TXG_REFLECTION_MAP:
1447		  reflect_mask |= WRITEMASK_X << j;
1448		  break;
1449	       case TXG_NORMAL_MAP:
1450		  normal_mask |= WRITEMASK_X << j;
1451		  break;
1452	       case TXG_NONE:
1453		  copy_mask |= WRITEMASK_X << j;
1454	       }
1455	    }
1456
1457	    if (sphere_mask) {
1458	       build_sphere_texgen(p, out_texgen, sphere_mask);
1459	    }
1460
1461	    if (reflect_mask) {
1462	       build_reflect_texgen(p, out_texgen, reflect_mask);
1463	    }
1464
1465	    if (normal_mask) {
1466	       struct ureg normal = get_transformed_normal(p);
1467	       emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1468	    }
1469
1470	    if (copy_mask) {
1471	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1472	       emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1473	    }
1474	 }
1475
1476	 if (texmat_enabled) {
1477	    struct ureg texmat[4];
1478	    struct ureg in = (!is_undef(out_texgen) ?
1479			      out_texgen :
1480			      register_input(p, VERT_ATTRIB_TEX0+i));
1481	    if (p->mvp_with_dp4) {
1482	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1483				       0, texmat );
1484	       emit_matrix_transform_vec4( p, out, texmat, in );
1485	    }
1486	    else {
1487	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1488				       STATE_MATRIX_TRANSPOSE, texmat );
1489	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1490	    }
1491	 }
1492
1493	 release_temps(p);
1494      }
1495      else {
1496	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1497      }
1498   }
1499}
1500
1501
1502/**
1503 * Point size attenuation computation.
1504 */
1505static void build_atten_pointsize( struct tnl_program *p )
1506{
1507   struct ureg eye = get_eye_position_z(p);
1508   struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
1509   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1510   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1511   struct ureg ut = get_temp(p);
1512
1513   /* dist = |eyez| */
1514   emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1515   /* p1 + dist * (p2 + dist * p3); */
1516   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1517		swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1518   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1519		ut, swizzle1(state_attenuation, X));
1520
1521   /* 1 / sqrt(factor) */
1522   emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1523
1524#if 0
1525   /* out = pointSize / sqrt(factor) */
1526   emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1527#else
1528   /* this is a good place to clamp the point size since there's likely
1529    * no hardware registers to clamp point size at rasterization time.
1530    */
1531   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1532   emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1533   emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1534#endif
1535
1536   release_temp(p, ut);
1537}
1538
1539
1540/**
1541 * Pass-though per-vertex point size, from user's point size array.
1542 */
1543static void build_array_pointsize( struct tnl_program *p )
1544{
1545   struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1546   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1547   emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1548}
1549
1550
1551static void build_tnl_program( struct tnl_program *p )
1552{
1553   /* Emit the program, starting with modelviewproject:
1554    */
1555   build_hpos(p);
1556
1557   /* Lighting calculations:
1558    */
1559   if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1560      if (p->state->light_global_enabled)
1561	 build_lighting(p);
1562      else {
1563	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1564	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1565
1566	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1567	    emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1568      }
1569   }
1570
1571   if (p->state->fragprog_inputs_read & FRAG_BIT_FOGC)
1572      build_fog(p);
1573
1574   if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1575      build_texture_transform(p);
1576
1577   if (p->state->point_attenuated)
1578      build_atten_pointsize(p);
1579   else if (p->state->point_array)
1580      build_array_pointsize(p);
1581
1582   /* Finish up:
1583    */
1584   emit_op1(p, OPCODE_END, undef, 0, undef);
1585
1586   /* Disassemble:
1587    */
1588   if (DISASSEM) {
1589      printf ("\n");
1590   }
1591}
1592
1593
1594static void
1595create_new_program( const struct state_key *key,
1596                    struct gl_vertex_program *program,
1597                    GLboolean mvp_with_dp4,
1598                    GLuint max_temps)
1599{
1600   struct tnl_program p;
1601
1602   memset(&p, 0, sizeof(p));
1603   p.state = key;
1604   p.program = program;
1605   p.eye_position = undef;
1606   p.eye_position_z = undef;
1607   p.eye_position_normalized = undef;
1608   p.transformed_normal = undef;
1609   p.identity = undef;
1610   p.temp_in_use = 0;
1611   p.mvp_with_dp4 = mvp_with_dp4;
1612
1613   if (max_temps >= sizeof(int) * 8)
1614      p.temp_reserved = 0;
1615   else
1616      p.temp_reserved = ~((1<<max_temps)-1);
1617
1618   /* Start by allocating 32 instructions.
1619    * If we need more, we'll grow the instruction array as needed.
1620    */
1621   p.max_inst = 32;
1622   p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1623   p.program->Base.String = NULL;
1624   p.program->Base.NumInstructions =
1625   p.program->Base.NumTemporaries =
1626   p.program->Base.NumParameters =
1627   p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1628   p.program->Base.Parameters = _mesa_new_parameter_list();
1629   p.program->Base.InputsRead = 0;
1630   p.program->Base.OutputsWritten = 0;
1631
1632   build_tnl_program( &p );
1633}
1634
1635
1636/**
1637 * Return a vertex program which implements the current fixed-function
1638 * transform/lighting/texgen operations.
1639 * XXX move this into core mesa (main/)
1640 */
1641struct gl_vertex_program *
1642_mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
1643{
1644   struct gl_vertex_program *prog;
1645   struct state_key key;
1646
1647   /* Grab all the relevent state and put it in a single structure:
1648    */
1649   make_state_key(ctx, &key);
1650
1651   /* Look for an already-prepared program for this state:
1652    */
1653   prog = (struct gl_vertex_program *)
1654      _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key));
1655
1656   if (!prog) {
1657      /* OK, we'll have to build a new one */
1658      if (0)
1659         printf("Build new TNL program\n");
1660
1661      prog = (struct gl_vertex_program *)
1662         ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1663      if (!prog)
1664         return NULL;
1665
1666      create_new_program( &key, prog,
1667                          ctx->mvp_with_dp4,
1668                          ctx->Const.VertexProgram.MaxTemps );
1669
1670#if 0
1671      if (ctx->Driver.ProgramStringNotify)
1672         ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1673                                          &prog->Base );
1674#endif
1675      _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1676                                 &key, sizeof(key), &prog->Base);
1677   }
1678
1679   return prog;
1680}
1681